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Abstract. Two of the most significant challenges in the design of blockchain protocols is increasing
their transaction processing throughput and minimising latency in terms of transaction settlement. In
this work we put forth for the first time a formal execution model that enables to express transac-
tion throughput while supporting formal security arguments regarding safety and liveness. We then
introduce parallel-chains, a simple yet powerful non-black-box composition technique for blockchain
protocols. We showcase our technique by providing two parallel-chains protocol variants, one for the
PoS and one for PoW setting, that exhibit optimal throughput under adaptive fail-stop corruptions
while they retain their resiliency in the face of Byzantine adversity assuming honest majority of stake
or computational power, respectively. We also apply our parallel-chains composition method to improve
settlement latency; combining parallel composition with a novel transaction weighing mechanism we
show that it is possible to scale down the time required for a transaction to settle by any given constant
while maintaining the same level of security.

1 Introduction

Blockchain protocols exhibit an inherent speed-security trade-off that depends on the latency of the under-
lying communication network. This was first formally illustrated in [18] by expressing how block production
per round of message-passing, denoted f , needs to be relatively small for security theorems to be meaningful.
This was further refined in [33] where block production per unit of time was similarly restricted with respect
to 1/∆, where ∆ is the delay of the network, while for arbitrary delays a generic attack was formulated. The
main conclusion of these theoretical analyses is that in order to achieve safety, a blockchain protocol must
be operated at a relatively slow pace with respect to network latency. It is frequently observed (e.g., [18]),
that Bitcoin’s actual parameterisation sets the block production rate conservatively to be once every 30 (or
so) rounds of message passing.

This state of affairs severely impacts two critical performance characteristics of a distributed ledger
that is implemented via a blockchain protocol; specifically, (i) its throughput, since long periods of silence
between blocks result in an underutilisation of the available network bandwidth, and (ii) its settlement time,
since blockchain protocols provide transaction safety with an exponential error in the number of blocks
accumulated beyond the block that registers the transaction.

Rectifying the above two performance issues lead to a number of developments in protocol design that
adopted one of two possible strategies. The first one took a hybrid approach, using a blockchain protocol as a
secure “back-end” while leaving transaction processing to a less secure or less decentralised “front-end” that,
using more standard cryptographic techniques, provides better throughput and settlement times (at least
in optimistic environments). This is exemplified by works such as Hybrid Consensus [34], Bitcoin-NG [16]
and Thunderella [36]. The second approach redefines the underlying blockchain protocol, frequently radically
deviating from the original blockchain protocol structure. This is exemplified by numerous Block-“Tree” or
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“DAG” protocol proposals such as GHOST [39], Spectre [38], Phantom [41], GraphChain [8], Tangle [37],
Conflux [27], and Swirlds [3].

Despite the above developments the current state of the art is still lacking in terms of both a thorough
modeling of transaction throughput and latency as well as a provable answer to the fundamental questions
posed above, namely whether it is possible to provably achieve permissionless ledger consensus with honest
majority that has optimal throughput and settlement time.

Our results. We study a simple yet, as we show, very powerful composition operator over blockchain
protocols: parallel composition. Our parallel-chains protocol composition technique is described as follows:
given an underlying blockchain protocol, either in the proof-of-work (PoW) or the proof-of-stake (PoS)
setting, we execute m instances of it in parallel, while ensuring that the same mining, or staking respectively,
operation can be used across all the m instances. At any given moment, a combine algorithm can be invoked
that processes the contents of the m blockchains in the view of an honest party and organises them into a
single ledger. Our results are summarised as follows.
A theoretical framework for optimistic throughput. We put forth a new formal model that formally
captures for the first time a concept of throughput for distributed ledger protocols. This is achieved by
a novel fine-grained network diffusion functionality that reflects network communication with far greater
precision compared to previous work. Specifically, our network functionality abstracts the uplink, transit
queue as well as the downlink of each single party in the network. Whenever a message is transmitted,
it is placed via a party’s uplink into the transit queue for all recipients. The uplink for each party is by
definition one message per unit of time (we use the term “slot”) while the transit queue for each recipient
can be arbitrarily manipulated by the adversary (for simplicity the parties in our model are symmetric).
Messages in our setting are restricted to a fixed packet length and as such may be insufficient to carry all the
transactions that are available in a party’s pool of pending transactions. At any given moment, messages may
be placed by the adversary in a party’s downlink and become available to the party subject to a restriction
that sets an upper bound on the number of messages that may be accessed from the downlink per slot.
Using this network abstraction we introduce the following notion for block-based distributed-ledger protocol
throughput: it is the ratio of blocks added in the common prefix of all honest parties divided by the number
of slots – during any slot interval of some minimal length within the protocol execution. Armed with our
framework, we analyse some standard proposals for scaling Bitcoin’s throughput. These proposals call for
increasing the block production rate, increasing the block size, or letting the most recent block producer
continuously process new transactions (a proposal that is embodied by Bitcoin-NG [16]). We illustrate that
with the first two of these proposals it is impossible to bring the protocol’s throughput close to 1, a finding
that formally affirms the folklore understanding that the Bitcoin blockchain protocol is inherently limited
in terms of scaling its transaction processing capability and highlights the value of our formal framework as
a yardstick for determining a protocol’s ability to achieve high throughput.1 Finally, Bitcoin-NG is capable
of achieving near-optimal throughput assuming all parties are honest, nevertheless, its throughput becomes
effectively zero in the setting of adaptive fail-stop corruptions; the reason stems from the fact that the
protocol achieves its high throughput via centralising processing to block producers; an adaptive fail-stop
adversary can simply shut down the servers once they are selected and thus effectively zero the throughput.
Given this, the main question we ask is whether it is possible to achieve Byzantine resilience in the setting
of honest majority, while simultaneously achieve (near) optimal throughput for fail-stop corruptions.
A near optimal throughput PoS-based distributed ledger. We employ the parallel composition
technique on a PoS blockchain. Each protocol participant proceeds in parallel across all m blockchains
utilising the total stake that exists for PoS block production. Note that multiple blocks may be emitted in
each round depending on how many blocks have been found to extend the underlying blockchains. Parsing
the m blockchains into a single ledger is achieved by ordering transactions lexicographically according to
the index of the block and the rank of the blockchain it belongs to (from 1 to m). We demonstrate that the

1 It is interesting that Bitcoin’s inevitable evolution as a protocol to adopt larger blocks was so controversial in terms
of implementation that lead to a hard fork between what is known now as Bitcoin Core and Bitcoin Cash, see e.g.,
https://tinyurl.com/ycovnjew.
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protocol achieves near optimal throughput, that can be made arbitrarily close to 1, while enjoying the same
security guarantees as the underlying blockchain protocol. We make our construction explicit by applying
the parallel composition mechanism on the Ouroboros-Praos PoS protocol [13].

A near optimal throughput PoW-based distributed ledger. We employ the parallel composition
technique on a PoW blockchain. As with the PoS case, participants maintain m blockchains, attempting to
mine blocks simultaneously for all of them. Mining simultaneously for all m chains requires to pack all possible
ways to extend the blockchains, storing them in a Merkle root, and then revealing the appropriate path once
the blockchain to be extended is discovered. An additional complication arises in the PoW setting as blocks
do not carry a verifiable time-stamp (that, in the PoS setting, is provided for “free” by our construction).
This prohibits the use of the same simple blockchain combine algorithm used in the PoS setting. Instead,
we use the following mechanism: we identify one of the m blockchains as the synchronisation chain and we
have every block refer to a block of that chain which will play the role of a timestamp. Subsequently, roughly
speaking, a block is stabilised as soon as both itself and its stabilisation block are confirmed with respect
to their respective blockchains. For stable blocks, a total ordering of blocks can now easily be extracted.
As in the PoS setting, we prove that our protocol achieves optimal throughput while enjoying essentially
the same security guarantees as the underlying PoW-based blockchain protocol. Furthermore, composing m
blockchain protocols with full independence requires a PoW composition method; in order to achieve this (as
required by our amplification technique) we generalize the 2-for-1 POWs technique introduced in [18] using
a hash chain (or, alternatively, a PRG), yielding an m-for-1 POW primitive that may be of independent
interest.

A settlement-time amplification technique. We finally employ the parallel composition technique to
improve settlement time. Our technique applies to both the PoW and the PoS setting. Given as a starting
point a blockchain protocol with exponentially small persistence error in a security parameter d that expresses
the time required to wait for a transaction to be settled, we show how the m-fold parallel composition of
the protocol can achieve a wait time d/m for any constant m for (roughly) the same level of safety error.
This is achieved by a novel weighing mechanism that evaluates whether a transaction has been stabilised
by combining depth information from all the blockchains that include the transactions. The transaction
weighing mechanism combines via an exponential sum the weights of the transaction in each individual
blockchain into a single cross-blockchain weight; subsequently settlement is determined via the difference of
this weight with respect to the maximum weight that exists in the ledger for any transaction.

Transaction sharding. As in all DAG-type proposals for distributed ledgers, the same transaction may be
processed by multiple nodes during distributed ledger maintenance when the parallel-composition operator
is applied. While this may be beneficial (as illustrated by our amplification techniques for settlement time),
it may not be desirable in settings where we wish to avoid double processing of transactions to maximise
throughput. In order to reduce overall network traffic in favor of higher throughput, we use a transaction
sharding mechanism that partitions the set of possible transactions and assigns each respective subset to a
different chain who will be responsible for mining the respective transactions. This has the desirable side-
effect that a blockchain user may follow only one of the chains if they are interested in addresses that are
clustered in that chain hence reducing the total amount of data that are required to be handled for keeping
up to date.

As a final note, in this paper we focus on the case where the number of chains m is carefully selected at
the onset as a parameter of the protocol and is constant throughout the execution. It is conceivable though
that parallel chain composition could be adjusted to vary the number of active chains according to the
evolving throughput needs (somewhat akin to the Bitcoin difficulty adjustment). We leave investigating this
more general variant to future work.

Related work. The hybrid approach that decouples (fast) transaction processing from (slow) blockchain
protocol maintenance is intrinsic in the proposal by Eyal et al. [16] (Bitcoin-NG). Applying sortition to form
committees in context of blockchain protocols was first proposed by Decker et al. [14] and further developed
in different lines of work, e.g., [23,30,34,5]. The impossibility of achieving settlement times that are constant
in terms of the actual (unknown) protocol delay in the honest majority setting was put forth in [34].
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Generalizing the chain structure of [32] to more general graphs was first considered by Sompolinsky et
al. [40] and Lerner [25]. The former generalization (GHOST) still extracts a single chain to represent the
ledger but the blocks of the complete block tree (including all forks) remain to contribute to this selection
process in an attempt to preserve the PoW of the blocks outside the main chain. The latter suggests to
organize the blocks in a directed acyclic graph (DAG) whereas a single block references multiple previous
blocks. The first DAG protocols involving some type of formal analysis were proposed by Boyen et al. [8],
Sompolinsky et al. [38,41] and Bentov et al. [5]. However, these proposals only involve qualitative arguments
of eventual transaction safety without giving a full formal model for arguing about both safety, liveness and
throughput. Other examples of DAG protocols are described by Popov [37] (IOTA) and Baird [3] (Hashgraph)
— both not thoroughly analysed in the Byzantine permissionless setting. In [27], Li et al. proposed the first
DAG protocol that directly allows for a detailed analysis. As their protocol is basically an extension of the
GHOST rule that additionally allows for the inclusion of the transactions of the off-chain blocks, maximal
respective throughput is limited by the conditions under which the GHOST protocol can safely operate.

Sharding in context of distributed ledgers was first suggested by Danezis et al. [12], and by Croman et
al. [11]. In the protocol by Gencer et al. [20] each miner operates over the full set of transactions whereas
user nodes only need to observe shards of their interest as each shard maintains its own chain. In contrast,
the protocol by Luu et al. [28] divides mining with respect to the different shards to different committees but
still maintains one single chain such that user nodes must follow the complete history of the ledger. Kokoris-
Kogias et al. [24] and Zamani et al. [42] proposed protocols where sharding is achieved with respect to miner
and user by maintaining one dedicated chain per transaction class and also dividing mining respectively.

Martino et al. [29] proposed to maintain a set of parallel chains wherein blocks permanently cross-
reference blocks of some other chains based on special chain-neighborship properties, claiming to achieve
better throughput than in the single-chain case — without giving a detailed analysis. Kiffer et al. [22]
analysed the clique special case of [29] where each chain cross-references all other chains, and demonstrated
its security when operated under the same overall block-generation rate as the single-chain case; whereas
throughput under increased block-generation rate is not analysed. Similarly to the clique case above, Forestier
et al. [17] suggest to maintain a set of parallel chains where each block cross-references the most recent block
of every chain. Whereas, for PoS, they state that mining can be randomly assigned to the different chains,
they propose no respective solution for PoW. No rigorous analysis of the protocol is given.

We recently learned of concurrent, independent work by Bagaria et al. [2] achieving near-optimal trans-
action throughput and settlement times for proof-of-work blockchains. We defer a full comparison to their
work to the next version of this paper.

Organisation. In Section 2 we present preliminaries, definitions of standard security properties and notations.
We then proceed to Section 3 to introduce our new and refined network model as well as our modeling of
transaction throughput. After a warm-up investigation of the basic Bitcoin-scaling proposals in Section 4,
in Section 5 we put forth our PoS parallel-composition method and apply it on Ouroboros Praos PoS. In
Section 6 we apply the parallel-composition method to PoW-based blockchains. Finally, in Section 7 we
present our settlement-time acceleration method via parallel composition.

2 Preliminaries

Basic Notation. For n ∈ N we use the notation [n] to refer to the set {1, . . . , n}. For brevity, we often
write {xi}ni=1 and (xi)

n
i=1 to denote the set {x1, . . . , xn} and the tuple (x1, . . . , xn), respectively.

Execution Model. We divide time into discrete units called slots. Parties are equipped with (roughly)
synchronized clocks that indicate the current slot: we assume that any clock drift is subsumed in the slot
length. Each slot is indexed by an integer t ∈ {1, 2, . . .}. For an interval of slots I = [t1, t2] we denote its
length as |I| , t2 − t1 + 1.

We consider a UC-style [9] execution of a protocol Π, involving an environment Z, a number of parties Pi,
functionalities that these parties can access while running the protocol (such as the functionality Fdiff used for
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communication), and an adversary A. All these entities are interactive algorithms. The environment controls
the execution by activating parties via inputs it provides to them. The parties, unless corrupted, respond to
such activations by following the protocol Π and invoking the available functionalities as needed. We denote
by Exec (Π,A,Z) the random variable containing the full transcript of an execution of the protocol Π with
adversary A and environment Z.

