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Abstract

In this work, we consider the natural goal of designing secret sharing schemes that ensure
security against a powerful adaptive adversary who may learn some “leaked” information about
all the shares. We say that a secret sharing scheme is p-party leakage-resilient , if the secret
remains statistically hidden even after an adversary learns a bounded amount of leakage, where
each bit of leakage can depend jointly on the shares of an adaptively chosen subset of p parties.
A lot of works have focused on designing secret sharing schemes that handle individual and
(mostly) non-adaptive leakage for (some) threshold secret sharing schemes ( [DP07, DDV10,
LL12,ADKO15,GK18a,BDIR18]).

• We give an unconditional compiler that transforms any standard secret sharing scheme
with arbitrary access structure into a p-party leakage-resilient one for p logarithmic in the
number of parties. This yields the first secret sharing schemes secure against adaptive and
joint leakage for more than two parties.

• As a natural extension, we initiate the study of leakage-resilient non-malleable secret shar-
ing and build such schemes for general access structures. We empower the computation-
ally unbounded adversary to adaptively leak from the shares and then use the leakage
to tamper with each of the shares arbitrarily and independently. Leveraging our p-party
leakage-resilient schemes, we also construct such non-malleable secret sharing schemes:
any such tampering either preserves the secret or completely ‘destroys’ it. This improves
upon the non-malleable secret sharing scheme of Goyal and Kumar (CRYPTO 2018) where
no leakage was permitted. Leakage-resilient non-malleable codes can be seen as 2-out-of-2
schemes satisfying our guarantee and have already found several applications in cryptog-
raphy [LL12,ADKO15,GKP+18,GK18a,CL18,OPVV18].

• Our constructions rely on a clean connection we draw to communication complexity in
the well-studied number-on-forehead (NOF) model and rely on functions that have strong
communication-complexity lower bounds in the NOF model (in a black-box way). We
get efficient p-party leakage-resilient schemes for p upto O(log n) as our share sizes have
exponential dependence on p. We observe that improving this dependence from 2O(p) to
2o(p) will lead to progress on longstanding open problems in complexity theory.
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1 Introduction

Shamir [Sha79] and Blakley [Bla79] initiated the study of secret sharing schemes by constructing
threshold secret sharing schemes that allow any set of t parties, out of n parties total, to reconstruct
the secret. Furthermore, crucially, the secret is hidden given less than t shares. For the sake of
exposition, in this introduction we will focus only on t-out-of-n schemes, whereas our results will
also apply to more general access patterns. We set up some basic notation using the definition
below:

Definition 1. Let Share : {0, 1}k → ({0, 1}`)n be any efficient randomized algorithm mapping k bit
secrets into n shares, each of length ` bits. Let Rec : ({0, 1}`)n be a (deterministic) algorithm that
maps a collection of shares back to a possible secret. The pair (Share,Rec) is called a t-out-of-n
secret sharing scheme (SS) mapping k bit secrets into ` bit shares if:

• Perfect correctness : Any t-out-of-n shares can be used to reconstruct the secret correctly.
For any secret a ∈ {0, 1}k, for any set T ⊆ [n] with |T | ≥ t,

Pr
[
Rec

(
Share(a)T

)
= a

]
= 1

where the probability is over the randomness of the sharing function and Share(a)T denotes
the restriction of the n shares produced by Share(a) to the ones identified by the set T .

• Perfect secrecy : Less than t shares reveal no information about the underlying secret.
More formally, for any two secret a, b ∈ {0, 1}k, any set U ⊆ [n] with |U | < t, Share(a)U is
identically distributed to Share(b)U .

Secret sharing schemes, while originally envisioned with only the goal of secrecy formulated
above, have been strengthened in various ways, such as by adding verifiability [RBO89], robustness
[CDF+08], or functionality [BGI15]. In this work, our focus is on a substantially stronger secrecy
goal—leakage-resilience.

Leakage-resilience has a long history in cryptography. Motivated by the fascinating goal of
securing circuit computation against an adversary who probes the values of internal wires of the
cirucuit, Ishai, Sahai, and Wagner [ISW03] initiated the study of private circuits. Micali and
Reyzin [MR04] put forward a very general model for such side-channel attacks. Subsequently, a lot
of primitives in cryptography were made leakage-resilient [DP07,DP08,ADW09,ADN+10,DDV10,
GR15,LL12,ADKO15,GIM+16,GK18a,BDIR18].

Focusing now on leakage resilience in the context of secret sharing, Dziembowski and Pietrzak
[DP07] developed an intrusion-resilient secret sharing scheme using alternating extractors. Dav̀ı,
Dziembowski and Venturi [DDV10] constructed the first 2-out-of-2 secret sharing scheme that sta-
tistically hides the secret even after an adaptive adversary executes a bounded communication
leakage protocol on the two shares. sLiu and Lysyanskaya [LL12] and [ADKO15] constructed
leakage-resilient non-malleable codes, which can be seen as 2-out-of-2 leakage-resilient schemes
which also feature non-malleability against such bounded leakage-protocols. Recently, Goyal and
Kumar [GK18a,GK18b] constructed ‘non-malleable secret sharing schemes’ (NMSS) for general ac-
cess structures by first designing a 2-out-of-n secret sharing scheme that hides the secret even when
a non-adaptive adversary learns some bounded amount of information independently from each of
the n shares. Concurrently, using tools from Fourier analysis developed for additive combinatorics,
Benhamouda, Degwekar, Ishai and Rabin [BDIR18] showed that Shamir’s t-out-of-n secret sharing
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scheme for large values of t = n−o(log n) is leakage-resilient against a non-adaptive adversary who
independent leaks bounded amount of information from each share individually. (See below for
further discussion of these works and formal definitions.)

Therefore the focus of recent literature on leakage-resilient secret sharing is on handling individ-
ual and (mostly) non-adaptive leakage for (some) threshold secret sharing schemes. In this work,
we aim to develop a more comprehensive theory of leakage resilient secret sharing. To this end,
our main focus will be on handling joint leakage from multiple shares at once. For example, in
our model, we would allow the adversary to specify an arbitrary leakage function f and obtain the
output f(share1, share2), where share1 is the share given to Party 1, and share2 is the share given
to Party 2. Furthermore, we consider adaptive leakage for secret sharing schemes that support
general access structures.

In particular, we model this by viewing leakage as (an adversary) running a communication
protocol, where in each round, a group of at most p parties (out of a total of n) get together and
compute a message based on all messages in the transcript so far, and the set of shares known
to all the parties in the group. This process continues until a limit of at most µ bits have been
communicated (or leaked). We call such protocols bounded collusion protocols (BCPs), and we will
call the set of protocols obeying the restrictions above (p, n, µ)-BCP or p-party collusion protocols
when n, µ are not too important.

The above definition is motivated by the fundamental Number-on-Forehead (NOF) model
[CFL83,BNS92] from communication complexity (see book of [KN06]). In particular, the p = n−1
case corresponds exactly to the well-studied NOF-model and p = 1 corresponds to the well-studied
number-in-hand (NIH) model [PVZ12,BEO+13,BO15]. Our model is also particularly well suited in
the context of secret sharing: for instance, for t-out-of-n threshold secret sharing schemes, leakage-
resilience is not possible if t or more parties can collude as they can just compute the secret. Thus,
for the case of (t, n)-threshold schemes, resilience against (t − 1)-party collusion protocols is the
best one could hope for.

Even more generally, our work is guided by the following question: Given a class of communica-
tion protocols P, can we design P-resilient secret sharing schemes in that the secret is statistically
hidden from an adversary who sees the entire transcript of a protocol from P executed on the shares?

The above discussion leads us to the main notion of leakage-resilience secret sharing schemes
that we study (see Section 2 for a more formal definition):

Definition 2. (p-party leakage resilience) Let (Share,Rec) be a t-out-of-n secret sharing
scheme that shares k bit secrets into n shares each of bit-length ` bits. Let µ be any bound on
allowed leakage and 1 ≤ p < t be any collusion bound. We say that (Share,Rec) is (p, t,n)-
leakage-resilient secret sharing scheme (or (p, t, n)-LRSS in short) if for any leakage protocol
Leak in (p, n, µ)-BCP, and for every pair of secrets a, b ∈ {0, 1}k, we have Leak(Share(a)) ≈ε
Leak(Share(b)).1

We remark that all known LRSSs that go beyond 2-out-of-2 sharing ( [GK18a,GK18b,BDIR18])
only study resilience against non-adaptive adversaries2. In particular, 3-out-of-3 secret sharing
schemes that are resilient against 2-party collusion protocols protocols were not known before our
work. For a more detailed comparison with existing works, see the related work section below.

1Here A ≈ε B means A,B are ε-close in statistical distance; see Section 2 for more details.
2In the language of being resilient to protocols, these works can be seen as constructing schemes that are resilient

to simultaneous one-round number-in-hand protocols.
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1.1 Leakage-Resilient Non-Malleable Secret Sharing

Goyal and Kumar [GK18a] recently introduced non-malleable secret sharing (NMSS) where they
consider an adversary who can tamper with all the shares. Such an adversary can completely ‘de-
stroy’ the secret by overwriting the shares. The adversary can also leave the secret intact by not
tampering anything. Motivated by the fascinating line of work on non-malleable codes and extrac-
tors [DW09,DPW10,LL12,DLWZ14,ADL14,CG14,CGL16,Li17,Li18], Goyal and Kumar [GK18a]
defined a secret sharing scheme to be non-malleable when the aforementioned two unavoidable
actions are the only ones that a computationally unbounded adversary can perform irrespective of
the way it tampers with the shares. In other words, any tampering either leaves the secret intact, or
completely ‘destroys’ the secret leading to the reconstruction of a completely “unrelated” one. Note
that non-malleable codes in two split-state model [LL12,DKO13,ADL14,CG14,CGL16,Li17,Li18]
are a special case of 2-out-of-2 NMSSs. [GK18b] give an efficient compiler that converts any standard
secret sharing scheme into one that ensures non-malleability against an adversary who tampers with
each of the shares arbitrarily and independently. [GK18a] constructs t-out-of-n schemes against a
stronger adversary who chooses any t shares, partitions it into two non-empty subsets and jointly
tampers with each subset independently.

The motivation for non-malleability stems from the natural desire to protect cryptosystems
from physical tampering. Notice, however, that a leakage attack might be easier to perform than
a tampering one. This is because, unlike a tampering attack, leakage attack does not necessarily
require the adversary to alter the state of a (classical) cryptosystem. Therefore, it is natural to
enable the tampering adversary to also perform leakage attacks. Consequently for secret sharing
schemes, we empower the adversary to adaptively and arbitrarily leak some bounded amount of
information from all the shares and in addition use this leakage to arbitrarily tamper with each of
the shares. Seeking inspiration from the definition of [LL12, ADKO15, GK18a], we define a secret
sharing scheme to be leakage-resilient non-malleable (LR NMSS) if the secret reconstructed from
these tampered shares is either the original secret or a completely “unrelated” one.

The special case of 2-out-of-2 LR NMSS has already received considerable attention in the
literature under the name of two split-state leakage-resilient non-malleable codes. Liu and Lysyan-
skaya [LL12] defined and constructed such codes against computationally bounded adversaries. Ag-
garwal, Dziembowski, Kazana, and Obremski [ADKO15] obtained the first information-theoretic
construction of 2-out-of-2 LR NMSS. [GKP+18] crucially used the 2-source non-malleable extractor
based codes of Li [Li17] as a 2-out-of-2 LR NMSS to design three round ‘concurrent’ commitment
protocols that additionally feature almost-optimal communication complexity. Chattopadhyay and
Li [CL18] also gave constructions of 2-out-of-2 LR NMSS (based on [CGL16]). Goyal and Ku-
mar [GK18a] constructed an ‘assymetric’ 2-out-of-2 LR NMSS (based on [CGL16]) and used it
to design t-out-of-n secret sharing schemes that are non-malleable even against an adversary who
chooses a fixed subset of t shares, partitions into two non-empty sets of different cardinality and
jointly tampers the shares in each subset independently. The resulting construction, with some
work, can be generalized to obtain t-out-of-n LR NMSS when the adversary is restricted to obtain
leakage from a total of at most t shares. Unfortunately, this cannot be generalized to cases where
the adversary can leak individually from more than t shares. In our work, we crucially leverage our
new p-party LRSS schemes for p > 1 to build LR NMSS for general access structures (in particular
t-out-of-n secret sharing) that can handle individual tampering after adaptive individual leakage
from all n shares.
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1.2 Related Work

Before we describe our results and techniques in detail, let us first consider previous related work,
and discuss some limitations of current techniques towards achieving the goals we seek.

Can we derive leakage-resilience from linear secret sharing schemes? Most existing
secret sharing schemes are linear [Bei] (Chapter 4). Unfortunately, there are known dangers when
trying to derive leakage-resilience for such schemes. For instance, Guruswami and Wootters [GW16]
(see also [TYB17,GR17,MBW18]) surprisingly showed that one can learn the secret under Shamir’s
scheme even with one-bit leakage from each share. [BDIR18] overcome this using fields of large
characterstic, and proved that Shamir’s t-out-of-n scheme can ensure security against non-adaptive
individual leakage when t = n − o(log n). Unfortunately, it is not clear how to extend this result
beyond this parameter regime or to handle adaptive adversaries.

