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Abstract. We initiate the study of partial key exposure in ring-LWE-based cryptosystems. Specifically,
we

– Introduce the search and decision Leaky-RLWE assumptions (Leaky-SRLWE, Leaky-DRLWE), to
formalize the hardness of search/decision RLWE under leakage of some fraction of coordinates of
the NTT transform of the RLWE secret and/or error.

– Present and implement an efficient key exposure attack that, given certain 1/4-fraction of the
coordinates of the NTT transform of the RLWE secret, along with RLWE instances, recovers the
full RLWE secret for standard parameter settings.

– Present a search-to-decision reduction for Leaky-RLWE for certain types of key exposure.
– Analyze the security of NewHope key exchange under partial key exposure of 1/8-fraction of the

secrets and error. We show that, assuming that Leaky-DRLWE is hard for these parameters, the
shared key v (which is then hashed using a random oracle) is computationally indistinguishable
from a random variable with average min-entropy 238, conditioned on transcript and leakage,
whereas without leakage the min-entropy is 256.

1 Introduction

Partial key exposure attacks. Many of the cryptanalytic attacks on RSA are based on the seminal “Cop-
persmith’s method,” [17,16] which provides an efficient lattice-based algorithm to solve for small roots of a
polynomial over a modulus. One of the most beautiful applications of Coppersmith’s method is to so-called
“partial key exposure attacks” on RSA, introduced by Boneh, Durfee, and Frankel [9]. This class of attacks
shows that given 1/2 of the bits of the secret key—either the most or least significant—it is possible to
efficiently recover the entire key. The original attack worked for only certain choices of parameters, but a
long line of follow-up works have greatly improved the applicability of these results [8,26,41,42]. Partial key
exposure attacks are not meant to model realistic leakage attacks (since the attacks only work when the
leakage is highly structured), although vulnerability of RSA to key exposure has been exploited in practice,
due to flaws in certain prime generation algorithms [7,36]. The main motivation to study these attacks is
that they provide a setting in which the algebraic structure of a cryptosystem can be exploited to obtain
improvements far beyond what is naively expected. Say, after exposing 1024 bits of a 2048-bit RSA key, one
could still hope to maintain the security level of 1024-bit RSA. These attacks show that, in fact, no security
at all is maintained after exposing 1024 bits in specific positions. This helps to further our understanding of
the algebraic structure of the cryptosystem and how that structure can be leveraged in cryptanalytic attacks.

Enter post-quantum. Recently there has been a huge effort in the cryptographic community to develop
“post-quantum” cryptosystems that remain secure even in the presence of quantum adversary. One of the
foremost avenues for viable post-quantum public key cryptography is to construct schemes from Ring-LWE
(RLWE) assumptions—currently 12 out of 69 submissions for the first round of NIST submissions are based
on assumptions in the ring setting. RLWE is often preferred in practice over standard LWE due to its
algebraic structure, which allows for smaller public keys and more efficient implementations. In the RLWE
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setting, we typically consider rings of the form Rq := Zq[x]/(xn + 1), where n is a power of two and q ≡ 1
mod 2n. The (decisional) RLWE problem is then to distinguish (a, b = a · s+ e) ∈ Rq ×Rq from uniformly
random pairs, where s ∈ Rq is a random secret, the a ∈ Rq is uniformly random and the error term e ∈ R has
small norm. A critical question is whether the additional algebraic structure of the RLWE problem renders
it less secure than the standard LWE problem. Interestingly, to the best of our knowledge—for the rings used
in practice and for practical parameter settings—the best attacks on RLWE are generic and can equally well
be applied to standard LWE [38].

The NTT transform. One key method for speeding up computations in the RLWE setting is usage of the
NTT transform (similar to the discrete Fourier transform (DFT), but over finite fields) to allow for faster
polynomial multiplication over the ring Rq. Specifically, applying the NTT transform to two polynomials
p,p′ ∈ Rq—resulting in two n-dimensional vectors, p̂, p̂′ ∈ Znq—allows for component-wise multiplication
and addition, which is highly efficient . Typically, the RLWE secret will then be stored in NTT form, and
so leakage of coordinates of the NTT transform is a natural model for key exposure attacks.

NewHope key exchange protocol. Some of our results focus on analysis of the NewHope key exchange protocol
of [4] in the presence of partial key exposure. Briefly, NewHope key exchange is a post-quantum key exchange
protocol that has been considered as a good candidate for practical implementation, due to its computational
efficiency and low communication. Specifically, Google has experimented with large-scale implementation of
NewHope in their Chrome browser [13] to determine the feasibility of switching over to post-quantum key
exchange in the near-term.

This work. The goal of this work is to initiate a study of partial key exposure in RLWE based cryptosystems
and explore both positive and negative results in this setting. Specifically, we (1) define search and decision
versions of Leaky RLWE assumptions, where the structured leakage occurs on the coordinates of the NTT
transform of the LWE secret (and/or error); (2) present partial key exposure attacks on RLWE, given 1/4-
fraction of structured leakage on the secret key; (3) present a search to decision reduction for the Leaky
RLWE assumptions; and (4) analyze the security of the NewHope key exchange protocol under the decision
version of the assumption.

1.1 Leaky RLWE Assumptions–Search and Decision Versions

We next briefly introduce the search and decision versions of the Leaky RLWE assumptions.
For p ∈ Rq := Zq/(xn+1) we denote p̂ := NTT(p) := (p(ω1),p(ω3), . . . ,p(ω2n−1)), where ω is a primitive

2n-th root of unity modulo q, and is guaranteed to exist by choice of prime q, s.t. q ≡ 1 mod 2n. Note that
p̂ is indexed by the set Z∗2n.

The search version of the ring-LWE problem with leakage, denoted R-SLWE, is parameterized by (n′ ∈
{1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The goal is to recover the R-LWE secret s = NTT−1(ŝ), given samples from

the distribution Dreal,n′,S which outputs
(
â, â · ŝ+ ê, [ŝi]i≡αmod 2n′ |∀α∈S

)
, where a, s, and e are as in the

standard RLWE assumption.
The decision version of the ring-LWE problem with leakage, denoted R-SLWE is parameterized by (n′ ∈

{1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The goal is to distinguish the distributions Dreal,n′,S and Dsim,n′,S , where

Dreal,n′,S is as above and Dsim,n′,S outputs
(
â, û, [ŝi]i≡αmod 2n′ |∀α∈S

)
, where ûi = âi · ŝi + êi for i ≡ α

mod 2n′, α ∈ S and ûi is chosen uniformly at random from Zq, otherwise.
When S = {α} consists of a single element, we abuse notation and write the Leaky-RLWE parameters

as (n′, α). Due to automorphisms on the NTT transform, Leaky-RLWE with parameters (n′,S) where
S = {α1, α2, . . . , αt}, is equivalent to Leaky-RLWE with parameters (n′,S ′), where S ′ = α−11 · S (multiply
every element of S by α−11 ), See the Technical Overview for additional discussion.

1.2 Our Results

Partial key exposure attacks. We develop attacks on leaky search-RLWE that crucially leverage the algebraic
structure of the ring setting. Our attacks demonstrate that leaky search-RLWE is easy for leakage parameter
settings (n′ = 4, α = 1) and (n′ = 8,S = {1, 7}), (n′ = 8,S = {1, 15}), under the NewHope parameter
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settings of n = 1024, q = 12289, and χ = Ψ16 (centered binomial distribution of parameter 16). We present
and implement efficient algorithms to fully recover the RLWE secret, given specific 1/4-fraction of the
positions in the NTT transform of the RLWE secret. We emphasize that the algebraic structure of the
ring setting is intrinsic to our results on partial key exposure. In addition, we were also able to successfully
recover the entire RLWE secret for n = 1024, q = 12289 and χ = ψ16 for leakage patterns (1, 7) mod 16 in
roughly 15 hours and for n = 1024, q = 12289 and χ = ψ16 and leakage pattern (1, 15) mod 16 in about 1
hour 17 minutes. The experiments were run using a MacBook Pro with 2.6 GHz Intel Core i5 processor, 16
GB 1600 MHz DDR3 memory, with a python script running 4 parallel processes and using Sage version 8.1.
See Section 3.4. Indeed, the NTT notion itself is only applicable to certain specific rings, based on cyclotomic
polynomials Φm and modulus q ≡ 1 mod m. We note that this stands in contrast to the non-leaky setting,
where it is not clear how to leverage the algebraic structure of the ring to design improved attacks on RLWE.
In addition, our experiments indicate that leaky search-RLWE remains hard for leakage parameter settings
(n′ = 8, α = 1) .

A search-to-decision reduction. Assuming 2O(nε) sub-exponential hardness of search-RLWE, fix some desired

hardness level 2Ω(nε
′
), where ε′ ≤ ε. Let n∗ be the minimum value in {4, 8, 16, 32, . . . , n} such that it takes

Tn∗ ∈ 2Ω(nε
′
) time to solve the search version of leaky-RLWE, given positions [ŝ1i ]i≡α mod 2n∗ .

Theorem 1.1 (Informal). Assume n∗ > 4, then one of the following must hold:

(1) Dreal,n∗,{α} ≈ Dsim,n∗,{α} OR
(2) Dreal,n∗,{α,(n∗−1)·α} ≈ Dsim,n∗,{α,(n∗−1)·α} OR
(3) Dreal,n∗,{α,(2n∗−1)α} ≈ Dsim,n∗,{α,(2n∗−1)α}.

While at first glance it may seem that the conclusions (1), (2), (3) are redundant, in fact they are
incomparable; Indeed, conclusion (1) does not imply (2) (resp. (3)), since the adversary in (2) (resp. (3))
is given additional leakage. Conversely, conclusion (2) (resp. (3)) does not imply (1), since the set of NTT
coordinates that are indistinguishable from random is smaller in (2).

Furthermore, note that the assumption that n∗ > 4 is validated by our experimental results, which
show that leaky search-RLWE is easy for (the NewHope setting of parameters), n = 1024, q = 12289, error
distribution χ = Ψ16, and n′ = 4.

We note that the search-to-decision reduction we present crucially relies on the fact that the leakage
pattern is highly structured and our techniques do not seem to carry through to cases where arbitrary or
random coordinates are leaked.

Resilience of NewHope to partial key exposure.

Theorem 1.2 (Informal). Assuming that Leaky-DRLWE with leakage parameters (8, α = 1) and RLWE
parameters n = 1024, q = 12289 and error distribution ζ1 is hard, the shared key v (which is then hashed using
a random oracle) of the NewHope key exchange protocol is computationally indistinguishable from a random
variable with average min-entropy 238, conditioned on the transcript and leakage of [ŝ, ê, ŝ′, ê′, ê′′]i≡α mod 16.

Moreover, using known relationships between average min-entropy and min-entropy, we have that with
all but 2−80 probability, v is indistinguishable from a random variable that has min-entropy 158, conditioned
on the transcript and leakage. Note that without leakage, the min-entropy is 256.

As mentioned above, setting α = 1 is WLOG, and α can be any value in Z∗16. While the above may seem
straightforward, given that we are already assuming hardness of Leaky-DRLWE, the challenge comes not in
the computational part of the analysis (which indeed essentially substitutes instances of Leaky-DRLWE for
instances of DRLWE), but in the information-theoretic part of the analysis. Specifically, we must show that
given the adversary’s additional knowledge about v, as well as the transcript, which includes the reconciliation
information (corresponding to the output of a randomized function of v), the input v to the random oracle
still has sufficiently high min-entropy. For a discussion of our proof techniques, see Section 1.3.

1 ζ is a rounded Gaussian with standard deviation
√

8, as in the NewHope key exchange protocol.
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The above theorem could be made more general, and stated in asymptotic form for broader settings of
leakage parameters (n′,S). However, there is one step in the proof that is not fully generic (although we
believe it should hold for wide ranges of parameters) and so for simplicity we choose to state the theorem
in terms of the concrete parameters above. Very informally, for the proof to go through, we need to argue
existence of a vector of a certain form, where existence depends on the parameter settings of n, q, n′ and
S. For this step of the proof we can apply a heuristic argument and we confirm existence experimentally for
the concrete parameter settings. We discuss the details of the heuristic argument in Section 6.4.