Adaptive Corruptions. The adversary influences the protocol execution by interacting with the available
functionalities, and by corrupting parties. To corrupt a party, the adversary has to first ask the environment
Z for a permission. If the corruption is approved by Z (via a special message from Z to A), the adversary
corrupts Pi immediately. We distinguish two types of corruption, Byzantine and fail-stop. A Byzantine
corrupted party Pi will relinquish its entire state to A; from this point on, the adversary will be activated in
place of the party Pi. A fail-stop corrupted party, on the other hand, will simply stop executing its program
and, whenever activated, will return an empty message ⊥. We denote by Afs the class of adversaries that
only perform fail-stop corruptions, and by Ab those that also use Byzantine corruptions.

Semi-synchronous Communication. Our model allows for semi-synchronous communication among hon-
est parties, where messages are guaranteed to be delivered within ∆ slots. This is formally captured by the
functionality Fdiff that also models bandwidth-restricted communication, we describe it in Section 3. Note
that the value ∆ is unknown to the protocol itself.

Blockchains and Ledgers. A blockchain (or a chain) (denoted e.g. C) is a sequence of blocks where each
block is connected to the previous one by containing its hash. The first block of a chain C is called a genesis
block and denoted by G. The last block of C is denoted by head(C). By Cdk we denote C where the last k
blocks have been removed. We denote the extension of a chain C by a block B as C′ = C ‖B. For simplicity,
we write B ∈ C iff C contains block B. By len(C) we denote the number of blocks in C.

A ledger (denoted in bold-face, e.g., L) is a mechanism for maintaining a sequence of transactions, often
stored in the form of a blockchain. We slightly abuse the language by letting L (without further qualifiers)
interchangeably refer to the algorithms used to maintain the sequence, and all the views of the participants
of the state of these algorithms when being executed. For example, the (existing) ledger Bitcoin consists of
the set of all transactions that ever took place in the Bitcoin network, the current UTXO set, as well as the
local views of all the participants.

In contrast, we call a ledger state a concrete sequence of transactions tx1, tx2, . . . stored in the stable
part of a ledger L, typically as viewed by a particular party. Hence, in every blockchain-based ledger L,
every fixed chain C defines a concrete ledger state by applying the interpretation rules given as a part of the
description of L (for example, the ledger state is obtained from the blockchain by dropping the last k blocks
and serializing the valid transactions in the remaining blocks). We maintain the typographic convention that
a ledger state (e.g. L) always belongs to the bold-face ledger of the same name (e.g. L). We denote by LP[t]
the ledger state of a ledger L as viewed by a party P at the end of a time slot t. We say that a party P
reports a transaction tx as stable during time slot t iff tx ∈ LP[t]. In contrast, L̃P[t] denotes the ledger that
contains additionally any transactions that are valid but still pending according to the view of party P. For
any t,P it holds that LP[t] � L̃P[t] where � denotes the prefix relation.

Finally, we introduce a specific class of transaction-ledger protocols that have the following structure:
transactions are grouped into blocks, and the stable ledger state is determined by the protocol at any time t
by selecting which of the blocks seen so far are stable, ordering them according to some protocol-specific rule,
interpreting them as a sequence of the transactions they contain, and sequentially removing all transactions
from this sequence that would not be valid with respect to the remaining transactions that are preceeding
them. We call such transaction ledger protocols block-based and remark that all protocols considered in this
paper are block-based. Note that for a block-based ledger protocol L, it is well-defined to treat a ledger
state LP[t] as the sequence of the stable blocks that form it, allowing for notational shorthands such as for
example |LP[t]| denoting the number of stable blocks for P at time t, and B ∈ LP[t] to indicate that B is a
stable block at time t for a party P.
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Recall the definitions of persistence and liveness of a robust public transaction ledger adapted from the
most recent version of [18]:

Definition 1. A protocol Π implements a robust transaction ledger (with respect to parameter u) iff it
organizes the ledger as a sequence of transactions by satisfying the following properties:

Persistence. For any two honest parties P1,P2 and time slots t1 ≤ t2, it holds that LP1 [t1] � L̃P2 [t2].
Liveness. If all honest parties in the system attempt to include a transaction then, at any slot t after u slots

(called the liveness parameter), any honest party P, if queried, will report tx ∈ LP[t].

When a ledger is implemented by a single blockchain, each party P at time t holds a single chain C as its
state. If we want to make P and t explicit, we denote this chain as CP[t]. For such blockchain-based ledger
protocols, robustness is known to be implied by the following blockchain properties:

Common Prefix (CP). A blockchain protocol achieves common-prefix with parameter k ∈ N if for any pair

of honest parties P0,P1 and time slots t0, t1 such that t0 ≤ t1, it holds that CP0 [t0]
dk � CP1 [t1].

Chain Growth (CG). A blockchain protocol achieves chain growth with parameters τ ∈ R and s ∈ N if for
any honest party P, for slots t1, t2 such that t1 + s ≤ t2 ≤ t the chain CP[t] contains at least τ · s blocks
from the time interval (t1, t2].

Chain Quality (CQ). A blockchain protocol achieves chain quality with parameters µ ∈ R and ` ∈ N if for
any honest party P and any time slot t, it holds that among any ` consecutive blocks in CP[t] the ratio
of adversarial blocks is at most 1− µ.

3 Modeling Bandwidth Limitations

Our communication model is based on the model from [13], but extends it to capture bandwidth limitations
of the protocol participants and the efficiency of the protocol in terms of throughput. The network model is
formally captured by the “diffuse” functionality Fdiff given in Figure 1.

We start by fixing a block size b and defining a slot to be the time interval in which a party can “push”
a block of this size to the network, given its bandwidth (we assume the bandwidth limitations to be uniform
for all parties).

We now allow parties to diffuse messages to all other parties at the maximum rate of one block per slot.
If a party attempts to diffuse more than one block in a given slot, these blocks are queued locally and sent
one by one. After being sent, the messages are delayed arbitrarily (and independently for each recipient) by
the adversary, and upon delivery they are pushed into the recipient’s inbox queue, from which they can be
fetched by the recipient at the maximum speed of µ ∈ N blocks per slot. Here µ is the bandwidth-asymmetry
parameter of our model and unless stated otherwise, we will consider the symmetric case µ = 1.

The adversary is also allowed to submit arbitrary additional messages for diffusion. These messages do not
suffer from the initial queuing (we assume the adversary has unlimited uplink available), but will also queue on
the recipients’ side. Importantly, the adversarially-diffused messages are also sent to all participating parties–
this reflects the nature of peer-to-peer gossip protocols, where even adversarial messages, once entering the
system, are propagated to all participants. Note that in line with the UC communication model we also
allow the adversary to send direct messages to parties, but as parties can see that these messages were not
received via Fdiff , they drop them as no such messages are expected by the protocol. This again reflects the
behavior of peer-to-peer gossip networks underlying existing blockchain protocols.

Of course, we need to put some restrictions on the adversarial capability of delaying messages, as
blockchain protocols are known to be insecure in settings with unbounded delays, cf. [33]. In any fixed execu-
tion transcript T (that implicitly specifies a protocol, an adversary, and an environment) and a message M
with corresponding message identifier mid diffused in T via the functionality Fdiff , we denote by delayT (mid)
the amount of slots that passed between M being submitted for diffusion and being fetched from the inbox
by all its honest recipients (or the end of the execution, whichever comes first), decreased by 1. Furthermore,
we let maxdelay(T ) , maxmid∈T delayT (mid), where the maximum is taken over all message identifiers mid
diffused by honest parties in T .
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Fig. 1. Functionality Fdiff .

The functionality Fdiff is parameterized by µ ∈ N. It keeps rounds, executing one round per slot. Fdiff interacts
with the environment Z, stakeholders P1, . . . ,Pn and an adversary A, working as follows for each round:
1. Fdiff maintains three lists of messages for each party Pi that participates: outboxi, delayedi and inboxi, and

one message list outboxA for the adversary; initially all empty. Each outboxi and inboxi for i 6= A operate as
queues, keeping the messages in the order in which they were added.

2. In each round, for each party Pi at most one message is marked as pending, and retains this status until
the end of round: If outboxi is non-empty at the beginning of the round then the first message it contains is
marked as pending, otherwise it is the first message Pi submits for diffusion (see Item 3) in this round.

3. Whenever activated, a party Pi is allowed to submit for diffusion a sequence of messages of size up to b bits,
each. Each message is assigned a unique message identifier mid. These messages are appended to outboxi in
the order of submission.

4. When the adversary A is activated, it is allowed to:
– Read all lists delayedi and inboxi and all pending messages, with corresponding mid values.
– Create arbitrary messages and submit them for diffusion, these messages are put into outboxA. This list

is not a queue, all messages in it are immediately considered to be pending.
– For any j ∈ {1, . . . , n,A} and any pending message mid still in outboxj , A can remove the corresponding

message M from outboxj and put it into delayedi for all i ∈ [n].
– For any party Pi, A can remove any message from the list delayedi and push it to the queue inboxi.

5. At the end of each round, the functionality ensures that every pending message still present in outboxj for
j ∈ {1, . . . , n,A} is removed from outboxj and pushed into delayedi for all i ∈ [n].

6. A party is once per round (if activated) allowed to pop at most µ oldest messages from inboxi. These messages
are given to Pi and removed from inboxi.

Definition 2 (MaxDelay∆). For a protocol Π, an adversary A, and an environment Z, we define the event
MaxDelay∆(Π,A,Z) (or just MaxDelay∆ for brevity) to be the event that maxdelay(Exec (Π,A,Z)) ≤ ∆.

Looking ahead, our security analysis will provide meaningful guarantees in adversarial settings where the
probability of the event ¬MaxDelay∆ remains negligible for some ∆ (which may not be necessarily known
explicitly to the participants).

However, note that since our model bounds the downlink throughput of the parties, some protocols may
induce message delays even when operating in a non-adversarial environment. Definition 3 captures this;
to present it we first need to formalize such non-adversarial executions. To this end, we denote by A⊥ the
dummy adversary that does not corrupt any parties, and does not delay or inject any messages, i.e., the
adversary pushes pending outbox messages directly in the inboxi of party Pi for all i.

Definition 3 (κ-Boundedness). A protocol Π is (κ, ε)-bounded if for the adversary A⊥ and for any
environment Z we have Pr[¬MaxDelayκ(Π,A,Z)] ≤ ε.

For a protocol Π being κ-bound means that assuming the network suffers of no additional (adversary-
induced) delays, the protocol itself does not cause a delay beyond κ.

Finally, we describe how to quantify the throughput of a block-based transaction ledger protocol in this
model. Our definition is akin to the standard definition of the chain growth property, applied to a ledger
instead of a single blockchain.

Definition 4 (Throughput (TP)). A block-based transaction-ledger protocol achieves (θ, L0)-throughput
for parameters L0 ∈ N and θ ∈ [0, 1] if for any honest party P, for slots t1, t2 such that t1 + L0 ≤ t2 ≤ t the
ledger LP[t] contains at least θ · (t2 − t1) blocks from the time interval (t1, t2].

4 Assessing Bitcoin Scaling Proposals

As a warm-up, we use our definitional framework to give a quantitative assessment of several natural proposals
that have appeared in the Bitcoin scaling debate. The purpose is to familiarize the reader with our model and
illustrate its expressiveness, hence for simplicity this section only provides informal claims without proofs
and focuses on throughput in the non-adversarial setting (with A⊥).
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Plain Bitcoin. First, let us consider Bitcoin with blocks of size b, i.e., such that a block can be submitted
for diffusion by a party in a single slot. In a typical Bitcoin execution without adversarial interference, a
successful miner of a block B spends a single slot diffusing B, this block is then delivered within ∆ slots
to the future miner of the next block (along with all other miners), and finally this miner spends d slots
mining for the successor of B. During these ∆+ d slots, the “available bandwidth” is not used productively,
contributing to the rather unsatisfactory throughput of ≈ 1/(1 + ∆ + d) with 1 � ∆ � d. If a block is
considered stable after k blocks are mined on top of it, the expected confirmation time (latency) of this
protocol is ≈ k · (1 +∆+ d).

Larger Blocks. Consider the Bitcoin protocol with each “logical” block consisting of s network-level blocks,
i.e., a block that can be submitted for diffusion in s slots (we neglect the details of the mechanism for
splitting the block into parts). As above, we arrive at an expected throughput of ≈ s/(s+∆+d) and latency
≈ k · (s+∆+ d). However, note that s+∆� d is still necessary to maintain a low forking rate even in the
non-adversarial setting, limiting the achievable throughput.

Shorter Block Intervals. As above, the effect of shortening block interval s+∆+ d (by lowering the mining
difficulty and hence d) is limited due to the condition s+∆� d necessary to prevent accidental forks.

Bitcoin-NG. This proposal exploits a part of the available throughput between the diffusion of (“key”) blocks
to produce and diffuse so-called microblocks created by the miner of the last key block. Therefore, out of
the 1 +∆+ d slots that represent the time interval between two consecutive key blocks, only the bandwidth
of the last ∆ slots are wasted, as the microblocks produced in these slots will not be received in time by
the miner of the next key block. This results in a throughput of ≈ (1 + d)/(1 + ∆ + d), with a latency
of ≈ k · (1 + ∆ + d). Hence, increasing d improves throughput but hurts latency. Also, increasing d leads
to greater centralization (due to less frequent key blocks and hence more variance in rewards) and weaker
adaptive security guarantees (each leader is a target for corruption—such as a DoS attack—until the next
key block is selected).

5 PoS Parallel Chains

5.1 Ouroboros Praos

We present our construction using Ouroboros Praos [13] as our underlying proof-of-stake blockchain protocol.
Nonetheless, note that other similar protocols (e.g. [21,6,1]) could be easily used instead. We now provide a
brief overview of Ouroboros Praos to serve as a reference for our exposition.

The protocol operates (and was analyzed) in the semi-synchronous model with fully adaptive corruptions,
described in Section 2. We will denote it here as ΠPraos. In each slot, each of the parties can determine whether
she qualifies as a so-called slot leader for this slot. The event of a particular party becoming a slot leader
occurs with a probability roughly proportional to the stake controlled by that party and is independent for
two different slots and two different parties. More concretely, each party for each slot locally evaluates a
verifiable random function (VRF, [15]) using the secret key associated with their stake, and providing as
inputs to the VRF both the slot index and so-called epoch randomness (we will discuss shortly where this
randomness comes from). If the VRF output is below a certain threshold that depends on the party’s stake,
then the party is an eligible slot leader and is allowed to create, sign, and broadcast a block for that slot
(containing transactions that move stake among stakeholders). Each leader then includes into the block it
creates also the VRF output and a proof of its validity to certify her eligibility to act as a slot leader. Note
that the local nature of the leader election implies that there will inevitably be some slots with no, or several,
slot leaders.

More precisely, the threshold T ji for a party Pi to become a slot leader in a fixed slot of epoch j is

T ji , 2`VRFφf (αji ) (1)

8



for a stakeholder Pi for epoch ej , where αji is the relative stake of stakeholder Pi in the stake distribution
Sj , `VRF denotes the output length of Fvrf , f ∈ (0, 1) is the so-called active slots coefficient, and φf is the
mapping

φf (α) , 1− (1− f)α .