Can we use extractors to get 2-party leakage-resilient schemes? Most existing (1, 2, 2)-
LRSSs are based on two source extractors [DP07, DDV10, ADKO15, GK18a]. These constructions
rely on the following powerful observation: if the two shares are independent, then conditioning on
the entire transcript of a bounded communication protocol preserves the conditional independence
between them, and therefore independent source extractors can be invoked for proving leakage-
resilience. Unfortunately this idea does not generalize to 2-party collusion protocols even for 3-out-
of-3 schemes. Consider 3 bits of leakage corresponding to the 3 subsets of size 2. As we fix the
three leaked bits, conditional independence between pairs is lost (unlike the 2-out-of-2 case), and
we cannot rely on independent source extractors. We face further challenges when considering 3-
out-of-5 schemes. Even without leakage, the five shares cannot be directly modeled as independent
sources, as any 3-out-of-5 shares have to encode the same secret. Moreover, leaking even a single
bit from any one of the shares may reveal some joint information about other shares, and it is not
clear how to rely on extractors.

t-out-of-n schemes with leakage from ≤ t shares. Any t-out-of-n scheme is by definition
leakage-resilient against complete leakage of any t−1 shares. While the t-out-of-n NMSS scheme of
Goyal and Kumar [GK18a] does not consider leakage, with some work their proof can be generalized
to allow leakage from at most t shares (that is the adversary gets no information about at least n−t
shares). Unfortunately, their proof cannot be generalized to either achieve non-adaptive 1-party
leakage-resilient scheme for n > t or achieve non-adaptive 2-party leakage-resilient for t = n = 3.
We stress that in contrast, our model allows for leakage to be obtained by the adversary on all of
the n shares, not just at most t of them.

Can we extend the LRSS of Goyal and Kumar [GK18a]? Goyal and Kumar [GK18a]
constructed 2-out-of-n schemes that handles non-adaptive individual leakage. They give each pair
of parties an independent 2-out-of-2 sharing of the secret, and therefore the share size has an O(n)
term. Generalizing this, for any constant c, one can give every set of c parties an independent
c-out-of-c encoding of the secret, and obtain a c-out-of-n scheme that is resilient against non-
adaptive individual leakage, with share size O(nc−1). Unfortunately, apart from not being able to
handle super-constant thresholds t, this construction relies on independent source extractors, and
we cannot prove it to be resilient against even non-adaptive 2-party collusion protocols.
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1.3 Our Results

Leakage-resilient secret sharing. We recall that we wish to construct secret sharing schemes
that are p-party leakage-resilient. As our main result, we give a generic compiler that transforms
any secret sharing scheme into a p-party leakage-resilient one. We note that prior to our work, no
3-out-of-3 schemes that is 2-party leakage-resilient was known.

Theorem 1 (Informal). For any collusion bound p ≥ 1, any access structure A supported on
n ≥ 1 parties such that each authorized set has more than p parties, suppose there is a perfect
(resp. statistical, computational) secret sharing scheme realizing access structure A that shares k
bit secrets into n shares each of length ` bits. Then for any leakage-bound µ, any error ε > 0,
there is a perfect (resp. statistical, computational) secret sharing scheme realizing A that is leakage
resilient against (p, n, µ)-BCP. The resulting scheme has shares secrets of k bits into n shares each
of length `+ k(log n)(µ+ log(1/ε)) · 2O(p).

We remark that efficient constructions of LRSSs with asymptotically better dependence on the
collusion bound p will lead to breakthroughs in communication complexity. For further details
about such implications see Section 6. We mention some interesting corollaries of our main result.
Using Shamir’s t-out-of-n secret sharing scheme [Sha79], we get the first t-out-of-n secret sharing
schemes that are p-party leakage-resilient. Note that no such schemes were known even for p = 1
(for unrestricted values of t and n):

Corollary 1 (Informal). For any number of parties n ≥ 2, any collusion bound p = O(log n),
any threshold t > p , there is an efficient 3 t-out-of-n perfect secret sharing scheme that is p-party
leakage-resilient.

Instantiating our compiler with the perfect secret sharing scheme from Karchmer and Wigderson
[KW93], we get:

Corollary 2 (Informal). For any access structure that can be described by a polynomial-size mono-
tone span program for which authorized sets have size greater than p = O(log n), there exists an
efficient perfect secret sharing scheme that is p-party leakage-resilient.

Using the computational scheme of Yao (mentioned in [Bei11]), we get:

Corollary 3 (Informal). If one-way functions exist, then for any access structure that is computable
by monotone boolean circuits of polynomial size for which authorized sets have cardinality greater
than p = O(log(n)), there exists an efficient computational secret sharing scheme that realizes this
access structure and is p-party leakage-resilient.

Note that the resulting secret sharing scheme features statistical leakage-resilience even though
the secrecy is computational to begin with. Furthermore, using the secret sharing scheme from
Komargodski, Naor, Yogev [KNY14], we arrive at the following:

Corollary 4 (Informal). If one-way functions and witness-encryption for NP exist, then for ev-
ery monotone NP access structure for which authorized sets have cardinality greater than p =
O(log(n)), there exists an efficient computational secret sharing scheme that realizes this access
structure and is p-party leakage-resilient.

3A leakage-resilient secret sharing scheme is efficient if the sharing and reconstruction functions run in poly
(
n, k,

µ, log(1/ε)
)

time where n is the number of parties, k is the length of the secret, µ is the leakage-bound and ε > 0 is
the leakage error.
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Leakage-resilient non-malleable secret sharing (LR NMSS). We also define and construct
LR NMSS for general access structures, significantly improving the state-of-art that only deals with
the special case of 2-out-of-2 LR NMSS [LL12,ADKO15,ADL14,GKP+18,GK18a,CL18] and t-out-
of-n NMSS that can handle leakage and tampering when restricted to at most t shares [GK18a].

Theorem 2 (Informal). For any access structure A that does not contain singletons, if there exists
an efficient statistical (resp. computational) secret sharing scheme realizing access structure A, then
there exists an efficient statistical (resp. computational) secret sharing scheme realizing A that is
statistically non-malleable against an adversary who obtains a bounded amount of information by
adaptively leaking from each of the shares, and then uses this leakage to tamper each of the shares
arbitrarily and independently.

We note that even for t = 2, n = 3 no t-out-of-n scheme satisfying our guarantee was known
before. Instantiating our compiler with Shamir’s secret sharing scheme we get

Corollary 5 (Informal). For any threshold t ≥ 2, any number of parties n ≥ t, there is an efficient
statistical t-out-of-n secret sharing scheme that is statistically non-malleable against the adversary
specified in Theorem 2.

Instantiating our compiler with various secret sharing schemes [KW93, Bei11, KNY14], we can
also get further corollaries similar to Corollaries 2, 3, 4.

1.4 Concurrent and Independent Work

The following independent and concurrent works also addressed the question of leakage resilience
in secret sharing schemes:

• Aggarwal et al. [ADN+18] give a compiler that transforms any statistical secret sharing scheme
into one that is leakage-resilient against non-adaptive individual leakage. They also construct
a NMSS scheme that is secure against a concurrent adversary who may independently and
non-adaptively tamper with each of the shares multiple times. They show an application to
threshold signature schemes. Our schemes do not handle multiple-tampering as they can.

• Badrinarayanan and Srinivasan [BS18] focus on obtaining a concretely efficient NMSS scheme
that has positive rate. They give a compiler that converts any 4-monotone 4 statistical secret
sharing scheme into one that is non-malleable against independent tampering of shares. To-
wards this, they construct O(1)-out-of-n scheme that is leakage-resilient against non-adaptive
individual leakage. They also handle an adversary who may perform multiple non-adaptive
tamperings of each of the shares (see [ADN+18] for detailed comparision).

• Srinivasan and Vasudevan [SV18] focus on the rate of LRSS and construct a rate-preserving
compiler that transforms any statistical secret sharing scheme into one that is leakage-resilient
against non-adaptive individual leakage. They extend this construction to obtain t-out-of-n
LRSS where the adversary learns any set of t−2 shares and then uses these fixed t−2 shares
to independently learn non-adaptive information from each of the other n−t+2 shares (please
see [SV18] for details). As an application they improve the rate of NMSS scheme of [BS18]
and give some result for leakage-resilient multiparty computation. In comparison, our rate is
Ω(1/ log n) for any constant collusion bound p.

4each authorized set has size at least 4
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Our focus in this work is largely orthogonal to these works: we focus on being resilient to
adaptive and joint leakage. In particular, the LRSS schemes in these works do not allow an
adversary to adaptively leak from each of the shares (p = 1 in our notation) or moving towards
joint leakage, to partition the shares into disjoint pairs and perform non-adaptive leakage from
shares within each pair (p = 2 in our notation). Finally, we define and construct LR NMSS that
allow the adversary to use the adaptive leakage from each of the shares to tamper with each of the
shares independently.

1.5 Overview of Constructions

1.5.1 Leakage-Resilient Secret Sharing Schemes.

Along with providing a clean way to model leakage-resilience, modeling leakage in the form of
communication protocols allows us to exploit tools from communication complexity of multi-party
protocols initiated by the seminal work of Chandra, Furst and Lipton [CFL83]. Indeed, the connec-
tion to NOF model allows us to leverage fundamental results of Babai, Nisan, and Szegedy [BNS92]
(also Chung [Chu90], Raz [Raz00], Sherstov [She14]) on constructing explicit hard functions against
NOF protocols to get the first (and simple) secret sharing schemes that are secure against adaptive,
joint leakage. We next describe the main ideas by focusing on the threshold access structure.

A simple (n−1, n, n)-LRSS. Given inputs x1, . . . , xn ∈ Fm2 , letGIP (x1, . . . , xn) =
∑m

i=1

∏n
j=1 xij

mod 2 be the generalized inner-product function. Babai, Nisan, and Szegedy [BNS92] showed that
the randomized communication complexity of GIP in the NOF model is Ω(m/4n). This was further
tightened by Chung [Chu90] to Ω(m/2n). We can use their lower bound to construct a (n − 1, n,
n)-LRSS as follows.

Given secret s ∈ {0, 1}, sample sh1, . . . , shn−1 uniformly at random from Fm2 and choose shn to
be uniformly random among all x such that GIP (sh1, . . . , shn−1, x) = s.

Analysis. It is not hard to see that any subset of (n−1)-shares statistically hides the underlying
secret. Further, the lower bound of [BNS92, Chu90] implies that for uniformly random inputs x1,
. . . , xn ∈ Fm2 , the output of GIP is almost unbiased even conditioned on the transcript of a NOF
protocol with communication at most cm/2n for some constant c > 0. It is not hard to argue
that this correlation lower bound implies that the scheme above is a (n − 1, n, n)-LRSS when the
communication is bounded by cm/2n.

While the above already suffices as a building block in our subsequent constructions, we do not
need to work with GIP specifically and give a similarly simple argument to build a (n − 1, n, n)-
LRSS from any n-party function with large NOF complexity in a black-box manner. The latter
also has the additional advantage of getting perfect secrecy while the GIP-based construction above
achieves statistical secrecy. See section 3 for details.

Building (p, p+1, n)-LRSSs from (p, p+1, p+1)-LRSSs. There are two hurdles in generalizing
the above approach to construct more general (p, t, n)-LRSSs.

Owing to the existing lower bounds for communication complexity in the NOF model, the
(n−1, n, n)-LRSSs construction above incurs a 2n blow-up in the share-length. Indeed, as described
earlier, such a blow-up is unavoidable without further breakthroughs in communication complexity.
In our context, we could hope to avoid the exponential dependence on the number of parties by
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exploiting the fact that the collusion bound p could be small. For example, can we construct
efficient (2, 3, n)-LRSSs?

A natural approach for this perhaps is to start with functions that are hard against p-party
collusion protocols for n� p. While it does not immediately follow from stated results (to the best
of our knowledge), the techniques of [BNS92] can indeed be extended to show that GIP requires
Ω(n/2p) communication to compute under p-party collusion protocols.

However, there is another additional challenge: the correlation lower bounds of [BNS92] (and
for other functions in the NOF model) work when the joint distribution on the inputs is uniform (or
have very specific structure such as for set disjointness (see Sherstov [She14] and references there
in). On the other hand, as we want the shares to constitute a t-out-of-n scheme, we necessarily need
to have large dependencies (in particular, any t shares have dependencies). As a result, it is not
clear how to extend the discrepancy based correlation lower bounds in the multi-party setting to
obtain lower bounds against distributions that might come out of t-out-of-n secret sharing schemes.

We will overcome these hurdles in a direct way and show how to construct (p, p+ 1, n)-LRSSs
from any (p, p + 1, p + 1)-LRSSs in a black-box manner inspired by the idea of reusing shares as
studied for example in [BBDW96, Bla99, Des98]. For the moment, let us forget about leakage-
resilience and only focus on constructing (p+ 1)-out-of-n SS given a (p+ 1)-out-of-(p+ 1) SS.

Brute-force approach. A natural idea is to consider different instantiations of the (p + 1)-out-
of-(p + 1) scheme for the secret, one for each possible subset of [n] of size p + 1 and give the
involved parties a share from this scheme. The reconstruction property of the new scheme follows
immediately from that of the original scheme and it is also not difficult to argue that the new
scheme essentially inherits the secrecy properties of the (p + 1)-out-of-(p + 1) scheme. However,
a drawback of this approach is that the share size would incur a O(np)-factor blowup owing to
creating separate instantiations for each possible subset. Given this, one could ask if we can do
better than this naive approach.

