
An Algebraic Method to Recover Superpolies in
Cube Attacks

Chen-Dong Ye and Tian Tian

PLA Strategic Support Force Information Engineering University, 62 Kexue Road, Zhengzhou,
450001, China. ye_chendong@126.com,tiantian_d@126.com

Abstract. Cube attacks are an important type of key recovery attacks against NFSR-
based cryptosystems. The key step in cube attacks closely related to key recovery
is recovering superpolies. However, in the previous cube attacks including original,
division property based, and correlation cube attacks, the algebraic normal form of
superpolies could hardly be shown to be exact due to an unavoidable failure probabil-
ity or a requirement of large time complexity. In this paper, we propose an algebraic
method aiming at recovering the exact algebraic normal forms of superpolies practi-
cally. Our method is developed based on degree evaluation method proposed by Liu
in Crypto-2017. As an illustration, we apply our method to Trivium. As a result,
we recover the algebraic normal forms of some superpolies for the 818-, 835-, 837-,
and 838-round Trivium. Based on these superpolies, on a large set of weak keys, we
can recover at least five key bits equivalently for up to the 838-round Trivium with a
complexity of about 237. Besides, for the cube proposed by Liu in Crypto-2017 as a
zero-sum distinguisher for the 838-round Trivium, it is proved that its superpoly is
not zero-constant. Hopefully, our method would provide some new insights on cube
attacks against NFSR-based ciphers.
Key Words: Trivium, cube attacks, key recovery attacks, algebraic normal form
Keywords: No keywords given.

1 Introduction
The cube attack was first proposed by Dinur and Shamir at Eurocrypt-2009 in [1]. Lat-
er, there were many improvements on it such as cube testers [2], dynamic cube attacks
[3], conditional cube attacks [4], division property based cube attacks [5, 6] and correla-
tion cube attacks [7]. Due to these improvements, cube attacks have become more and
more powerful. In particular, it is one of the most important cryptanalytic tools against
Trivium.

In the original cube attacks [1, 8, 9, 10], the main aim is to find low-degree super-
polies on key variables by performing experimental tests. In [1], the authors recovered 35
linear superpolies of the 767-round Trivium. In [8], quadraticity tests were first applied
to the cube attacks against Trivium. As a result, the authors found 41 linear and 38
quadratic superpolies for the 709-round Trivium. In [9], the authors proposed two new
ideas concerning cube attacks against Trivium. One was a recursive method to construct
useful cubes. The other was simultaneously testing a lot of subcubes of a large cube using
the Meobius transformation. They found 12 linear and 6 quadratic superpolies for the
799-round Trivium. In [10], by exploiting a kind of linearization technique, the authors
proposed a new framework to find nonlinear superpolies with low complexities. As a re-
sult, they found 6 linear and 2 nonlinear superpolies for the 802-round Trivium. In the
above experimental cube attacks, it needs to test a large number of cubes to find desirable

mailto:ye_chendong@126.com,tiantian_d@126.com

2

ones, while testing cubes of size greater than 35 is time consuming. Hence, the sizes of
cubes are typically confined to 40.

In [5], Todo et al. introduced division property to cube attacks. For a cube I, by solving
the corresponding mixed integer linear programming (MILP) models built according to
the propagation rules of division property, they could identify a set of key variables which
includes the key variables appearing in the superpoly pI . Then, by constructing the
truth tables of pI corresponding to randomly chosen assignments of non-cube variables,
they attempted to find a proper one ensuring that pI was non-constant. Finally they
recovered pI by its truth table. Due to division property and the power of MILP solvers,
large cubes could be explored. For example, in [5], it was shown that the superpoly of
a given 72-dimensional cube was dependent on at most five key variables for the 832-
round Trivium. In [6], the authors improved the work in [5] in finding a proper non-cube
variables assignment and reducing the complexity of recovering the superpoly. It was
shown in [6] that the superpoly of a given 78-dimensional cube was dependent on at most
one key variable for the 839-round Trivium. For division property based cube attacks,
the advantage is that large cubes could be explored and the complexity of recovering
superpolies could be estimated theoretically. The implicit disadvantage is that the theory
of division property could not ascertain that a superpoly for a cube is non-constant. Hence
the key recovery attacks on the 832-round Trivium in [5] and on the 839-round Trivium
in [6] are only possible which may be only a distinguisher.

In [11], the authors proposed a method to recover the superpoly of a cube with the
help of bit-based division property. According to the results of [11], the superpoly of the
cube proposed in [6] to attack the 839-round Trivium is zero-constant. Besides, for the
cube given in [5] to attack the 832-round Trivium, they found an assignment to noncube
IV variables which ensures the corresponding superpoly is non-constant. However, the
complexity of the method proposed in [11] largely depends on the number of key variables
appearing in the superpoly, and so it is not suitable to recover superpolies which include
many key variables. Furthermore, in [11], the authors did not establish new attacks on
Trivium variants with more than 832 initialization rounds.

In [7], the authors proposed the correlation cube attacks. For a cube CI , the authors
first tried to find a set of low-degree polynomials G, called a basis, such that the superpoly
pI could be factored into pI =

⊕
g∈G g · fg formally. Then, by exploiting the correlation

relations between the low-degree basis G and the superpoly pI , they could obtain a set of
probabilistic equations on the secret key variables since fg is unknown. It was reported
in [7] that five key variables of the 835-round Trivium could be recovered with 244 time
complexity, 245 keystream bits, and 251 preprocessing time.

In [12], Fu et al. gave a dedicated attack on the 855-round Trivium which somewhat
resembled dynamic cube attacks. Their main idea is finding a simple polynomial P1 such
that the output bit polynomial z could be formally represented as z = P1P2 ⊕ P3 where
P2 is complex while P3 is a low-degree polynomial on IV variables compared with z.
Consequently, (P1 ⊕ 1)z = (P1 ⊕ 1)P3 will be a low-degree polynomial on IV variables.
Then they guessed some secret key expressions involved in P1. For a group of right
guesses, (P1⊕1)z will be a low-degree polynomial on IV variables. Otherwise, (P1⊕1)z is
expected to be a high-degree polynomial. They declared that three secret key bits could
be recovered for the 855-round Trivium with the online complexity of 274. A shortage of
the attack described in [12] is that no estimation was given on the successful probability
for wrong guesses.

However, in [13], the authors pointed out that the attacks in [12] is questionable. More
specifically, the attack against 721-Trivium was experimentally verified to fail and some
complexity analysis also indicated that the 855-round attack was questionable.

Chen-Dong Ye and Tian Tian 3

1.1 Our Contributions.
In this paper, we propose an algebraic method to recover superpolies in cube attacks, which
improves the original cube attacks in recovering the superpolies with proved correctness
and overcoming the low-degree restriction.

The basic idea of our attacks is, by making use of internal state bit variables s(r1) =
(s(r1)

1 , s
(r1)
2 , . . . , s

(r1)
N), dividing the polynomial representation fr(key, iv) of an r-round

cipher into an r1-round polynomial representation s(r1)(key, iv) and an r2-round poly-
nomial representation gr2(s(r1)) such that fr = gr2(s(r1)(key, iv)). Then it is possible
for us to compute superpolies algebraically for a class of cubes which are called useful
cubes in the rest of this paper. The criterion of a useful cube plays a key role in calculat-
ing superpolies in practice. In particular, for a useful cube I, to compute the superpoly
Q{s

(r1)
i1

,s
(r1)
i2

,...,s
(r1)
il

} of I in the polynomial s
(r1)
i1

(key, iv)s(r1)
i2

(key, iv) · · · s(r1)
il

(key, iv) for

a term s
(r1)
i1

s
(r1)
i2
· · · s(r1)

il
appearing in the algebraic normal form of gr2(s(r1)), it is only

necessary to know the maximum degree terms in each s
(r1)
ij

(key, iv) for 1 ≤ j ≤ l. Hence a
superpoly Q{s

(r1)
i1

,s
(r1)
i2

,...,s
(r1)
il

} could be computed in practice and so is the targeted super-
poly pI in fr(key, iv) which is equal to the summation of all possible Q{s

(r1)
i1

,s
(r1)
i2

,...,s
(r1)
il

}.
As an illustration, we apply our method to the round-reduced Trivium, and we obtain

the following results.

• For Trivium variants with 800-832 initialization rounds, we randomly test 10000
cubes of size 33-36, and obtain about 175 useful cubes for each variant in average.
This indicates that useful cubes exist widely.

• We recover the superpolies of some useful cubes for the 818-, 835-, 837-, and 838-
round Trivium. With these recovered superpolies, we could establish the following
attacks.

- For the 818-round Trivium, we could recover at least 10 key bits equivalently
on about 270 weak keys;

- For the 835-round Trivium, we could recover at least 12 key bits equivalently
on about 267 weak keys;

- For the 837-round Trivium, we could obtain 5 deterministic and 2 probabilistic
equations on about 272.20 weak keys;

- For the 838-round Trivium, we could obtain 5 deterministic and 2 probabilistic
equations on about 271.75 weak keys.