Choice of n′ = 8 in Theorem 1.2. Our experimental results show that the search version of Leaky RLWE
seems hard for parameters (n′, α = 1), where n′ = 8 and α ∈ Z∗16, and is easy for parameters (n′, α = 1),
where n′ = 4 (recall that setting α = 1 is WLOG). Therefore, 8 is a good candidate for the value of n∗ above.
Moreover, our search to decision reduction tells us that if indeed n∗ = 8, then either (1) Dreal,8,1 ≈ Dsim,8,1

OR (2) Dreal,8,{1,7} ≈ Dsim,8,{1,7} OR (3) Dreal,8,{1,15} ≈ Dsim,8,{1,15}. However, experimental results show
(as discussed above) that we can break the search version of Leaky RLWE for distributions Dreal,8,{1,7}
and Dreal,8,{1,15}, which precludes (2) and (3). Thus, our experimental results support the conjecture that
Dreal,8,1 ≈ Dsim,8,1, for the NewHope parameter settings of n = 1024, q = 12289, and χ = Ψ16.

1.3 Technical Overview

Partial Key Exposure Attack on NTT Transform. Recall that the secret key is stored in NTT format,
i.e. ŝ := (s(ω1), s(ω3), . . . , s(ω2n−1)). Note that coordinates of secret key in NTT format are indexed in by
the set Z∗2n. We consider partial key exposure attacks in which we leak from ŝ (1) all indices i such that
i ≡ 1 mod 8 (2) all indices i such that i ≡ 1 mod 16 and for i ≡ 7 mod 16 (resp. i ≡ 1 mod 16 and for
i ≡ 15 mod 16).

Given the above coordinates we reconstruct a polynomial s′ of lower degree whose evaluation at the
indices i matches with the leaked coordinates i.e. for all i in the set of leaked coordinates s′(ωi) = s(ωi).
This means that s′ is then equal to the original secret key modulo another polynomial of degree smaller than
n. In (1) leaking indices i such that i ≡ 1 mod 8, s′ = s mod (xn/4 − ωn/4) and in (2) leaking indices i such
that i ≡ 1 mod 16 ( and indices such that i ≡ 7 mod 16) we obtain s′ = s mod (xn/8 − ωn/8) ( and another
polynomial s′′ = s(x) mod (xn/8 − ω7·n/8) ).

This means, in settings (1) (resp. (2)), each coordinate of the reconstructed polynomial provides a linear
constraint on a disjoint set of coordinates of s. In (1) (resp. (2)) there are n/4 (resp. n/8) independent systems
of equations such that solving each system of equation will give us 4 (resp. 8) coordinates of the original
RLWE secret s. Since these systems are small and disjoint, they allow for attacks that are super-polynomial
in the dimension. Specifically, for each system, we can find the most likely corresponding coordinates of
the RLWE secret (under distribution χ = Ψ16), Unfortunately, simply choosing the most likely solution for
each system as the final guessed key will not work, since the probability that the most likely solution is the
correct one for all n/4 or n/8 systems is miniscule.

To solve this problem, we leverage the additional information provided by the RLWE instances. First,
we extend the above attack to the error vector, e. Note that in NTT transform notation the equation
â · ŝ + ê = û holds component-wise and so given leakage on certain coordinates of ŝ, we can solve for the
corresponding coordinates of ê. We also get to see multiple RLWE instances (which we write in matrix
notation) as (A1, A1s+e1 = u1), . . . , (At, Ats+et = ut), where each RLWE instance will yield n/4 (or n/8)
linear constraints on the coordinates of ei. Out of all the systems, we take only the likely solutions for which
we have very high confidence that they are indeed correct. (E.g. for n = 1024, we choose confidence 0.98
for n/4 and 0.98 for n/8). For these systems, we fix the corresponding coordinates of the error and derive
a noiseless system of n variables and 4 (resp. 8) equations. Once we have n/4 (resp. n/8) such systems, we
end up with a final linear system of n variables and n equations, which we can then solve to recover s. The
attack works if all our guesses are correct, which will occur with probability 0.98256 (resp. 0.98128). We also
show that in some cases the number RLWE instances are needed in order to obtain a sufficient number of
noiselesssystems is not too high. See Section 3 for more details on the attack and results.

Leaky R-LWE Search to Decision Reduction. Our technical contribution is an algorithm that takes a
distinguishing adversary which receives leakage on secret key and error and uses it to recover large portions
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of the secret key. Let the RLWE secret be denoted by ŝ := ŝ1. Assume WLOG that there exists an adversary
obtains leakage [ŝ1i ]i≡1 mod 2n′ and distinguishes û = â · ŝ + ê from û′, where ûi = âi · ŝi + êi for i ≡ 1
mod 2n′ and otherwise is uniform random2. It is not hard to see, using techniques of [32], that this implies
an attacker that learns a single index j ∈ Z∗2n, j 6≡ 1 mod 2n′, j ≡ b mod 2n′ of the RLWE secret. We
present an attack Attack 1 that uses the above to learn all the values [ŝ1i ]i≡br mod 2n′ for r ∈ [n′/2]. The
main idea of attack is to learn all [ŝ1i ]i≡b mod 2n′ in the first round, then apply an automorphism to shift the
positions i ≡ b2 mod n′ into the positions i ≡ b mod 2n′, resulting in a permuted RLWE secret, denoted
ŝ2. Note that applying the automorphism causes the positions ŝ1i such that i ≡ b mod n′ to shift into the
positions i ≡ 1 mod 2n′. This means that we are now back where we started, and the reduction is now
able to provide the required leakage (on [ŝ2i ]i≡1 mod 2n′) to the adversary and thus can learn the values
of [ŝ2i ]i≡b mod 2n′ = [ŝ1i ]i≡b2 mod n′ in the second iteration, [ŝ3i ]i≡b mod 2n′ = [ŝ1i ]i≡b3 mod n′ in the third
iteration, etc.

Assuming 2O(nε) sub-exponential hardness of RLWE, fix some desired hardness level 2Ω(nε
′
), where ε′ ≤ ε.

Let n∗ be the minimum value in {4, 8, 16, 32, . . . , n} such that it takes Tn∗ ∈ 2Ω(nε
′
) time to solve the search

version of leaky-RLWE, given positions [ŝ1i ]i≡1 mod 2n∗ (i.e. given 1/n∗-fraction of leakage) and takes time

Tn∗/2 /∈ 2Ω(nε
′
) time to solve the search version of leaky-RLWE given positions [ŝ1i ]i≡1 mod n∗ (i.e. given

2/n∗-fraction of leakage). In particular (for sufficiently large n), Tn∗/2 < Tn∗/2. Note that assuming that

RLWE is at least 2Ω(nε)-hard, such an n∗ must exist. Our theorem shows that for such n∗, a form of DRLWE
with leakage holds.

Specifically, given [ŝ1i ]i≡1 mod 2n∗ , we show that if there exists a distinguishing adversary, then Attack
1, runs in time at most Tn∗/4 (and a modified version of the attack takes time Tn∗/2), can be launched.
Moreover, if b ∈ Z∗2n∗ is such that for some r ∈ [n∗/2], br ≡ n∗ + 1 mod 2n∗, then we can combine
with our knowledge of [ŝ1i ]i≡1 mod 2n∗ to obtain all values [ŝ1i ]i≡1 mod n∗ . This means that we can then
run the search attack for 2/n∗-fraction of leakage to recover all of ŝ in time Tn∗/2. But by assumption
Tn∗/4( resp. Tn∗/2) + Tn∗/2 < Tn∗ , thus leading to contradiction.

The problem with the above approach is that given the structure of the group Z∗2n′ , there will be some
elements b ∈ Z∗2n∗ such that b2 = 1. This means that the above algorithm can only learn [ŝ1i ]i≡b mod 2n∗ and
will not learn [ŝ1i ]i≡n∗+1 mod 2n∗ . In this case, we do not know how to rule out the possibility that given
[ŝ1i ]i≡1 mod 2n∗ , the positions i ≡ b mod 2n∗ do not look random. But we show that if this is the case,
then given leakage on [ŝ1i ]i≡1 mod n′ , [ŝ1i ]i≡b mod n′ , all the other positions must be indistinguishable from
random, since otherwise a variant of Attack 1 can be run.

Overview of NewHope Algorithm. We start with an overview of the NewHope key-exchange protocol
of [3] and then provide the necessary details relevant to this work. The protocol starts by server P1 choosing
a uniform random polynomial from ring Rq as public key a (note that the elements of Rq are polynomials)
and sharing it with client P2. Both P1 and P2 sample the RLWE secrets (resp. errors) s and s′ locally. The
parties then exchange the RLWE samples b,u.

At this point both the parties share an approximate of shared secret a · s · s′. P2 then generates some
additional information r using P1’s RLWE instance b, and shares it with P1. Both the parties then apply a
reconciliation function Rec on their approximate inputs locally. The protocol ensures that after running Rec,
the parties agree on the exact same value v.

Finally, the parties apply hash function on v (as instantiation of random oracle) to agree on the key. Thus,
the security proof can now rely on the unpredictability of random oracle on input v, rather than arguing
that v is indistinguishable from a uniform random value.

Resilience of NewHope to Partial Key Exposure. Recall that P2 generates additional information
r for P1, which is generated by applying a function HelpRec locally on input v derived using P1’s RLWE
instance b and P2’s secret s′. The ring element v ∈ Znq that is input to the HelpRec function in the NewHope

2 Note that the problem is identical when the adversary obtains leakage [ŝ1i ]i≡α mod 2n′ , for α ∈ Z∗2n′ since, as we
shall see next, an automorphism can be applied to shift all indeces i such that i ≡ α mod 2n′ to positions i ≡ 1
mod 2n′.
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protocol is split into vectors xi ∈ Z4
q, i ∈ {0, . . . n/4− 1} and then the HelpRec function is run individually

on each xi. It is not hard to show that, under the Leaky-DRLWE assumption, the distribution over the xi
(given the transcript and the leakage), for i ∈ {n/8, . . . , n/4− 1} is indistinguishable from uniform random
in Z4

q and for i ∈ {0, . . . , n/8−1}, is indistinguishable from uniform random, given a single linear constraint.
Specifically, for i ∈ {0, . . . , n/8 − 1}, the xi is uniform random, conditioned on cω,α · xi = γi, for a known
cω,α and γi. The technically difficult part of the proof is showing that, with high probability over γi, the min-
entropy of Rec(xi, ri) is close to 1, conditioned on both the output of HelpRec(xi; b) = ri (for a bit b ∈ {0, 1})
and the linear constraint cω,α ·xi = γi. This indicates that the probability of guessing the corresponding bit
is close to 1/2, even with respect to an adversary who sees both the transcript and the leakage.

We handle this by showing the existence of a bijective map: (x, b′)→ (x′i, b
′⊕1) such that, HelpRec(xi, b) =

(xi, b) (= r) with high probability 1 − p, and it guarantees Rec(xi, r) = 1 ⊕ Rec(x′i, r). Specifically, we
set x′ = x + w as the bijective relation. Unlike the original proof from NewHope protocol where wi =
(b − b′ + q)(1/2, 1/2, 1/2, 1/2), we need wi to be close to (q/2, q/2, q/2, q/2) and also satisfy an additional
linear constraint cω,α ·wi = 0 to ensure cω,α ·x′i = γi, which is the information that can be derived about xi for
i ∈ {0, . . . , n/8−1} from the leakage. In this setting, we can easily prove that if HelpRec(xi, b) = (xi, b) (= r)
then Rec(xi, r) = 1⊕ Rec(x′i, r) following similar argument as in NewHope paper. Then it remains to show

that HelpRec(xi, b) = (xi, b) (= r) with high probability 1 − p. Since HelpRec(x; b) = CVPD̃4

(
2r

q (x + bg)
)

mod 2r as defined, it is equivalent to prove CVPD̃4
(z) = CVPD̃4

(z + β) with high probability 1 − p, where
z,β are variables that depend on x,w which are defined explicitly in later section. We then analyze the
case-by-case probability that algorithm CVPD̃4

on input z and on input z+β disagree in the first three steps
and eventually bound the probability that CVPD̃4

(z) 6= CVPD̃4
(z + β).

1.4 Related Work

Partial key exposure. There is a large body of work on partial key exposure attacks on RSA, beginning with
the seminal work of Boneh et al. [9]. Partial key exposure attacks on RSA are based on a cryptanalytic
method known as Coppersmith’s method [17,16]. There has been a long sequence of improved partial key
exposure attacks on RSA, see for example [8,26,41,42].

