
1

Impeccable Circuits
Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh,

Aein Rezaei Shahmirzadi, Falk Schellenberg, Tobias Schneider

Abstract—By injecting faults, active physical attacks pose serious threats to cryptographic hardware where Concurrent Error Detection
(CED) schemes are promising countermeasures. They are usually based on an Error-Detecting Code (EDC) which enables detecting
certain injected faults depending on the specification of the underlying code. Here, we propose a methodology to enable correct,
practical, and robust implementation of code-based CEDs. We show that straightforward hardware implementations of given
code-based CEDs can suffer from severe vulnerabilities, not providing the desired protection level. In particular, propagation of faults
into combinatorial logic is often ignored in security evaluation of these schemes. First, we formally define this detrimental effect and
demonstrate its destructive impact. Second, we introduce an implementation strategy to limit the fault propagation effect. Third, in
contrast to many other works where the fault coverage is the main focus, we present a detailed implementation strategy which can
guarantee the detection of any fault covered by the underlying EDC. This holds for any time of the computation and any location in the
circuit, both in data processing and control unit. In short, we provide practical guidelines how to construct efficient CED schemes with
arbitrary EDCs to achieve the desired protection level. We practically evaluate the efficiency of our methodology by case studies
covering different symmetric block ciphers and various linear EDCs.

F

1 INTRODUCTION

Small embedded devices are ubiquitous and receive partic-
ular attention in the Internet of Things (IoT). Often, such
devices are expected to fulfill security relevant services like
authentication or storage of private and sensitive data. The
crux of the matter is an embedded device being in the
hand of a potential attacker. This enables all sorts of phys-
ical attacks on the implementation of some cryptographic
scheme, independent of their mathematical security. The
goal of our work is to protect a circuit against one class
of such attacks: fault-injection attacks, first introduced by
Boneh et al. [1]. Here, the attacker aims at disturbing the
devices’ regular execution so that an error occurs. Based on
a subsequent mathematical analysis of the genuine and the
faulty response of the device, it might be possible to derive
the used secret.

An intuitive countermeasure to such attacks is to in-
troduce redundancy by calculating twice, either in parallel
(area redundancy or duplication) or consecutively (time re-
dundancy) [2], [3]. When a fault is detected, the output is
omitted or sensitive data is destroyed. Since the consistency
of information is checked simultaneously with the computa-

• Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shah-
mirzadi, and Falk Schellenberg are with the Ruhr University Bochum,
Horst Görtz Institute for IT-Security, Germany.
E-mail: firstname.lastname@rub.de
Tobias Schneider is with NXP Semiconductors Austria GmbH. The major-
ity of his contribution was performed while he was with Ruhr University
Bochum and UC Louvain. E-mail: tobias.schneider-a7a@rub.de

The work described in this paper has been supported in part by the German
Federal Ministry of Education and Research BMBF under grant number
16KIS0602 VeriSec, the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972 and the project 406956718 SuCCESS, the European
Unions Horizon 2020 program under project number 645622 PQCRYPTO,
and the European Commission through the ERC project 724725 (acronym
SWORD).

tion, such schemes are usually denoted as Concurrent Error
Detection (CED).

Error Detecting Codes (EDCs) seem to be a promising
approach to counter strong adversaries as they can be easily
adjusted by increasing the minimum distance of the code,
i.e., the maximum number of faults that the code can detect.
However, the implementation of code-based CED suffers
from certain problems: (a) the limited security of the so-
phisticated codes in practice, and (b) the higher complexity
compared to plain duplication.

In theory, the security of a code-based CED is defined by
the parameters of the employed code. In practice, however,
it strongly depends on how the CED scheme is imple-
mented. It is a trivial observation that one faulty gate can
affect multiple subsequent gates. This effect which we later
define as fault propagation can result in degradation of the
achieved error-detecting capability compared to the one
defined by the underlying code. While this is not considered
as an issue for duplication schemes, it can severely reduce
the security of other more complex codes as we show later
in this article. We present examples where a single faulty
gate suffices to bypass advanced code-based CED schemes.

Contributions. In this paper, we present a methodology
which enables a secure and practical implementation of
code-based CED schemes in the presence of fault propagation,
which we first formally define and highlight its conse-
quences on the error-detection capability. Then, we present
different strategies to limit its effect, each of which mitigates
the security issue while having different area overheads.
Consecutively, we define an adversary model, who is able to
inject faults at a bounded number of cells at any location of
the circuit (including data processing and control modules).
On its basis, we present guidelines how to implement code-
based CED in hardware circuits in such a way that the
detection of faults fitting into the considered model is guar-
anteed. We further cover every signal and component in

2

our constructions including computational modules, finite
state machine, and controlling signals. Indeed, it would not
matter where the faults are injected, they must be detected
as long as they are fitting to the considered bounded model.
We in fact define requirements to guarantee the security
against fault attacks making use of up to certain number
of faulty cells.

In order to explore the effectiveness of our methodology,
we consider several case studies based on symmetric block
ciphers including PRESENT [4], Skinny [5], Midori [6],
GIFT [7], LED [8], SIMON [9] and AES [10] and various
linear EDCs with different distances to examine the area-
overhead and throughput of our constructions by means of
an ASIC standard cell library.
Related Works. There is an extensive body of work related
to the design and implementation of CEDs. In some, the
problem of fault propagation was already identified and
some basic countermeasures were discussed. Below, we
briefly recall related works and indicate their limitations.

Parity is often used as an EDC for CED schemes. The
authors of [11] identified the fault propagation issue and as
a solution suggested to divide the circuit, yet only within
the context of parity-based schemes. In further previously-
published articles [12], the use of other more sophisticated
linear codes for CED schemes was proposed, including
a formal verification of the error detecting capabilities.
However, in most cases only a software implementation
was considered, which limits its portability to hardware
circuits. In [13], the authors explored how EDCs can be com-
bined with Threshold Implementation (TI) [14] to construct
an efficient hardware design resistant against both fault
and side-channel attacks. Private Circuits II [15] is another
approach aiming at designing a circuit protected against
both active and passive adversaries. While it does provide
provable security, the efficiency of its practical realization is
questionable as shown in [16]. Recently, two new combined
countermeasures based on multiparty computation have
been proposed in [17], [18]. Practical investigation of [17]
which is based on a software implementation shows a high
overhead. For CAPA [18], the authors introduce a new
formal adversary model including both active and passive
attacks. Their approach is not affected by fault propagation,
as it relies on the hardness of forging a valid MAC tag
for fault resistance. The problem of fault propagation was
also discussed in [19], where Timing Violation Vulnerability
Factor (TVVF) as a metric to evaluate the security of a given
circuit was defined. It provides a good measure to compare
the security of different circuits, but it is limited to a very
specific type of attacks.

2 PRELIMINARIES

2.1 Fault Injection Attacks
For fault attacks, the device is intentionally operated out-
side its specification so that some faulty output can be
observed. Based on a subsequent mathematical analysis of
the faulty (and genuine) output, the adversary is able to
recover the secret key [1]. Physical means to inject a fault
include tampering with the supply voltage [20] or the clock
signal [21]. Both relate to timing violations while strong
electromagnetic pulses [22] can affect the target’s execution

as well. In contrast, optical fault injection [23] using laser
beams can scale down the focus to a single transistor.
Advanced optical setup can even target multiple transistors
independently [24].

In practice, all physical fault injection techniques incor-
porate many parameters, e.g., the timing (clock cycle), the
physical intensity, the duration of the effect, the location
(x/y) on the device and even the distance (EM) or focal
plan (laser). This already lead to various approaches trying
to limit the parameters [25], [26].

Multiple properties can be derived how the target will
be affected. Most notably we can refer to its electrical effect,
e.g., whether some internal value will be always set to
logical ‘1’ or always reset to logical ‘0’. Faults sometimes are
modeled as bit-flip, which is certainly useful to model both
set and reset faults. Another parameter is the area that will
be affected, i.e., a single transistor, more bits, or the entire
registers. A crucial aspect is the distribution of the resulting
faults as there is usually some form of bias [27], [28]. Con-
sidering for example clock glitches or underpowering, the
bits involved in the critical path will be the first becoming
faulty. For optical fault injections, only the exact area that is
sufficiently illuminated will be affected.

The vast majority of attacks on ciphers is based on com-
paring a single or multiple faulty outputs to genuine ones
respectively, so-called Differential Fault Analysis (DFA) [29].
However, there are multiple more “exotic” approaches that
differ in certain aspects or requirements: Fault Sensitivity
Analysis [30], Differential Fault Intensity Analysis [27], Sta-
tistical Fault Attacks [28], [31], etc. Using one or another of
such attacks, the implementations of different ciphers were
found to be vulnerable. In fact, DFA can be seen as a form of
differential cryptanalysis on some last rounds of the cipher
defined by a particular fault model.

An obvious generic countermeasure is to introduce some
form of redundancy. This translates to repeating e.g., the
encryption for time redundancy, or multiple encryptions in
parallel for area redundancy. More sophisticated approaches
employ coding schemes instead of plain redundancy [12],
[32], [33]. All CED schemes commonly check whether in-
deed no fault occurred to enable the output.

2.2 Concurrent Error Detection Schemes

As depicted in Figure 1, a CED scheme usually includes
the original target algorithm A and its designated predictor
A′. These predictors range from an exact duplicate of A in
the most basic case (i.e., duplication) to sophisticated code-
based predictors (e.g., parity). To increase the performance,
some predictors are designed to operate on a compressed
mapping of INPUT, e.g., only one bit for parity. Depend-
ing on A, such predictors may not be able to predict the
compressed mapping of the output of A. Hence, they may
require intermediate results from A during the computation.
The result of A and A′ are checked in module C to detect
possible errors before transmitting OUTPUT. This structure
is very generic and can be applied on different levels of
granularity or types of redundancy.

3

Target

A

Predictor

A′

Check

C

input

output

. . .

Fig. 1. Basic Structure of concurrent error detection schemes.

Definition 1 (Fault Coverage). The fault coverage of a given
CED scheme C in a specific fault modelM is defined as the ratio

CovM(C) =
ξ(C,M)

ψ(C,M)
,

where ψ(C,M) (resp. ξ(C,M)) stands for the number of
possible (resp. detectable) faults of C adjusted to the distribution
ofM.

Such a metric to evaluate CED schemes has commonly
been used in several related works, e.g., [34]. While a
higher fault coverage theoretically indicates a higher level
of protection, the practical security strongly depends on
the chosen fault model and its closeness to reality. This
model should be carefully adapted based on the assumed
adversary to avoid under- or overestimating the coverage.

2.3 Error Detecting Codes

EDCs are an essential aspect of information theory and are
often used in CED schemes. In the following, we introduce
some notions [35] related to linear codes which are relevant
to our work.

Definition 2 (Linear Code). A binary linear [n, k]-code C with
length n and rank k is defined as a vector subspace over Fn2 which
maps messages x ∈ Fk2 to codewords c ∈ C.

Definition 3 (Generator Matrix). A k × n-matrix G is a
generator matrix of an [n, k]-code C iff it consists of k basis
vectors of C with length n. It can be used to map every message
x ∈ Fk2 to its corresponding codeword with x ·G = c ∈ C.

Definition 4 (Minimum Distance). The minimum distance d
of a linear [n, k, d]-code C is defined as

d = min
{
wt (c1 ⊕ c2) | c1, c2 ∈ C, c1 6= c2

}
,

where wt : Fn2 7→ N denotes the Hamming weight.

The error detection capability of a linear code C depends
on its minimum distance, i.e., the larger the distance the
more errors can be detected.

Lemma 1. An [n, k, d]-code C can detect erroneous codewords
c′ = c⊕ e iff e /∈ C.

In particular, all error vectors e 6= 0 with wt(e) ≤ u =
d− 1 are detected.

