
An earlier version of this paper will appear in the proceedings of the IEEE International Conference on
Computer Communications 2018 (INFOCOM 2018).

The Death and Rebirth of Privacy-Preserving WiFi
Fingerprint Localization with Paillier Encryption

(Full Version)

Zheng Yang and Kimmo Järvinen

University of Helsinki, Department of Computer Science
P.O. Box 68, FI-00014, Helsinki, Finland

{zheng.yang, kimmo.u.jarvinen}@helsinki.fi

Abstract. Localization based on premeasured WiFi fingerprints is a popular method
for indoor localization where satellite based positioning systems are unavailable. In
these systems, privacy of the users’ location is lost because the location is computed
by the service provider. In INFOCOM’14, Li et al. presented PriWFL, a WiFi finger-
print localization system based on additively homomorphic Paillier encryption, that
was claimed to protect both the users’ location privacy and the service provider’s
database privacy. In this paper, we demonstrate a severe weakness in PriWFL that
allows an attacker to compromise the service provider’s database under a realistic
attack model and also identify certain other problems in PriWFL that decrease
its localization accuracy. Hence, we show that PriWFL does not solve the privacy
problems of WiFi fingerprint localization. We also explore different solutions to im-
plement secure privacy-preserving WiFi fingerprint localization and propose two
schemes based on Paillier encryption which do not suffer from the weakness of Pri-
WFL and offer the same localization accuracy as the privacy-violating schemes.

Keywords: Localization, privacy, security, WiFi fingerprint, cryptanalysis, homo-
morphic encryption, attack

1 Introduction

The ability to determine a user’s location is essential for many contemporary appli-
cations. Global navigation satellite systems (GNSS) such as GPS are the primary
technologies for obtaining the user’s location. In these systems, a GNSS chip in the
user’s possession locally calculates its position based on signals received from satel-
lites. Hence, GNSS fully preserves the privacy of users’ locations. Unfortunately,
GNSS is completely unavailable or has poor service when the user is indoors or even
in certain outdoor environments (e.g., urban canyons). Premeasured databases have
been proposed as solutions for accurate localization also in such cases and they have
become a popular method for indoor localization.

In these solutions, a service provider first records received signal strengths
(RSS) of access points (APs) in various predefined locations and stores them into a
database. The APs are typically WiFi APs (see, e.g., [7, 10–12, 20, 25, 27]), but also
systems based on cellular [26], RFID [5], Bluetooth [6], and Zigbee [18] signals have
been proposed. A user measures the RSS values for all APs stored in the database
(some of which are likely to be out of reach) in his/her location and sends this

“fingerprint” to the service provider’s server hosting the database. The server uses
the “fingerprint” and the database to calculate the location of the user.

Contrary to GNSS, the fingerprint-based schemes violate users’ location privacy
because the locations are calculated by the server. Users’ locations are high-value in-
formation that may allow learning very sensitive information (e.g., regularly visited
shops, bars, places of worship, etc.) and could be used for very accurate profiling,
e.g., for targeted marketing. On the other hand, the service provider wants to keep
its database private because it is a central business secret and also because database
updates would be difficult for a distributed database. Hence, a privacy-preserving
localization scheme should derive the users’ locations without revealing (a) users’
locations and (b) the service provider’s database to the other party.

Konstantinidis et al. in [14] presented privacy-preserving localization based on
k-anonymity, which is a well-studied problem, e.g., in privacy-preserving medical
data. To simplify, their solution hides the user’s real location trace among k − 1
fake traces. The service provider is assumed not to use any auxiliary information
including statistics (e.g., average numbers of users in specific areas) or even to
validate the users’ requests against the building map. Use of such auxiliary infor-
mation allows to distinguish real traces and, consequently, to track the user’s past
and future movements. Hence, the solution essentially trusts the service provider
to be ‘honest’.

In INFOCOM 2014, Li et al. [16] presented a privacy-preserving WiFi finger-
print localization scheme called PriWFL and claimed that it protects both the
users’ locations and the database when the parties are ‘honest-but-curious’; i.e.,
they honestly follow the protocol but can utilize any information given to them
(and also auxiliary information). The scheme is based on the additively homomor-
phic Paillier cryptosystem [19], which allows to compute additions and subtractions
with ciphertexts. The user encrypts a fingerprint with Paillier encryption, the server
computes its distances to the database entries with the ciphertexts, and the user
decrypts the distances and calculates its own location. Because the service provider
does not have the secret keys to decrypt the users’ fingerprints, PriWFL preserves
the privacy of users’ locations. To prevent the users from calculating the database
from the distances, the server blinds their exact values with some randomness.

In this paper, we have two main contributions:

– We present an attack against PriWFL from [16]. Our attack fully discloses the
service provider’s database to an attacker (a user) under a realistic attack model.
Our attack shows that PriWFL offers little additional protection compared to
the case where the service provider gives its database to the users. We also
identify certain other disadvantages of PriWFL.

– We explore certain directions to implement privacy-preserving fingerprint lo-
calization schemes. In particular, we introduce two solutions based on Paillier
encryption and two different multiparty computation approaches that are secure
and feasible for practical deployment.

The rest of the paper is structured as follows. Sect. 2 presents the required
preliminaries. We present our attack and discuss other disadvantages of PriWFL
in Sect. 3. In Sect. 4, we present new solutions for secure privacy-preserving WiFi

2

Table 1. WiFi Fingerprint Reference Database D

i Li AP1 AP2 AP3 · · · APN
1 (x1, y1, z1) v1,1 v1,2 v1,3 · · · v1,N
2 (x2, y2, z2) v2,1 v2,2 v2,3 · · · v2,N
3 (x3, y3, z3) v3,1 v3,2 v3,3 · · · v3,N
...

...
...

...
...

...
...

M (xM , yM , zM) vM,1 vM,2 vM,3 · · · vM,N

fingerprint localization schemes and discuss their feasibility. Finally, Sect. 5 draws
conclusions.

2 Preliminaries

2.1 WiFi Fingerprint Localization

A WiFi fingerprint localization service includes two parties: a client C, which is,
e.g., a user’s smartphone, and the service provider’s server S. The service utilizes
signal strengths of APs distributed around the area covered by the service (e.g., a
shopping mall, an exhibition center, etc.). If an AP is close to a specific location,
then its signal is strong whereas if it is far away, then its signal is either weak or
not available at all.

System setup and the reference database During the system setup, the ser-
vice provider goes to M specific locations (xi, yi, zi) for i = 1, . . . ,M and measures
RSS values Vi = (vi,1, vi,2, . . . , vi,N) for all N APs used in the system. A reference
database is constructed using these values as follows and stored into S:

D =
〈
i, (xi, yi, zi), Vi = {vi,j}Nj=1

〉M
i=1

. (1)

The structure of D is shown in Table 1. The service provider also publishes the
table

T1 = {APj}Nj=1 (2)

where APj is the j-th AP’s unique public identifier (e.g., its MAC address).

