
Fine-Tuning Decentralized Anonymous Payment

Systems based on Arguments for Arithmetic

Circuit Satisfiability

Kamil Kluczniak and Man Ho Au

Department of Computing, The Hong Kong Polytechnic University

kamil.kluczniak@polyu.edu.hk, man-ho-allen.au@polyu.edu.hk

Abstract

Digital currencies like Bitcoin and other blockchain based systems pro-
vide means to record monetary transfers between accounts. In Bitcoin like
systems transactions are published on a decentralized ledger and reveal
the sender, receiver and amount of a transfer, hence such systems give
only moderate anonymity guarantees.

Payment systems like ZCash attempt to offer much stronger anonymity
by hiding the origin, destination and value of a payment. The ZCash sys-
tem is able to offer strong anonymity, mainly due to use of Zero-Knowledge
Succinct Non-interactive Arguments of Knowledge (ZK-SNARK) of arith-
metic circuit satisfiability. One drawback of ZCash is that the arithmetic
circuit is rather large, thus requires a large common reference string and
complex prover for the ZK-SNARK. In fact, the memory and prover com-
plexity is dominated by the ZK-SNARK in use and is mainly determined
by the complexity of the circuit.

In this paper we design a Decentralized Anonymous Payment system
(DAP), functionally similar to ZCash, however with significantly smaller
arithmetic circuits, thus greatly reducing the memory and prover com-
plexity of the system. Our construction is based on algebraic primitives,
from the realm of elliptic curve and lattice based cryptography, which
satisfiability might be efficiently verified by an arithmetic circuit.

1 Introduction

Bitcoin and other so called digital currencies, at time of writing this article,
have got much attention by media, industry and academia. At the core of these
digital currencies are distributed ledgers which realize a tamper resistant append
only list structure. Additionally, parties sustaining the distributed ledger may
perform some additional verification of the data appended on the list. We may
view such protocol simply as a distributed state machine where every party
involved may update the state according to globally accepted rules, and keep

1

a replica of the current state and the history of previous states and inputs to
the machine. The fact, that all nodes in the network keep the history of states
and inputs gives the ability to verify the consistency of the current state to
parties which dynamically join and leave the protocol. In a digital currency
users are given the possibility to create accounts on a distributed ledger and
register monetary transactions. In Bitcoin for instance, an account is identified
by a public key of a signature scheme and is associated with some value. Users
might exchange value simply by signing the amount they wish to send and the
recipient address. When nodes of the network obtain a transaction as above,
they verify whether the signature is correct and whether the sender has enough
value on his account. Then the system changes the state by subtracting the value
from the senders’ account and advancing the receivers account. Obviously, this
change in state is then replicated among all nodes in the system. For clarity,
we omit here animosities related to realizing the distributed ledger, consensus
or the network layer. What is worth noting however, is that every participant,
not only needs to posses a replica of the current state, but also the history of
all states in order to verify the consistency of the transaction record.

Since the public keys on a distributed ledger, such as Bitcoin, have no tight
link with their legal identity and can be created “on-the-fly”, it has become
a popular claim that Bitcoin and other digital currencies, offer strong privacy.
However, it is easy to see that such claims are actually not strongly grounded in
reality. In Bitcoin type currencies a transaction does not hide the values of the
transactions nor the public keys of the sender or recipient. In fact methods for
tracing Bitcoin transactions are becoming more advanced and effective [47, 3, 48,
42]. Therefore, most digital currencies offer only moderate privacy guaranties,
sometimes called pseudonymity.

There have been proposals of digital currencies which offer much stronger
privacy guarantees. One line of solutions is to use mixing services, which in
essence operate very similarly to mix nets, or onion routing. Such approaches
have been applied in protocols [41, 51, 50] and incorporated in some digital
currencies like for instance Dash. However, the very idea requires to involve third
parties or additional distributed infrastructure which results in less scalable
systems and higher operational costs.

Another approach is to design a payment system which by design does not
reveal anything except the correctness of the transaction. We will call such sys-
tems Decentralized Anonymous Payment systems (DAP)1. In principle, DAPs
are supposed to offer the same functionality as Bitcoin type payment systems,
however without revealing any additional information about a transaction de-
spite that a transaction happened and is correctly formed. In particular, the
goal is to hide the sender and recipient addresses, and the amount of the trans-
fer. On the other hand, we want to have a way to verify the consistency of such
transfers and ensure a correct update of the current state of the ledger. In this
approach a transaction does not reveal the sender or recipient public keys in

1The terminology in literature is inconsistent. For instance in [44] such systems called
Ring Confidential transactions. In this article we adopt the terminology from [53], since its
the closest to what this article is about.

2

contrast to Bitcoin, but instead exploits the properties of zero-knowledge proofs
to provide consistency of the transaction while simultaneously hiding the sender
and recipient addresses, and values transferred between them. One notable pro-
tocol called RingCT [44] and based on CryptoNote [52], has been implemented
by the Monero digital currency. The protocol makes use of some clever tricks
with Schnorr type Σ-protocols [25] for proving statements about linear relations
of discrete logarithms. In short, the RingCT protocol uses so called one-time
ring signatures, i.e. the signer produces a signature of knowledge that he has
a private key related to one of the public keys in a given set. The signature
is one-time in the sense that attempts to use the same secret signing key will
lead to the same serial number what can be detected. Furthermore, the coin
public keys for the ring signature are created in a Diffie-Hellman manner, where,
in contrast to the Diffie-Hellman protocol, only the recipient can compute the
secret key. Since, the protocol applies Schnorr type Σ-protocols for discrete
logarithm statements and proofs of set membership, the size of the signature
depends linearly on the size of the ring, i.e. the anonymity set. This is a serious
obstacle since the protocol does not scale well and in practice the anonymity
set includes 2 to 4 coins. Several proposals have been made to improve RingCT
in order to make the protocol scale better. For instance [32] proposed a set
membership proof of logarithmic size. In [54] the authors design a constant size
proof, but use pairing based accumulators to accumulate integers. The asymp-
totic proof size from [54] is very promising, however system parameters grow
linearly in the maximal size of the anonymity set. Moreover, in order to instan-
tiate the system in practice the parameters for the system need to be relatively
large, since the accumulator needs to accumulate group elements (integers) in
which the discrete logarithm is hard. Another obstacle is hiding the mounts of a
transaction, which is realised by commitment schemes and expensive, in terms
of size, range proofs.

To address the scalability problem, Ben-Sasson et al. [53] introduce Zero-
coin, where the public parameters depend only logarithmically on the anonymity
set and the size of a transaction is constant, i.e. depends only on the se-
curity parameter. The Zerocoin protocol relies on Zero-Knowledge Succinct
Non-interactive ARgument of Knowledge (ZK-SNARK) for general statements
instead of Schnorr type Σ-protocols. Briefly, Non-Interactive Zero-Knowledge
proofs (NIZK), produce a proof of the truth of a statement without revealing
any other information, in particular not revealing any information about the
witness. When a NIZK is a proof of knowledge, we additionally assume there is
a (hypothetical) extractor which can extract a witness satisfying the statement.
Since, there exists such an extractor we belief that the prover must have known
the witness. We call a system an argument system instead of poof system, if
the soundness or the existence of the extractor is conditioned on some computa-
tional assumptions. Finally, a ZK-SNARK is a non-interactive zero-knowledge
argument of knowledge which is additionally succinct, what means that the size
of the argument is polylogarithmic in the size of the statement [10, 30, 11, 13].
Practical ZK-SNARKs [29, 12, 26, 33, 31] and implementations of those sys-
tems [45, 6, 7, 5] allow to proof statements about satisfiability of arithmetic

3

circuits and the size of the argument is a few group elements. For instance the
argument size of the system from Parno et al. [45] is only 8 group elements.
Later improvements resulted only 3 groups elements [31, 33]. Succinctness of
the arguments make ZK-SNARKs especially attractive for applications like dis-
tributed ledgers. The major drawbacks of practical ZK-SNARKs are related to
their reliance on a common reference string (CRS). First of all, the CRS has to
be generated by a trusted party. In practice, this may be accomplished by a dis-
tributed setup process [21, 22]. Second, the size of the common reference string
and the prover complexity depend on the complexity of the circuit. Moreover,
the security assumptions are not falsifiable and the strength of the assumptions
also depends on the circuit complexity. In other words, the more complex the
circuit, the bigger the system parameters, the more complex the prover and the
weaker the soundness guarantees of the argument system. Therefore it is crucial
to have a relatively small circuit.

In Zerocoin [53] the authors exploit the succinctness and the generality of
the argument system, and give a generic construction of a Decentralized Pay-
ment System (DAP). The generic construction is build from collision-resistant
hash functions, commitment schemes and pseudorandom functions. Later these
building blocks may be instantiated by any primitive satisfying the require-
ments. In Zerocoin and later ZCash [36], these building blocks are instantiated
by standard symmetric primitives like the SHA256 hash function. The ZK-
SNARK then proofs that the transaction is consistent and that the user knows
all the secret keys, without revealing any additional information. The ZK-
SNARK in use in ZCash is based on [7] and shows satisfiability of arithmetic
circuits. Most of the statements circuitry in the ZCash protocol checks satisfi-
ability of boolean operations, hence the arithmetic circuit for the ZK-SNARK
needs to realize boolean operations what is quite expensive in terms of the cir-
cuit size. Therefore, in order to reduce the circuit size, it seems to be reasonable
to redesign the protocol such that its build from primitives which can directly
be implemented by the arithmetic circuit of the ZK-SNARK.

Our Contribution. We propose a semi-generic construction of a Decentral-
ized Anonymous Payments (DAP) scheme. Our construction relies on similar
design principles as ZCash [53, 36], however we do not follow the ZCash generic
construction faithfully. The main difference lies in the way we construct ad-
dresses, coins and their serial numbers. Below we give an (over) simplified
description of our system. In our case an address is a single group element
X = gx ∈ G, where x ∈ Zq is the address secret key. Then a coin is build
also from a coin public key pk = gxga1g

b
2, where a will be used to compute the

serial number and b is an additional blinding, and a commitment of the coins
value. The coin public key is created by a payer, who chooses the secret masks
a, b ∈ Zp. In order to “bind” and compress the commitment and the coin public
key, a collision-resistant hash of these values is published on the ledger. Dou-
ble spending is prevented by computing a serial number of the coin public key.
In our case the serial numbers are computed using the Dodis-Yampolskiy PRF

4

[27], i.e sn = g1/x+a. Similarly, as in ZCash, in our scheme a spender creates
a non-interactive zero-knowledge argument of knowledge that, his coin is well
formed, he knows all secrets of the coin, the serial number if well formed and the
coin is in a hash tree. Moreover, the spender also has to create a new coin with
a public key as described above and a commitment of its value. We describe
our system for two input coins and two output coins, thus the non-interactive
argument also needs to show that the values of the coins are consistent.

Our scheme is semi-generic. In particular, we may instantiate commitment
schemes, hash functions and hash trees with different building blocks. A signifi-
cant part of our contribution includes two instantiations from discrete logarithm
based primitives and lattice based primitives.

To instantiate discrete logarithm based primitives we follow the suggestions
given by Kosba et al. in [38], and instantiate the underlying group on twisted
Edwards curves. Moreover, we apply a few optimisations which result in smaller
arithmetic circuits like scalar multiplication using the windowed method when
the based point is known. Using the windowed method was suggested at a blog
post [58] with a window of size w = 4. We show that actually the optimal
window size is w = 3. This is because the cost of multiplexing precomputed
elements grows much faster. Our construction also requires to perform general
scalar multiplications on unknown points. In this case we cannot precompute
a table for the windowed method, therefore we provide a few optimisations
for general scalar multiplication by exploiting doubling formulas with slightly
smaller arithmetic circuits. As mentioned earlier, the membership proofs are
usually done by showing that a coin is in a hash tree. Previous work [5, 53],
focused mostly on binary Merkle trees. In our work we investigate whether
3-ary or 4-ary hash trees may give better performance, and we found that 3-ary
trees result in smaller arithmetic circuits.

Additionally, we provide an instantiation on lattice based primitives. In
particular, we instantiate the hash functions on the Ajtai hash [1]. The use of
Ajtai hash was first suggested by Ben-Sasson et al. in [5], where the authors
build Merkle trees. However, the parameter choices for collision-resistance made
in [5] were further questioned by Kosba et al. in [38], who provide additional
analysis for the Ajtai hash. In our case we complement the analysis given in [38]
with additional analysis using combinatorial methods suggested for lattice based
hash functions in [43]. Beside collision-resistant hash functions, we additionally
investigate the use of Ajtai hash for building statistically-hiding commitment
schemes. In [37] Kawachi et al. give a commitment scheme which is essentially
the Ajtai hash where half of the input bits are the randomness bits and the
other half is are the bits of the message. The authors show that if the hash
input is big enough relative to the output, then the distribution of the output
bits are statistically close to uniform. In our setting the message space of the
commitment scheme is small. Therefore, using directly the constraints on the
parameters from [37] would result in a bigger arithmetic circuit than necessary.
For our construction we set the number of bits in the message, and we extend
the randomness space of the randomness to “blur” the committed message.

Finally, we evaluate our instantiation in terms of size of the arithmetic circuit

5

for the argument system. In order for our results to be accountable, we show
the design of the arithmetic circuits and calculate their cost.

Concurrent work. We are aware that some parallel work on a similar sys-
tem is in progress by the ZCash team. However, little is known by far about
the details. At a blog post [57], the ZCash team announced a major update
codenamed “Sampling”, which aims to improve performance and usability of
the payment system. In a series of blog posts [17, 20, 19] Sean Bowe described
the BLS12-381 curve which will be used to instantiate the ZK-SNARK [31] for
the “Sampling” update. In a later blog post [18] by Sean Bowe, we learn that
the new system for the arithmetic circuit will not be instantiated by symmetric
primitives, but with elliptic curve based primitives. Additionally, there is an
explainer page given [58] with the description of a twisted Edwards curve called
Jubjub. The explainer page announces plans of using windowed exponentiation
at window size w = 4 and hash functions based on the Pedersen commitment.
At this point however, we don’t know whether the designed system will fol-
low the generic construction from [53], and, if so, what other building blocks
(especially which PRF’s) will be used.

In order to provide an easier comparison in the future, we evaluate the size
of our circuits for the bit size of the field and group order over the Jubjub curve.

2 Preliminaries

In this section we give our denotations and recall the fundamental definitions we
use throughout the article. Some definitions, however, are given in other sections
where there will be needed. We denote as x = [xi ∈ S]m−1

i=0 a string of elements xi
from the set S. In particular we will denote as x = [xi ∈ {0, 1}]m−1

i=0 a bit string

of length m s.t. x =
∑m−1
i=0 2ixi. When such a string in input to an algorithm,

then we implicitly input its string representations, e.g. bit representation and
not the corresponding integer, unless its clearly marked. Later F denotes a finite
field and Fq denotes a finite field with q elements. We denote as G a cyclic group
usually of order p. The operator a||b denotes concatenation of two bit strings.

