
Non-Malleable Codes, Extractors and Secret Sharing

for Interleaved Tampering and Composition of

Tampering

Eshan Chattopadhyay∗

Department of Computer Science,
Cornell University
eshanc@cornell.edu

Xin Li†

Department of Computer Science,
Johns Hopkins University

lixints@cs.jhu.edu

September 11, 2020

Abstract

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs (JACM 2018)
as a generalization of standard error correcting codes to handle severe forms of tampering
on codewords. This notion has attracted a lot of recent research, resulting in various explicit
constructions, which have found applications in tamper-resilient cryptography and connections
to other pseudorandom objects in theoretical computer science.

We continue the line of investigation on explicit constructions of non-malleable codes in the
information theoretic setting, and give explicit constructions for several new classes of tampering
functions. These classes strictly generalize several previously studied classes of tampering func-
tions, and in particular extend the well studied split-state model which is a “compartmentalized”
model in the sense that the codeword is partitioned a prior into disjoint intervals for tampering.
Specifically, we give explicit non-malleable codes for the following classes of tampering functions.

• Interleaved split-state tampering: Here the codeword is partitioned in an unknown way
by an adversary, and then tampered with by a split-state tampering function.

• Affine tampering composed with split-state tampering: In this model, the codeword is
first tampered with by a split-state adversary, and then the whole tampered codeword is
further tampered with by an affine function. In fact our results are stronger, and we can
handle affine tampering composed with interleaved split-state tampering.

Our results are the first explicit constructions of non-malleable codes in any of these tampering
models. As applications, they also directly give non-malleable secret-sharing schemes with
binary shares in the split-state joint tampering model and the stronger model of affine tampering
composed with split-state joint tampering. We derive all these results from explicit constructions
of seedless non-malleable extractors, which we believe are of independent interest.

Using our techniques, we also give an improved seedless extractor for an unknown interleaving
of two independent sources.

∗Supported by NSF Grant CCF-1849899
†Supported by NSF Award CCF-1617713 and NSF CAREER Award CCF-1845349

mailto:eshanc@cornell.edu
mailto: lixints@cs.jhu.edu

1 Introduction

1.1 Non-malleable Codes

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [DPW18] as an elegant
relaxation and generalization of standard error correcting codes, where the motivation is to handle
much larger classes of tampering functions on the codeword. Traditionally, error correcting codes
only provide meaningful guarantees (e.g., unique decoding or list-decoding) when part of the code-
word is modified (i.e., the modified codeword is close in Hamming distance to an actual codeword),
whereas in practice an adversary can possibly use much more complicated functions to modify the
entire codeword. In the latter case, it is easy to see that error correction or even error detection
becomes generally impossible, for example an adversary can simply change all codewords into a
fixed string. On the other hand, non-malleable codes can still provide useful guarantees here, and
thus partially bridge this gap. Informally, a non-malleable code guarantees that after tampering,
the decoding either correctly gives the original message or gives a message that is completely unre-
lated and independent of the original message. This captures the notion of non-malleability: that
an adversary cannot modify the codeword in a way such that the tampered codeword decodes back
to a related but different message.

The original intended application of non-malleable codes is in tamper-resilient cryptography
[DPW18], where they can be used generally to prevent an adversary from learning secret informa-
tion by observing the input/output behavior of modified ciphertexts. Subsequently, non-malleable
codes have found applications in non-malleable commitments [GPR16], non-malleable encryption
[CDTV16], public-key encryptions [CMTV15], non-malleable secret-sharing schemes [GK18a], and
privacy amplification protocols [CKOS18]. Furthermore, interesting connections were found to non-
malleable extractors [CG17], and very recently to spectral expanders [RS18]. Along the way, the
constructions of non-malleable codes used various components and sophisticated ideas from additive
combinatorics [ADL18, CZ14] and randomness extraction [CGL16], and some of these techniques
have also found applications in constructing extractors for independent sources [Li17]. As such,
non-malleable codes have become fundamental objects at the intersection of coding theory and
cryptography. They are well deserved to be studied in more depth in their own right, as well as to
find more connections to other well studied objects in theoretical computer science.

We first introduce some notation before formally defining non-malleable codes. For a function
f : S → S, we say s ∈ S is a fixed point (of f) if f(s) = s.

Definition 1.1 (Tampering functions). For any n > 0, let Fn denote the set of all functions
f : {0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering functions.

We use the statistical distance to measure the distance between distributions.

Definition 1.2. The statistical distance between two distributions D1 and D2 over some universal
set Ω is defined as |D1 −D2| = 1

2

∑
d∈Ω |Pr[D1 = d]−Pr[D2 = d]|. We say D1 is ε-close to D2 if

|D1 −D2| ≤ ε and denote it by D1 ≈ε D2.

To introduce non-malleable codes, we need to define a function called copy that takes in two
inputs. If the first input is the special symbol “same?”, the copy function just outputs its second
input. Else it outputs its first input. This is useful in defining non-malleable codes where one wants
to model the situation that the decoding of the tampered codeword is either the original message
or a distribution independent of the message. Thus, we define a distribution on the message space
and the special symbol same?, where the probability that the distribution takes on the value same?

1

corresponds to the probability that the tampered codeword is decoded back to the original message.
More formally, we have

copy(x, y) =

{
x if x 6= same?

y if x = same?

Following the treatment in [DPW18], we first define coding schemes.

Definition 1.3 (Coding schemes). Let Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {⊥}
be functions such that Enc is a randomized function (i.e., it has access to private randomness) and
Dec is a deterministic function. We say that (Enc,Dec) is a coding scheme with block length n and
message length k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1, where the probability is taken over
the randomness in Enc.

We can now define non-malleable codes.

Definition 1.4 (Non-malleable codes). A coding scheme C = (Enc,Dec) with block length n and
message length k is a non-malleable code with respect to a family of tampering functions F ⊂ Fn
and error ε if for every f ∈ F there exists a random variable Df on {0, 1}k ∪ {same?} which is
independent of the randomness in Enc and is efficiently samplable given oracle access to f(.), such
that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s)))− copy(Df , s)| ≤ ε.

We say the code is explicit if both the encoding and decoding can be done in polynomial time. The
rate of C is given by k/n.

Relevant prior work on non-malleable codes in the information theoretic setting.
There has been a lot of exciting research on non-malleable codes, and it is beyond the scope
of this paper to provide a comprehensive survey of them. Instead we focus on relevant explicit
(unconditional) constructions in the information theoretic setting, which is also the focus of this
paper. One of the most studied classes of tampering functions is the so called split-state tampering,
where the codeword is divided into (at least two) disjoint intervals and the adversary can tamper
with each interval arbitrarily but independently. This model arises naturally in situations where
the codeword may be stored in different parts of memory or different devices. Following a very
successful line of work [DKO13,ADL18,Agg15,AB16,CG17,CZ14,ADKO15a,CGL16,Li17,KOS17,
KOS18, GMW18, Li18, AO19], we now have explicit constructions of non-malleable codes in the
2-split state model with constant rate and negligible error.

The split state model is a “compartmentalized” model, where the codeword is partitioned a
priori into disjoint intervals for tampering. Recently, there has been progress towards handling
non-compartmentalized tampering functions. A work of Agrawal, Gupta, Maji, Pandey and Prab-
hakaran [AGM+15] gave explicit constructions of non-malleable codes with respect to tampering
functions that permute or flip the bits of the codeword. Ball, Dachman-Soled, Kulkarni and Malkin
[BDKM16] gave explicit constructions of non-malleable codes against t-local functions for t ≤ n1−ε.
However in all these models, each bit of the tampering function only depends on part of the
codeword. A recent work of Chattopadhyay and Li [CL17] gave the first explicit constructions
of non-malleable codes where each bit of the tampering function may depend on all bits of the
codeword. Specifically, they gave constructions for the classes of affine functions and small-depth

2

(unbounded fain-in) circuits. The rate of the non-malleable code with respect to small-depth cir-
cuits was exponentially improved by a subsequent work of Ball, Dachman-Soled, Guo, Malkin, and
Tan [BDSG+18]. In a recent work, Ball, Guo and Wichs [BGW19] constructed non-malleable codes
with respect to bounded depth decision trees.

Given all these exciting results, a major goal of the research on non-malleable codes remains to
give explicit constructions for broader classes of tampering functions, as one can use the probabilistic
method to show the existence of non-malleable codes with rate close to 1 − δ for any class F of
tampering functions with |F| ≤ 22δn [CG16].

Our results. We continue the line of investigation on explicit constructions of non-malleable
codes, and give explicit constructions for several new classes of non-compartmentalized tampering
functions, where in some classes each bit of the tampering function can depend on all the bits of the
codeword. In Section 1.2, we discuss motivations and applications of our new non-malleable codes
in cryptography. The new classes strictly generalize several previous studied classes of tampering
functions. In particular, we consider the following classes.

1. Interleaved 2-split-state tampering , where the adversary can divide the codeword into two
arbitrary disjoint intervals and tamper with each interval arbitrarily but independently. This
model generalizes the split-state model and captures the situation where the codeword is
partitioned into two blocks (not necessarily of the same length) in an unknown way by the
adversary before applying a 2-split-state tampering function. Constructing non-malleable
codes for this class of tampering functions was left as an open problem by Cheraghchi and
Guruswami [CG17].

2. Composition of tampering , where the adversary takes two tampering functions and composes
them together to get a new tampering function. We note that function composition is a
natural strategy for an adversary to achieve more powerful tampering, and it has been studied
widely in other fields (e.g., computational complexity and communication complexity). We
believe that studying non-malleable codes for the composition of different classes of tampering
functions is also a natural and important direction.

We now formally define these classes and some related classes below. For notation, given any
permutation π : [n] → [n] and any string x of length n, we let y = xπ denote the length n string
such that yπ(i) = xi.

• The family of 2-split-state functions 2SS ⊂ F2n: Any f ∈ 2SS comprises of two functions
f1 : {0, 1}n → {0, 1}n and f2 : {0, 1}n → {0, 1}n, and for any x, y ∈ {0, 1}n, f(x, y) = (f1(x),
f2(y)). This family of tampering functions has been extensively studied, with a long line of
work achieving near optimal explicit constructions of non-malleable codes.

• The family of affine functions Lin ⊂ Fn: Any f ∈ Lin is an affine function from {0, 1}n to
{0, 1}n (viewing {0, 1}n as Fn2), i.e., f(x) = Mx + v, for some n × n matrix M on F2 and
v ∈ Fn2 .

• The family of interleaved 2-split-state functions (2, t)-ISS ⊂ Fn: Any f ∈ (2, t)-ISS comprises
of two functions f1 : {0, 1}n1 → {0, 1}n1 , f2 : {0, 1}n2 → {0, 1}n2 such that n1 + n2 = n and
min{n1, n2} ≥ t (i.e both partitions are of length at least t), and a permutation π : [n]→ [n].
For any z = (x, y)π ∈ {0, 1}n, where x ∈ {0, 1}n1 , y ∈ {0, 1}n2 , let f(z) = (f1(x), f2(y))π. In
this paper we require that t ≥ nβ for some fixed constant 0 < β < 1. Note this includes as a

3

special case the situation where the two states have the same size, which we denote by 2ISS,
and in particular 2SS.

• For any tampering function families F ,G ⊂ Fn, define the family F ◦G ⊂ Fn to be the set of
all functions of the form f ◦ g, where f ∈ F , g ∈ G and ◦ denotes function composition.

We now formally state our results. Our most general result is an explicit non-malleable code
with respect to the tampering class of Lin ◦ (2, nβ)-ISS, i.e, an affine function composed with an
interleaved 2-split-state tampering function. Specifically, we have the following theorem.

Theorem 1.5. There exist constants β, δ > 0 such that for all integers n > 0 there exists an
explicit non-malleable code with respect to Lin ◦ (2, nβ)-ISS with rate 1/nδ and error 2−n

δ
.

We immediately have the following corollary, which records the classes of functions for which
no explicit non-malleable codes were known (for any rate) prior to this work.

Corollary 1. There exist constants β, δ > 0 such that for all integers n > 0 there exists an explicit
non-malleable code with respect to the following classes of functions with rate 1/nδ and error 2−n

δ
:

• 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS and Lin ◦ 2SS.

1.2 Motivations and applications in cryptography

Just as standard non-malleable codes for split-state tampering arise from natural cryptographic
applications, our non-malleable codes for interleaved 2-split-state tampering and affine tampering
composed with interleaved split-state tampering also have natural cryptographic motivations and
applications.

It is known that any non-malleable code in the 2-split-state model gives a 2 out of 2 secret-
sharing scheme, if one views the two split states as two shares [ADKO15b]. We show that any non-
malleable code in the interleaved 2-split state model gives a non-malleable secret-sharing scheme
with binary shares. Secret-sharing schemes [Bla79, Sha79] are fundamental objects in cryptogra-
phy, and building blocks for many other more advanced applications such as secure multiparty
computation. In short, a secret-sharing scheme shares a message secretly among n parties, such
that any qualified subset can reconstruct the message, while any unqualified subset reveals nothing
(or almost nothing) about the message. Equivalently, one can view this as saying that any leakage
function which leaks the shares in an unqualified subset reveals nothing. In the standard threshold
or t out of n secret-sharing, any subset of size at most t is an unqualified subset while any subset
of size larger than t is a qualified subset. However, it is known that in such a scheme, the share
size has to be at least as large as the message size. Thus, a natural and interesting question is
whether the share size can be smaller under some relaxed notion of secret-sharing. This is indeed
possible when one considers the notion of (r, t)-ramp secret-sharing, where r > t+1. In this setting,
any subset of size at most t reveals nothing about the message, while any subset of size at least r
can reconstruct message. Thus t is called the privacy threshold and r is called the reconstruction
threshold. Subsets of size between t+ 1 and r − 1 may reveal some partial information about the
message. Again, it is not hard to see that the share size in this case has to be at least as large as
m/(r − t), where m is the message length. Thus, if one allows a sufficiently large gap between r
and t, then it is possible to achieve a secret-sharing scheme even with binary shares.

Secret-sharing schemes are also closely related to error correcting codes. For example, the
celebrated Shamir’s scheme [Sha79] is based on Reed-Solomon codes. Similarly, binary secret-
sharing schemes are largely based on binary error correcting codes, and they are studied in a series

4

of recent works [BIVW16, BW17, CIL17, LCG+18] in terms of the tradeoff between the message
length, the privacy threshold t, the reconstruction threshold r, and the complexity of the sharing
and reconstruction functions.

However, standard secret-sharing schemes only allow an adversary to passively observe some
shares, thus one can ask the natural question of whether it is possible to protect against even
active adversaries who can tamper with the shares. In this context, the notion of robust secret-
sharing schemes (e.g., [RBO89,CSV93]) allows qualified subsets to recover the message even if the
adversary can modify part of the shares. More recently, by generalizing non-malleable codes, Goyal
and Kumar [GK18a] introduced non-malleable secret-sharing schemes, where the adversary can
tamper with all shares in some restricted manner. Naturally, the guarantee is that if tampering
happens, then the reconstructed message is either the original message or something completely
unrelated. In particular, they constructed t out of n non-malleable secret-sharing schemes in the
following two tampering models. In the independent tampering model, the adversary can tamper
with each share independently. In the joint tampering model, the adversary can divide any subset
of t + 1 shares arbitrarily into two sets of different size, and tamper with the shares in each set
jointly, but independently across the two sets. Note that the adversary in the second model is
strictly stronger than the adversary in the first one, since for reconstruction one only considers
subsets of size t+1. Several follow up works [GK18b,BS18,ADN+18] studied different models such
as non-malleable secret-sharing schemes for general access structures, and achieved improvements
in various parameters.

