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Abstract. In this paper, we study experimental cube attacks against
Trivium-like ciphers and we focus on improving nonlinear superpolies
recovery. We first present a general framework in cube attacks to test
nonlinear superpolies, by exploiting a kind of linearization technique.
It worth noting that, in the new framework, the complexities of testing
and recovering nonlinear superpolies are almost the same as those of test-
ing and recovering linear superpolies. To demonstrate the effectiveness
of our new attack framework, we do extensive experiments on Trivi-
um, Kreyvium, and TriviA-SC-v2 respectively. We obtain several linear
and quadratic superpolies for the 802-round Trivium, which is the best
experimental results against Trivium regarding the number of initializa-
tion rounds. For Kreyvium, it is shown that the probability of finding a
quadratic superpoly using the new framework is twice as large as finding
a linear superpoly for Kreyvium. Hopefully, this new framework would
provide some new insights on cube attacks against NFSR-based ciphers,
and in particular make nonlinear superpolies potentially useful in the
future cube attacks.
Keywords: Cube attacks, Linearity tests, Quadracity tests, Trivium-like
ciphers.

1 Introduction

Trivium is a bit oriented synchronous stream cipher designed by Can-
nière and Preneel, which targets hardware environments with highly re-
stricted resources, see [1]. It is one of the eSTREAM hardware-oriented
finalists and an International Standard under ISO/IEC 29192-3:2012.

Since proposed, Trivium has attracted a lot of attention for its sim-
plicity. As a result, there are many cryptanalytic results on Trivium such
as key recovery attacks based on cube attacks [2,3,4,5,6], distinguishing
attacks based on cube attacks [7,8,9,10,11], conditional differential at-
tacks [12] and internal state recovery attacks [13]. Among these various
cryptanalytic techniques, cube attacks are one of the most powerful tool
against Trivium. It was proposed in EUROCRYPT 2009 by Dinur and
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Sharmir [2]. In [2], the authors recovered 35 linear superpolies, i.e., rela-
tions between key bits and keystream bits, based on which they gave an
effective key recovery attack on the 767-round Trivium with attack com-
plexity 245. In [3], Mroczkowski and Szmidt applied cube attacks to the
709-round Trivium, and firstly reported quadratic superpolies. In specific,
they found 41 linear superpolies and 22 quadratic superpolies. In [4], the
authors presented a recursive method to find cubes with linear superpolies
as well as took advantage of the Meobius transformation. They found 12
linear superpolies and 6 quadratic superpolies for the 799-round Trivium.
In [5], Todo et al. applied the division property to cube attacks. Based on
the division property, attackers could identify the key variables involved
in the superpoly of a given cube by solving corresponding MILP model-
s instead of performing linearity/quadraticity tests. Consequently, with
some relatively large cubes, partial information of the secret key could be
recovered for up to the 832-round Trivium. In [6], the authors proposed
a technique to reduce the complexity of superpoly recovery based on the
work of [5].

Due to the simplicity and the established security of Trivium, some
recently proposed crypto primitives adopt similar designs, such as Kreyvi-
um [14] and TriviA-SC [15,16].

Kreyvium is designed for the efficient homomorphic-ciphertext com-
pression in homomorphic encryptions and aims to achieve 128-bit security.
In [10], based on a cube of size 61, Liu presented a distinguisher on the
872-round Kreyvium. In [6], for the 888-round Kreyvium, the authors
provided a key recovery attack based on a cube of size 102. In [17], based
on 24-th and 25-th order conditional characteristic, the authors proposed
distinguishers on 899-round Kreyvium.

TriviA-SC is the base component of the authenticated encryption al-
gorithm TriviA which was a second-round candidate of CAESAR compe-
tition. In order to resist slide attacks, the original version (TriviA-SC-v1)
was improved to TriviA-SC-v2 by changing the constants loaded to the
initial internal state. Hereinafter, TriviA-SC means its both versions, if
not specified. In [8], the authors proposed distinguishers for the 930-round
TriviA-SC-v1 and the 950-round TriviA-SC-v2 respectively. Furthermore,
the authors provided a slide attack on the full TriviA-SC-v2. In [10],
based on cubes of sizes around 63, the author proposed distinguishers of
the 1035-round TriviA-SC-v1, the 1046-round TriviA-SC-v2, and the full
1152-round of simplified TriviA-SC where the nonlinear term in the out-
put bit was removed. In [18], for the full 1152 rounds simplified TriviA-SC,
the authors found a linear distinguisher with a complexity 2120.
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Before the work of [5], cube attacks were based on experimental tests,
which are called experimental cube attacks in this paper. In experimental
cube attacks, it is important to find cubes with low-degree superpolies,
and attackers usually attempt to find linear or quadratic superpolies in
practice. The conventional method of recovering quadratic superpolies is
doing quadraticity tests, which regards a cipher as a blockbox polynomial.
Compared with linearity tests, quadraticity tests have a higher complexi-
ty, which makes experimentally implement quadraticity tests much more
difficult than implementing linearity tests when the sizes of cubes reach
40. In this paper, we are concerned with finding nonlinear superpolies for
Trivium-like ciphers.