Definition 5 (Systematic Code). The generator matrix G of a
systematic code C is of the form G = [Ik|P] where Ik denotes
the identity matrix of size k.

Due to the structure of the generator matrix of systematic
codes, each codeword c contains the message x padded
by check bits x′, i.e., c : 〈x, x′〉. The check bits can be
easily generated using the matrix P as x′ = x · P . This
enables a simple split of the data paths between message
and check bits as depicted in Figure 1. Therefore, the original
implementation of the target operation A can stay as it is,
while it is extended with the predictors A′ for the check bits.

Example 1 (Parity). As a common approach CED scheme [32],
[33], the check bits x′ consist of only one additional bit, and the
required extra logic is rather small1. This leads to a [k + 1, k, 2]-
code with an error-detecting capability of u = 1 bit.

Example 2 (Multiple Executions). Another common CED
schemes is to simply run the target algorithm multiple times (by
either time or area redundancy) [3], [37]. It turns to a [λk, k, λ]-
code where λ denotes the number of executions of the algorithm
(e.g., λ = 2 for duplication). The error-detecting capability
u = λ − 1 can be straightforwardly improved by increasing λ
at the cost of multiplying the overhead byλ.

It has also been proposed to use non-linear codes to
improve the fault coverage [38], [39]. However, they may
have no benefits over linear codes in some scenarios [36].
Nevertheless, many of the issues discussed in this paper
are based on the linear property of the underlying code.
Therefore, we particularly omit non-linear codes in our
constructions.

3 CONCEPT

The effectiveness of faulty-detection property of CED
schemes heavily relies on the specific parameters of the
underlying code. While the rank directly affect the size of
the code |C|, the distance determines the higher bound for
the Hamming weight of the detectable error vectors. Many
proposed CED schemes are evaluated either by practical ex-
periments limited by the capabilities of the evaluator [40] or
only theoretically in the common uniform fault model [32].
In such a model, the error vector e ∈ Fn2/{0} follows a
uniform distribution, i.e., Pr(e) = 1

2n−1 .

Example 3 (Fault Coverage in the Uniform Model). For an
arbitrary [n, k, d]-code C, an error vector e cannot be detected by
the CED iff e ∈ C. This translate to the following fault coverage
considering a uniform fault model, so-called U .

CovU (C) = 1− | F
k
2/{0} |

| Fn2/{0} |
=

2n − 2k

2n − 1
. (1)

Since CovU is independent of the code distance d, every code with
a constant length and rank provides the same fault coverage, e.g.,
an [8, 4, 2]-code C1 and an [8, 4, 4]-code C2 both have the fault
coverage of CovU (C1) = CovU (C2) = 0.94.

However, most fault distributions in practice, required
by certain fault attacks, should have a specific bias [27],

1. The predictors can have a high complexity, which diminishes the
overhead advantage [36].

4

[28], [41]. Furthermore, the fault coverage can be drastically
reduced if the fault distribution changes, e.g., attacking a
duplication CED scheme by injecting a symmetric fault, i.e.,
the same fault is injected into A and A′ when A′ = A. Hence,
the distance of the code becomes an important factor for the
effective fault coverage, e.g., when the adversary has highly-
accurate fault-injection facilities (e.g., a laser beam [42], [43]).

It is noteworthy that in some hybrid schemes when both
encryption and decryption functionalities are supported by
the circuit, the correctness of the computation can be exam-
ined by checking whether the decrypted ciphertext matches
the original plaintext, or even in a round-based fashion [44].
This for sure increases the fault detection capability, but
certain symmetric faults still cannot be detected, e.g., the
same fault injected at the input of round 9 of AES encryption
and at the output of round 1 of AES decryption.

The stronger an adversary is assumed to be, the more
care needs to be taken when implementing a specific CED
scheme. In the following, we first introduce our adversary
model. Then, we highlight the practical issue of fault prop-
agation for code-based CED schemes and discuss critical
design choices, which strongly improve the fault coverage
of CED in practice. We try to formalize the problem and
provide a guideline how CED schemes should be integrated
into an implementation of cryptographic algorithms.

3.1 Adversary Model
We assume an adversary model similar to [15], i.e., the
computation of the circuit is partitioned in clock cycles and
the adversary can adaptively make t wires faulty (toggle)
per clock cycle. We assume that if a wire is faulty, all its
connections are also faulty. In other words, we exclude the
cases where the attacker is able to cut a connection and make
certain wire(s) faulty without affecting the other wires of
the same connection. Since each wire is the output of a cell
(either a gate or a register), we can model every fault on a
wire as a fault on the corresponding cell.

Definition 6 (Univariate Adversary Model Mt). In a given
sub-circuit, the adversary is able to make up to t cells faulty at
one clock cycle of the entire operation of the algorithm, e.g., a full
encryption.

Definition 7 (Multivariate Adversary ModelM∗t). Here, the
Mt adversary model is extended to allow the attacker to inject
such bounded faults at multiple clock cycles.

We first focus on univariateMt model and present tech-
niques to construct a circuit providing full fault coverage.
Afterwards, we give a solution to turn anMt-secure circuit
to its multivariateM∗t -secure variant.

Definition 8 (Checkpoint). A checkpoint c monitors the cor-
rectness of the state of the circuit at a specific point in the
computation.

Figure 2 depicts the concepts of checkpoints for an (a)
univariate and (b) multivariate adversary with t = 2 (the
red cells and wires indicate the faulty ones). While the
univariate adversary can make at most two cells faulty in
one specific clock cycle (gates no. 1 and 3), the multivariate
adversary is able to hit at most two cells per clock cycle
leading to all output wires in the circuit faulty (gates no. 1

Checkpoint

Checkpoint

c1

c2

1

2

3

(a) univariate

1

2

3

45

Clock Cycle i

Clock Cycle i+ 1

(b) multivariate

Fig. 2. Fault injection by anMt=2 andM∗t=2 adversary.

and 3 in the first clock cycle, and gates no. 4 and 5 in the
second clock cycle).

In order to conduct a successful DFA, the faults must
fit into a particular model, e.g., one-bit fault in a byte, or a
single-byte fault in a 16-byte state. For precise models (e.g.,
single-bit faults) the attack needs a few faulty outputs to
recover the secret (for example 2 faulty ciphertexts in case
of AES encryption). In contrast, for more general models the
number of required faulty outputs increases rapidly [45].
The goal of EDC-based CED schemes is to set a relatively
high bound for t, i.e., the attacker has to make more than
t cells faulty to obtain a faulty output, hence hardening the
corresponding DFA attack.

3.2 Fault Propagation

If an input of a gate in the circuit is faulty, its output might
be faulty as well depending on the type of the gate and the
value of the other inputs. This phenomenon is propagated
through the circuit and as a result an Mt-bounded adver-
sary achieves t+ δ ≥ t faulty cells, where δ ≥ 0 depends on
the t chosen cells and the other cells involved in the circuit.
We formally define fault propagation as follows while it has
been briefly discussed in [11], [13], [33].

Definition 9 (Fault Propagation). We assume the worst case
for fault propagation, i.e., one faulty input of a gate results in
a faulty output. Hence, in the presence of fault propagation it is
possible for an Mt-bounded adversary to achieve tp faulty gates
with

t ≤ tp ≤ |G|,

where |G| denotes the number of gates in the underlying circuit.

This has serious implications as the distance of the
underlying code does not provide a reliable bound for t
anymore. In particular, this bound is valid for an adversary
who can only make faults at the check points. Against
an Mt adversary, however, who can arbitrarily make cells
faulty, the distance of the code does not define a meaningful
bound.

5

1

2

3A A′

(a)

1

2

3

4

A1 A′
1

A2 A′
2

(b)

1 2

3A A′

(c)

Fig. 3. Realization of T protected with the parity [5, 4, 2]-code. (a) undetectable fault with t = 1 faulty cells (red), (b) all t = 1 faulty cells detectable
with an extra checkpoint, (c) all t = 1 faulty cells detectable with forced independence.

Example 4 (Parity with Fault Propagation). Let assume a
[5, 4, 2]-code Cparity with a generator matrix

Gparity =

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 = (I | Pparity) .

Let also suppose a circuit realizing the function T : F4
2 7→ F4

2

which is supposed to be protected by such a CED. Exemplary, we
consider a linear function T (x) = x · L with

L =

1 0 0 0
0 1 0 0
0 1 1 0
0 1 1 1

 .

Such a protected circuit, including A and A′, is depicted in
Figure 3(a) consisting of three XOR gates. A realizes T (x) = x·L
and A′ is formed by x ·L ·Pparity . The checkpoints are also placed
at the input and output of the circuit. In the uniform fault model,
based on Equation (1) its fault coverage is derived as

CovU (Cparity) =
25 − 24

25 − 1
= 0.52.

Since the code has a distance of d = 2, we restrict the adversary to
t = d − 1 = 1 cells. The code is indeed able to detect all possible
faults injected at the gates whose output is exclusively connected
to the checkpoints (e.g., Exclusive OR (XOR) gates 2 and 3 in
Figure 3(a)). Referring to such a fault model as Tt=1, it results in

CovTt=1(Cparity) = 1.

However, in the presence of fault propagation there are multiple
possibilities that the adversary can increase the number of faulty
gates and thus create an undetectable faulty state. One example
is shown in Figure 3(a), where only one fault is injected on the
XOR gate 1. It propagates through the XOR gate 2, and two
faulty signals arrive at the checkpoint, i.e., a state undetectable by
parity. RepeatingMt=1-bounded faults on all gates of the circuit
results in

CovMt=1
(Cparity) = 2/3.

4 METHODOLOGY

In this section we present our solutions to provide full fault
coverage under anMt adversary model.

4.1 Extra Checkpoints

One strategy to restrict the impact of fault propagation is the
inclusion of extra checkpoints in the circuit. By splitting the
circuit in smaller sub-circuits divided by checkpoints, this
effect can be damped assuming each sub-circuit contains
fewer gates than the whole design. This concept can be seen
as the inclusion of registers in TIs of composed functions to
prevent the propagation of glitches [14].

An interesting question is at which points in a circuit
the extra checkpoints need to be inserted. An approach is
to decompose T (.) into multiple sub-functions as T (x) =
Tl ◦ . . . ◦ T1(x) with a checkpoint between every Ti(.) and
Ti+1(.). This limits the fault propagation if each of the sub-
functions is less sensitive to fault propagation. To measure
the sensitivity, it can be seen that the fault cannot propagate
if the circuit realizing a sub-function Ti(.) has a depth of
1, i.e., there is no gate in the underlying sub-circuit whose
input is derived from another gate of the same sub-circuit.

Lemma 2 (Preventing Fault Propagation with Checkpoints).
Fault propagation can be completely prevented by inserting a
checkpoint at the output wires of all gates of a given circuit. To
achieve this, the state at each checkpoint has to be a valid codeword
under the employed code.

Proof. By checking every wire of every gate output, we
prevent the propagation of one detectable faulty gate to
undetectable multiple faulty gates. Therefore, one faulty
gate can only result in maximum one faulty wire at the
following checkpoint enforcing tp = t.

Example 5 (Parity with Extra Checkpoints). As a generic
strategy, adding checkpoints can result in extra combinatorial
logic as shown in Figure 3(b) for our previous parity example.
The inclusion of an extra checkpoint prevents harmful fault
propagation and ensures the error-detection capability for t = 1.

6

To this end T (x) = x · L (see Section 3.2) is decomposed to
T = T2 ◦ T1 by

L1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 , L2 =

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

 .

Obviously, Ai∈{1,2} realizes Ti(x) = x ·Li and A′i is formed by
x · Li · Pparity . Excluding the extra checkpoint, this comes at the
cost of one additional XOR. Nevertheless, the new design Ĉparity

provides the desired fault coverage of

CovTt=1
(Ĉparity) = CovMt=1

(Ĉparity) = 1.

