
Upgrading to Functional Encryption

Saikrishna Badrinarayanan ∗ Dakshita Khurana † Amit Sahai ‡ Brent Waters §

Abstract

The notion of Functional Encryption (FE) has recently emerged as a strong primitive with
several exciting applications. In this work, we initiate the study of the following question:
Can existing public key encryption schemes be “upgraded” to Functional Encryption schemes
without changing their public keys or the encryption algorithm? We call a public-key encryption
with this property to be FE-compatible.

Indeed, assuming ideal obfuscation, it is easy to see that every CCA-secure public-key en-
cryption scheme is FE-compatible. Despite the recent success in using indistinguishability ob-
fuscation to replace ideal obfuscation for many applications, we show that this phenomenon
most likely will not apply here. We show that assuming fully homomorphic encryption and the
learning with errors (LWE) assumption, there exists a CCA-secure encryption scheme that is
provably not FE-compatible. We also show that a large class of natural CCA-secure encryption
schemes proven secure in the random oracle model are not FE-compatible in the random oracle
model.

Nevertheless, we identify a key structure that, if present, is sufficient to provide FE-compatibility.
Specifically, we show that assuming sub-exponentially secure iO and sub-exponentially secure
one way functions, there exists a class of public key encryption schemes which we call Special-
CCA secure encryption schemes that are in fact, FE-compatible.

In particular, each of the following popular CCA secure encryption schemes (some of which
existed even before the notion of FE was introduced) fall into the class of Special-CCA secure
encryption schemes and are thus FE-compatible:

1. [CHK04] when instantiated with the IBE scheme of [BB04].

2. [CHK04] when instantiated with any Hierarchical IBE scheme.

3. [PW08] when instantiated with any Lossy Trapdoor Function.

∗UCLA. Email: saikrishna@cs.ucla.edu
†UCLA. Email: dakshita@cs.ucla.edu
‡UCLA. Email: sahai@cs.ucla.edu.
§UT Austin. Email: bwaters@cs.utexas.edu.

1

Contents

1 Introduction 4

2 Technical Overview 7
2.1 Organization . 11

3 Preliminaries 11

4 Defining Functional Encryption Compatibility 11
4.1 Public Key Encryption . 11
4.2 Functional Encryption . 12

4.2.1 Security . 12
4.3 FE-Compatibility . 13

5 An Impossibility Result 13
5.1 An Attack . 15
5.2 IND-CCA Security . 16
5.3 Proof of Claim 1 . 19

6 On the Difficulty of Proving Functional Encryption Compatibility for Fujisaki-
Okamoto and RSA-OAEP 22
6.1 Construction . 22
6.2 Attack . 23

7 Building FE-Compatible Encryption Schemes 24
7.1 Puncturable Tag Based Encryption . 24
7.2 Special-CCA secure encryption scheme . 26
7.3 Instantiating Special-CCA encryption . 27
7.4 Building selectively secure FE . 27

7.4.1 Security Proof . 29

8 Acknowledgements 35

A Security Notions for Public Key Encryption 38
A.1 CCA Security . 38
A.2 CPA Security . 38

B Further Preliminaries 38
B.1 Indistinguishability Obfuscation . 38
B.2 Differing Inputs Obfuscation . 39
B.3 Lockable Obfuscation . 40

B.3.1 Correctness . 40
B.3.2 Security . 40

C Proof of Security for Special-CCA 41

2

D Examples of Special-CCA Secure Encryption Schemes 43
D.1 Scheme in [CHK04] . 43

D.1.1 [CHK04] using IBE scheme in [BB04] . 44
D.1.2 [CHK04] using any HIBE scheme . 46

D.2 Scheme in [PW08] . 47

E Key Only FE-Compatibility 49
E.1 Construction from iO . 50

3

1 Introduction

Functional Encryption (FE) [SW05, SW08] is a powerful framework that significantly expands the
scope of public-key encryption. In an ordinary public-key encryption scheme, a user Alice first
chooses a public key PK and a corresponding secret key SK using a (master) setup algorithm Setup.
Then, any other user Bob can use Alice’s public key to encrypt a message m to obtain a ciphertext
c = Enc(PK,m). Alice can decrypt this ciphertext using her secret key, yielding m = Dec(SK, c).

In a functional encryption scheme, we give Alice key delegation capabilities: Alice can use a
new key generation algorithm KeyGen to generate a functional key SKf = FE.KeyGen(SK, f) for
a function f that is, say, described by a circuit. Then Alice can hand this functional key SKf
to an associate Charlie, and Charlie can use this functional key together with a new decryption
algorithm to only learn f(m) = FE.Dec(SKf , c) when given the ciphertext c. Intuitively speaking,
nothing1 beyond f(m) should be learned by Charlie when given SKf and c. This notion was fully
formalized by [BSW11] in the setting where many functional keys and ciphertexts may be given to
an adversary. The first work achieving functional encryption for general functions was [GGH+13],
using the power of indistinguishability obfuscation.

The work of [BSW11] gave several compelling applications of functional encryption. For in-
stance, Alice may want to store her e-mail in encrypted form, but she wants her cloud provider
to be able to execute a phishing-detection circuit C on her email prior to sending it to her for
decryption. She could accomplish this goal by providing her cloud provider with a functional key
for SKC , and the only thing the cloud provider would learn is whether any email received by Alice
satisfies the phishing-detection circuit.

Applications of functional encryption become even more compelling when we think of Alice
as representing a large organization or company. In such a scenario, the threat that functional
encryption helps to address cryptographically is the insider threat. For example, consider an or-
ganization like a government tax authority, that regularly handles extremely sensitive information,
but where individuals within the organization should only have access to limited digests or snippets
of this sensitive information. For example, an analyst Dave at the tax authority may need only to
compute statistical summaries of tax returns filed by a large set of people. Functional encryption
would allow Dave to obtain a functional key SKT , where T is the description of a function that pro-
duces statistical summaries of tax returns. The security of functional encryption would guarantee
that even if Dave goes rogue, Dave’s functional key would only allow him to learn and exfiltrate
statistical summaries, and not any more personal information about individual tax returns beyond
what could be deduced from the statistical summary.

Contrast this to the case where only ordinary public-key encryption is used to encrypt tax
information. In this case, Dave would need the (master) secret key SK in order to decrypt tax
information before processing it to obtain statistical summaries. And therefore a rogue Dave could
exfiltrate the personal details of any person’s tax return that was an input to the statistical summary
he was supposed to compute. This is just one example, illustrative of many such scenarios where
functional encryption could be beneficial for security.

Upgrading to Functional Encryption. Suppose that some time in the future, an organization,
upon hearing about the advantages of functional encryption, wishes to “upgrade” to use functional
encryption. Such an organization may face many challenges. First, the organization may already
have infrastructure in place where partners and clients use an existing public-key encryption scheme

1 Slightly more formally, functional encryption requires that encryptions of two messages m0 and m1 should be
indistinguishable when given functional keys corresponding to any functions f that satisfy f(m0) = f(m1). See
Section 4 for more details.

4

to communicate with the organization. As such, the organization may have already amassed large
amounts of encrypted data using a legacy public-key encryption system. Second, the organization
may face regulatory burdens like HIPAA or other future regulations, that require the organization
to use a particular encryption algorithm. Third, it could be that, even in this future time, existing
key generation algorithms for general-purpose functional encryption (which typically currently use
indistinguishability obfuscation) are too slow, but the organization wants to be ready for the day
when such algorithms become practical.

In light of these concerns, what public-key encryption algorithm should the organization use
now? While these are mostly societal challenges, security must exist in the context of human
societies with traditions, rules, and regulations. And in this case, these concerns give rise to an
intriguing theoretical question:

What (existing) public-key encryption algorithms can be “upgraded” to become functional
encryption schemes, without changing the encryption algorithm or the public keys?

Our paper initiates the systematic study of this question. To formalize this, we say that a
public-key encryption scheme E is FE-compatible if there exist new key generation and decryption
algorithms that, when combined with the original setup and encryption algorithms of E, yield a
(selectively) secure functional encryption scheme. (See Section 4 for details.)

Necessary Conditions. The technical starting point for our work is the folklore observation
that any functional encryption scheme must satisfy a certain level of non-malleability. To see
why, consider a functional encryption scheme for encrypting (n+ 1)-bit messages m, and consider
the function f1 that on input m simply outputs the first n bits of m. Suppose that we obtain a
functional key SKf1 for this function. Then functional encryption guarantees that encryptions of
any two messages with identical n-bit prefixes should still be indistinguishable from each other.

But suppose there was a way for an adversary to modify any encryption FE.Enc(m) to obtain
FE.Enc(m′) where m′ swapped the first and last bits of m. This would, for example, easily be
possible if one tried to encrypt the message bit-by-bit. Then, by applying the functional key SKf1
to FE.Enc(m′), the adversary would learn the last bit of m, and break the security that is supposed
to be guaranteed by functional encryption.

Indeed, it is not hard to see that the above argument generalizes to guarantee a type of security
against chosen-ciphertext attacks. Thus, (a form of) CCA-security is a necessary requirement for
an encryption scheme to be FE-compatible.

Universal Functional Encryption? At this point, it might be tempting to consider the possi-
bility that CCA-security is also a sufficient condition for being FE-compatible. Indeed, this would
be true if we had ideal obfuscation2 [Had00] – that is, obfuscation that creates the equivalent of a
virtual black box. It is not difficult to see why: To create a functional key SKf , simply obfuscate
the function that uses SK as a hardwired constant to decrypt the input ciphertext c to obtain the
message m, and then simply output f(m). If the obfuscation is ideal, then this functional key can
easily be simulated as a black box just by using the CCA-decryption oracle for decryption. Thus,
given ideal obfuscation, every CCA-secure public-key encryption scheme is FE-compatible. In this
sense, we could hope to have a kind of universal functional encryption (in the sense of universal
deniable encryption [SW14] or universal signature aggregators [HKW15]), where the key generation
construction above could be applied to any CCA-secure encryption scheme.

2Note that ideal obfuscation is impossible to build.

5

Recently our field has had remarkable success in achieving results using indistinguishability
obfuscation that were previously known to be possible only using ideal obfuscation, especially
using the punctured programming paradigm of [SW14]. Is this just a matter of applying enough
“iO gymnastics” to make this work?

Our Results. In our first result, somewhat surprisingly, we show that in this case, the intuition
based on ideal obfuscation is wrong. Specifically, we show the following:

Informal Theorem 1. Assuming CCA-secure public-key encryption, fully homomorphic encryp-
tion (FHE) and LWE, there exists a CCA-secure public-key encryption scheme that is provably not
FE-compatible.