Reusing shares via perfect hash families. It turns out that one can do much better than the
naive approach by using a special class of hash functions. The following elegant idea is attributed
to Kurosawa and Stinson in the surveys [Bla99,Des98]. A family of hash functions H = {h : [n]→
[p + 1]} is called a perfect hash family if for every subset I ⊆ [n] of cardinality p + 1, there is
a function h ∈ H such that I is injective on I. These families were introduced in the seminal
work of Fredman, Komlós, and Szemerédi [FKS84]. Alon, Yuster and Zwick [AYZ95] and Naor,
Schulman and Srinivasan [NSS95] have given almost-optimal efficient deterministic constructions
of such families containing at most 2O(p) log(n) hash functions. Let N denote the number of hash
functions in the given family H, and let H = {h1, . . . , hN}.

Construction of (p, p + 1, n)-LRSS. To share a secret m, we first construct N independent
instantiations of the (p, p + 1, p + 1)-LRSS to obtain shares (shi1, . . . , sh

i
p+1) for i ∈ [N ]. For each

j ∈ [n] set the share of the j’th party to be

sharej = (sh1
h1(j), sh

2
h2(j), . . . , sh

N
hN (j)).

Note that the share length of the new scheme is a factor of N = 2O(p) log n more than that of the
underlying scheme. While this factor blow-up may not be the best possible in such a black-box
construction, as our underlying (p, p+ 1, p+ 1)-LRSS also has shares of length 2O(p), the additional
factor is not too important for us.

Reconstruction: We claim that any subset of p + 1 parties can reconstruct the secret under
the above scheme. Let J ⊆ [n] with |J | = p + 1. Note that as H is a perfect hash family, there
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must exist a i ∈ [N ] such that hi is injective on J so that hi(J) = [p + 1]. The parties in J can
reconstruct the secret as follows: Find i ∈ [N ] such that hi(J) = [p+ 1]; Apply the reconstruction
procedure of the underlying (p, p + 1, p + 1)-LRSS on the shares (shi1, sh

i
2, . . . , sh

i
p+1) which they

have access to because hi(J) = [p+ 1].
Leakage-resilience: Just as before, it is easy to show secrecy of the new scheme. However,

additional care is required to argue leakage-resilience against colluding protocols. In particular, it
may be possible, that the additional information given to each party (via multiple encodings of
the same secret) somehow helps an adversary to design “better” leakage-protocols. We prove that
even the composed scheme has p-party leakage resilience by using a hybrid arguement, where we
use any leakage protocol on the constructed (p, p + 1, n)-scheme to give a leakage protocol on one
of the instantiations of the underlying (p, p+ 1, p+ 1)-LRSS.

Building (p, t, n)-LRSSs from (p, p + 1, n)-LRSSs. Now we construct (p, t, n)-LRSSs for ar-
bitrary t > p. Given the (p, p + 1, n)-LRSS construction from above, the sharing function of
the final scheme is quite simple. Given a secret m, share using a 2-out-of-2 scheme to obtain
l, r ← 2-out-of-2-Share(m). Share l using any standard t-out-of-n scheme and r using our (p, p+ 1,
n)-LRSS to get l1, . . . , ln and r1, . . . , rn respectively. Final shares have the form sharei ← li, ri for
each i ∈ [n]. The reconstruction procedure is straightforward given the sharing function.

Any t− 1 shares will perfectly hide the secret because even though t− 1 shares may reveal r, l
will be hidden by the perfect secrecy of the t-out-of-n scheme. Moreover, leakage-resilience follows
from the intuition that even though the leaking adversary may learn l, r will be hidden by the
leakage-resilience of (p, p+ 1, n)-LRSS.

Handling general access structures. While we focused on the case of threshold access struc-
ture in the above discussion, the arguments in fact extend relatively straightforwardly to give
p-party leakage-resilience for general access structures as long as every authorized set has size more
than p. Note that the latter is a necessary condition for p-party leakage-resilience.

Sharing multiple bits. The techniques also extend to allow to share multiple bits at the same
time and we defer the details to the actual constructions.

1.5.2 Leakage-Resilient Non-Malleable Secret Sharing Schemes.

Obtaining LR NMSS for general access structures as in Theorem 2 turns out to be considerably
more challenging and is significantly more technical. Existing works on 2-out-of-2 NMSS have
required various sophisticated techniques: [ADL14] required additive combinatorics based analysis
to show some ‘non-malleability’ properties of the inner-product function [ADL14], [CGL16] required
new tools such as flip-flop alternating extractor, and [Li17] made use of a correlation breaker with
advice generator [CL16]. To ensure leakage-resilience in non-malleable schemes one needs to prove
that even with leakage, the adversary cannot violate non-malleability. Consequently, the proof of
leakage-resilience in existing constructions [ADKO15, GKP+18, GK18a, CL18] is very closely tied
to the corresponding proof of non-malleability.

Our starting point is the compiler of the Goyal and Kumar [GK18b] that converts any se-
cret sharing scheme into one that ensures non-malleability against an adversary who indepen-
dently tampers with all the shares (but does not allow leakage). To convey our most impor-
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tant ideas, let us first recall the t-out-of-n construction of [GK18a] for t ≥ 3. To share a se-
cret m, let `, r ← 2-out-of-2-NMSS(m), (`1, . . . , `n) ← t-out-of-n-ShamirShare(`) and (r1, . . . ,
rn)← 2-out-of-n-LRShare(r). Let sharei ← `i, ri for each i ∈ [n].

While this scheme is non-malleable against individual tampering, it does not satisfy our stronger
notion as the leakage may reveal some (or all) bits of l (say by using leakage-functions of [GW16]),
which can then be used to tamper with the shares of r and consequently the tampering of r will no
longer be independent of l (as needed to use the guarantees of the 2-out-of-2-NMSS). One natural
idea to fix this would be to rely on leakage-resilience of existing 2-out-of-2 LR NMSS (or leakage-
resilient non-malleable codes [ADKO15, GKP+18, GK18a, CL18]). Unfortunately, this approach
does not allow us to handle leakage protocols that touch more than t shares. In our case, we
have to deal with leakage from all the n shares, and therefore need to sample all the n shares
independently using l and r in our security reduction to the 2-out-of-2 NMSS. Existing reductions
of Goyal and Kumar did not have to sample more than t shares as their reconstruction functions
were carefully designed to only use the first t shares (given any number of shares as input). We
highlight our main ideas to fix this. Even though we are constructing LR NMSS that are secure
against individual leakage and tampering, our constructions will actually rely on our LRSSs that
are resilient against bounded collusion protocols.

Use our LRSS schemes Instead of relying on leakage-resilience of the 2-out-of-2 LR NMSS,
we derive leakage-resilience from our LRSSs to share `. We also use our new adaptive 2-out-of-n
LRSS to share r. Our hope would be to rely on the leakage-resilience of these schemes to generate
n ‘fake’ shares encoding arbitrary l and r in our reduction, to obtain a ‘fake’ leakage-transcript by
executing the leakage-protocol on n ‘fake’ shares, and upon availability of real values of l and r,
somehow adjust these ‘fake’ shares and use the ‘fake’ leakage-transcript to give explicit functions
that independently tamper with l and r. One may be tempted to think that this will allow us to
rely on the non-malleability of 2-out-of-2 NMSS. However, there is a subtle but fundamental issue,
the leakage transcript may be independent of each of l and r, but may have some information about
the secret m encoded by l and r, and the consequent tampering of shares may depend on the secret
(trivially violating non-malleability). To see this, observe that even when the leakage-transcript
has full information about m, leakage-resilience of neither the scheme sharing l nor the scheme
sharing r is violated since the secret m is independent of each of l and r (by the secrecy property
of 2-out-of-2 NMSS).

Using joint leakage and adaptivity. At a very high level we overcome this using our secret
sharing schemes that are secure against adaptive, joint leakage. In particular, we strengthen our t-
out-of-n scheme to be secure against joint-leakage. While we continue to rely on the idea of [GK18a]
of treating the tampered shares of l as leakage from shares of r, in this work, we also consider leakage
in the other direction. In particular, we rely on the adaptive joint-leakage from two shares of l to
compute tampered r in our security reduction to 2-out-of-2 NMSS.

Separately build LR NMSS for authorized pairs. Similar to [GK18b], we also execute two
schemes in ‘parallel’: one catering to authorized subsets of size at least three and other designed for
authorized pairs. Using 2-out-of-2 LR NMSS of [ADKO15], we construct LR NMSS for authorized
pairs. Unfortunately, we face new difficulties while composing these two schemes in ‘parallel’.
[GK18b] avoided dependencies between the two schemes by ensuring that every minimal authorized
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set of one scheme did not have any authorized set of another scheme. In our case, adaptive leakage
may correlate the shares of all authorized sets.

Use ‘leakage-leveraging’. We fix many issues related to composition with our idea of leakage-
leveraging (terminology inspired from the widely used complexity-leveraging - see [KS17] and ref-
erences therein). Specifically we think of leakage transcript from the leakage-protocol as leakage
from shares of l. Next, we think of the leakage transcript and tampered shares of l as adaptive leak-
age from shares of r. Note that we crucially use the adaptivity supported by our leakage-resilient
schemes since even the independently tampered shares may depend on the leakage-transcript which
may have information about all the shares. We apply this idea one more time and think of the
leakage transcript and tampered shares of both l and r as adaptive leakage from shares of the LR
NMSS designed for authorized pairs. At a very high level this enforces one direction of indepen-
dence necessary for proving non-malleability. We remark that this idea may have other applications
in cryptography to enforce some form of ‘synchronicity’.

1.6 Open Problems

Along with natural open questions about further strengthening our results for secret sharing
schemes, our work suggests several natural and independently interesting questions in commu-
nication complexity and pseudorandomness. We describe a few of them next.

Lower bounds for bounded-collusion protocols. Proving lower bounds for explicit functions
in NOF-model when the number of parties is ω(logm) where m is the input length is a fundamental
challenge in communication complexity. Allowing a large number of parties n compared to the
collusion bound p, could make the task of designing explicit hard functions easier and we can ask if
we can design explicit functions that are harder for p-party collusion protocols with a large number
of parties compared to the lower bounds we currently know against NOF protocols.

Extractors for cylinder intersections. Trying to use extant techniques of deriving leakage-
resilience from extractors [DDV10, GR15, ADKO15, GK18a] to handle BCPs raises the following
question that seems interesting on its own. We start by describing a natural weakening of indepen-
dent sources that we call cylinder-intersection sources taking inspiration from the communication
complexity literature [BNS92,KN06].

Definition 3. (Cylinder intersection sources and Extractors) Let X1, . . . , Xn be n indepen-
dent sources with min-entropy k supported on {0, 1}m. Let π be a (possibly randomized) (p, n, µ)-
BCP. Let π(X1, . . . , Xn) denote the transcript of the communication. We define a (m, k, p, n, µ)-
cylinder-intersection source to be the conditional distribution of X1, . . . , Xn obtained after fixing a
typical transcript π(X1, . . . , Xn).

Call a deterministic function Ext : ({0, 1}m)n → {0, 1} an extractor5 for (m, k, p, n, µ)-cylinder
intersections as above with error ε if

(Ext(X1, . . . , Xn), π(X1, . . . , Xn)) ≈ε (U1, π(X1, . . . , Xn)).

5Strictly speaking, what we are defining is a strong extractor under standard terminology.
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Note that p = 1 corresponds to independent source extractors as conditioning on the transcript
of a 1-party collusion protocol preserves independence (while losing some min-entropy). We also
remark that such extractors will trivially imply lower bounds against p-party collusion protocols.
Indeed, the results of [BNS92] do imply explicit (m, k, p, p + 1, µ)-extractors as above for k ≥
(1− cp)m and µ = c′pm for c′p � cp = Ω(1/2p). In particular, for p = 2, they imply extractors for
cylinder-intersection sources when min-entropy k ≥ cm for a fixed constant c > 0. Given the rich
body of work on independent source extractors it is natural to ask if one could get extractors for
min-entropy k = δm for small constants δ when the collusion bound p is say even 2.6

Handle joint-leakage for non-malleable secret sharing schemes. Handling joint-leakage
in NMSS schemes appears to be quite challenging. Concretely, can we construct a 3-out-of-3
SS that is non-malleable against an adversary who performs joint-leakage from each of the three
subsets of size two, and uses this leakage to tamper with each share arbitrarily and independently?
To understand the challenge, observe that joint leakage leads to loss of independence among all
the shares, and therefore the subsequent ‘independent’ tampering is not independent in reality.
Independence appears to be far more crucial for deriving non-malleability.

2 Definitions

We use capital letters to denote distributions and their support, and corresponding small letters to
denote a sample from the distribution. Let [n] denote the set {1, 2, . . . , n}. For any set B ⊆ [n], let
⊗i∈BSi denote the Cartesian product Si1×Si2× . . .×Si|B| , where i1, i2 . . . i|B| are ordered elements
of B, such that ij < ij+1.

Definition 4. (Statistical distance) Let D1 and D2 be two distributions on a set S. The
statistical distance between D1 and D2 is defined to be :

|D1 −D2| = max
T⊆S
|D1(T )−D2(T )| = 1

2

∑
s∈S
|PrX∼D1 [X = s]− PrX∼D2 [X = s]|

We say D1 is ε-close to D2 if |D1 −D2| ≤ ε. Sometimes we represent the same using D1 ≈ε D2.

2.1 Secret Sharing Schemes

The following definition is inspired from the survey [Bei11].

Definition 5. (Access structures and sharing function ) A collection A is called monotone
if B ∈ A and B ⊆ C, then C ∈ A. Let [n] = {1, 2, . . . , n} be a set of identities of n parties. An
access structure is a monotone collection A ⊆ 2{1,...,n} of non-empty subsets of [n]. Sets in A
are called authorized, and sets not in A are called unauthorized.