Parties participating in the protocol are collecting such valid blocks and always update their current state
to reflect the longest chain they have seen so far that did not fork from their previous state by too many
blocks into the past (as captured by procedure maxvalid in Fig. 3).

Multiple slots are collected into epochs, each of which contains R ∈ N slots. Each epoch is indexed by an
index j ∈ N. During an epoch j, the stake distribution that is used for slot leader election corresponds to the
distribution recorded in the ledger up to the last block of epoch j − 2. Additionally, the epoch randomness
for epoch j is derived as a hash of additional VRF-values that were included into blocks from the first two
thirds of epoch j − 1 for this purpose by the respective slot leaders.

Finally, the protocol uses key-evolving signatures (KES) for block signing, and in each slot the honest
parties are mandated to update their private key, contributing to their resilience to adaptive corruptions.

As mandated by the protocol operation, every block in the Ouroboros Praos blockchain has the format
B = (st, d, sl, πB , ρ, σ). Here st is the hash of the previous block; d denotes the transaction-carrying data; and
sl is the index of the slot this block belongs to. πB is a triple (Pi, y, π) where (y, π) is the VRF output-proof
pair certifying that Pi is an eligible slot leader for slot sl; ρ = (yρ, πρ) is an independent VRF output-proof
pair used for randomness generation. Finally, σ is a key-evolving signature of the block by its creator.

We now note the security statement about ΠPraos from [13], expressed in our model. Here honest stake
ratio denotes the stake (as recorded in the current view of the ledger) controlled by uncorrupted parties
as a proportion of the total stake. Moreover, stake shift between two slots t1 < t2 denotes the statistical
distance of the stake distributions corresponding to t1 and t2. Since the stake distribution used for sampling
slot leaders in ΠPraos is at most 2 epochs old, in all statements below it is necessary to consider αH − ν as
the lower bound on effective honest stake ratio, see [21,13] for a more detailed treatment.

Theorem 1 ([13]). Fix parameters k,R,∆,L ∈ N; ξ1, ν ∈ (0, 1). Let R = 24k/f be the epoch length, let L
denote the total lifetime of the system. Let A ∈ Ab be a Byzantine-corruption adversary, let αH be a lower
bound on the honest stake ratio throughout the execution. Let ν and q be upper bounds on the maximum stake
shift over 2R slots, and the number of adversarial random oracle queries, respectively. If

(αH − ν)(1− f)∆ ≥ (1 + ξ1)/2

then ΠPraos implements a robust transaction ledger against A with liveness parameter uPraos = 8k/f through-
out a period of L slots except with probability εPraos = exp (lnL+∆−Ω(k − log qk)) + Pr [¬MaxDelay∆].

5.2 The Construction

We denote our protocol Πm
pc-pos, where pc stands for “parallel chains” and pos denotes the proof-of-stake case.

On a high level, the protocol Πm
pc-pos consists of running m copies of a slightly adapted Ouroboros Praos

protocol in parallel, such that these copies together maintain a joint ledger (describing a joint distribution of
stake). We sometimes omit m from the notation and simply write Πpc-pos. The protocol Πpc-pos is spelled out
in Figure 2, we now focus on describing the differences from a single-chain execution of Ouroboros Praos.
The protocol assumes the availability of functionalities Finit, Fdiff , Fvrf , Fsig, Fkes, Fro as described in [13] and
surveyed in Appendix B for completeness. We treat it in the symmetric-bandwidth model with µ = 1 (cf.
Section 3), a different bandwidth profile (with better downlink bandwidth µ > 1) could be handled similarly
and would lead to an increase in the number of chains m.

In Πpc-pos we extend the block format of ΠPraos to also contain the index of a chain c ∈ [m] as the first
coordinate, we sometimes call a block c-block to refer to its chain index. We refer to a chain C as a c-chain if
all blocks in C except the genesis block contain c ∈ [m] as their first coordinate. Since each block B contains
its slot number, we denote it by slot(B), and C|t denotes the chain C truncated to only contain blocks up to
slot t.
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Fig. 2. Protocol Πm
pc-pos

The protocol Πpc-pos is run by stakeholders, initially equal to P1, . . . ,Pn, interacting among themselves and with
ideal functionalities Finit, Fdiff , Fvrf , Fsig, Fkes, Fro over a sequence of L = ER slots S = (sl1, . . . , slL) consisting
of E epochs with R slots each. Define T ji as in (1). Then Πpc-pos proceeds as follows for each stakeholder Pi:
1. Initialization.

(a) Pi sends (KeyGen, sid,Pi) to Fvrf , Fkes and Fsig; receiving (VerificationKey, sid, vi) for vi ∈ {vvrfi , vkesi , vsigi },
respectively. If this is the first round, Pi sends (ver keys, sid,Pi, v

vrf
i , vkesi , vsigi ) to Finit to claim stake from

the genesis block. In any case, it terminates the round by returning (Pi, v
vrf
i , vkesi , vsigi ) to Z.

(b) In the next round, Pi sends (genblock req, sid,Pi) to Finit, receiving (genblock, sid, S0, η). If Pi is initialized
in the first round, it sets the local blockchains C = (Cc)

m
c=1 to Cc := G , (S0, η). otherwise it receives

the local blockchains C = (Cc)
m
c=1 from the environment.

After initialization, in each slot sl∗ ∈ S (of epoch ej∗), Pi performs the following:
2. Epoch Update. If a new epoch ej∗ with j∗ ≥ 2 has started, Pi computes Sj∗ and ηj∗ as follows:

(a) Sj∗ is the stake distribution recorded in the state GetValidTX
(
C|tj∗−2

)
where C|tj∗−2 ,

(
C
|tj∗−2
c

)m
c=1

are the currently held chains truncated up to slot tj∗−2, which denotes the last slot of epoch j∗ − 2.
(b) To compute ηj∗ , collect the blocks B = (c, st, d, sl, πB , ρ, σ) ∈ Cc belonging to epoch ej∗−1 up to the slot

with timestamp (j∗ − 2)R + 2R/3 in any of the currently held c-chains Cc for c ∈ [m], concatenate the
values yρ (from each ρ) into a value v in some fixed predetermined order, and let ηj∗ = H(ηj∗−1 ‖ j∗ ‖ v).

3. Chains Update. For all c ∈ [m], Pi performs the following steps:
(a) Pi collects all c-blocks newly received via diffusion, and collects all new c-chains that can be con-

structed (respecting the previous-block hashes st) from these and past c-blocks into a set Cc, prun-
ing blocks belonging to future slots and verifying that for every chain C′c ∈ Cc and every block
B = (c, st, d, sl, πB , ρ, σ) ∈ C′c where sl belongs to epoch ej , parsing πB as (Ps, y, π) for some s and
ρ as (yρ, πρ), it holds that:
(i) y < T js ;

(ii) Fvrf responds to (Verify, sid, ηj ‖ c ‖ sl ‖ TEST, y, π, vvrfs ) by (Verified, sid, ηj ‖ c ‖ sl ‖ TEST, y, π, 1);
(iii) Fvrf responds to (Verify, sid, ηj ‖ c ‖ sl ‖ NONCE, yρ, πρ, vvrfs ) by (Verified, sid, ηj ‖ c ‖ sl ‖ NONCE, yρ, πρ, 1);
(iv) Fkes responds to (Verify, sid, (c, st, d, sl, πB , ρ), sl, σ, vkess ) by (Verified, sid, (c, st, d, sl, πB , ρ), sl, 1).

(b) Pi computes Cc := maxvalid(Cc,Cc), and updates C = (Cc)
m
c=1.

4. Chains Extension. Pi receives from the environment the transaction data d∗ ∈ {0, 1}∗ to be inserted into
the ledger. For all c ∈ [m], Pi performs the following steps:
(a) Send (EvalProve, sid, ηj ‖ c ‖ sl∗ ‖ NONCE) to Fvrf , get (Evaluated, sid, ycρ, π

c
ρ).

(b) Send (EvalProve, sid, ηj ‖ c ‖ sl∗ ‖ TEST) to Fvrf , get (Evaluated, sid, yc, πc).
(c) Pi checks whether yc < T ji . If yes, it chooses a maximal sequence d′ of c-transactions in d∗ that can

be appended to GetValidTX (C) without invalidating it, and attempts to include d′ into Cc as follows:
It generates a new block B = (c, stc, d

′, sl∗, πB , ρ, σ) where stc = H(head(Cc)), πB = (Pi, y
c, πc),

ρ = (ycρ, π
c
ρ) and σ is a signature obtained by sending (USign, sid,Pi, (c, stc, d

′, sl∗, πB , ρ), sl∗) to Fkes

and receiving (Signature, sid, (c, stc, d
′, sl∗, πB , ρ), sl∗, σ). Pi computes Cc := Cc ‖B, sets Cc as the new

local c-chain and diffuses B.
5. Signing Transactions. Upon receiving (sign tx, sid′, tx) from the environment, Pi sends (Sign, sid,Pi, tx)

to Fsig, receiving (Signature, sid, tx, σ). Then, Pi sends (signed tx, sid′, tx, σ) back to the environment.

Fig. 3. Procedure maxvalid(C,C).

1. Drop all chains C′ from C that fork from C more than k blocks (i.e., more than k blocks of C would be
discarded if C′ was adopted).

2. Return the longest of the remaining chains. If multiple such chains remain, return either C if this is one of
them, or return the one that is listed first in C.

Towards transaction sharding, we assume a fixed function chain(tx) that for each transaction tx returns
a chain index c ∈ [m] of the only chain in which tx can be inserted. We refer to all tx such that chain(tx) = c
as c-transactions, and assume that chain(·) is reasonably balanced (consider for example chain(tx) = H(tx)
mod m).
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Fig. 4. Procedure GetValidTX(C1, . . . ,Cm).

1. Take all the transactions included in all blocks of the chains C1, . . . ,Cm.
2. Order these transactions in an increasing order according to the following following criteria, listed in de-

creasing priority:
(a) slot index sl from the block B containing the transaction;
(b) chain number c from the block B;
(c) position of the transaction within B.

3. Process all the transactions in the above-obtained order and remove all transactions that are invalid with
respect to the ledger state formed by all the preceding transactions.

Each party Pi executing Πpc-pos starts by requesting its verification keys for a VRF, a KES, and an
ordinary signature scheme, just like in the single-chain protocol. She claims its stake in the genesis block G
(if she participates from the first round) and initializes all m chains to either consist of G only (if this is the
first round), or adopts chains received from the environment.

The sequences of transactions stored in the m individual blockchains are merged using the procedure
GetValidTX given in Figure 4. Any party Pi obtains the ledger state LPi [t] containing the transactions
considered stable at time t as follows: given its current view of chains C1, . . . ,Cm, she computes tstable as the
maximum slot up to which all m chains are stable, i.e., the minimum slot index of a k-blocks-deep block in
any of the chains. LPi [t] is then computed by merging the chains up to this slot using GetValidTX. Formally,

tstable , min
c∈[m]

slot
(
head

(
Cdkc

))
and LPi [t] , GetValidTX

((
C|tstable
c

)m
c=1

)
.

The stake distribution Sj and epoch randomness ηj for determining slot leaders in epoch j are derived
in conceptually the same way as in the single-chain case. Namely, the stake distribution used is taken from
the end of epoch j − 2, by looking at all chains up to that point and merging them using GetValidTX. The
randomness ηj is obtained by hashing together all the yρ values included in all m chains in all blocks in
epoch j − 1 up to its slot 2R/3. Slot leadership is determined independently for each party, each slot, and
each chain, via the same VRF-based threshold mechanism as in Ouroboros Praos, and verified in the same
way. Eligible slot leaders (for a particular chain Cc) simply create a block for this chain, and include all
pending c-transactions that are consistent with the current view of the chains.

Validity of a chain received from the network is determined as in the single-chain case, except that the
transactions themselves are not validated at this point. Their validity can only be determined based on the
state of the other chains.

5.3 Analysis

Robustness. We first establish the security of Πm
pc-pos by proving that it implements a robust transaction

ledger against Byzantine adversaries with the same liveness as ΠPraos and the error probability scaled by the
number of chains m.

Theorem 2 (Robustness). Fix parameters k,∆ ∈ N; ξ1 ∈ (0, 1); let f denote the active slot coefficient in
Πm

pc-pos, let R = 24k/f be the epoch length, let L denote the total lifetime of the system. Let A ∈ Ab be a
Byzantine-corruption adversary, let αH be a lower bound on the honest stake ratio throughout the execution.
Let ν and q be upper bounds on the maximum stake shift over 2R slots, and the number of adversarial random
oracle queries, respectively. Let uPraos and εPraos be as in Theorem 1. If

(αH − ν)(1− f)∆ ≥ (1 + ξ1)/2

then the protocol Πm
pc-pos implements a robust transaction ledger with liveness parameter uPraos against A

except with error probability at most εrob = m · εPraos + Pr [¬MaxDelay∆].

Proof (sketch). Observe that each of the m chains produced during the execution of Πm
pc-pos can be seen as

an outcome of an independent execution of ΠPraos, except that the leader selection in epoch j is based on:
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– the stake distribution Sj taken from the state of all m chains at the end of epoch j − 2;
– the epoch randomness ηj derived from VRF-values yρ collected from appropriate blocks of all m chains.

An analysis of the robustness argument for single-chain ΠPraos given in [13] shows that the argument is
not violated by these changes, the error probability merely needs to be adjusted by an additional factor
m to account for a union bound over the failure probability for each of the chains. Since the analysis
in [13] is performed in a model where all message delays are bounded by ∆, an additional additive term
Pr [¬MaxDelay∆] accounts for the occurrence of longer delays in our model.

More concretely, the robustness of the single-chain ΠPraos is derived from the simpler chain-specific prop-
erties of common prefix (CP), chain growth (CG), and chain quality (CQ), as defined in Section 2. First, CP,
CG and CQ are established for a single-epoch execution of the protocol with a static-corruption adversary. As
these arguments assume a fixed stake distribution and perfect epoch randomness, they can also be directly
applied to a single-epoch execution of each of the m chains of Πm

pc-pos under these assumptions. Second, it
is shown that any adaptive adversary is dominated by a particular static adversary, hence extending the
single-epoch guarantees to adaptive adversaries as well: this argument can also be applied to Πpc-pos without
modification. Finally, the analysis is extended to multiple epochs by analyzing the subprotocol for updating
the stake distribution and randomness used for leader sampling. This analysis relies on the single-epoch
bounds on CP, CG and CQ violations obtained above. Since in Πm

pc-pos this subprotocol depends on all m
chains, we need to assume that single-epoch CP, CG and CQ are maintained on each of them, leading to the
additional factor m in the final security bound. ut

Remark 1. Theorems 1 and 2 contain an error term Pr [¬MaxDelay∆] that, rougly speaking, restricts our
security claims to adversaries that only induce ∆-limited message delays. However, note that for very small ∆,
this probability may be non-negligible simply because the protocol itself (without adversarial interference)
induces ∆-exceeding message delays due to message queuing in the recipients’ mailboxes. To understand
the security guarantees provided for such small ∆, observe that both theorems hold in our model for an
arbitrary value of µ ∈ N. Considering the execution for higher values of µ (than µ = 1 for which the protocol is
designed) decreases queuing times of the honest protocol messages, and as µ→∞, the probability of violating
Pr [¬MaxDelay∆] purely by non-adversarial queuing delays becomes zero also for arbitrarily small ∆. This
moves our model towards the throughput-unaware model of [13] and provides the best possible guarantees
also for such small ∆.