The construction we give in the impossibility result above is quite contrived, like most im-
possibility results of this type. Could it be that all “natural” CCA-secure public-key encryption
schemes are FE-compatible? Sadly, we do not know how to answer, or even formally define, this
question. Nevertheless, one natural setting in which to consider this question is the well-studied
random oracle model; this model allows for very simple and intuitive proofs of CCA-security, via
the popular Fujisaki-Okamoto [FO99] transformation. In the random oracle model, however, we
show an even stronger negative result: Every public-key encryption scheme, when converted into
a CCA-secure encryption scheme in the random oracle model via the Fujisaki-Okamoto transfor-
mation, is provably not FE-compatible in the random oracle model. Thus, in the random oracle
model, we obtain a large family of natural CCA-secure schemes 3 that are not FE-compatible. 4

In light of the impossibility results above, we believe that a systematic study of FE-compatibility
will need to proceed in a “bottom-up” manner, by looking at existing classes of CCA-secure en-
cryption schemes and seeing if they can indeed be FE-compatible. We initiate this line of study by
identifying a key structure that, if present, is sufficient to provide FE-compatibility. Specifically,
we show the following:

Informal Theorem 2. Assuming sub-exponentially secure iO and sub-exponentially secure one
way functions, there exists a class of public key encryption schemes which we call Special-CCA
secure encryption schemes that are FE-compatible.

We then note that several existing CCA-secure encryption schemes fall into the class of Special-
CCA secure encryption schemes. As a result, we get the following theorem:

Informal Theorem 3. Assuming sub-exponentially secure indistinguishability obfuscation and
sub-exponentially secure one way functions, each of the following existing CCA-secure encryption
schemes are FE-compatible:

• [CHK04] when instantiated with the IBE scheme of [BB04].

• [CHK04] when instantiated with any Hierarchical IBE scheme.

• [PW08] when instantiated with any Lossy Trapdoor Function.

3We believe similarly structured transformation such as RSA-OAEP [BR94] will have the same issues.
4Interestingly, if the scheme is instantiated with a particular hash function family it might actually be FE-

compatible. This is somewhat the opposite of a typical RO infeasibility results where one usually finds a scheme is
provably secure in the RO model, but is insecure under any concrete instantiation. Unfortunately, it is unclear how
to argue positive security of any such concrete FO instantiations as the usual RO heuristic is now off limits.

6

It is interesting to note that the above CCA-secure encryption schemes are each at least 9
years old, and yet they can be used to build functional encryption schemes without changing the
encryption mechanism. Contrast this to existing functional encryption schemes before our work,
most of which have specifically designed encryption methods using “iO-friendly” tools.

Finally, we also consider a weaker notion called key-only FE-compatibility where we retain only
the public key and secret key of the public key encryption scheme and design new encryption,
function secret key generation and decryption algorithms to “upgrade” it to a FE scheme. In the
common random string model, we show that assuming polynomially hard iO, every public key
encryption scheme is key-only FE compatible - that is, it can be upgraded to a selectively secure
FE scheme for any function family.

Open problems and future work. It would be interesting to understand if there exists other
classes of encryption schemes that are FE-compatible. More generally, an interesting open problem
would be to study what is the exact type of CCA-security needed for an encryption scheme to be
FE-compatible.

While it is known that general purpose functional encryption implies indistinguishability ob-
fuscation, another interesting direction would be to weaken the security requirement of functional
encryption (for example, bounded-key secure FE) and understand what class of encryption schemes
can be upgraded without the use of indistinguishability obfuscation. A solution in this setting might
also be practical in today’s world. Going in the other direction, an interesting feasibility question
is whether we can upgrade existing encryption schemes to achieve general purpose multi-input
functional encryption [GGG+14, BGJS15].

Finally, we observe that in our positive result, on upgrading the CCA secure encryption schemes
into an FE scheme, it may potentially lose the CCA property. It is an interesting open problem to
define and achieve FE-CCA compatibility5.

2 Technical Overview

The question at the core of this paper is: what kinds of public-key encryption schemes can be
“upgraded” to yield functional encryption schemes? Informally speaking, we say that a public-
key encryption scheme PKE is FE-compatible if a functional encryption scheme can be generated
where the setup and encryption algorithms of the functional encryption scheme are the same as the
public-key encryption scheme. Namely, we have FE.Setup = PKE.Setup and FE.Enc = PKE.Enc.
Thus, only the functional encryption key generation and decryption algorithms are allowed to be
newly specified.

As already noted, the technical starting point for our work is the folklore observation that any
functional encryption scheme must satisfy a certain level of non-malleability. To remind ourselves
why, consider a functional encryption scheme for encrypting (n+ 1)-bit messages m, and consider
the function f1 that on input m simply outputs the first n bits of m. Suppose that we obtain a
functional key SKf1 for this function. Then functional encryption guarantees that encryptions of
any two messages with identical n-bit prefixes should still be indistinguishable from each other.

But suppose there was a way for an adversary to modify any encryption FE.Enc(m) to obtain
FE.Enc(m′) where m′ swapped the first and last bits of m. This would, for example, easily be
possible if one tried to encrypt the message bit-by-bit. Then, by applying the functional key SKf1
to FE.Enc(m′), the adversary would learn the last bit of m, and break the security that is supposed
to be guaranteed by functional encryption.

5Note that our negative result would still hold in this stronger model of FE-CCA compatibility.

7

An impossibility result. The most natural question to ask, then, is whether CCA-security is
also a sufficient condition for FE-compatibility. In our first result, we prove that this is indeed not
the case: we construct a counterexample public-key encryption scheme that satisfies CCA-security,
but provably is not FE-compatible.

Let us build some intuition for how our impossibility result will proceed. The main difference
between the CCA security game and the FE security game is that in the CCA security game, there
is a decryption oracle, whereas in the FE security game, the adversary can actually obtain a circuit
that will (at least partially) decrypt ciphertexts. This is reminiscent of the situation underlying
the impossibility result of Barak et al. [BGI+01] for virtual black-box obfuscation: There, the
ideal model gave oracle access to the function to be obfuscated, whereas the real model gave the
adversary an actual circuit implementing that function. Indeed, we draw inspiration from [BGI+01]
in devising our negative result, although we differ from it in almost every technical respect.

The idea behind our negative result will be to take an arbitrary CCA-secure encryption scheme
(SetupCCA,EncCCA,DecCCA) and somehow “damage” it to make it FE-incompatible, without dis-
turbing its CCA security. This “damaged scheme” must somehow make use of the fact that an
FE-adversary will be able to ask for and obtain a functional key SKf1 , let us say for the same prefix-
revealing function f1 that we defined above. This functional key SKf1 enables the FE-adversary to
compute a prefix-decryption circuit D that outputs the first n bits of the message corresponding
to any ciphertext.

Our first idea (which conceptually dates back to [BGI+01]) is to use fully homomorphic encryp-
tion (FHE) to help us take advantage of this situation. We first choose a random n-bit string α,
and encrypt it c = EncCCA(α||0) using the CCA-secure encryption scheme. But then we re-encrypt
this c′ = FHE(c) using the fully homomorphic encryption scheme. We reveal c′ as part of the public
key of the “damaged scheme,” but crucially both α and c are kept hidden.

Why does this help? Because now an FE-adversary that obtains the prefix-decryption circuit D
can compute FHE.Eval(D, c′) = FHE(α). While it is not yet clear that this is useful for any attack,
we observe that, at least intuitively, a CCA-attacker has no obvious way to obtaining FHE(α) from
the public key and the decryption oracle (though formally proving this will be the main technical
challenge of our impossibility result, as we will discuss shortly). This is because the only information
that the CCA-attacker has about α is contained in c′, but c′ is an encryption under FHE and the
decryption oracle only decrypts ciphertexts validly encrypted using EncCCA.

To enable a real attack, then, we also add to the public key an obfuscation of a program P that
takes as input an FHE ciphertext e, decrypts it, and checks whether this decryption is equal to α.
If so, it outputs the secret key needed for executing DecCCA, otherwise it outputs ⊥. Because the
FE-attacker can obtain FHE(α) as noted above, it can then use the obfuscated program to obtain
the full secret key for executing DecCCA, breaking the security of the FE scheme.

Why these changes preserve CCA security. The changes above – adding the FHE ciphertext
c′ and the obfuscated program P to the public key – only provide an impossibility result if CCA
security is preserved even after these two objects are added to the public key. While it is not
obvious how a CCA-attacker could use these objects to break security, in order to prove CCA
security, intuitively we will need to remove the dependence of c′ on α. But c′ = FHE(EncCCA(α||0)),
and the obfuscated program P contains the secret key for FHE. But in order to remove these secret
keys from P , intuitively we need to remove the “trigger” point FHE(α) from the code of P , for
which we first need to remove the dependence of c′ on α. This chicken-and-egg situation is the
primary technical obstacle that we need to overcome to finish the proof.

To deal with this problem, we draw inspiration from the work of Myers and Shelat [MS09] and

8

Hohenberger, Lewko and Waters [HLW12] that considered the seemingly very different problem of
converting any CCA-secure encryption scheme for single-bit messages into a CCA-secure encryption
scheme for multi-bit messages. However, to implement our inspiration, we will need to make a
technical change to the encryption system. Instead of using EncCCA to encrypt the entire n+ 1-bit
message, we will use the CCA-secure encryption schemes to encrypt the first n bits of the message,
and use a separate encryption scheme EncCPA to encrypt the last bit of the message. (In fact, we
will use EncCCA to jointly encrypt the first n bits of the message and the ciphertext produced by
EncCPA. But we will ignore this detail for the purpose of this overview.) Finally, we will change
our obfuscated program P to output just the secret key for executing DecCPA to decrypt the last
bit. This way, the secret key for executing DecCCA is independent of the program P . Now, we
will define a Bad Event to be when a CCA-attacker queries its decryption oracle on the ciphertext
c = EncCCA(α). Looking ahead, we will first consider the situation when this Bad Event does not
happen. Then, we will show that indeed the Bad Event can only occur with negligible probability.

Suppose that we know that the Bad Event cannot happen. Then, the decryption oracle given
to the CCA-attacker is equivalent to a decryption oracle that would be given to a CCA-attacker
if c = EncCCA(α) was the “challenge” ciphertext on which the attacker is not allowed to query.
Note that in this case, the CCA security of EncCCA already guarantees that c = EncCCA(α) is
indistinguishable from c = EncCCA(0n), even to an adversary that is given the obfuscated program
P as auxiliary information about α. Thus, we can already remove the dependence of c′ on α.

Now, the only part of the public key that depends on α is the obfuscated program P , and we just
need to get rid of it. This could be accomplished via iO using the fact that α is a uniformly random
string, but in fact our job is made even easier due to the recent works on “lockable obfuscation” of
Goyal et al. [GKW17] and Wichs and Zirdelis [WZ17]. These works consider obfuscating programs
C(x) whose structure is exactly such that, for some circuit Test if Test(x) = α, then some secret β
is revealed, and otherwise the output is ⊥. Lockable obfuscation states that if α is chosen uniformly
(and, for our setting, no auxiliary information about α is revealed), then such obfuscated programs
are indistinguishable from obfuscated programs that always output ⊥ and have no secrets within
them whatsoever. Furthermore, such lockable obfuscation is possible to construct just assuming
LWE for suitable parameters. Thus, applying the security of lockable obfuscation, we are able
to replace the obfuscated program P with a program that always outputs ⊥, thereby completely
removing any information about the secret keys of any encryption scheme and about α. This shows
that the new scheme is CCA-secure, under the assumption that the Bad Event does not occur.