We further compare our attacks with the original cube attacks (OCA), the division
property based cube attacks (DPCA), and correlation cube attacks (CCA). First, our
attacks can recover the superpoly exactly. Second, we can attack Trivium variants with
high rounds using cubes of relative small sizes, i.e., we can reach the 838-round Trivium
with cubes of sizes 36-37. Compared with original cube attacks, we can improve more than
30 rounds at the cost of increasing the sizes of cubes slightly. In division property based
cube attacks, they need cubes of sizes over 70 to attack Trivium variants with more than
830 initialization rounds. Besides, since it can not ensure that the superpoly of a cube is
non-constant in division property based cube attacks, the attacks in [5, 14, 6] may be only
distinguishing attacks. In correlation cube attacks, they can attack the 835-round Trivium
with cubes of sizes 36-37, but they can not recover the exact superpoly of a cube and the
correlation probability is computed experimentally. We summarise these comparisons in
Table 1, where the “key size” column lists the size of keys which are vulnerable to each
attack.

3The attacks proposed in [6] against the 833-, 835- and 836-round Trivium may be only distinguishing
attacks.

4

Table 1: Comparison with previous cube attacks

attacks rounds/cube size # of key size ref.recovered bits

OCA

767/28-31 35 280 [1]
709/19-23 79 280 [8]
799/32-37 12 280 [9]
802/34-36 8 280 [10]

DPCA

832/72 1 280 [5, 14]
833/73-74 2 280

[6]3835/77 1 280

836/78 1 280

839/78 distinguisher - -

CCA 805/28 7 280
[7]835/36-37 5 280

818/33 10 272

Sect.4Our 835/35 12 267

Method 837/36-37 5 272.20

838/36-37 5 271.75

1.2 Organization
The rest of this paper is organized as follows. In Section 2, we give some necessary
introductions on cube attacks, the Numeric Mapping method, and the IV Representation
techniques. In Section 3, we show the general idea of our attacks. In Section 4, we apply
our attacks to Trivium. Finally, Section 5 concludes this paper.

2 Preliminaries

2.1 Boolean Functions and Algebraic Degree.
A Boolean function on n variables is a mapping from Fn

2 to F2, where F2 is the finite field
of two elements and Fn

2 is an n-dimensional vector space over F2. A Boolean function f
can be represented by a polynomial on n variables over F2,

f(x1, x2, . . . , xn) =
⊕

c=(c1,c2,...,cn)∈Fn
2

ac

n∏
i=1

xci
i ,

which is called the algebraic normal form (ANF) of f . In this paper, u = ac

∏n
i=1 xci

i (ac ̸=
0) is called a term of f . The algebraic degree of a Boolean function is denoted by deg(f)
and defined as

deg(f) = max{wt(c)|ac ̸= 0},

where wt(c) is the Hamming Weight of c. In this paper, we also care about the algebraic
degree of f on a subset I of {x1, x2, . . . , xn}, which is denoted by degI(f) and defined as

degI(f) = max{wtI(c)|ac ̸= 0},

where wtI(c) = |{i|ci ̸= 0 and xi ∈ I}|.

Chen-Dong Ye and Tian Tian 5

Algorithm 1 Pseudo-code of Trivium
1: (s1, s2, . . . , s93)← (k0, k1, . . . , k79, 0, . . . , 0);
2: (s94, s95, . . . , s177)← (v0, v1, . . . , v79, 0, . . . , 0);
3: (s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1);
4: for i from 1 to N do
5: if i > 1152 then
6: zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288;
7: end if
8: t1 ← s66 ⊕ s91 · s92 ⊕ s93 ⊕ s171;
9: t2 ← s162 ⊕ s175 · s176 ⊕ s177 ⊕ s264;

10: t3 ← s243 ⊕ s286 · s287 ⊕ s288 ⊕ s69;
11: (s1, s2, . . . , s93)← (t3, s1, . . . , s92);
12: (s94, s95, . . . , s177)← (t1, s94, . . . , s176);
13: (s178, s179, . . . , s288)← (t2, s178, . . . , s287);
14: end for

2.2 Description of Trivium
Trivium is a bit oriented synchronous stream cipher designed by Cannière and Preneel,
which is one of eSTREAM hardware-oriented portfolio ciphers. It accepts an 80-bit key
and an 80-bit initialization vector. For a more detailed and formal description, we refer
the reader to [15].

The main building block of Trivium is a 288-bit Galois nonlinear feedback shift register
with three registers. In every clock cycle, there are three bits of the internal state updated
by quadratic feedback functions and all the other bits of the internal state are updated
by shifting. The internal state of Trivium, denoted by (s1, s2, . . . , s288), is initialized
by loading an 80-bit secret key and an 80-bit IV into the registers, and setting all the
remaining bits to 0 except for the last three bits of the third register. Then, the algorithm
would not output any keystream bit until the internal state is updated 1152 rounds, see
Algorithm 1 for details.

2.3 Superpoly.
The concept of superpoly was first proposed in [1]. Let f(x1, x2, . . ., xm) be an m-variable
polynomial and I = {xi1 , xi2 , . . . , xid

} be a subset of {x1, x2, . . . , xm}. Denote tI =∏d
j=1 xij , the product of variables in I. Then it is clear that the following representation

f = f1 · tI + f2

for f is unique, where f1 does not contain any common variable with tI and every term
in f2 is not divisible by tI . The polynomial f1 is called the superpoly of tI in f . For the
sake of convenience, we denote f1 by f

tI
in the following paper.

2.4 Cube Attacks.
The idea of cube attack was first proposed by Dinur and Shamir in [1]. In the cube attack
against stream ciphers, an output bit z is described as a tweakable polynomial f on key
variables key = (k0, k1, . . . , kn−1) and public IV variables iv = (v0, v1, . . . , vm−1), where
n and m are positive integers, i.e.,

z = f(key, iv).

6

Let I be a subset containing d public variables called cube variables, where 1 ≤ d ≤ m.
Without loss of generality, we assume that I = {v0, v1, . . . , vd−1}. Let us denote

pI(key) = f

tI
, (1)

the superpoly of tI in f under the condition that all m IV variables are set to 0 except the
d variables in I. Let CI be a set of assignments for IV variables containing 2d m-tuples
in which the variables in I are assigned to all the possible combinations of 0/1 while all
the other IV variables, called non-cube IV variables, are assigned to constants. The set
CI is called a d-dimensional cube defined by I. In this paper, we set all the non-cube IV
variables to 0’s and call I a cube for simplicity. A key observation in cube attacks is that
the summation of f over all the 2d possible vectors in CI leads to pI , i.e.,

pI(key) =
⊕
v∈CI

f(key, v). (2)

If pI(key) is not a constant polynomial, then this means that by choosing IVs, one can
obtain an equation in key variables. Otherwise, (2) provides a distinguisher on the ci-
pher. Hence an attacker in cube attacks focuses on recovering pI(key). Because f is
treated as a black-box polynomial, in practice pI is not algebraically calculated from (1).
Hence, original cube attacks resort to low-degree polynomial tests with a certain failure
probability.

2.5 The Numeric Mapping.
The numeric mapping was firstly introduced by Liu in [16], which was the core technique
of the degree evaluation method for NFSR-based cryptosystems in [16]. Let

f(x1, x2, . . . , xm) =
⊕

c=(c1,c2,...,cm)∈Fm
2

ac

m∏
i=1

xci
i

be an m-variable Boolean function. The numeric mapping, denoted by DEG, is defined
as follows

DEG : Bm × Zm → Z

(f, D) 7→ maxac ̸=0

m∑
i=1

cidi,

where D = (d1, d2, . . . , dm), Bm is the set of all m-variable Boolean functions.
With the numeric mapping, the numeric degree of a composite function can be defined.

Assume that g1, g2, . . . , gm are n-variable Boolean functions and h = f(g1, g2, . . . , gm) is
a composite function. The numeric degree of h is defined as DEG(f, deg(G)), where
G = (g1, g2, . . . , gm) and deg(G) = (deg(g1), deg(g2), . . . , deg(gm)). Furthermore, if we
have deg(gi) ≤ di for 1 ≤ i ≤ m, then it can be seen that

deg(h) ≤ DEG(f, deg(G)) ≤ DEG(f, D)

where D = (d1, d2, . . . , dm).
Based on the numeric mapping, in [16], Liu proposed an iterative algorithm for giving

an upper bound on the algebraic degree of the output bit after r rounds for a Trivium-like
cipher. In this algorithm, they first initialized the degrees of the initial internal state
bits and then iteratively estimated the algebraic degree of the internal state bits at time
instance t for 1 ≤ t ≤ r. Thus, the estimated degree of the output bit could be calculated
according to the output function. Moreover, when estimating the algebraic degree of the
update bits, the author treated the product of two adjacent internal state bits as a whole
and recursively expressed these two bits to obtain a more accurate estimation.

Chen-Dong Ye and Tian Tian 7

2.6 The IV Representation.
The IV representation was first proposed by Fu et al. in [17], which was used to determine
the nonexistence of some IV terms in the output bit of Grain-128. For a stream cipher
with m IV variables, i.e., v0, v1, . . . , vm−1, and n key variables, i.e., k0, k1, . . . , kn−1, an
internal state bit (or the output bit) s can be seen as a polynomial on key and IV variables,
i.e.,

s = f(key, iv) =
⊕
I,J

∏
vi∈I

vi

∏
kj∈J

kj .

The IV representation of a term u =
∏

vi∈I vi

∏
kj∈J kj is defined as uIV =

∏
vi∈I vi. Based

on the definition of IV representation of a term, the IV representation of s is defined as
follows,

sIV =
∑

I

∏
vi∈I

vi.