Leakage-resilient cryptography. The study of provably secure, leakage-resilient cryptography was introduced
by the work of Dziembowski and Pietrzak in [25]. Pietrzak [39] also constructed a leakage-resilient stream-
cipher. Brakerski et al. [14] showed how to construct a schemes secure against an attacker who leaks at each
time period. There are other works as well considering continual leakage [22,29]. There are also work on
leakage-resilient signature scheme [28,12,34].

Robustness of Lattice-based scheme. One of the first and important work is by Goldwasser et al. [27] which
shows that LWE is secure even in the cases where secret key is taken from an arbitrary distribution with
sufficient entropy and even in the presence of hard-to-invert auxiliary inputs. Additionally they constructed
a symmetric-key encryption scheme based on standard LWE assumption, that is robust to secret key leakage.
Authors of [1] showed that the public-key scheme of [40] is robust against an attacker which can measure large
fraction of secret key without increasing the size of secret key. Dodis et al. [23] presented construction in the
case where the leakage is a one way function of the secret (exponentially hard to invert). Their construction
are related to LWE assumptions. Dodis et al. [21] presented a construction of public-key cryptosystems based
on LWE in the case where the adversary is given any computationally uninvertible function of the secret
key. Albrecht et al. [2] consider the ring-LWE and investigate cold boot attacks on schemes based on these
problem. They specifically looked into two representation of secret key, namely, polynomial coefficients and
encoding of the secret key using a number theoretic transform (NTT). Dachman-Soled et al. [18] considered
the leakage resilience of a RLWE-based public key encryption scheme.

Recently, Brakerski and Perlman [15] studied the robustness of RLWE problem, in cases where the se-
cret polynomial s is not chosen uniform randomly but rather from some distribution with high entropy.
They showed that the generalized version of the RLWE problem is at least as hard as solving worst-case
lattice problems in the underlying ideal lattices. However, while analyzing distributions similar to the leak-
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age patterns considered in this paper 3 called k-wise independent distributions, they notice that if k-wise
independent set is fixed then the scheme may not be secure. This supports the attack methodology used in
our work.

Lattice-based key exchange. An important research direction is the design of practical, lattice-based key
exchange protocols, which are post-quantum secure. Some of the most influential proposed key exchange
protocols include those introduced by Ding [20], Peikert [37], the NewHope protocol of Alkim et al. [4], the
Frodo protocol of Bos et al. [10], and the Kyber protocol of Bos et al. [11]

2 Preliminaries

For a positive integer n, we denote by [n] the set {0, . . . , n−1}. We denote vectors in boldface x and matrices

using capital letters A. For vector x over Rn or Cn, define the `2 norm as ‖x‖2 = (
∑
i |xi|

2
)
1/2

. We write
as ‖x‖ for simplicity. We use the notation ≈t(n),p(n) to indicate that adversaries running in time t(n) can
distinguish two distributions with probability at most p(n).

2.1 Lattices and background

Let T = R/Z denote the cycle, i.e. the additive group of reals modulo 1. We also denote by Tq its cyclic
subgroup of order q, i.e., the subgroup given by {0, 1/q, . . . , (q − 1)/q}.

Let H be a subspace, defined as H ⊆ CZ∗m , (for some integer m ≥ 2),

H = {x ∈ CZ∗m : xi = xm−i,∀i ∈ Z∗m}.

A lattice is a discrete additive subgroup of H. We exclusively consider the full-rank lattices, which are
generated as the set of all linear integer combinations of some set of n linearly independent basis vectors
B = {bj} ⊂ H:

Λ = L(B) =

∑
j

zjbj : zj ∈ Z

 .

The determinant of a lattice L(B) is defined as |det(B)|, which is independent of the choice of basis B. The
minimum distance λ1(Λ) of a lattice Λ (in the Euclidean norm) is the length of a shortest nonzero lattice
vector.

The dual lattice of Λ ⊂ H is defined as following, where 〈·, ·〉 denotes the inner product.

Λ∨ = {y ∈ H : ∀x ∈ Λ, 〈x,y〉 =
∑
i

xiyi ∈ Z}.

Note that, (Λ∨)
∨

= Λ, and det(Λ∨) = 1/det(Λ).

Theorem 2.1. Let L ⊆ Rn be a full dimensional lattice, and let B denote a basis of L. Let K ⊆ Rn be a
convex body. Let ε > 0 denote a scaling such that P(B) ∪ −P(B) ⊆ εK. For all r > ε, we have that

(r − ε)nVoln(K)

det(L)
≤ |rK ∩ L| ≤ (r + ε)n

Voln(K)

det(L)
.

Proof. Details can be found in [19].

3 [15] consider that the secret is sampled from a distribution where for indices j ∈ T ⊆ [n] the coefficients sj are
chosen uniform randomly from Rq and sj = 0 if j /∈ T .
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2.2 Volume of Hypercube Clipped by One Hyperplane

In this subsection, we consider a unit hypercube and a half hyperspace over n-dimension and want to know
volume of their intersection, which can be handled by the following theorem.

Let [n] be an ordered set {0, 1, . . . , n−1}. Let |·| denote the cardinality of a set. For v = (v0, v1, . . . , vn−1) ∈
Rn, we define v0 as v0 := {i ∈ [n] | vi = 0}. Let F 0 be a set of all vertices that each coordinate is either 0
or 1, written as F 0 = {(v0, v1, . . . , vn−1) | vi = 0 or 1 for all i.}.

Theorem 2.2. ([6], revisited by [35, Theorem 1])

vol([0, 1]n ∩H+) =
∑

v∈F 0∩H+

(−1)|v0|g(v)n

n!
∏n
t=1 at

,

where the half space H+
1 is defined by

{t | g(t) := a · t + r1 = a0x0 + a1x1 + · · ·+ an−1xn−1 + r1 ≥ 0}

with
∏n
t=1 at 6= 0.

We now present some background on Algebraic Number Theory.

2.3 Algebraic Number Theory

For a positive integer m, the mth cyclotomic number field is a field extension K = Q(ζm) obtained by
adjoining an element ζm of order m (i.e. a primitive mth root of unity) to the rationals. The minimal
polynomial of ζm is the mth cyclotomic polynomial

Φm(X) =
∏
i∈Z∗m

(X − ωim) ∈ Z[X],

where ωm ∈ C is any primitive mth root of unity in C.
For every i ∈ Z∗m, there is an embedding σi : K → C, defined as σi(ζm) = ωim. Let n = ϕ(m), the totient

of m. The trace Tr : K → Q and norm N : K → Q can be defined as the sum and product, respectively, of
the embeddings:

Tr(x) =
∑
i∈[n]

σi(x) and N(x) =
∏
i∈[n]

σi(x).

For any x ∈ K, the lp norm of x is defined as ‖x‖p = ‖σ(x)‖p = (
∑
i∈[n] |σi(x)|p)1/p. We omit p when

p = 2. Note that the appropriate notion of norm ‖·‖ is used throughout this paper depending on whether
the argument is a vector over Cn, or whether the argument is an element from K; whenever the context is
clear.

2.4 Ring of Integers and Its Ideals

Let R ⊂ K denote the set of all algebraic integers in a number field K. This set forms a ring (under the
usual addition and multiplication operations in K), called the ring of integers of K. Ring of integers in K
is written as R = Z[ζm].

The (absolute) discriminant ∆K of K measures the geometric sparsity of its ring of integers. The dis-
criminant of the mth cyclotomic number field K is

∆K =

 m∏
prime p|m

p1/(p−1)


n

≤ nn,

in which the product in denominator runs over all the primes dividing m.
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An (integral) ideal I ⊆ R is a non-trivial (i.e. I 6= ∅ and I 6= {0}) additive subgroup that is closed
under multiplication by R, i,e., r · a ∈ I for any r ∈ R and a ∈ I. The norm of an ideal I ⊆ R is the
number of cosets of I as an addictive subgroup in R, defined as index of I, i.e., N(I) = |R/I|. Note that
N(IJ ) = N(I)N(J ).

A fractional ideal I in K is defined as a subset such that I ⊆ R is an integral ideal for some nonzero
d ∈ R. Its norm is defined as N(I) = N(dI)/N(d). An ideal lattice is a lattice σ(I) embedded from a
fractional ideal I by σ in H. The determinant of an ideal lattice σ(I) is det(σ(I)) = N(I) ·

√
∆K . For

simplicity, however, most often when discussing about ideal lattice, we omit mention of σ since no confusion
is likely to arise.

Lemma 2.3 ([33]). For any fractional ideal I in a number field K of degree n,

√
n ·N1/n(I) ≤ λ1(I) ≤

√
n ·N1/n(I) ·

√
∆

1/n
K .

For any fractional ideal I in K, its dual ideal is defined as

I∨ = {a ∈ K : Tr(aI) ⊂ Z}.

Definition 2.4. For R = Z[ζm], define g =
∏
p(1− ζp) ∈ R, where p runs over all odd primes dividing m.

Also, define t = m̂
g ∈ R, where m̂ = m

2 if m is even, otherwise m̂ = m.

The dual ideal R∨ of R is defined as R∨ = 〈t−1〉, satisfying R ⊆ R∨ ⊆ m̂−1R. For any fractional ideal I,
its dual is I∨ = I−1 ·R∨. The quotient R∨q is defined as R∨q = R∨/qR∨.

Fact 2.5 ([33]). Assume that q is a prime satisfying q = 1 mod m, so that 〈q〉 splits completely into n
distinct ideals of norm q. The prime ideal factors of 〈q〉 are qi = 〈q〉 + 〈ζm − ωim〉, for i ∈ Z∗m. By Chinese
Reminder Theorem, the natural ring homomorphism R/〈q〉 →

∏
i∈Z∗m

(R/qi) ∼= (Znq ) is an isomorphism.

2.5 Ring-LWE

We next present the formal definition of the ring-LWE problem as given in [33].

Definition 2.6 (Ring-LWE Distribution). For a “secret” s ∈ R∨q (or just R∨) and a distribution χ over
KR, a sample from the ring-LWE distribution As,χ over Rq × (KR/qR

∨) is generated by choosing a ← Rq
uniformly at random, choosing e← χ, and outputting (a, b = a · s+ emod qR∨).

Definition 2.7 (Ring-LWE, Average-Case Decision). The average-case decision version of the ring-
LWE problem, denoted R-DLWEq,χ, is to distinguish with non-negligible advantage between independent sam-
ples from As,χ, where s ← χ is sampled from the error distribution, and the same number of uniformly
random and independent samples from Rq × (KR/qR

∨).

Theorem 2.8. [33, Theorem 2.22] Let K be the mth cyclotomic number field having dimension n = ϕ(m)
and R = OK be its ring of integers. Let α = α(n) > 0, and q = q(n) ≥ 2, q = 1 modm be a poly(n)-
bounded prime such that αq ≥ ω(

√
log n). Then there is a polynomial-time quantum reduction from Õ(

√
n/α)-

approximate SIVP (or SVP) on ideal lattices in K to the problem of solving R-DLWEq,χ given only l samples,

where χ is the Gaussian distribution Dξ for ξ = α · q · (nl/log (nl))
1/4

.

2.6 Number Theoretic Transform (NTT)

Let Rq := Zq[x]/xn + 1 be the ring of polynomials, with n = 2d for any positive integer d. Also, let m = 2n

and q = 1 modm. For, ω a mth root of unity in Zq the NTT of polynomial p =
∑n−1
i=0 x

i ∈ Rq is define as,

p̂ = NTT(p) :=

n−1∑
i=0

p̂ix
i
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where the NTT coefficients p̂i are defined as: p̂i =
∑n−1
j=0 pjω

j(2i+1).

The function NTT−1 is the inverse of function NTT, defined as

p = NTT−1(p̂) :=

n−1∑
i=0

pix
i

where the NTT inverse coefficients pi are defined as: pi = n−1
∑n−1
j=0 p̂jω

i(2j+1).
We next present the definitions of min-entropy and average min-entropy.

2.7 Min-Entropy and Average Min-Entropy

Definition 2.9 (Min-Entropy). A random variable X has min-entropy k, denoted H∞(X) = k, if

max
x

Pr[X = x] = 2−k.

Definition 2.10 (Average Min-Entropy). Let (X,Z) be a pair of random variables. The average min entropy
of X conditioned on Z is

H̃∞(X | Z)
def
= − logEz←Z max

x
Pr[X = x | Z = z].

Lemma 2.11 ([24]). For any δ > 0, H∞(X | Z = z) is at least H̃∞(X | Z) − log(1/δ) with probability at
least 1− δ over the choice of z.