Location retrieval When C wants to know its location, it measures the RSS
of all APs listed in T1 of (2) and constructs a “fingerprint” F = (f1, f2, . . . , fN)
where fj is the RSS of APj in C’s location. It then sends F to S who finds the
k-nearest neighbors of F from D by calculating the differences di between F and
the measurements Vi in D for all i = 1, . . . ,M . While various distance functions
can be used, we assume that di is the following Euclidean distance:

di = ||Vi − F ||2 =

N∑
j=1

(vi,j − fj)2

=
N∑
j=1

v2i,j +
N∑
j=1

(−2vi,jfj) +
N∑
j=1

f2j .

(3)

3

A wing B wing C wing

AP1

AP2

AP3

AP4

AP5

AP6

AP7

Fig. 1. An example of a WiFi fingerprint localization system for a one-story building with three
wings (A, B, C) and seven APs. The white dots show the M locations in the reference database
D and the black dots are highlighted locations discussed in the text.

S finds the indexes of the k smallest distances: π1, π2, . . . , πk such that dπ1 ≤ dπ2 ≤
. . . ≤ dπk ≤ di for all i 6= π1, π2, . . . , πk. S then calculates C’s location LC = (x, y, z)
as the centroid of the locations (xi, yi, zi), for i ∈ {πj}kj=1. Finally, S sends LC to
C who then knows its location.

Example Fig. 1 shows an artificial example of a one-story building with three
wings (A, B, C). The building includes N = 7 APs and the service provider has
measured their RSS values in M = 216 locations. For the sake of simplicity, we
assume in this paper that vi,j are four-bit values so that vi,j = 0 means that APj
is unavailable at location i where as the value vi,j = 15 is the strongest possible
RSS1. The database entries for the highlighted locations shown in Fig. 1 could be,
e.g., as follows:

〈21, (2, 7, 0), (10, 9, 12, 2, 4, 0, 0)〉 (4)

〈121, (13, 13, 0), (1, 0, 7, 9, 13, 0, 3)〉 (5)

〈162, (21, 2, 0), (0, 0, 0, 1, 5, 14, 11)〉 (6)

In a large building, the signal of a single AP cannot cover the whole building and,
therefore, APs are unavailable in certain parts of the building; i.e., vi,j = 0 for some
i. E.g., in the above example, AP1 and AP2, which are located in the A wing, are
not available in the C wing. Besides, two nearby locations are likely to be similar;
e.g., for 〈22, (2, 8, 0), V22〉, V22 ≈ V21, where V21 is given in (4), and, hence, v22,6
and v22,7 are also zeros with a high probability.

2.2 Paillier Public-Key Encryption Scheme

Let κ ∈ N be the security parameter and [n] = {1, . . . , n} ⊂ N to denote the set

of integers between 1 and n. We use the notation a
$← S to denote the operation

which samples a uniform random element from a set S.

1 In practice, it is more common to use power ratios in decibels (dBm) (e.g., −30 dBm is a very
strong signal whereas −80 dBm implies very low WiFi functionality). A constant (e.g., +100 in
[28]) is typically used for an AP that is ‘unavailable’. Our attack works equally well also if dBm
values are used.

4

The Paillier public-key encryption (PKE) scheme [19] is a probabilistic encryp-
tion scheme based on the decisional composite residuosity problem. Let PrimG(κ)
be a function which generates a set of primes of length κ. The Paillier PKE scheme
mainly consists of the following three algorithms:

– Key Generation (KeyGen). Given the security parameter κ, the algorithm

chooses two large primes p, q
$← PrimG(κ/2), and computes n = p · q. It also

selects a group generator g for the multiplicative group Z∗n2 , such that the order
of g is a non-zero multiple of n. The public key pk is a tuple (n, g) and the secret
key sk is λ = lcm(p− 1, q − 1). This algorithm returns (pk, sk).

– Encryption (Enc). This algorithm takes a message m < n and a public key

(n, g) as inputs. It selects a random r
$← [n− 1], and computes the ciphertext:

C = gm · rn mod n2. (7)

The output of this algorithm is C. For simplicity, we may omit modulus n2 in
the rest of the paper.

– Decryption (Dec). This algorithm takes C < n2 and the secret key λ as inputs

and it outputs the plaintext m = L(Cλ) mod n2

L(gλ) mod n2 mod n, where L(u) = u−1
n .

Paillier PKE scheme is additively homomorphic over the group Zn. Namely, for
two ciphertext C1 = Enc(pk,m1) and C1 = Enc(pk,m2), we have that

Dec(sk, C1 · C2 mod n2) = m1 +m2 (mod n) (8)

Dec(sk, C1 · C−12 mod n2) = m1 −m2 (mod n) (9)

where the inverse can be computed via the exponentiation C−12 = Cn−12 mod n2.
Using the above homomorphic additions, it is also possible to compute multiplica-
tions and divisions by a scalar t:

Dec(sk, Ct1 mod n2) = t ·m1 (mod n) (10)

Dec(sk, Ct
−1 mod n
1 mod n2) = m1/t (mod n) (11)

where t−1 mod n can be computed with the Extended Euclidean Algorithm.

2.3 The PriWFL Scheme

In this subsection, we review the complete PriWFL scheme introduced by Li et
al. [16]. Similarly to the basic scheme of Sect. 2.1, also the PriWFL scheme is run
between C and S; i.e., there are no (trusted) third parties.

System setup The system setup remains mostly the same: S has D as in (1) and
Table 1. In addition to T1, S also publishes the following table:

T2 = 〈i, (xi, yi, zi)〉Mi=1 . (12)

When C subscribes to the service, it generates a key pair (sk, pk) for the Paillier
cryptosystem for a sufficiently large κ (e.g., κ = 2048) and sends pk = (n, g) to S.

5

Location retrieval PriWFL works in three phases:

– C measures F = (f1, f2, . . . , fN) with fj for all APj listed in T1. Instead of
sending F directly to S, C computes

Cj,0 = Enc(pk,−2fj) (13)

Cj,1 = Enc(pk, f2j + uj) (14)

where uj
$← RU , for j = 1, . . . , N ; RU is a randomness space of PriWFL (see

Sect. 3.3 for more discussion about PriWFL randomness spaces). Then, C sends
{Cj,0, Cj,1}Nj=1 to S who cannot open the encryption because it does not have
sk.

– When S receives {Cj,0, Cj,1}Nj=1, it selects

1. A random number τ ≤ N ′ ≤ N , where τ is a fixed threshold (e.g., τ = 6
was suggested in [16], but see Sect. 3.3 for more discussion). Using N ′, S
selects a random selection set S = {s1, s2, . . . , s′N} such that si ∈ [N] and
si 6= sj for all i 6= j. I.e., S selects a set of N ′ random APs from all N APs.

2. A random offset R
$← RR where RR is a randomness space of PriWFL (see

Sect. 3.3).
After this, S computes, for i = 1, . . . ,M :

∆i,1 = Enc(pk,
∑
j∈S

v2i,j) (15)

∆i,2 =
∏
j∈S

C
vi,j
j,0 (16)

∆i,3 =
∏
j∈S

Cj,1 (17)

The terms correspond to the encryptions of the terms required to compute the
distances according to (3) so that ∆i,2 = Enc(pk,

∑
j∈S(−2vi,jfj)) and ∆i,3 =

Enc(pk,
∑

j∈S(f2j + uj)). However, they have been computed by using the N ′

APs selected in S instead of all N APs used in (3). Next, S computes the
encrypted distance masked by the random offset R:

Cdi+R = ∆i,1 ·∆i,2 ·∆i,3 · Enc(pk,R) (18)

After this, S sends {Cdi+R}
M
i=1 to C.