All that remains to be done is to prove that the Bad Event does not occur. Counterintuitively,
we first observe that the lockable obfuscation argument above already shows that the Bad Event
cannot occur if the ciphertext c had been c = EncCCA(0n) instead of c = EncCCA(α). In other words,
if c = EncCCA(0n), then the adversary never queries the decryption oracle with c. Now, suppose for
sake of contradiction, that the adversary does query c with noticeable probability if c = EncCCA(α).
Then, we can use this to break CCA-security of EncCCA; take as a challenge ciphertext c that
is either c = EncCCA(α) or c = EncCCA(0n). Then run the adversary until it attempts to query
the oracle on c. If it ever does this, we can conclude that c = EncCCA(α). If it doesn’t, then
we can output a random guess. This will give us an nontrivial advantage in determining whether
c = EncCCA(α) or c = EncCCA(0n).
This completes the impossibility proof. Full details can be found in Section 5.
For the impossibility result that applies to CCA secure encryption schemes built using the Fujisaki-
Okamoto transformation in the random oracle model, we refer the reader to Section 6 for the
techniques used.

9

Positive Results for FE-compatibility. Our impossibility result shows that CCA security is
not a sufficient condition for an encryption scheme to be FE-compatible. On the other hand, unfor-
tunately positive results on FE in the literature (e.g. [GGH+13, Wat14]) typically construct special-
purpose encryption methods that are atypical for achieving CCA security. For instance, even though
the original general-purpose FE scheme of [GGH+13] follows the Naor-Yung paradigm [NY90,
Sah99], instead of using a simulation-sound NIZK in the encryption, it uses a special object in-
troduced in [GGH+13] called a statistically simulation-sound NIZK. Recall that our goal is to
find existing CCA-secure encryption schemes that are already FE-compatible, rather than design
special-purpose (sometimes called “iO friendly”) primitives that would enable FE.

How can we go about this? Let us try to see if there are encryption mechanisms that were
useful in achieving CCA-security that can also be sufficient for achieving FE.

Our key observation is that the notion of a punctured decryption key, which has implicitly been
used for building CCA-security for over a decade, since (at least) the work of [CHK04], can also
be useful for building FE functional keys. Roughly speaking, we consider the notion of a tag-based
encryption, where every ciphertext is associated with a tag. Then, a punctured decryption key
SKtag∗ should allow a user to decrypt every ciphertext with tag 6= tag∗, but messages encrypted
under tag tag∗ should still be semantically secure. Intuitively, such punctured keys have been
useful for building CCA-secure encryption because a punctured decryption key would allow the
implementation of a decryption oracle that would still not be able to decrypt a challenge message
that was encrypted under tag tag∗. In the literature, such schemes are combined with one-time
signature schemes, where the tag is set to be the verification key of such a one-time signature
scheme, and then the ciphertext is signed in a way that verifies with this key.

How can we use this idea for building FE functional keys? At a high level, we start with the
most basic idea for building a functional key for a function f . We can simply obfuscate a program
that has the decryption key built in, uses this decryption key to decrypt the message m, and then
outputs f(m). Now, we need to argue that the encryption of m0 and the encryption of m1 should
be indistinguishable as long as f(m0) = f(m1) = y. The first idea is to fix the verification key VK∗

in advance that will be used as the tag for the challenge ciphertext c∗. Now, we can reformulate
the obfuscated program to first check whether the input ciphertext is equal to c∗, in which case
the program should output y, but otherwise it should just use the decryption key to decrypt the
message m, and then output f(m) as before. This program is functionally equivalent to the previous
one, and therefore indistinguishability of obfuscated programs follows from iO.

Now, our goal will be to replace the decryption key within the program with the punctured
decryption key SKVK∗ . However, note that we cannot do that immediately, because there are many
valid ciphertexts for various messages m that could be signed under verification key VK∗, on which
the program is supposed to output f(m). However, we know that it should be hard for the adversary
to actually find such valid ciphertexts, because of the security of the one-time signature scheme.
Here, we can use sub-exponentially secure iO to complete the argument: Roughly speaking, the
work of [BCP14] shows that if an iO scheme is secure against time T · poly(n) adversaries, then
iO(P1) and iO(P2) are indistinguishable as long as: (1) they only differ on at most T inputs, and
(2) these inputs are hard to find even if given the code of both P1 and P2, even for machines
whose running time far exceed T . By using this, assuming also sub-exponentially secure one-
time signatures (which follow from sub-exponentially strong one-way functions), we can replace
the program with one that first checks whether the input ciphertext is equal to c∗, in which case
the program outputs y, but otherwise it uses the punctured decryption key SKVK∗ to decrypt the
message m, and then output f(m) as before.

Now, since only this punctured decryption key SKVK∗ is used, we can argue that an encryption of
m0 under tag VK∗ is indistinguishable from an encryption of m1 under tag VK∗. Thus, we show how

10

to bootstrap punctured decryption keys as an existing method for building CCA-secure encryption,
into a method for constructing functional keys without needing to change the underlying encryption
scheme. Interestingly, the security of the encryption given a punctured decryption key needs to
hold only against polynomial-time adversaries, as in standard proofs of CCA-security.

We observe that at least three different existing CCA-secure schemes from the literature, some
dating back over a decade, already follow the punctured key approach to building CCA-secure
encryption, and therefore are FE-compatible. Full details can be found in Section 7.

2.1 Organization

In Section 3, we define some preliminaries. This is followed by the definition of FE-compatibility
in Section 4. In Section 5 we show the impossibility result. This is followed by the impossibility
result in the random oracle model in Section 6. Finally, in Section 7, we show the constructions of
FE-compatible CCA secure encryption schemes. In Appendix E, we discuss the weaker notion of
Key Only FE-Compatibility.

3 Preliminaries

We define the following primitives in Appendix B : indistinguishability obfuscation, differing inputs
obfuscation, lockable obfuscation. We refer the reader to [Gen09, Gen10] for a definition of fully
homomorphic encryption.

4 Defining Functional Encryption Compatibility

Throughout, let the security parameter be denoted by n. Let X = {Xn}n∈N and Y = {Yn}n∈N
denote ensembles where each Xn and Yn is a finite set. Let F = {Fn}n∈N denote an ensemble
where each Fn is a finite collection of functions, and each function f ∈ Fn takes as input a string
x ∈ Xn and outputs f(x) ∈ Yn.

We first define public key encryption in the next subsection. This is followed by the definition of
functional encryption(FE) in the subsequent subsection and then finally, we define what it means
for a public key encryption scheme to be FE-Compatible.

4.1 Public Key Encryption

A public key encryption scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec) for a family of message
spaces {Xn} consists of the following algorithms:

• PKE.Setup(1n):
Given the security parameter n, it generates a public key PK and a secret key SK.

• PKE.Enc(PK,m):
Given a message m ∈ Xn and the public key PK as input, the encryption algorithm outputs
a ciphertext CT.

• PKE.Dec(MSK,CT):
Given a ciphertext CT and the secret key SK as input, the decryption algorithm outputs a
string y ∈ Xn or ⊥.

11

Correctness: A public key encryption scheme PKE is correct if for all messages m ∈ Xn

Pr

[
(PK,SK)← PKE.Setup(1n)

PKE.Dec(SK,PKE.Enc(PK,m)) = m

]
= 1

The probability is over the randomness used in the setup, encryption and decryption algorithms
above.

Security Notions: We consider two notions of security namely IND-CPA security and IND-CCA
security. We define them formally in Appendix A. It is well known that any IND-CCA secure public
key encryption scheme is also IND-CPA secure.

4.2 Functional Encryption

A functional encryption scheme FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) for a family of message
spaces {Xn}, a family of output spaces {Yn} and a family of functions F consists of the following
polynomial time algorithms:

• FE.Setup(1n). The setup algorithm takes as input the security parameter n and outputs a
master public key-secret key pair (MPK,MSK).

• FE.Enc(MPK, x) → CT. The encryption algorithm takes as input a message x ∈ Xn and the
master public key MPK. It outputs a ciphertext CT.

• FE.Keygen(MSK, f) → SKf . The key generation algorithm takes as input a function f ∈ Fn
and the master secret key MSK. It outputs a function secret key SKf .

• FE.Dec(SKf ,CT) → y. The decryption algorithm takes as input a secret key SKf and a
ciphertext CT. It outputs a string y ∈ Yn or ⊥.

Definition 1. (Correctness) A functional encryption scheme FE for F is correct if for all f ∈ Fn
and all x ∈ Xn

Pr

 (MPK,MSK)← FE.Setup(1n)
SKf ← FE.Keygen(MSK, f)

FE.Dec(SKf ,FE.Enc(MPK, x)) = f(x)

 = 1

where the probability is over the random coins of FE.Setup,FE.Enc,FE.Keygen and FE.Dec.

4.2.1 Security

We define the security notion for a functional encryption scheme using the following game (Adaptive− IND)
between a challenger and an adversary.

Setup Phase: The challenger generates (MPK,MSK)← FE.Setup(1n) and then hands over the
master public key MPK to the adversary.
Key Query Phase 1: The adversary makes function secret key queries by submitting functions
f ∈ Fn. The challenger responds by giving the adversary the corresponding function secret key
SKf ← FE.KeyGen(MSK, f).
Challenge Phase: The adversary chooses two messages (m0,m1) of the same size (each in Xn)
such that for all queried functions f in the key query phase, it holds that f(m0) = f(m1). The
challenger selects a random bit b ∈ {0, 1} and sends a ciphertext CT← FE.Enc(MPK,mb) to the

12

adversary.
Key Query Phase 2: The adversary may submit additional key queries f ∈Fn as long as they
do not violate the constraint described above. That is, for all queries f , it must hold that
f(m0) = f(m1).
Guess: The adversary submits a guess b

′
and wins if b

′
= b. The adversary’s advantage in this

game is defined to be 2 ∗ |Pr[b = b
′
]− 1/2|.

We also define the selective security game, which we call (Selective− IND) where the adversary
outputs the challenge message pair even before seeing the master public key.

Definition 2. A functional encryption scheme FE is selective/adaptive secure if all PPT adver-
saries have at most a negligible advantage in the Selective− IND/Adaptive− IND security game.