1.1 Our Contribution

The inspiration of this paper comes from an interesting observation
of cube attacks against Trivium. The algebraic normal form (ANF) of
quadratic superpolies recovered in cube attacks against Trivium have
fixed forms. They are very probable of the form kiki+1⊕ki+2⊕ki−25( mod 69)

for 0 ≤ i ≤ 77 together with k78k79 ⊕ k53. Besides, this observation is al-
so true for other Trivium-like ciphers. Hence, we propose to treat some
nonlinear key expressions as a whole, and regard the first output bit as
a tweakable function on these nonlinear key expressions not key vari-
ables themselves. Consequently nonlinear superpolies could be recovered
by testing linearity on nonlinear key expressions. According to this basic
idea, we propose a generic framework to recover nonlinear superpolies
using linearity test principles for Trivium-like ciphers.

As illustrations, we perform extensive experiments on Trivium, Kreyvi-
um, and TriviA-SC-v2 with our new framework. To show the correctness
and effectiveness of our framework, for each of the variants with from 600
to 700 initialization rounds of these three ciphers, we search for linear
and nonlinear superpolies based on 100 randomly chosen cubes. Table 1
shows the total number of nonlinear superpolies and linear superpolies
we find. Note that, for all the three ciphers, the number of the nonlinear
superpolies is non-ignorable compared with that of linear superpolies. In
particular, in the case of Trivium and Kreyvium, the number of nonlinear
superpolies is close to or even twice as large as that of linear superpolies.

Furthermore, with our framework we find several new superpoies for
variants with higher initialization rounds. First, we reveal some new
quadratic supeprolies of the 784- and the 799-round Trivium. Besides, we
recover 5 linear superpolies and 2 quadratic superploies of the 802-round
Trivium. Second, with a cube of size 38, 8 different quadratic superpolies
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but no linear superpolies are found for the 776-round Kreyvium. Third,
we gain linear superpolies and quadratic superpolies for the 864-round
TriviA-SC-v2 and the 992-round simplified TriviA-SC-v2, respectively.
Table 2 summaries our results.

Table 1. The total number of linear superpolies and nonlinear superpolies

ciphers # of linear superpolies # of nonlinear superpolies

Trivium 8155985 7517944
Kreyvium 1194480 2538591

TriviA-SC-v2 4074914 491551

Table 2. Results on round-reduced Trivium-like stream ciphers

ciphers # of rounds # of superpolies

Trivium 802 5 linear, 2 quadratic
Kreyvium 776 0 linear, 8 quadratic

TriviA-SC-v2 864 12 linear, 3 quadratic
TriviA-SC-v2 simplified 992 14 linear, 2 quadratic

1.2 Organization

The rest of this paper is structured as follows. In Section 2, we in-
troduce some basic definitions and facts. In Section 3, we propose a new
framework to find nonlinear superpolies with a low complexity. In Sec-
tion 4, our new framework is applied to Trivium-like stream ciphers. In
Section 5, we summarize our work.

2 Preliminaries

In this section, we briefly review the general structure of Trivium-like
ciphers, the basic procedures of cube attacks, and linearity/quadracity
tests of black-box Boolean functions.

2.1 Trivium-Like Stream Ciphers

The main building block of a Trivium-like cipher is a Galois nonlinear
feedback shift register, such that for every clock cycle there are three bits
of the internal state updated by quadratic feedback functions and all the
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other bits of the internal sate are updated by shifting. In specific, let A,
B and C be three shift registers of length LA, LB, and LC respectively.
For t ≥ 0, let At = (xt, . . . , xt+LA−1), Bt = (yt, . . . , yt+LB−1), and Ct =
(zt, . . . , zt+LC−1) denote the tth state of A, B and C respectively. Then
the internal state of a Trivium-like cipher at time instance t is given by
st = (At, Bt, Ct), and the state update function could be described as

xt = zt−rc−1 · zt−rc + lA(st−1),

yt = xt−ra−1 · xt−ra + lB(st−1),

zt = yt−rb−1 · yt−rb + lC(st−1),

where lA, lB and lC are three linear functions and 1 ≤ rλ ≤ Lλ for
λ ∈ {A,B,C}. After N initialization rounds, a filtering function f is
used to compute a keystream bit from the current internal state, i.e.,
zt = f(st) for t ≥ N .

There are three well-known Trivium-like ciphers, say Trivium [1],
Kreyvium [14] , and TriviA-SC [15,16] . The first two algorithms well
fulfill the description above, while the last algorithm uses two extra reg-
isters K∗ and V ∗, which are padded with key bits and IV bits respective-
ly, to XOR the key bits and IV bits to the feedback function. Besides,
the filtering functions of Trivium and Keryvium are linear, while that of
TriviA-SC is quadratic.

2.2 Cube Attacks

The idea of cube attack was first proposed by Dinur and Shamir in
[2]. In the cube attack against stream ciphers, an output bit z is de-
scribed as a tweakable Boolean function f on secret key variables Key =
(k0, k1, . . . , kn−1) and public IV variables IV = (iv0, iv1, . . . , ivm−1), where
n and m are positive integers, i.e.,

z = f(Key, IV ).