LetM be the domain of secrets. A sharing function Share is a randomized mapping fromM
to S1× . . .×Sn, where Si is called the domain of shares of party with identity j. A dealer distributes
a secret m ∈ M by computing the vector Share(m) = (s1, . . . , sn), and privately communicating

6Indeed, constructing independent-source extractors was easier when the number of sources n is large and this
could be the case here too.
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each share sj to the party j. For a set S ⊆ {p1, . . . , pn}, we denote Share(m)S to be a restriction
of Share(m) to its S entries.

Definition 6. (Secret sharing scheme [Bei11] ). LetM be a finite set of secrets, where |M| ≥ 2.
A sharing function Share with domain of secretsM is a (n, ε)-Secret Sharing Scheme realizing
an access structure A if the following two properties hold :

1. Correctness. The secret can be reconstructed by any authorized set of parties. That is, for
any set T ∈ A, where T = {i1, . . . , i|T |}, there exists a deterministic reconstruction function
Rec : ⊗i∈TSi →M such that for every m ∈M,

Pr[Rec(Share(m)T ) = m] = 1

(over the randomness of the Sharing function)

2. Statistical privacy. Collusion of unauthorized parties should reveal “almost” no information
about the underlying secret. More formally, for any unauthorized set T 6∈ A, and for every
pair of secrets a, b ∈M, the following holds :

Share(a)T ≈ε Share(b)T

The special case of ε = 0, is known as perfect privacy. If the two distributions are com-
putationally indistinguishable to any polynomial time adversary, we call it computational
indistinguishability.

2.2 Threshold Access Structure Atn
Perhaps the most well-studied secret sharing scheme is the threshold secret sharing scheme or t-
out-of-n secret sharing which was originally studied by Shamir and Blakley. The threshold access
structure can be formally represented as Atn = {B ⊆ [n] : |B| ≥ t}. We use the notation of
(t, n, ε)-secret sharing scheme for denoting (n, ε)-secret sharing scheme realizing access structure
Atn.

2.3 Leakage-Resilient Secret Sharing Schemes

Goyal and Kumar [GK18b] defined 2-out-of-n leakage-resilient secret sharing schemes for non-
adaptive adversaries. We introduce a substantial generalization that not only encompasses general
access structures, but more importantly also empowers the adversary to be adaptive. As described
in the introduction, we will do so by modeling leakage as an adversary running a communication
protocol among the n parties and trying to guess the secret based on the transcript.

Definition 7. (Leakage-resilient secret sharing schemes) Let M be any message space and
A be any access structure on n parties. Let L be a family of (possibly randomized) multi-party
protocols that output some transcript. We say that a secret sharing scheme (Share,Rec) realizing
access structure A is ε-leakage-resilient w.r.t. L if for every leakage-protocol Leak ∈ L, and for
every pair of secrets a, b ∈M, the following holds :

Leak(Share(a)) ≈ε Leak(Share(b)).

That is, the distribution of the transcript of the protocol Leak when input is Share(a) is statistically
close to the distribution of the transcript of the protocol when input is Share(b).
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2.4 Bounded Collusion Protocols (p, n, µ)−BCP

Let n denote the total number of parties and p ≤ n. Let us call p as collusion bound , since it
indicates an upper bound on the number of parties who can collude in any round. Let µ denote
leakage bound , as it indicates an upper bound on the total number of bits of leakage across all
rounds. At a very high level, the leakage family (p, n, µ)− BCP contains all possible multi-round
leakage-protocols among n parties such that the total leakage is at most µ bits and the leakage
in each round arbitrarily depends on the shares of at most p parties (along with all the leakages
obtained in the preceding rounds). We formally model this in the following way :

• Let share1, . . . , sharen be the n shares corresponding to n parties. We use τ to denote the
transcript of the leakage-protocol. At the beginning of the leakage-protocol τ is empty. The
transcript τ is appended with the leakage, at the end of each round of the leakage-protocol.
At the end, τ can be at most µ bits long.

• In each round, the Next function is used to determine which parties will collude to jointly
leak information about their shares. Formally, Next function takes the current transcript τ as
input, and outputs a subset S ⊂ [n] of cardinality at most p and a description of an arbitrary
leakage function f that takes ⊗i∈Ssharei as input. At the end of each round, the leaked
information is appended to the current transcript.

τ ← τ ◦ f(⊗i∈Ssharei)

• The previous step is repeated until the Next function outputs ⊥. Output final transcript τ
as leakage.

In our constructions, p-party leakage resilient schemes for threshold schemes play an important
role and we state their definition next for clarity.

Definition 8 ((p, t, n)-LRSS). A (t, n, ε)-secret sharing scheme is a (p, t, n, µ, ε)-leakage resilient
secret sharing scheme if the scheme is ε-leakage-resilient against (p, n, µ) − BCP . When the
paramters ε, µ will be clear from context, we use (p, t, n)-LRSS to refer to such schemes.

Borrowing terminology from communication complexity literature, the special case in which each
party individually leaks some information (p = 1) will be called number-in-hand (NIH) leakage.
Similarly, for n-out-of-n secret sharing schemes in which leakage in each round depends on at most
n− 1 parties will be called number-on-forehead (NOF) leakage.

3 LRSS for Number-on-Forehead (NOF) Leakage

Our first building block will be an efficient LRSS that is resilient against NOF leakage, i.e., the
construction of an efficient (n − 1, n, n)-LRSS. Our results here will rely on classical results from
communication complexity that prove lower bound for the amount of communication required to
compute a function in the number-on-forehead (NOF) model of Chandra, Furst, Lipton [CFL83].
While the above is a little repetitive, we include the usual definition of NOF communication for
clarity (see [KN06] for more details and references).
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Definition 9. (NOF communication complexity) Suppose there are n parties, and an element
of D is written on the forehead of each party. Each party can see the number on the forehead of
all other parties, and has no idea of the number written on its own forehead. Suppose these parties
wish to compute any arbitrary n party predicate (boolean-valued function) f : Dn → {0, 1}. They
are allowed to communicate among themselves using a black-board. At the beginning, the black-
board is empty, and each party is only allowed to append information to it (no erasing). Their goal
is to compute f while minimizing the number of bits that needs to be written on the black-board.
The NOF communication complexity refers to the minimum number of bits of communication
required to gain ε advantage in computing f using any such protocol. More formally,

CCNOF
n (f) = min

Π
max
x∈Dn

|Π(x)|

where Π ranges over all protocols of the above form satisfying

Π(f−1(0)) 6≈ε Π(f−1(1))

where |Π(x)| denotes the number of bits of communication required by protocol Π on input x.

The main result of this section is a simple construction to build (n−1, n, n)-LRSS starting from
any function that has high NOF communication complexity.

Lemma 1. For any n ≥ 1, any leakage bound µ ≥ 0, any ε > 0, if there is an efficient n party
function f : ({0, 1}b)n → {0, 1} with CCNOF

n (f) ≥ µ, then there is an efficient (n, n, 0)-secret sharing
scheme that is ε-leakage-resilient w.r.t. (n−1, n, µ)−BCP . The resulting scheme, (Sharenn,Recnn),
shares single bit secrets into n shares, each of bit-length 1 + b.

Combining the above result with known lower bounds on the number-on-forehead complexity
of functions such as those in [BNS92] gives us the following:

Corollary 6. For any n ≥ 1 and any leakage bound µ ≥ 0 and ε > 0, there exists an efficient (n,
n, 0)-secret sharing scheme that is ε-leakage resilient against (n− 1, n, µ)−BCP where the scheme
shares single bit secrets into n shares with each of length 1 +O(2n(µ+ log(1/ε))).

Proof. [BNS92] showed that the generalized-inner-product function GIP : ({0, 1}b)n → {0, 1}
defiend as GIP (x1, . . . , xn) = ⊕bi=1

∏n
j=1 xij satisfies CCNOF

n (GIP ) ≥ cb/2n for ε ≥ c exp(−b/2n)
for a universal constant c > 0. The corollary follows from using this lower bound in the above
lemma.

Note that the share length in the above construction is exponential in the number of parties.
However, as we observe in Section 6, the construction above is somewhat tight in the sense that
designing schemes with better share-length for NOF leakage as above would lead to breakthroughs
in communication complexity.

The construction above relies on additive secret sharing schemes that we describe next.

3.1 XOR based Additive Secret Sharing

We recall the n-out-of-n additive secret sharing based on ⊕ (XOR) operation. For any a ≥ 1, let
the secrets be a bits long.
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• (Sharing function XORSharen) : Let XORSharen : {0, 1}a → ⊗i∈[n]{0, 1}a be a ran-
domized sharing function. On input a secret s ∈ {0, 1}a, uniformly sample the first n − 1
shares, namely s1, . . . , sn−1, such that each si ∈ {0, 1}a. Compute the last share using the
secret s and the sampled shares as

sn ← s⊕ s1 ⊕ . . .⊕ sn−1

Output s1, . . . , sn as the n shares.

• (Reconstruction function XORRecn) : Let XORRecn : ⊗i∈[n]{0, 1}a → {0, 1}a be a
deterministic function for reconstruction. On input n shares, namely s1, . . . , sn, compute
s← s1 ⊕ . . .⊕ sn and output the result s.

Lemma 2. ( [KGH83]) For secret space of a ≥ 1 bits, (XORSharen,XORRecn) (described
above) is an (n, n, 0)-secret sharing scheme.

Additionally this scheme has a useful property that given the secret and all but one shares, the
leftover share can be efficiently computed. Formally,

Lemma 3. Let (XORShare2,XORRec2) be an (2, 2, 0)-secret sharing scheme for single bit se-
crets. For any m, sh1, sh2 ∈ {0, 1}, if m← XORRec2(sh1, sh2), then sh1 ← XORRec2(m, sh2).

3.2 (n− 1, n, n)-LRSS

We are now in a position to give our first construction.

Proof of Lemma 1. Let (XORSharen,XORRecn) be the (n, n, 0) additive secret sharing scheme
for single bit secrets (as in Lemma 2). Similarly, let (XORShare2,XORRec2) be the (2, 2, 0)
additive secret sharing scheme for single bit secrets. The leakage-resilient scheme is defined as :

1. (Sharing function Sharenn):
On input a secret m, for each i ∈ [n], uniformly and independently sample ri ∈ {0, 1}b.
Execute function f on r1, . . . , rn to compute the bit r ← f(r1, . . . , rn). Compute s ←
XORRec2(m, r). Secret share s using XORSharen to obtain s1, . . . , sn ← XORSharen(s).
For each i ∈ [n], let sharei ← (ri, si).

2. (Reconstruction function Recnn) :
On input n shares, namely share1, . . . , sharen, for each i ∈ [n], parse sharei as (ri, si). Com-
pute f on r1, . . . , rn to obtain the bit r ← f(r1, . . . , rn). Apply the reconstruction procedure
XORRecn on s1, . . . , sn to obtain s← XORRecn(s1, . . . , sn). Compute m← XORRec2(r,
s). Output m.

Correctness and efficiency : Follows from the efficiency of f . Notice that we only make black-
box use of f and do not need to invert f . Correctness follows from the fact that if s← XORRec2(m,
s) then m← XORRec2(r, s) (by lemma 3).

Perfect secrecy : Follows from combining the facts that r1, . . . , rn is chosen uniformly and
any n− 1 shares of the XOR based n-out-of-n scheme are uniformly random.
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Statistical leakage-resilience : Suppose the adversary specifies a leakage-protocol Leak ∈
(n − 1, n, µ) − BCP that violates the leakage-resilience of our scheme using at most µ bits of
leakage. We use such an adversary to give a NOF protocol computing f with communication cost
at most µ.

• Initial setup : Randomly fix s ← {0, 1}a. Compute s1, . . . , sn ← XORSharen(s) and fix
s1, . . . , sn.

• Protocol : For each i ∈ [n], party i holds ri ∈ {0, 1}b as input. We use the Next function
specified by the adversary for the secret sharing scheme, and the values of si fixed above to
give a communication protocol for f .

1. Initialize an empty black-board (transcript) τ .

2. Run the Next function with τ as input to obtain a subset S ⊂ [n] and a leakage function
g that takes ⊗i∈Ssharei as input. In our communication protocol, corresponding to S,
we fix a party, say j ∈ [n], who can see the forehead of all the parties in S. Party j,
uses the fixed value of si to create sharei ← ri, si for each i ∈ S, computes and writes
g(⊗i∈Ssharei) on the black-board.

τ ← τ ◦ g(⊗i∈Ssharei)

3. Repeat the above step until Next(τ) outputs ⊥.

Observe that if the adversary of the leakage-resilient secret sharing scheme achieves some ad-
vantage in distinguishing shares of 0 and 1, then the communication protocol created in the above
reduction achieves the same advantage in computing the value of f . Also observe that the number
of bits of leakage is equal to the communication required by the protocol given in the reduction.
This completes the proof, as the communication complexity of f is at least µ bits.

4 (p, p+ 1, n)-LRSS

In the previous section we saw how to construct secret sharing schemes that are resilient against
NOF leakage. Here we handle more general threshold access structures and build (p, p + 1, n)-
LRSS. In doing so, we will also improve the share length significantly by removing the exponential
dependence on number of parties but instead only have such a dependence on the collusion bound.
As remarked in the introduction, efficient schemes like this were not known even for the case of
p = 1.