3 Partial Key Exposure Attack on NTT

3.1 Reconstructing the secret given (α mod 8) leakage.

Recall that the secret key s is represented as a degree n− 1 polynomial s(x) = s0 + s1 ·x+ . . .+ sn−1 ·xn−1,
where s(x) ∈ Zq[x]/xn + 1, n is power of two and q ≡ 1 mod 2n. Let ω be a 2n-th primitive root in
Zq, i.e. ω2n ≡ 1 mod q. Then the NTT transform is obtained by evaluating s(x) mod q at the powers
ω1, ω3, . . . , ω2n−1. Specifically, ŝ(x) = NTT(s(x)) = 〈s(ω1) mod q, s(ω3) mod q, . . . , s(ω2n−1) mod q〉. For
n′ ∈ {1, 2, 4, 8, . . . , n} and α ∈ Z∗2n′ , let sαu(x) be the degree u = n/n′ polynomial that is obtained by

taking s(x) modulo xn/n
′ − (ωα)n/n

′
. As discussed earlier, we may assume WLOG that α = 1. Therefore,

we abbreviate notation and write su, instead of s1u.
We consider attacks in which the adversary obtains as leakage all coordinates i of ŝ(x) such that i ≡

1 mod 2n′ such that n′ ∈ {1, 2, 4, 8, . . . , n}.
For i ∈ [n′], the i-th coefficient of su(x), i.e. su,i is equal to

si + ωu · si+u + ω2·u · si+2·u + . . .+ ω(n′−1)·u · si+(n′−1)·u

Note that the coefficients of s can be partitioned into u groups of n′, forming independent linear systems,
each with n′ variables and one equation. Specifically, given only the leakage, the set of feasible secret keys is a
cartesian product S1×· · ·×Su, where for i ∈ [u], the set Si is the set of vectors {si, si+u, si+2u, . . . , si+(n′−1)u}
that satisfy the i-th linear system:

[
1 ωu ω2·u · · · ω(n′−1)·u

]
·


si
si+u
si+2·u

...
si+(n′−1)·u

 =
[
su,i
]

Since the linear systems are independent, we can find the “most likely” secret key, given the leakage,
by finding the “most likely” solution for each independent system. Since each system has only n′ number
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of variables, there are at most qn
′

candidate solutions. For n′ = 4, we can enumerate over all q4 = 122894

possible vectors to find those that satisfy the constraint and then find the “most likely” solution (in fact, we
use a meet-in-the-middle approach to reduce the number of candidate solutions, and speed up the attack).
When the distribution over secret keys is Gaussian, the “most likely” solution is the one with the smallest
norm. Since we are using a binomial distribution, we calculate the exact probability of each solution (using
a table of values) under the binomial distribution and pick the one with highest probability.

Unfortunately, simply choosing the candidate secret s to be the one composed of the most likely solution
of each system will almost never give the correct answer. Consider that the most likely solution is correct
with probability 0.7 even in this case the success probability of recovering the full secret by correctly guessing
128 systems is 0.7128 = 1.48−18%. . Moreover, the above attack has not leveraged the fact that, in addition to
leakage on s, we are also provided with RLWE instances! In the following, we describe an improved approach
for guessing the secret key, that leverages the fact that we get to see multiple RLWE instances of the form
(a,a · s+ e = u).

First, we note that in NTT transform notation the equation â·ŝ+ê = û holds component-wise. Therefore,
given leakage on certain coordinates of ŝ, we can solve for the corresponding coordinates of ê, assuming that
the corresponding coordinates of â are invertible in Zq (which occurs with high probability for random
â). We also get to see multiple RLWE instances (which we write in matrix notation) as (A1, A1s + e1 =
u1), . . . , (At, Ats + et = ut). Thus, given leakage on coordinates of ŝ, we can learn all the corresponding

coordinates of êi, for i ∈ [t]. Note that the previous method for finding most likely solutions for the systems
of equations (which was described in terms of the RLWE secret s), can work equally well for each et, since
it is sampled from the same distribution as s.

Now, our goal will be to carefully choose which sets of variables (from all possible sets of variables in
e1, . . . , et) to make a guess on so that the following are satisfied: (1) In total, we guess at least u number of
n′-variable sets of coordinates from e1, . . . , et; (2) With high probability all our guesses are correct. To see
why (1) and (2) allow us to recover the secret, observe that if our guess for the i-th variable set of some ej is
correct (denoted ej,i), we learn the following linear system of n′ equations and n variables (Aij ·s = ui−ej,i),
where Aij is the submatrix of Aj consisting of n′ rows corresponding to the i-th variable set of ej and ui is
the vector of corresponding positions of u. So assuming (1) and (2) hold, we can learn u noiseless systems
of n′ linear equations, each with n = u · n′ number of variables. Ultimately, we now have a linear system of
n variables and n equations, which we can then solve to obtain the candidate s. We must now argue that
(1) and (2) hold with high probability.

In order to ensure (2), we only guess the value of eji when we have “high confidence” in the “most likely”
solution. Specifically, for each (i, j), we want to know when the “most likely” solution to the system

[
1 ωu ω2·u · · · ω(n′−1)·u

]
·


eji
eji+u
eji+2·u

...

eji+(n′−1)·u

 =
[
eju,i

]

has probability at least, say 0.98, of being the correct solution. To do this, we enumerate over all solutions
and calculate the probability of the “most likely” solutions e∗,ji := (e∗,ji , e∗,ji+u, . . . , e

∗,j
i+(n′−1)u) as the ratio of

the probability of e∗,j over the sum of the probabilities of all solutions. If the ratio is larger than, say 0.98,
then we choose to guess this value of e∗,ji . Otherwise, we discard it. Thus, our probability of all guesses being

correct is 0.98u = 0.98n/n
′
. For n = 1024 and n′ = 4, this means that we expect the attack to succeed with

probability approx. 0.57%.

Moreover, while computing the exact probability can be relatively computationally intensive, we develop
a heuristic that performs nearly as well and is much faster. Specifically, we transform finding the “most
likely” solution to the system above to a CVP problem over a n′-dimensional lattice. We then calculate the
probability of the solution under the binomial distribution and set some threshold th. If the probability of
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the solution is above the threshold we keep it, if not we discard it. Experimentally, we show that by setting
the threshold correctly, we can still achieve confidence of approximately 0.98.

Our experiments also show that a fairly small number of LWE instances allows for (1) to hold as well.
Specifically, for n = 1024, q = 12289, χ = Ψ16, n′ = 4, we show that the “most likely” solutions for
approx. 3% of the linear systems will have “high confidence” of at least 0.98. Thus, we expect around 33
RLWE instances to be sufficient in order to obtain 256 number of systems of 4 equations, for which each is
correct with confidence at least 0.98.

Thus far we focused only on guessing sets of variables from the error terms of the RLWE instances; we
extend our attack to guess sets of variables from the RLWE secret as well. Specifically, if a candidate solution
for the i-th system, corresponding to the i-th set of u coordinates of the RLWE secret has “high confidence”
we can fix those variables to the candidate solution and thus reduce the total number of variables in the final
system as described in the following: Let s∗i := (s∗i , s

∗
i+u, . . . , s

∗
i+(n′−1)u) denote a candidate solution to the

i-th system that has high confidence. Now, consider each RLWE sample (Aj , Ajs+ ej = uj . We denote by
A∗,j the submatrix obtained by deleting the columns {i, i+u, . . . , i+(n′−1)u} from Aj . Let Aj,` denote the
`-th column of matrix Aj then we update the solution uj to be u∗,j := uj − (Aj,i · s∗i +Aj,i+u · s∗i+u + . . .+

Aj,i+(n′−1)u · s∗i+(n′−1)u). If we obtain multiple high confidence candidate for sets of variables of s, assume
k of them, the above procedure can be done for each of them, reducing the total number of variables in the
final system from n to n− n′ · k.

Confidence Expected Number of RLWE Instance Expected Success Probability

0.98 22 0.5
0.95 7 1.96× 10−4

0.90 4 1.9× 10−10

3.2 Reconstructing the secret given (α,α · 7 mod 16) leakage

As noted in the previous section, let sαu(x) be the degree u = n/n′ polynomial that is obtained by taking
s(x) modulo xn/n

′ − (ωα)n/n
′
. We consider two polynomial sαu(x) and sα·7u (x). We may assume WLOG,

α = 1. The i-th coefficient of su(x) and s7u(x) are as follows, respectively

si + ωu · si+u + ω2·u · si+2·u + . . .+ ω(n′−1)·u · si+(n′−1)·u

si + ω7·u · si+u + ω7·2·u · si+2·u + . . .+ ω7·(n′−1)·u · si+(n′−1)·u

Similar to previous subsection we form the equation to solve the secret key as follows,

[
1 ωu ω2·u · · · ω(n′−1)·u

1 ω7·u ω7·2·u · · · ω7·(n′−1)·u

]
·


si
si+u
si+2·u

...
si+(n′−1)·u

 =

[
su,i
s7u,i

]

For n′ = 8, we should enumerate over q8 = 122898 possible vectors to find the “most likely” (in order to
solve the above equation we use meet-in-the-middle approach). The “most likely” key candidate is the one
with smallest norm.

Similar to previous section our goal is to carefully choose the answers with “high confidence” such that
(1) In total, we guess at least u number of n′-variable sets from e1, e2, . . . , etl (2) With high probability
all our guess are correct. We choose the candidate which has probability of at least 0.95 of being correct
solution. The total probability of success for this case is 0.95u = 0.95n/n

′
. For n = 1024 and assuming n′ = 8

we have success probability of 0.95128 = 0.14%.
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As was mentioned in the previous subsection, we transform the computation of solutions with high
confidence to a CVP problem over an n′-dimensional lattice. Experimentally, for n = 1024, q = 12289,
χ = Ψ16, n′ = 8, we show that approx. 0.56% of the solutions have “high confidence” of at least 0.95. We
expect to need 178 RLWE instance to be sufficient in order to obtain 128 number of systems of 8 equations,
for which the confidence is at least 0.95.

The following table summarizes the estimates obtained by solving the CVP problem for 128000 systems
of size 8.

Confidence Expected Number of RLWE Instance Expected Success Probability

0.98 1778 7.5324%
0.95 178 0.1408%
0.9 18 1.3× 10−6%

3.3 Difficulty of Reconstructing the secret given (α mod 16) leakage

Unfortunately, our techniques do not seem to extend to 1/8-fraction of leakage, leading us to conjecture that
search-RLWE with leakage is hard for these parameters. Similar to previous section, let sαu(x) be the degree
u = n/n′ polynomial that is obtained by taking s(x) modulo xn/n

′ − (ωα)n/n
′
. We assume WLOG, α = 1.

The i− th coefficient of sαu(x) is equal to

si + ωu · si+u + ω2·u · si+2·u + . . .+ ω(n′−1)·u · si+(n′−1)·u

Similar to the case (α mod 8), to find key candidates the following equation should be solved

[
1 ωu ω2·u · · · ω(n′−1)·u

]
·


si
si+u
si+2·u

...
si+(n′−1)·u

 =
[
su,i
]

For n′ = 8, we can enumerate over all q8 = 122898 possible vectors to find those that satisfy the
constraint. In order to perform this enumeration efficiently, a meet-in-the-middle approach is used. Similar
to the previous section we would like to guess the solution in cases in which we have “high confidence”. For
the case of n′ = 8, however, we experimentally found that the probability of the most probable solution
was always less than 0.12. This means that we cannot hope to obtain a sufficient number of noiseless linear
constraints on the secret s. In particular, with at most 0.12 confidence, we expect the probability of success
of our attack to be at most 0.12n/n

′
= 1.36× 10−116, which is clearly negligible.

3.4 Experimental Results

We wish to highlight that in agreement to our estimates we were able to successfully recover the entire RLWE
secret for various dimensions as listed in Table 1. Specifically we were able to recover an entire secret key for
n = 1024, q = 12289 and χ = ψ16 for leakage patterns (1, 7) mod 16 in roughly 15 hours and for n = 1024,
q = 12289 and χ = ψ16 and leakage pattern (1, 15) mod 16 in about 1 hour 17 minutes.