κ-Boundedness. We now investigate the delays caused by non-adversarial message queuing for our con-
struction. Namely, we show that Πm

pc-pos is κ-bounded except with probability negligible in κ, as long as the
number of chains m does not exceed a particular threshold. Intuitively, exceeding it would cause a block
creation rate in the system to go too close to (or exceed) 1 and hence overload the recipients’ bandwidth.

First, we establish a general queuing lemma that will be used in our argument.

Lemma 1. Assume an L-slot execution of m ≥ 1 queues each with service rate 1 per slot wherein, during
any r slots, at most r overall messages get added to the queues. Then there is no slot where, at its very
beginning, all queues together contain r + 1 or more messages.

Proof. Consider the single-queue case — whereas the multi-queue case directly follows as the overall service
is at least as large as in the single-queue case. For the sake of contradiction, consider the first slot t where the
queue contains at least r+ 1 messages at its very beginning. Consider the oldest one of these r+ 1 messages
and consider the first slot t′ where this message was present at the beginning of the slot. It must hold that
t′ ≥ t− r + 1 as, otherwise, there were r + 1 messages in the queue at the beginning of slot t′ < t where t is
assumed to be the first such slot. This implies that all r + 1 messages must have arrived within the r slots
t− r, . . . , t− 1, in contradiction to the assumption. ut

Now we apply Lemma 1 to upper-bound the number of messages waiting in the outbox and inbox queues
at any point during an execution of Πpc-pos with A⊥, this is done respectively in Lemmas 2 and 3.
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Lemma 2. Let κ ∈ N and ξ2 ∈ (0, 1/2), let f denote the active slot coefficient in Πm
pc-pos. For any

m ≤ (1− ξ2)(1− f)/f , (2)

the probability that during an L-slot execution of Πm
pc-pos with A⊥ there is a slot where all parties’ outbox

queues together contain at least ξ2κ/3 blocks at the beginning of the slot is bounded by

Pout ≤ L · exp

(
−ξ

2
2(ξ2κ− 3)

9

)
.

Proof. For any fixed slot, let (αi)
n
i=1 denote the relative stakes of all currently participating parties, as

recorded in the stake distribution used for determining slot leaders for this slot. We first note that the
expected number of blocks created in this slot (by all parties on all chains) is

m ·
n∑
i=1

φf (αi) = m ·
n∑
i=1

(1− (1− f)αi)
(a)

≤ m · ln 1

1− f
≤ m · f

1− f
≤ 1− ξ2 ,

where the inequality (a) follows from Jensen inequality and the observations that g(n) , n
(
1− (1− f)1/n

)
is increasing and converges to − ln(1− f) for n→∞.

Moreover, block-generation can be viewed as elementary independent experiments (one per slot, party,
and chain) with respect to an indicator random variable Xi ∈ {0, 1} where Xi = 1 denotes the respective
success. Thus, the probability Pout that, during any `out = ξ2κ/3−1 rounds, at least `out blocks are generated,
can be estimated by the Chernoff bound of Theorem 10 with µ = (1−ξ2)`out and δ = ξ2/(1−ξ2). The lemma
now follows by a union bound over the length of the execution and Lemma 1. ut

Lemma 3. Let κ ∈ N and ξ2 ∈ (0, 1/2), let f denote the active slot coefficient in Πm
pc-pos and let m satisfy (2).

Consider an L-round execution of Πm
pc-pos with A⊥. Given that there is no round where all outbox queues

together contain at least ξ2κ/3 blocks at the beginning of the round, the probability that there is a round where
a party’s inbox queue contains at least (1− ξ2/3)κ blocks at the beginning of the round is bounded by

Pin ≤ L · exp

(
−ξ

2
2

3

(
κ− 1

1− ξ2

))
.

Proof. Note that under A⊥, all parties’ inboxes behave identically. Along the lines of Lemma 2, we observe
that the probability Pin that, during any `in = (1− 2ξ2/3)k − 1 rounds, at least `in blocks are generated, is
upper bounded as above by the Chernoff bound (µ = (1− ξ2)`in and δ = ξ2/(1− ξ2)) and the union bound.
Additionally, at most ξ2κ/3 blocks that were already present in the outbox queues might get added to each
inbox during these `in rounds. We can hence conclude by Lemma 1 that the inbox never contains (1− ξ2/3)κ
blocks at the beginning of a round — except for the above probability. ut

The above lemmas allow us to establish the κ-boundedness of the protocol Πm
pc-pos.

Theorem 3 (κ-Boundedness). Let κ ∈ N and ξ2 ∈ (0, 1/2), let f denote the active slot coefficient in
Πm

pc-pos and let m satisfy (2). The probability that, during an L-round execution of Πm
pc-pos with A⊥, there is

a block that incurs a delay of at least κ rounds, is bounded by

εκ ≤ Pout + (1− Pout)Pin ≤ 2L · exp

(
−ξ

2
2(ξ2κ− 3)

9

)
.

Hence, the protocol Πm
pc-pos executed over a period of L slots is (κ, εκ)-bounded.

Proof. Assume that some block has delay at least κ = tout + tin spending tout rounds in the outbox queue
and tin rounds in the inbox queue. Thus, tout ≥ ξ2κ/3 or tin ≥ (1 − ξ2/3)κ. The respective probabilities are
given by Lemmas 2 and 3, and the lemma follows. ut
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Throughput. Now we focus on the throughput achieved by Πm
pc-pos, and express it as a parameter of the

number of chains m.

Theorem 4 (Throughput). Fix parameters k,∆ ∈ N, ξ3 ∈ (0, 1/2], let f ∈ (0, 1) denote the active slot

coefficient in Πm
pc-pos, assume that (1−f)∆ ≥ 1/2, and let f̂ , f(1−f)∆. Let A ∈ Afs be a fail-stop adversary,

let αH ∈ [0, 1] be a lower bound on the honest stake ratio throughout the execution, let ν be upper bound
on the maximum stake shift over 2R slots, and assume α̂H , αH − ν > 0. The protocol Πm

pc-pos achieves

(θ, L0)-throughput for any L0 ≥ (2k + 3∆)/((1− ξ3)2α̂Hf̂) and for

θ = (1− ξ3)2 ·

(
1− k + 4∆

(1− ξ3)2α̂Hf̂L0

)
· α̂H · f̂ ·m (3)

against A except with error probability εtp , 4 ·m · exp
(
−ξ23 α̂Hfk/4

)
+ Pr [¬MaxDelay∆].

Before we prove Theorem 4, a brief discussion of the bound (3) is in order. Intuitively, the expected
optimal throughput of Πm

pc-pos is roughly α̂H ·f ·m, as each of the m chains contains a block with at least one
slot leader on expectation once in 1/f slots, and with probability at least α̂H this leader is not corrupted.
There are three factors that separate the bound (3) from this optimum: First, the term 1 − ξ3 allows us
to use a concentration bound (twice) and can be made arbitrarily small at the expense of increasing the
minimum duration L0 to achieve the promised throughput. Second, the term 1 − (k + 4∆)/(cL0) pays for
the fact that the last k blocks in each chain are not stable and hence if the investigated interval is at the
end of the execution, these blocks don’t contribute towards the throughput. This term also diminishes with
increasing L0. Finally, f is replaced by f̂ to account for possible occurrence of forks that are caused by
the probabilistic leader selection in ΠPraos in combination with message delays. Note that the assumption
(1 − f)∆ ≥ 1/2 is natural: we are not interested in a parametrization that does not satisfy it, as (3) would
result in a throughput below 1/2 anyway.

Finally, note that the observation from Remark 1 applies to Theorem 4 as well.

Proof (of Theorem 4). Consider an environment Z, let T
$← Exec (Π,A,Z), and let I be a slot interval of

length |I| = L ≥ L0. We will split the interval I into a prefix interval Ipref consisting of its first Lpref slots
of I (for Lpref given below), and a suffix interval Isuf of Lsuf = L − Lpref slots. We then argue that with
overwhelming probability:

(i) each chain contains at least (1− ξ3)2 · α̂H · f̂ · Lpref − 2∆ blocks in Ipref ;
(ii) all m chains produced by Πm

pc-pos contain at least k blocks in Isuf , hence all blocks contained in all m
chains in Ipref are stable.

Both parts will rely on establishing a lower bound on the chain growth of a single Ouroboros Praos chain in
the presence of a fail-stop adversary A, assuming message delays bounded by ∆.

We will consider, along the lines of [19,13], ∆-right isolated succcessful slots: these are slots that have at
least one (uncorrupted) slot leader and the following ∆ slots do not have any leaders at all. We will call these
slots good for brevity and denote by good(t) a function that returns 1 if t is good and 0 otherwise. Moreover,
let I ′pref , [t1, t2] denote the interval Ipref without its first ∆ slots and let L′pref , |I ′pref | = |Ipref |−∆ = t2−t1+1.

For simplicity, we first consider the case without any fail-stop corruptions. Observe that in this case,
the growth corresponding to the interval Ipref in a chain held by any party at the end of the execution is
lower-bounded by the number of good slots appearing in I ′pref . This is because any slot leader Pi of the first
good slot of I ′pref must have already seen all blocks in the chains held by all parties before the start of Ipref ,
as this was at least ∆ slots ago. Hence, the block Pi creates will extend a chain that is at least as long as
any of those chains (thanks to the maxvalid chain-selection rule). By the definition of a good slot, this block
will be propagated to any slot leader of the next good slot in I ′pref in time to be taken into account; therefore
by the same argument, the longest chain (that will eventually represent the state of the ledger) will grow in
Ipref by at least one block for every good slot in I ′pref .
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Let us now consider the effect of adaptive fail-stop corruptions. For a fixed chain c ∈ [m], let W
(c)
t be

a random variable that takes the value 0 if the slot t has at least one (uncorrupted) slot leader, and ⊥
otherwise (the symbols are chosen for consistency with [1]). Given the slot-leader selection rules of ΠPraos

(and Πpc-pos) described in Section 5.1, the probability that a particular slot has at least one slot leader for
chain c is exactly f . Thanks to the local nature of the VRF-based leader-selection, A has no advantage in
predicting a slot leader until he acts, and hence α̂Hf ≤ Pr [Wt = 0] ≤ f .

To lower-bound the number of good slots in I ′pref , we will rely on a concentration bound for this quantity
derived in [1] and detailed in Appendix C. More concretely, observe that the sequence of random variables

W
(c)
t1 , . . . ,W

(c)
t2 corresponding to the interval I ′pref satisfies the (f, 1)-characteristic condition according to

Definition 7 and we can invoke Lemma 8 with γ = 1 and a = α̂Hf to bound the probability of having too
few good slots by

ppref , Pr

 ∑
t∈I′pref

good(t) ≤ (1− ξ3)2 · α̂H · f̂ · L′pref −∆

 ≤ 2 exp

(
−
ξ23 · α̂H

2 · f2 · L′pref

4

)
.

Since L′pref = Lpref −∆ and (1− ξ3)2 · α̂H · f̂ ≤ 1, this establishes (i).

We now consider the interval Isuf for Lsuf , (k+∆)/(1− ξ3)2α̂Hf̂ +∆, and similarly as before, we define
I ′suf to denote the interval of Lsuf −∆ slots obtained when removing the first ∆ slots from Isuf . By the same
argument as above, we observe that I ′suf will contain at least k good slots with an uncorrupted leader (and
hence Isuf will contain at least k blocks) except with error psuf , 2 exp

(
−ξ23α̂Hfk/4

)
, establishing (ii).

Hence we can conclude that for Lsuf given above and Lpref , L− Lsuf , the interval Ipref contains at least

(1−ξ3)2 ·α̂H · f̂ ·m ·L′pref−∆ stable blocks in all m chains except with probability m ·(ppref + psuf), resulting in

the throughput parameter θ in (3). Under the assumption L0 ≥ (2k+3∆)/((1−ξ3)2α̂Hf̂) we have ppref ≤ psuf

and the bound on εtp in the theorem statement follows. ut

Finally, we instantiate the result of Theorem 4 with the maximum number of chainsm that still guarantees
κ-boundedness of the resulting protocol Πm

pc-pos according to Theorem 3.

Corollary 1. Under the notation and assumptions introduced in Theorems 3 and 4. the protocol Πm
pc-pos

for m = (1 − ξ2)(1 − f)/f is (κ, εκ)-bounded for any κ and achieves (θ, L0)-throughput against fail-stop

adversaries for any L0 ≥ (2k + 3∆)/((1− ξ3)2α̂Hf̂) and

θ = (1− ξ2) · (1− ξ3)2 · (1− f)∆+1 ·

(
1− k + 4∆

(1− ξ3)2α̂Hf̂L0

)
· α̂H

except with error probability εtp.

Remark 2. Note that, above, throughput optimality was only demonstrated in presence of a fail-stop ad-
versary. In [2], with respect to PoW, the important observation was made that separating transaction (or
fruit) mining from the mining of structural blockchain blocks (called proposer blocks in [2]) along the lines
of [18,35] not only gives you fairness but can also be applied in order to optimize throughput in presence
of a Byzantine adversary. This is basically achieved by having the transaction blocks mined at a fast rate
to make full use of the network bandwidth while having the proposer blocks still mined at a small rate to
guarantee robustness of the ledger, and by additionally applying randomized transaction sharding.

We note that, along the same lines, also our PoS parallel-chains construction can be adapted in order
to achieve throughput optimality in presence of a Byzantine adversary. For this, we can apply the input-
endorser construction of [21] to every individual chain where a party is randomly elected to be either a slot
leader or an input endorser. Note that, as a main difference to [2], endorser and leader election will both still
run at the same (slow) rate while bandwidth utilization is optimized by chain parallelism.

Alternatively to the above approach to achieve Byzantine throughput optimality, we can also apply
the inclusive-blockchain idea from [26] for each individual chain by having blocks additionally reference
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anticipated orphan blocks, and by adding those respective transactions to the ledger as well. Note that,
opposite to the previously mentioned DAG protocols (e.g. [27]), this has no degrading effect on liveness, as
the per-chain block rate is not accelerated but kept at a safe level.

6 PoW Parallel Chains Without Synchronized Clocks

We now turn our attention to the proof-of-work setting. We first remark that if parties are assumed to
have access to (roughly) synchronized clocks, one can construct a parallel-chains protocol fully analogous to
Πpc-pos given in Section 5, where slot indices are replaced by timestamps.