– When C receives the encrypted distances {Cdi+R}
M
i=1, it uses sk to decrypt

di +R for i = 1, . . . ,M . Then, it finds π1, . . . , πk, the indexes of the k smallest
distances. Because each di + R is blinded by the same offset R, their order is
still preserved. It uses the public table T2 to get (xi, yi, zi), for i ∈ {πj}kj=1 and,
then, computes its location LC . Notice that this location calculation is similar
to the basic scheme in Sect. 2.1, except that it is performed by C itself instead
of S and that it is calculated with only a subset of N ′ APs, selected by S.

In [16], PriWFL was claimed to protect (a) C’s location LC from S thanks to the
use of Paillier encryption and randomness uj and (b) S’s database D from C thanks
to the random selection set S and random offset R. In Sect. 3, we show that the
second claim is not true (and that uj is not needed to get the first claim).

6

2.4 Threat Model

In order to show the security problems of PriWFL, we review the same threat
model that was defined in [16] where four kinds of attacks were considered under
the general ‘honest-but-curious’ attack model:

– Client Location Privacy Attack I (CLPA-I): The attacker A directly
obtains C’s location after intercepting C’s queries.

– Client Location Privacy Attack II (CLPA-II): A infers C’s location after
getting C’s sampled WiFi fingerprints.

– Server Data Privacy Attack I (SDPA-I): A obtains a WiFi fingerprint
database D′ which is identical to S’s database D.

– Server Data Privacy Attack II (SDPA-II): A gets a WiFi fingerprint
database D′ which is close to S’s database D. Namely, D′ can be used to
provide a similar location service as S’s database D.

Following the ‘honest-but-curios’ attack model, we assume that both C and S
honestly follow the protocol specifications, but both of them may be interested in
compromising the other party’s private information. I.e., A may masquerade as
either C or S in order to break the counterpart’s privacy and A is allowed to use
fabricated inputs to the protocol as long as they follow the general format and
specifications of the protocol. In particular, C is allowed to send fabricated queries
to S who cannot notice this because a query is encrypted with Paillier encryption
in PriWFL.

3 Analysis of PriWFL

In this section, we analyze PriWFL in detail. In Sect. 3.1, we introduce an attack
that implements the threat model SDPA-I, which is the stronger of the two server
data privacy attacks. Consequently, our attack achieves a complete break of the
server-side security of PriWFL. In Sect. 3.2, we present a new variant of the attack
which allows an attacker to satisfy the preconditions of the above attack and which
may work even as an independent attack if the RSS values are from a small set.
Furthermore, in Sect. 3.3, we also discuss some other non-trivial issues which were
overlooked in PriWFL.

3.1 A Practical SDPA-I Attack

In this subsection, we present the first main contribution of this paper: an attack
that fully discloses S’s database D under a realistic attack condition. In our attack,
the attackerA subscribes to the system as a legitimate client C and faithfully follows
the protocol (honest-but-curious).

Precondition for the attack We assume that A knows certain “special” RSS
values stored in S’s database D. Specifically, A must know two RSS values va,γ
and vb,γ to be able to obtain all other vi,γ for APγ . While this may sound as a very
strong assumption, we will next show that A can easily obtain this information
in practical settings. We assume that the building is large enough so that APs

7

are unavailable in parts of the building. This is a realistic assumption because
typically WiFi APs cover only some tens of meters and there is no point in using
a localization scheme in a very small building.

The above requirement is satisfied if A knows two locations where APγ is un-
available: va,γ = vb,γ = 0. In PriWFL, the locations (xi, yi, zi), for i = 1, . . . ,M ,
are public information given to C in T2. Hence, A can go to any location ` and
make RSS measurements of all APs listed in T1. Consequently, A will likely find
out many APs which are unavailable at this location and she has obtained the
first required value for all these APs. E.g., if A makes the measurement in the
highlighted location in the A wing of Fig. 1, then at least AP6 and AP7 will be
unavailable. If an AP is unavailable in location `, then it is unavailable with high
probability also in the location `′ which is next to the location ` (the eight white
dots surrounding the black dot in Fig. 1). Furthermore, this assumption is easy
to verify by making a new measurement in `′. Hence, the second required value is
found for all APs that were unavailable in the location `. On the other hand, if
an AP has a very strong RSS value in the location `, then A knows that they are
close to the location ` and, consequently, deducts that they must be unavailable in
a location `′′ which is far from the location `. E.g., because AP1, AP2, and AP3 are
strong in the highlighted dot in the A wing in Fig. 1, then they must be unavailable
in the C wing (e.g., the black dot and its six neighbor dots in the C wing in Fig. 1).
This gives the required values for all APs with strong signals in the measurement.
Hence, the required values are missing only for APs which have medium strength
signals in the location `. They can be obtained by making a new measurement in
another part of the building (e.g., in the B wing in Fig. 1). If A makes an error
in the above procedure, then the attack fails for the affected AP(s), but not for
the entire D, and A can spot such errors during the attack. To summarize, A can
obtain the required values va,γ = vb,γ = 0 for all APs by making few measurements
in a building covered by PriWFL.

The attack The attack arises because all distances calculated in a query are
masked with the same randomness R (chosen by S). We will extensively exploit the
fact that the randomness R can be removed by subtracting two masked distances:
(di +R)− (dj +R) = di − dj . To get the γ-th column of D, A makes two types of
special location queries to S as follows:

– All-Zero Query: A generates a fake WiFi fingerprint with all 0s: F 0 =
(0, 0, 0, . . . , 0). Equation (3) shows that this query yields distances which are
computed with only v2i,j under a random selection set S0, i.e.,

d0i =
∑
z∈S0

v2i,z +R0, (19)

where S0 and R0 can be different between different queries but remain the same
for all i in one query.

– Single-One Query: A generates a fake WiFi fingerprint where the γ-th value
is 1 and all other N − 1 values are 0s; e.g, F 1 = {0, 1, 0, ..., 0} for γ = 2. This
query yields distances which are computed with v2i,j and −2vi,j under a random

8

selection set S1, i.e.,

d1i =

{∑
z∈S1 v2i,z − 2vi,γ + 1 +R1, when γ ∈ S1∑
z∈S1 v2i,z +R1, when γ 6∈ S1

(20)

where S1 and R1 can be different between different queries but remain the same
for all i in one query.

Note that S cannot distinguish the above special queries from the ordinary queries
of an honest party because they are encrypted with Paillier encryption which is
probabilistic and semantically secure. Next, we show how these queries can be
used to compromise the γ-th column of S’s database D, in particular, by finding
distances that were computed using all-zero and single-one queries so that S0 = S1

and γ ∈ S1. The probability for this collision of the selection sets is overwhelming
after a few queries if N is not large (e.g., N = 10 in proof of [16, Theorem 3]).