The construction will use a (p, p+1, p+1)-LRSS in a black-box manner leading to the following:

Lemma 4. For 1 ≤ p < n, suppose we have the following primitive: For any leakage bound µ, any
error bound ε > 0, an efficient (p + 1, p + 1, 0)-secret sharing scheme (LRSharep+1

p+1,LRRecp+1
p+1)

that is ε-leakage-resilient w.r.t. (p, p+ 1, µ)−BCP and shares secrets of length a into p+ 1 shares,
each of bit-length b.

Then, there is an efficient (p + 1, n, 0)-secret sharing scheme that is 2O(p)ε-leakage-resilient
against (p, n, µ)−BCP . The resulting scheme, (LRSharep+1

n ,LRRecp+1
n ), shares secrets of length

a into n shares each of length b · 2O(p).
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By combining the above with the construction from Corollary 6 immediately gives the following:

Corollary 7. For 1 ≤ p < n and any leakage bound µ, error ε, there exists an efficient (p +
1, n, 0)-secret sharing scheme that is ε-leakage-resilient against (p, n, µ) − BCP . The resulting
scheme, (LRSharep+1

n ,LRRecp+1
n ), shares secrets of a bits into n shares each of length a(µ +

log(1/ε))2O(p).

4.1 Proof of Lemma 4

We wish to construct (p, p+1, n)-LRSS from (p, p+1, p+1)-LRSS. As described in the introduction,
we will do so by exploiting the idea of reusing shares via perfect hash families (cf. [Bla99,Des98]).

Definition 10. [Perfect hash families [FKS84]] A family consisting of d functions of the form
{f : [n] → [p]} is called a (p, n)-perfect hash function family of size d, if for all subsets T ⊆ [n] of
cardinality p+ 1, there exists a function f in the family such that f is injective on T .

Such a family of functions is called efficient, if we can generate d efficient functions for this
hash family, namely (f1, . . . , fd)← PHF(p, n), in time poly(n, d).

Lemma 5. For any collusion bound p ≥ 1, any number of parties n > p, any message size a > 0,
suppose we have the following primitives :

1. for any leakage bound µ, any error bound ε > 0, an efficient (p + 1, p + 1, 0)-secret sharing
scheme (LRSharep+1

p+1,LRRecp+1
p+1) that is ε-leakage-resilient w.r.t. (p, p+ 1, µ)−BCP and

shares a secret of bit-length a into p+ 1 shares, each of bit-length c.

2. an efficient (p+ 1, n)-perfect hash family PHF of size d.

Then there is an efficient (p + 1, n, 0)-secret sharing scheme that is dε-leakage-resilient w.r.t.
(p, n, µ)−BCP . The resulting scheme, (LRSharep+1

n ,LRRecp+1
n ), shares secrets of length a into

n shares, each of length cd.

Proof. Generate the d hash functions of the perfect hash family. Let (f1, . . . , fd ← PHF(p+ 1, n).
We use these functions in our construction of (LRSharep+1

n ,LRRecp+1
n ) given below :

• (Sharing function LRSharep+1
n ).

On input a secret m, for each j ∈ [d], share m using the sharing procedure of under-
lying leakage-resilient scheme (using independent randomness) to obtain mj

1, . . . ,m
j
p+1 ←

LRSharep+1
p+1(m). Using functions from the above perfect hash family, for each i ∈ [n], con-

struct sharei as
(
m1
f1(i), . . . ,m

d
fd(i)

)
.

• Reconstruction function (LRRecp+1
n ).

On input a set of shares corresponding to an authorized set T of cardinality p + 1, for
each i ∈ T , parse sharei as

(
m1
f1(i), . . . ,m

d
fd(i)

)
. Find j ∈ [d] such that fj is injective

on T . Use the reconstruction procedure of underlying leakage resilient scheme to compute
m← LRRecp+1

p+1(mj
1, . . . ,m

j
p+1). Output m.
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Perfect correctness: For any authorized set T ⊆ [n] of p+ 1 parties, by the properties of the
perfect hash family, there will be a function fj in the family (j ∈ [d]), such that fj is injective on
T (see definitions 10). Therefore, all the p + 1 shares of jth encoding of m will be available, and
correctness follows from the correctness of the underlying (p+1)-out-of-(p+1) scheme.

Perfect secrecy and efficiency : By construction, less than p+1 shares of our (p+1)-out-of-n
scheme can only have less than p+1 shares of each of the d underlying (p+1)-out-of-(p+1) scheme.
Efficiency follows from the efficiency of the perfect hash family and the underlying leakage-resilient
scheme.

Statistical leakage-resilience: The adversary specifies a Next ∈ (p, n, µ)−BCP that allows
it to distinguish in between shares of m1 and m2 under the (p+1)-out-of-n scheme. We use such
an adversary to construct Next1 ∈ (p, p + 1, µ) − BCP that violates the leakage-resilience of the
underlying (p+1)-out-of-(p+1) scheme.

• Initial setup : Randomly fix j ∈ [d]. For each i ∈ {1, . . . , j − 1}, share m1 using the
sharing procedure of underlying leakage-resilient scheme (using independent randomness) to
obtain mi

1, . . . ,m
i
p+1 ← LRSharep+1

p+1(m1). For each i ∈ {j + 1, . . . , d}, share m2 using the
sharing procedure of the underlying leakage-resilient scheme (using independent randomness)
to obtain mi

1, . . . ,m
i
p+1 ← LRSharep+1

p+1(m2). Fix all these sampled shares.

• Reduction Next1 : Using the adversarily specified Next and above fixings we give the de-
scription of Next1.

On input a transcript τ , execute the Next function with τ as input to obtain a subset S ⊂ [p]
and a leakage function g that takes ⊗i∈Ssharei as input. If the output of Next is ⊥, then
output ⊥. Otherwise, we construct leakage function g1 that takes ⊗i∈Smi as input, treats
it as ⊗i∈Smj

i . Then, for each i ∈ S, computes sharei as
(
m1
f1(i), . . . ,m

d
fd(i)

)
using the fixed

values and outputs g
(
⊗i∈S sharei

)
. Output S,g1.

Observe that if the adversary for the (p+1)-out-of-n secret sharing scheme can distinguish
in between shares of m1 and m2 with advantage greater than dε, then the above reduction can
distinguish in between the shares corresponding to m1 and m2 with advantage greater than ε. This
violates the leakage-resilience of the underlying (p+1)-out-of-(p+1) scheme, completing the proof.

5 LRSS for general access structures

In this section, we use any (p+1)-out-of-n secret sharing scheme that is leakage-resilient w.r.t.
(p, n, µ)−BCP and any secret sharing scheme comprising of authorized sets of size at least p+ 1
to construct another secret sharing scheme, such that the resulting scheme not only supports the
same access structure, but is also leakage-resilient w.r.t. (p, n, µ)−BCP .

Theorem 3. For any collusion bound p ≥ 1, any access structure A supported on n parties such
that each authorized set has cardinality greater than p, any message size a > 0, any leakage bound
µ, suppose we have the following primitives :
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1. For any error ε1 > 0, let (AShare,ARec) be a (n, ε1)-secret sharing scheme (resp. compu-
tational) realizing access structure A that shares secrets of length a bits into n shares, each
of length b bits.

2. For any error ε2 > 0, let (LRSharep+1
n ,LRRecp+1

n ) be any (p+1, n, 0)-secret sharing scheme
that is ε2-leakage-resilient w.r.t. (p, n, µ) − BCP and shares secrets of length a bits into n
shares each of length c bits.

Then there is a (n, ε1)-secret sharing scheme (resp. computational) realizing access structure A that
is ε2-leakage-resilient w.r.t. (p, n, µ) − BCP . The resulting scheme, (LRShare,LRRec), shares
secrets of length a into n shares, each of length b+ c bits.

Proof. Let (XORShare2,XORRec2) be the (2, 2, 0) additive secret sharing scheme for single bit
secrets (as in Lemma 2). The construction of (LRShare,LRRec) is given below :

• Sharing function LRShare:
Encode the secret input m using the 2-out-of-2 sharing scheme. Let l, r ← XORShare2(m).
Share l using the given secret sharing scheme for access structure A to obtain l1, . . . , ln ←
AShare(l). Share r using the (p+ 1)-out-of-n leakage-resilient secret sharing scheme to ob-
tain r1, . . . , rn ← LRSharep+1

n (r). Then for each i ∈ [n], construct sharei as (li, ri).

• Reconstruction function LRRec:
On input the shares ⊗i∈T sharei corresponding to an authorized set T , for each i ∈ T , parse
sharei as (li, ri). Run the reconstruction procedure ARec on the shares of l, to obtain
l ← ARec(⊗i∈T li). Run the reconstruction procedure of the leakage-resilient scheme on the
shares of r, to obtain r ← LRRecp+1

n (⊗i∈T ri). Run the reconstruction procedure of the
2-out-of-2 sharing scheme to obtain : m← XORRec2(l, r). Output m.

Correctness and efficiency : Follows easily from the construction.

Perfect (resp. Statistical, Computational) secrecy : Any unauthorized set of shares of
our scheme will only have an unauthorized set of shares of l, and therefore by the perfect (resp.
statistical, computational) privacy of (AShare,ARec), l remains hidden. Therefore, the secret
remains hidden by the perfect privacy of (XORShare2,XORRec2).

Statistical leakage-resilience: Suppose the adversary specifies a protocol Leak ∈ (p, n, µ) −
BCP that violates the leakage-resilience of our scheme using at most µ bits of leakage. We use
such an adversary to give an explicit leakage protocol Leak1 ∈ (p, n, µ) − BCP of the underlying
(p+1)-out-of-n scheme, where each party i ∈ [n] holds a ri ∈ {0, 1}b as input.

• Initial setup : Randomly fix l← {0, 1}a. Compute and fix l1, . . . , ln ← AShare(l).

• Reduction Next1 : Using Leak, as specified by its Next function and fixed values of shares
of l we give the description of protocol Leak1 by specifying Next1.

On input a transcript τ , execute the adversary specified Next function with τ as input to
obtain a subset S ⊆ [n] and a leakage function g that takes ⊗i∈Ssharei as input. If the
output of Next is ⊥, then output ⊥. Otherwise, we construct leakage function g1 that takes
⊗i∈Sri as input, and outputs g

(
⊗i∈S (li ◦ ri)

)
. Output S, g1.
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Observe that if the adversary for our secret sharing scheme can distinguish between shares of
m1,m2 ∈ {0, 1}a with advantage greater than ε2, then the above reduction can distinguish between
the shares corresponding to (XORRec2(m1, l) and (XORRec2(m2, l) with the same advantage.
This violates the leakage-resilience of the underlying (p+1)-out-of-n scheme, and thus our proof is
complete.

5.1 From Single-bit Secrets to Multi-bit Secrets

Using single bit schemes, we give a construction for multi-bit secrets.

Lemma 6. For any collusion bound p ≥ 1, any access structure A supported on n parties such
that each authorized set has cardinality greater than p, any leakage-bound µ, any ε1 ≥ 0 , any ε2 >
0, suppose (SBShare,SBRec) is a (n, ε1)-secret sharing scheme (resp. computational) realizing
access structure A that is ε2-leakage-resilient w.r.t. (p, n, µ) − BCP that shares single bit secrets
into n shares, each of length a. Then, for any secret space of b > 0 bits, there is an efficient (n, bε1)-
secret sharing scheme (resp. computational) realizing access structure A that is bε2-leakage-resilient
w.r.t. (p, n, µ)−BCP . The resulting scheme, (MBShare,MBRec), shares secrets of bit-length a
into n shares, each of bit-length ab.

Proof. The construction of (MBShare,MBRec) follows :

• (Sharing function MBShare) :
On input m ∈ {0, 1}b, parse m as m1 ◦ . . . ◦ mb. For each j ∈ [b], share mj using the
sharing procedure of underlying leakage-resilient scheme (using independent randomness) to
obtain mj

1, . . . ,m
j
p+1 ← SBShare(mj). For each i ∈ [p+1], construct sharei as (m1

i ◦. . .◦mb
i).

• (Reconstruction function MBRec) :
On input p + 1 shares, for each i ∈ [p + 1], parse sharei as (m1

i ◦ . . . ◦ mb
i). For each

j ∈b, use the reconstruction procedure of underlying leakage resilient scheme to compute
mj ← SBRec(mj

1, . . . ,m
j
p+1). Output m← m1 ◦ . . . ◦mb.

Perfect correctness, statistical privacy and efficiency : Correctness and efficiency triv-
ially follows. It is not hard to use a hybrid argument to arrive at statistical privacy.

Statistical leakage-resilience: The adversary specifies a leakage-protocol Next ∈ (p, n, µ) −
BCP that allows it to distinguish in between shares of c and d under our multi-bit scheme. We
use such an adversary to construct Next1 ∈ (p, n, µ) − BCP that violates the leakage-resilience of
the single bit scheme.

• Initial setup : Randomly fix a bit location k ∈b, such that ck 6= dk. For each j ∈ {1, . . . ,
k−1}, share cj using the sharing procedure of underlying single bit scheme (using independent
randomness) to obtain mj

1, . . . ,m
j
p+1 ← SBShare(cj). Similarly, for each j ∈ {k + 1, . . . , b},

share dj to obtain mj
1, . . . ,m

j
p+1 ← SBShare(dj). Fix all these sampled shares.

• Reduction Next1 : On input a transcript τ , execute the adversary specified Next function
with τ as input to obtain a subset S ⊂ [n] and a leakage function g that takes ⊗i∈Ssharei as
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input. If the output of Next is ⊥, then output ⊥. Otherwise, we construct leakage function
g1 that takes ⊗i∈Smi as input, treats it as ⊗i∈Smk

i . Then, for each i ∈ R, computes sharei
as (m1

i , . . . ,m
b
i) and outputs g(⊗i∈Rsharei). Output R, g1.