Namely, each block will contain the local timestamp of the miner at the time of composing the block.
A party adopts a block added to a particular chain Cc only if the block’s timestamp is larger than the
timestamp of its predecessor, and, if its timestamp lies in the past of the local time. Finally, to produce
the ledger state, the blocks of all chains get sorted primarily by timestamp and secondarily by the chain
index, and most recent blocks are again dropped. The assumed bound on local clock skew (together with
the single-chain properties CP, CG, and CQ from Section 2) will then ensure that blocks of sufficient depth
in their local chains will be guaranteed to have a lower timestamp than any block that will be accepted in
the future.

Although the assumption of roughly synchronized clocks is standard in the PoS literature, it is known
that the PoW-based consensus can be (in the setting with constant difficulty) achieved also without this
assumption (cf. the consensus protocols in [18]). Therefore, we refrain from discussing further details of this
construction; instead, in this section we present a more elaborate construction for the PoW setting that does
not rely on the synchronized clocks assumption (but does assume constant difficulty).

6.1 Elements of Bitcoin

We describe an abstraction of the Bitcoin blockchain along the lines of [19]. The Bitcoin blockchain C
consists of blocks B = 〈〈r, x〉, ctr〉 where r is a reference to the predecessor block of B, x is the block
payload containing the transactions, and ctr is a counter. The protocol involves a cryptographic hash function
H : {0, 1}∗ → {0, 1}κ used for referencing a block from within another block, and used for generating proofs
of work. We model H as a random oracle [4]. The chain C is a sequence of n blocks (Bi)

n
i=1 such that B1 = G,

and, for i > 1, Bi = 〈yi = 〈ri, xi〉, ctri〉 satisfies that ri = H(Bi−1) , H(H(yi−1), ctri−1). The actual block
Bi−1 referenced by H(Bi−1) from Bi is denoted by R(Bi). Additionally, for some predefined number ` ∈ N,
a non-genesis block B must satisfy that the value H(B) contains ` leading zeroes, i.e., H(B) < M , 2κ−`.
We call p = 2−` the mining-hardness parameter.

In order to mine a new block containing payload x, a party must assemble his block B = 〈y = 〈r, x〉, ctr〉
such that r = H(head(C)) whereas the value ctr is initialized to some value and incremented until H(B) < M
— constituting the proof of work. Once such a block has been found it can be published to be included in
the other parties’ views of the blockchain.

A block is valid if it is composed as described above and the payload is well-formed and semantically
self-consistent.2 A blockchain is valid if it is composed as described above, and all involved blocks are valid
whereas their payloads do not contradict each other. The ledger L as a sequence of transactions is extracted
from the longest observed valid chain C by listing all transactions of Cdk in order of appearance where k is
a protocol parameter. Along the lines of stable transactions, a block B ∈ Cdk is called stable.

We assume that there are n mining parties in the protocol, all having equal hashing power, whereas we
assume t of them to be controlled by the adversary. The protocol proceeds in rounds whereas each round
corresponds to a time slot as defined in Section 2. For the argumentation from a global view, we still assign
each round a unique slot number. Note, however, that the parties do not have synchronized clocks, and thus,
this global slot number is not known to the parties. Along the lines of [19], during a single round, every party
executes q ∈ N queries to the PoW instance in an attempt to mine a new block whereas q is the maximal

2 However, we do not consider the particular semantics of the payload here.
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number of queries executable within the time bounds of one slot.3 At the end of the round, the party is
instructed to execute the diffusion of all successfully mined blocks.

6.2 The Construction

We start with a brief overview of the construction. Our protocol Πm
pc-pow involves a tuple C = (Cc)

m
c=1

of individual Bitcoin chains that are operated in parallel involving transaction sharding whereas only c-
transactions are allowed to be part of chain Cc as in Section 5.2. In order to mine a block, the miner prepares
a metablock B to simultaneously represent a block Bc consisting of c-transactions for every single one of the
m chains. The miner then computes his PoW on the metablock whereas the PoW may be successful with
respect to at most one of the chains. If the PoW on the metablock has been successful with respect to chain
index c, the miner extracts the respective block Bc, appends it to his local chain Cc, and diffuses the block
to the network. As a substitute for missing synchronized clocks, we make use of a dedicated synchronization
chain that gets loosely cross-referenced from blocks of the remaining chains.

For simplicity, we assume m = 2z for some z ∈ N. Each chain Cc is initialized with a genesis block
Gc. The first chain, C1, is called synchronization chain. A block in the synchronization chain is called a
synchronization block. Each block extends exactly one chain — the index of the chain a block B extends is
denoted by ch(B) ∈ [m]. For a block B ∈ Cch(B), we denote its height by π(B) whereas π(Gc) = 1.

Similar to Bitcoin, a block can be viewed as having the structure B = 〈y = 〈r, x, c, s〉, ctr, aux〉 whereas
r is a reference-by-hash to the predecessor block of B in Cch(B), x is the payload, c = ch(B), and ctr is a
counter as above. In order to facilitate transaction sharding, y is in fact only a hash value whereas 〈r, x, c, s〉
is to be recovered from y together with the auxiliary information in aux — the respective details as well as
the definition of the metablock are given later. We denote by R(B) the predecessor block referenced from B
in chain Cch(B) by means of r.

Entry s (also denoted by s(B) in the following context) is to contain the length of the synchronization
chain that was observed by the party mining the block at the point it was mined. The reference is used as
a variable reference from B to a block in the synchronization chain that is robust against block pruning (as
opposed to using a hash reference). We define the synchronization block of B as

σ(B) =

R(B) if B ∈ C1,
B1 if B 6∈ C1 and ∃B1 ∈ C1, such that π(B1) = s(B),
⊥ otherwise.

Note that σ(B) is well-defined, as the block B1, if it exists, is unique.
Extending our set notation, we write B ∈ C iff there is an index j such that B ∈ Cj . By Cdk we denote C

where the last k blocks of each involved chain have been removed: Cdk =
(
C
dk
c

)m
c=1

.

Proof-of-work makes use of the same hash function as the underlying single-chain protocol, H : {0, 1}∗ →
{0, 1}κ (modeled as an RO) with the goal that PoW not only tells a miner whether he is allowed to add a
block but also which chain the block has to be appended to. We set `m , ` − log(m), Mm , 2κ−`m , and
thereby adjust the (overall) mining hardness to pm = mp. PoW now uniformly assigns successes over all m
chains as follows — yielding the same per-chain mining hardness as in Bitcoin.4 For genesis blocks we define
ch(Gc) := c whereas, for a non-genesis block B (represented by a metablock B with H(B) < Mm), we define
ch(B) := 1 +H(B) mod m. Modeling H as an RO makes this assignment uniformly random, and known to
the miner only after the PoW has been completed (with overwhelming probability).

To summarize, a block is eligible to be mined for chain Cc iff its metablock B satisfies ch(B) = c whereas,
as given by the involved RO, the value of ch(B) is random and becomes known to the miner only after the

3 Note that, in order to facilitate our analysis in context of network-bandwidth limitations, we deviate from the
∆-bound model of [19] by defining one round by the length of the time slot required to send a block to the network
(cf. Section 3) — instead of the time required to perform one single PoW query. Along the lines of their synchronous
model, we thus allow each party to perform some q ∈ N queries per round.

4 Note that we can safely assume that ` ≥ logm as the opposite is ruled out by our Bound (5) on m under which
the protocol can be demonstrated secure.
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PoW has been completed. It still remains to show how a metablock B can be prepared such that it allows
for the extraction of a respective c-block — a way to achieve this is given later.

The local view over all longest chains can be represented by a directed graph G = (V,E) with V = {B |
B ∈ C ∪ {⊥}} and

E = {(x, y) ∈ V × V | R(x) = y ∨ (x /∈ C1 ∧ y ∈ C1 ∧ s(x) = π(y)) .

We write B0 ≺G B1 iff there is a path from block B1 to block B0 in G.5 We write B0 �G B1 iff either
B0 ≺G B1 or B0 = B1.

Our analysis of the overall protocol will rely on the block-based security guarantees (CP, CQ, and CG)
of each involved single Bitcoin chain when operated in an isolated way under an equivalent single-chain
parameterization. In particular, we can disregard the payloads of such blocks — until we argue about the
security of the resulting ledger on the transaction level. For this purpose we introduce the notion of an
implied single-chain execution as follows.

Definition 5 (Implied single-chain execution). For each Cc ∈ C, we define the implied single-chain
(L-round) execution of Cc from Πm

pc-pow as the (L-round) protocol execution of Πm
pc-pow when restricted to the

parties’ views of Cc on the block level (and ignoring the semantics of transactions).

Adapting the PoW to achieve independence of the single-chains. A minor drawback of the above use of PoW
is that a single PoW query cannot be simultaneously successful for multiple chains, thereby introducing
a small statistical dependence of the mining for the different chains. Although this is not relevant for our
analysis in this section, the amplification technique in Section 7 assumes full independence of the chains. We
now sketch a PoW variation to achieve fully independent parallel mining which may also be of independent
interest. For this, we generalize the 2-for-1-PoW idea from [19] to m-for-1-PoW, yielding a PoW variant that
can be simultaneously successful with respect to all m instances.

One possible way to implement m-for-1-PoW is by applying a pseudo-random generator (PRG) Γ :
{0, 1}κ → {0, 1}m` to the metablock hash, Γ (H(B)), and the PoW is defined to be successful with respect
to chain index c iff the c-th `-bit segment of the resulting string is all-zero. Depending on the particular
construction or building blocks, the computational complexity of computing the PRG might have to be
accounted for the PoW along with the computational complexity of the hash function. In this case, in order
to avoid that the adversary can bias his mining towards particular chains by incomplete computation of the
PRG part, the miner additionally has to prove knowledge of Γ (H(B)), e.g., by providing a hash thereof.

Alternatively, a hash chain of length m can be applied to the metablock whereas success with respect
to chain index c is defined to be satisfied iff Hc(B) < M and Hm(B) is included in the aux-part of the
respective block Bc. Additionally, the mining hardness has to be adapted to compensate for the chained
execution of the hash function. It is crucial that the final element of the hash chain is delivered by the miner
(and respectively verified) as a proof of complete computation over all chains as, otherwise, the adversary
could bias mining towards chains with small index. This second construction has the analytical advantage
that it does not involve any cryptographic construction around the use of the random oracle.

Note that, of course, the above constructions are unnecessary if m` ≤ κ as, then, the hash function H
directly implements m-for-1-PoW.

Chains extension with transaction sharding. In order to avoid the inclusion of the same transaction in blocks
that are being concurrently mined in different chains, and as already described in Section 5.2, we partition
the set of transactions available for mining along the lines of “sharding.”

As the miner does not a-priori know for which chains the mined block will be eligible, for each one of
the m chains he calculates the hash reference rc = H(head(Cc)) and a set xc = {tx | chain(tx) = c} of
pending c-transactions such that the current transactions in C together with the transactions in ∪mc=1xc are
not in conflict with each other. The miner now forms a Merkle tree where, for all c ∈ [m], the c-th leaf node

5 In order to avoid confusion, as the edges in the graph point “backwards” in time, we define ≺G in the sense of
time rather than in the sense of direction in the graph.
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corresponds to H(〈rc, xc, c, s〉) where s = π(head(C1)) is the observed length of the synchronization chain
C1. Let y be the resulting Merkle-tree root. The metablock is now defined as B , 〈y, ctr〉.

Upon successful completion of the PoW with respect to chain index c, the block Bc is composed as
Bc , 〈B, auxc〉 where auxc includes 〈rc, xc, c, s〉 and those nodes of the Merkle tree necessary for verification.
Finally, we define ch(Bc) , ch(B). At the end of a round with successful chain extensions, all respective block
instances Bc are submitted for diffusion.

Chains update. Collect all new blocks received via diffusion, and for c ∈ [m], set Cc to the longest observed
chain starting with Gc such that

– all involved blocks B have the form B = 〈B = 〈y, ctr〉, aux〉 and satisfy
- H(B) < Mm and ch(B) = c, and
- aux correctly verifies the Merkle root y (with aux containing 〈rc, xc, c, s〉 as the preimage of the c-th

leaf of the Merkle tree), and
- rc references a block in Cc, and
- xc exclusively consists of transactions tx that satisfy chain(tx) = c, and
- s ≤ len(C1); and

– the order of any two involved blocks is preserved with respect to their synchronization blocks: ∀B, B̄ ∈
Cc : B ≺G B̄ ⇒ σ(B) �G σ(B̄).

In case that multiple longest chains are present for some index c and that one of them has already been
present during the previous round then the pre-existing one is given preference — whereas, otherwise, the
particular selection does not matter. Note that, over all candidate chains, the Cc can be computed efficiently.

Confirmation, stabilization, and ordering. A total order over all eventual transactions will be derived by
establishing a total order over all eventual blocks and by sorting the involved transactions, first, by the order
of their blocks, and, second, by order of their appearance in the respective block.

We distinguish between block confirmation and block stabilization. Confirmation of a block (with respect
to Πm

pc-pow) means that a block will remain part of C forever — it is directly implied by a block’s stability
with respect to its individual chain. However, confirmation is not sufficient to derive a block’s position with
respect to the total order over all eventual blocks. We thus additionally define the “stabilization” of a block
as a predicate for which we will show that is allows for the determination of a block’s position in the final
order over all eventual blocks.

Let k ∈ N be the single-chain prefix parameter to specify the minimal depth a block must have in the
chain in order to be declared confirmed in the individual chain. A block B is confirmed iff B ∈ Cdk.

Informally, a confirmed synchronization block gets stabilized as soon as it is referenced by a confirmed
block of all other chains (see Figure 5). A block B1 ∈ C1 is stable iff

ψ1(B1) , B1 ∈ C
dk
1 ∧ ∀j ∈ {2, . . . ,m} ∃Bj ∈ C

dk
j : B1 ≺G Bj .

Informally, a non-synchronization block Bc gets stabilized as soon as a successor of Bc’s synchronization
block gets stable. A block Bc ∈ C \ C1 is stable iff

ψ2(Bc) , Bc ∈ Cdk \ C1 ∧ ∃B1 ∈ C1 : σ(Bc) ≺G B1 ∧ ψ1(B1) .

Accordingly, a block is defined to be stable iff

B ∈ L , ψ1(B) ∨ ψ2(B) ,

and a transaction is stable, denoted by tx ∈ L, iff it is contained in a stable block and does not conflict with
its own history.