Let I be a subset of d public variables, where 1 ≤ d ≤ m . Without loss
of generality, we assume that I = {iv0, iv1, . . . , ivd−1}. Then the function
f can be rewritten

f(Key, IV ) = tI · pI(Key, ivd, ivd+1, . . . , ivm−1)⊕ q(Key, IV ),

where tI = iv0iv1 · · · ivd−1 is the product of variables in I, pI does not
contain any variable in I, and each term in q is not divisible by tI . It
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can be seen that the summation of the 2d functions derived from f by
assigning all the possible values to the d variables in I is equal to pI ,
which eliminates q completely, that is,⊕

(iv0,iv1,...,ivd−1)∈Fd
2

f(Key, IV ) = pI(Key, ivd, ivd+1, . . . , ivm−1). (1)

The variables in the set I are called cube variables, the set CI of all 2d

possible assignments of the cube variables in I is called a d-dimensional
cube, and the polynomial pI is called the superpoly of I. That is to say
iv0, iv1, . . . , ivd−1 are cube variables and ivd, ivd+1, . . . , ivm−1 are non-
cube variables. Furthermore, fixing each non-cube variable to be a con-
stant, the superpoly pI becomes a polynomial with secrete key variables
only. In this paper, we always fix all non-cube variables to be 0’s,
and so (1) can be rewritten⊕

(ivi1 ,ivi2 ,...,ivid )∈{0,1}
d

f(Key, iv0, . . . , ivd−1,0) = ps(I)(Key,0). (2)

Since pI comes from f , it follows that deg(pI) ≤ deg(f). In particular, if
deg(f) = d+1, then the superpoly pI must be affine or constant. The key
idea of cube attacks is trying to recover simple or low-degree superpoly
pI .

A cube attack consists of two phases: a preprocessing phase which is
independent of the secret key and a online phase which should be carried
out for every secret key. In the preprocessing phase, attackers should find
some useful superpolies which could recover the information of the secret
key. In the online phase, the previously found superpolies were evaluated
under the real key. By solving a system of equations or looking up the
truth tables of superpolies, a part of or even the whole information of the
secret key could be revealed.

In experimental cube attacks, the aim of the preprocessing phase is to
find cubes with low-degree superpolies. In fact, only linear and quadratic
superpolies were implemented in the previous experimental cube attacks.
So far there is no deterministic method for finding a set of cube vari-
ables whose superpoly is linear/quadratic, and all proposed methods are
more or less based on random search, see the random walk method in [2]
and the recursive method in [4]. It means that an attacker needs to do
linearity/quadraticity tests on superpolies for many sets of chosen cube
variables to find sufficient many desirable linear/quadratic ones.
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2.3 Linearity and Quadraticity Tests for Black-box Boolean
Functions

In this subsection we briefly recall how to test linearity/quadraticity
of a black-box Boolean function. As for linearity tests one can refer to
[19] and as for quadraticity or low-degree tests one can refer to [20].

Let n be a positive integer and let f(x1, x2, . . . , xn) be an n-variable
Boolean function. Suppose that the explicit representation of f(x1, x2, . . . ,
xn) is extremely big and it is unknown to us, but the function f can be
queried, that is, we could enquire about the value f(a) for any input
vector a ∈ Fn

2 .
Linearity test. Choose a , b ∈ Fn

2 uniformly and independently, and
verify

f(a ⊕ b)⊕ f(a)⊕ f(b)⊕ f(0) = 0. (3)

If f is linear, then the test will succeed, whereas if deg(f) ≥ 2, then the
test may fail with a certain probability. Thus the test should be repeated
sufficiently many times to make sure that f is very close to being linear.

If f passes through the linearity test, then its coefficients in the alge-
braic normal form can be calculated by n + 1 more queries. One query
could determine one coefficient. The constant term of f is given by f(0).
Let

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1) ∈ Fn
2 .

Then the coefficient of the variable xi in f for 1 ≤ i ≤ n is given by

ci = f(e i)⊕ f(0).

Quadraticity test. Choose a , b, c ∈ Fn
2 uniformly and independent-

ly, and verify

f(a⊕b⊕c)⊕f(a⊕b)⊕f(a⊕c)⊕f(b⊕c)⊕f(a)⊕f(b)⊕f(c)⊕f(0) = 0.
(4)

Similarly if f is quadratic, then the test succeeds, whereas if deg(f) > 2,
then the test may fail. Thus the test should be repeated sufficiently many
times to make sure that f is very close to being quadratic.

If f passes through the quadraticity test, then the coefficient of a
quadratic term xixj in f for 1 ≤ i < j ≤ n is given by

f(e i ⊕ ej)⊕ f(e i)⊕ f(ej)⊕ f(0).

Note that a constant function also satisfies the linearity test, and a
linear function always satisfies the quadraticity test. Thus, sometimes in
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the attacks, we also need to test whether a linear function f is a constant
function.

Constantness test. Choose a , b ∈ Fn
2 uniformly and independently,

and verify
f(a)⊕ f(b) = 0.

If f is constant, then the test will succeed, whereas if f is not constant,
then the test may fail with a certain probability. Thus the test should be
repeated sufficiently many times.

3 A New Framework to Find Nonlinear Superpolies

In this section, we introduce some observations from which we get our
basic idea. Then based on this basic idea, we propose a new framework
to find nonlinear superpolies.

3.1 Motivations

The motivations of this paper come from the following observations
on the extensive superpolies recovered by the previous experimental cube
attacks against Trivium. Please refer to [2], [3], and [4] for a large number
of instances of superpolies for Trivium variants.

Our first observation is the sparsity of nonlinear superpolies. It
can be easily observed that the algebraic normal forms of all recovered
superpolies are very sparse, most of which have less than five terms. Ac-
cordingly the systems of nonlinear equations in key variables defined by
these superpolies are easy to solve during the online phase, see [3] for an
example.