Our attack basically has two phases: attack preparation and on-line attack,
which are as follows:

Attack Preparation Phase: A finds two unavailable locations for each AP,
according to the public tables T1 and T2 which are provided by S (see Sect. 3.1).
Now A has an initial target database (ITD) with at least two known zeros in each
column. Table 2 shows an example ITD, where each vi,j 6= 0 is unknown to A.

Table 2. Initial Target WiFi Fingerprints Database

i Li AP1 AP2 AP3 · · · APN
1 (x1, y1, z1) v1,1 0 v1,3 · · · 0

2 (x2, y2, z2) v2,1 0 0 · · · v2,N
3 (x3, y3, z3) 0 v3,2 0 · · · 0
...

...
...

...
...

...
...

M (xM , yM , zM) 0 vM,2 0 · · · vM,N

On-line Attack Phase: A, who has subscribed to the system as a legitimate
C, has a public/private key pair (pkA, skA) of the Paillier PKE scheme. Then, A
does the following steps:

– Step 1: A sends several all-zero queries to S. Specifically, A runs Algorithm 1
with inputs F 0 = {0}Ni=1 and an integer q0 to collect q0 distance sets and stores

them in D0 = {{d0,1i }Mi=1, {d
0,2
i }Mi=1, . . . , {d

0,q0

i }Mi=1}.

9

Algorithm 1: Collect distance sets

Input: F = {fj}Nj=1 and q
Output: D = {{d1i }Mi=1, {d2i }Mi=1, . . . , {dqi }

M
i=1}

1 D← ∅;
2 for φ = 1 to q do
3 for j = 1 to N do

4 Cφj,0 ← Enc(pkA,−2fj) ;

5 Cφj,1 ← Enc(pkA, fj
2) ;

6 send {Cφj,0, C
φ
j,1}

N
j=1 to S;

7 receive {Cφdi}
M
i=1 from S;

8 for i = 1 to M do

9 dφi ← Dec(skA, C
φ
di

) ;

10 append {dφi }
M
i=1 to D ;

11 return D

Because each distance set {dti}Mi=1 ∈ D0 is related to a selection set St, D0

implies a set of selection sets denoted by S0 = {S0,1, S0,2, . . . , S0,q0} (which can
include duplicates). However, A does not need to know the exact values of N ′

and S0 in our attack.

– Step 2: A sends several queries to S by using single-one fingerprints F 1 with
f1γ = 1. Specifically, A runs Algorithm 1 with inputs F 1 and q1 to collect

distance sets D1 = {{d1,1i }Mi=1, {d
1,2
i }Mi=1, . . . , {d

1,q1

i }Mi=1}.
Similarly, D1 also implies a set of selection sets S1 = {S1,1, S1,2, . . . , S1,q1} which
were used to compute the distance sets stored in D1.

– Step 3: Next, A compromises the γ-th column of the database D. First, A finds
out a distance set pair from D0 and D1 where both sets are computed using
the same selection set. A uses its existing knowledge on D to check whether
{d0,ti }Mi=1 ∈ D0 and {d1,zi }Mi=1 ∈ D1, for some t, z, were generated using the
same selection set. Let the indexes a and b be such that va,γ = vb,γ = 0. A runs
Algorithm 2 with inputs D0, D1, a and b, to get two sorted and trimmed distance
set variables D0′ and D1′. Let | · | be an operation that gives the cardinality of
a distance set variable. Note that

d0,ta − d
0,t
b =

∑
j∈S0,t

(v2a,j − v2b,j), (21)

and

d1,za − d
1,z
b =

∑
j∈S1,z

(v2a,j − v2b,j). (22)

Hence, having d0,ta − d0,tb = d1,za − d1,zb on Line 6 of Algorithm 2 implies that
S0,t = S1,z with overwhelming probability. After executing Algorithm 2, A can
get two distance set variables in which, for 1 ≤ ν ≤ |D0′|, {d0,νi }Mi=1 ∈ D0′ and

{d1,νi }Mi=1 ∈ D1′ are generated based on the same selection set, i.e., S0,ν = S1,ν .

10

Algorithm 2: Sort and trim distance sets

Input: D0, D1, a and b such that va,γ = vb,γ = 0
Output: D0′ and D1′

1 q0 ← |D0|; q1 ← |D1|; D0′ ← ∅; D1′ ← ∅ ;
2 for t = 1 to q0 do

3 get {d0,ta , d0,tb } from D0 ;
4 for z = 1 to q1 do

5 get {d1,za , d1,zb } from D1 ;

6 if d0,ta − d0,tb = d1,za − d1,zb then

7 append {d0,ti }
M
i=1 to D0′ ;

8 append {d1,zi }
M
i=1 to D1′ ;

9 break ;

10 return D0′,D1′

Finally, to compromise all RSS values in the γ-th column of D, A runs Algo-
rithm 3 with inputs D0′, D1′ and a. In Algorithm 3, A first finds a distance
set (assuming to be indexed by θ) {d1,θi }i=M ∈ D1′ which is computed using

the γ-th column of D (i.e. γ ∈ S1,θ). Recall that the distances d0,θi ∈ D0′ and

d1,θi ∈ D1′ with the same index θ are generated under the same selection set:
S0,θ = S1,θ (due to Algorithm 2). On the other hand, the all-zero and single-
one queries differ only in the γ-th column. In fact, as shown in (19) and (20),
if the γ-th column is not included in the computation, then the all-zero and
single-one queries result in the same distances, but with different random offsets
R0 and R1. The random offsets can be removed by computing the differences
and, hence, A can determine whether the γ-th column was involved in the
computation by evaluating the following equation:

d0,θi − d
0,θ
a

?
= d1,θi − d

1,θ
a , (23)

with d0,θi ∈ D0′ and d1,θi ∈ D1′ for i = 1, . . . ,M . If (23) evaluates ‘false’ for any

i, then the γ-th column was used for calculating {d1,θi }Mi=1; i.e., γ ∈ S1,θ. If all
evaluate ‘true’, then it means that all vi,γ = 0 and, hence, the γ-th column was
not used in the calculation; i.e., γ 6∈ S1,θ.

11

Algorithm 3: Compromise the γ-th column of D

Input: D0′, D1′ and a such that va,γ = 0
Output: {vi,γ}Mi=1

1 q0 ← |D0|; foundγ ← 0; {vi,γ}Mi=1 ← −1 ;
2 for θ = 1 to q0 do
3 for i = 1 to M do

4 get {d0,θi , d0,θa } from D0′ ;

5 get {d1,θi , d1,θa } from D1′ ;

6 if d0,θi − d
0,θ
a 6= d1,θi − d

1,θ
a then

7 foundγ ← 1 ;
8 break ;

9 if foundγ = 1 then
10 for i = 1 to M do

11 vi,γ ←
d
0,θ
i −d

0,θ
a −d

1,θ
i +d1,θa

2
;

12 break ;

13 return {vi,γ}Mi=1 ;

After finding S0,θ = S1,θ so that γ ∈ S1,θ, A obtains all values in the γ-th
column of D (including both zero and non-zero vi,γ) via the following equation:

vi,γ =
d0,θi − d

0,θ
a − d1,θi + d1,θa

2
. (24)

To obtain S’s whole database D, A repeats the above procedure (Step 2 and
Step 3) for all γ = 1, . . . , N .