3 An Algebraic Method to Recover Superpolies
Recall that in an original cube attack, a desirable superpoly is not algebraically computed
from (1), since the output bit polynomial is treated as a black-box polynomial. Hence
original cube attacks resort to low-degree polynomial tests such as BLR linearity tests with
a certain failure probability. Consequently, previously recovered superpolies in original
cube attacks are convincing but without proved correctness. In this section, we shall give
an algebraic method to recover superpolies in cube attacks against an NFSR-based stream
cipher.

In Subsection 3.1, we describe the rationality of our idea and the general framework
for realizing the idea. Then to make our idea practical, we introduce a new criterion
of useful cubes in Subsection 3.2. Consequently, an algorithm is proposed to find useful
cubes efficiently in Subsection 3.3. Finally, in Subsection 3.4, for a useful cube, we show
how to recover its superpoly as well as some auxiliary techniques.

3.1 An Overview of Our Method
We represent the superpoly of a cube by internal state bits for the target cipher. Let us
fix a time instance t ≥ 0 which is less than the number of initialization rounds and denote
the internal state bits of the target cipher at the time instance t by s = (s(t)

1 , s
(t)
2 , . . . , s

(t)
N),

where N is the internal state size of the target cipher. Then an output bit z of the target
cipher also can be described by a polynomial on s = (s(t)

1 , s
(t)
2 , . . . , s

(t)
N), i.e.,

z = gt(s(t)
1 , s

(t)
2 , . . . , s

(t)
N) =

⊕
c=(c1,c2,...,cN)∈FN

2

ac

N∏
i=1

(s(t)
i)ci , (3)

where ac ∈ {0, 1}. Furthermore, note that each internal state bit s
(t)
i (1 ≤ i ≤ N) could

be represented by a polynomial on key and IV variables, i.e.,

s
(t)
i = s

(t)
i (key, iv). (4)

Taking (4) into (3) yields

z = gt(s(t)
1 (key, iv), s

(t)
2 (key, iv), . . . , s

(t)
N (key, iv)). (5)

8

Following from (5), the superpoly of I in z can be computed as

pI =
gt(s(t)

1 (key, iv), s
(t)
2 (key, iv), . . . , s

(t)
N (key, iv))

tI

=

⊕
c=(c1,c2,...,cN)∈FN

2

ac

∏N
i=1(s(t)

i (key, iv))ci

tI

=
⊕

c=(c1,c2,...,cN)∈FN
2

ac=1

ac

∏N
i=1(s(t)

i (key, iv))ci

tI
. (6)

For the sake of convenience, we simply denote s
(t)
i (key, iv) by s

(t)
i in the rest of the paper.

Then (6) implies that

pI =
⊕

c=(c1,c2,...,cN)∈FN
2

ac=1

ac

∏N
i=1(s(t)

i)ci

tI
. (7)

Note that ac

∏N
i=1(s(t)

i)ci with ac = 1 is a term of gt. If we denote all terms of gt by T (gt),
i.e.,

T (gt) = {ac

N∏
i=1

(s(t)
i)ci |ac = 1, c = (c1, c2, . . . , cN) ∈ FN

2 },

then it follows from (7) that

pI =
⊕

s
(t)
i1

s
(t)
i2

···s(t)
il

∈T (gt)

s
(t)
i1

s
(t)
i2
· · · s(t)

il

tI
. (8)

This indicates that if we could compute the superpoly of tI in s
(t)
i1

s
(t)
i2
· · · s(t)

il
for every term

s
(t)
i1

s
(t)
i2
· · · s(t)

il
of gt, then their summation is the desirable superpoly pI in cube attacks.

In the following paper, we shall recover pI based on the equality (8). Hence it is clear
that the superpolies recovered with our method will be correct with probability 1. In
specific, for a given set I of cube variables and a time instance t, there are three main
steps:

• Step 1. Compute the ANF of gt.

• Step 2. For each term s
(t)
i1

s
(t)
i2
· · · s(t)

il
∈ T (gt), compute the superpoly

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =
s

(t)
i1

s
(t)
i2
· · · s(t)

il

tI
.

• Step 3. Compute
pI =

⊕
s

(t)
i1

s
(t)
i2

···s(t)
il

∈T (gt)

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}.

We give some explanations for our method. First, all the non-cube IV variables are set
to 0. That is to say, s

(t)
i (key, iv) is a polynomial on n + d variables consisting of n key

variables and d cube variables, 1 ≤ i ≤ N . Second, the choice of the time instance t obeys
the following two rules:

Chen-Dong Ye and Tian Tian 9

Rule 1 One can compute the ANF of gt(s(t)
1 , s

(t)
2 , . . . , s

(t)
N), where s

(t)
i is treated as a

bit variable. As t decreases, the ANF of gt(s(t)
1 , s

(t)
2 , . . . , s

(t)
N) will become more and

more complex.

Rule 2 For i from 1 to N , one can compute the ANF of s
(t)
i (key, iv). As t increases,

the ANF of s
(t)
i (key, iv) will become more and more complex.

Third, we point out that to compute Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} is a difficult problem in this frame-
work even when the above two rules are satisfied, since it is difficult to compute the
complete ANF of the product s

(t)
i1

s
(t)
i2
· · · s(t)

il
when treating s

(t)
ij

as a polynomial on key
and IV variables. To solve this problem, in Subsection 3.2, we give a criterion to choose
useful cubes for which we could compute Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

} in practice without completely

expanding the product s
(t)
i1

s
(t)
i2
· · · s(t)

il
in its ANF.

3.2 A New Criterion of Useful Cubes
Let Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

} be as in the previous subsection. To compute Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}, we
use the following expression

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =
⊕ t1t2 · · · tl

tI
, (9)

where tj runs through T (s(t)
ij

) independently for 1 ≤ j ≤ l. The difficulty of computing
(9) lies in that there are too many products, say t1t2 · · · tl, need to compute. If t1t2 · · · tl

is not divisible by tI , then we have
t1t2 · · · tl

tI
= 0,

which implies that t1t2 · · · tl has no contribution to Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}. Hence an effective
t1t2 · · · tl should satisfy that t1t2 · · · tl is divisible by tI . To make this point clear we
rewrite (9) as

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =
⊕

tI |t1t2···tl

t1t2 · · · tl

tI
, (10)

where tj runs through T (s(t)
ij

) independently for 1 ≤ j ≤ l. To reduce the number
of effective terms or summation in (10) we propose a criterion for useful cubes in this
subsection.

To characterize a useful cube, we shall give some definitions first.

Definition 1. Let I be a set of cube variables, t ≥ 0, and 1 ≤ i ≤ N . If a term u ∈ T (s(t)
i)

satisfies degI(u) = degI(s(t)
i), then u is called a maximum degree term of s

(t)
i on I.

A maximum degree term of s
(t)
i on I is a term whose degree on I attains the max-

imum. It is obvious that a maximum degree term of s
(t)
i is not unique. For example,

I = {v1, v2, v3, v4} and s
(t)
i = v1v2k1 ⊕ v2v3k1k2 ⊕ v4k3. Then v1v2k1 and v2v3k1k2 are

maximum degree terms of s
(t)
i whose degrees on I are 2.

Definition 2. Let I be a set of cube variables and t ≥ 0. For a term u =
∏l

j=1 s
(t)
ij

, if

l∑
j=1

degI(s(t)
ij

) = |I|,

then u is called a tight term for I.

10

The following property gives a relationship between tight terms and maximum degree
terms concerning the right hand side of (10).

Property 1. Let I be a set of cube variables and u = s
(t)
i1

s
(t)
i2
· · · s(t)

il
be a tight term for

I. If t1t2 · · · tl is divisible by tI where tj ∈ T (s(t)
ij

) for 1 ≤ j ≤ l, then tj is a maximum
degree term of s

(t)
ij

on I.

Let s
(t)
i1

s
(t)
i2
· · · s(t)

il
be a tight term for I. Due to Property 1, when computing

s
(t)
i1

s
(t)
i2

···s(t)
il

tI
,

we only need to consider maximum degree terms of s
(t)
ij

on I. Moreover, maximum de-
gree terms are usually a very small part of s

(t)
ij

. Thus, in this case the computation of
s

(t)
i1

s
(t)
i2

···s(t)
il

tI
could be simplified greatly.

Example 1. Let I = {v0, v1, v2, v3}, s1 = v0v1k0 ⊕ v2 ⊕ v3, s2 = v2v3k5 ⊕ v0 ⊕ v2,
s3 = v2 ⊕ v3, u1 = s1s2, and u2 = s2s3. Then it can be seen that u1 is a tight term for
I. However, u2 is not a tight term for I. The sets of maximum degree terms of s1 and s2
are {v0v1k0} and {v2v3k5}, respectively. According to Property 1, we have

u1

tI
= k0k5,

which could be computed only using the maximum degree terms of s1 and s2.
Based on the concept of tight terms, we propose a new criterion of useful cubes.

Criterion 1. Let I be a set of cube variables and z = gt(s(t)
1 , s

(t)
2 , . . . , s

(t)
N). If every term

u = s
(t)
i1

s
(t)
i2
· · · s(t)

il
∈ T (gt) satisfies

l∑
j=1

degI(s(t)
ij

) ≤ |I|, (11)

then I is called a useful cube.

In Criterion 1, if
∑l

j=1 degI(s(t)
ij

) = |I|, then s
(t)
i1

s
(t)
i2
· · · s(t)

il
is a tight term of gt for I;

otherwise we have
l∑

j=1
degI(s(t)

ij
) < |I|

which implies that s
(t)
i1

s
(t)
i2
· · · s(t)

il
is not divisible by tI , and so

s
(t)
i1

s
(t)
i2
· · · s(t)

il

tI
= 0.