Definition 1 (Commitment Scheme). A commitment scheme consists of proba-
bilistic polynomial-time algorithms C = (CommSetup, Comm) defined as follows:

CommSetup(1λ): The key generation algorithm takes as input a security pa-
rameter 1λ and outputs the commitment public key pk. The commitment
public key determines the message space M and randomness space R.

Comm(pk,m, r): The commitment algorithm takes as input the commitment
public key pk, a message m ∈M and randomness r ∈ R, and outputs the
commitment cm.

Definition 2 (Hiding). A commitment scheme is hiding if it is infeasible to
distinguish which message is in the commitment. More formally, for a commit-
ment scheme C = (CommSetup, Comm) and an adversary A, we definite the

6

advantage AdvHideC,A as follows.

∣∣∣Pr

[
pk ← CommSetup(1λ); (m1,m2)← A(pk); r

R← R :
A(Comm(pk,m0, r))

]

−Pr

[
pk ← CommSetup(1λ); (m1,m2)← A(pk); r

R← R :
A(Comm(pk,m1, r))

] ∣∣∣ ≤ AdvHideC,A (1λ)

We say that C is perfect hiding if for all A and λ, AdvHideC,A (1λ) = 0. We say

that C is computationally hiding if for all PPT adversaries A, AdvHideC,A (1λ) is
negligible in λ.

Definition 3 (Binding). A commitment scheme is binding if it is hard to find
a collision, i.e. two message/randomness pairs which result in the same com-
mitment. More formally, for a commitment scheme C = (CommSetup, Comm)
and an adversary A, we definite the advantage AdvBindC,A as follows.

Pr

[
pk ← CommSetup(1λ); (m0, r0,m1, r1)← A(pk) :
(m0, r0) 6= (m1, r1) ∧ Comm(pk,m0, r0) = Comm(pk,m1, r1)

]
≤ AdvBindC,A (1λ)

We say that C is computationally binding if for all PPT adversaries A,
AdvBindC,A (1λ) is negligible in λ.

Definition 4 ((Keyed) Hash Function). A (Keyed) Hash Function consists of
algorithms H = (SetupH, Hpk) defined as follows:

SetupH(1λ): The key generation algorithm takes as input a security parameter
1λ and outputs the hash public key pk. The public key determines the
message space M.

Hpk(m): The commitment algorithm takes as input the public key pk, a message
m ∈M and outputs the hash h.

Definition 5 (Collision-Resistance). Similarly as for binding commitment schemes,
a hash function if collision-resistant if it is hard to find collisions. For a (keyed)
hash function H = (SetupH, Hpk) and an adversary A, we definite the the ad-
vantage AdvCRH,A as follows.

Pr

[
pk ← SetupH(1λ); (m0,m1)← A(pk) :

(m0) 6= (m1) ∧ Hpk(m0) = Hpk(m1)

]
≤ AdvCRH,A(1λ)

We say that K is a collision-resistant (keyed) hash function (CRHF) if for all
PPT adversaries A, AdvCRH,A(1λ) is negligible in λ.

Definition 6 (Pseudorandom Function). Let PRF : K×M → R be a efficiently
computable function, where K is the key space, M is the domain space and R
is the range. For an adversary A define the advantage of braking the PRF as
follows.

|Pr[k
R← K;APRF (k,.) = 1]− Pr[AO(.) = 1]| ≤ AdvPRFA (λ),

7

were the oracle O on input a massage from M chooses a uniformly random
output and saves the output for future queries on the same message.

We say that the the function PRF is a pseudorandom function if AdvPRFA (λ)
is negligible in the security parameter.

Non-interactive zero-knowledge arguments of knowledge. We recall
the definition of non-interactive zero-knowledge arguments of knowledge from
[31]. A NP-relation R(x, ω) is a binary relation which can be tested in polyno-
mial time, i.e. having x and ω we can verify whether R(x, ω) = 1 in polynomial
time. Let LR = {x : ∃ω R(x, ω) = 1} denote the language defined by R. We
define a relation generator Rλ which on input 1λ outputs a relation R from the
set of possible relations.

Definition 7. An non-interactive proof system ΠR = (SetupCRS, Prove, Verify,
Sim) for an NP-relation R(x, ω) is defined by the following PPT algorithms.

SetupCRS(R, 1λ): This procedure given a relation R and security parameter λ,
outputs a common reference string crs and a simulation trapdoor τ .

Prove(R, crs, x, ω): The prover takes as input the relation R, a common refer-
ence string crs and (x, ω) ∈ R, and returns an argument π.

Verify(R, crs, x, π): The verification algorithm takes as input the relation R,
the common reference string crs, the statement x and argument π, and
outputs 0 (reject) or 1 (accept).

Sim(R, τ, x): The simulator takes as input the relation R, the trapdoor τ and
statement x, and outputs an argument x.

Definition 8. Perfect Completeness Completeness says that, given any true
statement, an honest prover should be able to convince an honest verifier. For
all λ ∈ N, R ∈ LR, (x, ω) ∈ R

Pr[(crs, τ)← SetupCRS(R, 1λ);π ← Prove(R, crs, x, ω) : Verify(R, crs, x, π)] = 1.

Definition 9. Perfect zero-knowledge. An argument is zero-knowledge if it
does not leak any information besides the truth of the statement. We say ΠR

= (SetupCRS, Prove, Verify, Sim) is perfect zero-knowledge if for all λ ∈ N,
(R, z)← R(1λ), (x, ω) ∈ R and all adversaries A.

Pr

[
(crs, τ)← SetupCRS(R, 1λ);π ← Prove(R, crs, x, ω) :

A(R, z, crs, τ, π) = 1

]
= Pr

[
(crs, τ)← SetupCRS(R, 1λ);π ← Sim(R, τ, x) :

A(R, z, crs, τ, π) = 1

]
Definition 10. Computational Knowledge Soundness We say that an argument
system has computation knowledge soundness if there exists an extractor which
can extract a valid witness from the proof. More formally, let ΠR = (SetupCRS,

8

Prove, Verify, Sim) be an argument system and let XA be a non-uniform polyno-
mial time extractor. We define the advantage for any non-uniform polynomial
time adversaries A as

Pr

 (R, z)← R(1λ); (crs, τ)← SetupCRS(R);
((x, π);ω)← (A||XA)(R, z, crs) :
(x, ω) 6∈ R ∧ Verify(R, crs, x, π)

 ≤ AdvExtA,Π(1λ]).

We say the proof system ΠR is computationally knowledge sound if AdvExtA,Π(1λ])
is negligible in the security parameter λ.

Definition 11. We call a non-interactive zero-knowledge argument of knowl-
edge a ZK-SNARK if for all λ ∈ N, R ∈ LR, (x, ω) ∈ R, (crs, τ)← SetupCRS(R, 1λ)
and honest executions π ← Prove(R, crs, x, ω), we have that |π| = polylog(|x|),
i.e. the size of the proofs is bounded poly-logarithmically in the size of the state-
ment.

Quadratic Constraints. In this article we consider arithmetic circuits con-
sisting of addition and multiplication gates over a finite field Fq. We may view
some of the publicly known wires of such arithmetic circuit as specifying a
statement and all other wires as specifying the witness. The arithmetic circuit
specifies a binary relation where a statement consisting of public wires and a
witness consisting of all other wires belong to the relation only if these variables
corresponding to the wires satisfy the arithmetic circuit. Throughout the paper
we will revere to wires corresponding to the witness as variables, whereas to
wires corresponding to the statement as constants.

We may represent the satisfiability problem of an arithmetic circuit as a
system of equations. The equations will takes variables x0, . . . , xn−1 ∈ F and
be of the form

(

n∑
i=0

xiai) · (
n∑
i=0

xibi) = (

n∑
i=0

xici),

where ai, bi, ci ∈ F for all 0 ≥ i ≥ n and xn = 1.
Analogically, Ben-Sasson et al. [6], characterizes such systems using vector

operation and calls such systems Rank-1 Constraint Systems (R1CS).
The arithmetic circuits we build in this paper are rather big and complicated.

Thus we will build them from smaller procedures and develop convenient no-
tation. We will usually denote variables which are on input to a procedure in
bold e.g. a. Additional variables which appear within a procedure are denoted
with fraktur font e.g. a. Constants are denoted in plain. A procedure will have
the following form.

Procedure-Name(Set of input variables: Short description of the relation):

9

1. Quadratic constrains in form of

(

n∑
i=0

xiai) · (
n∑
i=0

xibi) = (

n∑
i=0

xici),

2. and subprocedures.

Cost: (Constraint number) constraints and (Variable number) additional
variables.

We present our constraint system in Appendix A.

3 Decentralized Anonymous Payments

Definition 12. A Decentralized Anonymous Payment system consists of al-
gorithms (SetupDAP , CreateAddressDAP , CreateCoinDAP , MintDAP , PourDAP ,
VerifyDAP , ReceiveDAP) defined as follows.

SetupDAP (1λ): On input a security parameter λ outputs the public parameters
ppDAP .

CreateAddressDAP (ppDAP): On input the public parameters ppDAP , outputs
address addr and address secret key addrSK.

CreateCoinDAP (ppDAP , addr, addrSK, v): On input the public parameters ppDAP ,
an address addr and value v, this algorithm outputs a coin coin, a proof π
and coin spending key coinSK.

MintDAP (ppDAP , coin, v, π, L): On input the public parameters ppDAP , a coin
coin, value v and a proof π, this algorithm appends coin to the ledger L,
or outputs ⊥.

PourDAP (ppDAP , coin1, coin2, coinSK1, coinSK2, addr1, addr2, v1, v2, v
pub, L): This

algorithm takes as input the public parameters ppDAP , two input coins
coin1, coin2 and the corresponding spending keys coinSK1, coinSK2, two
output addresses addr1, addr2, output values v1, v2, the public value vpub

and the ledger L. The algorithm outputs two output coins coinout1 , coinout2

and their decodings coinDecout1 , coinDecout2 , and a transaction trPOUR.

VerifyDAP (ppDAP , trPOUR, coin1, coin2, L): On input the public parameters ppDAP ,
a pour transaction trPOUR, two coins coin1, coin2 and the ledger L, this
algorithm appends trPOUR, coin1, coin2 to the ledger, or outputs ⊥.

ReceiveDAP (ppDAP , coin, v, coinDec, addr, addrSK): On input the public param-
eters ppDAP , a coin coin, a value v, a coin decoding coinDec and an ad-
dress addr and its secret key addrSK, this algorithm returns the spending
key coinSK, or ⊥.

10

The Zerocash paper [53] defines security of a DAP system by three prop-
erties called ledger indistinguishability, transaction non-malleability and bal-
ance. Informally, ledger indistinguishability captures the fundamental privacy
requirement, that is, that the DAP scheme reveals no information beyond what
is publicly-revealed. In particular, a DAP scheme hides everything except the
values of minted coins, public values and the total number of transactions. Note,
that the public values are necessary in practice to pay transaction fees. In this
case the adversary may sent coins to an address, and receive payments from an
address. Transaction non-malleability requires that transaction data returned
by a pour transaction cannot be altered by a third party. Finally, balance re-
quires that the amount of value on the ledger is determined only by the mint
transaction. In practice, that means that the pour transaction cannot create
new value or delete existing value. Moreover, this property also captures the
infeasibility of double spending (a double spend would create new value).

Unfortunately, there have been issues with the definitions given in [53], some
of them pointed out by Kosba et al. [39]. In particular, the ledger indistin-
guishability game can be won by any adversary since the adversarial model
leaks unintended information. Garman et al. [28] introduce a simulation based
definition and outline a ideal functionality. Then, they present an incomplete
sketch of a proof for the Zerocoin [53]. This leaves us without a reliable security
definition and security analysis for any DAP scheme. Unfortunately, because of
time constraints we also have to leave the definition and security analysis for a
further iteration of the article.

4 Our DAP Protocol

In this section we describe our basic scheme.

SetupDAP (1λ): The procedure takes as input the security parameter λ based
on which it generates the following:

1. A group G of prime order p.

2. Random generators g, ḡ1, ḡ2 ∈ G.

3. A bit commitment function Comm : {0, 1}`R+`max → DComm.

4. Collision-resistant functions: H : {0, 1}`I → DH, HS{0, 1}∗ → Zp,
HP : {0, 1}log(p)×`PRF → Zp.

5. Set `max to be the maximal value of a coin.

6. Set the height of the Merkle tree as N . If necessary define an addi-
tional hash function.

7. A non-interactive proof system Πcrs with common reference string
crs.

8. A one-time signature scheme S = (SetupSig,SignSig,VerifySig).

The procedure outputs the public parameters ppDAP = (G, p, g, ḡ1, ḡ2,
Comm, H, HS , `max, N , crs, S).

11

CreateAddressDAP (ppDAP): A user chooses uniformly random x ∈ Zp, com-
putesX = gx sets the address addr = (X) and address secret key addrSK =
(x).

CreateCoinDAP (ppDAP , addr, addrSK, v): The procedure takes as input the pub-
lic parameters ppDAP , an address addr = (X) and its secret key addrSK =
(x), and value v = [vi ∈ {0, 1}]`max−1

i=0 . A user chooses y ∈ {0, 1}`PRF ,

b
R← Zp, computes a ← HPRF (y), sets sk ← (x, y, b) and pk ← gxḡa1 , ḡ

b
2.

Then the user chooses a bit string r = [ri ∈ {0, 1}]`R−1
i=0 uniformly at

random, computes c ← Comm(r, v) and cm = H(pk||c). Finally, the
user sets coin = (cm), a proof π = (pk, c, r, v) and coin spending key
coinSK = (sk, pk, c, r, v).

MintDAP (ppDAP , coin, v, π, L): The verifier takes as input the public parame-
ters ppDAP , a coin coin = (cm), value v = [vi ∈ {0, 1}]`max−1

i=0 and a proof
π = (pk, c, r, v). If cm 6= H(pk||c) or c 6= Comm(r, v) or the user didn’t pay
v, the procedure outputs ⊥ and aborts. Otherwise the verifier appends
(coin, π) to the ledger L.

PourDAP (ppDAP , coin1, coin2, coinSK1, coinSK2, addr1, addr2, v
out,1, vout,2, vpub, L):

The prover takes the public parameters ppDAP the ledger L and for
j, k ∈ {1, 2} the following:

• The input coins coinj = (cmin,j = H(pkin,j ||cin,j)).
• The input coin spending key coinSKj = (skin,j , pkin,j , cin,j , rin,j , vin,j)

where skin,j = (xin,j , yin,j , bin,j) ∈ Zp, ain,j = HPRF (yin,j ||gxin,j

),

pkin,j = gx
in,j

ḡa
in,j

1 ḡb
in,j

2 , cin,j = Comm(rin,j , vin,j), rin,j = [rin,ji ∈
{0, 1}]`R−1

i=0 and vin,j = [vin,ji ∈ {0, 1}]`max−1
i=0 . We denote Xin,j =

gx
in,j

.