However, in all known constructions of non-malleable secret-sharing schemes the share size is
always larger than 1 bit. In other words, no known non-malleable secret-sharing scheme can achieve
binary shares. This is an obstacle that results from the techniques in all known constructions.
Indeed, even if one allows (r, t)-ramp non-malleable secret-sharing with an arbitrarily large gap
between r and t, no known constructions can achieve binary shares, because they all need to put
at least two shares of some standard secret-sharing schemes together to form a single share in
the non-malleable scheme. Thus it is a natural question to see if one can construct non-malleable
secret-sharing schemes with binary shares using different techniques.

Our non-malleable codes for interleaved 2-split-state tampering directly give non-malleable
secret-sharing schemes with binary shares that protect against joint tampering. We have the
following theorem.

Theorem 1.6. There exist constants 0 < α < β < 1 such that for all integers n > 0 there exists an
explicit (r, t)-ramp non-malleable secret-sharing scheme with binary shares, where r = n, t = n−nβ

and the message length is nα. The scheme has statistical privacy with error 2−n
Ω(1)

, and is resilient
with error 2−n

Ω(1)
to joint tampering where the adversary arbitrarily partitions the r shares into two

blocks, each with at most t shares, and tampers with each block independently using an arbitrary
function.

Intuitively, any n-bit non-malleable code for interleaved 2-split-state tampering gives a ramp
non-malleable secret-sharing scheme with reconstruction threshold r = n, as follows. If the code
protects against an adversary who can partition the codeword into two disjoint sets and tamper with
each set arbitrarily but independently, then each set must reveal (almost) nothing about the secret
message. Otherwise, the adversary can simply look at one set and use the leaked information to
modify the shares in this set, and make the reconstructed message become a different but related
message. In particular, the same proof in [ADKO15b] for the standard 2-split state model also
works for the interleaved 2-split state model. Since our code works for interleaved 2-split-state
tampering and the size of one set can be as large as n− nβ, this implies privacy threshold at least

5

n− nβ, with the small error in privacy coming from the error of the non-malleable code. We refer
the reader to Section 7 for more details.

It is an interesting open question to construct explicit non-malleable secret-sharing schemes with
binary shares where the reconstruction threshold r < n. We note that this question is closely related
to constructing non-malleable codes for the tampering class 2SS◦Lin or 2ISS◦Lin (i.e., reverse the
order of composition). This is because to get such a scheme, one natural idea is to apply another
secret-sharing scheme on top of our non-malleable code. If one uses a linear secret-sharing scheme
as in many standard schemes, then the tampering function on the codeword becomes 2SS ◦ Lin or
2ISS ◦ Lin.

We also note that in an (r, t)-ramp secret-sharing scheme with binary shares, unless the message
has only one bit, we must have r > t + 1. Thus in the joint tampering model, instead of allowing
the adversary to divide r shares arbitrarily into two sets, one must put an upper bound t on the
size of each set as in our theorem. For example, one cannot allow an adversary to look at a set of
shares with size r − 1, because r − 1 > t and this set of shares may already leak some information
about the secret message.

In both standard secret-sharing and non-malleable secret-sharing, in addition to looking at sets
of shares, researchers have also studied other classes of leakage function or tampering function. For
example, the work of Goyal et al. [GIM+16] studied secret-sharing schemes that are resilient to affine
leakage functions on all shares, and used them to construct parity resilient circuits and bounded
communication leakage resilient protocols. A recent work of Lin et. al [LCG+19] also studied
non-malleable secret-sharing schemes where the adversary can tamper with all shares jointly using
some restricted classes of functions. Specifically, [LCG+19] considered the model of “adaptive”
affine tampering, where the adversary is allowed to first observe the shares in some unqualified
subset, and then choose an affine function based on this to tamper with all shares. In this sense,
our non-malleable codes for affine tampering composed with interleaved 2-split-state tampering also
directly give non-malleable secret-sharing schemes with binary shares that protect against affine
tampering composed with joint tampering, which is strictly stronger than both the joint tampering
model and the affine tampering model (although our affine tampering is non-adaptive compared to
[LCG+19]). Specifically, we have the following theorem (which strictly generalizes Theorem 1.6).

Theorem 1.7. There exist constants 0 < α < β < 1 such that for all integers n > 0 there exists an
explicit (r, t)-ramp non-malleable secret-sharing scheme with binary shares, where r = n, t = n−nβ

and the message length is nα. The scheme has statistical privacy with error 2−n
Ω(1)

, and is resilient
with error 2−n

Ω(1)
to an adversary that tampers in two stages: In the first stage, the adversary

partitions the r shares arbitrarily into two blocks, each with at most t shares, and tampers with
each block independently using an arbitrary function. In the second stage, the adversary applies
an arbitrary affine tampering function jointly on all the already tampered (from the first stage) r
shares.

We provide a formal proof of the above theorem in Section 7.

Again, it is an interesting open question to construct explicit non-malleable secret-sharing
schemes where the order of tampering is reversed.

1.3 Seedless non-malleable extractors

Our results on non-malleable codes are based on new constructions of seedless non-malleable extrac-
tors, which we believe are of independent interest. Before defining seedless non-malleable extractors
formally, we first recall some basic notation from the area of randomness extraction.

6

Randomness extraction is motivated by the problem of purifying imperfect (or defective) sources
of randomness. The concern stems from the fact that natural random sources often have poor qual-
ity, while most applications require high quality (e.g., uniform) random bits. We use the standard
notion of min-entropy to measure the amount of randomness in a distribution.

Definition 1.8. The min-entropy H∞(X) of a probability distribution X on {0, 1}n is defined
to be minx(− log(Pr[X = x])). We say X is an (n,H∞(X))-source and the min-entropy rate is
H∞(X)/n.

It turns out that it is impossible to extract from a single general weak random source even for
min-entropy n − 1. There are two possible ways to bypass this barrier. The first one is to relax
the extractor to be a seeded extractor , which takes an additional independent short random seed
to extract from a weak random source. The second one is to construct deterministic extractors for
special classes of weak random sources.

Both kinds of extractors have been studied extensively. Recently, they have also been generalized
to stronger notions where the inputs to the extractor can be tampered with by an adversary.
Specifically, Dodis and Wichs [DW09] introduced the notion of seeded non-malleable extractor in
the context of privacy amplification against an active adversary. Informally, such an extractor
satisfies the stronger property that the output of the extractor is independent of the output of
the extractor on a tampered seed. Similarly, and more relevant to this paper, a seedless variant
of non-malleable extractors was introduced by Cheraghchi and Guruswami [CG17] as a way to
construct non-malleable codes. Apart from their original applications, both kinds of non-malleable
extractors are of independent interest. They are also related to each other and have applications
in constructions of extractors for independent sources [Li17].

We now define seedless non-malleable extractors.

Definition 1.9 (Seedless non-malleable extractors). Let F ⊂ Fn be a family of tampering functions
such that no function in F has any fixed points. A function nmExt : {0, 1}n → {0, 1}m is a seedless
(n,m, ε)-non-malleable extractor with respect to F and a class of sources X if for every distribution
X ∈ X and every tampering function f ∈ F , there exists a random variable that is Df,X on
{0, 1}m ∪ {same?} that is independent of X, such that

|nmExt(X), nmExt(f(X))−Um, copy(Df,X ,Um)| ≤ ε.

Further, we say that nmExt is ε′-invertible, if there exists a polynomial time sampling algorithm
A that takes as input y ∈ {0, 1}m, and outputs a sample from a distribution that is ε′-close to the
uniform distribution on the set nmExt−1(y).

In the above definition, when the class of sources X is the distribution Un, we simply say that
nmExt is a seedless (n,m, ε)-non-malleable extractor with respect to F .

Relevant prior work on seedless non-malleable extractors. The first construction of seed-
less non-malleable extractors was given by Chattopadhyay and Zuckerman [CZ14] with respect to
the class of 10-split-state tampering. Subsequently, a series of works starting with the work of Chat-
topadhyay, Goyal and Li [CGL16] gave explicit seedless non-malleable extractors for 2-split-state
tampering. The only known constructions with respect to a class of tampering functions different
from split state tampering is from the work of Chattopadhyay and Li [CL17], which gave explicit
seedless non-malleable extractors with respect to the tampering class Lin and small depth circuits,
and a subsequent follow-up work of Ball et al. [BCL+20] where they constructed non-malleable

7

extractors against tampering functions that are low-degree polynomials over large fields. We note
that constructing explicit seedless non-malleable extractors with respect to 2ISS was also posed as
an open problem in [CG17].

Our results. As our most general result, we give the first explicit constructions of seedless non-
malleable extractors with respect to the tampering class Lin ◦ (2, nβ)-ISS.

Theorem 1.10. There exists a constant β > 0 such that for all n > 0 there exists an efficiently
computable seedless (n, nΩ(1), 2−n

Ω(1)
)-non-malleable extractor with respect to Lin ◦ (2, nβ)-ISS, that

is 2−n
Ω(1)

-invertible.

This immediately yields the first explicit non-malleable extractors against the following classes
of tampering functions.

Corollary 2. For all n > 0 there exists an efficiently computable seedless (n, nΩ(1), 2−n
Ω(1)

)-non-
malleable extractor with respect to the following classes of tampering functions:

• 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS, and Lin ◦ 2SS.

We derive our results on non-malleable codes using the above explicit constructions of non-
malleable extractors based on a beautiful connection discovered by Cheraghchi and Gurswami
[CG17] (see Theorem 3.20 for more details).

1.4 Extractors for interleaved sources

Our techniques also yield improved explicit constructions of extractors for interleaved sources, which
generalize extractors for independent sources in the following way: the inputs to the extractor are
samples from a few independent sources mixed (interleaved) in an unknown (but fixed) way. Raz
and Yehudayoff [RY11] showed that such extractors have applications in communication complex-
ity and proving lower bounds for arithmetic circuits. In a subsequent work, Chattopadhyay and
Zuckerman [CZ16b] showed that such extractors can also be used to construct extractors for certain
samplable sources, extending a line of work initiated by Trevisan and Vadhan [TV00]. We now
define interleaved sources formally.

Definition 1.11 (Interleaved Sources). Let X1, . . . ,Xr be arbitrary independent sources on {0, 1}n
and let π : [rn]→ [rn] be any permutation. Then Z = (X1, . . . ,Xr)π is an r-interleaved source.

Relevant prior work on interleaved extractors. Raz and Yehudayoff [RY11] gave explicit
extractors for 2-interleaved sources when both the sources have min-entropy at least (1 − δ)n for
a tiny constant δ > 0. Their construction is based on techniques from additive combinatorics and
can output Ω(n) bits with exponentially small error. Subsequently, Chattopadhyay and Zuckerman
[CZ16b] constructed extractors for 2-interleaved sources where one source has entropy (1− γ)n for
a small constant γ > 0 and the other source has entropy Ω(log n). They achieve output length
O(log n) bits with error n−Ω(1).

A much better result (in terms of the min-entropy) is known if the extractor has access to an
interleaving of more sources. For a large enough constant C, Chattopadhyay and Li [CL16] gave an
explicit extractor for C-interleaved sources where each source has entropy k ≥ poly(log n). They
achieve output length kΩ(1) and error n−Ω(1).

8

Our results. Our main result is an explicit extractor for 2-interleaved sources where each source
has min-entropy at least 2n/3. The extractor outputs Ω(n) bits with error 2−n

Ω(1)
.

Theorem 1.12. For any constant δ > 0 and all integers n > 0, there exists an efficiently com-
putable function i`Ext : {0, 1}2n → {0, 1}m, m = Ω(n), such that for any two independent sources
X and Y, each on n bits with min-entropy at least (2/3+δ)n, and any permutation π : [2n]→ [2n],

|i`Ext((X,Y)π)−Um| ≤ 2−n
Ω(1)

.

2 Overview of constructions and techniques

Our results on non-malleable codes are derived from explicit constructions of invertible seedless
non-malleable extractors (see Theorem 3.20). In this section, we illustrate our main ideas used to
give explicit constructions of seedless non-malleable extractors with respect to the relevant classes
of tampering functions, and explicit extractors for interleaved sources.

We first focus on the main ideas involved in constructing non-malleable extractors against 2-
split-state adversaries when the partition are of equal length (we denote this by 2ISS). This serves
to illustrate the important ideas that go into all our explicit non-malleable extractor constructions.

2.1 Seedless non-malleable extractors with respect to interleaved 2-split-state
tampering

We discuss the construction of a non-malleable extractor with respect to 2ISS. In such settings, it
was shown in [CG17] that it is enough to construct non-malleable extractors assuming that at least
one of f and g does not have any fixed points, assuming that the sources X and Y have entropy
at least n−nδ. Thus, we construct a seedless non-malleable extractor nmExt : {0, 1}n×{0, 1}n →
{0, 1}m, m = nΩ(1) such that the following hold: let X and Y be independent (n, n− nδ)-sources,
for some small δ > 0. Let f : {0, 1}n → {0, 1}n, g : {0, 1}n → {0, 1}n be arbitrary functions such
that at least one of them has not fixed points, and π : [2n] → [2n] be an arbitrary permutation.
Then,

nmExt((X,Y)π), nmExt((f(X), g(Y))π)) ≈ε Um,nmExt((f(X), g(Y))π) (1)

where ε = 2−n
Ω(1)

.

Our construction is based on the framework of advice generators and correlation breakers set
up in the work [CGL16], and used in various follow-up works on non-malleable extractors and
codes. Before explaining this framework, we introduce some notation for ease of presentation. Let
Z = (X,Y)π. We use the notation that if W = h((X,Y)π) (for some function h), then W′ or
(W)′ stands for the corresponding random variable h((f(X), g(Y))π). Thus, Z′ = (f(X), g(Y))π.

On a very high level, the task of constructing a non-malleable extractor can be broken down
into the following two steps:

1. Generating advice: the task here is to construct a function advGen : {0, 1}2n → {0, 1}a,
a ≤ nδ, such that advGen(Z) 6= advGen(Z′) with high probability.

2. Breaking correlation: here we construct an object that can be seen as a relaxation of a non-
malleable extractor, in the sense that we supply the non-malleable extractor with a short

9

advice string. This object is called an advice correlation breaker. We require that for all
distinct strings s, s′ ∈ {0, 1}a,

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′).

Given the above components, the non-malleable extractor is defined as:

nmExt(Z) = ACB(Z, advGen(Z)).

The fact that the above satisfies (1) is not direct, but relies on further properties of the function
advGen. In particular, we require that with high probability over the fixings of the random variables
advGen(Z) and advGen(Z′), X and Y remain independent high min-entropy sources.

2.1.1 An explicit advice generator

A natural first idea to construct an advice generator can be as follows: Take a slice (prefix) of Z,
say Z1, and use this to sample some coordinates from an encoding (using a good error correcting
code) of Z. A similar high level strategy has for example been used in [CGL16], and other follow-up
works. The intuition behind such a strategy is that since we assume Z 6= Z′, encoding it will ensure
that they differ on a lot of coordinates. Thus, sampling a random set of coordinates will include
one such coordinate with high probability. However, in the present case, it is not clear why this
should work since it could be that Z1 contains all bits from say X, and the set of coordinates where
the encoding of Z and Z′ differ may be a function of X, which leads to unwanted correlations.

The next natural idea could be the following: First use the slice Z1 to sample a few coordinates
from Z. Let Z2 indicate Z projected onto the sampled coordinates. Now, it is not hard to prove
that Z2 contains roughly equal number of bits from both the sources X and Y. A strategy could
be to now use Z2 to sample coordinates from an encoding of Z. However, in this case, we run into
similar problems as before: there may be unwanted correlations between the randomness used for
sampling, and the random variable corresponding to the set of coordinates where the encoding of
Z and Z′ differ.