The experiments were run using a MacBook Pro with 2.6 GHz Intel Core i5 processor, 16 GB 1600 MHz
DDR3 memory, with a python script running 4 parallel processes and using Sage version 8.1

In the following table, n is the dimension of RLWE instance, S is the set of indices that we leak (e.g.
1mod16, N is the Number of RLWE Instance that were required to recover the key and p is the Expected
Success Probability.
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n S Confidence N p

256 1, 15 0.95 125 19.3711%
512 1, 7 0.95 178 3.7524%
1024 1, 7 0.98 1929 7.5324%
1024 1, 15 0.95 170 0.1408%
1024 1, 9 0.98 22 0.5%

Table 1: Expected Success Probability of our Attack

4 Search and Decisional RLWE with Leakage

In this section we define the search and decisional ring-LWE problem with structured leakage on the secret
key (i.e. partial key exposure). The definition is similar to the definition 2.7.

Ring elements (polynomials) p are stored as a vector of their coefficients (p0, . . . , pn−1). For p ∈ Rq we
denote p̂ := NTT(p) := (p(ω1),p(ω3), . . . ,p(ω2n−1)), where ω is a 2n-th primitive root of unity in Zq (which
exists since q is prime and q ≡ 1 mod 2n), and p(ωi) for i ∈ Z∗2n denotes evaluation of the polynomial p at
ωi. Note that p̂ is indexed by the set Z∗2n.

Definition 4.1 (Ring-LWE, Search with Leakage). The search version of the ring-LWE problem with
leakage, denoted R-SLWEq,ψ,n′,S , is parameterized by (n′ ∈ {1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The experiment
chooses s ← χ, where s = NTT−1(ŝ). The goal of the adversary is to recover s, given independent samples

from the distribution Dreal,n′,S , which outputs
(
â, â · ŝ+ ê, [ŝi]i≡αmod 2n′ |∀α∈S

)
where a, e are obtained

from As,ψ as described in definition 2.6.

Definition 4.2 (Ring-LWE, Decision with Leakage). The decision version of the ring-LWE prob-
lem with leakage, denoted R-DLWEq,ψ,n′,S , is parameterized by (n′ ∈ {1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The
experiment chooses s ← χ, where s = NTT−1(ŝ). The goal of the adversary is to distinguish be-
tween independent samples from the distributions Dreal,n′,S and Dsim,n′,S , where Dreal,n′,S outputs(
â, â · ŝ+ ê, [ŝi]i≡αmod 2n′ |∀α∈S

)
where a, e are obtained from As,ψ as described in definition 2.6. And

the Dsim,n′,S outputs
(
â, û, [ŝi]i≡αmod 2n′ |∀α∈S

)
where a, e are obtained from As,ψ as described in Defini-

tion 2.6,and
ûi = âi · ŝi + êi |i ≡ αmod 2n′ ∀α ∈ S

and
ûi ← Zq

chosen uniformly random, otherwise.

Note that in the above definitions, the adversary can receive the leakage [êi]i≡αmod 2n′ |∀α∈S for each error

vector as well, since given â and [ŝi]i≡αmod 2n′ |∀α∈S , the adversary can derive [êi]i≡αmod 2n′ |∀α∈S .

Also note that if decisional RLWE with leakage parameterized by (n′,S) as above is hard for randomly
distributed â, then it is also hard for â that is arbitrarily distributed in positions i such that i ≡ α
mod 2n′, α ∈ S and randomly distributed elsewhere. This is because given an RLWE instance with leakage(
â, û, [ŝi]i≡αmod 2n′ |∀α∈S

)
, for i ≡ α mod 2n′, α ∈ S one can change the instance from âi to â′i by adding

(â′i − âi) · ŝi from the i-th coordinate of û.
When S = {α} consists of a single element, we abuse notation and write the Leaky-RLWE parameters

as (n′, α).
We present a search to decision reduction in Section 5.

5 Search to Decision Reduction With Leakage

For a polynomial v ∈ Rq, recall that v̂ denotes the NTT representation of v, where v̂ is indexed by the set
Z∗2n, so v̂ = v̂1, v̂3, . . . , v̂2n−1, where v̂i := v(ωi) for i ∈ Z∗2n and ω is 2n–th root of unity in Zq. We state the
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new definitions and theorems sometimes in terms of â, ŝ, ê instead of a, s, e since the leakage we consider is
on the NTT transform which is used for efficient computations. Note that this is equivalent to considering
a, s, e as NTT is efficiently invertible.

Let φi→j be the automorphism that maps v̂ to v̂′ such that v(ωi) = v′(ωj). φi→j induces a permutation
on the elements of v̂, denoted ρi→j . Specifically, φi→j(v̂) maps v̂` to v̂ρi→j(`) for i, j, ` ∈ Z∗2n.

Fact 5.1. If i ≡ α mod 2n′, j ≡ β mod 2n′, and ` ≡ γ mod 2n′ then ρi→j(`) ≡ α−1γβ mod 2n′.

The following theorem follows straightforwardly from [31,30].

Theorem 5.2 (Existence of Basic Attack). If, for any (n′,S ⊆ Z∗2n′) adversary A running in time T
distinguishes Dreal,S,n′ from Dsim,S,n′ with probability 1/T , then is some index j such that j 6= α′ mod n
for all a′ ∈ S and an attack “Basic Attack” that learns NTT coordinate ŝj with probability 1−1/poly(n) and
takes time poly(n) · T 2.

Attack 1: On input RLWE instance (â, û), index j ∈ Z∗2n, where j ≡ b mod 2n′, leakage
[ŝi]i≡1 mod 2n′ , and adversary A running in time T that distinguishes on index j with probability
1/T :
1. Set â1 := â, û1 := û, [ŝri := ŝi]i≡1 mod 2n′ .
2. Loop invariant: at the beginning of the outer loop, adversary always knows

[ŝri ]i≡1 mod 2n′ .
3. For r ∈ [n′/2], For each j′ such that j′ ≡ j mod 2n′:

(a) Run the Basic Attack with RLWE instance (â := φj′→j(â
r), û := φj′→j(û

r)), leakage set
[ŝi := ŝrρj′→j(i)

]i≡1 mod 2n′ to recover ŝrj′ . Note that all these values of ŝrρj′→j (i) are known: If

i ≡ 1 mod 2n′ then ρj′→j(i) ≡ 1 mod 2n′, since j ≡ j′ mod 2n′.
4. Note that at the end of the inner loop, (w.h.p.) all ŝrj′ such that j′ ≡ b mod 2n′ are known.

5. Choose an ` ∈ Z∗2n such that ` ≡ b2 mod 2n′. Set âr+1 := φ`→j(â
r) and ûr+1 := φ`→j(û

r). Note
that the adversary now knows [ŝr+1

i ]i≡1 mod 2n′ , since all elements ŝri′ such that i′ ≡ b mod 2n′

are now in position ŝr+1
i such that i ≡ 1 mod 2n′.

At the end of the execution, the adversary learns all values si such that i ≡ br mod 2n′ and r ∈ [n′/2].

For parameter n′, let Tn′ denote the time it takes to solve search-RLWE, under leakage attack parame-
terized by (n′, α = 1).

Assuming 2O(nε) sub-exponential hardness of LWE, fix some ε′. Let n∗ be the minimum element in the

set S, where S := {n′ ∈ {2, 4, 8, . . . , n} | Tn′ ∈ 2O(nε
′
)}. Note that it must be the case that Tn∗ > 2 · Tn∗/2.

Recall that, we use the notation ≈t(n),p(n) to indicate that adversaries running in time t(n) can distinguish
two distributions with probability at most p(n).

Theorem 5.3. Assume n∗ > 4, then one of the following must hold:

– Dreal,n∗,{α} ≈t(n),p(n) Dsim,n∗,{α} OR
– Dreal,n∗,{α,(n∗−1)·α} ≈t(n),p(n) Dsim,n∗,{α,(n∗−1)·α} OR
– Dreal,n∗,{α,(2n∗−1)α} ≈t(n),p(n) Dsim,n∗,{α,(2n∗−1)α}.

where, t(n) =
√
Tn∗/poly(n) = p(n)

Proof. As discussed above, due to the automorphisms, we can assume WLOG that α = 1. Assume
Dreal,n∗,{1} 6≈√Tn∗/poly(n),poly(n)/√Tn∗ Dsim,n∗,{1}. Then there must be an adversary A running in time√
Tn∗/poly(n), that distinguishes on index j ∈ Z∗2n, where j ≡ b mod 2n′ with probability at least

poly(n)/
√
Tn∗ .
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Case 1: b is such that br ≡ n∗ + 1 mod 2n∗ for some r ∈ [n∗/2]. In this case, we can use Attack 1 to
recover the positions i such that i ≡ n∗+1 mod 2n∗ (w.h.p.) in time poly(n) ·Tn∗/4poly(n). Now we can
run the attack that takes as input [ŝi]i≡1 mod n∗ and recovers all of ŝ. By assumption, this attack runs
in time Tn∗/2 < Tn∗/2. Thus, we can to recover the whole ŝ in time poly(n) ·Tn∗/4poly(n)+Tn∗/2 < Tn∗ ,
which is a contradiction.
By properties of the group Z∗2n∗ , where n∗ is a power of two, for all b ∈ Z∗2n∗ \ {n∗− 1, 2n∗− 1}, it is the
case that br ≡ n∗+1 mod 2n∗ for some r ∈ [n∗/2]. Thus, Case 1 holds for all b ∈ Z∗2n∗ \{n∗−1, 2n∗−1}.

Case 2: b = n∗ − 1. In this case, we can use Attack 1 to recover the positions i such that i ≡ n∗ − 1
mod 2n∗ (w.h.p.) in time poly(n) · Tn∗/4poly(n). Assume Dreal,n∗,{1,(n∗−1)} 6≈√Tn∗/poly(n),√Tn∗/poly(n)
Dsim,n∗,{1,(n∗−1)}, then there must be some adversary A′ that distinguishes on index j′ ∈ Z∗2n, where
j′ ≡ b′ ∈ Z∗2n∗ \ {1, n∗ − 1}. We can combine this with the previous attack as follows:

Case 2(a): b′ ∈ Z∗2n∗ \ {1, n∗ − 1, 2n∗ − 1}. Due to essentially the same argument as before, we can
(w.h.p.) learn all [ŝi]i≡(b′)r mod 2n∗ for r ∈ [n∗/2] in time poly(n) · Tn∗/2poly(n) and then apply the
same argument as above.

Specifically, given the initial leakage [ŝ1i ]i≡1 mod 2n∗ , the attack will first learn [ŝ1i ]i≡n∗−1 mod 2n∗ ,
then learn [ŝ1i ]i≡b′ mod 2n∗ , then, for some (j, j′) such that j ≡ b′ mod 2n∗ and j′ ≡ 1 mod 2n∗,
apply automorphism φj→j′ to get ŝ2, learn [ŝ2i ]i≡n∗−1 mod 2n∗ , then learn [ŝ2i ]i≡b′ mod 2n∗ , etc. thus
ultimately learning [ŝi]i≡(b′)r mod 2n∗ for r ∈ [n∗/2]. At this point, we will have [ŝi]i≡1 mod n∗ and
thus can learn all of ŝ in additional time Tn∗/2 < Tn∗/2. Thus, in total the attack takes time
poly(n) · Tn∗/2poly(n) + Tn∗/2 < Tn∗ , leading to contradiction.

Case 2(b): b′ = 2n∗ − 1. Due to essentially the same argument as before, we can (w.h.p.) recover the
positions i such that i ≡ 2n∗− 1 mod 2n∗ in time poly(n) ·Tn∗/4poly(n). The adversary now knows
[ŝi]i≡n∗−1 mod n∗ . We can thus can learn all of ŝ in additional time Tn∗/2 < Tn∗/2. Thus, in total
the attack takes time poly(n) · Tn∗/4poly(n) + Tn∗/2 < Tn∗ , leading to contradiction.

Case 3: b = 2n∗ − 1. This essentially follows identically to Case 2.

6 Leakage Analysis of New Hope Key Exchange

6.1 New Hope Key Exchange scheme

It contains New Hope key exchange scheme and subroutines of HelpRec and Rec.

In this section we revise some important results and algorithms from [3].