Our second observation is that some key variables are missing in
linear superpolies. It can be observed that none of the linear superpolies
were found so far involving the key variables between k69 and k79. This
phenomenon is also mentioned in [4, Page 511]. Hence, to recover the
information of the key variables between k69 and k79, linear superpolies
are not sufficient.

According to the above two observations, nonlinear superpolies are as
useful as linear superpolies in cube attacks against Trivium-like ciphers,
and exploiting nonlinear superpolies could definitely bring some merits
to mounting cube attacks. However, comparing quadraticity tests with
linearity tests, it can be seen that to do one verification in a quadratic-
ity test, eight queries are needed (see (4)), while to do one verification
in a linear test, only four queries are needed (see (3)). For instance, in
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experimental cube attacks against Trivium, as the number of initializa-
tion rounds increases, the dimension of a cube becomes very large, say
40, which results in that just one query will be very time consuming. In
this case, to test a quadratic superpoly using present method is much
more difficult than to test a linear superpoly. Thus, although quadrat-
ic superpolies are useful, they do not paly a role as important as linear
superpolies.

Our third observation is the fixed forms of nonlinear superpolies.
It is interesting to find that the ANFs of all nonlinear superpolies recov-
ered in cube attacks against Trivium have very specific forms. That is to
say they are far from random polynomials. It can be observed that most
of the published quadratic superpolies only have one quadratic monomial
of the form xixi+1 accompanied by two degree 1 monomials. This obser-
vation was also mentioned in [4, Section 4.2], but was not utilized in their
attacks.

Inspired by the third observation, we propose a new framework to
find and recover nonlinear superpolies with low complexities. In the new
framework, we fix some nonlinear key expressions, and find superpolies
which are linear about these fixed nonlinear key expressions. It can be
seen that linear superplies in this sense are nonlinear on key variables.
There are two key points involved in the new framework. One is how to
do linearity tests on superpolies about the fixed nonlinear key expres-
sions. The other is how to choose useful nonlinear key expressions. We
shall explain these two points in detail in the following two subsections
respectively.

3.2 A Generic Technique for Linearity Tests of Composite
Functions

Let g(y0, y1, . . . , ym−1) be a Boolean function on the variables y0, y1, . . . ,
ym−1. For 0 ≤ i ≤ m − 1, let hi(x0, x1, . . . , xn−1) be a Boolean function
on the variables x0, x1, . . . , xn−1. Then

f(x0, x1, . . . , xn−1) = g(h0(x0, x1, . . . , xn−1), . . . , hm−1(x0, x1, . . . , xn−1))

is a composite function of g(y0, y1, . . . , ym−1) and hi(x0, x1, . . . , xn−1). It
is easy to see that when the composite function f(x0, x1, . . . , xn−1) is
nonlinear, it is not necessary that g is nonlinear. In other words, when
f is nonlinear on the variables x0, x1, . . . , xn−1, it is not necessary that
f is nonlinear on the expressions h0, h1, . . . , hm−1. Let us take a small
example.
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Example 1. Let f = x0 ·x1⊕x2 ·x3 be a Boolean function. Let h0 = x0 ·x1
and h1 = x2 · x3. It is clear that f = h0 ⊕ h1. Hence f is linear on the
expressions h0 and h1, but nonlinear on the variables x0, x1, x2, x3.

In the above small example, the ANF of f(x0, x1, x2, x3) is known,
and so it is easy to see whether f is linear on h0 and h1. Now the problem
is when f(x0, x1, . . . , xn−1) is a black-box Boolean function, how to test
whether f is a linear Boolean function on h0, h1, . . . , hm−1. Note that f
could be queried only by assigning values to the variables x0, x1, . . . , xn−1.
We formally present this problem in the following.

Problem 1. Let f(x0, x1, . . . , xn−1) be a black-box Boolean function. As-
sume that h0, h1, . . . , hm−1 are m Boolean functions on the variables
x0, x1, . . . , xn−1 such that there is a Boolean function g(y0, y1, . . . , ym−1)
satisfying f = g(h0, h1, . . . , hm−1). How to test whether f is linear about
h0, h1, . . . , hm−1 by querying f(x0, x1, . . . , xn−1) ?

The difference between Problem 1 and the traditional linearity test of
black-box Boolean functions lies in that we ask the linearity of a set of
nonlinear expressions of inputting variables not simply inputting variables
themselves. This general problem is open. In the following we give a simple
technique to tackle some instances of the problem which is useful in the
following attacks. Our basic idea is still the BLR linearity test introduced
in Subsection 2.3.

Theorem 1. Let f, h0, . . . , hm−1 be as described in Problem 1. If the
mapping

H : a = (a0, a1, . . . , an−1) 7→ (h0(a), h1(a), . . . , hm−1(a)),a ∈ Fn
2 ,

is surjective with H(0) = 0, then Algorithm 1 is a one-sided tester for f
being linear on the expressions h0, h1, . . . , hm−1. In particular, if Algorith-
m 1 returns reject, then f is not linear on the expressions h0, h1, . . . , hm−1

with probability 1.