4.2 Forced Independence

As an observation, duplication (or generally the realization
of the target function as λ instantiations of A) provides
security against an Mt=λ−1-bounded adversary even with
fault propagation.

Independence Property. The above observation can be
generically applied to other codes as well. Let us assume
the target function T : Fk2 7→ Fq2 which maps the input x
to a q-bit output y : 〈y1, . . . , yq〉. The function T (x) = y is
physically realized by q component-circuits each of which
realizing a component-function T i : Fk2 7→ F2 in such a way
that ∀i, T i(x) = yi. Such a set of component-circuits are
called independent if no gate is shared between every two
component-circuits.

∀i, j; i 6= j Gi ∩ Gj = ∅,

where Gi stands for a set of gates implementing the
component-function T i(.).

Lemma 3 (Preventing Fault Propagation with Forced In-
dependence). Given a function T : Fk2 7→ Fq2, a physical
implementation realized by a set of q independent component-
circuits does not suffer from fault propagation. Hence, tp = t if a
checkpoint is placed at the output of T (.).

Proof. Based on the assumption that the component-circuits
are distinct and do not share any resources, it is not possible
for a faulty wire in T i to traverse to T j 6=i. Therefore, one
faulty gate can maximally affect one output wire of T (.),
since each T i(.) computes only one unique output bit of
T (.). This implies that every t faulty gates in the entire set
of component-circuits can make at most t output wires of
T (.) faulty. Therefore, tp = t.

This strategy is shown in Figure 4. Since the hardware
synthesizers usually optimize the given design (e.g., by
sharing the identical components to achieve lower area),
particular attention should be paid to avoid such opti-
mizations2. Otherwise, the independence property might be
violated.

Example 6 (Parity with Forced Independence). For our run-
ning example, we consider A and A′ as one function T : F5

2 7→ F5
2.

Based on Lemma 3, it is required to implement T as five distinct

2. In common HDL designs, it can be done by instantiating a unique
component for each component-function, and forcing the synthesizer
to keep the hierarchy.

A A′

Fig. 4. Forced independence of the target algorithm A and its predictor
A′.

component-functions which do not share any resources. The re-
sulting design C̄parity is depicted in Figure 3(c). Compared to
the former example, forced independence suffices with only one
checkpoint which makes it more efficient than Ĉparity , while
providing the same fault coverage of

CovTt=1
(C̄parity) = CovMt=1

(C̄parity) = 1.

4.3 Combination
Each aforementioned solution comes at the cost of higher
area specially for complex cryptographic algorithms. There-
fore, we propose to utilize a hybrid approach in three steps
for a given target function T (.).

1. Decompose T : Fk2 7→ Fq2 into multiple sub-functions
Ti : Fki2 7→ Fqi2 of a less complexity.

Considering a classical symmetric cipher, each sub-function
Ti(.) reflects a fundamental module of the cipher (e.g.,
substitution, diffusion, and key addition).

2. Split each Ti(.) into multiple smaller sub-functions
Ti,j : Fki,j2 7→ Fqi,j2 with

∑
j ki,j = ki and

∑
j qi,j = qi.

A basic split in a majority of symmetric ciphers follows the
cipher’s structure, e.g., each sub-function Ti,j represent an
S-box on nibbles or MixColumns on words.

3. Implement each sub-function Ti,j fulfilling the independence
property, and place a checkpoint at their output.

This step benefits from the small input size of Ti,j . However,
a decomposition (step 1) that is too fine would suffer from
the basic problem of frequent checkpoints. Therefore, it is
imperative to find a balance between the two strategies
adjusted to the target function T (.).

4.4 Application
In order to clarify the application of our strategies in a code-
based CED scheme, we consider an exemplary algorithm
realized by a sequential circuit depicted in Figure 5(a) con-
sisting of a register which loads the INPUT at the start of the
operation (triggered by rst signal) and performs the function
T (.) repeatedly till the OUTPUT is taken from the register3.

3. Finite State Machine (FSM) is not shown.

7

rst

T

Input

Output

(a) original

rst

T

Input

F

Output
C

rst

Input′

T ′

C ′

×k ×m

A A′

(b) F (.) injective or transparent

rst

T

Input

F

Output
C

rst

Input′

T ′

C ′

×k ×m

A A′

(c) F (.) non-injective and non-transparent

Fig. 5. Our construction with respect to application of an EDC.

For the sake of simplicity we suppose that the bit-length
of INPUT, register, and T (.) input and output is a multiple
of k bits. The application of an [n, k, d]-code would lead
to transforming every k-bit chunk x to an n-bit codeword
c = [x | x′]. Hereafter, we refer to the application of matrix
P on x to derive the redundant part x′ by F : Fk2 7→ Fm2
as F (x) = x · P = x′, where m = n − k denotes the bit-
length of the redundancy. Without losing the generality, we
use k and m (or ×k and ×m) to refer to the bit-length of
the message and redundancy, respectively. In the following
we distinguish two different cases and explain how the
underlying EDC is applied.

F : an injective function or transparent to T
If the redundancy size is at least as large as the message size
(n ≥ 2k) and the function F (.) is injective, the redundancy
part of the circuit (noted beforehand by A′) can operate on
x′ independent of x, as shown in Figure 5(b). The redundant
function T ′(.) is also trivially achieved as T ′ = F ◦T ◦F−1.
Both T (.) and T ′(.) should be implemented following the
forced independence, and a checkpoint is placed at the input
of the T (.) marked by c and c′ in Figure 5(b). It is indeed
essential to place the checkpoint at the input of any function
implemented by the forced independence. Otherwise, if the
checkpoints are moved to the output of T (.), the faults
injected at the register cells would potentially propagate to
multiple output bits of T (.). It should be noted that since the
multiplexer and the register (see Figure 5(b)) independently
operate on each bit of the T (.) output, they do not affect the
independence property. Therefore, any fault injected at T (.)
fitting toMt=d−1, is detected at the checkpoint in the next
clock cycle.

If F (.) is not injective, for some particular functions
T (.) it is still possible for T ′(.) to operate only on x′

(Figure 5(b)). Since any intermediate value of the circuit
should be a valid codeword, if x′ = F (x), the output
〈T (x) , T ′ (x′)〉 should also form a valid codeword. This
implies that T ′(x′) = F (T (x)), i.e.,

T ′ ◦ F = F ◦ T. (2)

Given T (.) and F (.), it can be examined if there exists
such a function T ′(.) fulfilling the above condition. In many
cases, specially in SPN block ciphers, the linear layer uses
multiplication in F2k , i.e., T : F2k 7→ F2k in such a way that

T (x) = a • x with constant a ∈ F2k . In the following we
show that if a is a primitive element (then a 6= {0, 1}), there
exists no such a function T ′(.) fitting to Equation (2).

Lemma 4. Let T : F2k 7→ F2k that T (x) = a • x is
multiplication with primitive element a ∈ F2k , and let F :
F2k 7→ F2m be any linear non-injective function. Then, there
is no T ′ : F2m 7→ F2m such that F ◦ T = T ′ ◦ F .

Proof. Since F (.) is a linear function, among its inputs there
exist 2c (with c ≥ k −m) values which are mapped to zero.
In other words, there are 2c − 1 ≥ 1 nonzero roots for F (.).
Let u be one of them, i.e., F (u 6= 0) = 0. Now assume that
there exists a T ′(.) function which F ◦ T = T ′ ◦ F . As both
F (.) and T (.) are linear, T ′(.) is also linear. This results to
T ′(0) = 0. Hence, we have

F ◦ T (u) = T ′ ◦ F (u) = T ′(0) = 0 ⇒ F (a • u) = 0,

which means a • u is another nonzero root of F (.). By
repeating above equation, we find out that for any i ≥ 0,
ai •u is a nonzero root of F (.). Since T (.) is a multiplication
with primitive element in F2k , none of (ai • u, aj • u) with
i 6= j and i, j < 2k − 1 are equal to each other. Hence,
we have 2k − 1 nonzero roots for F (.) which means that
any x ∈ F2k is a root for F (.) (i.e., ∀x, F (x) = 0) that is in
contrast with our assumption that F (.) is an arbitrary linear
function.

If T (.) is a multiplication with a = 0/1 in F2k , the
redundant counterpart T ′(.) is a multiplication with the
same constant in F2m . This for example holds for the linear
layer of several block ciphers including Midori [6], Skinny
and Mantis [5].

F : a non-injective function and non-transparent to T
In such cases, T ′(.) needs to receive the original data x to
be able to compute T ′(x) = F ◦ T (x). The corresponding
construction is shown in Figure 5(c), where the only dif-
ference to the former case is how the T ′(.) is realized. It
is noteworthy that the implementation of T ′(.) should also
fulfill the independence property.

Optimization
The decomposition of T = T2 ◦ T1 would generally lead
to one of the constructions shown in Figure 6, where a
checkpoint is placed between the sub-functions.

8

rst

T1

T2

Input

F

Output
C1

C2

rst

Input′

T ′1

T ′2

C ′1

C ′2

×k ×m

A A′

(a) F (.) injective or transparent

rst

T1

T2

Input

F

Output
C1

C2

rst

Input′

T ′1

T ′2

C ′1

C ′2

×k ×m

A A′

(b) F (.) non-injective and non-transparent

rst

T1

T2

Input

F

Output
C1

C2

rst

Input′

T ′1

T ′2

C ′1

C ′2

×k ×m

A A′

(c) F (.) non-injective but transparent to T2(.)

Fig. 6. Our construction with respect to application of an EDC with decomposition.

Theorem 1. If T2(.) is a linear function represented by matrix
L with elements in F2k , the extra check c2 and c′2 between T1(.)
and T2(.) is not required if L is formed by only 0/1.

Proof. Below, we represent an intermediate value of the
circuit by x (resp. x′) as s equally-sized k-bit chunks
〈x1, . . . , xs〉 (resp. m-bit chunks 〈x′1, . . . , x′s〉). Due to the
independence property, any fault injected at t cells of a
sub-function is modeled by an additive error vector e
at its output. We use the notation e1 = 〈e1,1, . . . , e1,s〉,
e′1 =

〈
e′1,1, . . . , e

′
1,s

〉
, e2 = 〈e2,1, . . . , e2,s〉 and e′2 =〈

e′2,1, . . . , e
′
2,s

〉
for the corresponding error vectors of in-

jected faults in T1(.), T ′1(.), T2(.) and T ′2(.), respectively. The
check at c1 and c′1 examines the below equality:

F (T2(x⊕ e1)⊕ e2)
?
= T ′2(x

′ ⊕ e′1)⊕ e′2,

where x denotes the fault-free output of T1(.), i.e., the input
of T2(.). Since x′ = F (x) and F ◦ T2 = T ′2 ◦ F , the above
equation is simplified to

F (T2(x))⊕ F (T2(e1))⊕ F (e2) ?
= T ′2(x

′)⊕ T ′2(e′1)⊕ e′2 ⇒
F (T2(e1)⊕ e2)

?
= T ′2(e

′
1)⊕ e′2 (3)

Considering an Mt=d−1 adversary model, wt(e1) +
wt(e′1) + wt(e2) + wt(e′2) < d. In order to detect it, the
relation in Equation (3) should be unequal. It means

∀e1, e′1, e2, e′2 ;

0 < wt(e1) + wt(e′1) + wt(e2) + wt(e′2) < d =⇒
F (T2(e1)⊕ e2) 6= T ′2(e

′
1)⊕ e′2

which equally means

∀e1, e′1, e2, e′2 ; F (T2(e1)⊕ e2) = T ′2(e
′
1)⊕ e′2 =⇒

wt(e1) + wt(e′1) + wt(e2) + wt(e′2) ≥ d ∨
wt(e1) = wt(e′1) = wt(e2) = wt(e′2) = 0 (4)

We define T2(.) and T ′2(.) as

T2(x) = 〈x1, · · · , xs〉 · L , T ′2(x) = 〈x′1, · · · , x′s〉 · L′

L =

L1,1 L1,2 · · · L1,s

L2,1 L2,2 · · · L2,s

...
...