• The public values vpub = [vpubi ∈ {0, 1}]`max−1
i=0

• Output values vout,k = [vout,ki ∈ {0, 1}]`max−1
i=0 , s.t. vout,1 + vout,2 =

vpub + vin,1 + vin,2.

• Output addresses addrk = (Xout,k ∈ G).

To spend the input coins and create new output coins with values vout,1

and vout,2, for j, k ∈ {1, 2} the user does the following:

1. Compute hash a Merkle tree root Mroot s.t. cmin,j are leaves in the
tree and M j

path are the corresponding paths to Mroot. The computa-
tion is done using the ledger L.

2. Compute ˆskj = 1/(xin,j+ain,j) mod p and the serial numbers snj ←
g

ˆskj . Additionally, compute ˆpkj ← gx
in,j+ain,j

.

3. Compute the output coins:

• Choose yout,k ∈ {0, 1}`PRF , bout,k ∈ Zp and rout,k = [rout,ki ∈
{0, 1}]`R−1

i=0 uniformly at random.

12

• Compute the coin public keys, by computing aout,k ← HPRF (yout,k||Xk)

and pkout,k = ḡa
out,k

1 ḡb
out,k

2 ·Xk.

• Compute the commitments cout,k = Comm(rout,k, vout,k).

• Compute cmout,k = H(pkout,k||cout,k).

• Set coinoutk = (cmout,k) and coinDecoutk = (yout,k, bout,k, pkout,k,
cout,k, rout,k, vout,k)).

4. Run (PKSig, SKSig)← SetupSig(1
λ) and compute the following:

• hS ← HS(PKSig),

• skSj = 1/(xin,j + ain,j + hS) mod p and

• sn′j ← gsk
S
j .

5. Set

• the statement stmt = (ppDAP , Mroot, sn1, sn2, hS , sn′1, sn′2,
cmout,1, cmout,2,vpub), and

• the secret input ω = (M1
path, M2

path pk
in,1, pkin,2, cin,1, cin,2,

ain,j , bin,j , xin,j , Xin,j , ˆpkj , ˆsk1, ˆsk2, skS1 , skS2 , rin,1, rin,2,
vin,1, vin,2, pkout,1, pkout,2, cout,1, cout,2, rout,1, rout,2, vout,1,
vout,2).

6. Compute the proof π ← Πcrs.Prove(stmt, ω).

7. Compute the signature σ ← SignSig(SKSig; stmt, π).

8. Output the transaction trPOUR = (Mroot, sn1, sn2, sn′1, sn′2, π,
PKSig, σ, vpub), the output coins coin1, coin2 and send coinDec1 and
coinDec2 to the new coin owners.

VerifyDAP (ppDAP , trPOUR, coin1, coin2, L): On input the public parameters
ppDAP , a transaction trPOUR = (Mroot, sn1, sn2, sn′1, sn′2, π, PKSig,
σ, vpub) and two coins for the transaction coin1 = (cmout,1), coin2 =
(cmout,2), the verifier

1. restores the Merkle tree with root Mroot,

2. checks whether sn1 6= sn2 or sn1 or sn2 appears on L,

3. computes hS ← HS(PKSig),

4. sets the statement as stmt = (ppDAP , Mroot, sn1, sn2, hS , sn′1, sn′2,
cmout,1, cmout,2),

5. verifies the proof Πcrs.Verify(stmt, π) = 1,

6. verifies the signature VerifySig(PKSig; stmt, π;σ) = 1,

7. updates the Merkle tree to contain cmout,1 and cmout,2, and

8. appends coin1, coin2 and trPOUR to the ledger.

ReceiveDAP (ppDAP , coin, v, coinDec, addr, addrSK): a user with addr = (X) and
address secret key addrSK = (x), receives a coin coin = (cm) and the coin
decoding coinDec = (y, b, pk, c, r, v). In particular, the user obtains

13

a share of the coin secret key y ∈ {0, 1}`PRF , the blinding b ∈ Zp the

commitment random bits r = [ri ∈ {0, 1}]`R−1
i=0 and the bits v = [vi ∈

{0, 1}]`max−1
i=0 of the coin value. If any of the given values is outside in the

required domain, the user rejects. If a = HP (y||X) is on the users internal
list, i.e. he got the same randomness earlier or a = 0, then return ⊥. The
user checks pk = gxḡa1 ḡ

b
2 and c = Comm(r, v) and whether cm = H(pk||c)

is on the ledger. The user sets key sk = (x, y, b) and the coin secret key
as coinSK = (sk, pk, c, r, v).

• Public input: stmt = (ppDAP , Mroot, sn1, sn2, hS , sn′
1, sn′

2, cmout,1, cmout,2,
vpub),

• Secret input: ω = (M1
path, M2

path pkin,1, pkin,2, cin,1, cin,2, ain,j , bin,j , xin,j ,

Xin,j , ˆpkj , ˆsk1, ˆsk2, skS
1 , skS

2 , rin,1, rin,2, vin,1, vin,2, pkout,1, pkout,2, cout,1,
cout,2, rout,1, rout,2, vout,1, vout,2).

• Prove that the inputs which are supposed to be bits are bits.

• For j ∈ {1, 2} and k ∈ {1, 2} proof that:

1. pkin,j are well formed and the prover knows the secret keys.

– gx
in,j

= Xin,j ,

– ḡa
in,j

1 ḡb
in,j

2 ·Xin,j = pkin,j and

– Xin,j · ga
in,j

= ˆpkj .

2. snj are well formed and the prover knows the secret key.

– (ˆpkj)
ˆskj = g and

– snj = g
ˆskj .

3. Prove that sn′
j is well formed and the prover knows the secret key.

– (ˆpkj · ghS)sk
S
j = g and

– sn′
j = gsk

S
j .

4. The commitments and values are correct

– cin,j = Comm(rin,j , vin,j),

– cout,k = Comm(rout,k, vout,k),

– cmout,k = H(pkout,k||cout,k),

– vpub + vin,1 + vin,2 = vout,1 + vout,2.

5. cmin,j = H(pkin,j ||cin,j) are in the Merkle tree rooted at Mroot.

Scheme 1: The Prove statement Πcrs

Remark 1. The function H needs to be collision resistant, but we don’t re-
quire it to be hiding. In particular, we could publish pkout and cout along-
side cm = H(pk||c). The function of the cm is to “bind” both pk and c to-
gether. Hence we may consider a slight optimisation and resign of showing

14

cmout,k = H(pkin,k||cin,k) for both output coins. However then we need to set
the output coins to coinout,k = (pkin,k, cin,k) what may cost more space on the
ledger. Moreover, we would also have to make sure coinout,k is signed, to avoid
substitution attacks.

Remark 2. In our description we didn’t specify how the coin decodings coinDec
are transported to the new owner. It can obviously be realized similarly as in
the ZCash protocol [53], by using a key-private encryption scheme [4] or it may
be just sent out-of-band. In case of using a key-private encryption scheme, we
need to alter the user address, and add an encryption public key. In order to
avoid malleability attacks, we have to make sure that the ciphertexts are signed
in the pour procedure. Additionally, the ReceiveDAP procedure, would have to
be altered to reject payments which incorrectly encrypt the secrets.

Furthermore, using public key encryption allows us a user to delegate the
decryption key to a third party, who then might monitor incoming transactions
to this address.

Remark 3. As noticed above using public key encryption to transport coinDec
through a public ledger may allow chosen third parties holding the decryption
key, to monitor incoming transactions.

With some modifications we can also allow to monitor output transactions.
First we may reveal that the coin has been spent, by publishing an encryption of
the coin public key. In order to enable to monitor to who the coin has been sent,
we may also publish the encryption of the share a ∈ Zp, s.t. the output coin
public key pkout = ga ·Xout for the output address Xout. In the above method
one must take care to sign the ciphertexts to avoid malleability attacks.

Note however, that the above method relies on “good will” of the coin owner.
In order, to provide some sort of accountability and force the coin owner to
provide correct encryptions we would have to make some more serious modifi-
cations. First of all the proof from the poor transaction would have to include
a membership proof of the outgoing address. Without such membership proof,
the payment sender can always send the coin to an address which is not on the
ledger. Second, the pour proof should also include a proof that the values in the
ciphertexts are consistent with the values used to spend the coin and create the
output coins.

Remark 4. We can drastically simplify the protocol by making an address X =
gx1g

r
2 and the public key coin pk = gb0g

x
1g
r
2. Then, we have to proof knowledge of

b, x, r, and we can use a generic generic PRF to compute the serial numbers,
i.e. sn = PRFx(b) and sn′ = PRFx(b + hS mod p). The PRF then may be
instantiated with SHA256 as in [36] or AES with 256 bit key and 256 bit block
(the key and message are log(p) bits long). Such construction does not have the
drawback of the Dodis-Yampolskiy [27] PRF, that it requires the message space
to be relatively small. However, the cost of proving a symmetric primitive is
much higher.

15

5 Instantiation

In this section we show two instantiations of the building blocks. In particular,
we discuss the instantiation of the elliptic curve E over Fq, the CRHF H, the
commitment scheme Comm and the Merkle tree.

Both instantiations share a common ground, which includes operations in
group G, the signature scheme S and HS and HPRF . What differs, is the way
Comm, H and the Merkle tree are instantiated. Thus we will first present the
common operations and then, in Section 5.1 we show an instantiation solely
based on discrete logarithms commitments and in Section 5.3 we show an in-
stantiation exploiting lattice based primitives. The design of most constraint
systems for the ZK-SNARK are given in Appendix A.

The group G. As noticed in the construction of our DAP scheme, G is a
group of points on an elliptic curve E over Fq, where q is prime. Moreover, we
require the order p of G to be and odd prime.

We will mainly focus on Edwards and twisted Edwards curves [9, 34] since, as
noticed in [38], the arithmetic on these curves is very efficient when implemented
on arithmetic circuits over Fq.

Definition 13. Let F be a finite field of characteristic char(F) 6= 2. Let a, d ∈ F.
The Edwards curve with coefficient d is defined as follows.

Ed(F) = x2 + y2 = 1 + dx2y2.

The group is instantiated over the Twisted Edwards curves.

Definition 14. Let F be a finite field of characteristic char(F) 6= 2. Let a, d ∈ F
and a 6= d. The Twisted Edwards curve with coefficients a, d is defined as
follows.

Ea,d(F) = ax2 + y2 = 1 + dx2y2.

We say that an Twisted Edwards curve is a Edwards curve if a = 1. The neutral
element is O = (0, 1) and negative of (x1, y1) is (−x1, y1).

Let us now focus on the general case of Twisted Edwards curves, and recall
the affine addition formulas.

Definition 15. Affine Addition Formula Let (x1, y1), (x2, y2) be points on Ea,d(F).
Then

(x1, y1) + (x2, y2) = ((
x1y2 + y1x2

1 + dx1x2y1y2
), (

y1y2 − ax1x2

1− dx1x2y1y2
)) = (x3, y3). (1)

Definition 16. Affine Doubling Formula Let (x1, y1) be a point on Ea,d(F).
Then

2(x1, y1) = ((
2x1y1

1 + dx2
1y

2
1

), (
y2

1 − ax2
1

1− dx2
1y

2
1

)) = (x3, y3). (2)

16

As shown in [8], the formulas 15 and 16 are complete if d is not a square in
F.

Additionally, we will consider the addition formulas from given in [34].

Definition 17. Affine Addition Formula independent of d Let (x1, y1), (x2, y2)
be points on Ea,d(F). Then

(x1, y1) + (x2, y2) = ((
x1y1 + x2y2

y1y2 + ax1x2
), (

x1y1 − x2y2

x1y2 − y1x2
)) = (x3, y3). (3)

Definition 18. Affine Doubling Formula independent of d Let (x1, y1) be a
point on Ea,d(F). Then

2(x1, y1) = ((
2x1y1

ax2
1 + y2

1

), (
y2

1 − ax2
1

2− ax2
1 − y2

1

)) = (x3, y3). (4)

Note, that the addition formula given by Definition 17 doesn’t work for point
doubling. Moreover, as shown in [34] there are exceptional cases even when d is
not a square in F. On the other hand, if both points are not equal and are of odd
order, then the the formula is correct as shown in [34]. As for doubling formula
given by Definition 18 the same exceptional cases apply as for the formula given
by Definition 16. Note also that the Ea,d(Fq) has another special point (0,−1)
of order 2.

In our instantiation we will only consider the field Fq where q is an odd prime.
Additionally, we will exploit point compression on twisted Edwards curves by
reducing the x coordinate to its lest significant bit. In other words, given a
point (x, y) ∈ Ea,d(Fq), the compressed point is (x mod 2, y). We can rewrite
the curve equation for Ea,d as

1− y2

(a− dy2)
= x2.

First, note that if a = dy2, then the curve equation would become ax2 + y2 =
1 + ax2, what is only satisfied by y = 1 and y = −1, for any x. However,
y2 = 1 would imply that ax2 + 1 = 1 + dx2, what holds for x = 0 (the neutral
element) and the point of order 2. But for x 6= 0 we have that a = d, what

contradicts the definition of Ea,d. Lets denote x̂ =
√

1−y2
(a−dy2) , then q− x̂ mod q

is another solution. Since q is a odd prime, we have that x mod 2 uniquely
encodes the x coordinate. In this paper we will only be interested in the above
fact about point compression. In particular, we will not explicitly use any point
decompression algorithms.

Proving consistency of the coin public key. Bellow, we show the con-

straint system for showing knowledge of a = [ai ∈ {0, 1}]log(p)−1
i=0 , b = [bi ∈

{0, 1}]log(p)−1
i=0 , x = [xi ∈ {0, 1}]log(p)−1

i=0 , and X, pk, p̂k ∈ G, satisfying gx = X,

ḡa1 ḡ
b
2 ·X = p̂k and X ·ga = p̂k. For brevity, we will assume the procedure takes

only the bits of the scalars as input.

17

PK-Consistency(a,b, x,X,pk, p̂k: gx = X ∧ ḡa1ḡb2 · X = pk ∧ X · ga = p̂k):

1. WindowMul(x,X: gx = X)

2. WindowMul(a, g1: ḡa1 = g1)

3. WindowMul(b, g2: ḡb2 = g2)

4. WindowMul(a, g3: ga = g3)

5. EdAdd(X, g3: p̂k = X · g3)

6. EdAdd(X, g1: g4 = X · g1)

7. EdAdd(g4, g2: pk = g4 · g2)

Cost: 4 log(p)
w (fpm + 7)− 7 constraints and 4 log(p)

w (gpm + 9)− 19 additional
variables.