It turns out that the following subtler construction works:

Let n0 = nδ
′

for some small constant δ′ > 0. We take two slices from Z, say Z1 and Z2 of
lengths n1 = nc00 and n2 = 10n0, for some constant c0 > 1. Next, we use a good linear error
correcting code (let the encoder of this code be E) to encode Z and sample nγ coordinates (let S
denote this set) from this encoding using Z1 (the sampler is based on seeded extractors [Zuc97]).
Let W1 = E(Z)S. Next, using Z2, we sample a random set of indices T ⊂ [2n], and let Z3 = ZT.
We now use an extractor for interleaved sources, i.e., an extractor that takes as input an unknown
interleaving of two independent sources and outputs uniform bits (see Section 1.4). Let i`Ext be
this extractor (say from Theorem 1.12), and we apply it to Z3 to get R = i`Ext(Z3). Finally, let
W2 be the output of a linear seeded extractor1 LExt on Z with R as the seed. The output of the
advice generator is Z1,Z2,Z3,W1,W2.

Notation: Define x = (x, 0n)π and y = (0n, y)π. Similarly, define f(x) = (f(x), 0n)π and g(y) =
(0n, g(y))π. Thus, (x, y)π = x + y and (f(x), g(y))π = f(x) + g(y). Let Xi be the bits of X in Zi
for i = 1, 2, 3 and X4 be the remaining bits of X. Similarly define Yi’s, i = 1, 2, 3, 4.

1A linear seeded extractor is a seeded extractor where for any fixing of the seed, the output is a linear function of
the source.

10

We now proceed to argue the correctness of the above construction. Note that the correctness
of advGen is direct if Zi 6= Z′i for some i ∈ {1, 2, 3}. Thus, assume Zi = Z′i for i = 1, 2, 3. It follows
that S = S′,T = T′ and R = R′. Recall that (X,Y)π = X+Y and (f(X), g(Y)π) = f(X)+g(Y).
Since E is a linear code and LExt is a linear seeded extractor, the following hold:

W1 −W′
1 = (E(X + Y − f(X)− g(Y)))S,

W2 −W′
2 = LExt(X + Y − f(X)− g(Y),R).

Suppose that Z1 contains more bits from X than Y, i.e., |X1| ≥ |Y1| (where |α| denotes the
length of the string α).

Now the idea is the following: Either (i) we can fix X−f(X) and claim that X1 still has enough
min-entropy, or (ii) we can claim that X− f(X) has enough min-entropy conditioned on the fixing
of (X2,X3). Let us first discuss why this is enough. Suppose we are in the first case. Then, we can
fix X−f(X) and Y and argue that Z1 is a deterministic function of X and contains enough entropy.
Note that X + Y − f(X) − g(Y) is now fixed, and in fact it is fixed to a non-zero string (using
the assumption that at least one of f or g has no fixed points). Thus, E(X + Y − f(X) − g(Y))
is a string with a constant fraction of the coordinates set to 1 (since E is an encoder of a linear
error correcting code with constant relative distance), and it follows that with high probability
(E(X + Y− f(X)− g(Y)))S contains a non-zero entry (using the fact that S is sampled using Z1,
which has enough entropy). This finishes the proof in this case since it implies W1 6= W′

1 with
high probability.

Now suppose we are in case (ii). We use the fact that Z2 contains entropy to conclude that
the sampled bits Z3 contain almost equal number of bits from X and Y (with high probability
over Z2). Now we can fix Z2 without loosing too much entropy from Z3 (by making the size of Z3

to be significantly larger than Z2). Next, we observe that Z3 is an interleaved source, and hence
R is close to uniform. We now fix X3, and argue that R continues to be uniform. This follows
roughly from the fact that any extractor for an interleaving of 2-sources is strong (see Theorem
??). Thus, R now becomes a deterministic function of Y while at the same time, X − f(X) still
has enough min-entropy. Hence, LExt(X−f(X),R) is close to uniform even conditioned on R. We
can now fix R and LExt(Y−g(Y),R) without affecting the distribution LExt(X−f(X),R), since
LExt(Y − g(Y),R) is a deterministic function of Y while LExt(X − f(X),R) is a deterministic
function of X conditioned on the previous fixing of R. It follows that after these fixings, W2−W′

2

is close to a uniform string and hence W2−W′
2 6= 0 with probability 1− 2−n

Ω(1)
, which completes

the proof.

The fact that it is enough to consider case (i) and case (ii) relies on a careful convex combination
analysis based on the pre-image size of the function f(x)− x. In addition, for the above argument
to work we need to carefully adjust the sizes of Z1, Z2 and Z3. We skip the details here, and refer
the interested reader to later parts of the paper for more details.

2.1.2 An explicit advice correlation breaker

We now discuss the other crucial component in the construction, the advice correlation breaker
ACB : {0, 1}2n×{0, 1}a → {0, 1}m. Informally, the advice correlation breaker we construct takes 2
inputs, the interleaved source Z (that contains some min-entropy) and an advice string s ∈ {0, 1}a,
and outputs a distribution on {0, 1}m with the following guarantee. If s′ ∈ {0, 1}a is another advice
such that s 6= s′, then

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′) (2)

11

Our construction crucially relies on an explict advice correlation breaker constructed in [CL17]
that satisfies the following property: Let A be an (n, k)-source, and A′ = f(A) be a tampered
version of A. Further let B be a uniform random variable, and B′ = g(B). Finally, let C,C′

be arbitrary random variables such that {A,A′} is independent of {B,B′,C,C′}. Then [CL17]
constructed an advice correlation breaker ACB1 such that for advice strings s 6= s′,

ACB1(B,A + C, s),ACB1(B′,A′ + C′, s′) ≈ Um,ACB1(B′,A′ + C′, s′). (3)

The construction of ACB1 is based on the powerful technique of alternating extraction intro-
duced by Dziembowski and Pietrzak [DP07], and later used in almost all recent works on non-
malleable extractors. In particular, the construction in [CL17] relies on linear seeded extractors
and an elegant primitive known as the flip-flop alternating extraction, which was introduced by
Cohen [Coh16].

Recall that since Z = X + Y and Z′ = f(X) + g(Y), (2) can be stated as

ACB(X + Y, s),ACB(f(X) + g(Y), s′) ≈ε Um,ACB(f(X) + g(Y), s′)

Our main idea of reducing (2) to (3) is as follows: we again take a short slice from Z, say Z4

(larger than the size of {Z1,Z2,Z3}), and use a linear seeded extractor LExt to convert Z4 into
a somewhere random source (i.e, a matrix, where some rows are uniform). This can be done by
defining row i of the matrix to be Wi = LExt(Z4, i). The idea now is to simply apply ACB1 on
each row Wi, using the source Z, and the concatenation of s and the index of the row as the new
advice string, i.e., compute ACB1(Wi,Z, s, i). By appealing to a slightly more general version of
(3), where we allow multiple tampering, it follows that the output of ACB1 corresponding to some
uniform row is now independent of the output of ACB1 on all other rows (including tampered
rows). Thus, we can simply output ⊕i(ACB1(Wi,Z, s, i)).

This almost works, modulo a technical caveat–the somewhere random source constructed out of
Z4 is a tall matrix, with more rows than columns, but the parameters of ACB1 require us to work
with a fat matrix, with more columns that rows. This is roughly because, we want the uniform
row to have more entropy than the total size of all tampered random variables. To fix this, we use
another linear seeded extractor on the source Z with each row Wi as the seed to obtain another
somewhere random source of the right shape.

2.2 From non-malleable extractors to non-malleable codes

To obtain our non-malleable codes, the decoding function corresponds to computing the extractor,
which is already efficient. On the other hand, the encoding function corresponds to sampling from
the pre-image of any given output of the non-malleable extractor. Thus we need to find an efficient
way to do this, which is quite non-trivial. We use Section 6 to suitably modify our extractor to
support efficient sampling. Here we briefly sketch some high level ideas involved. Recall Z = (X,
Y)π. The first modification is that in all applications of seeded extractors in our construction, we
specifically use linear seeded extractors. This allows us to argue that the pre-image we are trying
to sample from is in fact a convex combination of distributions supported on subspaces. The next
crucial observation is the fact that we can use smaller disjoint slices of Z to carry out various steps
outlined in the construction. This is to ensure that the dimensions of the subspaces that we need
to sample from, do not depend on the values of the random variables that we fix. For the steps
where we use the entire source Z (in the construction of the advice correlation breaker), we replace
Z by a large enough slice of Z. However this is problematic if we choose the slice deterministically,

12

since in an arbitrary interleaving of two sources, a slice of length less than n might have bits only
from one source. We get around this by pseudorandomly sampling enough coordinates from Z (by
first taking a small slice of Z and using a sampler that works for weak sources [Zuc97]).

We now use an elegant trick introduced by Li [Li17] where the output of the non-malleable
extractor described above (with the modifications that we have specified) is now used as a seed
in a linear seeded extractor applied to an even larger pseudorandom slice of Z. The linear seeded
extractor that we use has the property that for any fixing of the seed, the rank of the linear map
corresponding to the extractor is the same, and furthermore one can efficiently sample from the
pre-image of any output of the extractor. The final modification needed is a careful choice of the
error correcting code used in the advice generator. For this we use a dual BCH code, which allows
us to argue that we can discard some output bits of the advice generator without affecting its
correctness (based on the dual distance of the code). This is crucial in order to argue that the rank
of the linear restriction imposed on the free variables of Z does not depend on the values of the
bits fixed so far. We refer the reader to Section 6 where we provide more intuition and complete
details of the modified non-malleable extractor and sampling procedure.

2.3 Extractors for interleaved sources

Here we give a sketch of our improved extractor for interleaved sources Z = (X,Y)π. We present
our construction and also explain the proof along the way, as this gives more intuition to the
different steps of the construction. The high level idea is the following: transform Z into a matrix
of random variables (called a somewhere random source) such that at least one of the random
variables is uniform, and the matrix is of the right shape, i.e, a fat matrix with more columns than
rows. Once we have such a matrix, the idea is to use the advice correlation breaker from [CL17]
mentioned above to break the correlation among the rows of the matrix. The final output will just
be a bit-wise XOR of the output of the advice correlation breaker on each row of the matrix. We
now give some more details on how to make this approach work.

Let Z = (X,Y)π. We start by taking a large enough slice Z1 from Z (say, of length (2/3+δ/2)n).
Let X have more bits in this slice than Y. Let X1 be the bits of X in Z1 and X2 be the remaining
bits of X. Similarly define Y1 and Y2. Notice that X1 has linear entropy and also that X2 has
linear entropy conditioned on X1. We fix Y1 and use a condenser (from work of Raz [Raz05]) to
condense Z1 into a matrix with a constant number of rows such that at least one row is close to
a distribution with entropy rate at least 0.9. Notice that this matrix is a deterministic function of
X. The next step is to use Z and each row of the matrix as a seed to a linear seeded extractor to
get longer rows. This requires some care for the choice of the linear seeded extractor since the seed
has some deficiency in entropy. After this step, we use the advice correlation breaker from [CL17]
on Z and each row of the somewhere random source, with the row index as the advice (similar to
what is done in the construction of non-malleable extractors sketched above). Finally we compute
the bit-wise XOR of the different outputs that we obtain. Let V denote this random variable.
To output Ω(n) bits, we use a linear seeded extractor on Z with V as the seed. The correctness
of various steps in the proof exploits the fact that Z can be written as the bit-wise sum of two
independent sources, and the fact that we use linear seeded extractors.

2.4 Organization

We use Section 3 to introduce some background and notation. We present our seedless non-malleable
extractors with respect to interleaved split-state tampering in Section 4. In Section 5, we show

13

how to construct non-malleable extractors with respect to affine tampering composed with split-
state tampering. We derive non-malleable codes from our non-malleable extractors in Section 6.
We construct non-malleable secret-sharing schemes in Section 7. We use Section 8 to present an
explicit construction of an extractor for interleaved sources. Finally we conclude with some open
problems in Section 9.

3 Background and notation

We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the projection of y to the
coordinates indexed by S.
We use bold capital letters for random variables and samples as the corresponding small letter,
e.g., X is a random variable, with x being a sample of X.
For strings x, y ∈ {0, 1}n, we use x+ y (or equivalently x− y) to denote the bit-wise xor of the two
strings.

3.1 Probability lemmas

The following result on min-entropy was proved by Maurer and Wolf [MW97].

Lemma 3.1. Let X,Y be random variables such that the random variable Y takes at most ` values.
Then

Pry∼Y[H∞(X|Y = y) ≥ H∞(X)− log `− log(1/ε)] > 1− ε.

The following lemma is useful in bounding statistical distance of distributions after condition-
ings.

Lemma 3.2. Let D1 and D2 be distributions on some universe Ω such that |X − Y | ≤ ε. Let E be
some event some that Pr[D1 ∈ E] ≥ δ. Then, |(D1|E)− (D2|E)| ≤ ε/δ.

3.2 Conditional min-entropy

Definition 3.3. The average conditional min-entropy of a source X given a random variable W
is defined as

H̃∞(X|W) = − log
(
Ew∼W

[
max
x

Pr[X = x|W = w]
])

= − log
(
E
[
2−H∞(X|W=w)

])
.

We recall some results on conditional min-entropy from the work of Dodis et al. [DORS08].

Lemma 3.4 ([DORS08]). For any ε > 0,

Prw∼W

[
H∞(X|W = w) ≥ H̃∞(X|W)− log(1/ε)

]
≥ 1− ε.

Lemma 3.5 ([DORS08]). If a random variable Y has support of size 2`, then H̃∞(X|Y) ≥
H∞(X)− `.

14

3.3 Seeded Extractors

Definition 3.6. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded extractor if for
any source X of min-entropy k, |Ext(X,Ud)−Um| ≤ ε. Ext is called a strong seeded extractor if
|(Ext(X,Ud),Ud)− (Um,Ud)| ≤ ε, where Um and Ud are independent.

Further, if for each s ∈ Ud, Ext(·, s) : {0, 1}n → {0, 1}m is a linear function, then Ext is called
a linear seeded extractor.

We require extractors that can extract uniform bits when the source only has sufficient condi-
tional min-entropy.

Definition 3.7. A (k, ε)-seeded average case seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m
for min-entropy k and error ε satisfies the following property: For any source X and any arbitrary
random variable Z with H̃∞(X|Z) ≥ k,

Ext(X,Ud),Z ≈ε Um,Z.

It was shown in [DORS08] that any seeded extractor is also an average case extractor.

Lemma 3.8 ([DORS08]). For any δ > 0, if Ext is a (k, ε)-seeded extractor, then it is also a
(k + log(1/δ), ε+ δ)-seeded average case extractor.

We record a folklore lemma, and include a proof for completeness.

Lemma 3.9. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) strong seeded. Then, for any source
(n, k)-source X and any independent (d, d− λ)-source Y,

|Ext(X,Y),Y −Um,Y| ≤ 2λε.

Proof. Suppose Y is uniform over a set A ⊂ {0, 1}d of size 2d−λ. We have,

|Ext(X,Y),Y −Um,Y| =
1

2d−λ
·
∑
y∈A
|Ext(X, y)−Um|

≤ 1

2d−λ
·
∑

y∈{0,1}d
|Ext(X, y)−Um|

=
1

2d−λ
· 2d · |Ext(X,Ud),Ud −Um,Ud|

= 2λ · ε,

where the last inequality follows from the fact that Ext is a (k, ε) strong seeded extractor.

3.4 Samplers and extractors

Zuckerman [Zuc97] showed that seeded extractors can be used as samplers given access to weak
sources. This connection is best presented by a graph theoretic representation of seeded extractors.
A seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m can be viewed as an unbalanced bipartite
graph GExt with 2n left vertices (each of degree 2d) and 2m right vertices. Let N (x) denote the set
of neighbors of x in GExt.

15

Theorem 3.10 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for min-
entropy k and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩R| − µRD| > εD}| < 2k,

where µR = |R|/2m.