. . .
...

Ls,1 Ls,2 · · · Ls,s

 , L

′ =

L′1,1 L
′
1,2 · · · L′1,s

L′2,1 L
′
2,2 · · · L′2,s

...
...

. . .
...

L′s,1 L
′
s,2 · · · L′s,s

 ,

where eachLi,j andL′i,j are binary k×k andm×mmatrices,
respectively, and

∀i, j Li,j · P = P · L′i,j .

Using above definitions, Equation (3) can be written as
following s equations.

(s⊕

j=1

e1,j · Lj,1 ⊕ e2,1
)
· P =

s⊕

j=1

e′1,j · L′j,1 ⊕ e′2,1

...
(s⊕

j=1

e1,j · Lj,s ⊕ e2,s
)
· P =

s⊕

j=1

e′1j · L′j,s ⊕ e′2,s

Let us denote αi =
⊕s

j=1 e1,j ·Lj,i⊕e2,i and βi =
⊕s

j=1 e
′
1,j ·

L′j,i ⊕ e′2,i. If ∀i αi = 0, then T2(e1)⊕ e2 = 0. It means that
the output of T2(.) is fault free, hence not useful for the
adversary. Therefore, we can conclude that

∀e1, e′1, e2, e′2 ; F (T2(e1)⊕ e2) = T ′2(e
′
1)⊕ e′2 =⇒

e2 = T2(e1) ∨ ∃i; αi 6= 0.

Without loss of generality, we consider that there exists an i
for which αi 6= 0 and βi = αi · P . For an [n, k, d]-code, we
already know that for any nonzero x, wt(x)+wt(x ·P) ≥ d
which implies that

αi 6= 0 =⇒ wt(αi) + wt(αi · P) = wt(αi) + wt(βi) ≥ d. (5)

As stated, every Lj,i/L′j,i is either zero or identity ma-
trix. Hence, e1,j · Lj,i can be considered as a scalar product
of e1,j · aj,i with aj,i = 0/1. Therefore, we can simplify

9

rst

s1 s2 si

U G1 G2 Gi
...

Init

State

(a) original

rst

C

C C C

F

s1 s2 si

U G1 G2 Gi
...

Init Init′

State

rst

C ′

C ′ C ′ C ′

s′1 s′2 s′i

U ′ G′1 G′2 G′i...

State′

×k ×m

A A′

(b) F (.) injective or transparent

rst

C

C C C

F

s1 s2 si

U G1 G2 Gi
...

Init Init′

State

rst

C ′

C ′ C ′ C ′

s′1 s′2 s′i

U ′ G′1 G′2 G′i...

State′

×k ×m

A A′

(c) F (.) non-injective and non-transparent

Fig. 7. Application of an EDC on FSM.

Equation (5) as follows.

αi 6= 0 =⇒
d ≤ wt(αi) + wt(βi)

= wt
(s⊕

j=1

e1,j · aj,i ⊕ e2,i
)
+ wt

(s⊕

j=1

e′1,j · aj,i ⊕ e′2,i
)

≤ wt
(s⊕

j=1

e1,j · aj,i
)
+ wt

(s⊕

j=1

e′1,j · aj,i
)
+ wt(e2,i) + wt(e′2,i)

≤
s∑

j=1

wt(e1,j · aj,i) +
s∑

j=1

wt(e′1,j · aj,i) + wt(e2,i) + wt(e′2,i)

≤
s∑

j=1

wt(e1,j) +
s∑

j=1

wt(e′1,j) + wt(e2,i) + wt(e′2,i)

= wt(e1) + wt(e′1) + wt(e2,i) + wt(e′2,i)

≤ wt(e1) + wt(e′1) + wt(e2) + wt(e′2)

This condition holds for MixColumns of several block ci-
phers including Midori [6], Skinny [5] and Mantis [5].

Control Signals
In contrast to masking countermeasures, the Finite State
Machine (FSM) should also be protected against faults.
Otherwise, the adversary can change the control flow and
obtain faulty results. As a trivial example, by a single-bit
fault the attacker may force to terminate an encryption
process at the first cipher rounds leading to have access to
the cipher intermediate values, hence recovering the key.

The FSM can also be seen as a set of register cells loaded
by a certain INIT value, and updated at every clock cycle
through an update function U(.). We refer to the content
of the register by STATE. Each control signal si is derived
by a dedicated function over the FSM register, marked

by Gi(.) in Figure 7(a). An [n, k, d]-code can be similarly
applied on such a controlling circuit. Each control signal si
and its redundant counterpart s′i are related in a form of
s′i = F ({0}∗|si), i.e., si is padded with zero to form a k-
bit chunk. In other words, the redundancy of every control
signal has a size of m bits. This is essential since 〈{0}∗ | s, s′〉
should form a valid codeword to guarantee the detection of
t < d faulty cells.

• For an injective or transparent F (.), the redundant part
of the update function would realize U ′ = F ◦U ◦ F−1
over STATE′ (i.e., the redundant part of STATE). Each
control signal si is mapped to s′i = G′i(STATE′) with
G′i = F ◦ Gi ◦ F−1. Figure 7(b) shows an exemplary
construction.

• For others, the redundancy update function would
operate on STATE as U ′ = F ◦ U . The same holds for
the control signals as s′i = G′i(STATE) with G′i = F ◦Gi
(see Figure 7(c)).

Obviously, the implementation of all U(.), U ′(.), Gi(.), and
G′i(.) should fulfill the independence property. As shown in
Figure 7, the checkpoints are placed at the register output as
well as at the output of every function generating a control
signal si.

Multiplexers
Suppose that s controls a k-bit multiplexer switching be-
tween x and y. The redundant counterpart should be a mul-
tiplexer switching between m-bit x′ and y′ words by an m-
bit redundant control signal s′. To this end, we propose the
construction shown in Figure 4.4 formed by a multiplexer
tree in m levels. Each row of the multiplexers is controlled
by the corresponding bit of s′. The first row by the LSB s′1,
and the last row by MSB s′m. Them-bit inputs vi∈{0,...,2m−1}

10

s′
mm

m

m

y′x′

z′

10

mm

v1v0

10

mm

v3v2

s′110

mm

v2m−1v2m−2

10

mm

v2m−3v2m−4

...

...

...

10 10 s′2

10

mm

m

s′m

z′

→

Fig. 8. Application of an EDC on multiplexers.

en

1

Input

Output

(a) original

en10 1

Input

Output

en′m

Input′

Output′

(b) transformed

Fig. 9. Application of an EDC on registers with enable.

of the first row are defined as follows:

vi =

x′ ; i = F (0)
y′ ; i = F (1)
0 ; else4

Since many input signals vi except two are connected
to zero, the synthesizer usually optimizes this construction
and removes those 2-to-1 multiplexers whose both inputs
are tied to zero. This does not affect the fault propagation
and hence the fault coverage of our construction.

The faults on external signals, those provided through
the I/O ports, cannot be internally detected. For instance,
any fault on plaintext of an encryption function is inter-
preted as encrypting another plaintext and does not lead to
any exploitable information. Therefore, the external control
signals (e.g., the rst signal in Figure 5 and Figure 7) as well
as the multiplexers which are controlled by such external
signals do not have to be encoded. In other words, the same
external signal is used in both A and A′. This can be seen in
Figure 5, Figure 6 and Figure 7.

Registers with Enable
If the circuit contains registers with enable signal, the re-
dundant counterpart cannot trivially make use of the corre-
sponding redundant control signal with bit-length m > 1.
We propose the solution shown in Figure 9 to replace such
registers with their equivalent construction formed by a
register without enable and a multiplexer. This makes it en-
able to employ the above-explained redundant multiplexer
controlled by redundant control signal.

Checkpoints
It is of great importance to integrate a fault detection mecha-

4. Arbitrary random values can be given to these inputs vi without
affecting the fault coverage.

nism into the consistency check process as well. Otherwise,
the attacker can target the final module and force a faulty
output to pass the consistency check process, independent
of the fault coverage of the data-processing part. Therefore,
it is necessary to be able to detect up to t = d − 1 faults
at the consistency check process in order to provide full
fault coverage on the entire circuit against anMt-bounded
adversary. We propose the construction shown in Figure 10.
The values of the checkpoints at the original part ci are
concatenated5 and each k-bit chunk is given to an instance of
F (.) function, whose output is marked by c′′. Its consistency
is examined with the value of all checkpoints at the redun-
dant part concatenated together, marked by c′. The result of
such a check is an m-bit error vector e. To this end, c′′ and
c′ are split into m chunks6. The i-th bit of the error vector
examines the consistency of all bits of the corresponding i-th
chunks:

ei∈{1,...,m} :
〈
c′′i, c′′i+m, . . .

〉 ?
=
〈
c′i, c′i+m, . . .

〉
.

As shown in Figure 10, all bits of the error vector are ORed
with the entire d− 1 bits of the error register ê, before being
stored in the same register. Such a register is reset by the
rst signal, the same signal which starts the operation of the
circuit and the FSM. This construction implies that once an
error is detected, the full content of the error register is filled
by ‘1’ and stays unchanged till the next reset phase. As the
last step, the d−1 bits result of the OR operation (marked by
ẽ) controls a redundant multiplexer with d − 1 bits control
signal (see Figure 4.4). Such a multiplexer should pass the
OUTPUT when all d − 1 bits of the control signal ẽ are
zero. Therefore, with respect to the construction shown in
Figure 4.4, the input signals of the multiplexer are selected
as follows:

vi =

{
OUTPUT ; i = 0
0 ; else

Finally, the output of the multiplexer is stored in a dedicated
register when the computation of the circuit is finished,
identified by the ‘done’ signal. It is among the control
signals derived from the STATE of the FSM, and its con-
sistency is also examined similar to other control signals.
By detecting even a single-bit fault, the entire d − 1 bits
vector ẽ becomes ‘1’. Although all bits of ẽ are the same,
the independence property should be also fulfilled in the
implementation of the OR operation realizing each bit of
ẽ. As a simple example, suppose that the attacker made a
single cell faulty (in any part of the circuit). This causes
ẽ to be fully ‘1’. To force the faulty OUTPUT to pass the
multiplexer, the attacker needs to make at least d − 1 more
cells faulty at the same clock cycle (univariate model) to
turn d − 1 bits vector ẽ with value fully 1 to fully 0 . This
achieves full fault coverage on the entire circuit under the
Mt=d−1-bounded adversary.

4.5 Extension to Multivariate
As defined in Section 3.1, the Mt adversary model can
make at most t cells faulty at one clock cycle between

5. The single-bit control signals are padded with zero before being
concatenated with others.

6. The size of both c′ and c′′ is always a factor of m bits.

11

rst

...
... CheckF

Output

̂Output

C ′1

C ′2

C ′i

C2

C1

C i

×k ×m ×mc′′ c′

?
=c′′ c′

...

rst
E

d-1

Output

done

0

̂Output

e

ê ê ê

ẽ

ê

d-1

m

m m m

d-1

d-1

d-1

Fig. 10. Application of an EDC on the consistency check (Mt model).

two consecutive reset phases. Suppose the circuit shown in
Figure 5(b) with an [n, k, d]-code and d > 1, which should
detect all single-cell faults. Suppose also that at one clock
cycle before the last, the adversary makes a cell in T (.)
faulty, which results in a value with a single-bit fault stored
in the register. If at the next clock the adversary injects a
single-cell fault on the corresponding F (.) function of the
consistency check process (Figure 10), the faulty output can
pass the multiplexer and be stored in the final register.
In order to extend the adversary model to multivariate in
order to be able to keep the full fault coverage even if the
adversary makes up to t cells faulty at every clock cycle, we
need to introduce extra checkpoints right at the input of the
registers in the design to make sure that the consistency of
the values stored in the registers is examined. This includes
the register of the data-processing module and that of the
FSM (see Figure 11). Hence, in the aforementioned example
the fault is detected at the same clock cycle as it is injected.
Introducing more checkpoints obviously increases the area
requirements, further since they are placed right at the
input of the registers, the critical path delay of the circuit
is increased leading to lower throughput.