Therefore, this criterion implies that every term u of gt is either a tight term or u
tI

= 0.
Accordingly for a useful cube I, we simply have

pI =
⊕

s
(t)
i1

s
(t)
i2

···s(t)
il

is a tight term of gt

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}

=
⊕

s
(t)
i1

s
(t)
i2

···s(t)
il

is a tight term of gt


⊕

tj is a maximum
degree term of s

(t)
ij

t1t2 · · · tl

tI

 . (12)

It can be seen that the computation of pI is relatively easier for a useful cube I. In the
next subsection, we will show how to pick up useful cubes.

Chen-Dong Ye and Tian Tian 11

Algorithm 2 Finding Useful Cubes with Degree Evaluation
Require: the chosen cube variables I, the chosen time instance t

1: Express the output bit z as z = gt(s(t));
2: Iteratively calculate DEGI(s(t)

i) for i ∈ {1, 2, . . . , N};
3: for each term u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
of gt do

4: Set DEGI(u) =
∑l

j=1 DEGI(s(t)
ij

);
5: if DEGI(u) > |I| then
6: return useless;
7: end if
8: end for
9: return useful;

3.3 An Algorithm to Find Useful Cubes
In this subsection, we discuss how to find useful cubes efficiently. According to Rule 1,
we assume that gt is known, and so T (gt) is known. It can be seen from Criterion 1 that
to judge whether I is useful we need to calculate

l∑
j=1

degI(s(t)
ij

)

for every term s
(t)
i1

s
(t)
i2
· · · s(t)

il
in T (gt). This is in essence a degree evaluation problem. On

one hand, to quickly judge whether a cube is useful, we need an efficient degree evaluation
algorithm. On the other hand, to accurately identify a useful cube, we need an accurate
degree evaluation algorithm since a useful cube may be missed if the estimated degrees
are far from real degrees. Considering these issues, we choose to use the idea of numeric
mapping proposed in [16]. Details are given in Algorithm 2. As for the definition and
methodology of numeric mapping and numeric degree please refer to [16] and Section 2.

The general idea of Algorithm 2 is first computing the numeric degree of s
(t)
i on I for

1 ≤ i ≤ N denoted by DEGI(s(t)
i) and then computing the numeric degree for each term

s
(t)
i1

s
(t)
i2
· · · s(t)

il
∈ T (gt) by

DEGI(s(t)
i1

s
(t)
i2
· · · s(t)

il
) =

l∑
j=1

DEGI(s(t)
ij

).

If
DEGI(s(t)

i1
s

(t)
i2
· · · s(t)

il
) ≤ |I|

holds for every term s
(t)
i1

s
(t)
i2
· · · s(t)

il
∈ T (gt), then we regard I as a useful cube in Algorithm

2. Since the algebraic degree of s
(t)
i is always less than or equal to the numeric degree

of s
(t)
i , i.e., degI(s(t)

i) ≤ DEGI(s(t)
i), it follows that a cube outputted by Algorithm 2

satisfies Criterion 1.

3.4 Recover the Exact Superpoly of a Useful Cube
After finding a useful cube I, we can recover the corresponding superpoly pI by (12). The
critical part of this phase is calculating the superpoly of tI in each tight term for I. We
present the details in Algorithms 3 and 4.

Let u = s
(t)
i1

s
(t)
i2
· · · s(t)

il
be a tight term for I. In Algorithm 3, the procedure Recover-

Coefficient is called to compute Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}. Following from (12), Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}

12

is the summation of
t1t2 · · · tl

tI
,

where t1t2 · · · tl is divisible by tI and tj is a maximum degree term of s
(t)
ij

for j ∈
{1, 2, . . . , l}. Hence, we need to find all such products of maximum degree terms of
s

(t)
i1

, s
(t)
i2

, . . . , s
(t)
il

to obtain Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}. In RecoverCoefficient, it can be done in
the following three steps.

Collect and Preprocess the Maximum Degree Terms. The first step is to collect
and preprocess the maximum degree terms of s

(t)
ij

for j ∈ {1, 2, . . . , l}. Assume that the
maximum degree terms of s

(t)
ij

are stored in MDT [j], where MDT is a list of sets and
MDT [j] represents the j-th set in MDT .

Our goal is to find all the combinations

(t1, t2, . . . , tl) ∈MDT [1]×MDT [2]× · · · ×MDT [l]

such that
∏l

j=1 tj is divisible by tI . Let t′
j be the IV representation of tj for 1 ≤ j ≤ l.

Then, if
∏l

j=1 tj is divisible by tI , then
∏l

j=1 t′
j = tI (the IV variables except cube variables

are set to 0). Therefore, we apply the Reduce operation to MDT [j] for 1 ≤ j ≤ l. In the
Reduce operation, we first do IV representation for each term in MDT [j], and so we could
obtain a multi-set V MDT [j] = {uIV |u ∈ MDT [j]}, where uIV is the IV representation
of u. Then, we could obtain a set RMDT [j] from V MDT [j], where only one of the
repeated terms in V MDT [j] are kept. For simplicity, RMDT [j] is called a set of reduced
maximum degree terms in the rest of this paper.

In this paper, a combination

(t1
j1

, t2
j2

, . . . , tl
jl

) ∈ RMDT [1]×RMDT [2]× · · · ×RMDT [l]

satisfying
∏l

i=1 ti
ji

= tI is called a valid combination. It can be seen that, by finding all
the valid combinations, we could deduce all the combinations

(t1, t2, . . . , tl) ∈MDT [1]×MDT [2]× · · · ×MDT [l]

such that
∏l

i=1 ti is divisible by tI . Note that
∏l

i=1 |RMDT [i]| would be much smaller
than

∏l
i=1 |MDT [i]|, since MDT [i] (1 ≤ i ≤ l) may have many terms whose results of IV

representation are the same. Thus, the complexity could be reduced dramatically.
Find All the Valid Combinations. Accordingly, the second step is to find all the

valid combinations. Although
∏l

i=1 |RMDT [i]| would be much smaller than
∏l

i=1 |MDT [i]|,
it may still be very large. Hence, we would not check each combination (t1

j1
, t2

j2
, . . . , tl

jl
)

directly, where ti
ji
∈ RMDT [i] for 1 ≤ i ≤ l. Instead, we pick up elements from RMDT

gradually to form a full combination. Moreover, we propose the following two strategies
to throw away some invalid combinations in advance. To illustrate these two strategies,
assume that we have picked up the first d elements of a combination, i.e., t1

j1
, t2

j2
, . . . , td

jd
.

Strategy 1. If degI(t1
j1
· · · td

jd
) < degI(t1

j1
) + · · · + degI(td

jd
), then we would throw

away all the combinations whose first d components are t1
j1

, t2
j2

, . . . , td
jd

.
Let (t1

j1
, t2

j2
, . . . , td

jd
, td+1

jd+1
, . . . , tl

jl
) be a combination such that the condition in Strategy

1 is satisfied. Then,

degI(t1
j1
· · · tl

jl
) ≤ degI(t1

j1
· · · td

jd
) + degI(td+1

jd+1
· · · tl

jl
)

<

d∑
i=1

degI(ti
ji

) + degI(td+1
jd+1
· · · tl

jl
)

≤
l∑

i=1
degI(ti

ji
) = |I|.

Chen-Dong Ye and Tian Tian 13

Namely, degI(t1
j1

t2
j2
· · · tl

jl
) < |I|. Hence, combinations satisfying the condition in Strategy

1 are not valid ones and should be thrown away.
Strategy 2. For some d + 1 ≤ w ≤ l, if each term tw ∈ RMDT [w] satisfies that

degI(tw · t1
j1

t2
j2
· · · td

jd
) < degI(tw) + degI(t1

j1
t2
j2
· · · td

jd
), then we would throw away all the

combinations whose first d components are t1
j1

, t2
j2

, . . . , td
jd

.
Let (t1

j1
, t2

j2
, . . . , td

jd
, td+1

jd+1
, . . . , tl

jl
) be a combination such that the condition in Strategy

2 is satisfied. Without loss of generality, we assume that w = d + 1. Then,

degI(t1
j1
· · · tl

jl
) ≤ degI(t1

j1
· · · td+1

jd+1
) + degI(td+2

jd+2
· · · tl

jl
)

< degI(t1
j1
· · · td

jd
) + degI(td+1

jd+1
)

+ degI(td+2
jd+2
· · · tl

jl
)

≤
l∑

i=1
degI(ti

ji
) = |I|.

Namely, degI(t1
j1

t2
j2
· · · tl

jl
) < |I|. Hence, combinations satisfying the condition in Strategy

2 are not valid ones and should be thrown away.
If the chosen first d components do not satisfy the condition in Strategy 1 nor the

condition in Strategy 2, then we would pick up the (d+1)-th component from RMDT [d+
1]. Note that, Strategies 1 and 2 can be applied again to judge whether the combinations
which contain the chosen first d+1 components should be thrown away. Namely, Strategies
1 and 2 can be used again and again until a full combination is formed. Benefited from
these two strategies, we can throw away many combinations in advance and the phase of
finding all the valid combinations can be accelerated dramatically.