Proving the consistency of the serial numbers. Note, that for the con-
struction presented in Section 4, we compute the serial numbers as sn ←
g1/(a+x), where gx is the address public key and a = HPRF (y||gx). Moreover,
the coin secret key sk, is constructed as sk = x+a, where X = gx is a users ad-
dress and a is chosen by the sender of the coin, thus potentially by the adversary.
This construction resembles the Dodis-Yampolskiy [27] verifiable pseudorandom
function. In our case however, we do not need pairings to verify the correct-
ness of the PRF output and thus we may reduce the pseudorandomness to the
weaker q-DDHI assumption.

Definition 19. (q-DDHI problem [15, 27]) Let (g, gx, . . . , gx
q

, g1/x) ∈ G. We
define the advantage of an adversary A of breaking the q-DDHI problem as

|Pr[A(g, gx, . . . , gx
q

, g1/x)]− Pr[Γ
R← G;A(g, gx, . . . , gx

q

,Γ)]| ≤ Advq-DDHI(λ)

We say the q-DDHI problem is hard in G if Advq-DDHI(λ) is negligible in the
security parameter.

One important thing to note, is that this PRF is only able to process a rela-
tively small message space. This is because, in the reduction of pseudorandom-
ness to the q-DDHI problem, the solver needs to guess the challenged message.
In our case, the messages for the PRF are log(p) bits long, however there are
only `PRF such messages since we require that a message a = HPRF (y||X),
for y ∈ {0, 1}`PRF . Hence in the reduction we may choose the these messages
beforehand and the program the ROM to output the messages we need. Ad-
ditionally, we have serial numbers obtained from the messages a + H(PKSig),
were PKSig is a public key of the signature scheme. In this case, we may also
program the ROM, s.t. the sum will fall into the desired value from the q-DDHI

18

reduction. We recall the reduction in Appendix B. In [16] Boneh et al. general-
ize the Dodis-Yampolskiy PRF and apply it into a cascade construction, which
may process a messages from a larger space, but divided into chunks of size
`max. In our construction we use only one chunk.

Below we show the construction of the constraint system for checking snj =

g1/ ˆskj and sn′j = g1/(ˆskj+hS). Both systems use procedures defined in Ap-
pendix A. Unfortunately, in both procedures will not be able to exploit the
efficiency of the window scalar multiplication. This is because, we need to op-

erate on the basepoint ˆpkj which is secret and therefore we cannot precompute
a lookup table.

InvPRF(sk = [ski ∈ {0, 1}]log(p)−1
i=0 ,pk ∈ G: pksk = g ∧ sn = gsk):

1. Double-Add(sk,pk: pksk = g)

2. WindowMul(sk: gsk = sn)

Cost: 14 log(p)+ log(p)
w (fpm+7)−14 constraints and 14 log(p)+ log(p)

w (gpm+
9)− 18 additional variables.

InvPRF+(sk = [ski ∈ {0, 1}]log(p)−1
i=0 ,pk ∈ G: (pk · c)sk = g ∧ sn = gsk):

1. EdAddConst(g,pk: g = pk · c)

2. Double-Add(sk, g: gsk = g)

3. WindowMul(sk: gsk = sn)

Cost: 14 log(p)+ log(p)
w (fpm+7)−11 constraints and 14 log(p)+ log(p)

w (gpm+
9)− 15 additional variables.

The Circuit. Now we will sum up the sub-procedures of the constraint system
we have to proof.

• For pkin,1, pkin,2 we have in total 2 times PK− Consistency, on input bit

strings xin,1, xin,2, ain,1, ain,2, bin,1, bin,2 and points Xin,1, Xin,2, p̂k
1
,

p̂k
2
.

• For sn1, sn2, we have in total 2 times InvPRF, on input the bit strings of
ˆsk1 and ˆsk2 and the points pkin,1 and pkin,2.

• For sn′1, sn
′
2, we have in total 2 times InvPRF+, on input the bit strings

of skS1 and skS2 and the points pkin,1 and pkin,2.

• For the bit strings vin,1, vin,2, vout,1 and vout,2, we run CheckValues.

19

At this point we know we have 4 · (log(p) + `max) + 4 variables and we to verify
that 4 · (log(p) + `max) variables are bits.

Furthermore, the parts which are instantiation specific are as follows.

• For cin,1, cin,2, cout,1, cout,2, we have in total 4 times Comm, on input the
bit strings rin,1, rin,2, rout,1, rout,2, vin,1, vin,2, vout,1 and vout,2.

• For cmin,1, cmin,2, cmout,1 and cmout,2, we have to check in total 4 time
H on input two points. Note that we will need to add additional variables
only for cmin,1 and cmin,2.

• Verifying 2 k-ary trees of height N .

Later we have to remember that we have additionally 4 · `R variables which
are bits. Furthermore, the paths for the k-ary tree of height N require in total
2N(k − 1) bits. The commitments, hash outputs and the hash elements on the
paths depend on the instantiation.

5.1 Instantiating from DLP based Primitives

In this section we briefly describe how to instantiate Comm and H using Discrete
Logarithm based primitives. As mentioned earlier we give the design for the
constraint systems in Appendix A.

The commitment scheme Comm. The Pedersen commitment scheme Comm :
{0, 1}`R+`max → DComm may be defined as follows.

SetupP(G): Choose g, h
R← G and output ppCom = (G, g, h).

CommP(ppCom,m, r): On input a message m ∈ Zp and randomness r ∈ Zp,
return cm = gm · hr.

The domain of the Pedersen commitment CommP is DComm = G. Note,
that we omitted to recall the opening algorithm. We omit this intentionally to
reduce the number of procedures, however knowledge the opening is actually
used implicitly in the ZK-SNARK verification, where we proof the knowledge
of (m, r), s.t. cm = gm · hr. According to our notation from Section 4, the bit
length of the randomness `R is log(p), where the max bit length of the values
`max may be arbitrary.

The Collision Resistant Function. As our hash function H we use the
function introduced by Chaum et al. [23] and further analysed in [56, 35].

SetupHP (G, 1`): Choose hi
R←G for i ∈ {0, . . . , `} and output ppH = (G, [hi]`i=0).

HP (ppH,m): The hash takes as input a bit string [mi]
`−1
i=0 and returns h =

h`
∏`−1
i=0 h

mi
i .

20

Putting the DLP Based instantiation together. Although it may be easy
to see how the building block fit to each other “outside” the ZK-SNARK, here
we will discuss how to fit them together for statement of the ZK-SNARK.

How to fit the commitment is straightforward. In order to verify the com-
mitment of will simply use the

WindowCommP([xi ∈ {0, 1}]`max−1
i=0 , [ri ∈ {0, 1}]log(p)−1

i=0 , c : gx · hr = c)

constraint system, where the number of message bits is `max and the number of
randomness bits is log(p). Then we alter the plain DLP hash function. Since we
input 2 points, we would need to hash 4 log(q) bits. We may optimise that by
hashing the compressed points, which would result in hashing only 2(log(q)+1)
bits. We do this simply putting only the least significant bit of the x coordinate
into the DLP hash. Note, that if the secret key bit size is not divisible by the
window size, we need to complement the secret key with zeros.

For the hash function for the Merkle tree, we may use the same hash as
above, but as for now we will assume the the hash is more general and takes k
points, thus k ·2 log(q) bits. As before, we will hash only the compressed points,
thus the DLP hash needs to consume k(log(q) + 1) bits. This setting will later
be necessary for analysing the applicability of k-ary trees for k > 2. Note, that
for k = 2, we can simply reuse the precomputations from the hash H.

To sum up, we input 4 commitments in total, thus we add 8 variables in
Fq and 4 · log(p) variables which are bits (for the commitment randomness).
Furthermore, we have additionally 4 variables in Fq for cmin,1 and cmin,2. Note
that cmout,1 and cmout,2 are public. For the hash functions we assume the
inputs are already verified bits. Therefore, we additionally have to count the
cost of splitting 16 variables into log(q) bit strings. The input to the Merkle
tree does not assume the variables are already split into bit strings.

5.2 Performance Estimates for DLP Instantiation

In this section we discuss the performance of our instantiations. We will first
set the bit size of the field underlying the arithmetic circuit as log(q) = 255 and
the order of G as log(p) = 251. This corresponds to the Jubjub curve given in
[58]. At Table 1 we show the costs of scalar multiplication, and the InvPRF and
InvPRF+ procedures for different windows values. Table 2 depicts calculations
for the PK− Consistency procedure. At Table 3 we present the calculations for
the DLP based commitment scheme and in Table 4, Table 5 and at Table 6 we
show the costs for the DLP based hash with different input size. For window
size w = 1 we count the ScalarMul constraint system instead of the WindowMul
constraint system. As we may notice from our calculations the optimal window
size is w = 3 instead of w = 4 as suggested in [58].

Later in Table 7 we give our calculations for k-ary hash trees offering different
anonymity sets. The hash function used in these calculations was the DLP hash
with window size w = 3.

21

In Table 8 we summarize the costs for our system, but without counting the
costs of the hash trees. Finally, in Table 9 we give the total costs for 2 and 3-ary
hash trees and sizes of anonymity sets ≈ 229 and 264.

To give a comparison with existing schemes we recall the cost estimates for
ZCash [36] and the original Zerocoin paper [53] in Table 10. However, these
costs include only the number of constraints (multiplication gates) and do not
provide the number of variables. On the other hand, in practice the number
of variables should approximately be the same as the number of multiplication
gates.

w Scalar Lookup table
Multiplication InvPRF InvPRF
Const Vars Const Vars Const Vars

1 251 251 1252 1250 - - - -
2 252 504 1127 1125 4648 4644 4651 4647
3 252 672 1085 1083 4606 4602 4609 4605
4 252 1008 1316 1314 4837 4833 4840 4836
5 255 1632 1880 1878 5443 5439 5446 5442
6 252 2688 2891 2889 6412 6408 6415 6411

Table 1: Cost estimates for scalar multiplication, InvPRF and InvPRF+. For
scalar multiplication at window size w = 1 we summarize the cost for ScalarMul.
For all other window sizes we count the windowed versions of the operations.
The scalar is of size log(p) = 251, however in the scalar column we rounded up
the scalar to be divisible by the window size w.

w Scalar Lookup table size Const Vars
2 252 1512 4529 4517
3 252 2016 4361 4349
4 252 3024 5285 5273
5 255 4896 7541 7529

Table 2: Cost of PK− Consistency with log(p) = 251 bit randomness rounded
up to be divisible by w. Lookup table size includes tables for g, ḡ1, ḡ2, thus we
need 3 tables.

22

w `R Lookup table size Const Vars
2 252 504 1415 1413
3 251 669 1358 1356
4 252 1008 1652 1650
5 251 1606 2324 2322
6 254 2709 3650 3648

Table 3: Cost for the commitment CommP with `max = 64 and log(p) = `R =
251 bit randomness rounded up to be divisible by w.

w Bit input Lookup table size Const Vars
1 512 512 2560 2558
2 512 1024 2297 2295
3 513 1368 2216 2214
4 512 2048 2681 2679
5 515 3296 3804 3802
6 516 5504 5927 5925

Table 4: Cost for the hash WindowCRHFDLP with 2(log(q) + 1) = 512 bit input
rounded up to be divisible by w.

w Bit input Lookup table size Const Vars
1 768 768 3840 3838
2 768 1536 3449 3447
3 768 2048 3321 3319
4 768 3072 4025 4023
5 770 4928 5691 5689
6 768 8192 8825 8823

Table 5: Cost for the hash WindowCRHFDLP with 3(log(q) + 1) = 768 bit input
rounded up to be divisible by w.

23

w Bit input Lookup table size Const Vars
1 1024 1024 5120 5118
2 1024 2048 4601 4599
3 1026 2736 4439 4437
4 1024 4096 5369 5367
5 1025 6560 7578 7576
6 1026 10944 11792 11790

Table 6: Cost for the hash WindowCRHFDLP with 4(log(q)+1) = 1024 bit input
rounded up to be divisible by w.

k N Anonymity Set
Path Tree Total

Const Vars Const Vars Const/Vars
2 29 229 29 145 94076 93960 94105
3 19 231 ≥ 319 ≥ 229 38 114 92435 92359 92473
4 15 230 = 415 45 105 97485 97425 97530
2 64 264 64 320 207616 207360 207680
3 41 265 ≥ 341 ≥ 264 82 246 199465 199301 199547
4 33 266 = 433 99 231 214467 214335 214566

Table 7: Cost of a k-ary Merkle tree instantiated with WindowCRHFDLP at
window size w = 3. The path includes the nodes (hash outputs) and the control
bits. The constraints on the path include verifying that the control bits are bits.
The path verification has not been included in the total constraint number for
the tree.

24

Operations Const Vars
2 · PK− Consistency 8722 8698
2 · InvPRF 9212 9204
2 · InvPRF+ 9218 9210
4 · Comm 5432 5424
4 · H 8864 8856
16 ·SplitIntegerToBit for splitting pkin,j , pkout,k, cin,j , cout,k for
input to H

4096 4080

CheckBit for ŝkj , sk
S
j , rin,j , rout,k, xin,j , ain,j , bin,j and the

coin values (rounded to fit the window w = 3)
3784 3784

CheckValues 67 65
Other variables: pkin,j , pkout,k, cin,j , cout,k, snj , sn

′
j , cm

in,j ,

Xin,j , p̂k
j

0 18

Total: 49395 49339

Table 8: Size of the arithmetic circuit for our pour transaction without counting
the hash trees.

k N
Total lookup table

Total Const Total Vars
Elements Plain points Compressed

2 29 4053 ≈ 0.26MB ≈ 0.13MB 237605 237549
3 19 5501 ≈ 0.35MB ≈ 0.17MB 234341 234285
2 64 4053 ≈ 0.26MB ≈ 0.13MB 464755 464699
3 41 5501 ≈ 0.35MB ≈ 0.17MB 448489 448433

Table 9: Cost of the system with two k-ary Merkle trees and window size w = 3.
For k = 3 we assume the CRHF for the hash tree has a separate lookup table.

25

Operations Const
Check cmold

1 , cmold
2 are in the Merkle tree for 29 levels 2 · 816669

Check cmold
1 , cmold

2 are in the Merkle tree for 64 levels 2 · 1802304
(Cost of a single level) (28161)
Check computation of snold1 , snold2 2 · 27904
Check computation of aoldpk,1, a

old
pk,2 2 · 27904

Check computation of cmold
1 , cmold

2 , cmnew
1 , cmnew

2 4 · 83712
Ensure that vnew1 + vnew2 + vpub = vold1 + vold2 1
Ensure that vold1 + vold2 < 264 65
Verifying the computation of h1 and h2 2 · 27904
Misc 2384
Total for k = 29 according to [36]: 2138060
Total for k = 64 according to [53]: 4109330

Table 10: The estimated number of constraints according to the ZCash specifi-
cation [36] (smaller anonymity set) and the Zerocash paper [53].