Theorem 3.11 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for min-
entropy k and error ε. Let {0, 1}d = {r1, . . . , rD}, D = 2d. Define Samp(x) = {Ext(x, r1), . . . ,
Ext(x, rD)}. Let X be an (n, 2k)-source. Then for any set R ⊆ {0, 1}m,

Prx∼X[||Samp(x) ∩R| − µRD| > εD] < 2−k,

where µR = |R|/2m.

3.5 Explicit extractors from prior work

We recall an optimal construction of strong-seeded extractors.

Theorem 3.12 ([GUV09]). For any constant α > 0, and all integers n, k > 0 there exists a
polynomial time computable strong-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
O(log n+ log(1/ε)) and m = (1− α)k.

The following are explicit constructions of linear seeded extractors.

Theorem 3.13 ([Tre01, RRV02]). For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n, there exists
an explicit strong linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m for min-entropy k and
error ε, where d = O

(
log2(n/ε)/ log(k/m)

)
.

A drawback of the above construction is that the seeded length is ω(log n) for sub-linear min-
entropy. A construction of Li [Li16] achieves O(log n) seed length for even polylogarithmic min-
entropy.

Theorem 3.14 ([Li16]). There exists a constant c > 1 such that for every n, k ∈ N with c log8 n ≤
k ≤ n and any ε ≥ 1/n2, there exists a polynomial time computable linear seeded extractor LExt : {0,
1}n × {0, 1}d → {0, 1}m for min-entropy k and error ε, where d = O(log n) and m ≤

√
k.

A different construction achieves seed length O(log(n/ε)) for high entropy sources.

Theorem 3.15 ([CGL16, Li17]). For all δ > 0 there exist α, γ > 0 such that for all integers
n > 0, ε ≥ 2−γn, there exists an efficiently computable linear strong seeded extractor LExt :
{0, 1}n×{0, 1}d → {0, 1}αd, d = O(log(n/ε)) for min-entropy δn. Further, for any y ∈ {0, 1}d, the
linear map LExt(·, y) has rank αd.

The above theorem is stated in [Li17] for δ = 0.9, but it is straightforward to see that the proof
extends for any constant δ > 0.

We use a property of linear seeded extractors proved by Rao [Rao09].

Lemma 3.16 ([Rao09]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a linear seeded extractor for
min-entropy k with error ε < 1

2 . Let X be an affine (n, k)-source. Then

Pr
u∼Ud

[|Ext(X,u)− Um| > 0] ≤ 2ε.

16

We recall a two-source extractor construction for high entropy sources based on the inner
product function.

Theorem 3.17 ([CG88]). For all m, r > 0, with q = 2m, n = rm, let X,Y be independent sources
on Frq with min-entropy k1, k2 respectively. Let IP be the inner product function over the field Fq.
Then, we have:

|IP(X,Y),X−Um,X| ≤ ε, |IP(X,Y),Y −Um,Y| ≤ ε

where ε = 2−(k1+k2−n−m)/2.

Rao [Rao07] (based on an argument by Boaz Barak) proved that every two-source extractor
is strong. It is easy to observe that the proof generalizes to the case of interleaved two-source
extractors. We record this below in a slightly more general setting of unequal length sources.

Theorem 3.18 ([Rao07]). Suppose i`Ext : {0, 1}n1+n2 → {0, 1}m be an interleaved source extractor
that satisfies the following: if X is a (n1, k1)-source, Y is an independent (n2, k2)-source, and
π : [n1 + n2]→ [n1 + n2] is an arbitrary permutation, then

|i`Ext((X,Y)π)−Um| ≤ ε.

Then, in fact i`Ext satisfies the following stronger properties:

• Let X be a (n1, k)-source, Y be an independent (n2, k2)-source, and π : [n1 + n2]→ [n1 + n2]
be an arbitrary permutation. Then,

|i`Ext((X,Y)π),X−Um,X| ≤ 2m · (2k−k1 + ε).

• Let X be a (n1, k1)-source, Y be an independent (n2, k)-source, and π : [n1 + n2]→ [n1 + n2]
be an arbitrary permutation. Then,

|2i`Ext(X,Y),Y −Um,Y| ≤ 2m · (2k−k2 + ε).

3.6 Advice correlation breakers

We use a primitive called ‘correlation breaker’ in our construction. Consider a situation where
we have arbitrarily correlated random variables Y1, . . . ,Yr, where each Yi is on ` bits. Further
suppose Y1 is a ‘good’ random variable (typically, we assume Y1 is uniform or has almost full min-
entropy). A correlation breaker CB is an explicit function that takes some additional resource X,
where X is typically additional randomness (an (n, k)-source) that is independent of {Y1, . . . ,Yr}.
Thus using X, the task is to break the correlation between Y1 and the random variables Y2, . . . ,
Yr, i.e., CB(Y1,X) is independent of {CB(Y2,X), . . . ,CB(Yr,X)}. A weaker notion is that of an
advice correlation breaker that takes in some advice for each of the Yi’s as an additional resource
in breaking the correlations. This primitive was implicitly constructed in [CGL16] and used in
explicit constructions of non-malleable extractors, and has subsequently found many applications
in explicit constructions of extractors for independent sources and non-malleable extractors.

We recall an explicit advice correlation breaker constructed in [CL16]. This correlation breaker
works even with the weaker guarantee that the ‘helper source’ X is now allowed to be correlated
to the sources random variables Y1, . . . ,Yr in a structured way. Concretely, we assume the source
to be of the form X + Z, where X is assumed to be an (n, k)-source that is uncorrelated with
Y1, . . . ,Yr,Z. We now state the result more precisely.

17

Theorem 3.19 ([CL16]). For all integers n, n1, n2, k, k1, k2, t, d, h, λ and any ε > 0, such that
d = O(log2(n/ε)), k1 ≥ 2d + 8tdh + log(1/ε), n1 ≥ 2d + 10tdh + (4ht + 1)n2

2 + log(1/ε), and
n2 ≥ 2d+ 3td+ log(1/ε), let

• X be an (n, k1)-source, X′ a r.v on n bits, Y1 be an (n1, n1 − λ)-source, Z,Z′ are r.v’s on n
bits, and Y2, . . . ,Yt be r.v’s on n1 bits each, such that {X,X′} is independent of {Z,Z′,Y1,
. . . ,Yt},

• id1, . . . , idt be bit-strings of length h such that for each i ∈ {2, t}, id1 6= idi.

Then there exists an efficient algorithm ACB : {0, 1}n1×{0, 1}n×{0, 1}h → {0, 1}n2 which satisfies
the following: let

• Y1
h = ACB(Y1,X + Z, id1),

• Yi
h = ACB(Yi,X′ + Z′, idi), i ∈ [2, t]

Then,
Y1
h,Y

2
h, . . . ,Y

t
h,X,X

′ ≈O((h+2λ)ε) Un2 ,Y
2
h, . . . ,Y

t
h,X,X

′.

3.7 A connection between non-malleable codes and extractors

The following theorem proved by Cheraghchi and Guruswami [CG17] that connects non-malleable
extractors and codes.

Theorem 3.20 ([CG17]). Let nmExt : {0, 1}n → {0, 1}m be an efficient seedless (n,m, ε)-non-
malleable extractor with respect to a class of tampering functions F acting on {0, 1}n. Further
suppose nmExt is ε′-invertible. Then there exists an efficient construction of a non-malleable code
with respect to the tampering family F with block length = n, relative rate m

n and error 2mε+ ε′.

4 NM extractors for interleaved split-state adversaries

The main result of this section is an explicit non-malleable extractor for interleaved 2-split-state
tampering families with equal length partitions, which we denote by 2ISS ⊂ F2n.

Theorem 4.1. For all integers n > 0 there exists an explicit function nmExt : {0, 1}2n → {0, 1}m,
m = nΩ(1), such that the following holds: for arbitrary tampering functions f, g ∈ Fn, any permu-
tation π : [2n] → [2n] and independent uniform sources X and Y each on n bits, there exists a
distribution Df,g,π on {0, 1}m ∪ {same?}, such that

|nmExt((X,Y)π), nmExt((f(X), g(Y))π))−Um, copy(Df,g,π,Um)| ≤ 2−n
Ω(1)

.

In such settings, it was shown in [CG17] that it is enough to construct non-malleable extractors
assuming that at least one of f and g does not have any fixed points, assuming that the sources X
and Y have entropy at least n − nδ. We thus prove the following theorem, from which Theorem
4.1 is direct.

Theorem 4.2. There exists a δ > 0 such that for all integers n, k > 0 with n ≥ k ≥ n− nδ, there
exists an explicit function nmExt : {0, 1}2n → {0, 1}m, m = nΩ(1), such that the following holds:

18

for arbitrary tampering functions f, g ∈ Fn, any permutation π : [2n] → [2n] and independent
(n, k)-sources X and Y, the following holds:

|nmExt((X,Y)π), nmExt((f(X), g(Y))π))−Um,nmExt((f(X), g(Y))π)| ≤ 2−n
Ω(1)

.

We will prove a slightly more general result which is a direct by-product of our proof technique
for proving the above theorem, and lets us re-use this non-malleable extractor for the class of linear
adversaries composed with split-state adversaries. We prove the following theorem.

Theorem 4.3. There exists a δ > 0 such that for all integers n, k > 0 with n ≥ k ≥ n− nδ, there
exists an explicit function nmExt : {0, 1}2n → {0, 1}m, m = nΩ(1), such that the following holds:
Let X and Y be independent (n, n − nδ)-sources, π : [2n] → [2n] any arbitrary permutation and
arbitrary tampering functions f1, f2, g1, g2 ∈ Fn that satisfy the following condition:

• ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) 6= x or

• ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) 6= y.

Then,

|nmExt((X,Y)π),nmExt(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)−

Um, nmExt(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)| ≤ 2−n
Ω(1)

.

Clearly, Theorem 4.2 follows directly from the above theorem by setting g1(y) = 0 for all y and
f2(x) = 0 for all x. We use the rest of the section to prove Theorem 4.3.

Our high level ideas in constructing the non-malleable extractor is via the framework set up
in [CGL16] of using advice generators and correlation breakers. We give intuition behind our con-
struction in Section 2. We use Section 4.1 to construct an advice generator and Section 4.2 to
construct an advice correlation breaker. Finally, we present the non-malleable extractor construc-
tion in Section 4.3.

Notation:

• If W = h((X,Y)π) (for some function h), then we use W′ or (W)′ to denote the random
variable h(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π).

• Define X = (X, 0n)π, Y = (0n,Y)π, f1(X) = (f1(X), 0n)π, f2(X) = (0n, f2(X))π, g1(Y) =
(g1(Y), 0n)π and g2(Y) = (0n, g2(Y))π.

• Finally, define Z = X + Y and Z′ = f1(X) + g1(Y) + f2(X) + g2(Y).

4.1 An advice generator

Lemma 4.4. There exists an efficiently computable function advGen : {0, 1}n×{0, 1}n → {0, 1}n4,

n4 = nδ, such that with probability at least 1 − 2−n
Ω(1)

over the fixing of the random variables
advGen((X,Y)π), advGen(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π), the following hold:

• {advGen((X,Y)π) 6= advGen(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)},

19

• X and Y are independent,

• H∞(X) ≥ k − 2nδ, H∞(Y) ≥ k − 2nδ.

We prove the above lemma in the rest of this subsection. We claim that the function advGen
computed by Algorithm 1 satisfies the above lemma. We first set up some parameters and ingre-
dients.

• Let C be a large enough constant and δ′ = δ/C.

• Let n0 = nδ
′
, n1 = nc00 , n2 = 10n0, for some constant c0 that we set below.

• Let E : {0, 1}2n → {0, 1}n3 be the encoding function of a linear error correcting code C with
constant rate α and constant distance β.

• Let Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}log(n3) be a (n1/20, β/10)-seeded extractor instantiated
using Theorem 3.12. Thus d1 = c1 log n1, for some constant c1. Let D1 = 2d1 = nc11 .

• Let Samp1 : {0, 1}n1 → [n3]D1 be the sampler obtained from Theorem 3.11 using Ext1.

• Let Ext2 : {0, 1}n2 × {0, 1}d2 → {0, 1}log(2n) be a (n2/20, 1/n0)-seeded extractor instantiated
using Theorem 3.12. Thus d2 = c2 log n2, for some constant c2. Let D2 = 2d2 . Thus
D2 = 2d2 = nc22 .

• Let Samp2 : {0, 1}n2 → [2n]D2 be the sampler obtained from Theorem 3.11 using Ext2.

• Set c0 = 2c2.

• Let i`Ext : {0, 1}D2 → {0, 1}n0 be the extractor from Theorem 8.1.

• Let LExt : {0, 1}2n × {0, 1}n0 → {0, 1}n0 be a linear seeded extractor instantiated from
Theorem 3.17 set to extract from min-entropy n1/100 and error 2−Ω(

√
n0) .

Algorithm 1: advGen(z)

Input: Bit-string z = (x, y)π of length 2n, where x and y are each n bit-strings and
π : [2n]→ [2n] is a permutation.
Output: Bit string v of length n4.

1 Let z1 = Slice(z, n1), z2 = Slice(z, n2).
2 Let S = Samp1(z1).
3 Let T = Samp2(z2) and z3 = zT .
4 Let r = i`Ext(z3).
5 Let w1 = (E(z))S .
6 Let w2 = LExt(z, r).
7 Output v = z1, z2, z3, w1, w2.

Lemma 4.5. With probability at least 1− 2−n
Ω(1)

, V 6= V′.

20

Proof. We prove the lemma assuming f1(X) + g1(Y) 6= X. The proof in the other case (i.e.,
f2(X) + g2(Y) 6= Y) is similar and we skip it.

First observe that the lemma is direct if Z1 6= Z′1 or Z2 6= Z′2 or Z3 6= Z′3. Thus, we can assume
Zi = Z′i for i = 1, 2, 3. It is easy to see that S = S′,T = T′.

Now observe that

Z− Z′ = X + Y − f1(X)− g1(Y)− f2(X)− g2(Y).

Note that Z− Z′ 6= 0 which follows from our assumption that f1(X) + g1(Y) 6= X.

Now define the function h1 : {0, 1}2n → {0, 1}2n as h1(z) = z−f1(z)−f2(z) and h2 : {0, 1}2n →
{0, 1}2n as h2(z) = z − g1(z)− g2(z).

Thus,

Z− Z′ = h1(X) + h2(Y).

Let Xi be the bits of X in Zi for i = 1, 2, 3 and X4 be the remaining bit of X. Similarly define
Yi’s, i = 1, 2, 3, 4. Without loss of generality suppose that |X1| ≥ |Y1|, (where |α| denotes the
length of the string α).

Let Γ ⊂ {0, 1}2n denote the support of the source X. We partition Γ into two sets Γa and Γb
according to the pre-image size of the function h1 in the following way. For any z ∈ {0, 1}2n, let
h−1

1 (z) denote the set {y ∈ {0, 1}2n : h1(y) = z}.
Let np = n1/50. Define

Γa = {z ∈ Γ : |h−1
1 (h1(z)) ∩ Γ| ≥ 2n−np}, Γb = Γ \ Γ1.

Let pa = Pr[X ∈ Γa] and pb = Pr[X ∈ Γb]. Let Xa be the source supported on Γa with the
probability law Pr[Xa = z] = 1

pa
· Pr[X = z]. Also define Xb supported on Γb with the probability

law Pr[Xa = z] = 1
pb
· Pr[X = z].

Clearly X is a convex combination of the distributions Xa and Xb, with weights pa and pb
respectively. If any of pa or pb is less that 2−n0 , we ignore the corresponding source and add it to
the error. Thus suppose both pa and pb are at least 2−n0 . This implies that both Xa and Xb have
min-entropy at least n− 2n0. We record the following two bounds that are direct from the above
definitions.

• For any fixing of h1(Xa) = xa, Xa has min-entropy at least n− np.

• The distribution h1(Xb) has min-entropy at least np − 2n0.