Recover the Superpoly of I in a Tight Term u. The final step is to recover
the superpoly of I in u according to all the valid combinations. Let (t1

j1
, t2

j2
, . . . , tl

jl
)

be a valid combination. Since the terms in RMDT [i] are reduced from MDT [i], the
combination (t1

j1
, t2

j2
, . . . , tl

jl
) may correspond to several combinations (t1, t2, . . . , tl) such

that
∏l

j=1 tj is divisible by tI , where tj ∈ MDT [j] for 1 ≤ j ≤ l. All the combinations
which (t1

j1
, t2

j2
, . . . , tl

jl
) corresponds to can be covered by a vector (λ1

j1
, λ2

j2
, . . . , λl

jl
), where

λw
jw

=
s

(t)
iw

tw
jw

for w ∈ {1, 2, . . . , l}. In this paper, (λ1
j1

, λ2
j2

, . . . , λl
jl

) is called the superpoly vector of
(t1

j1
, t2

j2
, . . . , tl

jl
). Then, the contribution of the valid combination (t1

j1
, t2

j2
, . . . , tl

jl
) to the

superpoly of I in u is
∏l

w=1 λw
jw

. Thus,

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =
⊕

(t1
j1

,t2
j2

,...,tl
jl

)is valid

l∏
w=1

λw
jw

.

As an illustration of Algorithms 3 and 4, we provide the following example.

Example 2. Let I = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9} be a set of cube variables. Assume
that u = s1s4s6s8, where

s1 = v4v5k2k3 ⊕ v4v5k4 ⊕ v4v5k5 ⊕ v2v3 ⊕ v5v6 ⊕ k3,

s4 =v0v1v2v3k0 ⊕ v0v1v2v3k1 ⊕ v0v1v3v4k0 ⊕ v0v1v4v6k2

⊕ v1v2v3k2 ⊕ v1v2v3k44 ⊕ v2v3 ⊕ v4k0 ⊕ v5k1,

14

Algorithm 3 Recover the Exact Superpoly of a Useful Cube
Require: The set of cube variables I, the chosen time instance t to compute gt

1: Call Algorithm 2, and store the tight terms in the set T(I);
2: Calculate the ANF of s

(t)
i on cube and key variables for i ∈ {1, 2, . . . , N} ;

3: Set pI = 0;
4: for each u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
∈ T(I) do

5: Set Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} =RecoverCoefficient(u,I);
6: Set pI = pI ⊕Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

};
7: end for
8: return pI ;

Algorithm 4 Recover the Superpoly of I in a Tight Term
1: procedure RecoverCoefficient(u,I)
2: Assume that u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
;

3: for 1 ≤ j ≤ l do
4: Collect maximum degree terms of s

(t)
ij

and store them in MDT [j];
5: Apply the Reduce operation to MDT [j] and store the reduced terms in RMDT [j];
6: end for
7: Figure out all valid combinations;
8: Set Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

} = 0;

9: for each valid combination (t1
j1

, t2
j2

, . . . , tl
jl

) do
10: Recover the corresponding superpoly vector (λ1

j1
, λ2

j2
, . . . , λl

jl
) according to the

ANFs of s
(t)
i1

, s
(t)
i2

, . . . , s
(t)
il

;
11: Set

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} = Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

} ⊕
l∏

w=1
λw

jw
;

12: end for
13: return Q{s

(t)
i1

,s
(t)
i2

,...,s
(t)
il

};
14: end procedure

s6 = v3v6 ⊕ v4v6 ⊕ v6v7, and s8 = v6v9 ⊕ v7v9 ⊕ v8v9.

The first step is to collect the reduced maximum degree terms. It can be obtained that
the set of maximum degree terms of s1 is

MDT [1] = {v4v5k2k3, v4v5k4, v4v5k5, v2v3, v5v6}.

Then, the Reduce operation is applied. After applying the IV representation, we could
obtain a multi-set

V MDT = {v4v5, v4v5, v4v5, v2v3, v5v6}.
By removing the repeated terms in V MDT , we derive the set of reduced maximum degree
terms of s1 is

RMDT [1] = {v2v3, v4v5, v5v6}.
Similarly, the sets of reduced maximum degree terms of s4,s6 and s8 are

RMDT [2] = {v0v1v2v3, v0v1v3v4, v0v1v4v6},

RMDT [3] = {v3v6, v4v6, v6v7},

Chen-Dong Ye and Tian Tian 15

and
RMDT [4] = {v6v9, v7v9, v8v9}

respectively.
After obtaining the sets of reduced maximum degree terms, we need to find all the

valid combinations. Due to the first strategy, we can throw away the combinations whose
first two components are in the set {(v2v3, v0v1v2v3), (v2v3, v0v1v3v4), (v4v5, v0v1v3v4),
(v4v5, v0v1v4v6), (v5v6, v0v1v4v6)}. Furthermore, according to the second strategy, we can
throw away the combinations whose first two components belong to {(v5v6, v0v1v2v3), (v5v6, v0v1v3v4),
(v2v3, v0v1v4v6)}. Totally, we throw away 8 out of all the 9 combinations for the first
two components. We use these two strategies iteratively to form a full combination.
As a result, we can obtain the only valid combination (v4v5, v0v1v2v3, v6v7, v8v9) with-
out checking every combination. The superpoly vector of (v4v5, v0v1v2v3, v6v7, v8v9) is
(k2k3 ⊕ k4 ⊕ k5, k0 ⊕ k1, 1, 1). Immediately, we have that

Q(s1,s4,s6,s8) = (k2k3 ⊕ k4 ⊕ k5)(k0 ⊕ k1).

4 Applications to Trivium
In this section, we apply our method to Trivium. First, we introduce some details of
applications to Trivium. Then, we perform experiments on several variants of round-
reduced Trivium. Finally, we have some discussion on our method.

4.1 The Optimization for Applications to Trivium
In this subsection, according to the structure of Trivium, we do some optimization for
Algorithms 2, 3 and 4. For the sake of convenience, we assume that the r-round Trivium
is our target and the output bit zr is presented by gt(s(t)) for some properly chosen t, i.e.,
zr(key, iv) = gt(s(t)

1 (key, iv), · · · , s
(t)
288(key, iv)).

4.1.1 The Algorithm of Finding Useful Cubes for Trivium

In order to identify useful cubes more accurately, we make some optimization and im-
provements to Algorithm 2 according to the structure of Trivium.

Treating Two Adjacent Internal State Bits as a Whole. Let u = s
(t)
i1

s
(t)
i2
· · · s(t)

il

be a term of gt. When judging whether u is a tight term, if u has two adjacent internal
state bits in the same register, i.e., s

(t)
j and s

(t)
j+1 for some j, then we would treat the

product of these two bits as a whole. Namely, we evaluate the degree of the product of
two adjacent bits instead of estimating the degrees of these two bits separately. Liu also
did so in [16]. In the rest of this paper, we refer to two adjacent internal state bits in the
same register as two adjacent internal state bits for short. The following is an illustrative
example.

Example 3. Let u = s
(t)
1 s

(t)
2 s

(t)
3 s

(t)
4 s

(t)
5 be a term of gt. The degree of u is evaluated as

DEGI(u) = DEGI(s(t)
1 s

(t)
2) + DEGI(s(t)

3 s
(t)
4) + DEGI(s(t)

5).

A Small Improvement. When evaluating the degree of s
(t)
j s

(t)
j+1, we make a small

improvement of the degree evaluation method proposed by Liu in [16]. We take s
(t)
91 s

(t)
92 as

an example to illustrate this improvement. For any t ≥ 92, s
(t)
91 and s

(t)
92 can be recursively

represented by
s

(t)
91 = st−91

286 st−91
287 ⊕ st−91

288 ⊕ st−91
243 ⊕ st−91

69

and
s

(t)
92 = st−92

286 st−92
287 ⊕ st−92

288 ⊕ st−92
243 ⊕ st−92

69 ,

16

respectively. Since st−92
287 = st−91

288 , we evaluate the degree of st−92
286 st−92

287 (st−91
288 ⊕ st−91

243 ⊕
st−91

69) as
DEGI(st−92

286 st−92
287) + DEGI(st−91

243 ⊕ st−91
69)

instead of
DEGI(st−92

286 st−92
287) + DEGI(st−91

288 ⊕ st−91
243 ⊕ st−91

69)

as Liu did in [16]. When the degree of st−91
288 ⊕ st−91

243 ⊕ st−91
69 is determined by st−91

288 , our
improvement would work. Similarly, this improvement could also be made in the cases
of s

(t)
175s

(t)
176 and s

(t)
286s

(t)
287, since the update functions of three registers are similar. Based

on the above optimization and improvements, we propose a more accurate algorithm of
finding useful cubes for Trivium, see Algorithm 5 in Appendix 1.

Coincident with Algorithm 5, when recovering the superpoly of tI in a tight term
u, for two adjacent bits s

(t)
j and s

(t)
j+1 in u, we collect the reduced maximum degree

terms of s
(t)
j s

(t)
j+1 instead of collecting the reduced maximum degree terms of s

(t)
j and s

(t)
j+1

separately. The detailed procedure is described in Algorithm 7 in Appendix 1.

4.1.2 Recovering Superpolies for Trivium Variants with High Initialization Rounds.

As r (the target round) increases, it is hard to choose t satisfying Rules 1 and 2 mentioned
in Subsection 3.1 at the same time. Fortunately, this dilemma can be solved by taking an
extra step when calculating the superpoly pI of the chosen cube I. Following from (12),
we have that

pI =
⊕

s
(t)
i1

s
(t)
i2

···s(t)
il

is a tight term of gt

Q{s
(t)
i1

,s
(t)
i2

,...,s
(t)
il

}

=
⊕

u=s
(t)
i1

···s(t)
il

is
a tight term of gt

⊕
s

(t0)
j1

···s(t0)
jd

is a
term in T (fu

t0
)

Q{s
(t0)
j1

,...,s
(t0)
jd

}, (13)

where

u =
l∏

j=1
s

(t)
ij

(key, iv) = fu
t0

(s(t0)
j1

(key, iv), . . . , s
(t0)
jd

(key, iv)).