5.3 Instantiation from SIS

In this section we describe an instantiation of the commitment scheme and
CRHF using the Ajtai function [1]. First we recall some fundamental definitions.

Definition 20. A full-dimensional lattice in Rm is a discrete subgroup L =
{Bx : x ∈ Zm}, where B = [~b1, . . . ,~bm] ∈ Zm×m is a matrix of linearly inde-
pendent vectors. The matrix B is called the basis of L. The rank of L is the
rank of B and if the rank equal m, the lattice is called full rank.

Definition 21. A lattice L is called a q-ary if qZ ⊆ L. For q ∈ N and A ∈
Zn×mq , we define the following q-ary’s.

Λ⊥q (A) = {~v ∈ Zm : A~v = ~0 mod q}.

Definition 22. Short Integer Solution (SIS) Given n,m, q ∈ N, a matrix A ∈
Zn×mq chosen uniformly at random and a norm bound 1 ≤ β < q, the SISn,q,β,m
problem is to find ~v ∈ Λ⊥q (A) with 0 < ||~v|| ≤ β.

Definition 23. Ajtai Hash Given n,m, q ∈ N, a matrix A ∈ Zn×mq chosen
uniformly at random, the Ajtai hash function HA : {0, 1}m → Znq is defined as
follows.

HA(~z)→ A~z ∈ Znq .

It is easy to see that given a collision in the Ajtai hash, i.e. vectors ~v1, ~v2 ∈
{0, 1}m s.t. A~v1−A~v2 = ~0, we may easily compute ~v1−~v2 = ~v ∈ {−1, 0, 1}m, s.t.
A~v = ~0. The vector ~v is then the solution to the SISn,q,β,m, where 0 < β ≤

√
m.

Therefore, it is immediate that we may use the Ajtai hash as a CRHF.

26

In order to evaluate the security level of lattice-based hash functions Mic-
ciancio and Regev in [43] suggest to use a variant of the generalized birthday
attack [14, 55], which has been used to choose parameters for the SWIFFT hash
function [40]. The method solves the SIS problem for a q-ary Λ⊥q (A). We recall
this method at Algorithm 1.

Algorithm 1 Combinatorial algorithm for SIS from [43, 40].

1: procedure SIS-Solver(A ∈ Zn,mq , b ∈ N, k ∈ N)

2: Divide columns of A in 2k groups [Ti ∈ Zm/2
k

q]2
k−1
i=0 .

3: for i ∈ {0, . . . , 2k − 1} do

4:
Create a list L0

i from linear combinations of columns in Ti with
coefficients in {−b, . . . , b}.

5: end for
6: for j ∈ {0, . . . , k − 1} do
7: for i ∈ {0, . . . , 2k−j−1 − 1} do

8:
For all ~x ∈ Lj2·i and ~y ∈ Lj2·i+1, let ~z = ~x + ~y = [~0 ~z′]t. If

dim(~z′) = logq(2b+ 1)m/2
k

, then add ~z to Lj+1
i .

9: end for
10: end for

11:
Return the linear combination corresponding to the ~0 vector in
Lk0 if there is such.

12: end procedure

As shown in [43] the parameter k in Algorithm 1, is chosen such that n ≈
(k + 1) logq(2b + 1)m/2

k

. Then, we can expect the list Lk0 to contain a all
zero vector which is given by a combination of the columns of A bounded by
b, hence with coefficients in {−1, 0, 1}. This combination is the desired short
lattice vector. In our case we will only be interested in the case b = 1.

Let us now, assess the complexity of Algorithm 1. After Step 2, we obtain

2k groups Ti ∈ Zm/2
k

q . This step is for free. Then we create 2k lists L0
i , each

containing (2b + 1)m/2
k

linear combinations of the columns from Ti. Thus we

have to create 2k · (2b + 1)m/2
k

vectors in Znq . Then we create a binary tree
from the leaves L0

i . To create a parent node we sum two vectors from both its

children nodes and add the summed vector if it starts with j logq(2b + 1)m/2
k

zeros, where j is the level of the tree. Note that the parent also contains around

(2b + 1)m/2
k

vectors. Since, we build a full-binary tree we have need to create
2k−1 − 1 nodes (not counting the leaves), thus going up the tree we need to

create (2k−1 − 1)(2b + 1)m/2
k

vectors giving us in total (2k − 1)(2b + 1)m/2
k

vectors to create.
At Table 11 we show the cost in vector operations for different configurations

of the Ajtai hash.

27

m n k (k + 1) logq(2b+ 1)m/2
k

vectors

512 1 4 0.9944 ≈ 2254

512 2 3 1.5911 ≈ 2104

512 3 2 2.3867 ≈ 2204

768 1 5 0.8950 ≈ 242

768 2 4 1.4917 ≈ 279

768 3 3 2.3867 ≈ 2154

1024 1 5 1.1933 ≈ 255

1024 2 4 1.9889 ≈ 2105

1024 3 3 3.1823 ≈ 2205

Table 11: Cost of executing algorithm 1 for modulus q ≈ 2255. In our case we
are only interested in b = 1.

Kosba et al. in [38] gave an analysis for the SIS problem based on lattice
reduction attacks. In more detail, they repeat the experiments from [49] on
BKZ with modulus q = 2254 and provide an estimate security level based on [2]
and [24]. We recall the method proposed in [38] for calculating the bit security
in Algorithm 2.

Algorithm 2 Calculating SIS bit security [38].

1: procedure SIS-Bit(n,m, q, β)

2: Compute dm∗ ← 2n log(q)
log(β) e.

3: Compute δ0 ← (β
qn/m∗)1/m∗ .

4: Compute BKZ2.0 estimation for TACF15(δ0).
5: end procedure

In Algorithm 2, the function TACF15(δ0) introduced by Albreht et al. in [2]

is defined as TACF15(δ0) = 20.009/(log2(δ0)+4.1.

28

m n m∗ δ0 TACF15

512 1 114 1.0138 26.93
512 2 227 1.0069 95.44
512 3 340 1.0045 209.61
512 4 454 1.0034 369.45
765 1 107 1.0157 21.89
765 2 213 1.0078 75.27
765 3 320 1.0052 164.23
765 4 426 1.0039 288.77
1024 1 102 1.0171 19.08
1024 2 204 1.0085 64.02
1024 3 306 1.0056 138.93
1024 4 408 1.0042 243.81

Table 12: Estimates for the security level according to Algorithm 2 for modulus
q ≈ 2255 and β =

√
m.

The commitment scheme. Kawachi et al. [37] study the usability of the
Ajtai hash as a statistically hiding commitment scheme. Let us consider the
following construction.

SetupA(1`m , 1`R , nC , q) : The algorithm takes as input the message bit length
`m and the modulus and the output length nC . The algorithm chooses a

uniformly random matrix A
R← ZnC×`m+`R

q and outputs the parameters
pp = (A).

CommA(pp,m): Given the parameters pp and the message ~m ∈ {0, 1}`m , this

algorithm chooses ~r
R← {0, 1}`R uniformly at random, computes ~c ←

HA(~r||~m) and outputs the commitment ~c.

The computationally binding property immediately follows from the collision-
resistance of HA. Kawachi et al. in [37] showed that the above construction is
also statistically-hiding for `m = `R and 2`m ≥ 10nC log(q). Let us recall the
definition of statistical distance.

Definition 24. Let φ1 and φ2 be probability density functions on a finite set S.
We define the satatistical distance between φ1 and φ2 as

∆(φ1, φ2) =

∑
x∈S |φ1(x)− φ2(x)|

2
.

Their the analysis of statistical hiding from [37], the authors rely on a claim
from [46], which we recall below.

Claim 1. Let G be some finite Abelian group and let ` be some integer. For any
` elements g1, . . . , g` ∈ G consider the statistical distance between the uniform
distribution on G and the distribution given by the sum of a random subset

29

of g1, . . . , g`. Then the expectation of this statistical distance over a uniform
choice of g1, . . . , g` ∈ G is at most

√
|G|/2`. In particular, the probability that

this statistical distance is more than 4
√
|G|/2` is at most 4

√
|G|/2`.

In our case the modulus q will be rather big and the requirement that 2`m ≥
10nC log(q) makes the parameter choices rather impractical. For example, even
for nC = 1, we would have that `m = 1275, which is a huge waste. In our setting
we will set `m = 64. Then, we allow `R to be a multiple of `m. In particular we
denote `R = c · `m for some c ∈ N. Moreover, we will assume the `m = log(q)/4.
Taking the above into account we can write `R = c · log(q)/4. By Claim 1 we
have the following. (qnC

2`R

)1/4

=
(qnC

2c log(q)/4

)1/4

Let c = 4(4c′ + 1), for some c′ ∈ N. Then(qnC
2c log(q)/4

)1/4

=
(qnC

2(4c′+1) log(q)

)1/4

=
(nC

2(4c′) log(q)

)1/4

=
(4
√
nC
qc′

)
Now we can estimate `R = (4c′+1)log(q). So the statistical distance between

CommA(pp,~0) and the uniform distribution is ≤
4
√
nC

qc′
. Equivalently we may

write that for `R = c · log(q)/4 bits of randomness, the statistical distance

is
4
√
nC

q(c−4)/16 . Note, that in case the bits of the message would be distributed

uniformly, then we have `R + `max = c log(q)/2, and the the distance is ≤
4
√
nC

q(c−2)/8 . Hence, we may write that for any messages ~m ∈ {0, 1}`max , the distance

of CommA(pp, ~m) and the uniform distribution with high probability is at most
4
√
nC

qc′
, thus the statistical distance between commitments of two messages is as

most
2 4
√
nC

qc′
. At Table 13 we present the results of estimating the number of

random bits `R. In our calculation we take only small nC into account. In
particular nC ≤ 16, so we round up 4

√
nC ≤ 2. We denote the probability

Pstat(q, c
′) = 2

qc′
.

`max c′ Pstat(q, c
′) `R m∗ δ0 TACF15

64 1/3 ≈ 2−84 594 327 1.0050 179.62
64 2/5 ≈ 2−101 663 322 1.0051 169.24
64 1/2 ≈ 2−126 765 316 1.0053 156.71

Table 13: Estimates for the number of randomness bits for modulus q ≈ 2255.
The security parameter for binding is calculated for m = `max+`R and nC = 3.

The Collision Resistant Hash. The hash function will simply be instan-
tiated with HA. Here however the input to the hash is one point and the
commitment.

30

We will use the same optimisation as in the DLP case and input only the
compressed point to HA. In the DLP commitment version we have 2(log(q)+1)
bit input. For the SIS based commitment the input to this hash function will
be log(q) + 1 + nC log(q) bits.

Later we will need to define a hash function for the k-ary Merkle tree. In
this case we will need to set the output of the hash to fit the requirements of
a k-ary hash tree. In particular, the dimensions for A ∈ Zn×mq , will be set to
n = km log(q).

Putting the SIS instantiation together. According to our security esti-
mates a reasonable way to chose the parameter nC and n for the commitment
scheme and hash is nc = n = 3. The, we need to remember to count 3 split
gates for each commitment output. Then the commitment scheme will take as
input in total 727 bits (`max = 64 and `R = 663). The hash H will take as
input (nC + 1) · log(q) + 1 = 1021 bits (3nC elements in Zq and one compressed
point). For a 2 and 3-ary binary tree be will instantiation H with the same hash
function as for the binary tree with a random public padding.

For the hash tree may consider to following parametrization for the Ajtai
hash. For a binary tree n = 3 and m = 1530. For a 3-ary tree n = 3 and
m = 2295. Finally, a 4-ary tree n = 4 and m = 4080.

At Table 14, we show the security estimate for the above parameter choices.

m n m∗ δ0 TACF15 k (k + 1) logq(2b+ 1)m/2
k

vectors

727 3 322 1.0051 169.24 3 2.2593 ≈ 2145

1021 3 307 1.0057 139.17 3 3.1730 ≈ 2204

1530 3 290 1.0064 111.74 4 2.9718 ≈ 2154

2295 3 275 1.0071 90.89 5 2.6746 ≈ 2117

4080 4 341 1.0061 119.92 6 2.7736 ≈ 2105

Table 14: Estimates for the security level according to the combinatorial method
at Algorithm 1 and Algorithm 2 for modulus q ≈ 2255 and β =

√
m.

5.4 Performance Estimates for SIS Instantiation

In this section we show the performance estimates for the parameter choices
given in Section 5.3. First at Table 15 we present the cost of the hash trees.
Again we may see, that 3-ary trees perform slightly better, however in this case
we need to remember that the security of the underlying hash is much weaker.
At Table 16 we summarize the cost of all checks except for the hash trees.
Finally, at Table 17 we summarize the cost of the system.

31

k N Anonymity Set
Path Tree Total

Const Vars Const Vars Const Vars
2 29 229 29 116 44805 44631 44834 44747
3 19 231 ≥ 319 ≥ 229 38 95 44061 43947 44099 44042
4 15 230 = 415 45 105 61860 61740 61905 61845
2 64 264 64 256 98880 98496 98944 98752
3 41 265 ≥ 341 ≥ 264 82 205 95079 94833 95161 95038
4 33 266 = 433 99 231 136092 135828 136191 136059

Table 15: Cost of a k-ary Merkle tree instantiated with Ajtai hash with n = 3 for
2 and 3-ary trees and n = 4 for 4-ary trees. The path includes the nodes (hash
outputs) and the control bits. The constraints on the path include verifying
that the control bits are bits. The path verification has not been included in
the total constraint number for the tree.

Operations Const Vars
2 · PK− Consistency 8722 8698
2 · InvPRF 9212 9204
2 · InvPRF+ 9218 9210
4 · Comm 12 0
4 · H 12 0
20 ·SplitIntegerToBit for splitting pkin,j , pkout,k, cin,j , cout,k for
input to H

5120 5100

CheckBit for ŝkj , sk
S
j , rin,j , rout,k, xin,j , ain,j , bin,j and the

coin values (rounded to fit the window w = 3)
5172 5172

CheckValues 67 65
Other variables: pkin,j , pkout,k, cin,j , cout,k, snj , sn

′
j , cm

in,j ,

Xin,j , p̂k
j

0 38

Total: 37535 37487

Table 16: Size of the arithmetic circuit based on Ajtai hash and SIS commit-
ment scheme for our pour transaction without counting the hash trees. Scalar
multiplication for InvPRF and InvPRF+ is counted for window w = 3.