Proof. Since f is a composite function of the form

f = g(h0, h1, . . . , hm−1),

if follows that f being linear on the given expressions h0, h1, . . . , hm−1 is
equivalent to g(y0, y1, . . . , ym−1) is linear. Thus it suffices to show Algo-
rithm 1 is actually a BLR linearity test on g(y0, y1, . . . , ym−1).
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Algorithm 1 Linearity test of composite functions
Require: a black-box function f on X = (x0, x1, . . . , xn−1) and a vectorial Boolean

function H = (h0(X), h1(X), . . . , hm−1(X)).
1: choose a and b randomly and uniformly in Fm

2 ;
2: compute X1, X2, X3 satisfying H(X1) = a , H(X2) = b, and H(X3) = a ⊕ b,

respectively;
3: compute v = f(X1)⊕ f(X2)⊕ f(X3)⊕ f(0)
4: if v ̸= 0 then
5: return reject;
6: else
7: return accept;
8: end if

Let a , b, c, X1, X2, and X3 be as described in Algorithm 1, where
the existence of X1, X2, X3 can be deduced from the hypothesis that h is
surjective. Then we have

f(X1) = g(a), f(X2) = g(b) and f(X3) = a ⊕ b.

It follows that

f(X1)⊕ f(X2)⊕ f(X3)⊕ f(0) = g(a)⊕ g(b)⊕ g(a ⊕ b)⊕ g(0).

Hence it can be seen that line 3 in Algorithm 1 is a BLR linearity test
for g(y0, y1, . . . , ym−1).

Remark 1. The probability that Algorithm 1 rejects a function f which
is nonlinear on h0, h1, . . . , hm−1 is equal to the probability that the algo-
rithm in [20] rejecting the corresponding function g which is nonlinear.

Algorithm 1 needs repeating sufficient times to make sure that f is very
close to being linear on h0, h1, . . . , hm−1. When we make sure that f
is linear on h0, h1, . . . , hm−1, we could recover the ANF of f using only
m+1 queries like recovering a linear Boolean function, which is much less
compared with n(n−1)

2 + n+ 1 queries to recover the ANF of a quadratic
Boolean function on x0, x1, . . . , xn−1. It can be seen that the complexities
of doing linearity test on f and the ANF recovery of f are almost the same
as that of linearity tests and linear Boolean functions recovery except the
time spent on finding a preimage of the mapping H. A preimage of the
mapping H could be found by solving a system of equations defined by
h0, h1, . . . , hm−1. When this system of equations is sparse and simple, it
can be solved efficiently. That is the case in our attacks.
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3.3 A Generic Method of Choosing Useful Nonlinear Key
Expressions

When it comes to cube attacks, the composite function f discussed
in the last subsection is a superpoly pI of some chosen cube CI . Tra-
ditionally, pI is seen as a black-box Boolean function on key variables,
say k0, k1, . . . , kn−1, and attackers try to recover linear superpolies on
k0, k1, . . . , kn−1. If there exists a set of nonlinear expressions h0, h1, . . . ,
hm−1 in key variables such that pI could be represented as a compos-
ite function pI = g(h0, h1, . . . , hm−1) for some function g, then our new
technique could efficiently test whether pI is linear on the expressions
h0, h1, . . . , hm−1 resulting in a desirable nonlinear superpoly in key vari-
ables. In the following, we shall show a generic method to find such useful
nonlinear expressions in key variables.

During the initialization process of stream ciphers, key variables are
gradually mixed with IV variables, and so in some early rounds, when the
mixture is not sufficient, they may not be multiplied together. Namely,
at some time instance t, each internal state bit sti could be written as

sti = gi,1(IV )⊕ gi,2(Key)(0 ≤ i ≤ l − 1),

where l is the size of the internal state and gi,1 and gi,2 may be equal to 0.
Consequently, since the internal state is updated iteratively, the output
keystream bit could be described by a Boolean function on the following
expressions:

{gi,1(IV ) | 0 ≤ i ≤ l − 1}
∪

{gi,2(Key) | 0 ≤ i ≤ l − 1}.

Accordingly, in cube attacks, when all the non-cube variables are set to
constant values, the superpoly pI of a given cube CI could be naturally
seen as a Boolean function on the expressions in the set

G = {gi,2(Key) | 0 ≤ i ≤ l − 1}.

As a result, pI may be nonlinear on key variables but linear on the ex-
pressions in G which is the case we desire. By reasonably classifying the
set G, attackers could choose several subsets of G satisfying the surjective
condition in Theorem 1.

Finally, recall that the third observation given in Subsection 3.1 points
out that Trivium’s nonlinear superpolies have fixed forms. In fact, such
fixed forms are in accordance with our choosing method, which will be
clearly seen in Subsection 2.1. Hence, this method for choosing useful
nonlinear expressions to find nonlinear superpolies in cube attacks is very
reasonable.
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4 Application to Trivium-like Stream Ciphers

In this section, we discuss specific applications of our new framework
to cube attacks against Trivium-like ciphers including Trivium, Keryvi-
um, and TriviA-SC-v2. First, we make some notes on implementation
details. Then, we list useful nonlinear expressions for the three stream
ciphers. Finally, with these useful nonlinear expressions in key variables,
we perform several experiments on the three stream ciphers and obtain
various results.

4.1 Some Notes

We give some remarks on implementation details about our new tech-
nique being used in experimental cube attacks to recover nonlinear su-
perpolies.