Analysis of the attack A only needs to find out a pair of distance sets {d0,µi }Mi=1 ∈
D0′ and {d1,νi }Mi=1 ∈ D1′ such that their selection sets S0,µ and S1,ν are equivalent
and the γ-th column is involved in S1,ν . What is the probability of this case? This
is a key problem about choosing the parameters for running our algorithms (in
particular, the parameter q of Algorithm 1). Next, we show that such probability
is non-negligible by showing that even a special case where N ′ satisfies N ′ = N
has non-negligible probability. In this case, the selection set includes all columns
(all APs). Hence, we can have the following events:

– E1: there is at least one selection set S0,µ ∈ S0 which includes all N APs.

– E2: there is at least one selection set S1,ν ∈ S1 which includes all N APs.

– E3: E2 ∩ E1;

It is not hard to see that we must have S0,µ = S1,ν and γ ∈ S1,ν when both
events E1 and E2 occur. Suppose A can send at most q all-zero and single-one
queries (i.e., q0 = q1 = q). Since S0

′
and S1

′
are selected independently, we have

the following probabilities:

– Pr[N ′ = N] = 1
N−τ ;

– Pr[E1] = Pr[E2] = 1− (1− Pr[N ′ = N])q;

– Pr[E3] = Pr[E1] · Pr[E2] = (1− (N−τ−1N−τ)q)2;

12

The probability of E3 basically implies a lower bound for the success probability
of our attack because the real success probability is higher as also N ′ < N such that
S0 = S1 with γ ∈ S1 leads to a successful attack. Fig. 2 shows the the probability
of E3 with different number of APs N .

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

Number of q

P
ro

b
a
b
il
it

y
o
f

E
3

N = 10

N = 50

N = 100

N = 200

N = 500

Fig. 2. Lower-bound of success probability.

With respect to N = 10 and τ = 6 as suggested in [16], we can choose q = 16 to
have a success probability Pr[E3] ≈ 0.98. Intuitively, the above attack also works
for a large N > 200. In order obtain a high probability Pr[E3], one only needs to
enlarge the number of q which is just linear in N .

It is also possible to apply the above attack idea (against PriWFL from [16]) to
break the server-side security of another privacy preserving indoor location scheme
which was proposed by Zhang et al. [31]. We present the concrete attack in Ap-
pendix A.

3.2 An Attack Revealing the Order of RSS Values

As discussed above, our attack relies on the existence of prior knowledge about
two “zero” RSS values for each column. In the following, we show that such prior
knowledge can be obtained with an attack variant that is based on the distance com-
parison results which lead to the leakage of the order of RSS values in a database.
Even worse, we observe that such an order also leaks the range of a non-zero RSS
value in S’s database.

We now present the attack variant against the server security of PriWFL based
on the idea of the above SDPA-I attack. In this attack, we mainly make use of the
order of distances obtained based on All-Zero and Single-One queries. We observe
that such an order leaks the order of RSS values in a column of S’s database D that
can be used to compromise all zero RSS values and the range of a non-zero RSS
value in that column. Without loss of generality, we let vi,j ∈ {0, 1, 2, . . . , vmax}
so that vmax is the maximum RSS value. In the following, we briefly illustrate the
attack steps that allow A to compromise the j-th column of D:

13

1. A runs Algorithm 1 with All-Zero fingerprints F 0 = {0}Ni=1 and an integer q0

to get a distance set D0.

2. A runs Algorithm 1 with Single-One fingerprints F 1 and an integer q1 to get a
distance set D1.

3. A selects the “largest” distance set {dτ,ρ
τ

i }Mi=1 from Dτ (for τ ∈ {0, 1}) such that,

when given two fixed indexes a and b, the distance difference dτ,ρ
τ

a − dτ,ρ
τ

b is

the largest among all differences {dτ,ia −dτ,ib }
qτ

i=1. The largest distance difference

dτ,ρ
τ

a − dτ,ρ
τ

b implies that the set {dτ,ρ
τ

i }Mi=1 is computed based on the largest
selection set, i.e., N = N ′, with overwhelming probability due to the results
shown in Fig. 2.

4. A now has each distance d0,ρ
0

i =
∑N

t=1 v
2
i,t + R0 and d1,ρ

1

i = −2vi,j + 1 +∑N
t=1 v

2
i,t + R1. For arbitrary indexes a and b, we let d0,ρ

0

a−b = d0,ρ
0

a − d0,ρ
0

b =∑N
t=1 v

2
a,t − v2b,t and d1,ρ

1

a−b = d1,ρ
1

a − d1,ρ
1

b = −2va,j + 2vb,j +
∑N

t=1 v
2
a,t − v2b,t. A

can compute 2vb,j − 2va,j = d1,ρ
1

a−b − d
0,ρ0

a−b to know which RSS value is larger. By
repeating the above steps with difference indexes, A can obtain the order of the
RSS values in the j-th column, for example:

0 ≤ v128,j = v111,j = v99,j = . . . = v1,j < v500,j = v232,j < . . . < v400,j ≤ vmax.

5. From the above order of RSS values in the j-th column, we have the following
results:

– The indexes of zero RSS values from the set of “smallest” ones, due to the
large ratio of zero RSS values in a typical database (see, e.g., [17]);

– The range of a RSS value vi,j . Let nl (nr) be the number of distinct RSS
values which are smaller (larger) than vi,j in the above ordered RSS values.
Then, we have that vi,j is in the range nl ≤ vi,j ≤ vmax − nr.

When the RSS space is small (e.g., 4 bits) and M is large, an attacker A may very
likely be able to fake an RSS value so that it is very close to (or even equivalent
with) the real one in the target database. Hence, this attack may help A to lunch
an SDPA-II attack.

3.3 Other Non-trivial Problems

In this subsection, we point out other non-trivial problems of PriWFL. While these
problems do not have a direct effect on the security of PriWFL (as the major
weakness that we revealed in Sect. 3.1), these problems may dramatically affect the
localization accuracy, even up to a point that makes PriWFL unusable in practice.
The problems are mainly caused by the randomly chosen values and selection set.
Recall that there are different types of random selections in PriWFL (see Sect. 2.3).
C chooses N random values {u1, u2, . . . , uN} to blind the squared values of its
fingerprint: fj

2 + uj . S chooses a random offset R and a selection set S with N ′

random APs. In the following, we discuss the problems related to these random
selections in detail.

14

Problems originating from the random selection set The random selec-
tion sets cause random localization errors because distances will be calculated by
using only the RSS values of the APs in the selection sets. It is very likely that
some significant values (i.e., strong RSS values) of either C’s F or S’s D will be
excluded from the calculation. Therefore, the accuracy of the localization service
will decrease due to the random selection set. In [16], they argued that localization
accuracy remains good if N ′ satisfies τ ≤ N ′ ≤ N with a threshold τ = 6; the
deduction in [16] assumed that N is small (e.g., N = 10). By observing certain
publicly available research-oriented WiFi fingerprint databases (e.g., [28, 17]), we
notice that, in practice, N � 10 (e.g., N > 200) and many values in D are vi,j = 0
(“AP unavailable”)2. In such cases, the argument of [16] is no longer valid and se-
vere increase of localization errors can be expected to happen as a result of random
selection sets.