32

k N
Table size

Total Const Total Vars
Elements Plain points Compressed

2 29 2016 ·G + 6771 · Zq ≈ 0.34MB ≈ 0.28MB 127203 126981
3 19 2016 ·G + 9066 · Zq ≈ 0.42MB ≈ 0.35MB 125733 125571
2 64 2016 ·G + 6771 · Zq ≈ 0.34MB ≈ 0.28MB 235423 234991
3 41 2016 ·G + 9066 · Zq ≈ 0.42MB ≈ 0.35MB 227857 227563

Table 17: Cost of the system with two k-ary Merkle trees and window size
w = 3. The table size column includes lookup table for scalar multiplication
and matrices for the Ajtai hashes.

6 Conclusions

To sum up our performance evaluation. At an anonymity level 229 our DLP
based instantiation costs less than 218 constraints and SIS based instantiation
less than 217 constraints. When instantiated with 3-ary trees instead of binary
trees, we can save 3264 constraints in case of DLP instantiation and 1470 in
case of SIS based instantiation. In comparison, Zerocash [53], needs about 229

constraints. At anonymity level 264 our DLP based instantiation costs roughly
twice as much constraints as at anonymity level 219, but still less than 219

constraints and SIS based instantiation less than 218 constraints. What is in-
teresting, the SIS based system performs slightly better at this anonymity set,
than the DLP based at anonymity set 229. When instantiated with 3-ary trees
instead of binary trees, we can reduce the size of the arithmetic constraint by
16266 constraints in case of DLP instantiation and 7566 in case of SIS based
instantiation. In comparison, Zerocash [53], needs about 222 constraints. What
is worth noting, is that for the 3-ary tree case, the anonymity set is actually
bigger than for binary trees.

In the current version of this article we provide mainly the complexity analy-
sis of the arithmetic circuits. In near future we plan to analyse the system when
instantiated by concrete argument systems. Some argument systems, may how-
ever require to slightly change the arithmetic circuit. Any necessary redesign
will mostly be dictated by the security proofs and properties of the argument
system under consideration. Additionally, we are missing a reductionist security
analysis and a formal model, as it turns out the original definition of Zerocash
[53] has some issues pointed out in [39]. In Section 3 we only give an informal
description of the algorithms and security requirements.

References

[1] M. Ajtai. “Generating Hard Instances of Lattice Problems (Extended Ab-
stract)”. In: Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing. STOC ’96. Philadelphia, Pennsylvania, USA: ACM,

33

1996, pp. 99–108. isbn: 0-89791-785-5. doi: 10.1145/237814.237838.
url: http://doi.acm.org/10.1145/237814.237838.

[2] Martin R. Albrecht et al. “On the Complexity of the BKW Algorithm on
LWE”. In: Des. Codes Cryptography 74.2 (Feb. 2015), pp. 325–354. issn:
0925-1022. doi: 10.1007/s10623-013-9864-x. url: http://dx.doi.
org/10.1007/s10623-013-9864-x.

[3] Simon Barber et al. “Bitter to Better — How to Make Bitcoin a Better
Currency”. In: Financial Cryptography and Data Security. Ed. by Ange-
los D. Keromytis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 399–414. isbn: 978-3-642-32946-3.

[4] Mihir Bellare et al. “Key-Privacy in Public-Key Encryption”. In: Advances
in Cryptology — ASIACRYPT 2001. Ed. by Colin Boyd. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2001, pp. 566–582. isbn: 978-3-540-
45682-7.

[5] Eli Ben-Sasson et al. Scalable Zero Knowledge via Cycles of Elliptic Curves.
Cryptology ePrint Archive, Report 2014/595. http://eprint.iacr.org/
2014/595. 2014.

[6] Eli Ben-Sasson et al. “SNARKs for C: Verifying Program Executions Suc-
cinctly and in Zero Knowledge”. In: Advances in Cryptology – CRYPTO
2013. Ed. by Ran Canetti and Juan A. Garay. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 90–108. isbn: 978-3-642-40084-1.

[7] Eli Ben-Sasson et al. “Succinct Non-interactive Zero Knowledge for a Von
Neumann Architecture”. In: Proceedings of the 23rd USENIX Conference
on Security Symposium. SEC’14. San Diego, CA: USENIX Association,
2014, pp. 781–796. isbn: 978-1-931971-15-7. url: http://dl.acm.org/
citation.cfm?id=2671225.2671275.

[8] Daniel J. Bernstein and Tanja Lange. “Faster Addition and Doubling on
Elliptic Curves”. In: Advances in Cryptology – ASIACRYPT 2007. Ed. by
Kaoru Kurosawa. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 29–50. isbn: 978-3-540-76900-2.

[9] Daniel J. Bernstein et al. “Twisted Edwards Curves”. In: Progress in
Cryptology – AFRICACRYPT 2008. Ed. by Serge Vaudenay. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2008, pp. 389–405. isbn: 978-3-540-
68164-9.

[10] Nir Bitansky and Alessandro Chiesa. “Succinct Arguments from Multi-
prover Interactive Proofs and Their Efficiency Benefits”. In: Advances
in Cryptology – CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran
Canetti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 255–
272. isbn: 978-3-642-32009-5.

34

[11] Nir Bitansky et al. “From Extractable Collision Resistance to Succinct
Non-interactive Arguments of Knowledge, and Back Again”. In: Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Conference.
ITCS ’12. Cambridge, Massachusetts: ACM, 2012, pp. 326–349. isbn: 978-
1-4503-1115-1. doi: 10.1145/2090236.2090263. url: http://doi.acm.
org/10.1145/2090236.2090263.

[12] Nir Bitansky et al. “Succinct Non-interactive Arguments via Linear In-
teractive Proofs”. In: Theory of Cryptography. Ed. by Amit Sahai. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 315–333. isbn: 978-3-
642-36594-2.

[13] Nir Bitansky et al. “The Hunting of the SNARK”. In: Journal of Cryp-
tology 30.4 (Oct. 2017), pp. 989–1066. issn: 1432-1378. doi: 10.1007/
s00145-016-9241-9. url: https://doi.org/10.1007/s00145-016-
9241-9.

[14] Avrim Blum, Adam Kalai, and Hal Wasserman. “Noise-tolerant Learning,
the Parity Problem, and the Statistical Query Model”. In: J. ACM 50.4
(July 2003), pp. 506–519. issn: 0004-5411. doi: 10.1145/792538.792543.
url: http://doi.acm.org/10.1145/792538.792543.

[15] Dan Boneh and Xavier Boyen. “Efficient Selective-ID Secure Identity-
Based Encryption Without Random Oracles”. In: Advances in Cryptology
- EUROCRYPT 2004. Ed. by Christian Cachin and Jan L. Camenisch.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 223–238. isbn:
978-3-540-24676-3.

[16] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. “Al-
gebraic Pseudorandom Functions with Improved Efficiency from the Aug-
mented Cascade”. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security. CCS ’10. Chicago, Illinois, USA:
ACM, 2010, pp. 131–140. isbn: 978-1-4503-0245-6. doi: 10.1145/1866307.
1866323. url: http://doi.acm.org/10.1145/1866307.1866323.

[17] Sean Bowe. ZCash blog. BLS12-381: New zk-SNARK Elliptic Curve Con-
struction? Mar. 11, 2017. url: https://z.cash/blog/new- snark-

curve.html.

[18] Sean Bowe. ZCash blog. Cultivating Sapling: Faster zk-SNARKs. Sept. 13,
2017. url: https://blog.z.cash/cultivating- sapling- faster-

zksnarks/.

[19] Sean Bowe. ZCash blog. Cultivating Sapling: New Crypto Foundations.
July 26, 2017. url: https://blog.z.cash/cultivating-sapling-new-
crypto-foundations/.

[20] Sean Bowe. ZCash blog. The Near Future of Zcash. Apr. 4, 2017. url:
https://blog.z.cash/the-near-future-of-zcash/.

35

[21] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol
for constructing the public parameters of the Pinocchio zk-SNARK. Cryp-
tology ePrint Archive, Report 2017/602. https://eprint.iacr.org/
2017/602. 2017.

[22] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable Multi-party Computa-
tion for zk-SNARK Parameters in the Random Beacon Model. Cryptology
ePrint Archive, Report 2017/1050. https://eprint.iacr.org/2017/
1050. 2017.

[23] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. “An Im-
proved Protocol for Demonstrating Possession of Discrete Logarithms and
Some Generalizations”. In: Advances in Cryptology — EUROCRYPT’ 87.
Ed. by David Chaum and Wyn L. Price. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1988, pp. 127–141. isbn: 978-3-540-39118-0.

[24] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Secu-
rity Estimates”. In: Advances in Cryptology – ASIACRYPT 2011. Ed. by
Dong Hoon Lee and Xiaoyun Wang. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 1–20. isbn: 978-3-642-25385-0.

[25] Ivan Damg̊ard. On Σ-protocols. 2002.

[26] George Danezis et al. “Square Span Programs with Applications to Suc-
cinct NIZK Arguments”. In: Advances in Cryptology – ASIACRYPT 2014.
Ed. by Palash Sarkar and Tetsu Iwata. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 532–550. isbn: 978-3-662-45611-8.

[27] Yevgeniy Dodis and Aleksandr Yampolskiy. “A Verifiable Random Func-
tion with Short Proofs and Keys”. In: Public Key Cryptography - PKC
2005: 8th International Workshop on Theory and Practice in Public Key
Cryptography, Les Diablerets, Switzerland, January 23-26, 2005. Proceed-
ings. Ed. by Serge Vaudenay. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 416–431. isbn: 978-3-540-30580-4. doi: 10.1007/978-3-
540-30580-4_28. url: https://doi.org/10.1007/978-3-540-30580-
4_28.

[28] Christina Garman, Matthew Green, and Ian Miers. Accountable Privacy
for Decentralized Anonymous Payments. Cryptology ePrint Archive, Re-
port 2016/061. https://eprint.iacr.org/2016/061. 2016.

[29] Rosario Gennaro et al. “Quadratic Span Programs and Succinct NIZKs
without PCPs”. In: Advances in Cryptology – EUROCRYPT 2013. Ed.
by Thomas Johansson and Phong Q. Nguyen. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 626–645. isbn: 978-3-642-38348-9.

[30] Craig Gentry and Daniel Wichs. “Separating Succinct Non-interactive Ar-
guments from All Falsifiable Assumptions”. In: Proceedings of the Forty-
third Annual ACM Symposium on Theory of Computing. STOC ’11. San
Jose, California, USA: ACM, 2011, pp. 99–108. isbn: 978-1-4503-0691-1.
doi: 10.1145/1993636.1993651. url: http://doi.acm.org/10.1145/
1993636.1993651.

36

[31] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”.
In: Advances in Cryptology – EUROCRYPT 2016: 35th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II. Ed.
by Marc Fischlin and Jean-Sébastien Coron. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 305–326. isbn: 978-3-662-49896-5. doi: 10.
1007/978-3-662-49896-5_11. url: https://doi.org/10.1007/978-
3-662-49896-5_11.

[32] Jens Groth and Markulf Kohlweiss. “One-Out-of-Many Proofs: Or How
to Leak a Secret and Spend a Coin”. In: Advances in Cryptology - EU-
ROCRYPT 2015. Ed. by Elisabeth Oswald and Marc Fischlin. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 253–280. isbn: 978-3-
662-46803-6.

[33] Jens Groth and Mary Maller. “Snarky Signatures: Minimal Signatures
of Knowledge from Simulation-Extractable SNARKs”. In: Advances in
Cryptology – CRYPTO 2017. Ed. by Jonathan Katz and Hovav Shacham.
Cham: Springer International Publishing, 2017, pp. 581–612. isbn: 978-3-
319-63715-0.

[34] Huseyin Hisil et al. “Twisted Edwards Curves Revisited”. In: Advances
in Cryptology - ASIACRYPT 2008. Ed. by Josef Pieprzyk. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2008, pp. 326–343. isbn: 978-3-540-
89255-7.

[35] Dennis Hofheinz and Eike Kiltz. “Programmable Hash Functions and
Their Applications”. In: vol. 25. 3. July 2012, pp. 484–527. doi: 10.1007/
s00145-011-9102-5. url: https://doi.org/10.1007/s00145-011-
9102-5.

[36] Daria Hopwood et al. ZCash Protocol Specification Verion 2017-0-beta-27.
2017. url: https://github.com/zcash/zips/blob/master/protocol/
protocol.pdf.

[37] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. “Concurrently Se-
cure Identification Schemes Based on the Worst-Case Hardness of Lattice
Problems”. In: Advances in Cryptology - ASIACRYPT 2008: 14th Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, Melbourne, Australia, December 7-11, 2008. Pro-
ceedings. Ed. by Josef Pieprzyk. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2008, pp. 372–389. isbn: 978-3-540-89255-7. doi: 10.1007/978-
3-540-89255-7_23. url: https://doi.org/10.1007/978-3-540-
89255-7_23.

[38] Ahmed Kosba et al. C∅C∅: A Framework for Building Composable Zero-
Knowledge Proofs. Cryptology ePrint Archive, Report 2015/1093. http:
//eprint.iacr.org/2015/1093. 2015.

[39] A. Kosba et al. “Hawk: The Blockchain Model of Cryptography and
Privacy-Preserving Smart Contracts”. In: 2016 IEEE Symposium on Secu-
rity and Privacy (SP). May 2016, pp. 839–858. doi: 10.1109/SP.2016.55.

37

[40] Vadim Lyubashevsky et al. “SWIFFT: A Modest Proposal for FFT Hash-
ing”. In: Fast Software Encryption. Ed. by Kaisa Nyberg. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2008, pp. 54–72. isbn: 978-3-540-71039-
4.

[41] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. Aug. 22,
2013. url: https://bitcointalk.org/index.php?topic=279249.

[42] Sarah Meiklejohn et al. “A Fistful of Bitcoins: Characterizing Payments
Among Men with No Names”. In: Proceedings of the 2013 Conference
on Internet Measurement Conference. IMC ’13. Barcelona, Spain: ACM,
2013, pp. 127–140. isbn: 978-1-4503-1953-9. doi: 10 . 1145 / 2504730 .

2504747. url: http://doi.acm.org/10.1145/2504730.2504747.

[43] Daniele Micciancio and Oded Regev. “Lattice-based Cryptography”. In:
Post-Quantum Cryptography. Ed. by Daniel J. Bernstein, Johannes Buch-
mann, and Erik Dahmen. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 147–191. isbn: 978-3-540-88702-7. doi: 10.1007/978-3-540-
88702-7_5. url: https://doi.org/10.1007/978-3-540-88702-7_5.

[44] Shen Noether. Ring Signature Confidential Transactions for Monero. Cryp-
tology ePrint Archive, Report 2015/1098. https://eprint.iacr.org/
2015/1098. 2015.