We can also parameterize by the number of function secret key queries the adversary can make
in the security game.
Compactness[AJ15] : A functional encryption scheme is said to be compact if the size of the
ciphertext does not depend on the size of the functions that the scheme can handle. That is, let
p(·) be a polynomial. Now, any functional encryption scheme FE for a class of functions F is said
to be compact if |FE.Enc(MPK, x)| = p(n, |x|) where n is the security parameter.

4.3 FE-Compatibility

In this section, we define a property called FE-Compatibility for any public key encryption scheme.

Definition 3. A public key encryption scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is said to be
selective/adaptive FE-Compatible relative to a family of functions F if there exists two algorithms
(FE.Keygen,FE.Dec) such that (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) is a selectively/adaptively se-
cure functional encryption scheme for the family F where:

• FE.Setup(n) = PKE.Setup(n). In particular, if PKE.Setup(n) outputs (PK, SK), the output of
FE.Setup(n) is (MPK = PK,MSK = SK).

• FE.Enc(MPK,m) = PKE.Enc(PK,m).

Moreover, any such FE scheme is also compact because the size of the ciphertext is determined by
the scheme PKE and doesn’t depend on the size of the functions being queried.

5 An Impossibility Result

In this section, we will construct an IND-CCA secure encryption scheme that is not FE-Compatible
according to Definition 11. Consider a function f1 that on any input x of length (n+1) bits, outputs
the first n bits of x. Formally, we prove the following theorem:

Theorem 1. Assuming the existence of lockable obfuscation, fully homomorphic encryption and
IND-CCA secure public key encryption, the scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec) de-
scribed below is an IND-CCA secure public key encryption scheme that is not selective FE-Compatible
even for a single function secret key query for any function family F such that f1 ∈ F .

We know how to construct lockable obfuscation with perfect correctness from the learning with
errors (LWE) assumption[GKW17, WZ17]. As a result, we get the following corollary:

13

Corollary 2. Assuming LWE, fully homomorphic encryption and the existence of IND-CCA secure
public key encryption, the scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec) described below is an
IND-CCA secure public key encryption scheme that is not selective FE-Compatible even for a
single function secret key query for any function family F such that f1 ∈ F .

Notation: Let the security parameter be n. Let (SetupCPA,EncCPA,DecCPA) be an IND-CPA
secure encryption scheme that encrypts 1 bit messages and produces ciphertexts of length l1(n),
(SetupCCA,EncCCA,DecCCA) be a CCA secure encryption scheme that encrypts messages of length
(n+1+l1(n)) and produces ciphertexts of size l2(n). Let FHE = (FHE.Setup,FHE.Enc,FHE.DecFHE.Eval)
be a fully homomorphic encryption scheme that encrypts messages of length (l1(n) + l2(n)) and
can evaluate any Poly(n)-sized circuit. Let (O,Eval) be a secure lockable obfuscator for all Poly(n)-
sized circuits that take inputs of size l2(n) and produce outputs of size n. Our scheme PKE =
(PKE.Setup,PKE.Enc,PKE.Dec) that encrypts messages of length (n+ 1) is as follows:

• PKE.Setup(1n):

1. Compute (PKCPA, SKCPA)← SetupCPA(1n), (PKCCA, SKCCA)← SetupCCA(1n) and (PKFHE, SKFHE)←
FHE.Setup(1n).

2. Choose a random string α ∈ {0, 1}n.

3. Compute CT′CPA = EncCPA(PKCPA, 0) and CT′CCA = EncCCA(PKCCA, α||0||CT′CPA). Let
CT′ = (CT′CCA,CT

′
CPA). (In fact, CT′ is an encryption of (α||0) using the encryption

algorithm PKE.Enc described next).

4. Compute CT′FHE = FHE.Enc(PKFHE,CT
′).

5. Generate P̃ = O(n, P, SKCPA, α) using the tester program P described in Figure 1 where
n is the security parameter, P is the program, SKCPA is the message and α is the lock
value. In particular, the functionality of the obfuscated program P̃ is described in
Figure 2. Note that Figure 2 is just for intuition and does not correspond to a formal
specification.

6. Output the public key as PK = (PKCPA,PKCCA,PKFHE,CT
′
FHE, P̃). The secret key of the

scheme is SK = SKCCA.

• PKE.Enc(PK,m):

1. Given an (n+ 1) bit message m, let p be the last bit of m.

2. Compute CTCPA = EncCPA(PKCPA, p).

3. Compute CTCCA = EncCCA(PKCCA,m||CTCPA).

4. Output the ciphertext CT = (CTCCA,CTCPA).

• PKE.Dec(SK,CT):

1. Parse CT = (CTCCA,CTCPA). Recall that SK = SKCCA.

2. Let (m||y) = DecCCA(SKCCA,CTCCA).

3. If the above decryption outputs ⊥ or if y 6= CTCPA, output ⊥.

4. Else, output the message m.

14

Program P

Input : FHE ciphertext CTFHE

Constants : SKFHE

1. Output FHE.Dec(SKFHE,CTFHE).

Figure 1: Tester Program (as in lockable obfuscation notation - see Appendix B)

Program P̃

Input : FHE ciphertext CTFHE

Constants : SKFHE, α, SKCPA

1. Compute y← FHE.Dec(SKFHE,CTFHE).

2. If y = α, output SKCPA. Else, output ⊥.

Figure 2: Functionality of lockable obfuscated tester program

We now prove Theorem 1.

Correctness: It can be easily observed that if the schemes (SetupCPA,EncCPA,DecCPA) and (SetupCCA,EncCCA,DecCCA)
are correct except with negligible probability, then PKE is correct except with negligible probability.
That is, PKE.Dec(PKE.Enc(PK,m),SK) = m for any message m ∈ {0, 1}(n+1).

To prove our theorem we need to show two things. First, we will show that any candidate
functional encryption scheme that includes a “all but last bit reveal” functionality which shares
the setup and encrypt algorithms with the above public key encryption scheme must be insecure.
Second, we show that the scheme PKE actually does have IND-CCA security under certain assump-
tions. Putting these together will yield our theorem.

5.1 An Attack

In this section, assuming the correctness of the encryption schemes used and correctness of the
obfuscator, we show that the above scheme PKE is not FE-Compatible. Suppose it is indeed
FE-Compatible. We will arrive at a contradiction. Formally, we prove the following lemma.

Lemma 1. Any scheme FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) where FE.Setup(.) = PKE.Setup(.)
and FE.Enc(.) = PKE.Enc(.) is not selectively secure even for just 1 function secret key query for
any function family F such that f1 ∈ F .

Proof. Consider a FE adversary A who interacts with a FE challenger in the selective IND-security
game as follows:

1. In the first round, A submits two messages m0 = (0n||0) and m1 = (0n||1).

15

2. A asks for a function secret key corresponding to the following function f1: on input x of
length (n+ 1) bits, f1(x) outputs the first n bits of x. Note that since the first n bits of m0

and m1 are equal, this is a valid function secret key query.

3. The challenger runs the setup algorithm and generates PK, SK. He gives PK to the adversary
along with the function secret key SKf1 . Also, the challenger picks a bit b at random and
sends CT∗ = PKE.Enc(PK,mb).

4. Let the challenge ciphertext be CT∗ = (CT∗CCA,CT
∗
CPA). The adversary computes a FHE

ciphertext CTFHE = FHE.Eval(FE.Dec(SKf , ·),CT′FHE) using the ciphertext CT′FHE in the
public key and the function secret key SKf . A then runs the obfuscated program P̃ on
input CTFHE. That is, run Eval(P̃ ,CTFHE) to receive output SK′CPA. It then computes
b′ = DecCPA(SK′CPA,CT

∗
CPA) and outputs b′ to the challenger.

Analysis: We now show why the adversary’s guess b′ is equal to the challenger’s random bit b
except with negligible probability. From the correctness of the FE scheme, SKf1 must be a correct
function secret key for the function f1. First, from the correctness of the FHE scheme, observe
that CTFHE = FHE.Eval(SKf ,CT

′
FHE) is an encryption of the random string α using the algorithm

FHE.Enc. Now, notice that when this ciphertext CTFHE is a correct encryption of α. So, when
it is fed as input to the program P̃ , from the correctness of lockable obfuscation, the program
outputs the secret key of the IND-CPA secure encryption scheme - SKCPA (which we denoted as
SK′CPA). Therefore, now the adversary’s strategy easily follows. A uses SKCPA to decrypt CT∗CPA
and from the correctness of the IND-CPA secure encryption scheme, this decrypts to give the value
b correctly, which is the adversary’s output.

Hence, the adversary can break the selective IND-security of the FE scheme which is a contra-
diction. Note that the negligible error comes from the fact that the IND-CPA secure encryption
scheme, the FE scheme, the lockable obfuscation scheme and the FHE scheme are all correct except
with negligible probability.

5.2 IND-CCA Security

We now prove that the scheme is IND-CCA secure. Our proof strategy is organized along the
lines around detecting a bad query event which follows the work of Myers and Shelat[MS09] and
Hohenberger, Lewko and Waters[HLW12] who proved multibit CCA security from the existence of
1-bit CCA security. Formally, we prove the following lemma:

Lemma 2. Assuming the hardness of learning with errors (LWE), (SetupCPA,EncCPA,DecCPA) is an
IND-CPA secure public key encryption scheme and (SetupCCA,EncCCA,DecCCA) is an IND-CCA se-
cure public key encryption scheme, PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is an IND-CCA secure
public key encryption scheme.

Proof. We begin our proof by defining a “Bad-Query” event that is defined within the context of
the attacker playing the IND-CCA security game on the encryption scheme PKE.

Definition 4. (Bad Query Event): Let PK be the public key of the scheme PKE that is given to
the adversary. We say that a bad query event has occurred during an execution of the IND-CCA
security game between the adversary A and the challenger if A makes a decryption query of the
form CT = (CT1,CT2) such that CT1 = CT′CCA, where CT′CCA was created by the setup algorithm
PKE.Setup.

16

In order to prove IND-CCA security of our scheme, we will rely on the following claim :

Claim 1. A Bad Query Event does not take place except with negligible probability in n, where
the probability is taken over the coins of the adversary and the challenger playing the IND-CCA
security game.

We defer the proof of this claim to the next section. Here, we show that our scheme is IND-CCA
secure assuming the claim holds true. We will prove this via a series of hybrid experiments where
we show that every successive pair of hybrids is computationally indistinguishable and the final
hybrid is independent of the challenge bit b and hence the attacker’s advantage will be 0 in the
final hybrid.

• Hyb1: This is the real world experiment with challenge bit b chosen randomly. The challenge
ciphertext is CT∗ = (CT∗CCA,CT

∗
CPA).

• Hyb2: This hybrid is identical to the previous hybrid except that now, the decryption oracle
rejects6 for any ciphertext query CT = (CT1,CT2) if CT1 = CT′CCA. Note that the oracle also
continues to reject the challenge ciphertext as before.

• Hyb3: This hybrid is identical to the previous hybrid except that during setup, CT′CCA is now
computed as CT′CCA = EncCCA(PKCCA, 0

n+1||CT′CPA).