According to (13), when calculating the superpoly of I in the tight term u = s
(t)
i1

s
(t)
i2
· · · s(t)

il

of gt, we first express it as a polynomial on the internal state s(t0), which is denoted by
fu

t0
, and then calculate the superpoly of I in each term of fu

t0
. The detailed procedure

is presented in Algorithm 6 in Appendix 1. Note that, in Algorithm 6, we choose the
smallest t of those satisfying Rule 1 and the largest t0 such that we can compute the
ANFs of s

(t0)
i for 1 ≤ i ≤ 288.

4.2 Experimental Results
In this subsection, to illustrate the efficiency and effectiveness of our method, we perform
various experiments on several round-reduced variants of Trivium. All of our experiments
are completed on a PC with an i7-7700k CPU inside.

4.2.1 Towards Finding Useful Cubes.

We try to find useful cubes for Trivium variants with 800-832 initialization rounds. For
these variants, similar to [16], we choose cubes which do not contain variables vi, vj satisfy-
ing |i−j| = 1 of sizes 33-36. For each variant with r initialization rounds (800 ≤ r ≤ 832),

Chen-Dong Ye and Tian Tian 17

we randomly test 10000 such cubes. As a result, we find useful cubes for each variant,
and the average number is about 175. This indicates that useful cubes exist widely and
can be found easily.

4.2.2 Results for the 818-round Trivium.

In this subsection, we apply our method to attack the 818-round Trivium. In the following,
we would show the details of recovering the superpoly of useful cube by taking

I = {v1, v3, v6, v8, v10, v12, v14, v16, v21, v23, v25, v27, v29,

v31, v34, v36, v38, v40, v42, v44, v49, v51, v53, v55, v57,

v59, v62, v64, v66, v68, v70, v72, v74, v77, v79}

as an example. First, we filter out all the 24 tight terms for I of g417. Then, we call
Algorithm 6 to calculate the superpoly pI . In Algorithm 6, to recover the superpoly of
I in each tight term u of g417, we first express it as a polynomial on the internal state
s(363), denoted by fu

363(s(363)), and then calculate the superpoly of I in each term of
fu

363(s(363)). Hence, we only need to calculate the exact ANFs of s
(363)
1 , s

(363)
2 , . . . , s

(363)
288 .

After expressing u as fu
363, the key point is to find all the valid combinations in each tight

term u′ of fu
363. This could be done efficiently with the help of the two strategies proposed

in Subsection 3.4. For instance, let u′ be a tight term of fu
363 given by

u′ = ds
(363)
64 ds

(363)
102 s

(363)
124 s

(363)
133 ds

(363)
136 s

(363)
145 ds

(363)
147 ds

(363)
154 ,

where ds
(363)
i = s

(363)
i s

(363)
i+1 and

u = s
(417)
121 s

(417)
122 s

(417)
157 s

(417)
158 s

(417)
193 s

(417)
194 s

(417)
203 s

(417)
204 s

(417)
211 .

Note that there are totally

94× 99× 52× 42× 755× 34× 676× 542 ≈ 257

combinations in u′ (two adjacent bits are treated as a whole). It is not easy for a PC to run
over all the 257 combinations. Fortunately, benefited from the two strategies introduced
in Subsection 3.4, we can figure out all the valid combinations in u′ in seconds with our
PC. Then, we recover the superpoly vector for each valid combination. Finally, we obtain
the superpoly pI within about ten minutes, see Table 2 for details.

For the 818-round Trivium, among the found useful cubes, we recover the exact su-
perpolies of those with relatively few tight terms. For each recovered superpoly pI ,
it could be rewritten as a product of some simple polynomials on key variables, i.e.,
pI =

∏
g∈ΓI

g(key). When pI = 1, we have that g(key) = 1 for each g ∈ ΓI . On the
other hand, when pI = 0, by checking whether the value of pI under a specific key is equal
to 0, we could still discard a large amount of wrong keys. Let us take I1 as an example.
If the superpoly pI1 = 1, then we have that

k65, g5, g14, g18, g24, g29, g31, g38, g40, g44, g48, and g51

are equal to 1, i.e., we could recover 12 key bits equivalently. If pI1 = 0, then we could
discard 268 wrong keys.

Let WKI = {k|k ∈ F80
2 , pI(k) = 1}. It can be seen that WKI is exactly the set of keys

under which we could recover several key variables with pI . Namely, with respect to pI ,
these keys could be recovered more easily, which are called weak keys in this paper. For
each superpoly pI , by calculating the Grobner basis of the ideal generated by the set ΓI ,
where pI =

∏
g∈ΓI

g, we figure out the corresponding set WKI exactly. We summarize our

18

results in Table 21, where DEI is the set of equations derived from the superpoly under
weak keys. Since the sizes of I1, I2, I3, and I4 are 35, for the 818-round Trivium, we could
recover at least 10 key bits equivalently under about 270 weak keys with a complexity of
237.

Table 2: Some superpolies for the 818-round Trivium

cube superpoly |WKI | |DEI |

I1
pI1 = k65 · g5 · g14 · g18 · g24 · g29· 268 12
g31 · g38 · g40 · g44 · g48 · g51

I2
pI2 = k65 · g5 · g18 · g27 · g29 · g33· 270 10
g38 · g42 · (g50 ⊕ 1) · (f22 ⊕ 1)

I3
pI3 = k57 · k65 · g5 · g16 · g23 · g27 · g29 266 14
g31 · g38 · g40 · g42 · g46 · g48 · (f22 ⊕ 1)

I4
pI4 = k57 · k64 · g5 · g16 · g27 · g29 · g31 267 13
g38 · g40 · g42 · g46 · g48 · (f22 ⊕ 1)

fi = kiki+1⊕ki+2⊕ki+44⊕ki+53 for 1 ≤ i ≤ 12
fi = kiki+1 ⊕ ki+2 ⊕ ki+44 for 13 ≤ i ≤ 24
gi = ki ⊕ ki+25ki+26 ⊕ ki+27 for 0 ≤ i ≤ 52
g53 = k53 ⊕ k78k79

4.2.3 Results for the 835-round Trivium.

For the 835-round Trivium, we find several useful cubes and recover their superpolies2.
Since the recovered superpolies are complex, we could not rewrite them as products of
simple polynomials. Hence, we attempt to utilize the relationship between the superpolies
and some simple polynomials to perform attacks.

Let Ω = {fi|1 ≤ i ≤ 24} ∪ {gi|0 ≤ i ≤ 53} ∪ {ki|0 ≤ i ≤ 79}, where fi’s and gi’s are
defined as in Table 2. For each superpoly pI , we check whether (g⊕1) ·pI = 0 or g ·pI = 0
holds, and so we could obtain a corresponding set

GI = {g|(g ⊕ 1) · pI = 0}.
Note that, when pI = 1, we have that g = 1 for each g ∈ GI . Namely, with the set GI , we
could derive simple equations on key variables under weak keys. Then, for each superpoly
pI , we estimate the size of WKI by evaluating the values of each superpoly under 220

random keys. For example, we have that GI5 = {g8, g21, g32, g34, g40, g49, f22 ⊕ 1}. Hence,
we could obtain eight equations on key variables when pI5 = 1. We summarize our results
in Table 31, where DEI is the set of equations derived from the superpoly pI under weak
keys.

Table 3: superpolies of 835-round Trivium

cube GI |WKI | |DEI |

I5
g8, g21, g32, g34, 269.6 8
g40, g49, f22 ⊕ 1

I6 g8, g32, g40 271.3 3

I7
g17, g23, g26, g32, g34, g49, f5 ⊕ 1, 267 12

f14, f23 ⊕ 1, k58, k65, k66 ⊕ 1
I8 g9, g24, g32, f23 ⊕ 1, k58 270.32 5

Since the sizes of I5, I6, I7, and I8 are 37, for the 835-round Trivium, we could recover
at least 12 key bits equivalently on more than 267 weak keys with a complexity of 239.

Chen-Dong Ye and Tian Tian 19

4.2.4 Results for the 837-round and 838-round Trivium

We do similar experiments on the 837- and 838-round Trivium. We find several useful
cubes, and we list a part of them in Table 6 in Appendix 2. Among these useful cubes,
we recover the exact superpolies of those with fewest tight terms2. For each recovered
superpoly pI , we figure out the corresponding set GI and estimate the size of WKI with
220 random keys. Furthermore, to recover more key variables, we calculate the conditional
probability P r(g = 1|pI = 1) for each g ∈ Ω, and so we could obtain a set

PGI = {g|g ∈ Ω, P r(g = 1|pI = 1) ∈ (0, 0.25] ∪ [0.75, 1)}.

When pI = 1, we have that g = 1 holds with a probability of P r(g = 1|pI = 1) for
g ∈ PGI . Namely, with the set PGI , we could obtain several probabilistic equations on
key variables under weak keys. We summarise our results in Table 41.