[45] B. Parno et al. “Pinocchio: Nearly Practical Verifiable Computation”. In:
2013 IEEE Symposium on Security and Privacy. May 2013, pp. 238–252.
doi: 10.1109/SP.2013.47.

[46] Oded Regev. “On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography”. In: Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing. STOC ’05. Baltimore, MD, USA:
ACM, 2005, pp. 84–93. isbn: 1-58113-960-8. doi: 10.1145/1060590.

1060603. url: http://doi.acm.org/10.1145/1060590.1060603.

[47] Fergal Reid and Martin Harrigan. “An Analysis of Anonymity in the Bit-
coin System”. In: Security and Privacy in Social Networks. Ed. by Yaniv
Altshuler et al. New York, NY: Springer New York, 2013, pp. 197–223.
isbn: 978-1-4614-4139-7. doi: 10.1007/978-1-4614-4139-7_10. url:
https://doi.org/10.1007/978-1-4614-4139-7_10.

[48] Dorit Ron and Adi Shamir. “Quantitative Analysis of the Full Bitcoin
Transaction Graph”. In: Financial Cryptography and Data Security. Ed.
by Ahmad-Reza Sadeghi. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 6–24. isbn: 978-3-642-39884-1.

[49] Markus Rückert and Michael Schneider. Estimating the Security of Lattice-
based Cryptosystems. Cryptology ePrint Archive, Report 2010/137. https:
//eprint.iacr.org/2010/137. 2010.

[50] Tim Ruffing and Pedro Moreno-Sanchez. Mixing Confidential Transac-
tions: Comprehensive Transaction Privacy for Bitcoin. Cryptology ePrint
Archive, Report 2017/238. https://eprint.iacr.org/2017/238. 2017.

38

[51] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “CoinShuffle: Prac-
tical Decentralized Coin Mixing for Bitcoin”. In: Computer Security - ES-
ORICS 2014. Ed. by Miros law Kuty lowski and Jaideep Vaidya. Cham:
Springer International Publishing, 2014, pp. 345–364. isbn: 978-3-319-
11212-1.

[52] Nicolas van Saberhagen. CryptoNote v 2.0. 2013. url: https://cryptonote.
org/whitepaper.pdf.

[53] E. B. Sasson et al. “Zerocash: Decentralized Anonymous Payments from
Bitcoin”. In: 2014 IEEE Symposium on Security and Privacy. May 2014,
pp. 459–474. doi: 10.1109/SP.2014.36.

[54] Shi-Feng Sun et al. “RingCT 2.0: A Compact Accumulator-Based (Link-
able Ring Signature) Protocol for Blockchain Cryptocurrency Monero”.
In: Computer Security – ESORICS 2017: 22nd European Symposium on
Research in Computer Security, Oslo, Norway, September 11-15, 2017,
Proceedings, Part II. Ed. by Simon N. Foley, Dieter Gollmann, and Einar
Snekkenes. Cham: Springer International Publishing, 2017, pp. 456–474.
isbn: 978-3-319-66399-9. doi: 10.1007/978-3-319-66399-9_25. url:
https://doi.org/10.1007/978-3-319-66399-9_25.

[55] David Wagner. “A Generalized Birthday Problem”. In: Advances in Cryp-
tology — CRYPTO 2002. Ed. by Moti Yung. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 288–304. isbn: 978-3-540-45708-4.

[56] Brent Waters. “Efficient Identity-Based Encryption Without Random Or-
acles”. In: Advances in Cryptology – EUROCRYPT 2005. Ed. by Ronald
Cramer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 114–
127. isbn: 978-3-540-32055-5.

[57] Zooko Wilcox, Nathan Wilcox, and Jack Gavigan. ZCash blog. The Near
Future of Zcash. Feb. 21, 2017. url: https://blog.z.cash/the-near-
future-of-zcash/.

[58] ZCash. ZCash blog. What is Jubjub? url: https://z.cash/technology/
jubjub.html.

A Quadratic Constraints

In this section we describe the construction of the quadratic constraints which
need to be implemented in the arithmetic circuit of the ZK-SNARK.
Let us remind, that the following constraints are over Fq. In case, the input is
not clearly marked do be constrained to other values (e.g. bits), we assume that
the inputs are in Fq.

We start by designing some basic constraint systems for bit operations.

CheckBit(b: b ∈ {0, 1}):

39

1. (b) · (b− 1) = (0)

Cost: 1 constraints and 0 additional variables.

SplitIntegerToBit(a, [bi]
n−1
i=0 : a =

∑n−1
i=0 2ibi ∧ [bi ∈ {0, 1}]n−1

i=0):

1. ∀i∈{0,...,n−1}

(a) CheckBit(b : b ∈ {0, 1})

2. (
∑n−1
i=0 bi2

i) · (1) = (a)

Cost: n+ 1 constraints and 0 additional variables.

CheckIntegerToBits(a, [bi ∈ {0, 1}]n−1
i=0 : a =

∑n−1
i=0 2ibi):

1. (
∑n−1
i=0 bi2

i) · (1) = (a)

Cost: 1 constraints and 0 additional variables.

The constraint below checks whether vin,1 + vin,2 + vpub = vout,1 + vout,2.

CheckValues([vin,j = [vin,ji ∈ {0, 1}]n−1
i=0]2j=1, [v

out,j = [vout,ji ∈
{0, 1}]n−1

i=0]2j=1: v
in,1 + vin,2 + vpub = vout,1 + vout,2):

1. (
∑n−1
i=0 2ivout,1i +

∑n−1
i=0 2ivout,2i) · (1) = (c)

2. SplitIntegerToBit(c, [ci]
n−1
i=0 : c =

∑n−1
i=0 2ici ∧ [ci ∈ {0, 1}]n−1

i=0)

3. (
∑n−1
i=0 2ivin,1i +

∑n−1
i=0 2ivin,2i + vpub) · (1) = (c)

Cost: n+ 3 constraints and n+ 1 additional variables.

Multiplexers. In this paragraph we will show constructions for multiplexing
integers and points. In order to conveniently denote a choice of an element a
form a set S where the choice is encoded by a a set of bits [b], we will write
a ∈ S[b]. In some cases however, it will be more convenient to denote a choice
by an algebraic operation involving the control bits of the multiplexer. We will
denote a “IF” statement as (Statement1)b=0, (Statement2)b=0.

We start by showing a 2-to-1 multiplexer and a 4-to-1 multiplexer.

40

2-1-Multiplex(b ∈ {0, 1}, x, y, z: (z ∈ {x, y}b):

1. (b) · (y− x) = (z− x)

Cost: 1 constraints and 0 additional variables.

4-1-Multiplex((b0,b1 ∈ {0, 1}), y: y ∈ {x0, x1, x2, x3}[bi]1i=0
):

1. (b0) ·(−x0 +b1x0 +x1−b1x1−b1x2 +b1x3) = (y−x0 +b1x0−b1x2)

Cost: 1 constraints and 0 additional variables.

Note that, in the 4-to-1 multiplexer we can switch only between known
values. This is because for a control bit number ≥ 1, we get squared bits in the
equation z = (1−b0)(1−b1)x0 +(b0)(1−b1)x1 +(1−b0)(b1)x2 +(b0)(b1)x3.
Hence, if the x values would be variables, we would end with a qubic equation.

The relation 2-1-Multiplex(b ∈ {0, 1},x,y: z ∈ {x,y}[b]), i.e. where z
is constant, is realized by the same constrained system as in the basic 2-to-1
multiplexer. The same applies for larger multiplexers.

In order to construct larger multiplexers we can simply chain smaller multi-
plexers together. For, example in order to build a 4-to-1 multiplexer for variables
instead of constants, we can simply take two 2-to-1 multiplexers for the initial
inputs which feed the output multiplexer. Analogously, we can construct a 8-
to-1 multiplexer, but taking two 4-to-1 multiplexers and chaining their output
to a 2-to-1 multiplexer.

Additionally, we will need a constraint system for switching points on elliptic
curves, i.e. take 2 input points and 1 output point. This is realized as follows.

2-1-PSwitch(b ∈ {0, 1}, g1, g2, g3 ∈ G: g3 ∈ {g1, g2}[b]):

1. 2-1-Multiplex(b,x1,x2: (x3 ∈ {x1,x2}[b])

2. 2-1-Multiplex(b,y1,y2: (y3 ∈ {y1,y2}[b])

Cost: 2 constraints and 0 additional variables.

In general for multiplexing n vectors to 1, where each vector has m coordi-
nates, we need m, n-to-1 multiplexers. Note also that a 4-to-1 point multiplexer
may be constructed analogously, and since the 4-to-1 integer multiplexer costs
just 1 constraint, we have that the 4-to-1 point multiplexer cost is 2 constraints.
We depict a point multiplexer for 2n public points. As we see, the construction
is recursive and calls itself for a decremented n. When we get a call for n = 2
we use the 4-to-1 point multiplexer. At Table A we depict some initial values
of the fpm and gpm functions.

41

2n-1-PSwitch(b = [bi ∈ {0, 1}]n−1
i=0 , g ∈ G: g = {[gi]2

n−1
i=0 }[bi]n−1

i=0
):

1. 2n−1-1-PSwitch([bi]
n−2
i=0 , [gi]

2n/2−1
i=0 , g0: g0 ∈ {[gi]

2n/2−1
i=0 })[bi]

n−2
i=0

)

2. 2n−1-1-PSwitch([bi]
n−2
i=0 , [gi]

2n−1
i=2n/2, g1: g1 ∈ {[gi]2

n−1
i=2n/2}[bi]

n−2
i=0

)

3. 2-1-PSwitch(bn−1, g0, g1,g: g ∈ {g0, g1}[bn−1])

Cost: fpm(n) constraints and gpm(n) additional variables.

The costs functions fpm(n) and gpm(n) of the 2n-to-1 point multiplexer are
as follows.

fpm(n) =

{
n if n ≤ 2

2fpm(n− 1) + 2 if n ≥ 3

gpm(n) =

0 if n ≤ 2

4 if n = 3

2gpm(n− 1) + 4 if n ≥ 4

n 2 3 4 5 6
fpm(n) 2 6 14 30 62
gpm(n) 0 4 12 28 60

Table 18: Cost of point multiplexers

Elliptic Curve Arithmetic. Below we show constraints for operations on the
group G as specified in Section 5, i.e. operation on points on Twisted Edwards
curves. In particular we cover point addition and scalar multiplication. For
simplicity of the notation, we will denote gi = (xi, yi) ∈ G, i.e. a point gi
indexed with i, has coordinates (xi, yi).

Let us first focus on the formulas which involve the coefficient d, i.e. formulas
given by Definition 15 and Definition 16. Below we have the constraints for
adding a secret point to a known point.

EdAddConst(g1, g3 ∈ G: g3 = g1 · g2):

1. (x1) · (y1) = (a)

2. (1 + dx2y2a) · (x3) = (x1y2 + y1x2)

3. (1− dx2y2a) · (y3) = (y1y2 − x1ax2)

Cost: 3 constraints and 1 additional variables.

42

Note that the relation EdAddConst(g1 ∈ G: g3 = g1 · g2) might be done
exactly as EdAddConst(g1,g3 ∈ G: g3 = g1 · g2), with that difference that g3 is
a known constant. Addition of two secret points is slightly more complex.

EdAdd(g1, g2, g3 ∈ G: g3 = g1 · g2):

1. (x1) · (y2) = (a)

2. (y1) · (x2) = (b)

3. (y1) · (y2) = (c)

4. (x1) · (x2) = (d)

5. (c) · (d) = (e)

6. (1 + de) · (x3) = (a + b)

7. (1− de) · (y3) = (c− ad)

Cost: 7 constraints and 5 additional variables.

Fast point doubling may be done by using the formula without the d coeffi-
cient as given by Definition 18.

EdDouble(g1, g3 ∈ G: g3 = 2g1):

1. (x1) · (y1) = (a)

2. (x1) · (x1) = (b)

3. (y1) · (y1) = (c)

4. (ab + c) · (x3) = (2a)

5. (2− ab− c) · (y3) = (c− ab)

Cost: 5 constraints and 3 additional variables.

Unfortunately, it turns out that using the formula from Definition 17 results
in a more complex constraint system, than addition using the formula from
Definition 15.

Additionally, we will need point addition which is conditioned on a bit. This
is done by simply adding two points, and then chaining the output with a 2-1
point multiplexer. Below we show conditional point addition for two cases. The
first case is when the added point is a known constant, whereas the second case
is when both input points are variables. The design concept for both cases is
exactly the same, the difference is the cost of both circuits.

43

EdAddConstIF(g1, g3 ∈ G,b ∈ {0, 1}: (g3 = g1)b=0, (g3 = g1 · g2)b=1):

1. EdAddConst(g1, g ∈ G : g = g1 · g2)

2. 2-1-PSwitch(b,g1, g,g3 : (g3 = g1)b=0, (g3 = g)b=1)

Cost: 5 constraints and 3 additional variables.

EdAddIF(g1, g2, g3 ∈ G,b ∈ {0, 1}: (g3 = g1)b=0, (g3 = g1 · g2)b=1):

1. EdAdd(g1, g ∈ G : g = g1 · g2)

2. 2-1-PSwitch(b,g1, g,g3 : (g3 = g1)b=0, (g3 = g)b=1)

Cost: 9 constraints and 7 additional variables.

Similarly as in case of the multiplexers, we may implement the relation
EdAddConstIF(g1 ∈ G,b ∈ {0, 1}: g3 = g1 · g2 if b = 0, g3 = g1 if b = 1) the
same way as the conditioned addition above, simply by using a different kind
of multiplexer. The cost remains the same.

Now we will construct a constraint system for a hash function based on DLP.
The constraint system uses a precomputed table {h0, h1, h2, . . . , hn}. Note that
we always add hn and the bit size of the input to the CRHF is n.

CRHFDLP([xi ∈ {0, 1}]n−1
i=0 ,h: hn

∏n−1
i=0 h

xi
i = h):

1. 2-1-PSwitch(x0, g0 : (g0 = (0, 1))x0=0, (g0 = h0)x0=1)

2. ∀i∈{1,...,n−1}

(a) EdAddConstIF(gi−1, gi,xi : (gi = gi−1)xi=0, (gi = gi−1 · hi)xi=1)

3. EdAddConst(gn−1,h : h = gn−1 · hn)

Cost: 5n constraints and 5n− 2 additional variables.

An analogical constraint system, for which the target point h is known pro-
ceeds as above, except the last step is done by EdAddConstIF(gn−2,xn−1 ∈
{0, 1} : h = gn−2 if xn−1 = 0, h = gn−2 · hn−1 if xn−1 = 1). It is easy to see
that the cost is exactly the same.