• Hyb4: This hybrid is identical to the previous hybrid except that in the public key, P̃ is
replaced with the simulated obfuscated program - i.e Sim(n, 1|P |, 1|SKCPA|) where Sim is the
simulator of the lockable obfuscation scheme.

• Hyb5: This hybrid is identical to the previous hybrid except that in the challenge ciphertext
CT∗ = (CT∗CCA,CT

∗
CPA), CT∗CPA is now computed independent of the bit b as follows: CT∗CPA =

EncCPA(PKCPA, 0).

• Hyb6: This hybrid is identical to the previous hybrid except that now, the decryption oracle
also rejects any ciphertext query CT = (CT1,CT2) if CT1 = CT∗CCA.

• Hyb7: This hybrid is identical to the previous hybrid except that in the challenge ciphertext,
CT∗CCA is now computed independent of the bit b as follows: CT∗CCA = EncCPA(PKCCA, 0

n+1||CT∗CPA).

Observe that in this last hybrid, the challenge ciphertext is created independent of the bit b. Hence,
the attacker’s advantage in this hybrid is negligible.

We will now show the indistinguishability of every successive pair of hybrids.

Claim 2. Assuming Claim 1 holds, Hyb1 is computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is that in Hyb2, the decryption oracle rejects
queries of the form CT = (CT1,CT2) where CT1 = CT′CCA while such queries are not rejected by
the oracle in Hyb1. However, Claim 1 essentially proves that such queries (which we have defined
as the occurrence of a bad query event) are never made by the adversary except with negligible
probability. Therefore, if Claim 1 holds, Hyb1 is computationally indistinguishable from Hyb2.

Claim 3. Assuming that (SetupCCA,EncCCA,DecCCA) is an IND-CCA secure encryption scheme,
Hyb2 is computationally indistinguishable from Hyb3.

6Throughout the paper, we use rejecting an input and producing output ⊥ for the input interchangeably.

17

Proof. The only difference is that in Hyb2, CT′CCA = EncCCA(PKCCA, α||0||CT′CPA) while in Hyb3,
CT′CCA = EncCCA(PKCCA, 0

n+1||CT′CPA). Suppose there exists an adversary A that can distinguish
between these two hybrids. We will use this adversary to come up with an adversary B that
can break the CCA security of the encryption scheme (SetupCCA,EncCCA,DecCCA). B receives the
public key PKCCA of the CCA secure encryption scheme from its challenger. B runs the algorithm
PKE.Setup (except the SetupCCA algorithm part) to create the public key PK. B sends the pair
(α||0||CT′CPA, 0n+1||CT′CPA)) to its challenger and sets CT′CCA as the response.

It then interacts with A acting as the challenger of the scheme PKE and sends the public key
PK to the adversary A. Now, for every decryption oracle query, CT = (CT1,CT2) made by A, B
forwards CT1 to the decryption oracle provided by its challenger and receives a response (m||y) or
⊥. If the response was ⊥ or if y 6= CT2, B responds with ⊥ to A. Else, it sends m as the output
of the decryption. B, on receiving challenge messages m0,m1, picks one of them at random and
encrypts that as the challenge ciphertext.

We can observe that if B received an encryption of (α||0||CT′CPA) from its challenger, that corre-
sponds to an execution of Hyb2 while if it received an encryption of (0n+1||CT′CPA), that corresponds
to an execution of Hyb3. Thus, if A can distinguish between the two hybrids, B can break the CCA
security of the encryption scheme (SetupCCA,EncCCA,DecCCA) which is a contradiction.

Claim 4. Assuming that (O,Eval) is a secure lockable obfuscator, Hyb3 is computationally indis-
tinguishable from Hyb4.

Proof. The only difference between the two hybrids is that in Hyb3, the public key contains
O(n, P,SKCPA, α) while in Hyb4, it contains the simulated program - Sim(n, 1|P |, 1|SKCPA|). Since
α is picked uniformly at random and is used only as the lock value in the obfuscated program and
nowhere else, from the security of lockable obfuscation, the two hybrids will be computationally
indistinguishable. We now describe the reduction.

Consider an adversary A that can distinguish between these two hybrids. We will now design a
reduction Alock that uses A to break the security of the lockable obfuscation scheme. Alock interacts
with A and runs the experiment exactly as in Hyb3 except generating the obfuscated program. Alock

interacts with a challenger C for the lockable obfuscation scheme. Alock sends the program P and
the message SKCPA to the challenger C. C sends back either O(n, P,SKCPA, α) where α is picked
uniformly at random or a simulated obfuscated circuit Sim(n, 1|P |, 1|SKCPA|). Alock sets this as the
obfuscated circuit P̃ and continues with the experiment as in Hyb3. Now, it easily follows that if
A can distinguish between the two hybrids, Alock can use the same distinguishing guess to break
the security of the lockable obfuscation scheme which is a contradiction.

Claim 5. Assuming that (SetupCPA,EncCPA,DecCPA) is an IND-CPA secure encryption scheme,
Hyb4 is computationally indistinguishable from Hyb5.

Proof. The only difference between the two hybrids is in the challenge ciphertexts. In Hyb4,
CT∗CPA = EncCPA(PKCPA, pb) while in Hyb5, CT∗CPA = EncCCA(PKCPA, 0). Here, p is the last bit
of the message mb. Suppose there exists an adversary A that can distinguish between these two
hybrids. We will use this adversary to come up with an adversary B that can break the CPA
security of the encryption scheme (SetupCPA,EncCPA,DecCPA). B receives the public key PKCPA of
the CCA secure encryption scheme from its challenger. B runs the algorithm PKE.Setup (except
the SetupCPA algorithm part) to create the public key PK. B sends the public key to the adversary
A and answers all the decryption queries honestly as in Hyb4. B, on receiving challenge messages
m0,m1, picks one of them at random by choosing a bit b. B sends the pair (pb, 0) to its challenger

18

and receives CT∗CPA as an encryption of one of them. It sets CT∗CCA as in Hyb4 and continues with
the rest of the experiment.

We can observe that if B received an encryption of (pb) from its challenger, that corresponds
to an execution of Hyb4 while if it received an encryption of (0), that corresponds to an execution
of Hyb5. Thus, if A can distinguish between the two hybrids, B can use that to break the CPA
security of the encryption scheme (SetupCPA,EncCPA,DecCPA) which is a contradiction.

Note that here, CPA security of the encryption scheme is enough since the decryption algorithm
PKE.Dec does not use its secret key at all. Also, the only place the secret key SKCPA was used was
inside the obfuscation of program P which is also not the case anymore in the simulated obfuscated
program.

Claim 6. Hyb5 is identical to Hyb6.

Proof. The only difference between the two hybrids is that in Hyb6, the decryption oracle rejects
any ciphertext query CT = (CT1,CT2) if CT1 = CT∗CCA. First, observe that if CT2 = CT∗CPA, then
CT is in fact the challenge ciphertext CT∗ itself and hence even Hyb6 would reject the query. On
the other hand, if CT2 6= CT∗CPA but CT1 = CT∗CCA, then, DecCCA(SKCCA,CT1) produces (m∗, y∗)
such that y∗ 6= CT2. This is because y∗ would in fact be equal to CT∗CPA. Hence, even Hyb5 would
reject these queries and so the two hybrids are identical.

Claim 7. Assuming that (SetupCCA,EncCCA,DecCCA) is an IND-CCA secure encryption scheme,
Hyb6 is computationally indistinguishable from Hyb7.

Proof. The only difference between the two hybrids is in the challenge ciphertext CT∗ = (CT∗CCA,CT
∗
CPA).

In Hyb6, CT
∗
CCA = EncCCA(PKCCA,mb||CT∗CPA) while in Hyb7, CT

∗
CCA = EncCCA(PKCCA, 0

n+1||CT∗CPA).
Suppose there exists an adversary A that can distinguish between these two hybrids. We will use
this adversary to come up with an adversary B that can break the CCA security of the encryption
scheme (SetupCCA,EncCCA,DecCCA). B receives the public key PKCCA of the CCA secure encryp-
tion scheme from its challenger. B runs the algorithm PKE.Setup (except the SetupCCA algorithm
part) to create the public key PK. It then interacts with A acting as the challenger of the scheme
PKE and sends the public key PK to the adversary A. Now, for every decryption oracle query,
CT = (CT1,CT2) made by cA, B forwards CT1 to the decryption oracle provided by its challenger
and receives a response (m||y) or ⊥. If the response was ⊥ or if y 6= CT2, B responds with ⊥ to A.
Else, it sends m as the output of the decryption. B, on receiving challenge messages m0,m1, picks
one of them at random by choosing a bit b. Compute CT∗CPA = EncCPA(PKCPA, 0). B sends the pair
(mb||CT∗CPA, 0n+1||CT∗CPA)) to its challenger and sets CT∗CCA as the response. B sends the challenge
ciphertext CT∗ = (CT∗CCA,CT

∗
CPA).

We can observe that if B received an encryption of (mb||CT∗CPA) from its challenger, that corre-
sponds to an execution of Hyb6 while if it received an encryption of (0n+1||CT∗CPA), that corresponds
to an execution of Hyb7. Thus, if A can distinguish between the two hybrids, B can use that to
break the CCA security of the encryption scheme (SetupCCA,EncCCA,DecCCA) which is a contradic-
tion.

5.3 Proof of Claim 1

Instead of proving the claim directly, we first prove it for an alternate IND-CCA security game and
then show how it holds even in the actual IND-CCA security game.

19

Alternate IND-CCA Game. This is same as the original game except that the Challenger now
computes CT′CCA during setup as follows: CT′CCA = EncCCA(PKCCA, 0

n+1||CT′CPA). That is, α is no
longer part of the message being encrypted. For this alternate IND-CCA game, the Bad Query
Event remains the same: i.e, the event occurs if the adversary makes a query CT = (CT1,CT2) to
the decryption oracle where CT1 = CT′CCA. Now, via a sequence of hybrids, we show that Claim 1
holds for this alternate IND-CCA game. That is, we show that the Bad Query Event happens with
negligible probability.

• Hyb1: This hybrid corresponds to the alternate IND-CCA game as described above.

• Hyb2: This hybrid is identical to the previous hybrid except that in the public key, P̃ is
replaced with the simulated obfuscated program - i.e Sim(n, 1|P |, 1|SKCPA|) where Sim is the
simulator of the lockable obfuscation scheme.

• Hyb3: This hybrid is identical to the previous hybrid except that the ciphertext CT′FHE is now
computed as CT′FHE = FHE.Enc(PKFHE, 0

l1(n)+l2(n)).

We now show that every successive pair of hybrids is computationally indistinguishable. This
proves that the probability that the Bad Query Event occurs is the same for every pair of successive
hybrids. Finally, we show that in the last hybrid Hyb4, the probability that the Bad Query Event
occurs is negligible.