It remains to be defined how blocks get ordered, and how their transactions get ordered in the final
ledger, respectively. As all blocks sharing the same synchronization block become stable during the same
round (in a single party’s view), any complete order of the respective blocks is admissible as long as it
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Fig. 5. Block stabilization in the PoW case. Dashed arrows represent a ≺G relation, i.e., that there is a respective
path in Graph G. Blue blocks indicate that they are at least k blocks deep in the individual chain. As soon as this
situation occurs, both, B1 and Bc become stable — whereas S is the synchronization block of B1 and Bc.

respects the partial order of the graph G. In order to facilitate an order relation that also reflects the blocks’
approximate timing, we define a block’s rank as the number of prior blocks in its chain with respect to the
same synchronization group:

rk(B) =
∣∣{B̄ ∈ Cch(B) | σ(B̄) = σ(B) ∧ B̄ ≺G B

}∣∣ .
The order relation ≺β on blocks is now defined as the unique relation to satisfy, for all blocks B, B̄ ∈ C,

that

B ≺β B̄ ⇔

 (σ(B) ≺G σ(B̄)) ∨
(σ(B) = σ(B̄) ∧ rk(B) < rk(B̄)) ∨
(σ(B) = σ(B̄) ∧ rk(B) = rk(B̄) ∧ ch(B) < ch(B̄)) .

(4)

As ≺β defines a total order over all blocks in C, during any round t, a party P can extract L̃P[t] from
his view as the sequence of the transactions contained in a block B ∈ C, first, by the order of appearance
with respect to ≺β of the block that contains the transaction, and, second, by the transaction’s position in
the respective block. The stable part of the ledger can then be extracted by P as LP[t] from his view as the
respective sequence of transactions restricted to blocks B ∈ C such that B ∈ LP[t].

For a compact description of the protocol Πpc-pow (and the assumed functionalities), see Figures 6–9.

6.3 Analysis

We first establish the robustness of Πpc-pow against Byzantine corruptions. We give a security reduction of
Πm

pc-pow involving m parallel chains to the security of single-chain Bitcoin — whereas we call this single-chain
Bitcoin protocol the corresponding Bitcoin protocol of Πpc-pow.

Reduction. We first prove persistence (Definition 1) of Πm
pc-pow given that its implied single-chain executions

achieve CP with respect to k.

Lemma 4. If all m implied single-chain executions of Πm
pc-pow achieve CP with respect to parameter k then

Πm
pc-pow satisfies persistence of Definition 1.

Proof. Consider an honest party P1 that computes tx ∈ LP1 [t] implying that there is a block B ∈ LP1 [t]

satisfying tx ∈ B. Note that B ∈ LP1 [t] implies that there exist B1 ∈ C
P1dk
1 [t] with π(B1) = s(B) + 1, and,

for all c > 1, Bc ∈ C
P1dk
c [t] with s(Bc) > s(B). As CP with respect to parameter k holds for all implied

single-chain executions, these blocks remain persistent, and, by the chains-update rule, all eventual blocks
B′ such that s(B′) = s(B) are already seen by all honest parties — relating to each other with respect to
the same partial order. By definition of ≺β , the order of these blocks (and their respective transactions) is

already immutably fixed with respect to every honest party P2, and LP1 [t] � L̃P2 [t] follows. ut
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Fig. 6. Protocol Πm
pc-pow.

The protocol Πpc-pow is run by n parties P1, . . . ,Pn, interacting among themselves and with ideal functionalities
Finit,Fro,Fdiff over a sequence of L rounds. Then Πpc-pow proceeds as follows for each party Pi:
1. Initialization.

(i) If Pi is initialized in the first round, it sends (genblocks req, sid,Pi) to Finit, receiving
(genblocks, sid, (Cc)

m
c=1), and assigns C := (Cc)

m
c=1.

(ii) If Pi is initialized after the first round, it receives the local blockchains C = (Cc)
m
c=1 from the environment.

After initialization, during every round, Pi performs the following steps:
2. Chains Update.

(a) Pi collects all blocks newly received via diffusion, and collects all new c-chains starting with Gc that can
be constructed from them and past c-blocks into Cc such that, for each such chain, all involved blocks
B have the form B = 〈B = 〈y, ctr〉, aux〉 and satisfy:
(i) H(B) < Mm and ch(B) = c, and

(ii) aux correctly verifies the Merkle root y (with aux containing 〈rc, xc, c, s〉 as the preimage of the c-th
leaf of the Merkle tree), and

(iii) rc references a block in Cc, and
(iv) xc exclusively consists of transactions tx that satisfy chain(tx) = c, and
(v) s ≤ len(C1); and
(vi) the order of any two involved blocks is preserved with respect to their synchronization blocks:

∀B, B̄ ∈ Cc : B ≺G B̄ ⇒ σ(B) �G σ(B̄).
3. Chains Extension. Pi receives from the environment the transaction data d∗ ∈ {0, 1}∗ to be inserted into

the ledger and extracts from if a sequence d ∈ {0, 1}∗ that can be appended to GetValidTX (C) without
invalidating it.
(a) For all c ∈ [m], Pi extracts the c-transactions in d as xc and composes tc := 〈rc, xc, c, s〉 where rc =

H(head(Cc)), and s = π(head(C1)).
(b) Pi composes a Merkle tree from the m hashes H(tc) with root y.
(c) Pi sets ctr = 0 and repeats

i. increase ctr and compute metablock B := 〈y, ctr〉.
ii. if H(B) < Mm:

A. c := ch(B) = 1 +H(B) mod m
B. compute auxc as consisting of tc and all Merkle-tree nodes necessary for the verification with

respect to y, and compute Bc := 〈B, auxc〉.
C. compute Cc := Cc ‖Bc, and recompute C.
D. prepare Bc for distribution by use of Fdiff .

(d) until ctr = q;
(e) Pi diffuses all blocks prepared for diffusion.

Fig. 7. Functionality Finit

Upon a request from some party Pi of the form (genblocks req, sid,Pi) it returns (genblocks, sid, (Cc)
m
c=1) where

Cc = (Gc).

Fig. 8. Procedure maxvalid(C,C).

Return the longest chain from C whereas preference is given to C in case of multiple longest chains.

For liveness, consider a transaction tx that is given as an input to all honest parties for some sufficient
number u′ of consecutive rounds (whereas u′ is to be determined) and consider the first such round. Then
transaction tx gets stable in all honest parties’ views (the latest) after the following events have happened
(see also Figure 5) — we only sketch the more complicated case where the transaction gets added to a
non-synchronization chain (c > 1):

1. The transaction is included in an honest block Bc that gets added to some chain Cc of C and confirmed
by all honest parties. Note that a block S ∈ C1 such that s(Bc) = π(S) now exists with respect to all
parties but that this S might still change over time due to forks.
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Fig. 9. Procedure GetValidTX(C1, . . . ,Cm).

1. Compute the order relation ≺β over all blocks of the chains C1, . . . ,Cm.
2. Extract all respctive transactions.
3. Order these transactions in an increasing order according to the following following criteria, listed in de-

creasing priority:
(a) order of its containing block B with respect to ≺β ;
(b) position of the transaction within B.

4. Process all the transactions in the above-obtained order and remove all transactions that are invalid with
respect to the ledger state formed by all the preceding transactions.

2. The synchronization chain C1 gets added a block B1 of height π(S) + 1 in every honest party’s view (if
not already present).

3. After the above events have happened, each chain Cj (j > 1) gets added a block Bj that references a
synchronization block of height larger than π(S), and all these Bj get confirmed by all honest parties.
Concurrently, the synchronization block B1 gets confirmed by all honest parties.

Assume that the implied executions satisfy CP prefix with respect to parameter k, CG with respect to
parameters τ and s, and CQ with respect to parameters µ > 0 and `, and 0 < s · τ ≤ min(k, `). Then, for a
respective execution of Πm

pc-pow, we can estimate the following (deterministic) upper bound on the number
of rounds required for each of the three above events to happen.

1. and 2. b `+kτ c rounds. During these rounds, ` blocks get added — at least one of them honest due to chain
quality — and k additional blocks on top implying the confirmation of such an honest block. Due to
chain growth, during the rounds where the additional k blocks are added, the synchronization chain is
guaranteed to be added a block of height larger than s(Bc).

3. b `+kτ c rounds — along the above lines.

Lemma 5. If all implied executions from Πm
pc-pow achieve CP, CQ, and CG as parameterized above then

Πm
pc-pow satisfies liveness with respect to parameter u′ = 2b `+kτ c.

Proof. The lemma follows from the above discussion. ut

Robustness. We follow the Bitcoin analysis in [19] as summarized below. Consider the following parameters
as defined in [19]:

– Let f = 1− (1−p)q(n−t) denote the probability that, during one round, at least one honest party obtains
a PoW.

– Let η ∈ R, the block-to-round translation parameter, be fixed such that the expected number of rounds
with honest PoW successes during η · κ rounds is fηκ = Ω(κ).6

– Let ε ∈ R (used for Chernoff bounds) satisfy 3∆f + 5ε+ 3∆
ηκ ≤

n−2t
n−t .

Proposition 1 ([19]). When parameterized as above, an L-round execution of Bitcoin, where L is polyno-
mially bounded by κ, achieves the following properties except for an error probability εB negligible in κ:

– CP: Common prefix for k ≥ 2fηκ+ 2∆.

– CG: Chain growth with respect to s ≥ ηκ and τ = (1− ε)f(1− f)∆.

– CQ: Chain quality with respect to ` ≥ 2fηκ + ∆ and µ > 0 (a weaker bound than in [19] but sufficient
for our purposes).

6 This ensures that the properties demanded for their typical executions are satisfied except for an error probability
negligible in the security parameter κ.

22



Lemma 6. Let the parameters be as above. Then, except for an error probability ε ≤ m·εB+Pr [¬MaxDelay∆],
an L-round execution of Πm

pc-pow achieves liveness with respect to parameter

u′ = 2u = 2

⌊
`+ k

τ

⌋
= 2

⌊
4fηκ+ 3∆

(1− ε)f(1− f)∆

⌋
,

whereas u is the liveness parameter of Bitcoin as derived in [19], and εB the respective error probability.

Proof. The stochastic process for block-generation of each individual chain is equivalent to the respective
process in the corresponding Bitcoin protocol. Furthermore, block scheduling with respect to an implied
single-chain execution in Πm

pc-pow can be efficiently simulated by the adversary in the corresponding Bitcoin
protocol, implying that violating any of the properties CP, CQ, or CG in Πm

pc-pow could be equivalently
achieved in Bitcoin. Thus, the lemma follows by a union bound over the error probabilities of the respective
Bitcoin executions. ut

Theorem 5 below follows from Lemmas 4 (persistence) and 6 (liveness).

Theorem 5 (Robustness). Except for an error probability εrob ≤ m · εB + Pr [¬MaxDelay∆], an L-round
execution of Πm

pc-pow implements a robust transaction ledger with liveness parameter u′ = 2u where u is the
liveness parameter of the corresponding Bitcoin protocol as derived in [19], and εB is the respective error
probability (negligible in the security parameter).

κ-Boundedness. For our estimations on κ-boundedness and throughput, for the corresponding Bitcoin
protocol (or, the chain of an implied single-chain execution) we define f as the probability that at least
one uncorrupted party makes a successful PoW query during a given round: f = 1 − (1 − p)nq. In order
to demonstrate κ-boundedness, we can directly reuse Lemmas 2 and 3 from Section 5 under the following
modified bound (2) on m (bounding away from 1 the expected number of overall blocks created during one
protocol round):

m ≤ (1− ξ2)/(npq) . (5)

Theorem 6 (κ-Boundedness). Let κ ∈ N and ξ2 ∈ (0, 1/2), let n, p, q, and f be as defined above for the
corresponding Bitcoin protocol, and let m satisfy (5). The probability that, during an L-round execution of
Πm

pc-pow with A⊥, there is a block that incurs a delay of at least κ rounds, is bounded by

εκ ≤ 2L · exp

(
−ξ

2
2(ξ2κ− 3)

9

)
.

Hence, the protocol Πm
pc-pos executed over a period of L slots is (κ, εκ)-bounded.

Proof. The proof follows along the lines of the proof of Theorem 3. ut

Throughput. A sufficient condition for a mined block B to eventually become stable in Cc is that a block
gets mined for Cc during a ∆-right isolated successful round along the lines of the proof of Theorem 4. We
denote this probability by f̂ = f(1− f)∆.

Theorem 7 (Throughput). Fix parameters n, q, k,∆ ∈ N, ξ3, p ∈ (0, 1/2], f = 1 − (1 − p)nq, assume

that (1 − f)∆ ≥ 1/2, and let f̂ = f(1 − f)∆. Let A ∈ Afs be a fail-stop adversary that, for α̂H ∈ (0, 1],
corrupts any fraction 1 − α̂H of the n parties. The protocol Πm

pc-pow achieves (θ, L0)-throughput for any

L0 ≥ (2k + 2 + 3∆)/((1− ξ3)2α̂Hf̂) and for

θ = (1− ξ3)2 ·

(
1− k + 1 + 4∆

(1− ξ3)2α̂Hf̂L0

)
· α̂H · f̂ ·m (6)

against A except with error εtp , 4 ·m · exp
(
−ξ23 α̂Hf̂(k + 1)/4

)
+ Pr [¬MaxDelay∆].
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Proof. The proof proceeds along the lines of the proof of Theorem 4 by partitioning the respective interval
of L rounds into intervals Ipref and Isuf , and demonstrating that

(i) each chain contains at least (1− ξ3)2 · α̂H · f̂ · Lpref − 2∆ blocks in Ipref ;
(ii) all m chains produced by Πm

pc-pow contain at least k + 1 blocks in Isuf .

Note the difference of Property (ii) with respect to the PoS case: One additional block besides the k blocks
is required to imply that each chain Cc received a confirmed block in the suffix interval that (indirectly)
references the last synchronization block in the prefix interval, and, that the respective synchronization
block got confirmed in the suffix interval; i.e., that all blocks in the prefix interval are stable as defined in
Section 6.2.

Again we define I ′pref (I ′suf) as the interval Ipref (Isuf) without its first ∆ slots, and L′pref = Lpref − ∆
(L′suf = Lsuf −∆). Exactly as in Section 5, we can show that Property (i) holds except for probability

ppref , Pr

 ∑
t∈I′pref

good(t) ≤ (1− ξ3)2 · α̂H · f̂ · L′pref −∆

 ≤ 2 exp

(
−
ξ23 · α̂H

2 · f2 · L′pref

4

)
.

Interval Isuf is now extended to compensate for an additional block as opposed to the PoS case, Lsuf ,
(k + 1 + ∆)/(1 − ξ3)2α̂Hf̂ + ∆, yielding that I ′suf will contain at least k + 1 good slots except for error
probability psuf , 2 exp

(
−ξ23α̂Hf(k + 1)/4

)
, establishing (ii).

Hence we can conclude that for Lsuf given above and Lpref , L− Lsuf , the interval Ipref contains at least

(1− ξ3)2 · α̂H · f̂ ·m ·L′pref −∆ stable blocks in all m chains except with probability m · (ppref + psuf), resulting

in the throughput parameter θ in (6). Under the assumption L0 ≥ (2k + 2 + 3∆)/((1 − ξ3)2α̂Hf̂) we have
ppref ≤ psuf and the bound on εtp in the theorem statement follows. ut

Noting that npq ≤ f/(1− f) we get the following corollary.