We further need to adjust the consistency check process
to support the multivariateM∗t model. We have to increase
the size of the error register ê (see Figure 10). Assuming that
the adversary injects one fault inside T (.) and t−1 faults on
the output of the OR operations, it makes only one bit of ẽ to
be ‘1’. A multivariate adversary would be able to directly set
this bit to ‘0’ in the following cycle by targeting the register
cell directly and circumvent the error detection. In order
to resist against such a case, it is necessary to increase the
bit size of ẽ and its corresponding register until it becomes
impossible to set all these bits to ‘0’ with at most t faults per
clock cycle. In a general case, suppose that all bits in ê are set
to ‘1’. Now the adversary can reduce the Hamming weight
of ẽ by t by targeting the output gates of the OR operation
in one clock cycle. In the next clock cycle, it can be again
reduced by t by targeting the register cells. Therefore, we

rst

T

Input
F
F

Output
C2

C1

rst

si

U Gi

Init

C4

C3

rst

Input′

T ′

C ′
2

C ′
1

rst

s′i

U ′ G′
i

Init′

C ′
4

C ′
3

A A′

Fig. 11. Supporting the multivariateM∗t model.

have to increase the bit size of the error register to t+t+1 =
d + t > 2t which guarantees that at least one ‘1’ will reach
the OR operation and, thus, be mapped to d + t ‘1’s before
the third cycle. Hence, the OR operations (i.e., whose result
are indicated by ẽ), the error register, and the control signal
of the redundant multiplexer should change from d− 1 bits
to d + t = 2d − 1 bits to support protection against the
multivariateM∗t=d−1 model.

4.6 Combination with Side-Channel Countermeasures

Since our constructions make use of a binary linear code,
none of the redundant functions has algebraic degree higher
than their original counterpart. Therefore, application of
hardware Boolean masking schemes (e.g., TI [14], [46] and
DOM [47]) on our constructions would not face any trouble.
However, particular attention should be paid on the con-
sistency check module receiving the masked data to avoid
side-channel leakage (see [13] for an exemplary solution).
Note that it is obviously not required to mask the con-
trol logic, but all functions (including the masked ones)
should fulfill the independence property. As a side note,
the combination presented in [13] mixing TI and an EDC is
a special case for m = k = d = 4. However, it does not
deal with fault propagation (i.e., the independence property
has been ignored) and the control logic is excluded from
the fault-detection mechanism. Therefore, independent of
its resistance against side-channel analysis attacks, it cannot
detect all possible up to t = d − 1 faults, i.e., no full fault
coverage against even a univariateMt adversary.

5 CASE STUDIES

To assess the overhead of our proposed methodology, we
examined a couple of case studies including PRESENT [4],
LED [8], SIMON [9], GIFT [7], Midori [6], Skinny [5] and
AES [10]. The analyses and comparisons shown here are
based on hardware implementations synthesized by the
Synopsys Design Compiler and the IBM 130 nm ASIC stan-
dard cell library. By keeping the hierarchy, we made sure
that synthesizer does not corrupt the modules designed
with independence property.

Among the covered ciphers with 64-bit state, we mainly
focus on Skinny. For the rest, we just give their block
diagram representations in Appendix.

12

rst rst

S

SR

P

Plaintext K1/K2

F

F

F

Ciphertext

RC(FSM)

MC

LFSR

C1 C3

part

rst

P

K0

C2part

rst rst

F◦S◦F−1

SR

P

Plaintext′ K ′1/K
′
2

RC ′(FSM ′)

MC

F◦LFSR◦F−1

C ′1 C ′3

part

rst

P

K ′0

C ′2part

×k
×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

Fig. 12. Skinny, round-based, F (.) injective or transparent

5.1 Skinny-64

The block cipher Skinny-64 operates on a 64-bit state and on
a 64-, 128-, or 192-bit key. Depending on the key size, the
number of cipher rounds is defined as 32, 36, or 40 rounds.
After the state is loaded by the 64-bit plaintext, a 4-bit S-
box is applied on each 4-bit chunk of the state. A part of a
column of the state is XORed with a RoundConstant, and
two first rows are further XORed with a 32-bit SubTweaKey.
ShiftRows is the inverse of the AES ShiftRows (on 4-bit
cells), and by MixColumns each column of the state is
multiplied by a 4× 4 matrix filled by 0/1. The KeySchedule
applies only a nibble-wise permutation P on the entire 64-
bit key state.

The KeySchedule is formed by three variants each of
which operating on a 64-bit part of the key. All variants
share a nibble-wise permutation P , which is the sole op-
eration for the first variant of the 64-bit KeySchedule. The
second and the third 64-bit KeySchedule variants (for 128-
and 192-bit key sizes) additionally make use of an LFSR-
based operation on each nibble of the first two rows of each
64-bit key after applying the permutation P .

Unless otherwise stated, we focus on a round-based
implementation architecture, where at every clock cycle a
full encryption round is completed. In order to equip the
implementation with an EDC, we first need to specify the
parameters of the underlying code. Due to the 4-bit S-box
of Skinny-64, the rank k is fixed to 4, and depending on the
considered adversary modelMt, the length n and distance
d are defined. Below we categorize our implementations
into three groups:

[8,4,4]-code
This implies the case with injective F (.) (see Figure 5(b)).
The common code for this case is the extended Hamming-
code [8, 4, 4] (as also used in [13]). The corresponding gen-

erator matrix G is

GeH =

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 = (I4 | PeH) ,

where F (x) = x·PeH . As given in Section 4.4, the redundant
part of the S-box operating on the redundant part of the state
is derived by F ◦ S ◦ F−1. Since ShiftRows is a nibble-wise
permutation, it is the same as its redundant counterpart.
The matrix of the MixColumns involves only 0/1 coeffi-
cients. With respect to the linear property of the underlying
code, similar to ShiftRows the same MixColumns module
is used in the redundant part of the circuit. This can be
also seen in Figure 12, where the aforementioned modules
are marked by SR and MC . As an important notice, the
Skinny MixColumns has the special property explained in
Section 4.4(§ Optimization) indicating that no extra check-
point before the MixColumns is required.

Since the nibbles of the key are also encoded in the
similar way, the KeyAddition is also done trivially on the
redundancy. The same holds for the nibble-wise permuta-
tion of the KeySchedule (shown by P in Figure 12). Similar
to the S-box module, the LFSRs used in the KeySchedule of
the second and third 64-bit keys K1 and K2 need to realize
F ◦LFSR ◦F−1. The remaining operation is the XOR with
RoundConstant (shown by RC) derived from a 6-bit Linear
Feedback Shift Register (LFSR) which is also used as the
round counter defined as

(rc5|rc4|rc3|rc2|rc1|rc0) 7→ (rc4|rc3|rc2|rc1|rc0||rc5 ⊕ rc4).
(6)

The RoundConstant (c0, c1, c2, 0) is XORed to the first col-
umn of the cipher state with

c0 = (rc3|rc2|rc1|rc0), c1 = (0|0|rc5|rc4), c2 = (0|0|1|0).
If the STATE of the FSM is encoded following the way it is
used by c0 and c1, the STATE′ which is of 2m = 8 bits can

13

easily be split to make the redundant RoundConstant c′0 and
c′1. Obviously, the last one c′2 = F (c2).

The update function U(.) of the FSM operates on 6 bits.
However, the redundant counterpart U ′(.) operates on 8-
bit STATE′ (see Figure 7(b)). Therefore, every component-
function U ′i(.) is an 8-bit to 1-bit function which makes
it area-wise larger than the corresponding component-
functions U i(.) (see Equation (6)). The FSM includes only
one control signal ‘done’ indicating the end of the encryp-
tion process. Considering an Mt=3 adversary model, the
checkpoints are placed at the input of the S-box, at the input
of the permutation modules of the KeySchedule and at the
single control signal ‘done’.

[7,4,3]-/ [5,4,2]-code
For these cases, asm < k, the F (.) cannot be injective, hence
the architecture shown in Figure 5(c) is followed. Based
on the following generator matrices, the [7, 4, 3]-code is the
well-known Hamming code, and [5, 4, 2]-code computes 1-
bit parity for each 4-bit chunk.

G[7,4,3] =

1 0 0 0 0 1 1
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0

 , G[5,4,2] =

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

For both cases F (.) is transparent to XORs, ShiftRows,
MixColumns, and the KeySchedule permutation, hence can
solely operate on STATE′. The S-box and the LFSRs are
excluded from this list, as it can be seen in Figure 13. The
redundant counterpart of the S-box realizes F ◦ S and the
same holds for the LFSR of the KeySchedule as F ◦ LFSR.

[2,1,2]-/ [3,1,3]-/ [4,1,4]-code
Duplication, triplication, and quadruplication reflect these
codes. We included these cases into our investigations to
enable a comparison between our methodology and com-
mon and straightforward duplication schemes which pro-
vide full fault coverage considering the same adversary
model.The generator matrix of duplication is formed by
Gdup = (Ik | Ik). Similarly, that of triplication and quadru-
plication are made by three/four times repeating the iden-
tity matrix Ik. However, for the application of such schemes
it is not necessary to fulfill the independence property. We
instantiated every instance of the encryption function and
placed the checkpoints at the ciphertexts as well as the
control signals (see Figure 14 showing a general architecture
of such schemes). It is noteworthy that in order to keep
full fault coverage, we have used our-proposed consistency
check module shown in Section 4.4(§ Checkpoints).

Serial Architecture.
We additionally considered a nibble-serial architecture in
our implementations of Skinny. In this fashion, which is
known to provide the smallest area footprint at the cost
of low throughput7, the cipher state register is shifted one
nibble at every clock cycle. Only one instance of each op-
erational module (S-box and MixColumns) is implemented
at the cost of a more complicated FSM (see Figure 16 in
Appendix). This architecture for sure reduces the area, but
since at every clock cycle the state (and the key) registers are

7. Excluding the bit-serial fashion [48].

shifted, their consistency should be checked when the im-
plementation is equipped with an EDC. Therefore, as shown
in Figure 16 to Figure 19 (in Appendix), the checkpoints are
placed at all 64-bit output of the state register as well as the
entire key register. This means that due to the fact that –
compared to the round-based architecture – the size of the
checkpoints is not reduced, the gain with respect to the area
reduction is not expected to be significantly high.

Other Ciphers
We have applied our methodology on other symmetric
ciphers as well including LED, Midori, PRESENT, GIFT and
SIMON. We faced several challenges when the operations
do not fit into the nibble/byte-wise fashion of the encoding,
i.e., how the [n, k, d]-code is applied. The extreme cases
include the bit-permutation of PRESENT and GIFT as well
as the bit-wise shift and operations of SIMON. Considering
the independence property, the redundant counterpart of
such operations led to large (e.g., 12-bit to 1-bit) functions,
hence high area overhead. The block diagram of their round-
based implementations are given in Appendix. In contrast to
Skinny and Midori, the MixColumns of LED forces to place
an extra checkpoint unless the S-box and the MixColumns
are combined and the entire round function fulfills the
independence property. Therefore, for LED we considered
two variants referred as ‘2check’ and ‘combine’ respectively
(see Figure 20 and Figure 21 in Appendix). In comparison,
the ‘2check’ variant should lead to a smaller area overhead
but with higher latency due to its extra checkpoints.

5.2 AES

Due to the popularity of the AES [10], we omit explaining
the details of its algorithm. Similar to Skinny, we considered
two category of codes, all of which with rank k = 8 due to
the Sbox size. As an injective function F (.), we focused on
[17, 8, 6]-, [19, 8, 7]-, and [20, 8, 8]-code which reflect 9-, 11-,
and 12-bit redundancy with a distance of 6, 7, and 8. The P
part of the generator matrix G = [I|P] of the selected codes
are as follows.