We introduce some notation. For any random variable ν = η(X,Y) (where η is an arbitrary
deterministic function), we add an extra a or b to the subscript and use νa to denote the random
variable η(Xa,Y) and νb to denote the random variables η(Xb,Y) respectively. For example,
Z′1,a = f1(Xa) + g1(Y) + f2(Xa) + g2(Y). Further we use Xa to denote the distribution on n bits

such that Xa = (Xa, 0
n)π. We similarly define the distribution Xb.

We prove the following two statements:

1. W1,a −W′
1,a 6= 0 with probability 1− 2−n

Ω(1)
.

2. W2,b −W′
2,b 6= 0 with probability 1− 2−n

Ω(1)
.

21

It is direct that the lemma follows from the above two inequalities.

We begin with the proof of (1). Since E is a linear code, we have

W1,a −W′
1,a = (E(Za − Z′a))Sa .

= (E(h1(Xa) + h2(Y)))Sa .

Now fix the random h1(Xa), and it follows that Xa has min-entropy at least n−np. Recall that we
assumed |X1| ≥ |Y1|. Thus, X1,a has min-entropy at least n1/2−np−n0 > n1/10 with probability
at least 1 − 2−n0 . Further fix Y, and note that this does not affect the distribution of X1,a. This
fixes E(Za − Z′a). Further since Za 6= Z′a (follows from our assumption that Z 6= Z′), the string
E(Za−Z′a) has 1’s in at least β fraction of its coordinates. Recalling that Sa = Samp1(Z1,a), it now

follows from Theorem 3.11 that with probability at least 1− 2−n
Ω(1)

, (E(Za − Z′a))S is a non-zero
string (and hence W1,a −W′

1,a 6= 0). This completes the proof of this case.

We now proceed to prove (2). Using the fact that LExt is a linear seeded extractor, it follows
that

W2,b −W′
2,b = LExt(Zb − Z′b,Rb)

= LExt(h1(Xb),Rb) + LExt(h2(Yb),Rb).

Without loss of generality, suppose X has more bits in Z2 (the argument is identical in the other
case). Since X2,b has min-entropy at least n − 2n0, it follows that X2,b has min-entropy at least
n2
2 − 3n0 > n2

10 with probability at least 1 − 2−n0 . Fix the bits of Y in Z2, and thus Z2,b is
a deterministic function of X2,b. Recall that Tb = Samp2(Z2). We now claim that (with high
probability), at least half of the coordinates in Tb belong to X (since exactly n of the coordinates
in Z belong to X, and the remaining coordinates belong to Y, and we are pseudorandomly sampling
coordinates in the set [2n]). This is straightforward by appealing to the fact that Samp2 is a good

sampler. By Theorem 3.11, it follows that with probability 1− 2−n
Ω(1)

over the fixing of X2,b,

|Tb| · (1/2− 1/n0)) ≤ |Tb ∩ π([n])| ≤ |Tb| · (1/2 + 1/n0).

Recall |Tb| = D2. We fix X2,b such that (1/2 − 1/n0)D2 ≤ |Tb ∩ π([n])| ≤ (1/2 + 1/n0)D2. Thus,
Z3 contains at least (1/2−o(1))D2 bits from both Xb and Y. It follows that both X3,b and Y both
have min-entropy at least (1/2− o(1))D2− 2n0−n2 = (1/2− o(1))D2 (even with the conditionings

so far), and hence Rb is 2−n
Ω(1)

-close to uniform. We argue this hold even conditioned on X3,b.
This follows from Theorem ?? which shows that every extractor for 2-interleaved sources is strong.
We fix X3,b, and thus Rb is now a deterministic function of Y.

Next, we note that h1(Xb) has min-entropy at least (n − 2n0) − (n − np) − n2 − D2 − n0 =

np − 3n0 −D2 − n2 > np/2 (with probability 1− 2−n
Ω(1)

). Thus, LExt(h1(Xb),Rb) is 2−n
Ω(1)

-close
to uniform. We fix Rb and LExt(h1(Xb),Rb) continues to be close to uniform using the fact that
LExt is a strong-seeded extractor. Further, LExt(h1(Xb),Rb) is now a deterministic function of
Xb and we can fix LExt(h2(Yb),Rb) which is a deterministic function of Y. It thus follows that

W2,b −W′
2,b 6= 0 with probability 1 − 2−n

Ω(1)
using the fact that LExt(h1(Xb),Rb) is close to

uniform. This completes the proof of (2). The fact that V and V′ can be fixed such that X and

Y remain independent with min-entropy at least k − 2nδ (with probability 1− 2−n
Ω(1)

) is easy to
verify from the construction. This completes the proof of Lemma 4.5.

22

4.2 An Advice Correlation Breaker

We recall the setup of Theorem 4.3. X and Y are independent (n, k)-sources, k ≥ n − nδ, π :
[2n]→ [2n] is an arbitrary permutation and f1, f2, g1, g2 ∈ Fn satisfy the following conditions:

• ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) 6= x or

• ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) 6= y.

Further, we defined the following: X = (X, 0n)π, Y = (0n ◦Y)π, f1(X) = (f1(X), 0n)π, f2(X) =
(0n, f2(X))π, g1(Y) = (g1(Y), 0n)π and g2(Y) = (0n, g2(Y))π. It follows that Z = X + Y and
Z′ = f1(X) + g1(Y) + f2(X) + g2(Y). Thus, for some functions f, g ∈ F2n, Z′ = f(X) + g(Y). Let
X′ = f(X) and Y′ = g(Y).

The following is the main result of this section. Assume that we have some random variables
such that X and Y continue to be independent, and H∞(X), H∞(Y) ≥ k − 2nδ.

Lemma 4.6. There exists an efficiently computable function ACB : {0, 1}2n × {0, 1}n1 → {0, 1}m,
n1 = nδ and m = nΩ(1), such that

ACB(X + Y, w),ACB(f(X) + g(Y), w′) ≈ε Um,ACB(f(X) + g(Y), w′),

for any fixed strings w,w′ ∈ {0, 1}n1 with w 6= w′.

We use the rest of the section to prove the above lemma. In particular, we prove that the
function ACB computed by Algorithm 2 satisfies the conclusion of Lemma 4.6.

We start by setting up some ingredients and parameters.

• Let δ > 0 be a small enough constant.

• Let n2 = nδ1 , where δ1 = 2δ.

• Let LExt1 : {0, 1}n2 ×{0, 1}d → {0, 1}d1 , d1 =
√
n2, be a linear-seeded extractor instantiated

from Theorem 3.13 set to extract from entropy k1 = n2/10 with error ε1 = 1/10. Thus
d = C1 log n2, for some constant C1. Let D = 2d = nδ2 , δ2 = 2C1δ.

• Set δ′ = 20C1δ.

• Let LExt2 : {0, 1}2n×{0, 1}d1 → {0, 1}n4 , n4 = n8δ3 be a linear-seeded extractor instantiated

from Theorem 3.13 set to extract from entropy k2 = 0.9k with error ε2 = 2−Ω(
√
d1) = 2−n

Ω(1)
,

such that the seed length of the extractor LExt2 (by Theorem 3.13) is d1.

• Let ACB′ : {0, 1}n1,acb′ × {0, 1}nacb′ × {0, 1}hacb′ → {0, 1}n2,acb′ , be the advice correlation
breaker from Theorem 3.19 set with the following parameters: nacb′ = 2n, n1,acb′ = n4,

n2,acb′ = m = O(n2δ2), tacb′ = 2D,hacb′ = n1 + d, εacb′ = 2−n
δ
, dacb′ = O(log2(n/εacb′)),

λacb′ = 0. It can be checked that by our choice of parameters, the conditions required for
Theorem 3.19 indeed hold for k1,acb′ ≥ n2δ2 .

Let X1 be the bits of X in Z1 and X2 be the remaining bit of X. Define Y1 and Y2 similarly.
Without loss of generality suppose that |X1| ≥ |Y1|. Let X1 = Slice(X, n2) and Y1 = Slice(Y,

n2). Define X
′
1 = Slice(f(X), n2) and Y1

′
= Slice(g(Y), n2). It follows that Z1 = X1 + Y1 and

Z′1 = X
′
1 + Y

′
1.

23

Algorithm 2: ACB(z, w)

Input: Bit-strings z = (x, y)π of length 2n and bit string w of length n1, where x and y
are each n bit-strings and π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let z1 = Slice(z, n2).
2 Let v be a D × n3 matrix, with its i’th row vi = LExt1(z1, i).
3 Let r be a D × n4 matrix, with its i’th row ri = LExt2(z, vi).
4 Let s be a D ×m matrix, with its i’th row si = ACB′(ri, z, w, i).
5 Output ⊕Di=1si.

Claim 4.7. Conditioned on the random variables Y1,Y
′
1, {LExt2(X,LExt1(X1 + Y1, i))}Di=1,

{LExt2(X
′
,LExt1(X

′
1 + Y

′
1, i))}i∈[D], X1 and X

′
1, the following hold:

• the matrix R is 2−n
Ω(1)

-close to a somewhere random source,

• R and R′ are deterministic functions of Y,

• H∞(X) ≥ n− nδ′, H∞(Y) ≥ n− nδ′.

Proof. By construction, we have that for any j ∈ [D],

Rj = LExt2(Z,LExt1(Z1, j))

= LExt2(X + Y,LExt1(X1 + Y1, j))

= LExt2(X,LExt1(X1 + Y1, j)) + LExt2(Y,LExt1(X1 + Y1, j))

Similarly,

R′j = LExt2(X
′
,LExt1(X

′
1 + Y

′
1, j)) + LExt2(Y

′
,LExt1(X

′
1 + Y

′
1, j)).

Fix the random variables Y1,Y
′
1. Note that after these fixings, Y has min-entropy at least k −

2n1−n2 > 0.9k. Now, since LExt2 is a strong seeded extractor for entropy 0.9k, it follows that there
exists a set T ⊂ {0, 1}d1 , |T | ≥ (1−√ε2)2d1 , such that for any j ∈ [T], |LExt2(Y, j)−Un4 | ≤

√
ε2.

Now viewing LExt1 as a sampler (see Section 3.4) using the weak source X1,y1 = X1 + y1, it
follows by Theorem 3.11 that

Pr[|{LExt1(X1,y1 , i) : i ∈ {0, 1}d} ∩ T | > (1−
√
ε2 − ε1)D] ≥ 1− 20.2n2 = 1− 2−n

Ω(1)
.

We fix X1, and it follows that with probability at least 1 − 2−n
Ω(1)

, {LExt1(X1,y1 , i) : i ∈
{0, 1}d}∩T 6= ∅, and thus there exists a j ∈ [D] such that LExt2(Y,LExt1(X1 + Y1, j)) is 2−n

Ω(1)
-

close to Un2 and is a deterministic function of Y.

We now fix the random variables X
′
1, {LExt2(X,LExt1(X1+Y1, i))}Di=1, {LExt2(X

′
,LExt1(X1

′
+

Y1
′
, i))}Di=1, and note that LExt2(Y,LExt1(X1 + Y1, j)) continues to be 2−n

Ω(1)
-close to Un2 . It

follows that Rj is 2−n
Ω(1)

-close to Un2 . Further, for any i ∈ [D], the random variables Ri and R′i
are deterministic functions of Y. Finally, note that X and Y remain independent after these condi-
tionings, and H∞(X) ≥ n−3n1−2n2−2Dn4 ≥ n−n10δ2 and H∞(Y) ≥ n−3n1−n2 > n−nδ2 .

Lemma 4.6 is now direct from the next claim.

24

Claim 4.8. There exists j ∈ [D] such that

Sj , {Si}i∈[D]\j ≈2−n
Ω(1) Um, {Si}i∈[D]\j .

Proof. Fix the random variables: W,W′,Y1,Y
′
1, {LExt2(X,LExt1(X1 + Y1, i))}Di=1, {LExt2(X

′
,

LExt1(X
′
1 + Y

′
1, i))}i∈[D], X1 and X

′
1. By Lemma 4.4, we have that with probability at least

1 − 2−n
Ω(1)

, W 6= W′. Further, by Claim 4.7 we have that R and R′ are deterministic functions
of Y, and with probability at least 1 − 2−n

Ω(1)
, there exists j ∈ [D] such that Rj is 2−n

Ω(1)
-close

to uniform, and H∞(X) ≥ 1
2nacb − n

δ′ > n2δ2 . Recall that Z = X + Y and Z′ = X
′
+ Y

′
. It now

follows by Theorem 3.19 that

ACB′(Rj ,Z,W, j), {ACB′(Ri,X + Y,W, i)}i∈[D]\j , {ACB′(R′i,X
′
+ Y

′
,W′, i)}i∈[D] ≈2−n

Ω(1)

Um, {ACB′(Ri,X + Y,W, i)}i∈[D]\j , {ACB′(R′i,X
′
+ Y

′
,W′, i)}i∈[D]

This completes the proof of the claim.

4.3 The non-malleable extractor

We are now ready to present the construction of i`NM that satisfies the requirements of Theorem 4.3.

• Let δ > 0 be a small enough constant, n1 = nδ and m = nΩ(1).

• Let advGen : {0, 1}2n → {0, 1}n1 , n1 = nδ, be the advice generator from Lemma 4.4.

• Let ACB : {0, 1}2n × {0, 1}n1 → {0, 1}m be the advice correlation breaker from Lemma 4.6.

Algorithm 3: i`NM(z)

Input: Bit-string z = (x, y)π of length 2n, where x and y are each n bit-strings, and
π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let w = advGen(z).
2 Output ACB(z, w)

We prove that the function i`NM computed by Algorithm 3 satisfies the conclusion of Theorem 4.3
as follows: Fix the random variables W,W′. By Lemma 4.4, it follows that X remains independent
of Y, and with probability at least 1 − 2−n

Ω(1)
, H∞(X) ≥ k − 2n1 and H∞(Y) ≥ k − 2n1 (recall

k ≥ n− nδ). Theorem 4.3 is now direct using Lemma 4.6.

4.4 Unequal length interleaved-split-state adversaries

Our techniques above directly generalize to the case of interleaved split-state adversaries under
unequal partitions. In particular, we can handle the situation when one of the parts is polynomially
smaller than the other part. We have the following theorem.

Theorem 4.9. There exists a constant β > 0 such that for all integers n > 0 there exists an
explicit function nmExt : {0, 1}n → {0, 1}m, m = nΩ(1), such that the following holds: let n1 = nβ

and n2 = n− n1.

25

Then, for arbitrary tampering functions f ∈ Fn1, g ∈ Fn2, any permutation π : [n] → [n], and
independent uniform sources X and Y on n1 and n2 bits respectively, there exists a distribution
Df,g,π on {0, 1}m ∪ {same?}, such that

|nmExt((X,Y)π), nmExt((f(X), g(Y))π))−Um, copy(Df,g,π,Um)| ≤ 2−n
Ω(1)

.

We skip the proof of the above theorem since it is straightforward to check that the proof of
Theorem 4.1 generalizes to the above setting.

5 Non-malleable extractors for linear composed with split-state
adversaries

The main result of this section is an explicit non-malleable extractor against the tampering family
Lin ◦ 2ISS ⊂ F2n. Our main idea is to show that Theorem 5.1 follows directly from Theorem 4.3.
The proof relies on a careful convex combination argument.

Theorem 5.1. For all integers n > 0 there exists an explicit function nmExt : {0, 1}2n → {0, 1}m,
m = nΩ(1), such that the following holds: For any linear function h : {0, 1}2n → {0, 1}2n, arbitrary
tampering functions f, g ∈ Fn, any permutation π : [2n] → [2n] and independent uniform sources
X and Y each on n bits, there exists a distribution Dh,f,g,π on {0, 1}m ∪ {same?}, such that

|nmExt((X,Y)π), nmExt(h((f(X), g(Y))π))−Um, copy(Dh,f,g,π,Um)| ≤ 2−n
Ω(1)

.