First, we suggest to solve the involved systems of nonlinear equations
by SAT solvers such as CryptoMiniSat-2.9.5 developed by M. Soos [21].
There are two main reasons for using CryptoMiniSat not Gröbner basis
algorithms or other algebraic methods. The first one is that we only need
one solution not all solutions for each system of equations. The second
one is that CryptoMiniSat is experimentally fast for sparse equations.

Second, recall that in [4], the Moebius transformation was used to
search all the subcubes of a large cube to find linear and quadratic su-
perpolies. Our new framework for recover nonlinear superpolies could be
combined with the Meobius transformation technique if one has enough
memory.

Third, for a stream cipher, useful nonlinear expressions are classified
into several groups according to the hypothesis of Theorem 1. Reusing
f(X1) and f(X2) described in Algorithm 1 for each group test could
reduce lots of queries. Besides, when there exists only one set of use-
ful nonlinear expressions, f(X1) and f(X2) can be reused to find linear
superpolies.

Forth, all our programs were implemented with CUDA and executed
on a PC with an Intel(R) Core i7-4790k @4.00GHZ CPU, 32G memory
and a GTX-1080 GPU.

4.2 Results for Trivium

Every internal state bit of Trivium is seen as a Boolean function of key
and IV variables. By observing the internal states after 91 initialization
rounds, we choose the following two sets of nonlinear expressions in Table
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3. Actually, they cover all quadratic expressions appearing the internal
state after 91 initialization rounds.

Table 3. The chosen nonlinear expressions for Trivium

ciphers set chosen nonlinear expressions

Trivium

Set A ki+25ki+26 ⊕ ki+27 ⊕ ki(0 ≤ i ≤ 52)

Set B
k0k1 ⊕ k2 ⊕ k44

kik1+i ⊕ k2+i ⊕ k44+i ⊕ k53+i(1 ≤ i ≤ 12)
kik1+i ⊕ k2+i ⊕ k44+i(13 ≤ i ≤ 24)

To show the correctness and effectiveness of finding nonlinear super-
polies using our new framework, we do extensive experiments on the Triv-
ium variants with from 600 to 700 initialization rounds. For each variant,
we randomly choose 100 cubes to search linear superpolies and superpolies
which are linear about expressions in Set A or B. As a result, we total-
ly obtain 8155985 linear superpolies and 7517944 quadratic superpolies
for all these 100 variants. It worth noting that the number of quadratic
superpolies is very close to that of linear superpolies. It indicates that
quadratic superpolies could be found as easily as linear superpolies with
our new framework. Namely, our new framework would make quadratic
superpolies play a more important role in cube attacks against Trivium
than ever before.

Second, we try our framework for Trivium variants with up to 802
initialization rounds. Some new cubes and superpolies for the 784, 799 and
802-round Tirivum are listed in Table 6 in the Appendix. To the best of
our knowledge, for Trivium variants, it is the first time that experimental
cube attacks could reach 802 initialization rounds.

4.3 Results for Kreyvium

In the case of Kreyvium, we choose the following set of nonlinear
expressions of key variables in Table 4 according to the internal state
after 66 initialization rounds. Certainly, there may exist other sets of
useful nonlinear expressions.

We first do experiments to search linear supeprolies and superpolies
which are linear about the chosen nonlinear expressions of Kreyvium vari-
ants with from 600 to 700 initialization rounds. We totally find 1194480
linear superpolies and 2538591 quadratic superpolies for all these 100
variants. Note that the number of quadratic superpolies is more than
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twice as large as that of linear superpolies. It indicates that quadrat-
ic superpolies could be found more easily than linear superpolies with
our framework in the case of experimental cube attacks against Kreyvi-
um. Then, we apply our new framework to search linear superpolies and
quadratic superpolies for Kreyvium variants with a higher number of ini-
tialization rounds. Consequently, for the 776-round Kreyvium, we gain 8
different quadratic superpolies but no linear superpolies based on a cube
of size 38, see Table 7 in the Appendix. It further indicates that quadrat-
ic superpolies maybe more useful than linear superpolies in the case of
round-reduced Kreyvium.

Table 4. The nonlinear expressions chosen for Kreyvium

ciphers chosen nonlinear expressions degree

Kreyvium ki ⊕ k25+ik26+i ⊕ k27+i(0 ≤ i ≤ 65) quadratic

4.4 Results for TriviA-SC-v2

Since TriviA-SC-v2 is the newer version of TriviA-SC, we perform
experiments on it with our new framework. According to the internal state
of TriviA-SC-v2 after 96 initialization rounds, we choose the following two
sets of quadratic expressions in Table 5.

Table 5. The nonlinear expressions chosen for of TriviA-SC-v2

ciphers set chosen nonlinear expressions

TriviA-SC-v2
Set A

ki ⊕ k64+ik65+i ⊕ k66+i(0 ≤ i ≤ 61)
k62 ⊕ k126k127

Set B k35+i ⊕ k36+ik37+i ⊕ k47+i(0 ≤ i ≤ 29)

First, we search linear superpolies as well as superpolies which are
linear about expressions in Set A or B for the TriviA-SC-v2 variants with
from 600 to 700 initialization rounds. By choosing 100 cubes random-
ly for each variant, we obtain various linear superpolies and quadratic
superpolies. For all these 100 variants, we have found 4074914 linear su-
perpolies and 491551 quadratic superpolies. It can be seen that the num-
ber of quadratic superpolies is non-ignorable. Namely, finding quadratic
superpolies with our framework would bring non-ignorable benefits to
experimental cube attacks on TriviA-SC-v2. Hence, based on the cho-
sen nonlinear expressions, we attack TriviA-SC-v2 variants which have
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a higher number of initialization rounds with our new framework. As a
result, we find several linear superpolies and quadratic superpolies for the
864-round TriviA-SC-v2 and the 992-round simplified TriviA-SC-v2, see
Table 8 in the Appendix.