P17 :

1 1 1 0 1 0 0 1 0

1 1 0 1 1 1 0 0 0

1 0 1 0 1 1 1 0 0

1 0 0 1 0 1 1 1 0

0 1 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 1

0 0 1 1 0 0 1 1 1

0 0 0 0 1 1 1 1 1

P19 :

1 0 1 1 0 0 1 1 0 1 0

1 0 1 0 1 1 1 0 0 0 1

1 0 0 1 1 1 0 1 1 0 0

0 1 1 1 0 1 1 0 1 0 0

0 1 1 0 1 1 0 1 0 1 0

0 1 0 1 1 0 1 1 0 0 1

0 0 1 1 1 0 0 0 1 1 1

0 0 0 0 0 1 1 1 1 1 1

P20 :

1 1 1 1 1 0 1 0 0 1 0 0

1 1 1 0 0 1 1 1 0 0 1 0

1 0 1 1 0 1 0 1 1 1 0 0

1 0 0 1 1 1 1 0 1 0 1 0

0 1 1 0 1 1 0 1 0 1 0 1

0 1 0 1 1 0 1 1 0 0 1 1

0 0 1 1 1 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1

In such cases, while F (.) is transparent to AddRoundKey
and ShiftRows, the redundancy part of Sbox, MixColumns
and FSM (the round constant) are implemented by F ◦ T ◦
F−1 (see Figure 5(b)). The same holds for the 4 Sboxes used

14

rst rst

S

SR

P

Plaintext K1/K2

F

F

F

Ciphertext

RC(FSM)

MC

LFSR

C1 C3

part

rst

P

K0

C2

part

rst rst

F◦S

SR

P

Plaintext′ K ′1/K
′
2

RC ′(FSM ′)

MC

F◦LFSR

C′
1 C′

3

part

rst

P

K ′0

C ′
2

part

×k
×k
×k

×m < k

×m < k

×m < k

Fig. 13. Skinny, round-based, F (.) non-injective but transparent to SR, MC and P

ENC

Plaintext Key

Ciphertext1 done1

C1,2

C2,2

C3,2

C2,1

C1,1

C3,1

ENC

Ciphertext2 done2

C ′
1,2C ′

1,1

ENC

Ciphertext3 done3

C ′
2,2C ′

2,1

ENC

Ciphertext4 done4

C ′
3,2C ′

3,1

Fig. 14. Duplication, triplication, and quadruplication concept

in the KeySchedule. In addition to the checkpoints placed
at the Sbox inputs, extra checkpoints have to be inserted at
the MixColumns input since its corresponding matrix is not
filled only by 0/1 [10].

For non-injective F (.), we considered [9, 8, 2]-, [12, 8, 3]-,
[13, 8, 4]-, and [16, 8, 5]-codes. Note that they are smallest
codes with rank k = 8 and the considered distances 2, 3,
4, and 5. The first code [9, 8, 2] is the common 8-bit parity
code, and the P part of the generator matrix of the others
are given below.

P12 :

1 0 1 1

0 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

P13 :

1 1 1 0 0

1 1 0 1 0

1 0 1 0 1

1 0 0 1 1

0 1 1 1 0

0 1 1 0 1

0 1 0 1 1

0 0 1 1 1

P16 :

1 1 1 0 0 0 0 1

1 1 0 1 1 0 0 0

1 0 1 0 1 1 0 0

1 0 0 1 0 1 1 0

0 1 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

The redundant part of XORs and ShiftRows as well as the
checkpoints are the same as the ones with injective F (.).

The only difference is on the other modules which should
receive the original data and compute F ◦T (see Figure 5(c)).

5.3 Comparison
Considering both univariate and multivariate adversary
models, we summarize the area and latency figures of our
implementations in Table 1. Note that the clock cycle was
not tightened allowing the synthesizer to reach the smallest
area. Comparing the columns with the same distance d,
it can be seen that in many cases (excluding the nibble-
serial variant of Skinny8) our approach outperforms the
duplication schemes. However, such benefits depend on the
target algorithm. For instance, in almost all cases of LED
with 128-bit key the duplication outperforms our approach,
that is the other way around in case of SIMON. The same
observations can be seen in terms of latency.

We should also highlight that we have implemented
the ‘plain’ (unprotected) version of the considered ciphers
by ourselves under the same fashion and the same design

8. This is due to the fact that the consistency check of duplication is
also performed on only small 4-bit output port.

15

TABLE 1
Area (GE) and Latency (ns) of our implementations considering different [n, k, d]-codes, using IBM 130 nm ASIC library.

Algorithm
Attacker clock plain [5, 4, 2] [7, 4, 3] [8, 4, 4]

duplication triplication quadrupl.

[2, 1, 2] [3, 1, 3] [4, 1, 4]

Model cycles area lat. area lat. area lat. area lat. area lat. area lat. area lat.

Skinny-64 Mt 33 1243 4.11
2732 5.27 4153 6.08 5041 6.43

3155 4.53 4649 5.04 6147 5.68
64-bit key M∗

t 3192 7.91 5085 8.25 6294 8.94

Skinny-64 ser. Mt 688 990 4.24
1924 5.53 3383 5.75 4870 7.66

2019 4.28 3028 4.29 4042 4.78
64-bit key M∗

t 2250 8.71 4115 9.06 5855 11.55

LED 2check Mt

33 1665 7.72

3667 9.17 5697 11.52 7226 12.15

3968 7.69 5874 7.71 7784 7.75
64-bit key M∗

t 3986 12.97 6316 13.41 8086 14.52

LED combine Mt 4155 8.45 6039 9.44 7716 10.40

64-bit key M∗
t 4508 12.57 6720 13.47 8569 13.47

Skinny-64 Mt 37 1738 3.66
3640 5.16 5636 6.09 6804 6.37

4128 4.34 6109 4.86 8095 5.50
128-bit key M∗

t 4236 7.84 6879 8.85 8477 9.60

Skinny-64 ser. Mt 772 1446 4.03
2778 5.42 4867 5.92 6883 7.18

2906 5.55 4358 5.55 5815 5.55
128-bit key M∗

t 3228 9.26 5895 9.94 8257 11.56

LED 2check Mt

49 1664 9.15

3996 9.81 6359 11.66 8240 13.40

3991 9.37 5907 9.37 7822 9.36
128-bit key M∗

t 4320 13.51 6972 13.71 9099 16.18

LED combine Mt 4499 9.57 6699 10.04 8718 12.80

128-bit key M∗
t 4813 13.11 7359 12.96 9637 15.89

Midori
Mt 17 1372 7.57

3282 8.25 5262 8.87 6840 10.40
3412 8.81 5029 9.51 6657 9.85

M∗
t 3615 11.18 5891 11.52 7693 14.30

PRESENT
Mt 32 1767 2.93

4211 5.19 6639 6.32 8219 6.71
4174 4.59 6179 5.10 8186 5.78

M∗
t 4792 7.83 7899 8.87 9896 9.37

GIFT
Mt 29 1587 2.88

3824 5.11 6082 6.11 7767 6.61
3847 4.33 5688 4.83 7533 5.47

M∗
t 4420 7.49 7325 8.56 9432 9.01

SIMON
Mt 45 1629 2.86

3614 5.20 5621 5.93 7603 6.44
3912 4.47 5785 4.97 7663 5.61

M∗
t 4211 7.28 6866 8.03 9277 9.97

Skinny-64 Mt 41 2206 4.00
4540 5.63 7119 6.34 8553 6.74

5054 4.47 7494 5.00 9940 5.62
192-bit key M∗

t 5272 7.69 8676 8.79 10640 9.34

Skinny-64 ser. Mt 856 1896 5.12
3602 5.28 6321 5.76 8893 7.53

3807 4.44 5710 4.44 7618 4.76
192-bit key M∗

t 4219 8.55 7698 9.21 10713 11.42

Algorithm
Attacker clock plain [9, 8, 2] [12, 8, 3] [13, 8, 4] [16, 8, 5] [17, 8, 6] [19, 8, 7] [20, 8, 8] [2, 1, 2] [3, 1, 3] [4, 1, 4]

Model cycles area lat. area lat. area lat. area lat. area lat. area lat. area lat. area lat. area lat. area lat. area lat.

AES Mt 11 13327 7.63
25789 9.78 36679 10.99 40200 12.47 51116 12.84 54370 11.58 62956 12.47 66039 13.27

27988 8.06 41865 7.68 55769 8.10
128-bit key M∗

t 26691 13.57 38135 14.50 42599 15.01 54285 16.51 58305 16.83 67606 17.75 71411 18.60

architecture. Hence, the area footprints reported in Table 1
for ‘plain’ implementations do not necessarily fit to those
reported in original articles [5]. For the ‘plain’ implementa-
tions, we further did not fulfill the independence property,
did not keep the hierarchy, and did not make use of any
special scan-flipflops, employed in several designs to reduce
the area footprint (e.g., in [4], [5]).

As given in Section 4.5, to resist against a multivari-
ate adversary M∗t , (a) extra checkpoints should be placed
at the input of every register in the design, and (b) the
consistency check module should be adjusted accordingly.
This is independent of the underlying functions of the
cipher; the number of register bits in combination with the
employed code define the additional area required for such
an extension. Since such extra checkpoints are placed at the
registers’ input, the latency of the circuit is also increased by
a roughly constant value.

5.4 Fault Detection

In order to examine the fault-detection ability of our con-
structions, we conducted both simulation and practical
experiments. Injecting faults fitting to our defined models
needs ASIC fabrication and laser beams. On the other hand,
no fault-diagnosis tools for cryptographic designs is known
where the adversary model can be accurately defined.
Hence, we have conducted a few custom simulations. For
a given design, we have taken the net-list generated during
the synthesis process, and replaced every cell with the corre-
sponding one whose output is toggled by a fault signal. This
way, we can control every cell of the synthesized circuit in-
cluding the data-processing, control logic, and check parts.
As an example, an implementation of Skinny-64 protected
with the [5,4,2]-code against a univariate adversary Mt=1

contains 849 cells, i.e., a vector of 849 signals to inject faults.
Our simulations under the considered adversary model (i.e.,

16

single-bit faults at one clock cycle for every encryption)
showed 100% fault coverage. We have repeated this process
on our other implementations (with larger codes as well
as multivariate adversary model). In all cases, we have
not observed any undetected fault fitting into the bounded
model.

For the practical experiments, we made use of a Basys 3
toolkit board from Digilent equipped with an Artix-7
FPGA [49]. We followed the principle expressed in [50] to
inject faults by clock glitch, i.e., a signal generator provides
an external clock signal with adjustable frequency which is
multiplied by a constant factor inside the FPGA by a Digital
Clock Management (DCM) unit, and the ordinary clock is
replaced by the fast clock at selected clock cycles to inject
clock glitch. For a given design we have started to decrease
the clock glitch duration to get faulty values. This way we
have no precise control over the number of injected faults,
but by shortening the clock glitch we first violate the delay
of the critical path of the circuit. For each clock glitch period,
we gave the circuit 1000 random plaintexts (with a fixed
key), and extracted the ratios of fault-free, detected, and
faulty results. Figure 15 demonstrates such ratios over the
duration of the clock glitch for different AES designs includ-
ing unprotected, duplication/triplication/quadruplication,
and the ones protected by our scheme using various codes.
In all cases we evaluated the variants protected against the
univariate Mt model, and injected the clock glitch at the
last encryption round. The benefit of our constructions com-
pared to the unprotected design is clearly shown, but com-
pared to duplication/triplication/quadruplication it can be
seen that there are some faults which pass through the
duplication mechanisms (i.e., symmetric faults) which are
fully avoided in our designs. Since the duplicated modules
A and A′ are implemented similarly, they have very similar
critical path; hence a clock glitch has some times equal effect
on both/multiple instances. This does not happen in our
constructions leading to 0 faulty ratio.