Problems originating from the other randomness The randomness spaces
RU and RR, from which {u1, u2, . . . , uN} and R are drawn, respectively, are not
defined in [16]. If an implementer chooses the randomness spaceRR inappropriately,
it may result in random localization errors. The message space of the Paillier PKE
scheme is Zn (integers between 0 and n − 1) and if a result of an operation with
ciphertexts exceeds this range, then it gets reduced modulo n when decrypted.
E.g., if we have m1 = 2 and m2 = n − 1 and we compute Dec(sk,Enc(pk,m1) ·
Enc(pk,m2)), then we get 1 as an output instead of n+ 1. Hence, if RR is defined
so that R can be close to n, then it may happen that, for some distances di and
dj such that di < dj , an “overflow” occurs for dj and di + R > dj + R (mod n).
This will have a severe effect on calculating the location because C does not know
R and, consequently, incorrect locations (xi, yi, zi) will be chosen as the k smallest
distances.

The random values {u1, u2, . . . , uN} drawn from the randomness space RU
do not seem to serve any real purpose because the Paillier PKE scheme is al-
ready probabilistic: if one encrypts m1 twice, then the ciphertexts will be different
even without ui because a random r is used for every encryption as shown in (7).
Hence, {uj}Nj=1 are not needed to protect C’s location. They also cannot protect
S’s database because C can freely choose uj (e.g., uj = 0 for all j).

Summary PriWFL is both insecure and unsuitable for practical use. Our attack
breaks PriWFL for all practical values of N but is particularly efficient for small N
that were considered in [16]. Even if PriWFL could be fixed against the attack of
Sect. 3.1, the problems with localization accuracy caused by the random selection
set would still prevent its use when N is large. Hence, we believe that PriWFL is
fundamentally flawed and new directions need to be taken in order to implement

2 E.g., [17] includes a WiFi fingerprint database (BUILDING1 NEW) which is measured from a
four-story building so that M = 505 and N = 241. In that database, 85.4 % of all values of D
are “AP unavailable” (vi,j = 0). For specific locations in D, the number of available APs varies
from 11 to 67. Hence, most APs are unavailable in any specific location. This validates both
the feasibility of the precondition of our attack (see Sect. 3.1) and the above claim about the
unsuitability of PriWFL for practical use cases.

15

a secure privacy-preserving WiFi fingerprint localization scheme. In Sect. 4, we
explore certain possible directions to achieve this ambitious goal.

4 Solutions

In this section, we explore four solutions to implement a secure privacy-preserving
WiFi fingerprint localization scheme and discuss their feasibility for practical use.

4.1 Fully Homomorphic Encryption

Conceptually the most straightforward solution would be to use Fully Homomor-
phic Encryption (FHE), first introduced in Gentry’s seminal work [9] in 2009. FHE
allows arbitrary computations (both additions and multiplications) with cipher-
texts and, consequently, allows S to calculate C’s location LC homomorphically
in the encrypted domain without learning anything about C’s fingerprint. Unfor-
tunately, the excessive cost of FHE prevents its use in (almost) all practical use
cases.

Even Somewhat (Levelled) Homomorphic Encryption (SHE) schemes that al-
low evaluating arbitrary functions up to certain predefined complexity (number
of multiplications) are too complex for our use case. Lepoint and Naehrig [15]
compared two SHE schemes, YASHE (now broken [1]) and FV [8], and demon-
strated that using FV to homomorphically compute one execution of a lightweight
SIMON-32/64 block cipher requires 3062 s (51 min) on a 4-core Intel Core i7-2600
processor at 3.4 GHz. Computations required by WiFi fingerprint localization are
significantly more complex than SIMON-32/64 and, hence, we conclude that even
SHE is impractical.

4.2 Secure Multiparty Computation with Garbled Circuits

In a secure multiparty computation (MPC) protocol, two parties jointly evaluate
a function f(x, y) without revealing their respective inputs x and y to each others.
In an MPC protocol using Yao’s garbled circuits (GC) [29], a party called the
generator G generates a boolean GC f̃ for f(x, y) and send it together with its
own garbled input x̃ to the other party called the evaluator E . Now, E obtains its
garbled input ỹ from G via an oblivious transfer (OT) extension protocol, which
ensures that G does not learn y, and then evaluates f̃(x̃, ỹ) and receives the result.
An OT extension protocol can be computed with cheap secret-key cryptography by
precomputing PKE operations [2] and, thus, it adds only a small overhead about
symmetric-key computations at the online phase.

It is easy to see that this MPC protocol can be used for privacy-preserving WiFi
fingerprint localization if S is G with x = D and C is E with y = F . Evaluating a GC
requires only secret-key cryptography, which is computationally cheap (compared
to PKE). The only problem is the excessive communication overhead that is caused,
in particular, by the size of D. In the above protocol, each bit of x (and y) is
replaced by κ random bits. If we assume κ = 128 (corresponds to, e.g., AES-128),
the database from [17] (with N = 241 and M = 505) and that vi,j are encoded
as four-bit values, then the size of only x̃ will be about 7.4 MB. Communicating ỹ

16

and, especially, f̃ will still significantly add to this overhead (2κ bits for each non-
XOR gate in f̃ [13, 30]). Hence, using straightforward GC-based MPC for privacy-
preserving localization suffers from high communication cost which decreases its
practical feasibility.

4.3 Paillier PKE scheme and the Signs of Differences

The following presents a solution relying on Paillier PKE scheme. The idea is to let
C learn the signs of δi,j = di−dj but nothing else about their values. This allows C to
obtain the sorting of the distances and, consequently, to find the indexes π1, . . . , πk
of the k smallest distances (those with most minus signs) without revealing other
information about distances.

The protocol was inspired by [23] and works as follows. First, S computes the
differences of all distance pairs by computing Cδi,j = Cdi/Cdj for all 1 ≤ i, j ≤
M such that i < j and, then, S aligns the differences (via homomorphic scalar
multiplications by 2t) so that a sign of a difference is given by the t-th bit of the
aligned difference. After this, the protocol repeats the following steps. S masks a
difference with a (large) random mask and sends the result to C who decrypts the
ciphertext and receives the masked difference. C then takes the LSB of a masked
difference, encrypts it, and sends it back to S. When S receives the encryption
of the masked LSB, it homomorphically removes the LSB of the mask from it
by computing a homomorphic XOR (via a ⊕ b = a + b − 2ab) and receives the
encryption of the LSB of the difference. Now, S can subtract this LSB from the
full difference and, then, divide the value homomorphically by two (because the
LSB is now guaranteed to be zero). C and S repeat the above procedure t−1 times
to remove the t− 1 LSBs from the aligned difference leaving only the t-th bit (the
sign). Finally, S sends the sign bit to C without a mask and C knows which of di
and dj is larger.

With respect to the security of this solution under the semi-honest setting, C
’s location privacy is protected by Paillier encryption. Whereas, S ’s privacy is
guaranteed by the freshly chosen large random values, and the security of the LSB
sub-protocol for privately calculating the sign bits. We refer the reader to [23] for
more details on the security analysis of the LSB sub-protocol. It is straightforward
to see that the sign bits alone do not directly help C to compromise D. But for
security consideration, one may need to ensure that each reference RSS value in D
has a large bit-length.