5 Conclusion

In this paper, we study experimental cube attacks against Trivium-
like stream ciphers, and propose a new framework to find nonlinear su-
perpolies. The key idea is doing linearity tests on superpolies about a set
of fixed nonlinear key expressions. The complexity of finding nonlinear
superpolies in our framework is almost the same as that of finding linear
superpolies. Besides, experimental results show that the probability of
find nonlinear superpolies using our framework is twice as large as that
of finding linear superpolies for Kreyvium and as large as that of finding
linear superpolies for Trivium. In fact, we further perform experiments
on the 740-round Trivium by choosing 100 cubes of size 30 randomly,
and the quadratic superpolies found are twice as many as linear super-
polies. Hence, our new framework for finding nonlinear superpolies shall
definitely be helpful for cube attacks against Kreyvium and Trivium. Al-
though we only did experiments on quadratic superpolies for Trivium-like
stream ciphers, cubic superpolies and superpolies with degree larger than
three are also applicable. In such cases, more careful analysis is needed
to choose useful key expressions. This will be one subject of our future
work. We hope that by gradually increasing the degree of superpolies, the
dimension of cubes could be reduced, which is a very important factor of
experimental cube attacks. In the future, it is also worthy of working on
its applications to other NFSR-based ciphers.
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Appendix

The detailed cubes and corresponding superpolies found in our this
paper.
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Table 6. New superpolies of round-reduced Trivium variants

# of rounds superpolies cube index

784

k63k64 ⊕ k65 ⊕ k38
2,4,6,8,10,12,13,15,19,22,24,28,29,32,34,37,38,
40,41,44,47,49,51,53,55,57,65,68,70,73,74,76,78

k71k72 ⊕ k73 ⊕ k46
2,4,6,8,10,12,13,15,19,24,28,29,32,34,37,40,41,
44,47,49,51,53,55,57,59,62,65,70,72,73,74,76,78

k73k74 ⊕ k75 ⊕ k48
2,4,6,8,10,12,13,15,19,24,28,29,32,34,37,38,40,
41,44,47,49,51,53,55,57,59,68,70,72,73,74,76,78

799
k71k72 ⊕ k73 ⊕ k46

0,2,4,5,6,7,9,11,13,14,15,18,20,22,24,26,32,35,
37,39,42,44,48,52,53,55,57,61,62,68,70,74,79

k27x28 ⊕ k29 ⊕ k2
0,2,4,5,6,7,9,11,13,15,18,20,22,24,26,30,32,35,

37,39,42,44,46,52,53,57,62,68,70,72,74,79

802

k47
2,3,4,6,8,10,11,12,15,17,19,21,23,25,29,30,32,34,36,
39,41,43,45,48,50,54,57,58,65,67,69,76,49,59,73,79

k55
5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,37,40,
42,44,46,47,49,51,53,56,60,62,64,66,68,70,74,76,79

k56
2,4,6,8,10,11,15,17,19,21,23,25,29,30,32,34,36,39,
41,43,45,50,52,54,57,58,67,69,76,49,59,71,73,79

k57
5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,37,40,
42,44,46,49,51,53,55,60,62,64,66,68,70,74,76,79

k59
5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,37,38,
40,42,44,49,51,55,56,60,62,64,66,68,72,74,76,79

k61
5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,37,38,
40,42,46,49,51,53,55,56,60,62,64,66,68,72,74,76,79

k38k39 ⊕ k13 ⊕ k40
0,5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,37,
40,42,44,46,47,49,51,53,60,62,64,66,72,74,76,79

k61k62 + k36 + k63
1,2,3,4,6,8,10,12,15,17,19,21,23,25,29,30,32,34,36,
39,41,43,45,50,52,54,57,58,65,67,69,76,49,59,73,79

Table 7. Superpolies of the 776-round Kreyvium

superpolies cube index

k4 ⊕ k29k30 ⊕ k31
2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,52,54,58,
64,69,71,73,77,81,83,87,92,97,103,106,109,117,121

k5 ⊕ k30k31 ⊕ k32
0,2,5,7,9,13,19,22,24,28,30,37,39,41,43,45,52,54,58,66,
69,71,73,77,81,83,87,92,97,103,106,109,117,121,127

k6 ⊕ k31k32 ⊕ k33
0,2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,49,52,
54,64,66,69,71,73,77,81,83,97,103,106,117,121,127

k26 ⊕ k51k52 ⊕ k53
2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,49,52,64,
66,69,71,73,77,81,83,87,92,97,103,106,109,117,121

k38 ⊕ k63k64 ⊕ k65
0,2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,49,52,
54,64,66,69,71,73,77,81,83,87,92,97,103,106,117,127

k39 ⊕ k64k65 ⊕ k66
0,2,5,7,13,17,19,22,24,28,30,37,41,43,45,49,52,54,58,

64,66,71,73,77,81,83,87,92,97,103,106,109,117,121,127

k46 ⊕ k71k72 ⊕ k73
0,2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,52,54,