Corollary 2. Under the notation and assumptions in Theorems 6 and 7 the protocol Πm
pc-pow for m =

(1 − ξ2)(1 − f)/f ≤ (1 − ξ2)/(npq) is (κ, εκ)-bounded for any κ and achieves (θ, L0)-throughput against

fail-stop adversaries for any L0 ≥ (2k + 2 + 3∆)/((1− ξ3)2α̂Hf̂) and

θ = (1− ξ2) · (1− ξ3)2 · (1− f)∆+1 ·

(
1− k + 1 + 4∆

(1− ξ3)2α̂Hf̂L0

)
· α̂H

except with error probability εtp.

Remark 3. Note that, above, throughput optimality was only demonstrated in presence of a fail-stop adver-
sary. As remarked for the PoS case, our PoW construction can be adapted along the same lines in order to
achieve Byzantine throughput optimality — a property first achieved in [2].

6.4 Comparison to Prior Parallel-Chains Constructions

Committee-based sharding, e.g., [28,24,42]. As each shard (or chain) is assigned a subset of the nodes, such
protocols tolerate at most n/3 active corruptions and are not secure against fully adaptive corruption. Our
construction is adaptively secure against a faulty minority.

Chainweb [29]. The protocol enforces that a block of a given height h in a particular chain can only be mined
if blocks of height h−1 of all m chains have already been mined. Furthermore, nodes are free to decide which
chains to allocate their mining power to. Thus, honest nodes will always concentrate their mining towards
the chains that still miss a block of maximal height.

Despite the specific security properties demonstrated in [22], the ability of the adversary to concentrate
her mining power to a single chain implies that she can considerably reduce the quality of the respective
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chain. Furthermore, as, in Chainweb, the chains are somewhat independent (or, at least are responsible
for different partition subsets with respect to transaction sharding) this has a similar effect on liveness. In
particular, we argue that liveness is only achieved with respect to a liveness parameter in Ω(m2), i.e., that
there is an adversary strategy to make confirmation times depend quadratically in the number m of chains.

Consider a transaction of a kind that must be published on the chain with index 1, and consider an
adversary that invests all her mining power in order to delay a respective transaction submitted for mining.
The adversary proceeds as follows for each block layer of same height:

1. The full mining power is invested into chain 1 in order to pre-publish a block not containing the transac-
tion. If successful, the honest miners will not work on this chain until the current block layer is completed.

2. In case an honest block B was published before the adversary was successful, the adversary invests all
mining power into chain 1 in order to create as many forks as possible that extend B’s parent block by
a sibling block for B (not containing the transaction) — until the current block layer is completed.

Assuming that the adversary possesses roughly the same amount of mining power as the honest nodes,
we observe that, per layer, the probability that the adversary fails in Step 1 is roughly ppub = m−1 as her
mining power for chain 1 is about m times that of the honest nodes (who, for an empty layer, uniformly
distribute their mining over all chains). Furthermore, assume that an honest node managed to publish a
block B on chain 1 on a given layer. Such a block must have been published as one of the first blocks of this
layer with high probability, implying that roughly m blocks remain to be mined for this layer. Thus, during
the time the honest miners complete the pending layer, the adversary will manage to mine roughly m sibling
forks for block B. That is, given that an honest party published a block B on chain 1, the probability that
B will be referenced by the next layer is (at most) roughly pref = m−1.

Thus, the per-layer probability that the given transaction gets published in a block that will be referenced
by the next layer is roughly ppub · pref = m−2, and Chainweb achieves liveness with a liveness parameter that
is Ω(m2) whereas our construction achieves liveness with respect to parameter 2u where u is the liveness
parameter of the single chain.

Blockclique [17]. Also in this protocol, the adversary can concentrate her mining power to a single chain. It
is thus conceivable that a similar tradeoff for liveness has to be tolerated — but expectedly to a lesser extent
than for Chainweb, as the honest miners are not incentivized to exclude particular chains from mining. As
of now, we know of no analysis to demonstrate any upper bounds on liveness for this protocol.

7 Security Amplification and Latency Reduction

We consider security amplification—and the related issue of reducing settlement times and latency—in
blockchain protocols. Roughly, we describe a general construction which uses m underlying blockchains to
provide a new transaction settlement mechanism in which transactions settle Θ(m) times faster. (The Θ(·)
notation hides a constant independent of m.) In fact, the construction provides a flexible means to trade off
settlement time against the number of underlying blockchains in which a transaction should be logged. In
the natural setting where there is a cost associated with including a transaction in a blockchain, this yields
a trade off between cost and settlement time.

More specifically, by logging a transaction in all of the underlying blockchains, users can be promised a
Θ(m) (multiplicative) reduction in settlement time; on the other hand, by logging a transaction in a single
one of the underlying blockchains, users can be promised a settlement time roughly consistent with the
original settlement time of the underlying blockchains.

The underlying blockchains. We describe the construction in a concrete setting, such as might arise if one
wished to improve the settlement time of an established blockchain protocol like Bitcoin, Ethereum, or
Ouroboros. In this case, the construction calls for simultaneous operation of m independent blockchains
which share a common transaction environment. Specifically, while each individual blockchain is executed
independently, transactions are settled across the entire family of chains (with a mechanism that we describe
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below). We assume that the underlying blockchains provide exponential security, which is to say that the
probability that a block currently appearing in the blockchain can be later abandoned is no more than
exp(−αk + β), where k is the number of time slots that have elapsed since the block was broadcast.7 Here
α, β > 0 are two real numbers that depend on the dynamics of the blockchain and the power of the adversary.
(Note that typical PoW blockchains indeed provide such exponential security [18] and recent results have
shown that PoS-blockchains can obtain similar guarantees [7].) We further assume that the m underlying
blockchains are independent, in the sense that the probability that an adversary can engineer common prefix
(persistence) violations in a collection of blockchains is no more than the product of the individual violation
probabilities. Indeed, this is satisfied by the PoS construction given in Section 5.2, and also can be achieved
in the PoW setting by a mechanism we discussed in Section 6.2.

Settlement time and validity. Note that the time to settle a transaction, in general, is a sum of both the time
it takes for the transaction to appear in the system (after being broadcasted), and the time it needs to to
stabilize (i.e., become immutable). For simplicity, in this section we focus explicitly on the latter, ignoring the
time taken for the transaction to appear in the underlying blockchain(s) in the first place. With this picture,
our study of “settlement” yields a quantitative guarantee that transactions are eventually “permanent” and
hence cannot be removed from the system by future processing.

A significant complication arises from conflicting transactions; in particular, the system must eventually
declare any transaction valid or invalid in such a way that (i.) two conflicting transactions are never declared
valid, and (ii.) transactions without immediate conflicts will be persistently declared as valid. Assuming a
UTXO-style convention for expressing transactions (which explicitly identifies the previous transactions rele-
vant to a particular transaction), it is easy to determine if two transactions conflict without any further con-
text. Note that under the promise that no conflicting transactions are ever submitted to the blockchains, there
would be an immediate rule for interpreting the transactions that appear across the family of blockchains:
simply declare valid all transactions appearing in the stable parts of (all) the blockchains.8 Note, further-
more, that this system would actually provide a remarkable improvement in persistence (and hence latency):
Specifically, if a given transaction tx is included “k-slots ago” in all m blockchains, the probability that each
of these independent chains is reverted is approximately εmk , where εk is the probability of a k-common prefix
(time) violation in a single chain. In this case, the system can provide a significant improvement in security
for the same common prefix time bound (k) or, alternatively, offer a significant improvement in settlement
time for a desired failure probability. As mentioned above, this simple mechanism does not provide a means
for settling conflicts; the major challenge, then, is to simultaneously provide such settlement acceleration
and unambiguously resolve all conflicts.

The construction. The simple protocol mentioned above does not provide a means for managing conflicting
transactions (as it places all transactions included in the underlying blockchains on equal footing). For this
purpose, we describe a more sophisticated convention which assigns to every transaction in the system a
weight, as follows.

Definition 6 (Weight and the partial order ≺L). Let L > 0. For a transaction tx and a blockchain B,
we say that tx is dominant in B if it appears prior to any conflicting transaction in B. For a transaction
tx, let ηi(tx) denote the height at which tx appears in the ith blockchain, where height refers to the time slot
associated with the first block containing tx; if tx does not appear in the blockchain, we define ηi(tx) = ∞.
For a transaction tx, define

hi(tx) ,

{
ηi(tx) if tx is dominant in the ith blockchain,

∞ otherwise.

7 It is often more convenient to parameterize security as a function of the number of blocks that have been appended
after a particular block of interest. In our setting where the various blockchains may have different length it is
somewhat more convenient to use time. In the various systems of interest, these quantities can be directly related
by “chain growth”.

8 Of course, it is possible that some transactions appearing in the system by this rule may refer to absent UTXOs.
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Let h(tx) , mini hi(tx). Then define

weightL(tx) ,
∑

i such that
hi(tx)<h(tx)+L lnm

exp(−hi(tx)/L) .

Finally, define tx1 ≺L tx2 if (and only if) weightL(tx1) > weightL(tx2). Observe that ≺L is a partial order.

We are now in a position to describe the construction.

Construction 1 Consider m blockchains possessing exponential security k 7→ exp(−αk+β), as above. With
weight defined as above, we define a transaction tx to be valid if tx ≺L tx′ for all conflicting transactions
tx′ appearing in any of the blockchains. Otherwise tx is invalid.

A few remarks are in order. Note that the weight of a transaction is determined entirely by the first h(tx) +
L lnm timeslots over the m blockchains; in particular, this quantity is eventually fixed for all transactions
(that appear in stable portions of the blockchains). Note, furthermore, that if a transaction tx (dominant in
at least one blockchain) first appears at height h = h(tx), then its weight satisfies

exp(−h/L) ≤ weightL(tx) ≤ m · exp(−h/L) .

It follows that if h(tx1) +L lnm < h(tx2) then weightL(tx1) > weightL(tx2) and, hence, that a transaction’s
classification as either valid or invalid is entirely determined by the portions of the blockchains of height
no more than h(tx) + L lnm. Critically, no transaction appearing more than L lnm timeslots after a given
transaction tx can invalidate tx.

Settlement times. In light of the discussion above, it is clear that if a transaction appeared sufficiently far in
the past (in any of the blockchains), it can be classified as valid or invalid and, furthermore, this classification
will be stable for the future of the protocol. We now consider, in detail, two particular scenarios of interest:
slow settlement, where a transaction is placed in a single blockchain, and fast settlement, where a transaction
is placed in all m blockchains. These two results are expressed in the following two statements.

Theorem 8 (Slow settlement). Consider a transaction tx appearing in one of the blockchains at height
h = h(tx). Suppose that no competing transaction has appeared in any of the other blockchains by a later
time T > h + k. Then for any k ≥ L(ln 2m), the probability that tx is either removed from the system or
declared invalid (due to inclusion of a conflicting transaction with equal or larger weight) is no more than
exp(−α(k − L) +m(β + ln k)).

Theorem 9 (Fast settlement). Consider a transaction tx appearing at height h = h(tx) in all m blockchains.
Suppose that no competing transaction has appeared in any of the blockchains at time T > h + k, with
k = 3L/m and m ≥ 3. Then the probability that tx is either removed from the system or declared invalid
(due to inclusion of a conflicting transaction with equal or larger weight) is no more than 2 exp(−αL+m(β+
ln(16L lnm))). Note that with this value of k ≈ L/m, the system achieves an error bound commensurate
with that achieved by k′ ≈ L in the underlying blockchains. In particular, for this regime of k, the system
settles transactions ≈ m times faster.

In preparation for the proofs of these two statements, we establish a general lemma that bounds the
probability that a transaction which does not occur in any of the m blockchains can be inserted so as to
achieve a given weight.

Lemma 7. Consider a system of m chains, as above. The probability that an adversary, at time T , can
inject a transaction tx that has not yet appeared in any of the chains so as to achieve

weightL(tx) ≥ G · exp(−T/L)

is no more than
(
L ln(G−m+1)eβ

)m
(G−m+1)−αL. We note also the upper bound

(
L ln(G)eβ

)m
(G−m)−αL.
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Proof. Suppose that for some subset I ⊂ {1, . . . ,m} and for each i ∈ I the adversary could inject the
transaction into chain i at “depth” di (so that in blockchain i the transaction appears in the block associated
with time slot T − di). Then the resulting weight of the transaction would be

weightL(tx) ≤
∑
i∈I

exp(−(T − di)/L) = exp(−T/L)
∑
i

exp(di/L) ,

and the “gap” parameter G associated with this particular placement satisfies

G = W/ exp(−T/L) ≤
∑
i

exp(di/L)
(∗)
≤ (m− 1) + exp

(∑
i

di/L

)
. (7)

The inequality
(∗)
≤ above follows from the fact that for any ai ≥ 0,

∑̀
i=1

exp(ai) ≤ (`− 1) + exp
(∑

ai

)
.

We conclude from (7) that ∑
i

di ≥ L ln(G−m+ 1) .

As we assume prefix violations occur in the underlying chains with independent probability, the probability
that this particular placement can occur is no more than∏

i∈I
exp(−αdi + β) ≤ exp

(
mβ − α

∑
di

)
≤ exp

(
mβ − αL ln(G−m+ 1)

)
= emβ(G−m+ 1)−αL .

Note, additionally, that if the adversary is capable of placing a transaction at depths (d1, . . . , dm), then any
tuple of depths (d′1, . . . , d

′
m) for which d′i ≤ di is also available to the adversary. It follows that the probability

that the adversary can achieve a placement achieving parameter G is no more than the probability that it
can achieve a placement achieving depths for which

∑
i di is exactly (the floor of) L ln(G−m+ 1). This is

no more than

eβm · [L ln(G−m+ 1)]m · (G−m+ 1)−αL ≤ eβm · [L ln(G)]m · (G−m+ 1)−αL

as desired. ut

Having established Lemma 7 above, we are now ready to prove Theorems 8 and 9.

Proof (of Theorem 8). Observe that the weight of the existing transaction tx is weightL(tx) = exp(−(T −
k)/L), so it suffices to bound the probability that an adversary can inject a new transaction with this weight.
(Note that if no such transaction can be inserted, then tx must remain in the system.) Writing weightL(tx) =
G exp(−T/L), we may apply Lemma 7 with gap G = exp(k/L) to conclude that the probability that an
adversary can inject a (conflicting) transaction with this weight is(

L ln(exp(k/L))eβ
)m

(exp(k/L)−m+ 1)−αL ≤ (keβ)m(exp(k/L)−m+ 1)−αL .

Consider now a depth k ≥ L ln 2m; then exp(k/L) −m + 1 ≥ (1/e) exp(k/L) and the probability above is
no more than

(keβ)m[(1/e) exp(k/L)]−αL = exp(−α(k − L) +m(β + ln k)) ,

as desired. ut
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Thus settlement time for the slow procedure (that is, include the transaction in a single blockchain) is
linearly related with the original settlement time of the blockchain(s). Specifically, if depth k was sufficient
in the underlying blockchains to guarantee that a k-prefix violation occurs with probability no more than ε,
then this same ε can be achieved in the new system, under “slow” settlement, with depth k′ = (1 + o(1))k.