Proof. Define f(x) = h((f(x), 0n)π) and g(y) = h((0n, y)π). Thus, h((f(x), g(y))π) = f(x) + g(y).
Define functions h1 : {0, 1}2n → {0, 1}n and h2 : {0, 1}2n → {0, 1}n such that h((f(x), g(y))π) =
(h1(x, y), h2(x, y))π. Since h(f(x), g(y)) = f(x) + g(y), it follows that there exists functions f1, g1,
f2, g2 ∈ Fn such that for all x, y ∈ {0, 1}n, the following hold:

• h1(x, y) = f1(x) + g1(y), and

• h2(x, y) = f2(x) + g2(y).

Thus, h((f(x), g(y))π) = ((f1(x) + g1(y)), (f2(x) + g2(y)))π.

Now, the idea is to show that ((X,Y)π, ((f1(X) + g1(Y)), (f2(X) + g2(Y)))π) is 2−n
Ω(1)

-close
to a convex combination of ((X,Y)π, (X,Y)π) and distributions of the form ((X′,Y′)π, ((η1(X) +
ν1(Y)), (η2(X) + ν2(Y)))π), where X′ and Y′ are independent (n, n− nδ)-sources and η1, η2, ν1, ν2

are deterministic functions in Fn satisfying the conditions that:

• ∀x ∈ support(X′) and y ∈ support(Y′), η1(x) + ν1(y) 6= x or

• ∀x ∈ support(X′) and y ∈ support(Y′), η2(x) + ν2(y) 6= y.

Theorem 5.1 is then direct from Theorem 4.3.

Let n0 = nδ. For any y ∈ {0, 1}n and any function η : {0, 1}n → {0, 1}n, let η−1(y) denote the
set {z ∈ {0, 1}n : η(z) = y}. We partition {0, 1}n into the following two sets:

Γ1 = {y ∈ {0, 1}n : |g−1
1 (g1(y))| ≥ 2n−n0}, Γ2 = {0, 1}n \ Γ1.

26

Let Y1 be uniform on Γ1 and Y2 be uniform on Γ2. Clearly, Y is a convex combination of Y1 and
Y2 with weights wi = |Γi|/2n, i = 1, 2. If wi ≤ 2−n0/2, we ignore the corresponding source and add
an error of 2−n0/2 to the extractor. Thus, suppose wi ≥ 2−n0/2 for i = 1, 2. Thus, Y1 and Y2 each
have min-entropy at least n− n0/2.

We claim that g1(Y2) has min-entropy at least n0/2. This can be seen in the following way.
For any y ∈ Γ2, |g−1

1 (g1(y))| ≤ 2n−n0 , and hence it follows g1(Y2) has min-entropy at least (n −
n0/2) − (n − n0) = n0/2. Thus, clearly for any x ∈ {0, 1}n, x + g1(Y2) 6= x with probability at

least 1 − 2−n0/2. We add a term of 2−n
Ω(1)

to the error and assume that X + g1(Y2) 6= X. Thus,

(X,Y2)π, ((f1(X) + g1(Y2)), (f1(X) + g1(Y2)))π is indeed 2−n
Ω(1)

close to a convex combination of
distributions of the required form.

Next, we claim that for any fixing of g1(Y1), the random variable Y1 has min-entropy at least
n− n0. This is direct from the fact that for any y ∈ Γ2, |g−1

1 (g1(y))| > 2n−n0 . We fix g1(Y1) = g,
and let f1,g(x) = f1(x) + g. Thus, f1,g(X) = f1(X) + g1(Y1). We now partition {0, 1}n according
to the fixed points of f1,g. Let

∆1 = {x : f ′1(x) = x}, ∆2 = {0, 1}n \∆1.

Let X1 be a flat distribution on ∆1 and X2 be a flat distribution on ∆2. If |∆1| < 2n−n0/2,
we ignore the distribution X1 and add an error of 2n−n0/2 to the analyis of the non-malleable
extractor. Further, it is direct from definition that f1(X2) + g 6= X2. We now handle to case when
∆1 > 2n−n0/2. Note that in this case, H1(X1) ≥ n − n0/2. The idea is now to partition ∆1 into
two sets based on the pre-image size of f2 similar to the way we partioned the support of Y based
on the pre-image size of g1. Define the sets

∆11 = {x ∈ ∆1 : |f−1
2 (f2(x)) ∩∆1| ≥ 2n−n0}, ∆12 = ∆1 \∆11.

Let X11 be flat on ∆11 and X12 be flat on ∆12. Clearly, X1 is a convex combination of
the sources X11 and X12. If ∆11 or ∆12 is smaller than 2n−3n0/4, we ignore the corresponding
distribution and add an error of 2−n0/4 to the error analysis of the non-malleable extractor. Thus
suppose ∆1i ≥ 2n−3n0/4 for i = 1, 2. Thus, X11 and X12 both have min-entropy at least n− 3n0/4.

We claim that f2(X12) has min-entropy at least n0/4. This can be seen in the following way.
For any x ∈ ∆12, |f−1

2 (f2(x))∩∆1| ≤ 2n−n0 , and hence it follows f2(X12) has min-entropy at least
(n − 3n0/4) − (n − n0) = n0/4. Thus, clearly f2(X12) + g2(Y1) 6= Y1 with probability at least

1− 2−n0/4. As before, we add an error of 2−n
Ω(1)

to the error, and assume that f2(X12) + g2(Y1) 6=
Y1. Thus, (X12,Y1)π, ((f1(X12)+g1(Y2)), (f1(X12)+g1(Y2)))π is indeed 2−n

Ω(1)
-close to a convex

combination of distributions of the required form.

Next, we claim that for any fixing of f2(X11), the random variable X11 has min-entropy at
least n − n0. This is direct from the fact that for any x ∈ ∆1, |f−1

2 (f1(x)) ∩∆1| > 2n−n0 . We fix
f2(X11) = λ, and let g2,λ(y) = λ + g2(y). Thus, g2,λ(Y) = f1(X) + g1(Y1). We now partition Γ1

according to the fixed points of f1,g. Let

Γ11 = {y : g2,λ(y) = y}, Γ12 = {0, 1}n \ Γ11.

Let Y11 be a flat distribution on Γ11 and Y12 be a flat distribution on Γ12. It follows from
definition that (f1(X11) + g1(Y11), f2(X11) + g2(Y11)) = (X11,Y11). Further, f2(X11) + g2(Y12) 6=
Y12, and hence (X11,Y12)π, ((f1(X11)+g1(Y12)), (f1(X11)+g1(Y12)))π is 2−n

Ω(1)
-close to a convex

combination of distributions of the required form. This completes the proof.

27

5.1 Linear composed with unequal length interleaved-split-state adversaries

As in the case of non-malleable extractors for interleaved advervaries, our techniques generalize
to the case of linear functions composed with interleaved split-state adversaries under unequal
partitions. We have the following theorem.

Theorem 5.2. There exists a constant β > 0 such that for all integers n > 0 there exists an
explicit function nmExt : {0, 1}n → {0, 1}m, m = nΩ(1), such that the following holds: let n1 = nβ

and n2 = n− n1.

Then, for arbitrary tampering functions f ∈ Fn1, g ∈ Fn2, any permutation π : [n] → [n], any
linear function h : {0, 1}n → {0, 1}n, and independent uniform sources X and Y on n1 and n2 bits
respectively, there exists a distribution Dh,f,g,π on {0, 1}m ∪ {same?}, such that

|nmExt((X,Y)π), nmExt(h((f(X), g(Y))π))−Um, copy(Dh,f,g,π,Um)| ≤ 2−n
Ω(1)

.

We skip the proof since it is straightforward to check that our proof for the case when the length
of the partitions are equal generalizes to the above setting.

6 Non-malleable codes from invertible non-malleable extractors

In this section, we provide an efficient sampling algorithm for the seedless non-malleable extractor
construction presented in Theorem 4.3. This is crucial to get efficient encoding algorithms for the
corresponding non-malleable codes. We do not know how to invert the non-malleable extractor
constructions in Theorem 4.3, but we show that the constructions can suitably modified in a way
that admits efficient sampling from the pre-image of the extractor. We present our construction of
the non-malleable extractor in the setting of equal partitions, but note that it is easy to verify that
our proofs work in the more general setting of unequal length partitions (see Section 5.1).

6.1 An invertible non-malleable extractor with respect to linear composed with
interleaved adversaries

The main idea is to ensure that on fixing appropriate random variables that are generated in
computing the non-malleable extractor, the source is now restricted onto a known subspace of fixed
dimension (i.e., the dimension does not depend on value of the fixed random variables). Once we
can ensure this, sampling from the pre-image can simply be done by first uniformly sampling the
fixed random variables, and then sampling the other variables uniformly from the known subspace.

To carry this out, we need to modify the non-malleable extractor that was constructed in
Section 4. The construction in Section 4 is already fairly complicated, and the high level ideas
to execute the strategy hinted at in the previous paragraph are: (i) carrying out different parts
of the construction using disjoint parts of the source, and (ii) carefully choosing the sub-routines
(e.g., seeded extractors, error correcting codes) used in the construction. It turns out that ensuring
that we act on disjoint parts of the source for various parts of the construction is not completely
possible, which leads to further complications. We first give an informal description of the modified
construction before presenting the actual construction. Let Z be the 2-interleaved source.

1. Recall that the advice generator developed in Section 4 can be informally (and slightly inac-
curately) described as follows: we take two slices from the source Z, and use them in following

28

way: the first slice is used to sample bits from an encoding of Z. The other slice is used to to
sample bits from the source Z, which is then used as a seed for a linear seeded extactor that
extracts from Z. Our modifications to this part are as follows:

• We reserve a large portion/slice of Z which we use to carry out all the steps that involve
‘sample a subset of coordinates from Z’. Thus, in the above description, when we use the
second slice to sample bits from Z, we sample from this ‘reserved slice’ of Z instead of
Z. Further, once a subset of coordinates are sampled from this reserved slice, we remove
these bits so that in the later parts of construction the same subset of bits are not used.

• Sampling from an encoding of Z is problematic to our strategy of using disjoint parts
of the source to carry out different parts of the construction. In particular, the sampled
set of coordinates represent a set of linear constraints on the source Z if we think about
it from perspective of sampling from a pre-image. We deal with this by keeping track of
the set of linear constraints imposed by the sampled set of constraints, and ensuring that
in later parts of our construction, the new constraints imposed are linearly independent
of this set.

• As indicated above, another part of the advice is the output of a linear seeded extractor
on Z using as seed a sample of coordinates from Z. This again goes against our strategy
of using disjoint parts of the source Z, and places a global linear constraints on Z (for
every fixing of the seed). In particular, the constraints imposed can have arbitrary
intersection with the linear constraints imposed in the step above. To deal with this, we
throw away all the bits from the sampled coordinates in the above step that are linearly
dependent with the constraints imposed in this step. Here we crucially use that the error
correcting code we use is the dual of a BCH code which lets us argue that we do not
throw away fewer bits than the distance of the code. This lets us argue correctness of
the advice generator.

2. The next step in the construction of the non-malleable extractor is the advice correlation
break. The main modification from the construction from Section 4, is that instead of using
the source Z, we sample a relatively large set of coordinates from the reserve slice of Z (that
we mentioned in the step above) and use this sample instead of Z. This fits into our approach
of using disjoint parts of Z for carrying out different parts of the construction.

3. Finally, we use a trick from [Li17] where we feed the output of the advice correlation breaker
as seed to a linear seeded extractor that extracts from the untouched bits of the reserve slice
of Z. This lets us treat the inner workings of the advice correlation breaker in a black box
way, which greatly simplifies the sampling process since the advice correlation breaker uses
multiple rounds of alternating extraction. The reason we can do this is because the linear
seeded extractor we use has the special property that for every fixing of the seed, the linear
function has the same rank (and thus the pre-image size does not depend on the seed). Such
an extractor was constructed in [CGL16,Li17] (see Theorem 3.15). This finishes our informal
description of the modified non-malleable extractor.

We now present the modified non-malleable extractor. We use the following notation: For any
linear map L : {0, 1}r → {0, 1}s given by L(α) = Mα for some matrix M , we use conL to denote a
maximal set of linearly independent rows of M .

We now set up some parameters and ingredients for our construction of an invertible non-
malleable extractor.

29

• Let δ > 0 be a small enough constant and C a large constant.

• Let δ′ = δ/C.

• Let C be a BCH code with parameters: [nb, nb− tb log nb, 2tb]2, tb =
√
nb/100, where we fix nb

in the following way. Let dBCH be the dual code. From standard literature, it follows that
dBCH is a [nb, tb log nb,

nb
2 − tb

√
nb]2-code. Set nb such that tb · log nb =

√
nb log nb = 2n. Let

E be the encoder of dBCH. Note that by our choice of parameters, the relative minimum
distance of dBCH is at least 1/3.

• Let n0 = nδ
′
, n1 = nc00 , n2 = 10n0, for some constant c0 that we set below.

• Let n3 = nCδ, n4 = nC
2δ/5, n5 = nC

3δ, n6 = n−
∑5

i=1 ni. We ensure that n6 = n(2− o(1)).

• Let Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}log(nb) be a (n1/20, 1/10)-seeded extractor instantiated
using Theorem 3.12. Thus d1 = c1 log n1, for some constant c1. Let D1 = 2d1 = nc11 .

• Let Samp1 : {0, 1}n1 → [nb]
D1 be the sampler obtained from Theorem 3.11 using Ext1.

• Let Ext2 : {0, 1}n2 × {0, 1}d2 → {0, 1}log(n6) be a (n2/20, 1/n0)-seeded extractor instantiated
using Theorem 3.12. Thus d2 = c2 log n2, for some constant c2. Let D2 = 2d2. Thus D2 =
2d2 = nc22 .

• Let Samp2 : {0, 1}n2 → [n6]D2 be the sampler obtained from Theorem 3.11 using Ext2.

• Set c0 = 2c2.

• Let i`Ext : {0, 1}D2 → {0, 1}n0 be the extractor from Theorem 8.1.

• Let LExt0 : {0, 1}2n × {0, 1}n0 → {0, 1}
√
n0 be a linear seeded extractor instantiated from

Theorem 3.13 set to extract from min-entropy n1/100 and error 2−Ω(
√
n0).

• Let Ext3 : {0, 1}n3 × {0, 1}d3 → {0, 1}log(n6−D2) be a (n3/8, 1/100)-seeded extractor instanti-
ated using Theorem 3.12. Thus d3 = C1 log n3, for some constant C1.

• Let Samp3 : {0, 1}n3 → [n6 −D2]n7 be the sampler obtained from Theorem 3.11 using Ext3.
Thus n7 = 2d3 = nC1

3 .

• Let Ext4 : {0, 1}n4 × {0, 1}d4 → {0, 1}n6−n7−D2 be a (n4/8, 1/100)-seeded extractor instanti-
ated using Theorem 3.12. Thus d3 = C1 log n4.

• Let Samp4 : {0, 1}n4 → [n5 − n7 −D2]n8 be the sampler obtained from Theorem 3.11 using
Ext4. Thus n8 = 2d3 = nC1

4 .

• Let LExt1 : {0, 1}n5 ×{0, 1}d → {0, 1}d5 , d5 =
√
n5, be a linear-seeded extractor instantiated

from Theorem 3.13 set to extract from entropy k1 = n2/10 with error ε1 = 1/10. Thus
d = C2 log n5, for some constant C2. Let D = 2d.

• Let LExt2 : {0, 1}n7×{0, 1}d5 → {0, 1}m1 , m1 =
√
n7 be a linear-seeded extractor instantiated

from Theorem 3.13 set to extract from entropy k2 = n7/100 with error ε2 = 2−Ω(
√
d4) =

2−n
Ω(1)

, such that the seed length of the extractor LExt2 (by Theorem 3.13) is d5.