64,66,69,71,73,77,81,83,87,92,97,103,106,109,117,127

k58 ⊕ k83k84 ⊕ k85
2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,52,54,

58,64,66,69,71,73,77,81,83,87,97,103,109,117,121,127
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Table 8. Superpolies of round-reduce TriviA-SC-v2 variants

ciphers # of rounds superpolies cube indexes

TriviA-v2 864

k1
0,2,8,12,15,18,22,25,30,33,40,47,50,69,72,86,89,92,95,98,

104,111,115,120,127

k20
0,2,8,12,18,22,25,30,33,40,55,60,66,69,72,86,89,98, 100,

104,111,115,120,127

k21
0,2,8,15,18,22,25,30,33,40,47,55,66,69,72,86,92,95,98,100,

111,115,120,127

k22 ⊕ 1
0,2,8,12,18,22,25,30,33,47,50,55,66,69,72,86,89,92,95,98,

104,111,115,120,127

k35
0,2,8,15,18,22,25,27,30,33,47,55,60,66,69,72,86,89,95,100,

104,111,115,120,127

k37
0,8,12,15,18,22,27,30,33,47,50,55,66,69,72,86,89,92,98,

100,104,111,115,120,127

k46
0,2,8,12,15,18,22,30,33,40,44,47,55,60,66,69,72,86,89,92,

98,100,104,111,115,127

k50
0,2,8,12,15,18,22,25,30,33,40,47,50,60,69,86,89,92,98,100,

104,111,115,120,127

k52 ⊕ 1
0,2,8,12,18,22,25,30,33,44,47,50,66,69,72,86,89,92,98,100,

104,111,115,120,127

k54
0,2,8,12,15,18,22,25,30,33,40,50,60,66,69,72,86,89,92,98,

100,104,115,120,127

k56
0,2,8,12,15,18,22,25,30,33,40,55,66,69,72,86,89,92,100,

104,111,115,120,127

k64
0,2,8,12,15,18,22,25,30,33,40,50,55,69,72,86,92,95,98,100,

104,111,115,120,127

k32 ⊕ k96k97 ⊕ k98
0,2,8,15,22,22,25,30,33,40,44,55,60,66,69,72,86,89,92,100,

111,115,120,127

k47 ⊕ k111k112 ⊕ k113
0,2,12,15,18,22,25,30,33,40,47,55,60,69,72,86,89,92,95,98,

100,104,111,115,120,127

k61 ⊕ k125k126 ⊕ k127
0,2,8,12,15,22,25,30,33,47,50,55,66,69,72,86,89,92,98,100,

111,115,120

TriviA-v2(simplified) 992

k2
0,2,5,10,13,16,23,29,34,40,45,49,51,59,66,78,88,90,98,104,

108,110,114,117,119,121,123,125,127

k25
0,2,5,10,13,19,23,29,34,40,45,49,55,59,66,71,78,85,88,90,

94,98,104,110,112,114,119,121,123,125,

k26
0,2,5,10,13,16,19,23,29,34,40,45,49,55,59,66,71,78,85,88,

90,94,104,110,112,114,119,121,123,125

k27
0,2,5,10,13,16,19,23,29,34,40,45,49,55,59,62,71,78,85,90,

94,98,104,108,110,112,114,117,119,121,123,125,

k41
0,2,10,13,16,19,23,29,40,45,49,55,59,66,71,78,85,88,90,94,

98,104,108,110,112,114,117,121,123,125

k41 + k63
0,2,10,13,16,19,23,29,40,45,49,51,55,59,71,78,85,88,90,94,

98,104,108,110,112,114,119,121,123,125

k48
0,2,5,10,13,16,23,29,40,45,49,51,55,59,66,71,78,88,90,94,

98,104,110,114,117,119,121,123,125

k50
0,2,5,10,13,16,19,23,29,40,45,49,55,59,66,71,78,85,88,90,

98,104,110,112,114,119,121,123,125,127

k53 ⊕ 1
0,2,5,10,13,16,19,23,29,34,40,45,49,55,59,66,71,78,85,88,

90,94,98,104,110,112,114,119,121,123

k56
0,5,10,13,16,19,23,29,40,45,49,55,59,66,71,78,85,88,90,

94,98,104,110,117,119,121,125,127

k57
2,5,10,13,16,19,23,29,34,40,45,49,55,59,66,71,78,85,88,90,

94,98,104,110,112,114,117,119,121,123,125

k59
0,2,5,10,13,16,19,23,29,40,45,49,51,55,59,62,66,71,78,85,

94,104,110,112,114,117,119,121,123

k61
0,2,5,10,13,16,19,23,29,34,40,45,51,55,59,66,71,78,85,90,

94,98,104,108,110,112,114,117,119,121,125

k72
0,5,10,13,16,19,23,29,40,45,55,59,62,66,71,78,85,90,94,

98,104,110,112,114,117,121,123,125,127

k33 ⊕ k97k98 ⊕ k99
0,2,5,10,13,19,23,29,40,45,49,51,55,59,66,71,78,85,88,90,

98,104,108,110,117,119,121,127

k61 ⊕ k125k126 ⊕ k127
0,5,10,13,16,19,23,29,34,40,45,49,55,59,62,66,71,78,88,

90,94,98,104,108,110,112,119,121,123,127