Let D̃4 be a lattice as defined below:

D̃4 = Z4 ∪ g + Z4 where gt =

(
1

2
,

1

2
,

1

2
,

1

2

)
Let, B = (u0,u1,u2, g) be the basis of D̃4, where ui are the canonical basis vectors of Z4. Note that
u3 = B · (−1,−1,−1, 2)

t
. Also, let V be the Voronoi cell of D̃4. 4

Note that, u0,u1,u2, and 2g are in Z4. Therefore, a vector in D̃4/Z4 can be checked by simply checking
the parity of its last coordinate when represented with basis B. We can now use a simple encoding and
decoding scheme to represent a bit. The encoding algorithm is as follows: Encode(k ∈ {0, 1}) = kg. For
decoding to D̃4/Z4, the correctness requires that the error vector e ∈ V . As noted in [3], this is equivalent
to checking if ‖e‖1 ≤ 1. We can now present the decoding algorithm as follows in figure 6.1 :

4 For more details and background on reconciliation mechanism of NewHope, please refer to [3] (section 5 and
appendix C)
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Algorithm 6.1 (Algorithm 1). Decode (x ∈ R4/Z4)

Ensure:A bit k such that kg is a closest vector tox+ Z4 : x− kg ∈ V + Z4

1 v = x− bxe
2 return 0 if ‖v‖1 ≤ 1 and 1 otherwise

Lemma 6.2. (Lemma C.1 [3]) For any k ∈ {0, 1} and any e ∈ R4 such that ‖e‖1 < 1, we have Decode(kg+
e) = k.

Let us now present the algorithm CVP, which will be used as subroutine in reconciliation algorithms, as
follows:

Algorithm 6.3 (Algorithm 2). CVPD̃4
(x ∈ R4)

Ensure:An integer vectorz such thatBz is a closest vector tox : x−Bz ∈ V
1 v0 ← bxe
2 v1 ← bx− ge
3 k ← (‖x− v0‖ < 1) ? 0 : 1
4 (v0, v1, v2, v3)

t ← vk
5 return (v0, v1, v2, k)

t
+ v3 · (−1,−1,−1, 2)

t

Next, we define the r-bit reconciliation as,

HelpRec(x; b) = CVPD̃4

(
2r

q
(x+ bg)

)
mod 2r,

where b ∈ {0, 1} is a uniformly chosen random bit.

Lemma 6.4. (Lemma C.2 [3]) Assume r ≥ 1 and q ≥ 9. For any x ∈ Z4
q, set r := HelpRec(x) ∈ Z4

2r .

Then, 1
qx−

1
2rBrmod 1 is close to a point of D̃4/Z4, precisely, for α = 1

2r + 2
q : 1

qx−
1
2rBr ∈ αV + Z4 or

1
qx−

1
2rBr ∈ g + αV + Z4.

Additionally, for x uniformly chosen in Z4
q we have Decode

(
1
qx−

1
2rBr

)
is uniform in {0, 1} and indepen-

dent of r.

Let, Rec(x, r) = Decode
(

1
qx−

1
2rBr

)
.

We can now define the following reconciliation protocol:

Algorithm 6.5 (Protocol 1). Reconciliation protocol in qD̃4/qZ4

Alice Bob
x′ ∈ Z4

q x′ ≈ x x′ ∈ Z4
q

r←− r ← HelpRec(x) ∈ Z4
2r

k′ ← Rec(x′, r) k ← Rec(x, r)

Lemma 6.6. (Lemma C.3 [3]) If ‖x− x′‖1 <
(
1− 1

2r

)
· q − 2, then by the above protocol 6.5 k = k′.

Additionally, if x is uniform, then k is uniform independently of r.

We now present the complete NewHope key exchange protocol given in [3] as protocol 6.7.
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Algorithm 6.7 (Protocol 2). Parameters: q = 12289, n = 1024 Error Distribution: Ψn16

Alice (server) Bob (client)
Sample: a← Rq
s, e←− Ψn16 s′, e′, e′′ ←− Ψn16
ŝ := NTT(s), ê := NTT(e) ŝ′ := NTT(s′), ê′ := NTT(e′)

ê′′ := NTT(e′)

b̂ := â · ŝ+ ê
â,b̂−−→

û := â · ŝ′ + ê′

v̂ := b̂ · ŝ′ + ê′′

v := NTT−1(v̂)
(û,r)←−−− r ← HelpRec(v)

w := NTT−1(û · ŝ) v ← Rec(v, r)
v ← Rec(w, r) µ← SHA3− 256(v)
µ← SHA3− 256(v)

6.2 Security with Auxiliary Inputs

In this section we consider a modification to Protocol 6.7 in which all binomial random variables are instead
drawn from discrete Gaussians with corresponding standard deviation σ. We prove in Corollary 6.15 that
the distribution over v, given the transcript of the modified protocol, is (with all but negligible probability)
indistinguishable from a distribution with high min-entropy. By the analysis of [3] leveraging Renyi divergence
and the random oracle model, this is sufficient to obtain our main result.

The proof of Corollary 6.15 has two components. In the first (computational) component (proof of The-
orem 6.8), we analyze the distribution of v, conditioned on the transcript that does not include the reconcil-
iation information r and show that it is close to another distribution over v′′. In the second (information-
theoretic) component (proof of Theorem 6.9), we analyze the expected min-entropy of v ← Rec(v′′, r),
conditioned on the adversary’s view which now includes the reconciliation information r ← HelpRec(v′′, b).
These are then combined to obtain Corollary 6.15.

The view of the adversary in the modified protocol consists of the tuple

ViewA := (â, b̂, û, [ŝi, êi, ŝ
′
i, ê
′
i, ê
′′
i ]i≡α mod 2n′).

Moreover, note that v̂i = b̂i · ŝ′i + ê′′i , so [v̂i]i≡α mod 2n′ is deducible from the view.

Theorem 6.8. If ring-LWE decision problem with leakage is hard as defined in Section 4 with parameters
(n′ = 8, α ∈ Z∗2n′), then

(1) The marginal distribution over [v̂i]i≡α mod 2n′ , is computationally indistinguishable from uniform ran-

dom over Zn/n
′

q .
(2) Given the adversary’s view, ViewA,

[v̂i]i6≡α mod 2n′

is computationally indistinguishable from uniform random over Zn−n/n
′

q .

Proof. (Proof of theorem 6.8):
We prove the above theorem by considering the adversary’s view in a sequence of hybrid distributions.

Hybrid H0: This is the real world distribution

(â, b̂, û, [ŝi, êi, ŝ
′, ê′i, ê

′′
i ]i≡α mod 2n′ , v̂).
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Hybrid H1: Here we replace b̃ by b̂
′
, where b̂

′
i = b̂i for i ≡ α mod 2n′ and b̂

′
i is chosen uniformly at random

from Zq for i 6≡ α mod 2n′.

(â, b̂
′
, û, [ŝi, êi, ŝ

′, ê′i, ê
′′
i ]i≡α mod 2n′ , v̂).

Claim 6.1. H0 ≈ H1

Claim 6.1 follows from the ring-LWE with leakage assumption defined in Section 4

Hybrid H2: This is same as hybrid H1 except we replace û by û′ and v̂ by v̂′, where û′i = ûi, v̂
′
i = v̂i, for

i ≡ α mod 2n′ and û′i, v̂
′
i are chosen uniformly at random from Zq for i 6≡ α mod 2n′.

(â, b̂
′
, û′, [ŝi, êi, ŝ

′, ê′i, ê
′′
i ]i≡α mod 2n′ , v̂

′).

Claim 6.2. H1 ≈ H2

Claim 6.2 follows from the decision ring-LWE with leakage assumption defined in Section 4.

Hybrid H3: This is same as hybrid H2 except that we replace v′ by a random vector from Znq , v′′, and for
i ≡ α mod 2n′, replace ê′′i with ê′′′i = v̂′′i − âi · ŝ′i for i ≡ α mod 2n′.

(â, b̂
′
, û′, [ŝi, êi, ŝ

′, ê′i, ê
′′′
i ]i≡α mod 2n′ , v̂

′′).

Claim 6.3. H2 ≈ H3

Claim 6.3 follows since the error coordinates [ê′′i ]i≡α mod 2n′ are statistically close to uniform over Zq, since
there is a bijection between the vector [ê′′i ]i≡α mod 2n′ and the polynomial f := e′′ mod (xn/8 − (ωj)n/8).
Moreover, f is statistically close to uniform random since it is sampled by drawing ring element e′′ from a
discrete Gaussian of standard deviation σ and taking it modulo an ideal I = 〈q〉 + 〈xn/8 − (ωj)n/8〉 with
sufficiently high norm. Specifically, with parameter settings σ =

√
8 for error, the noise distribution has pdf

proportional to

e−x
2/(2·σ2) = e−x

2/(2·
√
8
2
) = e−πx

2/(
√
16·π2

) = e−πx
2/((4

√
π)2) = e−πx

2/(σ̃2),

where σ̃ = 4
√
π. Additionally, I = 〈q〉+〈xn/8−(ωj)n/8〉, which is the ideal corresponding to the leaked NTT

coordinates, has norm qn/8. Thus, f should be statistically close to random, since the smoothing parameter

of I for ε = 2−2n is ηε(I) ≤
√
n

λ1(IV . Since λ1(IV ) ≥
√
n ·N(IV )1/n =

√
n ·N(I)−1/n =

√
n · q−1/8 (see [38]

for details), then we have ηε(I) ≤ q1/8 ≈ 3.245 < σ̃.

It is clear by inspection that (1) and (2) of Theorem 6.8 hold in Hybrid 3.

Switching from NTT to polynomial representation. We showed that in Hybrid H3, given fixed [v̂′′i ]i≡αmod 2n′ ,
the distribution over [v̂′′i ]i6≡αmod 2n′ is uniform random. We now characterize the induced distribution of
x := v′′ (i.e. the polynomial form), given [v̂′′i ]i≡αmod 2n′ . Henceforth, we assume for simplicity that n′ = 8.
Given [v̂′′i ]i≡αmod 16 an attacker can recover y(x) = v′′(x) mod (xn/8−(ωα)n/8). Thus the leaked information
forms a linear equation as follow:

7∑
k=0

(ωα)
kn
8 v′′kn

8 +i
= yi,

where i ∈ {0, . . . , n/8− 1}.
For i ∈ {0, . . . , n/8− 1}, fix v′′kn

8 +i
, for k ∈ {1, 3, 5, 7} then we have

n/2−1∑
k=0

(ωα)
2kn
n′ v′′2kn

n′ +i
= yi −

3∑
κ=0

(ωα)
(2k+1)n

8 v′′(2k+1)n
8 +i

. (1)

We take the right hand side of (1) to be a constant, denoted by γi. Let cω,α = [1 (ωα)n/4 (ωα)n/2 (ωα)3n/4].
Thus the linear constraint corresponding to (1) can be written as fω,j(xi) := cω,α · xi = γi, where xi ∈ Z4

q.
Recall that due to automorphisms, we may assume α = 1.
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Distributions over polynomial representation. Therefore, every fixed setting of [v̂′′i ]i≡αmod 2n′ , the distri-
bution over [xi]i∈{n/8,...,n/4−1} = [v′′kn

8 +j
]j∈{0,...,n/8−1},k∈{1,3,5,7} is uniform random. This corresponds to

setting xi ← Z4
q uniformly at random, for i ∈ {n/8, . . . , n/4 − 1}. Given [v̂′′i ]i≡αmod 2n′ and the fixed

values of xi, the distribution over [xi]i∈{0,...,n/8−1} = [v′′kn
8 +j

]j∈{0,...,n/8−1},k∈{0,2,4,6}, which we denote by

Dγ = (Dγ0 , . . . ,Dγn/8−1
), corresponds to, for each i ∈ {0, . . . , n/8 − 1}, choosing xi ∈ Z4

q uniformly at
random, conditioned on cω,α · xi = γi. Moreover, since there is a bijection between [v̂′′i ]i≡αmod 2n′ and
the values of the constraints [γi]i∈{0,...,n/8−1}, we have that if [v̂′′i ]i≡αmod 2n′ is uniformly random, then
γ = [γi]i∈{0,...,n/8−1} is also uniformly random.

Analyzing the average min-entropy of v. To summarize the analysis above, conditioned on the view of the
adversary, for each i ∈ {n/8, . . . , n/4 − 1}, xi is sampled uniformly and independently. This then fixes the
values of γ = γ1, . . . , γn/8. For each i ∈ {0, . . . , n/8 − 1}, xi is sampled independently from Dγi (defined
in the preceding paragraph). Thus, we can analyze each block xi independently to show that the average
min-entropy of Rec(xi, ri), conditioned on ri ← Rec(xi; bi) is close to 1. Due to independence, we can then
sum the average min-entropies of each block to obtain the average min-entropy of v.