6 CONCLUSION

Fault attacks can be easily utilized to extract sensitive in-
formation from any unprotected cryptographic implementa-
tion. Therefore, the inclusion of a dedicated countermeasure
in the design process is essential and sparked numerous
research contributions covering different hardening tech-
niques. However, we have shown that the actual realization
of these schemes in practice is not trivial. Many previous
publications have not considered the crucial threat of fault
propagation and, thus, provide only a reduced detection
potential.

In this work, we have defined an adjustable adversary
which takes advantages of this phenomenon and presented
design strategies to cope with this new constraint. Our
concepts allow the robust implementation of CED schemes
in the presence of fault propagation. We defined a univariate
(resp. multivariate) adversary model, in which the attacker
at one (resp. every) clock cycle is able to make up to t cells
faulty in the entire circuit. Accordingly, we showed how
to provide security (i.e., full fault coverage) against such a
powerful adversary with high precision. Furthermore, we
extended our observations to the often-neglected protection

46810
Glitch duration [ns]

0

0.5

1

R
at

io fault-free
detected
faulty

(a) unprotected

46810
Glitch duration [ns]

0

0.5

1

R
at

io fault-free
detected
faulty

(b) [2,1,2]-code (duplication)

46810
Glitch duration [ns]

0

0.5

1

R
at

io fault-free
detected
faulty

(c) [3,1,3]-code (triplication)

46810
Glitch duration [ns]

0

0.5

1

R
at

io fault-free
detected
faulty

(d) [4,1,4]-code (quadruplication)

46810
Glitch duration [ns]

0

0.5

1

R
at

io fault-free
detected
faulty

(e) [9,8,2]-code

46810
Glitch duration [ns]

0

0.5

1

R
at

io fault-free
detected
faulty

(f) [12,8,3]-code

46810
Glitch duration [ns]

0

0.5

1

R
at

io fault-free
detected
faulty

(g) [17,8,6]-code

46810
Glitch duration [ns]

0

0.5

1

R
at

io fault-free
detected
faulty

(h) [19,8,7]-code

Fig. 15. Result of fault injection by clock glitch on different implementa-
tions of AES.

of control signals and presented solutions to achieve an
entirely fault-resistant architecture.

Our case studies show the efficiency of our approach for
different symmetric block ciphers and highlight the effect
of the chosen code on the resulting overhead. Overall, to
the best of our knowledge, we presented the first secure
and efficient design methodology against a realistic t-cell
bounded adversary in the presence of fault propagation. We
made the HDL code of our entire designs publicly available
through https://github.com/emsec/ImpeccableCircuits.

Regarding future works, an ASIC-based practical evalu-
ation of the fault-resistance of our designs using laser fault
injections could be of great interest. This would not only in-
crease the confidence in our methodology, but also allows to
obtain a realistic estimate for the number of possible faulty
cells t in practice. It is noteworthy that the fault detection
ability of our constructions relies on the definition of the
underlying code. Hence, the fault coverage of every module

https://github.com/emsec/ImpeccableCircuits

17

is straightforwardly obtained. However, there is an obvious
lack of a simulation/verification tool to examine the fault
coverage of a given design considering a certain adversary
model. The available logic simulation tools have not been
designed for this purpose. The scientific community would
for sure benefit by having such a tool enabling verification
of the claimed fault coverages.

Another important aspect which needs to be further
examined is error correction. Recently, it has been demon-
strated that combining a CED with state randomization
(i.e., masking) does not provide sufficient protection against
statistical ineffective fault attacks (SIFA) [51]. One proposed
countermeasure is the inclusion of dummy rounds or other
hiding techniques which can be straight-forwardly com-
bined with our methodology. In addition, however, extend-
ing the encoded circuit with the capability to correct faulty
states would raise the bar for an adversary to create the
errors even further. Therefore, a combination of different
techniques might provide the best results, but this requires
further research especially regarding combined attacks.

REFERENCES

[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance
of Checking Cryptographic Protocols for Faults (Extended Ab-
stract),” in EUROCRYPT, ser. LNCS, vol. 1233. Springer, 1997,
pp. 37–51.

[2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan,
“The Sorcerer’s Apprentice Guide to Fault Attacks,” Proceedings of
the IEEE, vol. 94, no. 2, pp. 370–382, 2006.

[3] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis
of concurrent error detection against differential fault analysis,” J.
Cryptographic Eng., vol. 5, no. 3, pp. 153–169, 2015.

[4] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An
Ultra-Lightweight Block Cipher,” in CHES, ser. LNCS, vol. 4727.
Springer, 2007, pp. 450–466.

[5] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin,
Y. Sasaki, P. Sasdrich, and S. M. Sim, “The SKINNY Family of Block
Ciphers and Its Low-Latency Variant MANTIS,” in CRYPTO, ser.
LNCS, vol. 9815. Springer, 2016, pp. 123–153.

[6] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Ak-
ishita, and F. Regazzoni, “Midori: A Block Cipher for Low Energy,”
in ASIACRYPT, ser. LNCS, vol. 9453. Springer, 2015, pp. 411–436.

[7] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and
Y. Todo, “GIFT: A Small Present - Towards Reaching the Limit
of Lightweight Encryption,” in CHES, ser. LNCS, vol. 10529.
Springer, 2017, pp. 321–345.

[8] J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw, “The LED
Block Cipher,” in CHES, ser. LNCS, vol. 6917. Springer, 2011, pp.
326–341.

[9] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The SIMON and SPECK lightweight block ciphers,”
in DAC. ACM, 2015, pp. 175:1–175:6.

[10] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced
Encryption Standard, ser. Information Security and Cryptography.
Springer, 2002.

[11] V. Ocheretnij, G. Kouznetsov, R. Karri, and M. Gössel, “On-Line
Error Detection and BIST for the AES Encryption Algorithm with
Different S-Box Implementations,” in IOLTS, 2005, pp. 141–146.

[12] S. Azzi, B. Barras, M. Christofi, and D. Vigilant, “Using linear
codes as a fault countermeasure for nonlinear operations: applica-
tion to AES and formal verification,” J. Cryptographic Engineering,
vol. 7, no. 1, pp. 75–85, 2017.

[13] T. Schneider, A. Moradi, and T. Güneysu, “ParTI - Towards
Combined Hardware Countermeasures Against Side-Channel
and Fault-Injection Attacks,” in CRYPTO, ser. LNCS, vol. 9815.
Springer, 2016, pp. 302–332.

[14] S. Nikova, V. Rijmen, and M. Schläffer, “Secure Hardware Imple-
mentation of Nonlinear Functions in the Presence of Glitches,” J.
Cryptology, vol. 24, no. 2, pp. 292–321, 2011.

[15] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner, “Private Cir-
cuits II: Keeping Secrets in Tamperable Circuits,” in EUROCRYPT,
ser. LNCS, vol. 4004, 2006, pp. 308–327.

[16] T. D. Cnudde and S. Nikova, “More Efficient Private Circuits II
through Threshold Implementations,” in FDTC. IEEE Computer
Society, 2016, pp. 114–124.

[17] O. Seker, A. Fernandez-Rubio, T. Eisenbarth, and R. Steinwandt,
“Extending glitch-free multiparty protocols to resist fault injection
attacks,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2018, no. 3,
pp. 394–430, 2018.

[18] O. Reparaz, L. De Meyer, B. Bilgin, V. Arribas, S. Nikova, V. Nikov,
and N. P. Smart, “CAPA: the spirit of beaver against physical
attacks,” in CRYPTO 2018, ser. LNCS, vol. 10991. Springer, 2018,
pp. 121–151.

[19] B. Yuce, N. F. Ghalaty, and P. Schaumont, “TVVF: Estimating the
vulnerability of hardware cryptosystems against timing violation
attacks,” in HOST. IEEE, 2015, pp. 72–77.

[20] N. Selmane, S. Guilley, and J. Danger, “Practical Setup Time
Violation Attacks on AES,” in EDCC-7, 2008, pp. 91–96.

[21] M. Agoyan, J. Dutertre, D. Naccache, B. Robisson, and A. Tria,
“When Clocks Fail: On Critical Paths and Clock Faults,” in
CARDIS, ser. LNCS, vol. 6035, 2010, pp. 182–193.

[22] J.-J. Quisquater and D. Samyde, “Eddy current for magnetic anal-
ysis with active sensor,” in Proceedings of Esmart, 2002.

[23] S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction
Attacks,” in CHES, ser. LNCS, vol. 2523. Springer, 2002, pp. 2–12.

[24] B. Selmke, J. Heyszl, and G. Sigl, “Attack on a DFA Protected
AES by Simultaneous Laser Fault Injections,” in FDTC. IEEE
Computer Society, 2016, pp. 36–46.

[25] R. B. Carpi, S. Picek, L. Batina, F. Menarini, D. Jakobovic, and
M. Golub, “Glitch It If You Can: Parameter Search Strategies
for Successful Fault Injection,” in CARDIS, ser. LNCS, vol. 8419.
Springer, 2013, pp. 236–252.

[26] F. Schellenberg, M. Finkeldey, B. Richter, M. Schapers, N. Gerhardt,
M. Hofmann, and C. Paar, “On the Complexity Reduction of Laser
Fault Injection Campaigns Using OBIC Measurements,” in FDTC.
IEEE Computer Society, 2015, pp. 14–27.

[27] N. F. Ghalaty, B. Yuce, M. M. I. Taha, and P. Schaumont, “Differen-
tial Fault Intensity Analysis,” in FDTC. IEEE Computer Society,
2014, pp. 49–58.

[28] T. Fuhr, É. Jaulmes, V. Lomné, and A. Thillard, “Fault Attacks on
AES with Faulty Ciphertexts Only,” in FDTC. IEEE Computer
Society, 2013, pp. 108–118.

[29] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” in CRYPTO, ser. LNCS, vol. 1294. Springer, 1997,
pp. 513–525.

[30] A. Moradi, O. Mischke, C. Paar, Y. Li, K. Ohta, and K. Sakiyama,
“On the Power of Fault Sensitivity Analysis and Collision Side-
Channel Attacks in a Combined Setting,” in CHES, ser. LNCS, vol.
6917. Springer, 2011, pp. 292–311.

[31] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel,
and R. Primas, “SIFA: exploiting ineffective fault inductions on
symmetric cryptography,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2018, no. 3, pp. 547–572, 2018.

[32] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “Error
Analysis and Detection Procedures for a Hardware Implementa-
tion of the Advanced Encryption Standard,” IEEE Trans. Comput-
ers, vol. 52, no. 4, pp. 492–505, 2003.

[33] C. Ananiadis, A. Papadimitriou, D. Hély, V. Beroulle, P. Maistri,
and R. Leveugle, “On the development of a new countermeasure
based on a laser attack RTL fault model,” in DATE. IEEE, 2016,
pp. 445–450.

[34] C. Yen and B. Wu, “Simple Error Detection Methods for Hardware
Implementation of Advanced Encryption Standard,” IEEE Trans.
Computers, vol. 55, no. 6, pp. 720–731, 2006.

[35] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting
codes, ser. North-Holland mathematical library. North-Holland
Pub. Co. New York, 1977.

[36] T. Malkin, F. Standaert, and M. Yung, “A Comparative
Cost/Security Analysis of Fault Attack Countermeasures,” in
FDTC, ser. LNCS, vol. 4236. Springer, 2006, pp. 159–172.

[37] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Concurrent error detection
schemes for fault-based side-channel cryptanalysis of symmetric
block ciphers,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 21, no. 12, pp. 1509–1517, 2002.