Observe that if the adversary for the multi-bit scheme can distinguish in between shares of c and
d with advantage greater than bε, then the above reduction can distinguish in between the shares
corresponding to c[i] and d[i] with advantage greater than ε. This violates the leakage-resilience of
the single bit scheme, and therefore completes the proof.

5.2 Instantiations

Corollary 8. For any collusion bound p ≥ 1, any access structure A supported on n parties such
that each authorized set has cardinality greater than p, any message size k > 0, any leakage bound
µ, any error ε1 ≥ 0, any error ε2 > 0, suppose there is a (n, ε1)-secret sharing scheme (resp.
computational) realizing access structure A that shares secrets of length k bits into n shares, each
of length b bits. Then there is an (n, ε1)-secret sharing scheme (resp. computational) realizing
access structure A that is ε2-leakage-resilient w.r.t. (p, n, µ)− BCP . The resulting scheme shares
secret of length k bits into n shares, each of length b + k log(n)(µ + log(1/ε0))2O(p) where ε0 ←
ε2/(k log(n)2O(p)).

Proof. We iteratively instantiate the primitives required for Theorem 3 below :

1. For Lemma 1, we let f be the p+ 1 party generalized inner-product functionality from Babai
et al. [BNS92]. For error ε0 > 0, and leakage-bound µ, for single bit secrets, we get that the
length of each share of (SBShare,SBRec) will be 2O(p)(µ+ log(1/ε0)).

2. We use the previous scheme in Lemma 6, to obtain (MBShare,MBRec) that shares k bit
secrets into k2O(p)(µ+ log(1/ε0)) bit shares. The error of the resulting scheme is kε0.

3. For Lemma 5, we let PHF(p + 1, n) be the perfect hash family of size 2O(p) log(n) from the
work of Naor et al. [NSS95]. We use the previous multi-bit scheme along with PHF(p+ 1, n)
to obtain a (p+1)-out-of-n scheme, (LRSharep+1

n ,LRRecp+1
n ), that shares secret of length

k bits into shares of length k log(n)(µ+ log(1/ε0))2O(p). The error of the resulting scheme is
k log(n)ε02O(p).

4. We use the previous (p+1)-out-of-n scheme in Theorem 3 to obtain our final scheme. We
want our resultant scheme to have error ε2 ← k log(n)ε02O(p). Therefore, we set ε0 ←
ε2/(k log(n)2O(p)).

Corollary 9. For any number of parties n ≥ 2, any collusion bound p = O(log n), any threshold
t > p, any leakage-bound µ, any error ε > 0, there is a efficient (t, n, 0)-secret sharing scheme
that is ε-leakage-resilient w.r.t. (p, n, µ) − BCP . The resulting scheme shares k bit secrets into
poly(n, k, µ, log(1/ε)) bits shares.

Proof. Use (t, n, 0)-secret sharing scheme of Shamir [Sha79] in Corollary 8.

It is straightforward to use secret sharing schemes of [KW93, Bei11, KNY14] to obtain corre-
sponding corollaries mentioned in the introduction, and consequently we omit these details.
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5.3 Leaking p Shares at the Cost of One Extra Bit of Leakage.

We note that that we can empower the adversary to completely leak any p shares at the end of
the its leakage protocol, and still ensure leakage-resilience. This observation will prove crucial later
while constructing leakage-resilient non-malleable secret sharing scheme in section 7.

Lemma 7. Any secret sharing scheme on n parties that is ε2-leakage-resilient w.r.t. (p, n, µ+ 1)−
BCP is also ε2-leakage-resilient against an adaptive adversary who completely leaks any p shares
after executing a leakage-protocol Leak ∈ (p, n, µ)−BCP .

Proof. (Sketch) : We can prove this via contradiction. In particular, we can use the distinguisher
D violating leakage-resilience in this new model, to adaptively compute the last bit of leakage and
violate leakage-resilience of the underlying scheme.

6 LRSS implies Complexity Lower Bounds.

While in previous sections, we relied on communication complexity lower bounds to construct
leakage-resilient schemes, in this section we make the simple observation that leakage-resilient
schemes also imply communication complexity lower bounds.

Lemma 8. Suppose there is an efficient (n, ε1)-secret sharing scheme for single bit secrets that
is ε2-leakage-resilient w.r.t. (p, n, µ) − BCP . Let Rec : ({0, 1}b)n → {0, 1} be the reconstruction
procedure of the secret sharing scheme. Then, computing Rec with advantage better than ε2 (over
random guessing) requires communication complexity at least µ bits for any communication protocol
which allows any collection of p parties to speak in any round.

Proof. Follows immediately from the definition of leakage-resilience.

In particular, the above observation has the following corollary:

Corollary 10. Suppose there is an efficient construction of (n, n, ε1)-secret sharing scheme that is
ε2-leakage-resilient w.r.t. (n − 1, n, µ) − BCP , then the ε2-NOF communication complexity of the
reconstruction procedure is at least µ (CCNOF

n (Rec) ≥ µ).

Proving lower bounds on the NOF communication complexity of explicit functions where the
number of parties is super-logarithmic in the input length is one of the most outstanding challenges
in complexity theory with many eminent implications. In particular, if the size of each of the shares
in a LRSS as above is k ← o(µ2n) bits, then the NOF communication complexity of the recon-
struction function (a function on ({0, 1}k)n) would be ω(k/2n). While there have been numerous
attempts to obtain a lower bound of the form ω(k/2n), all known attempts are only able to achieve
Ω(l/2n) [BNS92,Chu90,Raz00,She14]. Even handling non-adaptive adversaries is a challenge. This
can be seen from the classical results of Yao [Yao90] and Hastad and Goldmann [HG91] who showed
that (simultaneous) NOF communication complexity lower bounds imply circuit lower bounds. In
our setting if we further limit the adversary and only allow for non-adaptive leakage, then we can
obtain lower bounds for depth 3 threshold circuits.

Corollary 11. For single bit secrets, for any number of parties n ≥ 2 , suppose there is (n − 1,
n, n, µ)-LRSS leakage-resilient w.r.t a computationally unbounded adversary who learns n2 bits of
leakage such that each bit of the leakage non-adaptively depends on at most n−1 shares. If the size
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of each of the shares of this scheme is 2n
o(1)

, then this implies that the reconstruction procedure of
this scheme does not belong to ACC0 .

Proof. Follows by combining the arguement of Hastad and Goldmann [HG91] and Yao [Yao90].

In particular, if a (n− 1, n, n, µ)-LRSS is efficient (efficiency implies that the shares are of size
poly(n, µ) bits), then we obtain an unconditional separation between P and ACC0 . Contrast this
with the celebrated result of Williams [Wil14] which unconditionally separates NEXP from ACC0

(using different techniques) and the recent result of Murray and Williams [MW18] separating quasi-
non-deterministic poly NQP from ACC0 .

The above discussion suggests that improving Corollary 9 to obtain efficient (p, t, n)-LRSS for
p = ω(log n) could be considerably harder.

7 Leakage-Resilient Non-Malleable Secret Sharing

In this section we convert any secret sharing scheme into another one that additionally ensures
non-malleability against an adversary who arbitrarily learns a bounded amount of information via
a number-in-hand leakage-protocol and then uses this leakage to arbitrarily tamper each of the
shares independently.

We recall the definition of non-malleable secret sharing from [GK18b].

Definition 11. (Non-Malleable Secret Sharing Schemes [GK18a, GK18b]) Let A be some
access structure. Let Amin be its corresponding minimal basis access structure. Let (Share,Rec)
be any (n, ε)-secret sharing scheme realizing access structure A for message space M. Let F be
some family of tampering functions. For each f ∈ F , m ∈M and T ∈ Amin, define the tampering
experiment

STamperf ,Tm =


shares← Share(m)

s̃hares← f(shares)

m̃← Rec(s̃haresT )
Output : m̃


which is a random variable over the randomness of the sharing function Share. We say that the
(n, ε)-secret sharing scheme, (Share,Rec), realizing access structure A is ε′-non-malleable w.r.t
F if for each f ∈ F and authorized T ∈ Amin, there exists a distribution SDf ,T (corresponding to
the simulator) overM∪{same∗,⊥} such that, for all m ∈M , we have that the statistical distance

between STamperf ,Tm and

SSimf ,T
m =

{
m̃← SDf ,T

Output : m if m̃ = same∗, or m̃, otherwise

}
is at most ε′. Additionally, SDf ,T should be efficiently samplable given oracle access to f(.)

We recall the split-state (individual) tampering family from [GK18a]:
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7.0.1 Individual Tampering Family Fsplitn

Let Share be any sharing function that takes a secret as input and outputs n shares, namely
share1, . . . , sharen. For each i ∈ [n], let fi : S → S be an arbitrary tampering function, that takes

as input sharei (the ith share) and outputs s̃harei (the tampered ith share). Let Fsplitn denote the
family containing all such tampering functions, namely (f1, . . . , fn).

We generalize this family to encompass leakage:

7.0.2 Individual Leakage Tampering Family F ind−leakn,µ

Let the n shares be share1, . . . , sharen be as in the definition Fsplitn . Let Leak ∈ (1, n, µ)−BCP be
any number-in-hand leakage protocol that adaptively leaks at most µ bits of information about the
n shares. Let τ ← Leak(share1, . . . , sharen) denote the transcript of this leakage. The adversary
uses this leakage to tamper each of the n shares arbitrarily and independently. More formally, for
each i ∈ [n], let fi : S ×{0, 1}τ → S be an arbitrary tampering function, that takes as input sharei

and τ (leakage transcript) to output s̃harei. Let F ind−leakn,µ denote the family containing all such
leakage and tampering functions, namely (Leak, f1, . . . , fn).

Access structures based definitions. We recall some defintions from [GK18b].

Definition 12. (Minimal basis access structure [GK18b]) For any access structure A, we
define minimal basis access structure of A, denoted by Amin, as the the minimal subcollection
of A , such that for all authorized set T ∈ A, there exists an authorized subset B ⊆ T which is an
element of Amin.

Definition 13. (Paired access structures [GK18b]) An access structure A is called a paired
access structure, if each authorized set contains an authorized subset of size two. Formally, for
all B ∈ A, there exists a subset C ⊆ B such that C is authorized and has cardinality two.

Notice that, if A is a paired access structure then its corresponding minimal basis access structure
Amin will only contain authorized sets of size two.

Definition 14. (Authorized paired access structures [GK18b]) For any access structure A,
we call a paired access structure Apairs an authorized paired access structure corresponding to
A if Apairs is the maximal subcollection of A. Formally,

Apairs = {B ∈ A : ∃C ⊆ B, (C ∈ A) ∧ (|C| = 2)}

Notice that Aminpairs will be equal to the set of all the authorized sets of size two in A .

Leakage-resilient NMSS scheme for authorized pairs. Goyal and Kumar [GK18b] also
constructed a NMSS scheme for authorized pairs by giving every authorized pair an encoding of
the secret under a 2-out-of-2-NMSS. Analogously, we can give every authorized pair an encoding of
the secret under a 2-out-of-2-LR-NMSS [ADKO15] to obtain a leakage-resilient NMSS scheme for
authorized pairs. We sketch the proof for non-malleability: suppose we will use the first two shares
for reconstruction. Suppose the adversary leaks from all the n shares, tampers with all the n shares
independently. In our reduction, we generate n ‘fake’ shares encoding a ‘fake’ secret 0. The two
real shares of the 2-out-of-2 scheme can simulate the leakage by replace the specific components
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of the first two ‘fake’ shares with the two ‘real’ shares and run the adversarial leakage-protocol on
all the n resulting shares to obtain a leakage-transcript. This transcript is then used to tamper
both the real shares independently. This completes the reduction. Using a hybrid argument we
can show swap every pair of ‘fake’ shares with their real shares, without affecting the output of
the tampering experiment. After all these ‘pairs’ are replaced we end up with the real tampering
experiment, completing the proof.

Efficient membership queries. To achieve the general result, we need one to recall one more
definition. We say that an access structure supports efficient membership queries, if we can effi-
ciently decide whether the given set of identities of parties is authorized or not. As an example,
given any access structure, we can check every pair of parties to see if the pair in hand is authorized
or not, and therefore efficiently construct the corresponding paired access structure. Another way
to model this is via a membership oracle.

Main result for general access structures. We are now in position to give our main result.

Theorem 4. For any number of parties n, and any access structure A that does not contain
singletons, any leakage bound τ , if we have the following primitives :

1. For any ε0 ≥ 0, ε1 > 0, let (NMEnc,NMDec) be any (2, 2, ε0)-secret sharing scheme that

is ε1-non-malleable w.r.t. Fsplit2 , which encodes an element of the set F0 into two elements of
F1.

2. For any ε2 ≥ 0, ε3 ≥ 0, let (LShare,LRec) be any (n, ε2)-secret sharing scheme (resp.
computational) realizing access structure A that is ε3-leakage resilient w.r.t. (2, n, µ + 1) −
BCP , which shares an element of F1 into n elements of F2.

3. Let µ1 ← µ+ n log |F2|. For any ε4 ≥ 0, ε5 > 0 let (RShare,RRec), be any (2, n, ε4)-secret
sharing scheme that is ε5-leakage-resilient w.r.t. (1, n, µ1) − BCP , which shares an element
of F1 into n elements of the F3.