Clearly, for i ∈ {n/8, . . . , n/4− 1}, since xi ← Z4
q are sampled uniformly at random and independently,

we can use the same analysis as in [3] to prove that, conditioned on the output of HelpRec, the output of Rec
for i ∈ {n/8, . . . , n/4 − 1} has (average) min-entropy exactly 1, conditioned on the leakage and transcript.
Thus, it remains to show that for i ∈ {0, . . . , n/8− 1}, conditioned on the output of HelpRec, the output of
Rec has high average min-entropy.

In the following, we drop the subscript i from the variables xi, ri, γi, since we focus on a single block at
a time.

For γ ∈ Zq, let Sγ be the set of x ∈ Z4
q that satisfy cω,α · x = γ. Note that the sets Sγ , γ ∈ Zq form a

partition of Z4
q. Let Rγ be the distribution over outputs r of HelpRec(x; b) when x is chosen uniformly at

random from Sγ and b is chosen uniformly at random from {0, 1}.

Theorem 6.9. We have that:

Eγ←Zq,r∼Dγ

 max
β∈{0,1}

Pr
x∼Sγ
b∼{0,1}

[Rec(x, r) = β | HelpRec(x; b) = r]

 ≤ 1/2 + p/2,

where

p := 2− 2

(
q
2r − 2q1/4 − 1

q
2r

)4

+

(
1 + 1

2q1/4

1− 2r+1

q

)4

·
(

2r+10

3q3/4
− 23r+10

3q9/4
+

24r+10

q3

)
.

By definition of average min-entropy, the above implies that, for a single block, Rec(x, r) has average
min-entropy at least − log2(1/2 + p), conditioned on γ, r.

Proof. We prove the theorem by showing that for linear constraint cω,α, there exists a bijective mapping
ψcω,α(x) = x′, such that, with high probability at least 1 − p over uniform x, all the following conditions
hold:

cω,α · x = cω,α · x′ (2)

(r =) HelpRec(x; b) = HelpRec(x′; b′), (3)

Rec(x, r) = 1⊕ Rec(x′, r), (4)

where b′ = b⊕ 1.
Now the above conditions imply that:

1

q
·
∑
(γ,r)

Pr
Rγ

[r] · Pr
x∼Sγ
b∼{0,1}

[HelpRec(x; b) 6= HelpRec(x′; b′) | HelpRec(x; b) = r] ≤ p. (5)
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Let pγ,r := Pr x∼Sγ
b∼{0,1}

[HelpRec(x; b) 6= HelpRec(x′; b′) | HelpRec(x; b) = r]. Note that

maxβ∈{0,1} Pr x∼Sγ
b∼{0,1}

[Rec(x, r) = β | HelpRec(x; b) = r] ≤ 1/2 + pγ,r/2.

This is sufficient to prove Theorem 6.9, since

Eγ←Zq,r∼Dγ [ max
β∈{0,1}

Pr
b∼{0,1},x∼Sγ

[Rec(x, r) = β | HelpRec(x; b) = r]]

≤ 1

q
·
∑
(γ,r)

Pr
Rγ

[r] · (1/2 + pγ,r/2)

= 1/2 +
1

q
·
∑
(γ,r)

Pr
Rγ

[r] · pγ,r/2

=
1

2
+

1

2q

∑
(γ,r)

Pr
Rγ

[r] · Pr
x∼Sγ
b∼{0,1}

[HelpRec(x; b) 6= HelpRec(x′; b′) | HelpRec(x; b) = r]

≤1/2 + p/2,

where the last inequality follows from (5).
We now turn to defining ψcω,α and proving that with probability at least 1− p over uniform x, (2), (3)

and (4) hold.

Defining ψcω,α so that (2) always holds. (2) holds if and only if there exists a vector w ∈ Z4
q such that

x′ = x + w, where w ∈ ker(cω,α), where ker is the set of w′ such that cω,α ·w′ = 0. Let W to be a set of
all vectors vt = (vt0, vt1, vt2, vt3) where vti ∈ [ q2 ± q

1/4] ∪ Z. Experiment shows that the intersection of set
ker(cω,α) and set W is nonempty given parameter setting of [5], namely fixing q = 12289, n = 1024, ω = 7,
ker(fω,j)∩W 6= ∅ for all α ∈ Z∗16. Note that this is the only part of the analysis that is not generic
in terms of parameter settings. For more discussion, See Section 6.4. Define ψcω,α(x) := x + w,
where w ∈ ker(cω,α)∩W. Therefore, as long as ker(cω,α)∩W is non-empty (which holds for typical parameter
settings), condition (2) holds with probability 1 over choice of x.

If (3) holds then (4) holds. We now show that if x is such that HelpRec(x; b) = HelpRec(x + w; b′) then if
HelpRec(x; b) = r, Rec(x, r) = 1⊕ Rec(x + w, r).

Lemma 6.10. Given HelpRec(x; b) = HelpRec(x + w; b′) = r, Rec(x, r) = 1⊕ Rec(x + w, r).

Proof. Recall that g = (1/2, 1/2, 1/2, 1/2)T . Proved by [5, Lemma C.2], we have

HelpRec(x; b) = HelpRec(x + qg) (= r)

Rec(x, r) = 1⊕ Rec(x + qg, r)

Additionally, since ‖w − qg‖1 ≤ 4q1/4 < (1−1/2r) ·q−2, by [5, Lemma C.3], Rec(x+w, r) = Rec(x+qg, r),
Thus we conclude Rec(x, r) = 1⊕ Rec(x + w, r).

(3) holds with probability 1−p over x. Hence, it remains to show that for all w ∈ ker(cω,α)∩W and fω,j(x) =
γ, with high probability at least 1−p over choice of x←$ Z4

q, b←$ {0, 1}, HelpRec(x; b) = HelpRec(x+w; b′)
holds.

Let δ = (δ0, δ1, δ2, δ3) be a vector such that x + w = x + qg + δ. Then |δi| ≤ q1/4. Since g ∈ D̃4, we
have HelpRec(x; b) = HelpRec(x + qg; b′) [5]. For simplicity, let z = 2r

q (x + qg + b′g) ∈ 2r

2qZ
4
2q, vector β =

(β0, β1, β2, β3) denote 2r

q δ. Recall that HelpRec(x; b) = CVPD̃4

(
2r

q (x + bg)
)

mod 2r. Thus, the proposition

HelpRec(x; b) = HelpRec(x + w; b′) is equivalent to CVPD̃4
(z) = CVPD̃4

(z + β), which remains to be proved
valid with probability at least 1− p.

For the following analysis, refer to Figure 6.3, which describes the CVPD̃4
algorithm. Let v0,v1, k be the

values computed in steps 1, 2, 3 of CVPD̃4
algorithm, shown in Figure 6.3 and let v′0,v

′
1, k
′ be the values

computed in step 1, 2, 3 of CVPD̃4
(z + β) algorithm.
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By definition of CVPD̃4
, it is clear to see that if none of the following three conditions is satisfied, then

CVPD̃4
(z) = CVPD̃4

(z + β) is granted.

(a) v′0 6= v0.
(b) v′1 6= v1
(c) k′ 6= 1− k

Before analyzing probability in each condition above, we first present the following lemma, which will
allow us to switch from analyzing the probabilities over choice of (x, b) to analyzing probabilities over choice
of z.

Lemma 6.11. Given g,x, z = 2r

q (x + qg + b′g) as defined above, for any set D′ ⊆ 2r

2qZ
4
2q, the probability

that x in set D = {x | 2r

q (x + qg + b′g) ∈ D′} over choice of x ←$ Z
4
q and choice of b′ ←$ {0, 1} equals to

the probability that z in set D′ over choice of z←$
2r

2qZ
4
2q, denoted by Probx,b′ [x ∈ D] = Probz[z ∈ D′].

Proof. We compute Probx,b′ [x ∈ D] given the condition b′ = 0 and the condition b′ = 1. As b′ is equivalent
to the ”doubling” trick, the corresponding x + qg + b′g when b′ = 0 is distributed as odd numbers over Z4

2q,
written as 2Z4

2q +Z4
2q. When b′ = 1, x + qg + b′g is distributed as even numbers over is over Z4

2q, written as
2Z4

2q. Thus we have

Probx,b′ [x ∈ D] =
1

2
Probx,0[

2r

q
(x + qg ∈ D′)] +

1

2
Probx,1[

2r

q
(x + qg + g ∈ D′)] (6)

=
1

2

∣∣∣ 2r2q (2Z4
2q + Z4

2q) ∩ D′
∣∣∣∣∣∣ 2r2q (2Z4

2q + Z4
2q)
∣∣∣ +

1

2

∣∣∣ 2r2q (2Z4
2q) ∩ D′

∣∣∣∣∣∣ 2r2q (2Z4
2q)
∣∣∣ (7)

=

∣∣∣( 2r

2q (2Z4
2q + Z4

2q) ∪ 2r

2q (2Z4
2q)
)
∩ D′

∣∣∣
2r

2q (Z4
2q)

(8)

=

∣∣∣ 2r2q (Z4
2q) ∩ D′

∣∣∣
2r

2q (Z4
2q)

= Probz[z ∈ D′] (9)

as desired.

We omit to mention distribution of b′ for simplicity unless confusion is likely to occur.
We next analyze probability of the three conditions (a), (b), (c) in Lemmas 6.12, 6.13 and 6.14.

Lemma 6.12 (Bounding the probability of (a)). Given v0,v
′
0,v0,v

′
0, k, k

′, z,β as defined above, probability

that v′0 6= v0 (denoted by Probx[v′0 6= v0] ) is at most 1−
( q

2r−2q
1/4−1
q
2r

)4
over choice of x←$ Z

4
q.

Proof. Recall that |δi| ≤ q1/4. Then we have |βi| ≤ 2r

q3/4
. We assume that 2r

q3/4
≤ 1/2, which would be the case

for typical parameter settings. When the event that v′0 6= v0 happens, it indicates existing a i, bzie 6= bzi+βie.
We start by computing the probability over choice of x ←$ Z

4
q that given i, event bzie = bzi + βie occurs,

denoted by Probx[bzie = bzi + βie]. We divide the analysis into two cases.

(1) Suppose that zi − bzie ≥ 0, then bzi − 2r

q3/4
e = bzie. In order to achieve bzi + βie = bzie, we need

bzi + 2r

q3/4
e = bzie. Without loss of generality, we assume 0 ≤ zi < 1/2 mod 2r, where bzie = 0. Thus it

can be easily verified that if 0 ≤ zi < 1/2− 2r

q3/4
, we can ensure bzi + 2r

q3/4
e = 0.

(2) Suppose that zi − bzie < 0, then bzi + 2r

q3/4
e = bzie. Similarly, in order to achieve bzi + βie = bzie, we

need bzi − 2r

q3/4
e = bzie. Without loss of generality, we assume −1/2 ≤ zi < 0 mod 2r, where bzie = 0.

Thus it can easily verified that if −1/2 + 2r

q3/4
≤ zi < 0, we can ensure bzi + 2r

q3/4
e = 0.
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Combining both cases, by Lemma 6.11, we then derive that

Probx[bzie = bzi + βie] ≥

∣∣∣ [−1/2 + 2r

q3/4
, 1/2− 2r

q3/4

)
∩ 2r

2qZ2q

∣∣∣∣∣∣ [−1/2, 1/2) ∩ 2r

2qZ2q

∣∣∣ (10)

≥

∣∣∣ [ 2q2r (−1/2 + 2r

q3/4
), 2q2r (1/2− 2r

q3/4
)
)
∩ Z2q

∣∣∣∣∣ [− q
2r ,

q
2r

)
∩ Z2q

∣∣ (11)

=
2b q2r − 2q1/4c+ 1

2b q2r c+ 1
(12)

≥
q
2r − 2q1/4 − 1

q
2r

(13)

Since Probx[∃i, bzie 6= bzi + βie] = 1− Probx[bzie = bzi + βie,∀i]. Therefore, we have

Probx[v′0 6= v0] ≤ 1−

(
q
2r − 2q1/4 − 1

q
2r

)4

as desired.

Lemma 6.13 (Bounding the probability of (b)). Given v0,v
′
0,v0,v

′
0, k, k

′, z,β as defined above, probability

that v′1 6= v1 (denoted by Probx[v′1 6= v1]) is at most 1−
( q

2r−2q
1/4−1
q
2r

)4
over choice of x←$ Z

4
q.