[38] K. D. Akdemir, Z. Wang, M. G. Karpovsky, and B. Sunar, “Design
of Cryptographic Devices Resilient to Fault Injection Attacks Us-

18

ing Nonlinear Robust Codes,” in Fault Analysis in Cryptography.
Springer, 2012, pp. 171–199.

[39] K. J. Kulikowski, Z. Wang, and M. G. Karpovsky, “Comparative
Analysis of Robust Fault Attack Resistant Architectures for Public
and Private Cryptosystems,” in FDTC. IEEE Computer Society,
2008, pp. 41–50.

[40] S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopad-
hyay, “A Biased Fault Attack on the Time Redundancy Counter-
measure for AES,” in COSADE, ser. LNCS, vol. 9064. Springer,
2015, pp. 189–203.

[41] S. Guilley, L. Sauvage, J. Danger, N. Selmane, and R. Pacalet,
“Silicon-level Solutions to Counteract Passive and Active At-
tacks,” in FDTC. IEEE, 2008, pp. 3–17.

[42] M. Agoyan, J. Dutertre, A. Mirbaha, D. Naccache, A. Ribotta, and
A. Tria, “How to flip a bit?” in IOLTS. IEEE Computer Society,
2010, pp. 235–239.

[43] F. Courbon, P. Loubet-Moundi, J. J. A. Fournier, and A. Tria, “Ad-
justing Laser Injections for Fully Controlled Faults,” in COSADE,
ser. LNCS, vol. 8622, 2014, pp. 229–242.

[44] A. Satoh, T. Sugawara, N. Homma, and T. Aoki, “High-
Performance Concurrent Error Detection Scheme for AES Hard-
ware,” in CHES 2008, ser. LNCS, vol. 5154. Springer, 2008, pp.
100–112.

[45] A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh, “A General-
ized Method of Differential Fault Attack Against AES Cryptosys-
tem,” in CHES 2006, ser. LNCS, vol. 4249. Springer, 2006, pp.
91–100.

[46] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede,
“Consolidating Masking Schemes,” in CRYPTO 2015, ser. LNCS,
vol. 9215. Springer, 2015, pp. 764–783.

[47] H. Groß, S. Mangard, and T. Korak, “An Efficient Side-Channel
Protected AES Implementation with Arbitrary Protection Order,”
in CT-RSA 2017, ser. LNCS, vol. 10159. Springer, 2017, pp. 95–112.

[48] J. Jean, A. Moradi, T. Peyrin, and P. Sasdrich, “Bit-Sliding: A
Generic Technique for Bit-Serial Implementations of SPN-based
Primitives - Applications to AES, PRESENT and SKINNY,” in
CHES, ser. LNCS, vol. 10529. Springer, 2017, pp. 687–707.

[49] Digilent, “Basys3,” 2019, https://reference.digilentinc.com/
reference/programmable-logic/basys-3/.

[50] A. Moradi, O. Mischke, and C. Paar, “One Attack to Rule Them
All: Collision Timing Attack versus 42 AES ASIC Cores,” IEEE
Trans. Computers, vol. 62, no. 9, pp. 1786–1798, 2013.

[51] C. Dobraunig, M. Eichlseder, H. Groß, S. Mangard, F. Mendel, and
R. Primas, “Statistical Ineffective Fault Attacks on Masked AES
with Fault Countermeasures,” in ASIACRYPT 2018, ser. LNCS, vol.
11273. Springer, 2018, pp. 315–342.

https://reference.digilentinc.com/reference/programmable-logic/basys-3/
https://reference.digilentinc.com/reference/programmable-logic/basys-3/

19

APPENDIX

rst

S

MC

RC(FSM)

RK

Ciphertext ×4

0 1 2 3

SR SR SR SR
MC

MC0

MC0

C C C C

4 5 6 7

SR SR SR SR
MC

MC1

MC1

C C C C

8 9 10 11

SR SR SR SR
MC

MC2

MC2

C C C C

12 13 14 15
SR MC

MC3

rst

MC3

Plaintext

×4
C C C C

rst

F◦S◦F−1

F◦MC◦F−1

RC ′(FSM ′)

RK ′

0 1 2 3

SR′ SR′ SR′ SR′
MC′

MC ′
0

MC ′
0

C ′ C ′ C ′ C ′

4 5 6 7

SR′ SR′ SR′ SR′
MC′

MC ′
1

MC ′
1

C ′ C ′ C ′ C ′

8 9 10 11

SR′ SR′ SR′ SR′
MC′

MC ′
2

MC ′
2

C ′ C ′ C ′ C ′

12 13 14 15
SR′ MC′

MC ′
3

rst

MC ′
3

Plaintext′
C ′ C ′ C ′ C ′

F

×k

×m ≥ k

Fig. 16. Skinny, nibble-serial, data path, m ≥ k.

20

LFSR

RK ×4
0 1 2 3

en en
P

en
P

en
P

C C C C

4 5 6 7

en
P

en en
P

en
P rst

C C C C

8 9 10 11

en en en enC C C C

12 13 14 15

en en en
en

rst
Key

×4C C C C

F◦LFSR◦F−1

0 1 2 3

en′ en′
P′

en′
P′

en′
P′

C ′ C ′ C ′ C ′

4 5 6 7

en′
P′

en′ en′
P′

en′
P′ rst

C ′ C ′ C ′ C ′

8 9 10 11

en′ en′ en′ en′C ′ C ′ C ′ C ′

12 13 14 15

en′ en′ en′
en′

rst
Key′C ′ C ′ C ′ C ′

F

×k

×m ≥ k

Fig. 17. Skinny, nibble-serial, key path, m ≥ k.

21

rst

S

MC

RC(FSM)

RK

Ciphertext ×4

0 1 2 3

SR SR SR SR
MC

MC0

MC0

C C C C

4 5 6 7

SR SR SR SR
MC

MC1

MC1

C C C C

8 9 10 11

SR SR SR SR
MC

MC2

MC2

C C C C

12 13 14 15
SR MC

MC3

rst

MC3

Plaintext

×4
C C C C

rst

F◦S

F◦MC

RC ′(FSM ′)

RK ′

0 1 2 3

SR′ SR′ SR′ SR′
MC′

MC ′
0

MC ′
0

C ′ C ′ C ′ C ′

4 5 6 7

SR′ SR′ SR′ SR′
MC′

MC ′
1

MC ′
1

C ′ C ′ C ′ C ′

8 9 10 11

SR′ SR′ SR′ SR′
MC′

MC ′
2

MC ′
2

C ′ C ′ C ′ C ′

12 13 14 15
SR′ MC′

MC ′
3

rst

MC ′
3

Plaintext′
C ′ C ′ C ′ C ′

F

×k

×m < k

Fig. 18. Skinny, nibble-serial, data path, m < k.

22

LFSR

RK ×4
0 1 2 3

en en
P

en
P

en
P

C C C C

4 5 6 7

en
P

en en
P

en
P rst

C C C C

8 9 10 11

en en en enC C C C

12 13 14 15

en en en
en

rst
Key

×4C C C C

F◦LFSR

0 1 2 3

en′ en′
P′

en′
P′

en′
P′

C ′ C ′ C ′ C ′

4 5 6 7

en′
P′

en′ en′
P′

en′
P′ rst

C ′ C ′ C ′ C ′

8 9 10 11

en′ en′ en′ en′C ′ C ′ C ′ C ′

12 13 14 15

en′ en′ en′
en′

rst
Key′C ′ C ′ C ′ C ′

F

×k

×m < k

Fig. 19. Skinny, nibble-serial, key path, m < k.

23

rst

SR

S

Plaintext K1K0

F

F

F

Ciphertext

MC

C1

C2

RC(FSM)

rst

SR

F◦S◦F−1

Plaintext′ K ′1K ′0

F◦MC◦F−1

C ′
1

C ′
2

RC ′(FSM ′)

×k
×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

(a) 2check

rst

SR

Plaintext K1K0

F

F

F

Ciphertext

MC◦S

C1

RC(FSM)

rst

SR

Plaintext′ K ′1K ′0

F◦MC◦S◦F−1

C ′1

RC ′(FSM ′)

×k
×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

(b) combine

Fig. 20. LED, round-based, m ≥ k.

24

rst

SR

Plaintext K1K0

F

F

F

Ciphertext

MC◦S

C1

RC(FSM)

rst

Plaintext′ K ′1K ′0

F◦MC◦S

C ′
1

RC ′(FSM ′)

×k
×k
×k

×m < k

×m < k

×m < k

(a) 2check

rst

SR

S

Plaintext K1K0

F

F

F

Ciphertext

MC

C1

C2

RC(FSM)

rst

SR

F◦S

Plaintext′ K ′1K ′0

F◦MC

C ′
1

C ′
2

RC ′(FSM ′)

×k
×k
×k

×m < k

×m < k

×m < k

(b) combine

Fig. 21. LED, round-based, m < k.

25

rst

S

SR

Plaintext K1K0

F

F

F

Ciphertext

MC

C1

RC(FSM)

rst

F◦S◦F−1

Plaintext′ K ′1K ′0

MC

SR

C ′1

RC ′(FSM ′)

×k
×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

Fig. 22. Midori, round-based, m ≥ k.

rst

S

SR

Plaintext K1K0

F

F

F

Ciphertext

MC

C1

RC(FSM)

rst

F◦S

Plaintext′ K ′1K ′0

MC

SR

C ′
1

RC ′(FSM ′)

×k
×k
×k

×m < k

×m < k

×m < k

Fig. 23. Midori, round-based, m < k.

26

rst rst

S P

Plaintext Key

F

F

Ciphertext

FSM

P
S S

C1 C2

part

rst rst

Plaintext′ Key′

FSM′

F◦P◦S◦F−1
F◦S◦F−1F◦S◦F−1 F◦P◦F−1

C ′1 C ′2

part

×k

×k

×m ≥ k

×m ≥ k

Fig. 24. PRESENT, round-based, m ≥ k.

rst rst

S
P

Plaintext Key

F

F

Ciphertext

FSM

P
S S

C1 C2

part

rst rst

Plaintext′ Key′

FSM′

F◦P◦S
F◦S F◦S F◦P

C ′
1 C ′

2

part

×k

×k

×m < k

×m < k

Fig. 25. PRESENT, round-based, m < k.

27

rst rst

S
P

Plaintext Key

F

F

Ciphertext

P

C1 C2

part

rst rst

F◦P◦S◦F−1 F◦P◦F−1

Plaintext′ Key′

C ′1 C ′2

part

k

k

×m ≥ k

×m ≥ k

Fig. 26. GIFT, round-based, m ≥ k.

rst rst

S
P

Plaintext Key

F

F

Ciphertext

P

C1 C2

part

rst rst

F◦P◦S F◦P

Plaintext′ Key′

C ′
1 C ′

2

part

×k

×k

×m < k

×m < k

Fig. 27. GIFT, round-based, m < k.

28

rst rst

F◦f◦F−1
F◦f◦F−1

Plaintext′ Key′

Const′(FSM′)

C ′1 C ′2

rst rst

f f

Plaintext Key

F

F

Ciphertext

Const(FSM)

C1 C2

×k

×k

×m ≥ k

×m ≥ k

Fig. 28. SIMON, round-based, m ≥ k.

rst rst

F◦f F◦f

Plaintext′ Key′

Const′(FSM′)

C ′
1 C ′

2

rst rst

f
f

Plaintext Key

F

F

Ciphertext

Const(FSM)

C1 C2

×k

×k

×m < k

×m < k

Fig. 29. SIMON, round-based, m < k.

	Introduction
	Preliminaries
	Fault Injection Attacks
	Concurrent Error Detection Schemes
	Error Detecting Codes

	Concept
	Adversary Model
	Fault Propagation

	Methodology
	Extra Checkpoints
	Forced Independence
	Combination
	Application
	Extension to Multivariate
	Combination with Side-Channel Countermeasures

	Case Studies
	Skinny-64
	AES
	Comparison
	Fault Detection

	Conclusion
	References