30

• Let ACB : {0, 1}n1,acb ×{0, 1}nacb ×{0, 1}hacb → {0, 1}n2,acb , be the advice correlation breaker
from Theorem 3.19 set with the following parameters: nacb = n7, n1,acb = m1, n2,acb = n9 =

D2, tacb = 2D,hacb = nδ + d, εacb = 2−n
δ′

, dacb = O(log2(n/εacb)), λacb = 0. It can be checked
that by our choice of parameters, the conditions required for Theorem 3.19 indeed hold for
k1,acb ≥ nCδ.

• Let LExt3 : {0, 1}n8 × {0, 1}n9 → {0, 1}m be the linear seeded extractor from Theorem 3.15

set to extract from min-entropy rate 1/10 and error ε = 2−n
Ω(1)

(such that the seed-length is
indeed n9). Thus, m = αn9, for some small contant α that arises out of Theorem 3.15.

Algorithm 4: i`NM(z)

Input: Bit-string z = (x, y)π of length 2n, where x and y are each n bit-strings, and
π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let zi = z1, z2, z3, z4, z5, z6, where zi is of length ni.
2 Let Ti = Sampi(zi), i = 1, 2, 3, 4.
3 Let z2 = (z6)T2 .
4 Let z′2 = i`Ext(z2).
5 Let z′′2 = LExt0(z, z′2).

6 For any set Q ⊆ [2n], define the linear function E : {0, 1}2n → {0, 1}|Q| as
EQ(x) = (E(x))Q.

7 Pick a subset T1 ⊂ T1 of size D1 −
√
n0 such that conET1

is linearly independent of

conLExt0(·,z′2). If there is no such set T1, then output 0m.

8 Let w = z1, z2, z2, (E(z))T1
, z′′2 .

9 Let v be a D × d4 matrix, with its i’th row vi = LExt1(z5, i).
10 Let z′6 be the bits in z6 outside T2. Let z6 = (z′6)T3 .
11 Let r be a D × n4 matrix, with its i’th row ri = LExt2(z6, vi).
12 Let s be a D ×m matrix, with its i’th row si = ACB(ri, z6, w, i).
13 Let s̃ = ⊕Di=1si.
14 Let z7 be the bits in z6 outside the coordinates T2 ∪ T3.
15 Let z7 = (z7)T4 . Let z8 be the bits in z6 outside the coordinates T2 ∪ T3 ∪ T4.
16 Output g = LExt3(z7, s̃).

The proof that i`NM computed by Algorithm 4 satisfies Theorem 4.3 is very similar, and we
omit the details. We include a discussion of the key differences and subtleties that arise from the
modifications done in the above construction as compared to Algorithm 2.

The first key difference is Step 7, where we discard some bits from the advice generator’s output.
The existence of the subset T 1 is guaranteed by the fact that E has dual distance tb = Ω(n/ log n).
(Thus, we never fall into the case of non-existence of such a set T 1 in Step 7.) Thus, for any T ,
it must be that ConET1

is a set of size |T1| = D1. Further, conLExt0(·,z′2) is a set with cardinality

at most
√
n0. Thus, indeed there exists such a set T 1. An important detail to notice is that

|T1 \ T1| = o(D1) and the distance of the code computed by E is Ω(1). Thus, the fact that we
discard the bits indexed by the set T1 \T1 from the string E(Z)T1 (and thus from the output of the
advice generator) does not affect the correctness of the advice generator.

Another difference is that in the steps where we transform the somewhere random matrix v

31

into a matrix with longer rows, and the subsequent step where the advice correlation breaker is
applied is now done using a pseudorandomly sampled subset of coordinates from Z (as opposed to
the entire Z which we did before). It is not hard to prove that this does not make a difference as
long as we sample enough bits. Finally, another difference is the final step where we use a linear
seeded extractor, with Z6 as the seed. As done many times in the paper, we use the sum structure
of Z7 (into a source that depends on X and a source that depends on Y) along with the fact that
LExt3 is linear seeded to show that the output is close to uniform.

We now focus on the problem of efficiently sampling from the pre-image of this extractor. The
following lemma almost immediately implies a simple sampling algorithm.

Lemma 6.1. With probability 1−2−n
Ω(1)

over the fixing of the variables z1, z2, z2, z
′′
2 , z3, z4, z5, z6, w,

and any g ∈ {0, 1}m, the set i`NM−1(g) is a linear subspace of fixed dimension.

Proof. Consider any fixing of z1, z2, z3, z4. Clearly, these fix the sets Ti, i = 1, 2, 3, 4. Next,
note that given z2, we have the value of z′2. We note that by Lemma 3.16 that with probability

1− 2−n
Ω(1)

, the linear map LExt0(, z′2) has full rank. Using Algorithm 2, determine the set T1 (if it
exists). Fix E(z)T 1

and z′′2 , noting that the value of w is now determined. Now given z5, z6, we can
compute r, s, s̃. Next observe that given g and s̃, Theorem 3.15 implies the value of z7 belongs to
a subspace whose dimension does not depend on the values of g and s̃. Finally, we are left to see
how to compute z8. Note that the constraints on z8 are imposed by the fixings of z′′2 and E(C)T1

.
However, by construction (Step 7 of our algorithm), the number of independent linear constraints
on z8 is exactly equal to D1 as long as LExt0(, z′2) has full rank (which as noted before occurs with

probability at least 1− 2−n
Ω(1)

). This completes the proof.

Given Lemma 6.1, the sampling algorithm is now straightforward:

Input g ∈ {0, 1}m; Output z that is uniform on the set i`NM−1(g).

1. Sample zi, i = 1, 2, 3, 4, 5 uniformly at random. Compute T1, T2, T3, T4 following Algorithm 2.

2. Sample z2 uniformly, and compute z′2. Further, sample z′′2 uniformly.

3. Compute T1, and sample (E(z))T1
uniformly at random.

4. Compute w, v, r, s, s̃ using Algorithm 2.

5. Sample z7 from (LExt3(·, s̃))−1(g) efficiently using Theorem 3.15.

6. Sample z8 as described in Lemma 6.1. Compute the string z6.

7. Output z = z1, z2, z3, z4, z5, z6.

7 Non-malleable secret-sharing

In this section we prove our results on non-malleable-secret-sharing applications (Theorem 1.6 and
Theorem 1.7). We first recall the definition of a ramp secret-sharing specializing to the case of
binary shares.

Definition 7.1 (Ramp secret-sharing). Let Share : {0, 1}m → {0, 1}n be a randomized (distribu-
tion) algorithm that maps a m bit secret into n shares, each share being a single bit. We say that
Share is a (r, t, ε)-secret-sharing (for t < r) if the following hold:

32

• Correctness. Any r out of n parties can recover the message. More formally, for any set of
parties B ⊆ [n] of size r (i.e., |B| = r), there exists a deterministic (reconstruction) algorithm
Rec : {0, 1}n → {0, 1}m such that for every secret s ∈ {0, 1}m,

Pr[Rec(Share(s)B) = s] ≥ 1− ε,

where Share(s)B denotes the r shares in Share(s) corresponding to the set B.

• Statistical Privacy. Not t parties can recover any information about the secret. More
formally, for any set of parties T ⊂ [n] of size t (i.e., |T | = t) and every pair of secrets
s0, s1 ∈ {0, 1}m,

|Share(s0)T − Share(s1)T | ≤ ε,

where Share(si)T denotes the t shares in Share(si) corresponding to the set T .

We now introduce the notion of a ramp non-malleable secret-sharing scheme.

Definition 7.2 (Ramp non-malleable secret-sharing). Let Share : {0, 1}m → {0, 1}n be the (ran-
domized) secret distribution algorithm for a (r, t, ε)-ramp secret-sharing scheme with binary shares.
Let F be a family of tampering function. We define this to be a (r, t, ε)-non-malleable secret-sharing
with respect to F if the following properties hold:

• Non-malleability. For any A ∈ F , and any set B ⊂ [n] such that |B| = r, define the
random variable

S̃ =

z ← Share(s)
z̃ ← A(z)

Output : RecB(z̃B)

Then there exists a distribution DA on {0, 1}m ∪ {same?} (which does not depend on the
secret s) such that

S̃ ≈ε copy(DA, s).

We will be interested in the following two families of tampering functions:

• F jointn,t : any tampering function A ∈ Fn,t acts on n binary shares in the following way: A
splits the n shares into two partitions, each containing at most t shares, and jointly tampers
the shares in each partition (i.e, applies an arbitrary tampering function on each partition).

• F joint◦Lin
n,t : this class of tampering functions strictly generalizes the F jointn,t tampering class

and is defined as follows. Any tampering function A ∈ F joint◦Lin
n,t acts on the n binary shares

in the following way: A uses a tampering function A1 ∈ F jointn,t to tamper the n shares. After
this, it applies an arbitrary affine function h ∈ Lin jointly on all the n (already tampered)
shares.

We are now ready to prove Theorem 1.7 (which also implies Theorem 1.6 as a special case),
which we restate in terms of the above the definitions.

Theorem 7.3 (Theorem 1.7 restated). There exists constants α, β > 0 such that for all n, t ∈ N,
there exists an explicit (r, t, ε)-ramp non-malleable secret-sharing scheme with binary shares and

secret length nα with respect to F joint◦Lin
n,t , where r = n, t = n− nβ and ε = 2−n

Ω(1)
.

33

Proof. Let nmExt : {0, 1}n → {0, 1}m, m = nα be the non-malleable extractor from Theorem 5.2
with n1 = n − t and n2 = t and error ε1 = 2−10m. By our work in Section 6, we can assume that
nmExt is efficiently invertible, i.e., there exists an efficient sampling algorithm Samp : {0, 1}m →
{0, 1}n such that for any s ∈ {0, 1}m, we have

|Samp(s)− nmExt−1(s)| ≤ ε1. (4)

We are now ready to present the construction of our ramp non-malleable secret-sharing scheme
and prove its desired properties.

Construction: Define the randomized distribution algorithm Share to be Samp. The recon-
struction algorithm used by r = n parties is the deterministic function nmExt.

Correctness: The correctness of the scheme is direct from (4).

Statistical privacy: We now prove the statistical privacy of the scheme. Consider any subset of
parties T ⊂ [n], such that |T | = t. For any s ∈ {0, 1}m, we prove that

|Samp(s)T − Samp(Um)T | ≤ 2−n
Ω(1)

, (5)

where Samp(x)T denotes the projection of Samp(x) to the coordinates indexed by T . Clearly this
will imply the required privacy by an application of the triangle inequality of statistical distance.

Let S = nmExt(Un) and let Z = Samp(S). It follows by (4) that Z is ε1-close to uniform.
Thus, for the rest of the analysis we assume that Z is uniform (on {0, 1}n) and add back ε1 to the
overall error analysis.

Define Y = ZT and X = Z[n]\T . We now use the fact that nmExt is a strong interleaved
extractor in the source Y. Indeed Theorem 5.2 (which reduces to the unequal length analogue
of Theorem 4.3) implies that nmExt is a interleaved extractor. More specifically, there exists a
constant γ > 0 such that if X′ is a (n1, n1 − nγ)-source and Y′ is an independent (n2, n2 − nγ)-
source, and π : [n]→ [n] is an arbitrary permutation, then

|nmExt((X′,Y′)π)−Um| ≤ ε1. (6)

Now, we are ready to prove the fact that nmExt is in fact strong in Y. Since Y is a (n2, n2)-
source, using Theorem 3.18 and (6), we have that

|nmExt(Z),Y −Um,Y| ≤ 2m(ε1 + 2−n
γ
).

Since we can set the parameter α to be as tiny a constant as we would like (recall m = nα), we set
α = γ/2 and hence 2−n

γ
= 2−m

2
. Thus, recalling ε = 2−10m, it follows that

|nmExt((X′,Y′)π)−Um| ≤ 2m+1 · ε1.

By substitutions, the above equation implies that

|(S,Y)− (Um,Y)| ≤ 2m+1 · ε1.

We are now close to finishing the proof. Once again using the fact nmExt is an interleaved
extractor with error ε1 = 2−10m, we have |S−Um| ≤ ε1 and hence for any s ∈ {0, 1}m, Pr[S = s] <
1/2m + ε1 < 1/2m+1. Thus, by Lemma 3.2, it follows that

|Y −Y|(S = s)| ≤ (2m+1 · ε1) · 2m+1 < 2−7m.

34

Noting that Y is ε1-close to Samp(Um)T , this completes the proof of statistical privacy of the
scheme.

Non-malleability: We now finish the proof by proving the required non-malleability guarantee.
As in the proof of statistical privacy, let S = nmExt(Un) and let Z = Samp(S). It follows by (4)
that Z is ε1-close to uniform. Thus, we will assume that Z is uniform (on {0, 1}n) (and ε1 to the
overall error term).

Let A be an adversary from the tampering family F joint◦Lin
n,t . Thus, A can be specified by

a partition of [n] into R and T = [n] \ R, |R| = n1 and |T | = n2, such that max{n1, n2} ≤ t,
tampering functions f and g that act on the partitions R and T respectively, and an affine function
h : {0, 1}n → {0, 1}n. We represent this by: A = (h, f, g, T).

Equivalently, one can represent the partition by a permutation π : [n]→ [n] such that π([n1]) =
S and hence we view A as given by the tuple (h, f, g, π). Thus, given π, we define R = π([n1]) and
T = π([n] \ [n1]). Further define X = ZR and Y = ZT .

Finally, define the random variable S̃ which corresponds to the tampered message as follows:

S̃ =

Z← Share(S)

Z̃← A(Z)

Output : nmExt(Z̃)

We now appeal to the non-malleability of nmExt. In particular, nmExt is the non-malleable

extractor from Theorem 5.2, and thus there exists a distribution Dh,f,g,π on {0, 1}m∪{same?} that
is independent of X,Y such that

|nmExt((X,Y)π),nmExt(h((f(X), g(Y))π))−Um, copy(Dh,f,g,π,Um)| ≤ ε1 (7)

and thus
|(S, S̃)− (Um, copy(Dh,f,g,π,Um))| ≤ ε1.

Since S is ε1-close to Um, similar to the proof of statistical privacy, by an application of
Lemma 3.2, we have that for any s ∈ {0, 1}m,

|(S̃|S = s)− copy(Dh,f,g,π, s)| ≤ 2m+1 · ε1 < 2−8m.

This completes the proof of non-malleability of the secret-sharing scheme.

8 Extractors for interleaved sources

Our techniques yield improved explicit constructions of extractors for interleaved sources. Our
extractor works when both sources have entropy at least 2n/3, and outputs Ω(n) bits that are

2−n
Ω(1)

-close to uniform.

The following is our main result.

Theorem 8.1. For any constant δ > 0 and all integers n > 0, there exists an efficiently computable
function i`Ext : {0, 1}2n → {0, 1}m, m = Ω(n), such that for any two independent sources X and
Y, each on n bits with min-entropy at least (2/3 + δ)n, and any permutation π : [2n] → [2n], we
have

|i`Ext((X,Y)π)−Um| ≤ 2−n
Ω(1)

.

35

We use the rest of the section to prove Theorem 8.1. An important ingredient in our construction
is an explicit strong condenser by Raz [Raz05].

Theorem 8.2 ([Raz05]). For all constants β, δ and all integers n > 0, there exists an efficiently
computable function Con : {0, 1}n × {0, 1}d → ({0, 1}`, d = O(1) and ` = Ω(n) such that the
following holds: for any (n, δn)-source X there exists a y ∈ {0, 1}d such that Con(X, y) is 2−Ω(n)-
close to a source with min-entropy (1− β)`.
We call such a function Con to be a (δ, 1− β)-condenser.

We prove that Algorithm 5 computes the required extractor. We begin by setting up some
ingredients and parameters.

• Let κ > 0 be a small enough constant.

• Let n1 = (2/3 + δ/2)n and n2 = n5κ.