4. Let µ2 ← µ + n log |F2| + 2 log |F3|. For any ε6 ≥ 0, ε7 > 0, let (PShare,PRec), be any
(n, ε6)-secret sharing scheme realizing the authorized paired access structure Apairs that is ε7-
leakage-resilient non-malleable w.r.t. F ind−leakn,µ1 , which shares an element of the set F0 into n
elements of F4.

then there exists (n, ε0 + ε2 + ε4 + ε6)-secret sharing scheme (resp. computational) realizing
access structure A that is (ε1 + ε3 + ε5 + ε7)-leakage-resilient non-malleable w.r.t F ind−leakn,µ . The
resulting scheme, (NMShare,NMRec), shares an element of the set F0 into n shares where each
share is an element of (F2 × F3 × F4). Further, if the four primitives have efficient construction
(polynomial time sharing and reconstruction functions) and the access structure A supports efficient
membership queries, then the constructed scheme is also efficient.

Proof. In our constructions, we need a method to find a minimal authorized set given any autho-
rized set. For any access structure A not containing singletons, recall the efficient deterministic
procedure from [GK18b] FindMinSet : A → Amin, which takes an authorized set and outputs a
minimal authorized set contained in that set. Our construction follows :
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• Sharing function NMShare: Encode the secret m ∈ F1 using NMEnc to obtain l,
r ← NMEnc(m). Share l using a LShare to obtain l1, . . . , ln ← LShare(l). Share r
using RShare to obtain r1, . . . , rn ← RShare(r). Share m using PShare to obtain (p1, . . . ,
pn)← PShare(m). Then for each i ∈ [n], construct sharei as li, ri, pi.

• Reconstruction function NMRec: On input the shares ⊗i∈Dsharei corresponding to au-
thorized set D, for each i ∈ D, parse sharei as (li, ri, pi). Find the minimal authorized set
T ∈ Amin by running the procedure FindMinSet with input D. Let T be a set containing
t indices {i1, i2, . . . , it} such that ij < ij+1 for each j ∈ [t − 1]. If |T | = 2, use the decod-
ing procedure PRec to obtain the hidden secret m ← PRec(pi1 , pi2). Otherwise, run the
reconstruction procedure LRec on t shares of l, to obtain l← LRec(⊗i∈T li). Run the recon-
struction procedure RRec on the first 2 shares of r, to obtain r ← RRec(ri1 , ri2). Decode l
and r using NMDec to obtain : m← NMDec(l, r). Output m.

Correctness and efficiency : Follows trivially.

Statistical (resp. Computational) Privacy : The proof is the same as [GK18b].

Statistical non-malleability : Without loss of generality we can assume that adversary
chooses an authorized set T ∈ Amin to be used for reconstruction of the secret, as otherwise we can
use the function FindMinSet to compute T ∈ Amin from any D ∈ A. As the adversary belongs
to F ind−leakn,µ , it specifies a leakage protocol Leak and a set of n tampering functions {fi : i ∈ [n]}.
Recall that Leak produces a leakage transcript τ and each function fi takes sharei and τ as input

and outputs the tampered s̃harei. We can also assume without loss of generality that all these
tampering functions are deterministic, as the computationally unbounded adversary can compute
the optimal randomness.

To prove leakage-resilient non-malleability of our scheme, we use the adversarily specified leakage
and tampering functions to create explicit functions violating the non-malleability of the underlying
non-malleable secret-sharing schemes. Like [GK18a], depending on the cardinality of T we get two
cases :

Case 1 (|T | = 2) :
Let i1 and i2 be the two indices of T such that i1 < i2. In this case, we use the leakage function
Leak and tampering functions f1, f2 for the scheme (NMShare,NMRec) to create explicit leakage
function Leak1 and tampering functions Fi1 and Fi2 for the underlying scheme (PShare,PRec).
The reduction is described below :

1. (Initial setup) : Fix any message m$ ∈ M, and run the sharing function NMShare with
input m$ to obtain ‘fake‘ shares. That is, (tShare1, . . . , tSharen) ← NMShare(m$). For
each i ∈ [n], parse tSharei as tli, tri, tpi and fix tli, tri.

2. (Leakage function) Leak1 : We now design a n party leakage protocol Leak1 using the
given n party leakage protocol Leak. For this, it suffices to construct the corresponding Next1
function. Let τ denote the transcript (initially empty). On input transcript τ , the function
Next1 invokes the underlying next function to obtain an index i ∈ [n] and leakage function
g, namely i, g ← Next(τ). Then it uses the leakage function g(sharei) to define the leakage
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function g1(pi) as follows : On input pi, output g(tli, tri, pi). The Next1 function outputs
i, g1. In case Next outputs ⊥, Next1 also outputs ⊥ completing the leakage protocol Leak1.
Denote the final output of the leakage protocol Leak1 as τ ← Leak1(p1, . . . , pn).

3. For each i ∈ [n], Tampering function Fi is defined as follows : On input pi ∈ F4 and
leakage transcript τ ∈ {0, 1}µ, let sharei ← tli, tri, pi. Run fi on sharei and transcript τ to

obtain tampered s̃harei. Parse s̃harei as l̃i, r̃i, p̃i. Output p̃i.

To prove non-malleability of our scheme, our hope is to rely on the simulator of (PShare,
PRec) whose output distribution is statistically close to the distribution of the tampered secret
produced by the above reduction. To this end, we have to show that distribution of the tampered
secret produced in the reduction is statistically close to the one produced in the real tampering
experiment. We achieve this using the following hybrid argument :

1. Hybrid1 : The distribution of the tampered secret is identical to the distribution of the
tampered secret produced by the above reduction. To recall, create tSharei using ‘fake’ shares
generated using m$. Let τ ← Leak1(p1, . . . , pn). For each i ∈ {i1, i2}, compute p̃i ← Fi(pi, τ).
Output PRec(p̃i1 , p̃i2).

2. Hybrid2 : We only make one change in the previous hybrid. In the initial setup the fixed
shares of r$ are replaced with real shares of r (produced while encoding m instead of m$).
Output PRec(p̃i1 , p̃i2).

3. Hybrid3 : We only make one change in the previous hybrid. In the initial setup the fixed
shares of l$ are replaced with real shares of l (produced while encoding m instead of m$).
Output PRec(p̃i1 , p̃i2). Note that this is identical to the distribution of the tampered secret
in the real tampering experiment.

Claim: For any r, r$ ∈ F1, the statistical distance in between Hybrid1 and Hybrid2 is at most
ε0.
Proof: The two hybrids differ in the intial setup phase. In Hybrid2, shares of r$ are fixed, while
in Hybrid3 shares of r are fixed. We can use any distinguisher for these two hybrds to construct a
distinguisher voilating the statistical secrecy of (2, 2, ε0) secret sharing scheme (NMEnc,NMDec).
In more detail,

1. Initial setup : Let tl1, . . . , tln ← LShare(l$) and p1, . . . , pn ← PShare(m).

2. Distinguisher : On input r, sample tr1, . . . , trn ← RShare(r). Proceed, as in the reduction
to obtain a transcript τ using leakage protocol Leak1. For each i ∈ {i1, i2}, compute p̃i ←
Fi(pi, τ). Invoke the distinguisher with PRec(p̃i1 , p̃i2) and output its output.

It is immediate that the two distinguishers have the same distinguishing advantage, completing
the proof of the claim. �

Claim: For any l, l$ ∈ F1, the statistical distance in between Hybrid2 and Hybrid3 is at most ε3.
Proof: Assume towards contradiction that there exists l, l$ ∈ F1, and a distinguisher D that is
successful in distinguishing Hybrid2 and Hybrid3 with probability greater than ε3. We use the
reduction and such a distinguisher to construct a leak protocol Leak2 ∈ (1, n, µ)−BCP and another
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distinguisher D1 that violates the leakage-resilience of the scheme (LShare,LRec) for the secrets
l, l$. The reduction is described below :

1. (Initial setup) : Let tr1, . . . , trn ← RShare(r) and p1, . . . , pn ← PShare(m).

2. (Leak function Leak2) : We now design a n party leakage protocol Leak2 for (LShare,
LRec) using the given n party leakage protocol Leak for (NMShare,NMRec). To this
end, it suffices to construct the corresponding Next2 function. Let τ denote the transcript
(initially empty). On input transcript τ , the function Next2 invokes the underlying next
function to obtain an index i ∈ [n] and leakage function g, namely i, g ← Next(τ). Then
it uses the leakage function g to define the leakage function g2(li) as follows : On input li,
output g(li, tri, pi). The Next2 function outputs i, g2. Let τ denote the transcript, when the
leakage protocol Leak finishes (formalized by Next outputting ⊥). At this point, we continue
our leakage protocol and party i1 and i2 completely leak li1 and li2 in the next two rounds.
As a result, the final transcript of our leakage protocol Leak2 will be τ ◦ li1 ◦ li2 .

As τ is at most µ bits and from Corollary 7 upto two shares of l can be fully leaked, the above
leakage protocol belongs to the class (2, n, µ)−BCP .

3. (Distinguisher D1) : On input leakage transcript τ ◦ li1 ◦ li2 , for each i ∈ {i1, i2}, compute
p̃i ← fi(li ◦ tri ◦ pi, τ)[3] ([3] denotes the third component of vector). Invoke the distinguisher
with PRec(p̃i1 , p̃i2) and output its output.

Notice, in the case the secret hidden by the leakage-resilient scheme (LShare,LRec) is l$, D
will be invoked with input distributed according to Hybrid2. Otherwise, D will be invoked with
distribution similar to Hybrid3. Therefore the success probability of D1 will be equal to the ad-
vantage of D in distinguishing these two hybrids, which is greater than ε3 by assumption. Hence,
we have arrived at a contradiction to statistical leakage-resilience of the scheme (LShare,RRec). �

As constructed, the set of tampering functions {Fi : i ∈ [n]} and the leakage function Leak1

belongs to F ind−leakn,µ . Therefore, the tampering experiments of the two non-malleable secret-sharing
scheme (see definition 11) are statistically indistinguishable, specifically,

STamperLeak,f ,Tm ≈ε0+ε3 STamperLeak1,F,Tm

By the ε7-non malleability of the scheme (PShare,PRec), there exists a simulator SSimLeak1,F,T
m

such that
STamperLeak1,F,Tm ≈ε7 SSimLeak1,F,T

m

We use the underlying simulator as our simulator, and let

SSimLeak,f ,T
m ≡ SSimLeak1,F,T

m

Applying triangle inequality to the above relations we prove the statistical non malleability for this
case.

STamperLeak f ,Tm ≈ε0+ε3+ε7 SSimLeak,f ,T
m

Case 2 (|T | ≥ 3) :
Let T = {i1, . . . it} be an ordered set of t indices, such that ij < ij+1. In this case, we use the
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leakage function Leak and tampering functions {fi : i ∈ T} for the scheme (NMShare,NMRec)
to create explicit tampering functions F and G that independently tampers the two shares of the
underlying 2-out-of-2 non-malleable secret sharing scheme (NMEnc,NMDec). Note that as Fsplit2

allows arbitrary computation, the functions F and G are allowed to brute force over any finite set.
The reduction giving explicit (F,G) ∈ Fsplit2 is described below.

1. (Initial setup) : Fix an arbitrary m$ and let l$, r$ ← NMEnc(m$). Run the sharing
function LShare with input l$ to obtain tl1, . . . , tln. Run the sharing function RShare(r$)
to obtain tr1, . . . , trn. Run the sharing function PShare with input m$ to obtain tp1, . . . , tpn.
For each i ∈ [n], create tSharei as tli, tri, tpi. Run the the leakage protocol on these ‘fake’
shares to obtain the leakage transcript τ ← Next(tShare1, . . . , tSharen). For each i ∈ {i1,
i2}, run fi on tSharei and transcript τ to obtain ˜tSharei ← fi(tSharei, τ). Parse ˜tsharei as
t̃li, t̃ri, t̃pi. Fix li ← tli and l̃i ← t̃li. For each i ∈ {i3, . . . , it}, fix ri ← tri. For all i ∈ T , fix
pi ← tpi.

2. The tampering function F is defined as follows : On input l, sample the value of li3 , . . . , lit
such that the shares {li : i ∈ T} hide the secret l under (LShare,LRec) and the distribution
of these shares is identical to the distribution produced on running LShare with input l. In
case such a sampling is not possible, then abort. Otherwise, for each i ∈ T \{i1, i2}, construct
sharei as (li, ri, pi) using the fixed values of ri and pi. Run the tampering function fi with

inputs sharei and transcript τ to obtain tampered s̃harei ← fi(sharei). Parse s̃harei as l̃i,
r̃i, p̃i. Run the reconstruction function LRec with input ⊗i∈T l̃i to obtain l̃← LRec(⊗i∈T l̃i).
Output l̃.

3. The tampering function G is defined as follows : On input r, sample the values of first
two shares of r, namely {ri1 , ri2} satisfying the following properties (via brute force over all
possibilities) :-

• The two shares {ri1 , ri2} encode the secret r under the (RShare,RRec). Moreover,
the two shares should be distributed according to the output distribution of scheme
(RShare,RRec).

• For each i ∈ {i1, i2}, let sharei be (li, ri, pi), run fi with inputs sharei and transcript τ

to obtain s̃harei. Parse s̃harei as (ñli, ñri, ñpi). The value of ñli should be equal to l̃i
(the value that was fixed in the initial step of reduction).

In case such a sampling is not possible, then abort. Otherwise, run the reconstruction
procedure of the leakage-resilient scheme to obtain r̃, using the tampered values of first 2
shares of r. That is r̃ ← LRec(ñri1 , ñri2). Output r̃.