Now, we will construct a constraint system for scalar multiplication where
the base point is unknown. Basically, the constrained system represents the
Double-and-Add algorithm.

44

Double-Add([xi ∈ {0, 1}]n−1
i=0 , g,h: g

x = h):

1. EdDouble(g, h0 : h0 = g · g)

2. ∀i∈{1,...,n−1}

(a) EdDouble(hi−1, hi : hi = hi−1 · hi−1)

3. 2-1-PSwitch(x0,g : (h0 = (0, 1))x0=0, (h0 = g)x0=1)

4. ∀i∈{1,...,n−2}

(a) EdAddIF(gi−1, gi,xi : (gi = gi−1)xi=0, (gi = gi−1 · hi)xi=1)

5. EdAddIF(gn−2,h,xn−1 : (h = gn−2)xn−1=0, (h = gn−2 · hn−1)xn−1=1)

Cost: 14n− 7 constraints and 14n− 9 additional variables.

We will also need a system for scalar multiplication where the base point
is constant. We can use the fact the base point is constant and perform some
precomputation which might significantly improve the efficiency of the circuit.
The first method proceeds similarly to CRHFDPL. We will have a precomputed
table [g2i

]ni=0, and given the bits of a scalar [xi ∈ {0, 1}]ni=0 we check that

h =
∏n
i=0 g

2ixi . As may be expected, the cost is the same as for CRHFDPL. Let

us denote g2i

= hi for i ∈ {0, . . . , n− 1}.

ScalarMul([xi ∈ {0, 1}]n−1
i=0 ,h:

∏n−1
i=0 g

2ixi = h):

1. 2-1-PSwitch(x0, g0 : (g0 = (0, 1))x0=0, (g0 = h0)x0=1)

2. ∀i∈{1,...,n−2}

(a) EdAddConstIF(gi−1, gi,xi : (gi = gi−1)xi=0, (gi = gi−1 · hi)xi=1)

3. EdAddConstIF(gn−2,h,xn−1 : (h = gn−2)xi=0, (h = gn−2 · hn−1)xi=1)

Cost: 5n− 3 constraints and 5(n− 1) additional variables.

In particular, we will use the sliding window method. The idea is that
we divide the secret bit string into smaller bit strings, precompute all possi-
ble output points for these smaller bit strings. Then in the circuit, instead of
checking multiplications within the small bit strings, we sample out the pre-
computed point using a multiplexer. In more detail, to check h = g

∑n
i=0 2ixi ,

we will set a window size w and divide the input bits {x0, . . . ,xn} into groups
of w bits. Finally, the relation which needs to be checked may be written as

h =
∏n/w−1
j=0 g

∑w
k=0 2jw+kxjw+k . Note that if we precompute g

∑w
k=0 2jw+kxjw+k

for all possible bits in [xjw+k]wk=0, then we do not need to perform the check in

45

the circuit, but we will use a 2w-to-1 point multiplexer to sample out the cor-
rect value. However, due to the pre-computation step, we will need to publish
a lookup table of size n2w

w group elements. The general procedure is depicted
below.

WindowMul([xi ∈ {0, 1}]n−1
i=0 ,h: g

x = h):

1. 2w-PSwitch([xk]wk=0, h0 : h0 = g
∑w

k=0 2kxk)

2. ∀j∈{1,...,n/w−2}

(a) 2w-PSwitch([xjw+k]wk=0, gj : gj = g
∑w

k=0 2jw+kxjw+k)

(b) EdAdd(hj−1, gj , hj : hj = hj−1 · gj)

3. 2w-PSwitch([xn/w−1+k]wk=0, gn/w−1 : gn/w−1 = g
∑w

k=0 2n−w+kxn−w+k)

4. EdAdd(hn/w−2, gn/w−1,h : h = hn/w−2 · gn/w−1)

Cost: n
w (fpm(w) + 7) − 7 constraints and n

w (gpm(w) + 9) − 9 additional
variables.

The constraint complexity and size complexity of the above heavily depends
on the window size w. The window determines what kind of multiplexer we
need to use and how many additions we will need to perform.

For sake of completeness, below we show an analogous constraint system for

the DPL CRHF. In this case the relation is rewritten as h = hn
∏n/w−1
j=0

∏w
k=0 h

xjw+k

jw+k .

Thus, for every j ∈ {0, . . . , n/w − 1} we will need to pre-compute
∏w
k=0 h

xjw+k

jw+k

for every combination of the bits. In order to save one multiplication by the
constant point hn, we simply add this point in one of the windows.

WindowCRHFDLP([xi ∈ {0, 1}]n−1
i=0 ,h:

∏n−1
i=0 h

xi
i = h):

1. 2w-PSwitch([xk]wk=0, h0 : h0 =
∏w
k=0 h

xk

k)

2. ∀j∈{1,...,n/w−2}

(a) 2w-PSwitch([xjw+k]wk=0, gj : gj =
∏w
k=0 h

xjw+k

jw+k)

(b) EdAdd(hj−1, gj , hj : hj = hj−1 · gj)

3. 2w-PSwitch([xn/w−1+k]wk=0, gn/w−1 : gn/w−1 =
∏w
k=0 h

xn−w+k

n−w+k)

4. EdAdd(hn/w−2, gn/w−1,h : h = hn/w−2 · gn/w−1)

Cost: n
w (fpm(w) + 7) − 7 constraints and n

w (gpm(w) + 9) − 9 additional
variables.

46

Finally, using the previous constraint systems, we are now able to design a
system for the Pedersen commitment scheme. In our case, however, we make
the description more general, i.e. we show a system for an arbitrary number of
bits of the message to be committed.

WindowCommP([xi ∈ {0, 1}]n−1
i=0 , [ri ∈ {0, 1}]

log(p)−1
i=0 , c: gx · hr = c):

1. WindowMul([xi ∈ {0, 1}]n−1
i=0 , g: gx = g)

2. WindowMul([xi ∈ {0, 1}]n−1
i=0 , h: hr = h)

3. EdAdd(g, h, c: c = g · h)

Cost: n+log(p)
w (fpm(w) + 7) − 7 constraints and n+log(p)

w (gpm(w) + 9) − 9
additional variables.

Ajtai Hash Function. In this paragraph we show a simple constraint system
for the Ajtai hash function.

Ajtai([bi ∈ {0, 1}]m−1
i=0 , [zj]

n−1
j=0 : ∀

n−1
j=0 zj =

∑m−1
i=0 biai,j):

1. ∀n−1
j=0

(a) (
∑n−1
i=0 biaj) · (1) = (zj)

Cost: n constraints and 0 additional variables.

Merkle Trees. In this paragraph we will design constraint systems to show
that an element is in a Merkle tree. In order to keep our design as general
as possible, we will assume that we have a black box CRHF H. Later H can
be instantiated with any hash function which matches our specification. In
particular, we will use the DLP and Ajtai hash functions. We specify the general
hash function as H : {0, 1}n → Fmq , thus it maps a bit vector of length n into a
vector of integers of length m. Since, we will use the hash function in k-ary hash
trees we require that n = km · log(q). The hash tree is binary, for the special
case of K = k. We denote the constraint system for checking the input/output
consistency of H as Check-H(x ∈ {0, 1}km log(q), h ∈ Fmq : H(x) = h). Moreover,
we denote as fH(k,m) and gH(k,m), the number of constraints and additional
variables of this verification procedure respectively.

In our case, the constraint system will take as secret input a leaf and its
path to the root. The goal is to show that the leaf and its path belongs to
the tree, but we cannot reveal which leaf and path it is. Hence the constraint
system cannot, by itself, reveal whether a node is the right or left input to its
parent. Therefore, we will need to show that a particular shift of the inputs to
H is correct.

47

We start with a constraint system which checks whether two output integers
are a correct shift of the two input integers.

2-Shift(b ∈ {0, 1}, x, y, x′, y′: ((x′, y′) = (x, y))b=0, ((x′, y′) = (y, x))b=1):

1. (b)(y− x) = (x′ + x)

2. (b)(x− y) = (y′ + y)

Cost: 2 constraints and 0 additional variables.

Now we can generalize the above shift method, to the case of k elements.

k-Shift([bi ∈ {0, 1}]k−2
i=0 , [xi]

k−1
i=0 , [x

′
i]
k−1
i=0 : . . .):

1. 2-Shift(b0,x0,x1,x
′
0, y1: ((x′0, y1) = (x0,x1))b0=0, ((x

′
0, y1) =

(x1,x0))b0=1)

2. ∀i∈{1,...,k−3}

(a) 2-Shift(bi, yi,xi+1,x
′
i, yi+1: ((x′i, yi+1) =

(xi+1, yi))bi=0, ((x
′
i, yi+1) = (yi,xi+1))bi=1)

3. 2-Shift(bk−2, yk−2,xk−1,x
′
k−2,x

′
k−1: ((x′k−2,x

′
k−1) =

(xk−1, yk−2))bk−2=0, ((x
′
k−2,xk−1) = (yk−2,xk−1))bk−2=1)

Cost: 2(k − 1) constraints and k − 2 additional variables.

Below, we show a strightforward application of the k-Shift constraint sys-
tem to vectors of m elements. The idea is simply to make a k-Shift for every
coordinate, all with the same shift specification (i.e. the same control bits). We
denote as xi,j the j-th coordinate in the i-th vector xi.

(m, k)-Shift(~b = [bi ∈ {0, 1}]k−2
i=0 , [~xi,~x

′
i ∈ Fmq]ki=0: . . .):

1. ∀m−1
j=0

(a) k-Shift(~b, [xi,j]
k−1
i=0 , [x

′
i,j]

k−1
i=0 : . . .)

Cost: 2m(k − 1) constraints and m(k − 2) additional variables.

An example use case is shifting points. For points we will have an m = 2
dimensional vector, thus we shift all coordinates by the same position. It is
easy to see that the cost of shifting two points, is 4 constraints and 0 additional
variables, given that the control bits are already checked.

48

SplitVector([a]m−1
i=0 , [bi,j]

`−1,m−1
i=0,j=0 : ∀i∈{0,...,m−1}ai =

∑`−1
j=0 2jbi,j ∧ [bi,j ∈

{0, 1}]`−1
j=0):

1. ∀i∈{0,...,m}

(a) SplitIntegerToBit(ai, [bi,j]
`−1
j=0: ai =

∑`−1
j=0 2jbi,j ∧ [bi,j ∈

{0, 1}]`−1
j=0)

Cost: m(`+ 1) constraints and 0 additional variables.

Finally, we show the constraint system for verifying membership of a k-ary
hash tree of height N . The notational convention is as follows. x0 ∈ Fmq is
the element which we want to proof membership of. The idea is to go through
each level of the tree, and shift the input element to its right position, hiding
the subtree in which the input element is. As each level, the input element is
treated as the first element for the shift. Then, we split all the integers into bits
and pass this bits to the hash function, obtaining an input element for the next
level.

(N, k,m,H)-Tree([bj ∈ {0, 1}k−1]N−1
j=0 , [xj ∈ Fmq]N−1

j=0 ,Mroot ∈ Fmq : [xj]
N−1
j=0

is a path to Mroot):

1. ∀N−2
j=0

(a) (k,m)-Shift(bj ,xj , [yj,i]
k−1
i=1 , sj = [sj,i]

k−1
i=0 : . . .)

(b) SplitVector(sj , bj : bj = sj ∧ bj ∈ {0, 1}km log(q))

(c) Check-H(bj ,xj+1: H(bj) = xj+1)

2. (k,m)-Shift(bN−1,xN−1, [yN−1,i]
k−1
i=1 , sj = [sN−1,i]

k−1
i=0 : . . .)

3. SplitVector(sN−1, bN−1: bN−1 = sN−1 ∧ bN−1 ∈ {0, 1}km log(q))

4. Check-H(bN−1,Mroot: H(bN−1) = Mroot)

Cost: N(mk(log(q) + 3) + fH(k,m)− 2m) constraints and N(mk(log(q) +
3) + gH(k,m)− 3m) additional variables.

Counting the cost of checking the Merkle tree is a bit more complicated. Let
us first observe that we are repeating tree operations N times, i.e. one on each
level of the tree. The shift operation costs 2m(k − 1) constraints and m(k − 2)
additional variables, however we introduce additionallym(2k−1) variables. Now
all the mk variables are treated as a single vector (concatenation is for free), and
splitting it into bits costs mk(log(q)+1) constraints and we introduce mk log(q)
new variables. Finally, checking the hash cost fH(k,m) constraints and gH(k,m)
new variables.

49

For the path we need N(k − 1) control bits and N · m elements (N hash
values).

B Dodis-Yampolskiy PRF

In this section we recall the security reduction for the Dodis-Yampolskiy Verifi-
able PRF. However, we slightly alter the reduction. In the original work [27] the
the reduction is made to the q-DBDHI assumption. However, as we don’t need
pairings in the group on which the PRF is instantiated we reduce the pseudo-
randomness to the weaker q-DHI problem. In [27] the reduction also assumed
that the input space is small, in order to guess the point from the challenge. In
our case the input space will be the output of a programmable random oracle
and the guess will be made for one of the oracle queries. beside, this changes
the reduction proceeds identically.

Proof. Input to the reduction: The solver S is given a tuple (g, gα, . . . , gα
q

) ∈ G
and an element Γ ∈ G. The goal is to distinguish whether Γ = g1/α or
random.

key generation: We guess that A will choose to distinguish x0 ∈ Zp, i.e. one of
the outputs of the qH queries to the hash oracle. Let β = α− x0. We can
compute (gβ , . . . , gβ

q

) form (gα, . . . , gα
q

). Let f(z) be define as follows.

f(z) =
∏

wi,xi 6=x0

(z + wi) =

q−1∑
j=0

cjz
j ,

for some c0, . . . , cq−1 and whether wi are the outputs of the hash oracle.

Then, we compute h = gf(β) =
∏q−1
j=0(gβ

j

)cj and hβ =
∏q
j=1(gβ

j

)cj−1.

We set the public key as hβ and the basepoint as h.

responding to oracle queries: For the i-th query, if xi = x0 we fail. Otherwise,
we compute

gfi(β) =

q−2∏
j=0

gdjβ
j

= h1/(xi+β)

where fi(z) is defined as

fi(z) = f(z)/(z + xi) =

q−2∑
j=0

djz
j ,

for some coefficients d0, . . . , dq−2.

50

Challenge: For the challenge query if x∗ 6= x0, then we fail. Otherwise, we
have that x0 is not a root of f , thus

f(z)/(z + x0) =

q−2∑
j=0

γjz
j + γ−1/(z + x0)

where γ−1 6= 0. Then we output

Γ∗ = Γγ−1 ·
q−2∏
j=0

gγjβ
j

.

Note that if Γ = g1/α, then Γ∗ = gf(β)/(β−x0). Otherwise, Γ∗ is uniformly
distributed.

51