Claim 8. Assuming that (O,Eval) is a secure lockable obfuscator, Hyb1 is computationally indis-
tinguishable from Hyb2.

Proof. The proof is same as the proof of Claim 5.

Claim 9. Assuming that (FHE.setup,FHE.enc,FHE.dec) is an IND-CPA secure fully homomorphic
encryption scheme, Hyb2 is computationally indistinguishable from Hyb3.

Proof. The proof is same as the proof of Claim 6.

Claim 10. Pr[Bad Query Event occurs in Hyb3] = negligible(n).

Proof. This is because the ciphertext CT′CCA does not appear at all in the public key anymore!
Even if the adversary knew the value of (CT′CPA), the only information that the adversary has
about CT′CCA is that it is an encryption of (0n+1||CT′CPA) using public key PKCCA.

First, observe that the number of possible ciphertexts for the message (0n+1||CT′CPA) must be
at least super-polynomial in n. This follows from the CPA security of the encryption scheme
(SetupCCA,EncCCA,DecCCA) because if this wasn’t true, a polynomial time adversary can break
the CPA security by generating all possible ciphertexts for (0n+1||CT′CPA) and testing it with the
challenge ciphertext.

Now, notice that to make the Bad Query Event occur, the adversary will just have to guess the
value of CT′CCA (or the randomness that was used in the encryption to generate CT′CCA) and this
can be done only with negligible probability.

20

Original IND-CCA Game. We show that the Bad Query Event happens only with negligible
probability even in the original IND-CCA game. Formally, we prove the following lemma:

Lemma 3. Assuming (SetupCCA,EncCCA,DecCCA) is a CCA secure encryption scheme and that
the Bad Query Event does not occur in the Alternate CCA game described above except with neg-
ligible probability, the Bad Query Event does not occur in the original CCA security game for the
encryption scheme PKE except with negligible probability.

Proof. Suppose there exists an adversary A that makes the Bad Query Event occur with non-
negligible probability. We now construct an algorithm B that breaks the IND-CCA security of
(SetupCCA,EncCCA,DecCCA). B acts as the challenger of the IND-CCA security game for the scheme
PKE in its interaction with A. First, B interacts with its challenger and receives the public key
PKCCA. B then runs the setup algorithm PKE.Setup,(except the SetupCCA part) to compute the
public keys PKCPA,PKFHE. It computes CT′CPA as done by the setup algorithm. B then sends
the pair (α||0||CT′CPA, 0n+1||CT′CPA) as the two challenge messages to the challenger and sets the
response as CT′CCA. B continues with the rest of the game acting as the challenger to A. Whenever
A makes a decryption query (CT1,CT2), if CT1 6= CT′CCA, it queries the decryption oracle of its
challenger with CT1 and uses this to respond to A as done in the original game. Similarly, B also
creates the challenge ciphertext. If B ever receives a query (CT1,CT2) from A to the decryption
oracle such that CT1 = CT′CCA, it immediately halts the game with A and outputs the guess 0 to
its challenger. If such a query never happens, it outputs 1 to the challenger after completing the
game with A.

We now analyze why this works. The algorithm B knows that if its challenger gave an encryption
of 0n+1, then its interaction with A corresponds to the alternate IND-CCA game described earlier.
Here, we know that the adversary A can not make the Bad Query Event occur. Therefore, if the
adversary A makes the Bad Query Event occur, then it must occur in the case that CT′CCA is an
encryption of (α||0||CT′CPA). Hence, B guesses 0 in that case. On the other hand, if the adversary A
does not make the Bad Query Event occur, then it must be the case that 0n+1 was encrypted. This
is because we assumed that A can make the Bad Query Event occur with non-negligible probability
in the original IND-CCA security game. This completes the proof.

Note that the reduction is actually not interested in completing the game with A in the event
that B halts. That is, B does not care whether A wins the IND-CCA game but is rather more
interested in whether A makes a Bad Query Event occur.

Remark: At first glance, there seems to be a circularity issue in trying to prove IND-CCA security
of our scheme. That is, in order to prove indistinguishability of the main hybrids, we require to
first erase α which depends on no queries being made to the decryption oracle that contain CT′CCA.
On the other hand, it seems difficult to directly argue that no such queries are made because of
the presence of α in CT′CCA. This causes a circularity. We get around this issue using the alternate
IND-CCA game where α is erased. In this game, we show that the bad query event can’t occur
and then using a reduction to the underlying encryption scheme’s security, we can eventually show
that the bad query event does not occur even in the original CCA security game.

This technique is very similar to [MS09, HLW12]. In these works, they construct CCA secure
encryption and in the process, they run into a similar circularity issue. The analog of α was the
randomness used for encryption and this randomness is in fact encrypted by an inner encryption
scheme.

This completes the proof of Theorem 1.

21

6 On the Difficulty of Proving Functional Encryption Compati-
bility for Fujisaki-Okamoto and RSA-OAEP

In exploring functional encryption compatibility an important class of schemes to consider is
schemes that have proofs of CCA security based on the random oracle heuristic. Examples of
these include RSA-OAEP[BR94] and the Fujisaki-Okamoto [FO99] transformation. While stan-
dard model proofs might be desirable, studying random oracle-based schemes is important as they
largely represent what encryption is deployed and standardized. For example, RSA-OAEP is stan-
dardized as PKCS #1 v2.2 [JK03].

In this section we give a negative result and show that any functional encryption system that
uses the setup and encryption algorithms from the Fujisaki-Okamoto transformation is insecure in
the random oracle model. We believe a very similar analysis will work for the RSA-OAEP scheme,
but chose to focus our formal analysis on Fujisaki-Okamoto.

However, this finding must be taken with a grain of salt as it might the case that such a
candidate FE system is actually secure when the random oracles are instantiated with a concrete
hash function such as SHA-256. The above statement is quite peculiar in that almost all random
oracle uninstantiability results [CGH04] are of the flavor that one shows a scheme that is secure in
the random oracle model, but insecure when one uses any concrete instantiation of it. Our result
is somewhat the opposite where the scheme in question is insecure when using the random oracle,
but may or may not be secure for a particular hash function.

Our takeaway interpretation is that if one attempted to derive a functional encryption scheme
from the Fujisaki-Okamoto transformation (or a similar scheme) it might be secure, but it would be
difficult to arrive at a proof of security. The reason is that any argument for FE compatibility would
seem to need to be rooted in the encryption scheme being CCA secure to begin with. However,
the only way we currently know how to argue security of such systems is via the random oracle
heuristic and this pathway is cutoff by our result.

6.1 Construction

We first describe the Fujisaki-Okamoto transformation that combines any public key encryption
scheme and any private key encryption scheme into a CCA secure encryption scheme in the random
oracle model. Then, we show why such a CCA secure encryption scheme can not be FE-Compatible.

Notation: Let n be the security parameter. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be any
public key encryption scheme with message space {0, 1}p(n) and randomness space {0, 1}l(n) for
some polynomials p, l. Let (SKE.Enc,SKE.Dec) be a private key encryption scheme with message
space {0, 1}q(n) and key space {0, 1}k(n) for some polynomials q, k. Let G : {0, 1}∗ → {0, 1}k(n) and
H : {0, 1}∗ × {0, 1}∗ → {0, 1}l(n) be two random oracles.

The CCA secure encryption scheme FO = (FO.Setup,FO.Enc,FO.Dec) on applying the Fujisaki-
Okamoto transformation has message space {0, 1}q(n). The scheme is as follows:

• FO.Setup(1n):

1. Compute (PK,SK)← PKE.Setup(1n).

2. Set PK as the public key and SK as the secret key of the scheme.

• FO.Enc(PK,m):

1. Choose r ∈ {0, 1}p(n) uniformly at random. Compute a = G(r).

22

2. Compute CT1 = SKE.Enc(a,m).

3. Compute h = H(r,CT1).

4. Compute CT2 = PKE.Enc(PK, r; h) using randomness h.

5. Output CT = (CT1,CT2).

• FO.Dec(SK,CT):

1. Parse CT = (CT1,CT2).

2. Compute r̃ = PKE.Dec(SK,CT2).

3. Compute ã = G(̃r) and h̃ = H(̃r,CT1).

4. Check that CT2 = PKE.Enc(PK, r̃; h̃). Else, Abort.

5. Output m = SKE.Dec(ã,CT1).

6.2 Attack

Consider the scheme FO as described above with message space consisting of all strings of length
(n + 1). That is, let q(n) = n + 1. Assuming the correctness and security of the underlying
encryption schemes PKE and SKE, we will show that the above scheme FO is not FE-Compatible
in the random oracle model. We will use the same function f1 as in the last section. That is, f1(m)
outputs the first n bits of the (n+ 1) bit string m. Formally, we prove the following lemma.

Lemma 4. In the random oracle model, assuming that the underlying encryption scheme SKE is
semantically secure, any scheme FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) where FE.Setup(.) =
FO.Setup(.) and FE.Enc(.) = FO.Enc(.) is not a selectively secure functional encryption scheme even
for just 1 function secret key query for any function family F such that f1 ∈ F .

Proof. Consider any ciphertext CT = FO.Enc(PK,m; r). That is, the ciphertext was generated using
randomness r. Recall that, given ciphertext CT = (CT1,CT2), the algorithm FO.Dec first decrypts
CT2 to generate r and then queries the two random oracles G and H on this randomness r. We will
now consider two cases and show that the scheme FE is not a secure FE scheme in both.

Case 1: In this case, let’s assume that, given any ciphertext CT = FO.Enc(PK,m; r), the FE.Dec
algorithm, except with negligible probability, either queries the random oracle G on the randomness
r or queries the random oracle H on (r, c) for some c.

Now, consider a FE adversary A who interacts with a FE challenger in the selective IND-security
game as follows:

1. In the first round, A submits two messages m∗0 = (0n||0) and m∗1 = (0n||1).

2. A asks for a function secret key corresponding to the function f1. Note that since the first n
bits of m0 and m1 are equal, this is a valid function secret key query.

3. The challenger runs the setup algorithm and generates PK, SK. He gives PK to the adversary
along with the function secret key SKf1 . Also, the challenger picks a bit b at random and
sends CT∗ = PKE.Enc(PK,m∗b ; r

∗).

23

4. A computes FE.Dec(SKf1 ,CT
∗). Recall that this algorithm, except with negligible probability,

would either query G on the randomness r∗ or query H on (r, c) for some c. Let’s say the
algorithm makes q queries to both oracles combined. A observes all these queries and for each
of them, tries to check whether it was the randomness r∗. That is, it can re-encrypt both m∗0
and m∗1 using the algorithm FO.Enc and check if it generates CT∗. Therefore, the adversary
can easily determine whether CT∗ encrypts m∗0 or m∗1 and this would break FE security.