Table 4: Superpolies of 837- and 838- round Trivium

cube GI PGI Pr |WKI |

I9 g7, g22, g30, f21, k56
g0 0.8788

272.20g13 0.9394

I10 f20, g6, g21, g29, k55
g12 0.8846 271.75
k64 0.78

As a result, for the 837-round Trivium, we could obtain 5 deterministic and 2 proba-
bilistic equations on about 272.2 weak keys with a complexity of 237(|I9| = 37). Similarly,
in the case of the 838-round Trivium, we could obtain 5 deterministic and 2 probabilistic
equations on about 271.75 weak keys with a complexity of 237 (|I10| = 37).

Interestingly, I10 is the same as the cube proposed by Liu in [16]. Recall that Liu
tested 100 random keys for the superpoly of this cube, the values are always 0. However,
after obtaining the ANF of pI10 with our method, we know that pI10 is not 0-constant.
It indicates that the output of the 838-round Trivium achieves the maximum degree 37
over this subset of IV variables, and so the degree given by Liu for this cube is tight. In
Table 5, we list several keys under which the values of these two superpolies are 1’s, where
key = k7||k6 · · · ||k0||k15||k14 · · · ||k8|| · · · ||k79||k78|| · · · ||k72.

Table 5: The found secret keys

cube key cube key

I9

0x4fe7af8e2e5e727b31f9

I10

0xffffdfff0f7ff53ff8ff
0x4fe7af8e2e5e737b31f1 0xffffdfff0f7fc53ff8ff
0x4ee7af862e5e727b31f9 0xfbcbd7dfd4bfbdbd5cfc
0x4ee7af8c2e5e727b31f9 0xfbcbd7dfd4bfbdbd3cfc
0x4ee7af862e5e737b31f1 0xfbcbd75fd5afbdbd7cfc

4.3 Discussions
4.3.1 Extra Benefits of Our Method

In our experiments, we find several cubes whose superpolies become 0, i.e., zero-sum
distinguishers, because all the terms are vanished by the xor operations. Such zero-sum

1The details of I1, I2, · · · , I10 could be found in Table 7 in Appendix 1.
2For the detailed ANFs of these found superpolies, please refer to

https://github.com/yechendong/Deterministic-Cube-Attacks.

20

distinguishers could not be detected by Liu’s degree evaluation method since this method
did not take xor-vanished terms into consideration at all. Hence, this shows that xor-
vanished terms could be dealt with in our method to some degree, and so our method
could potentially improve degree evaluation method. This will be a future subject of our
work.

4.3.2 A More Generalized Criterion

In the above, we introduce a new criterion of useful cubes under which the superpolies
can be calculated with a low complexity. Actually, this criterion could be loosen. Assume
that u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
satisfies

∑l
j=1 degI(s(t)

ij
) = |I| + 1 for a set of cube variables I.

Then, the superpoly of tI in u can be calculated by using the maximum degree terms and
the sub-maximum degree terms whose degrees are equal to degI(s(t)

ij
) − 1. The detailed

procedure is described in the following five steps.
Step 1. Collect the set of reduced maximum degree terms for each bit in u =

∏l
j=1 s

(t)
ij

and apply the Reduce operation to them. Store the reduced maximum degree terms of
s

(t)
ij

in RMDT [j].
Step 2. Collect the set of reduced sub-maximum degree terms for each bit in u =∏l

j=1 s
(t)
ij

and apply the Reduce operation to them. Store the reduced sub-maximum
degree terms of s

(t)
ij

in SRMDT [j].
Step 3. Find all the valid combinations

(t1
i1

, t2
i2

, . . . , tl
il

) ∈ RMDT [1]×RMDT [2]× · · · ×RMDT [l]

such that t1
i1

t2
i2
· · · tl

il
= tI . Recover the contribution of all these valid combinations to the

superpoly of tI in u and denote it by λ1.
Step 4. For 1 ≤ j ≤ l, figure out all the possible combinations (t1

i1
, t2

i2
, . . . , tl

il
) such

that t1
i1

t2
i2
· · · tl

il
= tI , where tw

iw
∈ RMDT [w] for w ̸= j and tw

iw
∈ RSMDT [w] if w = j.

Recover the contribution of all these valid combinations to the superpoly of tI in u and
denote it by λ2.

Step 5. The final superpoly of tI in u is λ1 ⊕ λ2.
Therefore, for a cube I, if each term u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
of the gt satisfies

∑l
j=1 degI(s(t)

ij
) ≤

|I|+ 1, then it should be regarded as a useful cube.

5 Conclusion
In this paper, we propose an algebraic method to recover superpolies in cube attacks. First,
we introduce a new criterion of useful cubes whose superpolies can be calculated with a
low complexity. Then, we design an algorithm which could find useful cubes efficiently.
Finally, a new algorithm together with some techniques are proposed to recover the exact
superpolies of useful cubes. As an illustration, we apply our attacks to Trivium. In
applications to Trivium, we choose cubes which do not contain variables vi, vj satisfying
|i − j| = 1. Then, the sizes of chosen cubes are always not more than 40. With such
cubes, we find useful cubes for the 818-,835-,837- and 838-round Trivium. By recovering
the superpolies of useful cubes, we establish attacks for up to the 838-round Trivium under
a large set of weak keys. However, it seems hard to increase the number of attacking rounds
with such kind of cubes. On the other hand, we tested some larger cubes but we did not
find useful cubes under our criterion for higher rounds. How to increases the number of
attacking rounds still needs further research.

Chen-Dong Ye and Tian Tian 21

6 Acknowledgments
This work was supported by the National Natural Science Foundations of China under
grant nos. 61672533 and 61521003.

References
[1] Dinur, I., Shamir, A.: ‘Cube attacks on tweakable black box polynomials’. Proc.

Advances in Cryptology - EUROCRYPT 2009, Germany, April 2009, pp. 278–299

[2] Aumasson, J., Dinur, I., Meier, W., Shamir, A.: ‘Cube testers and key recovery
attacks on reduced-round MD6 and Trivium’. Proc. Fast Software Encryption, 16th
Int. Workshop, FSE 2009, Leuven, Belgium, February 2009, pp. 1–22

[3] Dinur, I., Shamir, A.: ‘Breaking grain-128 with dynamic cube attacks’. Proc. Fast
Software Encryption - 18th Int. Workshop, FSE 2011, Lyngby, Denmark, February
2011, pp. 167–187

[4] Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: ‘Conditional cube attack on
reduced-round keccak sponge function’. Proc. Advances in Cryptology - EUROCRYP-
T 2017, Paris, France, April 2017, pp. 259–288

[5] Todo, Y., Isobe, T., Hao, Y., Meier, W.: ‘Cube attacks on non-blackbox polynomials
based on division property’. Proc. Advances in Cryptology - CRYPTO 2017, Santa
Barbara, CA, USA, August 2017, pp. 250–279

[6] Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: ‘Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly’. Proc. Advances
in Cryptology - CRYPTO 2018, Santa Barbara, CA, USA, August 2018, pp. 275–305

[7] Liu, M., Yang, J., Wang, W., Lin, D.: ‘Correlation cube attacks: From weak-key
distinguisher to key recovery’. Proc. Advances in Cryptology - EUROCRYPT 2018,
Tel Aviv, Israel, April 2018, pp. 715–744

[8] Mroczkowski, P., Szmidt, J.: ‘Corrigendum to: The cube attack on stream cipher
Trivium and quadraticity tests’, Cryptology ePrint Archive, Report 2011/032, 2011.
Available from: http://eprint.iacr.org/2011/032

[9] Fouque, P., Vannet, T.: ‘Improving key recovery to 784 and 799 rounds of Trivium
using optimized cube attacks’. Proc. Fast Software Encryption - 20th Int. Workshop,
FSE 2013, Singapore, March 2013, pp. 502–517

[10] Ye, C., Tian, T.: ‘A new framework for finding nonlinear superpolies in cube at-
tacks against Trivium-like ciphers’. Proc. Information Security and Privacy - 23rd
Australasian Conf., ACISP 2018, Wollongong, NSW, Australia, July 2018 (LNCS
10946), pp. 172–187

[11] Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: ‘A practical method to recover
exact superpoly in cube attack’. Cryptology ePrint Archive, Report 2019/259, 2019.
Available from: https://eprint.iacr.org/2019/259

[12] Fu, X., Wang, X., Dong, X., Meier, W. ‘A key-recovery attack on 855-round Trivium’.
Proc. Advances in Cryptology - CRYPTO 2018, Santa Barbara, CA, USA, August,
2018, pp. 160–184

http://eprint.iacr.org/2011/032
https://eprint.iacr.org/2019/259

22

[13] Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: ‘Observations on the dy-
namic cube attack of 855-round Trivium from Crypto’18’. Cryptology ePrint Archive,
Report 2018/972, 2018. Available from: https://eprint.iacr.org/2018/972

[14] Todo, Y., Isobe, T., Hao, Y., Meier, W.: ‘Cube attacks on non-blackbox polynomials
based on division property’, IEEE Trans Computers, 2018, 67, (12), pp. 1720–1736.