Proof (of Theorem 9). The probability that an adversary can inject a competing transaction into more than
m/3 of the blockchains in such a way that it precedes tx (and hence is dominant in these blockchains) is no
more than (

m

m/3

)
exp(−αk + β)m/3 ≤ 2m exp(−αmk/3 +mβ/3)

≤ exp(−αmk/3 +m(β + ln 2)) .

(8)

We condition on the negation of this event for the remainder of the proof: We assume that at least (2/3)m of
the initial appearances of tx in the blockchains remain (and remain dominant); thus the weight of tx satisfies

weightL(tx) ≥ (2/3)m exp(−(T − k)/L) .

Writing weightL(tx) = G exp(−T/L) the relevant gap G is at least (2/3)m exp(k/L) and, by Lemma 7, the
probability that an adversary can inject a (conflicting) transaction with this weight into some subcollection
of m/3 blockchains is no more than(

m

m/3

)(
L ln(G)eβ

)m/3(
(2/3)m exp(k/L)−m/3

)−αL
≤ 2m

(
L ln(m exp(k/L))eβ

)m/3(
(2/3)m(1 + k/L)−m/3

)−αL
= 2m

(
L ln(m exp(k/L))eβ

)m/3(
(2/3)mk/L+m/3

)−αL
,

(9)

where we use the fact that exp(x) ≥ 1+x for positive x. Selecting k = 3L/m, note that (2/3)mk/L+m/3 ≥
2 +m/3 ≥ e and k ≤ L for m ≥ 3. In this case, the probability of (9) is no more than(

23L ln(m exp(k/L))eβ
)m/3

exp(−αL) ≤
(
8L(ln(m) + 1)eβ

)m/3
exp(−αL)

≤
(
16L ln(m)eβ

)m/3
exp(−αL)

= exp(−αL+ (m/3)(β + ln(16L lnm))) .

(10)

We conclude from (8) and (10) that the probability that the transaction is invalidated is no more than

exp(−αL+ (m/3)(β + ln(16L lnm))) + exp(−αmk/3 +m(β + ln 2))

≤ exp(−αL+m(β + ln(16L lnm))) + exp(−αL+m(β + ln 2))

≤ 2 exp(−αL+m(β + ln(16L lnm))) ,

as desired. ut
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A Concentration Bounds

We record here a form of concentration bounds that we use in our arguments. See, e.g., [31] for proofs and
further discussion.

Theorem 10 (Chernoff bound). Let X1, . . . , XT be independent random variables with E [Xi] = pi and

Xi ∈ [0, 1]. Let X =
∑T
i=1Xi and µ =

∑T
i=1 pi = E [X]. Then for all δ ≥ 0 we have

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δµ ,

and for all 0 ≤ δ ≤ 1 we have

Pr[X ≤ (1− δ)µ] ≤ e− δ
2

2 µ .

Theorem 11 (Azuma’s inequality (Azuma; Hoeffding)). Let X0, . . . , Xn be a sequence of real-valued
random variables so that, for all t, |Xt+1−Xt| ≤ c for some constant c. If E [Xt+1 |X0, . . . , Xt] ≤ Xt for all
t then for every Λ ≥ 0

Pr[Xn −X0 ≥ Λ] ≤ exp

(
− Λ2

2nc2

)
.

Alternatively, if E [Xt+1 |X0, . . . , Xt] ≥ Xt for all t then for every Λ ≥ 0

Pr[Xn −X0 ≤ −Λ] ≤ exp

(
− Λ2

2nc2

)
.
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Fig. 10. Functionality Fsig

Fsig interacts with a signer PS and stakeholders P1, . . . ,Pn as follows:
– Key Generation. Upon receiving a message (KeyGen, sid,PS) from a stakeholder PS , hand

(KeyGen, sid,PS) to the adversary. Upon receiving (VerificationKey, sid,PS , v) from the adversary, output
(VerificationKey, sid, v) to Pi, and record the triple (sid,PS , v).

– Signature Generation. Upon receiving a message (Sign, sid,PS ,m) from PS , verify that (sid,PS , v) is
recorded for some sid . If not, then ignore the request. Else, send (Sign, sid,PS ,m) to the adversary. Upon
receiving (Signature, sid,PS ,m, σ) from the adversary, verify that no entry (m,σ, v, 0) is recorded. If it is,
then output an error message to PS and halt. Else, output (Signature, sid,m, σ) to PS , and record the entry
(m,σ, v, 0).

– Signature Verification. Upon receiving a message (Verify, sid,m, σ, v′) from some stakeholder Pi, hand
(Verify, sid,m, σ, v′) to the adversary. Upon receiving (Verified, sid,m, φ) from the adversary do:
1. If v′ = v and the entry (m,σ, v, 1) is recorded, then set f = 1. (This condition guarantees completeness:

If the verification key v′ is the registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m,σ′, v, 1) for any σ′ is recorded, then set
f = 0 and record the entry (m,σ, v, 0). (This condition guarantees unforgeability: If v′ is the registered
one, the signer is not corrupted, and never signed m, then the verification fails.)

3. Else, if there is an entry (m,σ, v′, f ′) recorded, then let f = f ′. (This condition guarantees consistency:
All verification requests with identical parameters will result in the same answer.)

4. Else, let f = φ and record the entry (m,σ, v′, φ).
Output (Verified, sid,m, f) to Pi.

Fig. 11. Functionality Finit

Finit is parameterized by the number of initial stakeholders n and their respective stakes s1, . . . , sn. Finit interacts
with stakeholders P1, . . . ,Pn as follows:

– In the first round, upon a request from some stakeholder Pi of the form (ver keys, sid,Pi, v
vrf
i , vkesi , vsigi ), it

stores the verification keys tuple (Pi, v
vrf
i , vkesi , vsigi ) and acknowledges its receipt. If any of the n stakeholders

does not send a request of this form to Finit, or if two different stakeholders provide two identical keys, it

halts. Otherwise, it samples and stores a random value η
$← {0, 1}λ and constructs a genesis block (S0, η),

where S0 =
(

(P1, v
vrf
1 , vkes1 , vsig1 , s1), . . . , (Pn, v

vrf
n , vkesn , vsign , sn)

)
.

– In later rounds, upon a request of the form (genblock req, sid,Pi) from some stakeholder Pi, Finit sends
(genblock, sid, S0, η) to Pi.

B Hybrid Functionalities for the PoS Case

In Figure 10 we present the functionality Fsig as defined in [10], where it is also shown that EUF-CMA
signature schemes realize Fsig. This functionality is used in [13] to model signatures on transactions.

Figure 11 contains the functionality Finit that determines the genesis stake distribution S0 and the nonce
η (to be written in the genesis block). Finit also takes stakeholders’ public keys from them and packages
them into the genesis block at the outset of the protocol. Note that Finit halts if it is not possible to create a
genesis block; all security guarantees we provide later in the paper are conditioned on a successful creation
of the genesis block.

In Figures 12-13 we give a description of the hybrid functionalities Fvrf , Fkes, used by Πpc-pos, these are
taken from [13]. Finally, the functionality Fro represents a random oracle an its description is omitted.

C Some Results from [1]

Here we present a technical result from [1] (Lemma 8 below) that will be useful for the throughput analysis
of our PoS-based construction in Section 5. First, we need to introduce some notation and terminology. We
keep the definitions below in their full generality as presented in [1,13], even though, looking ahead, we will
only use them in a setting where the random variables Wi contain no 1-symbols (i.e., γ = 1).
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Fig. 12. Functionality Fvrf .

Fvrf interacts with stakeholders P1, . . . ,Pn as follows:
– Key Generation. Upon receiving a message (KeyGen, sid) from a stakeholder Pi, hand (KeyGen, sid,Pi) to

the adversary. Upon receiving (VerificationKey, sid,Pi, v) from the adversary, if Pi is honest, verify that v is
unique, record the pair (Pi, v) and return (VerificationKey, sid, v) to Pi. Initialize the table T (v, ·) to empty.

– Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from S, verify that v has not being
recorded before; in this case initialize table T (v, ·) to empty and record the pair (S, v).

– VRF Evaluation. Upon receiving a message (Eval, sid,m) from Pi, verify that some pair (Pi, v) is recorded.
If not, then ignore the request. Then, if the value T (v,m) is undefined, pick a random value y from {0, 1}`VRF

and set T (v,m) = (y, ∅). Then output (Evaluated, sid, y) to Pi, where y is such that T (v,m) = (y, S) for
some S.

– VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid,m) from Pi, verify that some
pair (Pi, v) is recorded. If not, then ignore the request. Else, send (EvalProve, sid,Pi,m) to the adversary.
Upon receiving (EvalProve, sid,m, π) from the adversary, if value T (v,m) is undefined, verify that π is
unique, pick a random value y from {0, 1}`VRF and set T (v,m) = (y, {π}). Else, if T (v,m) = (y, S), set
T (v,m) = (y, S ∪ {π}). In any case, output (Evaluated, sid, y, π) to Pi.

– Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v,m) from S for some v, do the following.
First, if (S, v) is recorded and T (v,m) is undefined, then choose a random value y from {0, 1}`VRF and set
T (v,m) = (y, ∅). Then, if T (v,m) = (y, S) for some S 6= ∅, output (Evaluated, sid, y) to S, else ignore the
request.

– Verification. Upon receiving a message (Verify, sid,m, y, π, v′) from some party P , send
(Verify, sid,m, y, π, v′) to the adversary. Upon receiving (Verified, sid,m, y, π, v′) from the adversary
do:
1. If v′ = v for some (Pi, v) and the entry T (v,m) equals (y, S) with π ∈ S, then set f = 1.
2. Else, if v′ = v for some (Pi, v), but no entry T (v,m) of the form (y, {. . . , π, . . .}) is recorded, then set

f = 0.
3. Else, initialize the table T (v′, ·) to empty, and set f = 0.

Output (Verified, sid,m, y, π, f) to P .

Definition 7 (The characteristic conditions [1]). Consider a family of random variables W1, . . . ,Wn

taking values in {0, 1,⊥}. We say that they satisfy the (f ; γ)-characteristic conditions if, for each k ≥ 1,

Pr[Wk = ⊥ |W1, . . . ,Wk−1] ≥ (1− f) ,

Pr[Wk = 0 |W1, . . . ,Wk−1,Wk 6= ⊥] ≥ γ , and hence

Pr[Wk = 1 |W1, . . . ,Wk−1,Wk 6= ⊥] ≤ 1− γ .

In the expressions above, conditioning on a collection of random variables indicates that the statement is
true for any conditioning on the values taken by variables.

Definition 8 (Reduction mapping [13]). For ∆ ∈ N, we define the function ρ∆ : {0, 1,⊥}∗ → {0, 1}∗
inductively as follows:

ρ∆(ε) = ε,

ρ∆(⊥‖w′) = ρ∆(w′),

ρ∆(1 ‖w′) = 1 ‖ ρ∆(w′),

ρ∆(0 ‖w′) =

{
0 ‖ ρ∆(w′) if w′ ∈ ⊥∆ ‖ {0, 1,⊥}∗,
1 ‖ ρ∆(w′) otherwise.

We call ρ∆ the reduction mapping for delay ∆.

For our purposes, it is important that when the reduction mapping of Definition 8 is applied to a sequence
W of symbols 0 and ⊥ representing slots with and without an uncorrupted leader respectively, then every
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Fig. 13. Functionality Fkes

Fkes is parameterized by the total number of signature updates T , interacting with a signer PS and stakeholders
Pi as follows:

– Key Generation. Upon receiving a message (KeyGen, sid,PS) from a stakeholder PS , send
(KeyGen, sid,PS) to the adversary. Upon receiving (VerificationKey, sid,PS , v) from the adversary, send
(VerificationKey, sid, v) to PS , record the triple (sid,PS , v) and set counter kctr = 1.

– Sign and Update. Upon receiving a message (USign, sid,PS ,m, j) from PS , verify that (sid,PS , v) is
recorded for some sid and that kctr ≤ j ≤ T . If not, then ignore the request. Else, set kctr = j + 1 and send
(Sign, sid,PS ,m, j) to the adversary. Upon receiving (Signature, sid,PS ,m, j, σ) from the adversary, verify
that no entry (m, j, σ, v, 0) is recorded. If it is, then output an error message to PS and halt. Else, send
(Signature, sid,m, j, σ) to PS , and record the entry (m, j, σ, v, 1).

– Signature Verification. Upon receiving a message (Verify, sid,m, j, σ, v′) from some stakeholder Pi do:
1. If v′ = v and the entry (m, j, σ, v, 1) is recorded, then set f = 1. (This condition guarantees completeness:

If the verification key v′ is the registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if v′ = v, the signer is not corrupted, and no entry (m, j, σ′, v, 1) for any σ′ is recorded, then set
f = 0 and record the entry (m, j, σ, v, 0). (This condition guarantees unforgeability: If v′ is the registered
one, the signer is not corrupted, and never signed m, then the verification fails.)

3. Else, if there is an entry (m, j, σ, v′, f ′) recorded, then let f = f ′. (This condition guarantees consistency:
All verification requests with identical parameters will result in the same answer.)

4. Else, if j < kctr, let f = 0 and record the entry (m, j, σ, v, 0). Otherwise, if j = kctr, hand
(Verify, sid,m, j, σ, v′) to the adversary. Upon receiving (Verified, sid,m, j, φ) from the adversary let f = φ
and record the entry (m, j, σ, v′, φ). (This condition guarantees that the adversary is only able to forge
signatures under keys belonging to corrupted parties for time periods corresponding to the current or
future slots.)

Output (Verified, sid,m, j, f) to Pi.

good slot results in a 0-symbol in ρ(W ). Note that the definition from [13] was slightly adjusted to have this
property in our context where we need to isolate good slots by at least ∆ empty slots, the statement below
was adjusted accordingly.

Let #s(X) denote the number of ocurrences of the symbol s in the string X. The following lemma is
a minor technical adaptation of Lemma 8(iv) from [1], where a constant 1/4 is replaced by 1 − ξ3 in the
application of concentration bounds and ε is set to 0.

Lemma 8 ([1], Lemma 8(iv)). Let W = W1 · · ·Wn be a sequence of random variables, each taking values
in {⊥, 0, 1}, which satisfy the (f ; γ)-characteristic conditions and let

X = X1 · · ·X` = ρ∆(W1 · · ·Wn)

be the random variables obtained by applying the reduction mapping (for delay ∆) to W . If

Pr[Wi = ⊥ |W1, . . . ,Wi−1] ≤ (1− a) and γ(1− f)∆ ≥ 1/2

then for any ξ3 ≤ 1/2 we have

Pr
[
#0(X) < (1− ξ3)2γ(1− f)∆an−∆

]
≤ 2 exp

(
−ξ

2
3a

2n

4

)
.
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