Case 2: Now, we assume that given any ciphertext CT = (CT1,CT2) that is computed as
FO.Enc(PK,m; r), the FE.Dec algorithm, except with negligible probability, neither queries the ran-
dom oracle G on the randomness r nor queries the random oracle H on (r, c) for some string c.

We now describe why it is impossible in this case too. In any ciphertext CT = (CT1,CT2) computed
as FO.Enc(PK,m; r), notice that CT1 = SKE.Enc(a,m) where a = G(r). That is, the secret key used
for the private key encryption scheme is the output of the random oracle G on the randomness r
and this is the only component of the ciphertext that uses the underlying message m. However,
if the decryption algorithm FE.Dec never queries the random oracle G on r, then by the security
of the random oracle, the output G(r) is statistically indistinguishable from random. Therefore,
the algorithm FE.Dec has no information about the secret key a. Yet, by the correctness of the
FE scheme, we know that FE.Dec is able to partially decrypt the underlying message inside the
ciphertext CT1 = SKE.Enc(a,m) and evaluate the function output. Therefore, we can use this to
break the semantic security of the private key encryption scheme which will be a contradiction.

Thus, in this case, the resulting functional encryption scheme can not be correct. Note that, in
fact, in this case, we don’t even need to use the second oracle H in the proof.

Further, recall that the decryption algorithm for any functional encryption scheme is determin-
istic (we are only considering deterministic functionalities). Hence, these 2 cases are exhaustive
because given any ciphertext, the decryption algorithm either queries one of the random oracles or
it doesn’t. This completes the proof.

7 Building FE-Compatible Encryption Schemes

We first define a new notion called puncturable tag based encryption7. In the next subsection, we
show how to construct a selective IND-CCA secure public key encryption scheme from any punc-
turable tag based encryption scheme. We call such a selective IND-CCA secure public key encryp-
tion scheme as “Special-CCA”. In the following subsection, we show how to instantiate a “Special-
CCA” secure encryption scheme with several existing popular encryption schemes in literature.
Finally, we show that this “Special-CCA” secure public key encryption scheme is FE-Compatible.

7.1 Puncturable Tag Based Encryption

In this section, we define a new primitive called puncturable tag based encryption (PTBE) that is
a modification of tag based encryption schemes [Kil06] but with two more algorithms. We then
show how several well known encryption schemes in literature (based on various assumptions) do
in fact fit into the framework of puncturable tag based encryption.

Let n denote the security parameter and X = {Xn}n∈N, T = {Tn}n∈N denote ensembles where
each Xn and Tn is a finite set. Formally, a puncturable tag based encryption scheme PTBE =

7Previously, [MH14] also introduced a primitive called puncturable tag based encryption which is completely
different from the one we define here.

24

(PTBE.Setup,PTBE.Enc,PTBE.Dec,PTBE.Setup-Alt,PTBE.Setup-Alt-1,PTBE.Dec-Alt) consists of
the following algorithms:

• PTBE.Setup(1n):
Given the security parameter n, it generates a public key PK and a secret key SK.

• PTBE.Enc(PK, t,m):
Given a message m ∈ Xn, a tag t ∈ Tn and the public key PK as input, the encryption
algorithm outputs a ciphertext CT.

• PTBE.Dec(SK, t,CT):
Given a ciphertext CT, a tag t ∈ Tn and the secret key SK as input, the decryption algorithm
outputs a string y ∈ Xn or ⊥.

• PTBE.Setup-Alt(1n, t∗,m∗):
Given the security parameter n, a tag t∗ ∈ Tn and a message m∗ ∈ Xn, it generates a public
key PK, a secret key SK, an alternate secret key SK-Alt and a ciphertext CT∗.

• PTBE.Setup-Alt-1(1n, t∗,m∗):
Given the security parameter n, a tag t∗ ∈ Tn and a message m∗ ∈ Xn, it generates a public
key PK, a secret key SK, an alternate secret key SK-Alt and a ciphertext CT∗.

• PTBE.Dec-Alt(SK-Alt, t,CT):
Given a ciphertext CT, a tag t ∈ Tn and an alternate secret key SK-Alt as input, the alternate
decryption algorithm outputs a string y ∈ Xn or ⊥.

Remark: For technical reasons, to make our proofs simpler while instantiating our “Special-CCA”
secure encryption schemes, we use two setup-alt algorithms (that albeit perform a very similar role).
We provide more details about this in a remark at the end of Section D.2. Alternatively, we could
just use one setup-alt algorithm in the abstraction and make the proof a bit more complicated. We
choose the former option in this writeup.

Correctness: A puncturable tag based encryption scheme PTBE is correct if for all messages
m ∈ Xn and all tags t ∈ Tn

Pr

[
(PK,SK)← PTBE.Setup(1n)

PTBE.Dec(SK, t,PTBE.Enc(PK, t,m)) = m

]
= 1

The probability is over the randomness used in the setup, encryption and decryption algorithms.
For security, we require the following four properties:

1. Equivalent on all but challenge tag: For any message m∗ ∈ Xn, any tag t∗ ∈ Tn, for all
ciphertexts CT and all tags t ∈ Tn such that t 6= t∗, we require that:

Pr

[
(PK,SK,SK-Alt,CT∗)← PTBE.Setup-Alt(1n, t∗,m∗)
PTBE.Dec(SK, t,CT) = PTBE.Dec-Alt(SK-Alt, t,CT)

]
= 1

The probability is over the randomness used in all the above algorithms.

2. Indistinguishability of parameters: The output of the following two experiments must
be computationally indistinguishable for all messages m∗ and tags t∗:

25

(a) Experiment 1:
Run PTBE.Setup(1n) to generate (PK, SK). Compute CT∗ = PTBE.Enc(PK, t∗,m∗) and
output (PK, SK,CT∗).

(b) Experiment 2:
Run PTBE.Setup-Alt(1n, t∗,m∗) to generate (PK,SK,SK-Alt,CT∗) and output (PK, SK,CT∗).

3. Indistinguishability of alternate setups: The output of the following two experiments
must be indistinguishable for all messages m∗ and tags t∗:

(a) Experiment 1:
Run PTBE.Setup-Alt(1n, t∗,m∗) to generate (PK, SK,SK-Alt,CT∗) and output (PK, SK-Alt,CT∗).

(b) Experiment 2:
Run PTBE.Setup-Alt-1(1n, t∗,m∗) to generate (PK,SK,SK-Alt,CT∗) and output (PK, SK-Alt,CT∗).

4. Indistinguishability of messages: For this property to hold, we require the adversary’s
advantage to be negligible in the following game between an adversary A and a challenger
Ch:

(a) A sends (t∗,m∗0,m
∗
1) to the challenger.

(b) Ch chooses a random bit b and runs PTBE.Setup-Alt-1(1n, t∗,m∗b) to generate (PK,SK-Alt,CT∗)
and gives the adversary (PK, SK-Alt,CT∗).

(c) A submits a guess b
′

and wins if b
′

= b. The adversary’s advantage in this game is
defined to be 2 ∗ |Pr[b = b

′
]− 1/2|.

7.2 Special-CCA secure encryption scheme

In this section, we show how to build a selective CCA secure encryption scheme from any PTBE with
the addition of one time signatures. Recall that we define selective CCA secure encryption schemes
in Appendix A. We call such a CCA secure encryption scheme as “Special-CCA”. Formally, we
prove the following theorem:

Theorem 3. Given a puncturable tag based encryption scheme PTBE = (PTBE.Setup,
PTBE.Enc,PTBE.Dec,PTBE.Setup-Alt,PTBE.Setup-Alt-1,PTBE.Dec-Alt) and a strongly secure one
time signature scheme OTS = (OTS.Setup,OTS.Sign,OTS.Verify), the scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec)
described below is a selective CCA secure encryption scheme.

According to our notation, scheme PKE is a Special-CCA secure encryption scheme.

Notation: Let PTBE = (PTBE.Setup,PTBE.Enc,PTBE.Dec,PTBE.Setup-Alt,PTBE.Setup-Alt-1,
PTBE.Dec-Alt) be a puncturable tag based encryption scheme with message space Xn, tag space
Tn that outputs ciphertexts of size l(n). Let OTS = (OTS.Setup,OTS.Sign,OTS.Verify) be a one
time signature scheme that signs messages of length l(n) and the space of verification keys is Tn.
Our new scheme PKE has message space Xn.

We now describe the template for building Special-CCA secure encryption schemes from any
puncturable tag based encryption. This template can be instantiated by several existing CCA
secure encryption schemes in the literature [CHK04, Kil06, PW08].

26

Construction:

• PKE.Setup(1n):

1. Generate the public key and secret key as (PK,SK)← PTBE.Setup(1n).

• PKE.Enc(PK,m):

1. Generate (VK,SigK)← OTS.Setup(1n).

2. Compute CT1 = PTBE.Enc(PK,VK,m) and σ = OTS.Sign(CT1,SigK).

3. Output CT = (VK,CT1, σ) as the ciphertext.

• PKE.Dec(SK,CT):

1. Parse CT = (VK,CT1, σ).

2. Output ⊥ if OTS.Verify(VK,CT1, σ) = 0.

3. Output m = PTBE.Dec(SK,VK,CT1).

We prove that the above scheme is CCA-secure in Appendix C.

7.3 Instantiating Special-CCA encryption

We show that several popular and well-studied CCA-secure encryption schemes are in fact Special-CCA.
That is, they satisfy this property that they can be constructed using PTBE and one-time signa-
tures as shown in the above construction. We now list the encryption schemes below and prove in
Appendix D that they satisfy the necessary conditions. Formally,

Theorem 4. The selective CCA-secure encryption schemes in the following popular works are in
fact Special-CCA secure encryption schemes:

• [CHK04] when instantiated with the IBE scheme of [BB04].

• [CHK04] when instantiated with any Hierarchical IBE scheme.

• [PW08] when instantiated with any Lossy Trapdoor Function.

7.4 Building selectively secure FE

In this section, we show that the “Special-CCA” secure encryption scheme PKE = (PKE.Setup,
PKE.Enc,PKE.Dec) from the previous section is FE-Compatible. We prove the security of our
construction in two different ways - the first is based on the assumption of sub-exponentially secure
indistinguishability obfuscation. Additionally, it requires the one time signature scheme used in the
construction of PKE to be a sub-exponentially secure unique signature scheme. On the other hand,
the second proof is based on the existence of polynomially secure differing inputs obfuscation and
just polynomially secure one time signatures.

Formally, we prove the following two theorems:

Theorem 5. Any “Special-CCA” secure encryption scheme is selective FE-Compatible for any
function family Fn and poly(n) function key queries assuming:

• Sub-exponentially secure indistinguishability obfuscation. (AND)

27

• Sub-exponentially secure unique one time signatures.

Moreover, the resulting FE scheme is also compact.

Theorem 6. Any “Special-CCA” secure encryption scheme is selective FE-Compatible for any
function family Fn and poly(n) function key queries assuming:

• Polynomially secure differing inputs obfuscation. (AND)

• Polynomially secure strong one time signatures.