The proof proceeds exactly the same as proof of Lemma 6.12 by substituting z with z + g.

Lemma 6.14 (Bounding the probability of (c)). Given v0,v
′
0,v0,v

′
0, k, k

′, z,β as defined above, probability

that k′ 6= 1− k (denoted by Probx[k′ 6= 1− k]) is at most

(
1+ 1

2q1/4

1− 2r+1

q

)4

·
(

2r+10

3q3/4
− 23r+10

3q9/4
+ 24r+10

q3

)
over choice

of x←$ Z
4
q.

Proof. We divide our proof into two cases: (1) Suppose k = 0 and k′ = 1, which indicates ‖z− v0‖1 <
1 and ‖z + β − v0‖1 ≥ 1. We denote by Probx[k = 0, k′ = 1] probability that k = 0 and k′ = 1 over choice
of x. (2) Suppose k = 1 and k′ = 0, which indicates ‖z− v0‖1 ≥ 1 and ‖z + β − v0‖1 < 1. We denote by
Probx[k = 1, k′ = 0] probability that k = 1 and k′ = 0 over choice of x.

Without loss of generality, we assume that −1/2 ≤ zi < 1/2 mod 2r for i = 0, 1, 2, 3. Then we have
v0 = 0.

Case 1 : By Lemma 6.11, Probx[k = 0, k′ = 1] is equivalent to the probability that z satisfies

|z0|+ |z1|+|z2|+ |z3| < 1, and

|z0 + β0|+ |z1 + β1|+ |z2 + β2|+ |z3 + β3| > 1,

over choice of z ←$
2r

2qZ
4
2q ∩ [−1/2, 1/2)4 mod 2r. As |zi + βi| ≤ |zi| + |βi| by Triangle Inequality, we can

upper-bound Probx[k = 0, k′ = 1] by the probability that z satisfies

|z0|+ |z1|+|z2|+ |z3| < 1, and

|z0|+ |z1|+ |z2|+ |z3|+ |β0|+ |β1|+ |β2|+ |β3| > 1,

over choice of z ←$
2r

2qZ
4
2q ∩ [−1/2, 1/2)4 mod 2r. Since |β0| + |β1| + |β2| + |β3| ≤ 4 · 2r

q3/4
, we can further

upper-bound Probx[k = 0, k′ = 1] by the probability that z satisfies

1− 4 · 2r

q3/4
< |z0|+ |z1|+ |z2|+ |z3| < 1,
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over choice of z←$
2r

2qZ
4
2q ∩ [−1/2, 1/2)4 mod 2r.

Let ∆ = 4· 2r

q3/4
. We then can obtain the upperbound of Probx[k = 0, k′ = 1] by computing the cardinality

of set where each element is in 2r

2qZ
4
2q and satisfies the following two conditions:

1−∆ < |z0|+ |z1|+ |z2|+ |z3| < 1 (14)

−1/2 ≤ zi < 1/2 , for i = 0, 1, 2, 3 (15)

divided by the cardinality of set where each element is in 2r

2qZ
4
2q and only satisfies the equation (15).

Similarly for Case 2, by Lemma 6.11, Probx[k = 1, k′ = 0] is equivalent to the probability that z satisfies

|z0|+ |z1|+|z2|+ |z3| ≥ 1, and

|z0 + β0|+ |z1 + β1|+ |z2 + β2|+ |z3 + β3| < 1,

over choice of z←$
2r

2qZ
4
2q∩[−1/2, 1/2)4 mod 2r. Since |zi+βi| ≥ |zi|−|βi| and |β0|+|β1|+|β2|+|β3| ≤ 4· 2r

q3/4
,

we can further upper -bounded Probx[k = 1, k′ = 0] by the probability that z satisfies

1 ≤ |z0|+ |z1|+ |z2|+ |z3| < 1 + 4 · 2r

q3/4
,

over choice of z←$
2r

q Z
4
q ∩ [−1/2, 1/2)4 mod 2r.

We can then obtain the upperbound of Probx[k = 1, k′ = 0] by computing the cardinality of set where
each element is in 2r

2qZ
4
2q and satisfies the following two conditions:

1 ≤ |z0|+ |z1|+ |z2|+ |z3| < 1 +∆ (16)

−1/2 ≤ zi < 1/2 , for i = 0, 1, 2, 3 (17)

by the cardinality of set that each element is in 2r

2qZ
4
2q and only satisfies the Equation 17.

Thus, by combining both cases, we have Probx[k′ 6= 1− k] = Probx[k = 0, k′ = 1] + Probx[k = 1, k′ = 0]
upperbounded by the cardinality of set where each element is in 2r

2qZ
4
2q and satisfies the following two

conditions:

1−∆ < |z0|+ |z1|+ |z2|+ |z3| < 1 +∆ (18)

−1/2 ≤ zi < 1/2 , for i = 0, 1, 2, 3 (19)

by the cardinality of set where elements are in 2r

2qZ
4
2q and satisfies the the Equation 19.

Note that, disregarding the distribution of z, (19) defines a unit hypercube [−1/2, 1/2)4 centered at
origin and (18) defines a hyper-object clipped by two hyperplanes in each octant. We denote by Volcube the
hypercube volume. Let Volclip be the hypervolume where each points satisfies both (18) and (19), which is
equivalent to say, Volclip is hypervolume of hypercube defined in (19) clipped by two hyperplanes in each
octant, as defined in (18).

If x is sampled from R4, it is easy to see that probability Probx[k′ 6= 1− k] is upperbounded by the ratio
of Volclip to Volcube.

For the rest of the proof, we first compute the ratio of Volclip to Volcube and then approximate the
upperbound of Probx[k′ 6= 1 − k] by discretizing hypervolumes into lattice points, as z is instead sampled
from 2r

2qZ
4
2q, which is a lattice.

Towards computing the volumes, we need to amplify each dimension by 2 in (14) and (15) for adapting
Theorem 2.2 where unit hypercube is defined as [0, 1]n. Volclip and Volcube is ith octant Let Voliclip denote

Volclip in the ith octant, and Volicube denote Volcube in ith octant. Thus, in the ith octant, we have

2− 2∆ < t0 + t1 + t2 + t3 < 2 + 2∆ (20)

0 ≤ ti < 1, for i = 0, 1, 2, 3, (21)
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where ti = 2zi.
Define two hyperspace as follows:

H+
1 := {t | g1(t) := −t0 − t1 − t2 − t3 + 2(1−∆) ≥ 0}

H+
2 := {t | g2(t) := −t0 − t1 − t2 − t3 + 2(1 +∆) ≥ 0}

Then it is easy to see that

Vol1clip ≤
Vol([0, 1]4 ∩H+

2 )−Vol([0, 1]4 ∩H+
1 )

24

where 24 in denominator is a scalar to neutralize amplification
By Theorem 2.2 and substituting ∆ with 4q1/4 · 2

r

q , we obtain

Vol1clip =
1

24
· 1

24

(
(2 + 2∆)4 − 4(1 + 2∆)4 + 6(2∆)4 − (2− 2∆)4 + 4(1− 2∆)4

)
=

1

24
· 1

24
(64∆− 128∆3 + 96∆4)

=
1

24

(
24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4

)
We claim that Vol1clip = Voliclip for i = 2, 3, ..., 16. It can be easily checked by showing a bijective map

fi : z↔ z′ which maps elements from first octant to the ith octant, such that if z satisfies the conditions (18)
and (19), then z′ satisfies the conditions (18) and (19), and if z satisfies the condition (19) but not satisfies
(18), then z′ satisfies the condition (19) but not satisfies (18). One trivial example of such map is to let z be
the absolute value of z′.

Additionally, it is obvious to see that Volicube = 1/24,∀i. Thus, we have

Volclip
Volcube

=
Vol1clip

Vol1cube
=

24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4
.

It remains to approximate
Vol1clip∩Lz

Vol1cube∩Lz
, where Lz = 2r

2qZ
4
2q.

Since both of the hypercube and the hyperclip in first octant are convex as they are intersections of
hyperspaces, by Theorem 2.1, we can derive that

Vol1clip ∩ Lz

Vol1cube ∩ Lz

≤
(1 + ε)4

Vol1clip
det(Lz)

(1− ε′)4 Vol1cube
det(Lz)

=

(
1 + ε

1− ε′

)4

·
Vol1clip

Vol1cube
,

where P(B) ∪ −P(B) ⊆ ε ·Vol1clip, P(B) ∪ −P(B) ⊆ ε′ ·Vol1cube and B is a basis of Lz.

To get a small ε, we begin by carving a hypercube [ 14 −
1
4∆,

1
4 + 1

4∆]4, which is contained in Vol1clip. Let

B = {( 2r

2q , 0, 0, 0), (0, 2
r

2q , 0, 0), (0, 0, 2
r

2q , 0), (0, 0, 0, 2
r

2q )}. Then P(B) forms a hypercube with side length 2r

2q .

Thus, by letting ε = 1
2q1/4

as 2r

2q · 2 ≤ ε · 12∆, we can guarantee that P(B) ∪ −P(B) ⊆ ε · Vol1clip. Similarly,

since Vol1cube is a hypercube, it is easy to see that by letting ε′ = 2r+1

q , P(B) ∪ −P(B) ⊆ ε′ ·Vol1cube.
Combining the above, we obtain

Vol1clip ∩ Lz

Vol1cube ∩ Lz

≤

(
1 + 1

2q1/4

1− 2r+1

q

)4

·
(

24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4

)
,

as desired.

25



Combining Lemmas 6.12, 6.13 and 6.14, we conclude that, for all w ∈ ker(cω,α) ∩W and fω,j(x) = γ,
the probability that HelpRec(x) = HelpRec(x + w) holds over choice of x ∈ Z4

q is at least

1− 2

1−

(
q
2r − 2q1/4 − 1

q
2r

)4
−(1 + 1

2q1/4

1− 2r+1

q

)4

·
(

24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4

)
.

Using known relationships between average min-entropy and min-entropy, we have that:

Corollary 6.15. With all but 2−k probability, the distribution over v, given the transcript of the modified
protocol as well as leakage 1 mod 16 positions of ŝ, ŝ′, ê, ê′, ê′′, is indistinguishable from a distribution that
has min-entropy n/8 + n/8 · (− log2(1/2 + p))− k.

6.3 Instantiating the Parameters

We instantiate the parameters as chosen in NewHope protocol: q = 12289, n = 1024, ω = 7, r = 2, then we
get

p :=2− 2

(
q
2r − 2q1/4 − 1

q
2r

)4

+

(
1 + 1

2q1/4

1− 2r+1

q

)4

·
(

24r+10

q3
− 23r+10

3q9/4
+

2r+5

3q3/4

)
(22)

≈0.10092952876519123 (23)

Therefore, under this concrete parameter setting, the distribution with leakage and transcript as defined
above is indistinguishable from a distribution that has average min-entropy 128 + 128 · (− log2(1/2 +
0.10092952876519123/2)) ≈ 238. Moreover, with all but 2−80 probability, the distribution with leakage
and transcript as defined above is indistinguishable from a distribution that has min-entropy 158.

6.4 On the Non-Generic Part of the Analysis

Recall that in the analysis, we experimentally confirm that there exists a vector w ∈ ker(cω,α) ∩W.
We can support this heuristically by noting that W has size (2q1/4)4 = 16q. On the other hand, the

probability that a random vector in Z4
q is in ker(cω,α) is 1/q. So heuristically, we expect that 1/q-fraction

(approx. 16) of the vectors in W will also be in ker(cω,α).
A similar analysis can be done for other leakage patterns (n′,S). Recall that our experimental attacks

support the conclusion that Leaky-SRLWE is easy when the fraction of structured leakage is at least 1/4.

We may also consider parameter settings (n′,S) such that |S| = 2 and |S|n′ = 1/8. In this case, instead of
a single linear constraint cω,α on a single xi, we have two linear constraints on xi,xi+n/16. This means we
will have a linear system of 8 variables and two constraints, denoted by Mω,S . Thus, W will be equal to
[ q2 ± q

1/4]8. So the size of W will be (2q1/4)8 = 256q2 and the probability that a random vector in Z4
q is in

ker(Mω,S) is 1/q2. So heuristically, we expect that 1/q2-fraction (approx. 256) of the vectors in W will also
be in ker(Mω,S). Given this, the rest of the analysis proceeds nearly identically.
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