[15] Cannière, C.D., Preneel, B.: ‘Trivium’. In: New Stream Cipher Designs - The
eSTREAM Finalists, 2008. pp. 244–266

[16] Liu, M.: ‘Degree evaluation of NFSR-Based cryptosystems’. Proc. Advances in
Cryptology - CRYPTO 2017, Santa Barbara, CA, USA, August 2017, pp. 227–249

[17] Fu, X., Wang, X., Chen, J.: ‘Determining the nonexistent terms of non-linear mul-
tivariate polynomials: How to break Grain-128 more efficiently’, Cryptology ePrint
Archive, Report 2017/412, 2017. Available from: http://eprint.iacr.org/2017/
412

Appendix
1. The Optimization For Trivium

Algorithm 5 Finding Useful Cubes for Trivium
Require: the set of cube variables I, the number of initialization rounds r, the chosen

time instance t
1: Express zr as zr = gt(s(t));
2: Calculate DEGI(s(t)

i) for i ∈ {1, 2 . . . , 288};
3: Calculate DEGI(s(t)

i s
(t)
i+1) for i ∈ {1, 2 . . . , 288} \ {93, 177, 288};

4: for each term u = s
(t)
i1

s
(t)
i2
· · · s(t)

il
of gt do

5: Set DEGI(u) = 0 and j = 1;
6: while j ≤ l do
7: if ij + 1 = ij+1 and j < l and ij /∈ {93, 177, 288} then
8: Set DEGI(u)=DEGI(u)+DEGI(s(t)

ij
s

(t)
ij+1

);
9: Set j=j+2;

10: else
11: Set DEGI(u) =DEGI(u)+DEGI(s(t)

ij
);

12: Set j=j+1;
13: end if
14: end while
15: if DEGI(u) > |I| then
16: return useless;
17: end if
18: end for
19: return useful;

https://eprint.iacr.org/2018/972
http://eprint.iacr.org/2017/412
http://eprint.iacr.org/2017/412

Chen-Dong Ye and Tian Tian 23

Algorithm 6 Recover the Exact ANF of a Useful Cube for Trivium
Require: the set of cube variables I, the number of initialization rounds r, the chosen

time t to compute gt, the time instant t0 to compute the ANFs
1: Call Algorithm 2, and store the tight terms for I of gt in the set T (I);
2: Compute the ANF of s

(t0)
i on cube and key variables for i ∈ {1, 2, . . . , 288};

3: Set pI = 0;
4: for each u = s

(t)
i1

s
(t)
i2
· · · s(t)

il
∈ T (I) do

5: Set pu
I = 0;

6: Represent u as a polynomial on the internal state bits of s(t0), i.e., u = fu
t0

(s(t0));
7: for each term u′ = s

(t0)
j1

s
(t0)
j2
· · · s(t0)

jw
of fu

t0
do

8: Evaluate the degree of u′ using the similar method used in Algorithm 5;
9: if DEGI(u′) = |I| then

10: Set Q{s
(t0)
j1

s
(t0)
j2

···s(t0)
jw

} =RecoverCoefficient(u′, I);
11: Set pu

I = pu
I ⊕Q{s

(t0)
j1

s
(t0)
j2

···s(t0)
jw

};
12: end if
13: end for
14: Set pI = pI ⊕ pu

I ;
15: end for
16: return pI ;

Algorithm 7 Recover the Superpoly of tI in a Tight Term for Trivium
1: procedure RecoverCoefficient(u,I)
2: Assume that u = s

(t0)
j1

s
(t0)
j2
· · · s(t0)

jw
;

3: Rewrite u as u = h1h2 · · ·hL, where hi is a single internal state bit or the product
of two adjacent internal state bits;

4: for 1 ≤ i ≤ L do
5: Collect and store the maximum degree terms of hi in MDT [i];
6: Apply the Reduce operation to MDT [i], and store the reduced terms in RMDT [i];
7: end for
8: Figure out all valid combinations;
9: Set Q{s

(t0)
j1

s
(t0)
j2

···s(t0)
jw

} = 0;

10: for each valid combination (t1
i1

, t2
i2

, . . . , tL
iL

) do
11: Recover the corresponding superpoly vector (λ1

i1
, λ2

i2
, . . . , λL

iL
);

12: Set Q{s
(t0)
j1

s
(t0)
j2

···s(t0)
jw

} = Q{s
(t0)
j1

s
(t0)
j2

···s(t0)
jw

} ⊕
∏L

j=1 λj
ij

;
13: end for
14: return Q{s

(t0)
j1

s
(t0)
j2

···s(t0)
jw

};
15: end procedure

2. A Part of Experimental Results for the 837- and 838-round Trivium

24

Table 6: A part of useful cubes of the 837- and 838-round Trivium

rounds indies of cube variables tight terms

837

1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,41,
43,46,48,50,52,54,56,58,61,63,65,67,69,71,73,76,78 6

2,4,6,8,10,12,14,17,19,21,23,25,27,29,32,34,36,38,40,42,
44,47,49,51,53,55,57,59,62,64,66,68,70,72,74,77,79 56

0,2,4,6,8,10,12,15,17,19,21,23,25,27,30,32,34,36,38,40,
42,45,47,49,51,53,55,57,60,62,64,66,68,70,75,79 91

0,2,4,6,8,10,13,15,17,19,21,23,25,28,30,32,34,36,38,40,
43,45,47,49,51,53,55,58,60,62,64,66,68,70,73,79 83

0,2,4,6,8,10,15,17,19,21,23,25,28,30,32,34,36,38,40,
43,45,47,49,51,53,55,58,60,62,64,66,68,70,73,75,79 95

1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,
41,43,46,48,50,52,54,56,58,61,63,65,67,69,71,76,78 88

2,4,6,8,10,12,14,17,19,21,23,25,27,29,32,34,36,38,40,
42,44,47,49,51,53,55,57,59,62,64,66,68,70,72,77,79 96

838

0,2,4,6,8,10,12,15,17,19,21,23,25,27,30,32,34,36,38,40
,42,45,47,49,51,53,55,57,60,62,64,66,68,70,72,75,79 6

1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,41,
43,46,48,50,52,54,56,58,61,63,65,67,69,71,73,76,78 56

0,2,4,6,8,10,12,15,17,19,21,23,25,27,30,32,34,36,38,40,
42,45,47,49,51,53,55,57,60,62,64,66,68,70,75,79, 56

1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,41,
43,46,48,50,52,54,56,58,61,63,65,67,69,71,76,78 96

0,2,4,6,8,10,13,15,17,19,21,23,25,28,30,32,34,36,38,40,
43,45,47,49,51,53,55,58,60,62,64,66,68,70,73,79 137

0,2,4,6,8,12,15,17,19,21,23,25,27,30,32,34,36,38,40,42,
45,47,49,51,53,55,57,60,62,64,66,68,70,72,75,79 148

0,2,4,6,8,10,15,17,19,21,23,25,28,30,32,34,36,38,40,43,
45,47,49,51,53,55,58,60,62,64,66,68,70,73,75,79 157

1,3,5,7,9,11,14,16,18,20,22,24,26,29,31,33,35,37,39,41,
44,46,48,50,52,54,56,59,61,63,65,67,69,71,74,78 158

0,2,4,6,8,10,12,15,17,21,23,25,27,30,32,34,36,38,40,42,
45,47,49,51,53,55,57,60,62,64,66,68,70,72,75,79 160

1,3,5,7,9,11,16,18,20,22,24,26,29,31,33,35,37,39,41,44,
46,48,50,52,54,56,59,61,63,65,67,69,71,74,76,78 178

Table 7: The chosen useful cubes

round cube indies of cube variables

818

I1 1,3,6,8,10,12,14,16,21,23,25,27,29,31,34,36, 38,40,42,44,46,49,53,55,57,59,61,64,66,68,70,72,74,76,79
I2 1,3,6,8,10,12,14,16,18,21,25,27,29,31,33,36, 38,40,42,46,48,51,53,55,57,59,61,63,66,68,70,72,74,76,78
I3 1,3,6,8,10,12,14,16,21,23,25,27,29,31,34,36,38,40, 42,44,49,51,53,55,57,59,61,64,66,68,70,72,74,76,79
I4 1,3,6,8,10,12,14,16,21,23,25,27,29,31,34,36,38,40, 42,44,49,51,53,55,57,59,62,64,66,68,70,72,74,77,79

835

I5 0,2,4,6,8,10,13,15,17,19,21,23,25,28,30,32, 34,36,38,40,43,45,47,49,51,53,55,58,60,62,64,66,68,70,73,75,79
I6 0,2,4,6,8,11,13,15,17,19,21,23,26,28,30,32, 34,36,38,41,43,45,47,49,51,53,56,58,60,62,64,66,68,71,73,75,79
I7 0,2,4,7,9,11,13,15,17,19,22,24,26,28,30,32, 34,37,39,41,43,45,47,49,52,54,56,58,60,62,64,67,69,71,73,75,79
I8 0,3,5,7,9,11,13,15,18,20,22,24,26,28,30,33,35,37,39,41,43,45, 48,50,52,54,56,58,60,63,65,67,69,71,73,75,78

837 I9 1,3,5,7,9,11,13,16,18,20,22,24,26,28,31,33,35,37,39,41, 43,46,48,50,52,54,56,58,61,63,65,67,69,71,73,76,78

838 I10 0,2,4,6,8,10,12,15,17,19,21,23,25,27,30,32,34,36,38,40, 42,45,47,49,51,53,55,57,60,62,64,66,68,70,72,75,79

	Introduction
	Our Contributions.
	Organization

	Preliminaries
	Boolean Functions and Algebraic Degree.
	Description of Trivium
	Superpoly.
	Cube Attacks.
	The Numeric Mapping.
	The IV Representation.

	An Algebraic Method to Recover Superpolies
	An Overview of Our Method
	A New Criterion of Useful Cubes
	An Algorithm to Find Useful Cubes
	Recover the Exact Superpoly of a Useful Cube

	Applications to Trivium
	The Optimization for Applications to Trivium
	Experimental Results
	Discussions

	Conclusion
	Acknowledgments