To prove non-malleability of our scheme, our hope is to rely on the simulator of (NMEnc,
NMDec) whose output distribution is statistically close to the distribution of the tampered secret
produced in the above reduction. To this end, we have to show that distribution of the tampered
secret produced by the reduction is statistically close to the one produced in the real tampering
experiment. This is not immediate, because in real tampering experiment, tampering is preceded
with leakage where all the n shares are involved. Nevertheless, we achieve this using the following
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hybrid argument. We begin by fixing any l$, r$ encoding m$ and any l, r encoding m under the
2-out-of-2 non-malleable scheme (NMEnc,NMDec).

1. Hybrid1 : The distribution of the tampered secret is identical to the distribution of the
tampered secret produced by the above reduction. To recall, we share l$ to obtain tl1, . . . ,
tln. Similarly, we also share r$ and p$ using respective schemes. Next we create ‘fake’ shares
tSharei ← tli, tri, tpi. After which, we execute the leakage protocol on these ‘fake’ shares
to obtain the transcript τ ← Leak(tShare1, . . . , tSharen). Use the functions defined in the
reduction to compute l̃← F(l) and r̃ ← G(r). Output NMDec(l̃, r̃).

2. Hybrid2 : We only make one change in the preceding hybrid. In the initial setup, the shares
tr1, . . . , trn are generated by sharing r (instead of r$), that is tr1, . . . , trn ← RShare(r).
Proceed as in preceding hybrid and output NMDec(l̃, r̃).

3. Hybrid3 : We only make one change in the preceding hybrid. In the initial setup, the
tampered r̃ is computed in the initial setup using t̃ri1 , t̃ri2 (instead of invoking the tampering
function G), that is, r̃ ← RRec(t̃ri1 , t̃ri2). Proceed as in preceding hybrid and output
NMDec(l̃, r̃).

4. Hybrid4 : We only make one change in the preceding hybrid. In the initial setup, the shares
tl1, . . . , tln are generated by sharing l (instead of l$), that is tl1, . . . , tln ← LShare(l). Proceed
as in preceding hybrid and output NMDec(l̃, r̃).

5. Hybrid5 : We only make one change in the preceding hybrid. In the initial setup, the
tampered l̃ is computed in the initial setup using t̃l1, . . . , t̃ln (instead of invoking the tampering

function F), that is l̃ ← LRec(t̃li1 , . . . , t̃lit). Proceed as in preceding hybrid and output
NMDec(l̃, r̃).

6. Hybrid6 : We only make one change in the preceding hybrid to obtain the current hybrid.
In the initial setup, the shares tp1, . . . , tpn are generated by sharing m (instead of m$), that
is tp1, . . . , tpn ← PShare(m). Proceed as in preceding hybrid and output NMDec(l̃, r̃).
Note that this is identical to the distribution of the tampered secret in the real tampering
experiment conditioned on the output of NMEnc being l, r.

Claim: For any r, r$ ∈ F1, the statistical distance in between Hybrid1 and Hybrid2 is at most
ε5.
Proof: These two hybrids differ in the intial setup phase. In Hybrid1 shares of r$ are fixed, while
in Hybrid1 shares of r are fixed. We can use the adversary and the distinguisher for these two
hybrids to construct a leakage-protocol violating the statistical leakage-resilience of the 2-out-of-n
secret sharing scheme (LShare,LRec). The reduction is described below :

1. (Initial setup) : Fix l1, . . . , ln ← LShare(l) and p1, . . . , pn ← PShare(m$).

2. (Leak function Leak2) : We now design a n party leakage protocol Leak2 for (RShare,
RRec) using the given n party leakage protocol Leak for (NMShare,NMRec). To this end,
it suffices to construct the corresponding Next2 function. Let τ denote the transcript (initially
empty). On input transcript τ , the function Next2 invokes the underlying next function to
obtain an index i ∈ [n] and leakage function g, namely i, g ← Next(τ). Then it uses the
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leakage function g(sharei) to define the leakage function g2(ri) as follows : On input ri,
output g(li, ri, pi). The Next2 function outputs i, g1. Let τ denote the transcript, when the
leakage protocol Leak finishes (formalized by Next outputting ⊥). At this point, we continue
and each party i ∈ T iteratively computes l̃i ◦ r̃i ◦ p̃i ← fi(li ◦ ri ◦ pi, τ) and outputs as leakage
(l̃i. As a result, the transcript of our leakage protocol Leak2 will be τ ◦ l̃i1 ◦ . . . ◦ l̃it .
As t shares of l can require at most n log |F2| bits (recall t ≤ n), the above leakage protocol
belongs to the class (1, n, µ1)−BCP .

3. (Distinguisher D1) : On input τ ◦ l̃i1 ◦ . . .◦ l̃it , compute l̃← LRec(l̃i1 , . . . , l̃it) and r̃ ← G(r).
Invoke the distinguisher D with NMDec(l̃, r̃) and output its output.

Notice, in the case the secret hidden under the scheme (RShare,RRec) is r$, D will be invoked
with input distributed according to Hybrid1. Otherwise, D will be invoked with distribution sim-
ilar to Hybrid2. Therefore the success probability of D1 will be equal to the advantage of D in
distinguishing these two hybrids, which is greater than ε5 by assumption. Hence, we have arrived
at a contradiction to statistical leakage-resilience of the scheme (RShare,RRec). �

Claim: Hybrid2 is identical to Hybrid3.
Proof: These two hybrids differ in how r̃ is computed. In Hybrid2, the function G samples two
shares of r, such that ri1 and ri2 satisfy certain constraints. Notice that in Hybrid3, the fixed val-
ues of tri1 and tri2 already satisfy all these constraints. Consequently there is no need for sampling
and r̃ can be directly computed using the fixed values. �

The above two claims also show that G(r) does not abort with probability at least ε5.
Claim: For any l, l$ ∈ F1, the statistical distance in between Hybrid3 and Hybrid4 is at most ε3.
Proof: These two hybrids differ in the initial stage while creating share tl1, . . . , tln. Assume towards
contradiction that there exists l, l$ ∈ F1, and a distinguisher D that is successful in distinguishing
Hybrid3 and Hybrid4 with probability greater than ε3. We use the reduction and such a distin-
guisher to construct a leak protocol Leak2 ∈ (2, n, µ) − BCP and another distinguisher D1 that
violates the leakage-resilience of the scheme (LShare,LRec) for the secrets l, l$. The reduction is
described below :

1. (Initial setup) : Fix tr1, . . . , trn ← RShare(r) and tp1, . . . , tpn ← PShare(m$).

2. (Leak function Leak2) : We now design a n party leakage protocol Leak2 for (LShare,
LRec) using the given n party leakage protocol Leak for (NMShare,NMRec). To this
end, it suffices to construct the corresponding Next2 function. Let τ denote the transcript
(initially empty). On input transcript τ , the function Next2 invokes the underlying next
function to obtain an index i ∈ [n] and leakage function g, namely i, g ← Next(τ). Then
it uses the leakage function g to define the leakage function g2(li) as follows : On input li,
output g(li, tri, tpi). The next2 function outputs i, g1. Let τ denote the transcript, when the
leakage protocol Leak finishes (formalized by Next outputting ⊥). At this point, we continue
and completely leak li1 and li2 in the next two rounds and then end our leakage protocol. As
a result, the transcript of our leakage protocol Leak2 will be τ ◦ li1 ◦ li2 .
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As τ is at most µ bits and and from Corollary 7 upto two shares of l can be fully leaked, the
above leakage protocol belongs to the class (2, n, µ)−BCP .

3. (Distinguisher D1) : On input τ ◦ li1 ◦ li2 , for each i ∈ {i1, i2}, let tSharei ← li ◦ tri ◦ tpi,
tamper using fi to obtain ˜tSharei which is parsed as l̃i ◦ t̃ri ◦ t̃pi. Using these values com-
pute r̃ ← RRec(t̃ri1 , t̃ri2) (this completes the initial setup of two hybrids in consideration).
Compute l̃← F(l). Invoke the distinguisher with NMDec(l̃, r̃) and output its output.

Notice, in the case the secret hidden by the leakage-resilient scheme (LShare,LRec) is l$, D
will be invoked with input distributed according to Hybrid4. Otherwise, D will be invoked with
distribution similar to Hybrid5. Therefore the success probability of D1 will be equal to the ad-
vantage of D in distinguishing these two hybrids, which is greater than ε3 by assumption. Hence,
we have arrived at a contradiction to statistical leakage-resilience of the scheme (LShare,RRec). �

Claim: Hybrid4 is identical to Hybrid5.
Proof: The two hybrids differ in how l̃ is computed. In Hybrid4, the function F samples shares
of l, such that li1 , . . . , lit satisfy certain constraints. Notice that in Hybrid4, the fixed values of
tli1 and tli2 already satisfy all these constraints. Consequently there is no need for sampling these
shares and l̃ can be directly computed using the fixed values. �

The above two claims also show that F(l) does not abort with probability at least ε3.
Claim: For any m,m$ ∈ F0, the statistical distance in between Hybrid5 and Hybrid6 is at most
ε7.
Proof: These two hybrids differ in the initial stage while creating share tp1, . . . , tpn. Assume towards
contradiction that there exists m,m$ ∈ F0, and a distinguisher D that is successful in distinguish-
ing Hybrid5 and Hybrid6 with probability greater than ε3. We use the reduction and such a
distinguisher to construct a leak protocol Leak2 ∈ (1, n, µ) − BCP and another distinguisher D1

that violates the statistical leakage-resilience of the scheme (PShare,PRec) for the secrets m,m$.
The reduction is described below :

1. (Initial setup) : Fix r1, . . . , rn ← RShare(r) and l1, . . . , ln ← LShare(l).

2. (Leak function Leak2) : We now design a n party leakage protocol Leak2 for (PShare,
PRec) using the given n party leakage protocol Leak for (NMShare,NMRec). To this end,
it suffices to construct the corresponding Next2 function. Let τ denote the transcript (initially
empty). On input transcript τ , the function Next2 invokes the underlying next function to
obtain an index i ∈ [n] and leakage function g, namely i, g ← Next(τ). Then it uses the
leakage function g(sharei) to define the leakage function g2(pi) as follows : On input pi,
output g(li, ri, pi). The Next2 function outputs i, g1. Let τ denote the transcript, when the
leakage protocol Leak finishes (formalized by Next outputting ⊥). At this point, we continue
and each party i ∈ T iteratively computes l̃i ◦ r̃i ◦ p̃i ← fi(li ◦ ri ◦ pi, τ) and outputs as leakage
(l̃i. Finally, party i1 and i2 iteratively output r̃i1 ◦ r̃i2 before terminating the leakage protocol.
As a result, the transcript of our leakage protocol Leak2 will be τ ◦ l̃i1 ◦ . . . ◦ l̃it ◦ r̃i1 ◦ r̃i2 .

As two shares of r require 2 log |F3| bits and t shares of l can require at most n log |F2| bits
(recall t ≤ n), the above leakage protocol belongs to the class (2, n, µ)−BCP .
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3. (Distinguisher D1) : On input τ ◦ l̃i1 ◦ . . . ◦ l̃it ◦ r̃i1 ◦ r̃i2 , compute l̃← LRec(l̃i1 , . . . , l̃it) and
r̃ ← RRec(r̃i1 , r̃i2). Invoke the distinguisher D with NMDec(l̃, r̃) and output its output.

Notice, in the case the secret hidden under the scheme (PShare,PRec) is m$, D will be in-
voked with input distributed according to Hybrid5. Otherwise, D will be invoked with distribution
similar to Hybrid6. Therefore the success probability of D1 will be equal to the advantage of D in
distinguishing these two hybrids, which is greater than ε7 by assumption. Hence, we have arrived
at a contradiction to statistical leakage-resilience of the scheme (PShare,PRec). �

By repeated application of triangle inequality to the above claims, we get that the statistical
distance between Hybrid1 and Hybrid6 is at most ε3 + ε5 + ε7. From our construction of F and
G, it is clear that for any l and r, if the reduction is successful in creating the t shares, then the
secret hidden is these t shares is the same as the message encoded by l and r (under 2-out-of-2
scheme (NMEnc,NMDec)). That is,

NMRec({sharei : i ∈ T}) = NMDec(l, r)

Similarly, we can say that the secret hidden is the t tampered shares is the same as the message
encoded by tampered l̃ and tampered r̃. That is,

NMRec({fi(sharei) : i ∈ T}) = NMDec(F(l),G(r))

Therefore, the tampering experiments of the two non-malleable secret-sharing schemes (see
definition 11) are statistically indistinguishable, specifically,

STamperLeak,f ,Tm ≈ε0+ε3+ε7 TamperF,Gm

By the ε1-non malleability of the scheme (NMEnc,NMDec), there exists a simulator SimF,G
m

such that
TamperF,Gm ≈ε1 SimF,G

m

We use the underlying simulator as our simulator and let

SSimLeak,f ,T
m ≡ SimF,G

m

Applying triangle inequality to the above relations we prove the statistical leakage-resilient non-
malleability for this case (|T | ≥ 3).

STamperLeak,f ,Tm ≈ε0+ε1+ε3+ε7 SSimLeak,f ,T
m

As the the statistical distances between real and simulated experiments in the two cases are
(ε0 + ε3 + ε7) and (ε0 + ε1 + ε3 + ε7), we take (ε0 + ε1 + ε3 + ε7) as the worst case statistical error
of our scheme (NMShare,NMRec).
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