• Let β be a parameter which we fix later. Let Con : {0, 1}n1 × {0, 1}d → {0, 1}` be a (δ/4,
1− β)-condenser instantiated from Theorem 8.2. Thus ` = n/C ′, for some constant C ′ that
depends on δ, β. Let D = 2d. Note that D = O(1).

• Let LExt1 : {0, 1}2n × {0, 1}` → {0, 1}n2 be the linear seeded extractor from Theorem 3.15
set to extract from min-entropy rate 1/12 and error ε1 = 2−2β`. The seed-length is at most
3Cβ`, some constant C that arises out of Theorem 3.15. We choose β = min{1/3C, γ}, where
γ is the constant in Theorem 3.15. Note that the seed-length of LExt1 is indeed at most `.

• Let ACB : {0, 1}n1,acb ×{0, 1}nacb ×{0, 1}hacb → {0, 1}n2,acb , be the advice correlation breaker
from Theorem 3.19 set with the following parameters: nacb = 2n, n1,acb = n2, n2,acb = n3 =
n2κ, tacb = D,hacb = d, εacb = 2−n

κ
, dacb = O(log2(n/εacb)), λacb = 0. It can be checked

that by our choice of parameters, the conditions required for Theorem 3.19 indeed hold for
k1,acb ≥ n2κ.

• Let LExt2 : {0, 1}2n×{0, 1}n3 → {0, 1}m, m = Ω(n), be a linear-seeded extractor instantiated
from Theorem 3.13 set to extract from entropy k1 = n/10 with error ε1 = 2−α

√
n3 , for an

appropriately picked small constant α.

Algorithm 5: i`Ext(z)

Input: Bit-string z = (x, y)π of length 2n, where x and y are each n bit-strings, and
π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let z1 = Slice(z, n1).
2 Let v be a D × n2 matrix, with its i’th row vi = Con(z1, i).
3 Let r be a D × n3 matrix, with its i’th row ri = LExt1(z, vi).
4 Let s be a D ×m matrix, with its i’th row si = ACB(ri, z, i).
5 Let s̃ = ⊕Di=1si.
6 Output LExt2(z, s̃).

We use the following notation: Let X1 be the bits of X in Z1 and X2 be the remaining bit of
X. Let Y1 be the bits of Y in Z1 and Y2 be the remaining bits of Y. Without loss of generality

36

assume |X1| ≥ |Y1|. Define X = (X, 0n)π and Y = (Y, 0n)π. Further, let X1 = Slice(X, n1) and
Y1 = Slice(Y, n1). It follows that Z = X+Y, and Z1 = X1+Y1. Further, let kx = ky = (2/3+δ)n.

We begin by proving the following claim.

Claim 8.3. Conditioned on the random variables X1,Y1, {LExt1(X,Con(X1 + Y1, i))}Di=1, the
following hold:

• the matrix R is 2−Ω(n)-close to a somewhere random source,

• R is a deterministic functions of Y,

• H∞(X) ≥ δn/4, H∞(Y) ≥ n/6.

Proof. By construction, we have that for any j ∈ [D],

Rj = LExt1(Z,Con(Z1, j))

= LExt1(X + Y,Con(X1 + Y1, j))

= LExt2(X,Con(X1 + Y1, j)) + LExt2(Y,Con(X1 + Y1, j))

Fix the random variables Y1, and Y has min-entropy at least ky − n1/2 ≥ n/6 + 3δn/4. Further,
note that X1 has min-entropy at least n1/2 − (n − kx) ≥ δn/4. Now, by Theorem 8.2, we know
that there exists a j ∈ [D] such that Con(X1 + Y1, j) is 2−Ω(n)-close to a source with min-entropy
at least (1− β)`. Further, note that V is a deterministic function of X.

Now, since LExt1 is a strong seeded extractor set to extract from min-entropy n/6, it follows
by Lemma 3.9 that

|LExt1(Y,Con(X1 + Y1, j))−Un2 | ≤ 2β`ε1 + 2−Ω(n) ≤ 2−β`+1.

We now fix the random variables X1 and note that LExt1(Y,Con(X1 + Y1, j)) continues to
be 2−Ω(`)-close to Un2 . This follows from the fact that LExt1 is a strong seeded extractor. Note
that the random variables {Con(X1 + Y1, i)) : i ∈ [D]} are now fixed. Next, fix the random
variables {LExt1(X,Con(X1 + Y1, i))}Di=1 noting that they are deterministic functions of X. Thus
Rj is 2−Ω(n)-close to Un2 and for any i ∈ [D], the random variables Ri are deterministic functions
of Y. Finally, note that X and Y remain independent after these conditionings, and H∞(X) ≥
kx − n1 −Dn2 and H∞(Y) ≥ ky − n1/2.

The next claim almost gets us to Theorem 8.1.

Claim 8.4. There exists j ∈ [D] such that

Sj , {Si}i∈[D]\j ,X ≈2−n
Ω(1) Un3 , {Si}i∈[D]\j ,X.

Proof. Fix the random variables: X1,Y1, {LExt1(X,Con(X1 + Y1, i))}Di=1. By Claim 8.3 we have
that R is a deterministic function of Y, and with probability at least 1−2−Ω(n), there exists j ∈ [D]

such that Rj is 2−n
Ω(1)

-close to uniform, and H∞(X) ≥ δn/4. Recall that Z = X + Y. It now
follows by Theorem 3.19 that

ACB(Rj ,Z, j), {ACB(Ri,X + Y, i)}i∈[D]\j ,X ≈2−n
Ω(1)

Un3 , {ACB(Ri,X + Y, i)}i∈[D]\j ,X.

37

It follows by Claim 8.4 that S̃ is 2−n
Ω(1)

-close to uniform even conditioned on X. Thus, noting
that LExt2(Z, S̃) = LExt2(X, S̃) + LExt2(Y, S̃), it follows that we can fix S̃ and LExt2(X, S̃)

remains 2−n
Ω(1)

-close to uniform and is a deterministic function of X. Next, we fix LExt2(Y, S̃)

without affecting the distribution of LExt2(X, S̃). It follows that LExt2(Z, S̃) is 2−n
Ω(1)

-close to
uniform. This completes the proof of Theorem 8.1.

9 Open questions

Non-malleable codes for composition of functions. Here we give efficient constructions of
non-malleable codes for the tampering class Lin ◦ 2ISS. Many natural questions remain to be
answered. For instance, one open problem is to efficiently construct non-malleable codes for the
tampering class 2SS ◦Lin or 2ISS ◦Lin, which as explained before is closely related to the question
of constructing explicit (r, t)-ramp non-malleable secret-sharing schemes with binary shares, where
t < r. It looks like one needs substantially new ideas to give such constructions. More generally, for
what other interesting classes of functions F and G can we construct non-malleable codes for the
composed class F ◦ G? Is it possible to efficiently construct non-malleable codes for any tampering
class F ◦ G as long as we have efficient non-malleable codes for the classes F and G?

Other applications of seedless non-malleable extractors. The explicit seedless non-malleable
extractors that we construct satisfy strong pseudorandom properties. A natural question is to find
more applications of these non-malleable extractors in explicit constructions of other interesting
objects.

Improved seedless extractors. We construct an extractor for 2-interleaved sources that works
for min-entropy rate 2/3. It is easy to verify that there exists extractors for sources with min-entropy
as low as C log n, and a natural question here is to come up with such explicit constructions. Given
the success in constructing 2-source extractors for low min-entropy [CZ16a,Li18], we are optimistic
that more progress can be made on this problem.

Acknowledgements

We thank very useful comments from anonymous referees.

References

[AB16] Divesh Aggarwal and Jop Briët. Revisiting the sanders-bogolyubov-ruzsa theorem in f
p n and its application to non-malleable codes. In 2016 IEEE International Symposium
on Information Theory (ISIT), pages 1322–1326. Ieee, 2016.

[ADKO15a] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-
malleable reductions and applications. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 459–468. ACM, 2015.

[ADKO15b] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Leak-
age resilient non-malleable codes. In Theory of Cryptography Conference, TCC 2015,
pages 398–426, 2015.

38

[ADL18] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. SIAM Journal on Computing, 47(2):524–546, 2018.

[ADN+18] Divesh Aggarwal, Ivan Damgard, Jesper Buus Nielsen, Maciej Obremski, Erick Pur-
wanto, Joao Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable
secret-sharing schemes for general access structures. IACR Cryptology ePrint Archive,
2018:1147, 2018.

[Agg15] Divesh Aggarwal. Affine-evasive sets modulo a prime. Information Processing Letters,
115(2):382–385, 2015.

[AGM+15] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. A rate-optimizing compiler for non-malleable codes against bit-wise
tampering and permutations. In Theory of Cryptography - 12th Theory of Cryptogra-
phy Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
I, pages 375–397, 2015.

[AO19] Divesh Aggarwal and Maciej Obremski. A constant-rate non-malleable code in the
split-state model. IACR Cryptology ePrint Archive, 2019:1299, 2019.

[BCL+20] Marshall Ball, Eshan Chattopadhyay, Jyun-Jie Liao, Tal Malkin, and Li-Yang Tan.
Non-malleability against polynomial tampering. In Crypto, 2020. to appear.

[BDKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes for bounded depth, bounded fan-in circuits. In TCC, 2016.

[BDSG+18] Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-
malleable codes for small-depth circuits. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 826–837. IEEE, 2018.

[BGW19] Marshall Ball, Siyao Guo, and Daniel Wichs. Non-malleable codes for decision trees.
IACR Cryptology ePrint Archive, 2019:379, 2019.

[BIVW16] Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson.
Bounded indistinguishability and the complexity of recovering secrets. In Annual
Cryptology Conference, pages 593–618. Springer, 2016.

[Bla79] George R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS
National Computer Conference, pages 313–317, 1979.

[BS18] Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable se-
cret sharing. IACR Cryptology ePrint Archive, 2018:1144, 2018.

[BW17] Andrej Bogdanov and Christopher Williamson. Approximate bounded indistinguisha-
bility. In International Colloquium on Automata, Languages, and Programming, 2017.

[CDTV16] Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-malleable
encryption: simpler, shorter, stronger. In Theory of Cryptography Conference, pages
306–335. Springer, 2016.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

39

[CG16] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes.
IEEE Trans. Information Theory, 62(3):1097–1118, 2016.

[CG17] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise
and split-state tampering. J. Cryptology, 30(1):191–241, 2017.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,
with their many tampered extensions. In STOC, 2016.

[CIL17] Kuan Cheng, Yuval Ishai, and Xin Li. Near-optimal secret sharing and error correcting
codes in ac0. In TCC, pages 424–458, 2017.

[CKOS18] Eshan Chattopadhyay, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and
Sruthi Sekar. Privacy amplification from non-malleable codes. IACR Cryptology ePrint
Archive, 2018:293, 2018.

[CL16] Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In STOC, 2016.

[CL17] Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-
depth circuits, and affine functions. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1171–1184. ACM, 2017.

[CMTV15] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit
to multi-bit public-key encryption via non-malleable codes. In Theory of Cryptography
Conference, pages 532–560. Springer, 2015.

[Coh16] Gil Cohen. Local correlation breakers and applications to three-source extractors and
mergers. SIAM Journal on Computing, 45(4):1297–1338, 2016.

[CSV93] Marco Carpentieri, Alfredo De Santis, and Ugo Vaccaro. Size of shares and probability
of cheating in threshold schemes. In EUROCRYPT 1993, 12th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, 1993.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant
split-state tampering. In Proceedings of the 55th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 306–315, 2014.

[CZ16a] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. In STOC, 2016.

[CZ16b] Eshan Chattopadhyay and David Zuckerman. New extractors for interleaved sources.
In CCC, 2016.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In CRYPTO (2), pages 239–257, 2013.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38:97–139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In Pro-
ceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’07, pages 227–237, Washington, DC, USA, 2007. IEEE Computer Society.

40

[DPW18] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. J.
ACM, 65(4):20:1–20:32, April 2018.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In STOC, pages 601–610, 2009.

[GIM+16] Vipul Goyal, Yuval Ishai, Hemanta K. Maji, Amit Sahai, and Alexander A. Sherstov.
Bounded-communication leakage resilience via parity-resilient circuits. In Proceedings
of the 57th Annual IEEE Symposium on Foundations of Computer Science, 2016.

[GK18a] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 685–698.
ACM, 2018.

[GK18b] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general access
structures. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part I, pages 501–530, 2018.

[GMW18] Divya Gupta, Hemanta K Maji, and Mingyuan Wang. Constant-rate non-malleable
codes in the split-state model. Technical report, Technical Report Report 2017/1048,
Cryptology ePrint Archive, 2018.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable com-
mitments. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 1128–1141. ACM, 2016.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from Parvaresh–Vardy codes. J. ACM, 56(4),
2009.

[KOS17] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state
non-malleable codes with explicit constant rate. In Theory of Cryptography Confer-
ence, pages 344–375. Springer, 2017.

[KOS18] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-malleable
randomness encoders and their applications. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 589–617. Springer,
2018.

[LCG+18] Fuchun Lin, Mahdi Cheraghchi, Venkatesan Guruswami, Reihaneh Safavi-Naini, and
Huaxiong Wang. Secret sharing with binary shares. CoRR, arXiv:cs/1808.02974, 2018.

[LCG+19] Fuchun Lin, Mahdi Cheraghchi, Venkatesan Guruswami, Reihaneh Safavi-Naini, and
Huaxiong Wang. Non-malleable secret sharing against affine tampering. CoRR,
arXiv:cs/1902.06195, 2019.

[Li16] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic
entropy. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Sym-
posium on, pages 168–177. IEEE, 2016.

41

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, pages 1144–1156, 2017.

[Li18] Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal con-
structions. Electronic Colloquium on Computational Complexity (ECCC), 2018.

[MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.
In Advances in Cryptology — CRYPTO ’97, volume 1294, pages 307–321, August
1997.

[Rao07] Anup Rao. An exposition of Bourgain’s 2-source extractor. Electronic Colloquium on
Computational Complexity (ECCC), 14(034), 2007.

[Rao09] Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual
IEEE Conference on Computational Complexity, 2009.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, pages 11–20, 2005.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pages 73–85, 1989.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and
reducing the error in Trevisan’s extractors. JCSS, 65(1):97–128, 2002.

[RS18] Peter M. R. Rasmussen and Amit Sahai. Expander graphs are non-malleable codes.
CoRR, 2018.

[RY11] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy
and mixed-sources extractors. Journal of Computer and System Sciences, 77:167–190,
2011.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages
860–879, 2001.

[TV00] Luca Trevisan and Salil P. Vadhan. Extracting Randomness from Samplable Dis-
tributions. In IEEE Symposium on Foundations of Computer Science, pages 32–42,
2000.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and
Algorithms, 11:345–367, 1997.

42

	Introduction
	Non-malleable Codes
	Motivations and applications in cryptography
	Seedless non-malleable extractors
	Extractors for interleaved sources

	Overview of constructions and techniques
	Seedless non-malleable extractors with respect to interleaved 2-split-state tampering
	An explicit advice generator
	An explicit advice correlation breaker

	From non-malleable extractors to non-malleable codes
	Extractors for interleaved sources
	Organization

	Background and notation
	Probability lemmas
	Conditional min-entropy
	Seeded Extractors
	Samplers and extractors
	Explicit extractors from prior work
	Advice correlation breakers
	A connection between non-malleable codes and extractors

	NM extractors for interleaved split-state adversaries
	An advice generator
	An Advice Correlation Breaker
	The non-malleable extractor
	Unequal length interleaved-split-state adversaries

	Non-malleable extractors for linear composed with split-state adversaries
	Linear composed with unequal length interleaved-split-state adversaries

	Non-malleable codes from invertible non-malleable extractors
	An invertible non-malleable extractor with respect to linear composed with interleaved adversaries

	Non-malleable secret-sharing
	Extractors for interleaved sources
	Open questions