The communication overhead of this solution grows quickly with M because
the number of differences δi,j is M(M −1)/2. Also in this case, multiple differences
can be packed into a ciphertext. Another important factor is the precision of δi,j
because a high precision equals large t and requires multiple protocol rounds to
reach the sign bit. Hence, this solution can be feasible only in specific cases (with
small N and M).

Nevertheless, the above solution may be susceptible to the order attack shown
in Section 4. In order to mitigate the order attack, we suggest to use a large RSS
space to protect the non-zero RSS values and reduce the identical RSS values in a
column.

17

4.4 Paillier PKE scheme and Garbled Circuits

A combination of Paillier encryption and garbled circuits can be used to solve
the problem of privacy-preserving WiFi fingerprint localization by adapting, e.g.,
Sadeghi et al.’s solution for privacy-preserving face recognition [21] and Blanton
and Gasti’s solution for privacy-preserving iris and fingerprint identification [4].
In this hybrid solution, C encrypts the RSS values using Paillier encryption with
(13) from Sect. 2.3. S calculates the distances by computing Cdi = ∆i,1 ·∆i,2 ·∆i,3

by using (15)–(17) with S = [N], i.e., with all APs. Because all APs are always
used, ∆i,3 depends only on C’s inputs and is the same for all i and, hence, it can

be computed by C: ∆3 = Enc(pk,
∑N

j=1 fj). Now, S packs t distances into one

ciphertext by computing Ccomb =
∏t
i=1C

2(i−1)m

di
, where m is the maximum bit-

length of di. To prevent C from obtaining these distances, S selects a random mask

R
$← RR = [n − 1] and computes Cm-comb = Ccomb · Enc(pk,R). Let T denote the

number of ciphertexts needed to pack all M distances. E.g., if n is a 2048-bit value
and m = 16, then we can fit t = 127 distances in one ciphertext. Consequently,
if N = 241 and M = 505 as in [17], the above Paillier encryption part requires
communication of only N + 1 = 242 ciphertexts (121 kB) from C to S and T = 4
ciphertexts (2 kB) from S to C.

Upon receiving all T ciphertexts, C opens the Paillier encryption with sk and
retrieves the masked combined distances. To remove the mask R and to securely
find the k smallest distances (i.e., so that C does not learn di), C and S run a
GC-based MPC protocol, where x = R, y = Dec(sk, Cm-comb), and f(x, y) is such
that it first computes y−x (mod n) (i.e., removes the mask) and, then, finds the k
smallest distances. When C has evaluated f̃(x̃, ỹ), it has the indexes π1, . . . , πk of the
k smallest di and it can calculate its location similarly as in PriWFL. Songhori et
al. [24] presented a memory-efficient sequential garbled gate for k-nearest neighbors
search and their circuit can be used for our purpose. The communication overhead
of transferring x̃ and ỹ grows linearly with M and is in the magnitude of some kBs
for M = 505 and κ = 128. The communication overhead of the GC depends on
k, M , m, n, and κ, but can be estimated from [22] and [24, Table 1] to be about
1 MB for the above parameters.

Theorem 1. Suppose that Paillier encryption and MPC schemes are both secure.
Then, the above solution resists CLPA-I and CLPA-II.

Proof. (Sketch) Resilience against CLPA-II implies resilience against CLPA-I. Gen-
erally speaking, C’s location privacy is guaranteed by the security properties of
Paillier encryption and MPC schemes. Without the secret key of C, S (or any pas-
sive adversary) is unable to infer C’s location based on the encrypted location query
and the corresponding encrypted response Cm-comb. Furthermore, S who produces
the GC does not have access to C’s actual inputs, due to the OT protocol, or to
the output the circuit. These facts protect C’s location privacy from S. The formal
security definitions and analysis of GC-based MPC can be found in [3].

Theorem 2. Suppose that the MPC scheme is secure and RR is large. Then, the
above solution resists SDPA-I and SDPA-II.

18

Proof. (Sketch) It is sufficient to show that our solution leaks no information about

D to A. The freshly chosen randomness R
$← [n− 1] prevents A from learning the

combined distance. Since a modular n operation is implicitly involved in the blinded
distance (so that possible “overflows” are handled in the GC), y = Dec(sk, Cm-comb)
is statistically close to a random value. In a nutshell, C cannot gain non-negligible
advantage to compromise the combined distances and S’s database. In addition,
the non-zero vi,j in D easily sum up to thousands of unknown bits in practice. E.g.,
[17] contains over 70,000 bits for non-zero vi,j if they are four-bit values (N = 241,
M = 505, and 85.4 % of values are zeros). Therefore, it would be very hard for A
to compromise even half of these non-zero values (to get a similar database).

5 Conclusion

In this paper, we showed that PriWFL, a privacy-preserving WiFi fingerprint lo-
calization scheme presented in [16], has a severe weakness that allows an attacker,
who is using the service as a legitimate client, to obtain the exact database of the
service. Hence, PriWFL does not offer any protection for the service provider which
renders the scheme useless in practice. We also identified certain other problems
which make PriWFL unpractical especially for large N .

Because of the complete break of PriWFL, there is a need for new secure
privacy-preserving WiFi fingerprint localization schemes. We explored certain solu-
tions to implement such a scheme. All of them introduce significant communication
and computation overheads compared to the basic privacy-violating scheme (see
Sect. 2.1) and often also to PriWFL. In particular, we sketched two solutions based
on combining Paillier encryption with a scheme, which allows the client to learn
only the signs of distance differences, or either with garbled circuits. Especially,
the latter solution is a promising candidate for achieving both secure and practical
privacy-preserving WiFi fingerprint localization and we plan to study it (and pos-
sible other solutions) in the future. This future work includes both optimizing the
preliminary schemes as well as testing them in practice by integrating them into
real indoor localization systems using WiFi fingerprints.

References

1. Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched NTRU
assumptions: Cryptanalysis of some FHE and graded encoding schemes. Cryptology ePrint
Archive, Report 2016/127, 2016.

2. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivi-
ous transfer and extensions for faster secure computation. In Proc. CCS 2013, pages 535–548.
ACM, 2013.

3. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Proc. CCS 2012, pages 784–796. ACM, 2012.

4. Marina Blanton and Paolo Gasti. Secure and efficient protocols for iris and fingerprint iden-
tification. In Proc. ESORICS 2011, volume 6879 of LNCS, pages 190–209. Springer, 2011.

5. Kirti Chawla, Christopher McFarland, Gabriel Robins, and Connor Shope. Real-time RFID
localization using RSS. In Proc. ICL-GNSS 2013, pages 1–6. IEEE, 2013.

6. Liang Chen, Heidi Kuusniemi, Yuwei Chen, Ling Pei, Tuomo Kröger, and Ruizhi Chen. In-
formation filter with speed detection for indoor Bluetooth positioning. In Proc. ICL-GNSS
2011, pages 47–52. IEEE, 2011.

19

7. Eiman Elnahrawy, Xiaoyan Li, and Richard P Martin. The limits of localization using signal
strength: A comparative study. In Proc. SECON 2004, pages 406–414. IEEE, 2004.

8. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144, 2012.

9. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proc. STOC 2009, pages
169–178, 2009.

10. Ville Honkavirta, Tommi Perala, Simo Ali-Loytty, and Robert Piché. A comparative survey
of wlan location fingerprinting methods. In Proc. WPNC 2009, pages 243–251. IEEE, 2009.

11. AKM Mahtab Hossain and Wee-Seng Soh. Cramer-Rao bound analysis of localization using
signal strength difference as location fingerprint. In Proc. INFOCOM 2010, pages 1–9. IEEE,
2010.

12. Kamol Kaemarungsi and Prashant Krishnamurthy. Modeling of indoor positioning systems
based on location fingerprinting. In Proc. INFOCOM 2004, volume 2, pages 1012–1022. IEEE,
2004.

13. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Proc. ICALP 2008, volume 5126 of LNCS, pages 486–498. Springer, 2008.

14. Andreas Konstantinidis, Georgios Chatzimilioudis, Demetrios Zeinalipour-Yazti, Paschalis
Mpeis, Nikos Pelekis, and Yannis Theodoridis. Privacy-preserving indoor localization on
smartphones. IEEE Trans. Knowl. Data Eng., 27(11):3042–3055, November 2015.

15. Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption schemes
FV and YASHE. In AFRICACRYPT 2014, volume 8469 of LNCS, pages 318–335. Springer,
2014.

16. Hong Li, Limin Sun, Haojin Zhu, Xiang Lu, and Xiuzhen Cheng. Achieving privacy preserva-
tion in wifi fingerprint-based localization. In Proc. INFOCOM 2014, pages 2337–2345, April
2014.

17. Elena Simona Lohan et al. Indoor WLAN measurement data. Online: http://www.cs.tut.
fi/tlt/pos/MEASUREMENTS_WLAN_FOR_WEB.zip (accessed: Jul. 2017), 2014.

18. Angela Song-Ie Noh, Woong Jae Lee, and Jin Young Ye. Comparison of the mechanisms of
the Zigbee’s indoor localization algorithm. In Proc. SNPD 2008, pages 13–18. IEEE, 2008.

19. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT 1999, volume 1592 of LNCS, pages 223–238. Springer, 1999.

20. Teemu Roos, Petri Myllymäki, Henry Tirri, Pauli Misikangas, and Juha Sievänen. A proba-
bilistic approach to wlan user location estimation. Int. J. Wireless Inform. Network, 9(3):155–
164, 2002.

21. Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Efficient privacy-preserving
face recognition. In Proc. ICISC 2009, volume 5984 of LNCS, pages 229–244. Springer, 2009.

22. Thomas Schneider. Engineering Secure Two-Party Computation Protocols. PhD thesis, Ruhr-
University Bochum, 2011.

23. Berry Schoenmakers and Pim Tuyls. Efficient binary conversion for Paillier encrypted values.
In EUROCRYPT 2006, volume 4004 of LNCS, pages 522–537. Springer, 2006.

24. Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, and Farinaz Koushanfar. Com-
pacting privacy-preserving k-nearest neighbor search using logic synthesis. In Proc. DAC 2015,
pages 36:1–36:6. ACM, 2015.

25. Nattapong Swangmuang and Prashant Krishnamurthy. Location fingerprint analyses toward
efficient indoor positioning. In Proc. PerCom 2008, pages 100–109. IEEE, 2008.

26. Jukka Talvitie and Elena Simona Lohan. Modeling received signal strength measurements for
cellular network based positioning. In Proc. ICL-GNSS 2013, pages 1–6. IEEE, 2013.

27. Jukka Talvitie, Markku Renfors, and Elena Simona Lohan. Distance-based interpolation and
extrapolation methods for RSS-based localization with indoor wireless signals. IEEE Trans.
Veh. Technol., 64(4):1340–1353, 2015.

28. Joaqúın Torres-Sospedra et al. UJIIndoorLoc data set. Online: https://archive.ics.uci.
edu/ml/datasets/ujiindoorloc (accessed: Jul. 2017), 2014.

29. Andrew C-C Yao. How to generate and exchange secrets. In Proc. FOCS 1986, pages 162–167.
IEEE, 1986.

30. Samee Zahur, Mike Rosulek, and David Evans. Two halves makes a whole — reducing data
transfer in garbled circuits using half gates. In EUROCRYPT 2015, volume 9057 of LNCS,
pages 220–250. Springer, 2015.

31. Tao Zhang, Sherman S. M. Chow, Zhe Zhou, and Ming Li. Privacy-Preserving Wi-Fi Fin-
gerprinting Indoor Localization, volume 9836 of LNCS, pages 215–233. Springer International
Publishing, 2016.

20

A A Chosen Fingerprint Attack against Zhang et al. Scheme

In this appendix, we show how to apply the attack idea presented in Sect. 3.1 to
break Zhang et al.’s scheme [31] which relies on machine learning approaches for
location calculation. We first briefly review the basic construction of Zhang et al.
scheme (based on the dot product scenario as an example).

To provide indoor localization, a server S first collects a set of WiFi fingerprints
used as a training data set. The server next trains a decision algorithm with all
APs in the area and obtains a database D = (wx, bx,wy, by), where wx = {wx,i}Ni=1.
A client C measures a fingerprint F and encrypts F using its own public key
pk through Paillier PKE scheme. The encrypted fingerprint is sent to S. Upon
receiving the encryptions, S chooses a subset of indexes I ⊆ [N] with |I| ≥ τ
(a predefined threshold) and uses wxI ,wyI to compute the location relying on
the additively homomorphic operations of Paillier PKE. The location is basically
computed via the following equation:

x = 〈wx, F 〉I + bx; and y = 〈wy, F 〉I + by. (25)

For simplicity, we here ignore the computation steps relevant to the encryptions
that do not affect the attack.

For the attack, we first review two types of special fingerprints:

– All-Zero Query: a Wifi fingerprint with all 0s: F 0 = (0, 0, 0, . . . , 0).
– Single-One Query: a Wifi fingerprint where the γ-th value is 1 and all other
N − 1 values are 0s; e.g, F 1 = {0, 1, 0, ..., 0} for γ = 2.

Intuitively, an All-Zero Query lets an attacker to learn bx, by for free and Single-
One queries reveal each wx,i. The concrete attack steps are illustrated as follows:

– Ask an All-Zero Query F 0 to obtain a location (x0, y0), and obtain bx = x0 and
by = y0. Because 〈wx, F 〉I = 〈wy, F 〉I = 0 for any I.

– Ask a polynomial number of Single-One queries F 1
i = (0, 0, 0, fi = 1, . . . , 0) to

get each wx,i. Note that the probability of i ∈ Ij (where Ij is the subset chosen
within the j-th Single-One Query with F 1

i) is larger than τ/N (which is non-
negligible). If i /∈ Ij , we have xj = bx, where xj is the location obtained in the
j-th Single-One query. To learn whether i ∈ Ij , it is sufficient to test whether
xj = bx or not. When i ∈ Ij , we can compute wxi = xj − bx and wyj = yj − by.
By repeating the above procedure, we can obtain the whole wx and wy.

A reader can try to apply the above attack idea to break the Zhang et al. scheme
also with other kernel functions.

21