Moreover, the resulting FE scheme is also compact.

One example of a one time signature scheme is the Lamport signature scheme[Lam79]. Observe
that it is in fact a unique one time signature scheme if we rely on injective one way functions.
Instantiating the Special-CCA scheme with the various schemes in Section 7.3, we get the following
two corollaries:

Corollary 7. Let X denote the CCA secure encryption scheme in any of the following popular
works :

• [CHK04] when instantiated with the IBE scheme of [BB04].

• [CHK04] when instantiated with any Hierarchical IBE scheme.

• [PW08] when instantiated with any Lossy Trapdoor Function.

Assuming sub-exponentially secure indistinguishability obfuscation and sub-exponentially secure in-
jective one way functions, scheme X is selective FE-Compatible for any function family Fn and
poly(n) function key queries. Moreover, the resulting FE scheme is also compact.

Corollary 8. Let X denote the CCA secure encryption scheme in any of the following popular
works :

• [CHK04] when instantiated with the IBE scheme of [BB04].

• [CHK04] when instantiated with any Hierarchical IBE scheme.

• [PW08] when instantiated with any Lossy Trapdoor Function.

Assuming polynomially secure differing inputs obfuscation and polynomially secure one way func-
tions, scheme X is selective FE-Compatible for any function family Fn and poly(n) function key
queries. Moreover, the resulting FE scheme is also compact.

Construction: Let (O,Eval) be a secure obfuscator (note that we will use indistinguishability
obfuscation in one proof and differing inputs obfuscation in the other). The functional encryption
FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) built from the Special-CCA scheme PKE is as follows.
Recall that from the definition of FE-Compatibility, FE.Setup(·) = PKE.Setup(·) and FE.Enc(·) =
PKE.Enc(·).

• FE.Setup(1n): Run PKE.Setup(1n) to generate (PK, SK).

• FE.Enc(PK,m): Run PKE.Enc(PK,m) to generate the ciphertext CT = (VK,CT1, σ).

• FE.Keygen(SK, f): Output SKf = O(Gf) where the program Gf is described below.

28

• FE.Dec(SKf ,CT) Run the program SKf on input CT to output a string y.

Program Gf

Input : ciphertext CT
Constants : SK

1. Compute m = PKE.Dec(SK,CT).

2. Output ⊥ if the decryption aborts.

3. Else, output f(m).

Figure 3: Program for generating function secret key

7.4.1 Security Proof

We will prove this via a series of hybrid experiments where we show that every successive pair of
hybrids is computationally indistinguishable and the final hybrid is independent of the challenge
bit b and hence the attacker’s advantage will be 0 in the final hybrid. We will show the indistin-
guishability of the hybrids using two different proofs in some cases to prove both Theorem 5 and
Theorem 6.

• Hyb1: This is the real world experiment with challenge bit b chosen randomly. The challenge
ciphertext as CT∗ = (VK∗,CT∗1, σ

∗).

• Hyb2: This hybrid is identical to the previous hybrid except that now, FE.Setup(1n) and
the challenge ciphertext are computed differently. Instead of running the setup algorithm
PTBE.Setup(1n), we now run PTBE.Setup-Alt(1n,VK∗,m∗b) to generate (PK, SK, SK-Alt,CT∗1).
The FE scheme’s public key is PK, secret key is SK. Now, the challenge ciphertext is computed
as follows: generate (SigK∗,VK∗)← OTS.Setup(1n) and compute σ∗ = OTS.Sign(SigK∗,CT∗1).
The challenge ciphertext is (VK∗,CT∗1, σ

∗). Note that the alternate secret key SK-Alt is not
used at all.

• For each i in {0, 1, . . . , q}, Hyb3,i: This hybrid is identical to the previous hybrid except

that now, the function secret key SKf for the ith function key query f is computed as O(G1
f)

for the following program G1
f .

29

Program G1
f

Input : ciphertext CT
Constants : SK,CT∗ = (VK∗,CT∗1, σ

∗)

1. If CT = CT∗, output y where y = f(m∗0) = f(m∗1).

2. Compute m = PKE.Dec(SK,CT).

3. Output ⊥ if the decryption aborts.

4. Else, output f(m).

Figure 4: Program for generating function secret key

Note that Hyb3,0 corresponds to Hyb2.

• For each i in {0, 1, . . . , q}, Hyb4,i: This hybrid is identical to the previous hybrid except

that now, the function secret key SKf for the ith function key query f is computed as O(G2
f)

for the following program G2
f .

Program G2
f

Input : ciphertext CT = (VK,CT1, σ)
Constants : SK,CT∗ = (VK∗,CT∗1, σ

∗)

1. If CT = CT∗, output y where y = f(m∗0) = f(m∗1).

2. If VK = VK∗, output ⊥.

3. Compute m = PKE.Dec(SK,CT).

4. Output ⊥ if the decryption aborts.

5. Else, output f(m).

Figure 5: Program for generating function secret key

Note that Hyb4,0 corresponds to Hyb3,q.

• For each i in {0, 1, . . . , q}, Hyb5,i: This hybrid is identical to the previous hybrid except

that now, the function secret key SKf for the ith function key query f is computed as O(G3
f)

for the following program G3
f .

30

Program G3
f

Input : ciphertext CT = (VK,CT1, σ)
Constants : SK,CT∗ = (VK∗,CT∗1, σ

∗)

1. If CT = CT∗, output y where y = f(m∗0) = f(m∗1).

2. If VK = VK∗, output ⊥.

3. Check if OTS.Verify(VK,CT1, σ) = 1.

4. Compute m = PTBE.Dec-Alt(SK-Alt,VK,CT1).

5. Output ⊥ if the decryption aborts or if the signature doesn’t verify.

6. Else, output f(m).

Figure 6: Program for generating function secret key

Note that Hyb5,0 corresponds to Hyb4,q.

• Hyb6: This hybrid is identical to the previous hybrid except that we now run PTBE.Setup-Alt-1
(1n,VK∗,m∗b) to generate (PK, SK,SK-Alt,CT∗).

• Hyb7: This hybrid is identical to the previous hybrid except that we now run PTBE.Setup-Alt-1(1n,VK∗,
m∗0) to generate (PK,SK, SK-Alt,CT∗)

Observe that in this last hybrid, the challenge ciphertext is created independent of the bit b.
Hence, the attacker’s advantage in this hybrid is 0.

We will now show the indistinguishability of every successive pair of hybrids.

Lemma 5. Assuming that the indistinguishability of parameters property holds for the
scheme PTBE, Hyb1 is computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is the way in which the values (PK,SK,CT∗1) are
generated. Suppose there exists an adversary A that can distinguish between the two hybrids. We
will design an adversary APTBE that interacts with a challenger C and breaks the indistinguishability
of parameters property of the scheme PTBE.

First, APTBE generates (SigK∗,VK∗) ← OTS.Setup(1n) and sends (VK∗,m∗b) to the challenger
C. APTBE gets back (PK,SK,CT∗1) from the challenger C. Then, APTBE sets (PK,SK) as the
setup parameters of the FE scheme and interacts with A exactly as in Hyb1 except for gen-
erating the challenge ciphertext. It computes the challenge ciphertext as (VK∗,CT∗1, σ

∗) where
σ∗ = OTS.Sign(SigK∗,CT∗1). Recall that CT∗1 was given by the challenger C. Now observe that
if (PK, SK,CT∗1) were generated by running the algorithms PTBE.Setup and PTBE.Enc, then this
exactly corresponds to Hyb1 while if they were generated using PTBE.Setup-Alt, then this corre-
sponds to Hyb2. Therefore, if A can distinguish between the two hybrids, APTBE can use the same
distinguishing guess to break the indistinguishability of parameters property.

Lemma 6. Assuming (O,Eval) is a secure {indistinguishability/differing inputs} obfuscator, Hyb3,i−1
is computationally indistinguishable from Hyb3,i for all i ∈ {1, . . . , q}. In particular, this also im-
plies indistinguishability of Hyb2 and Hyb3,1.

31

Proof. The only difference between the two hybrids is in the programs that are obfuscated to
generate the ith function secret key f . In Hyb3,i−1, the program is generated as in Figure 3 while in
Hyb3,i, the program is generated as in Figure 4. The two programs only differ on input the challenge
ciphertext CT∗. However, observe that sincef(m∗0) = f(m∗1) and the decryption algorithm is correct,
the two programs are functionally equivalent. Therefore, from the security of the obfuscator, the
two hybrids are computationally indistinguishable.

Lemma 7. Hyb4,i−1 is computationally indistinguishable from Hyb4,i for all i ∈ {1, . . . , q} assuming
either:

1. (O,Eval) is a polynomially secure differing inputs obfuscator and OTS = (OTS.Setup,
OTS.Sign,OTS.Verify) is a polynomially secure strong one time signature scheme. (OR)

2. (O,Eval) is a sub-exponentially secure indistinguishability obfuscator and OTS = (OTS.Setup,OTS.Sign,OTS.Verify)
is a sub-exponentially secure unique one time signature scheme.

Proof. We will prove the lemma in two ways.
Proof 1:
We first describe the proof for the first part of the lemma. That is, assuming polynomially secure
differing inputs obfuscation and a polynomially secure one time signature scheme, the two hybrids
are indistinguishable.

The only difference between the two hybrids is in the programs that are obfuscated to generate
the ith function secret key f . In Hyb4,i−1, the program is generated as in Figure 4 while in Hyb4,i,
the program is generated as in Figure 5. The two programs only differ on input ciphertexts of the
form (VK∗,CT1, σ) such that OTS.Verify(VK∗,CT1, σ) = 1. That is, in the first case, the program
continues to decrypt the ciphertext while in the second case, it always rejects on such inputs.

Sub-Lemma 1. Assuming OTS = (OTS.Setup,OTS.Sign,OTS.Verify) is a polynomially secure
strong one time signature scheme, it is hard for any PPT adversary to find a differing input for
the two programs in Figure 4 and Figure 5 respectively.

Proof. Suppose there exists an adversary A that can find a differing input given the obfuscation of
one of the two programs. We will design an adversary AOTS that uses A to break the security of
the one time signature scheme OTS. AOTS interacts with a challenger C and sends CT∗1 (computed
as in Hyb4,i−1. It receives a verification key VK∗ and a signature σ∗ = OTS.Sign(SigK∗,CT∗1). It
runs the setup algorithm to generate (PK,SK). Then, computes the two programs in Figure 4
and Figure 5 and sends them to A along with the public key PK. Now if, A finds a differing
input (VK∗,CT1, σ) such that OTS.Verify(VK∗,CT1, σ) = 1, AOTS outputs (CT1, σ) as the forged
signature to the challenger C. This breaks the unforgeability of the one time signature scheme and
this is a contradiction.

Sub-Lemma 2. Assuming the previous sub-lemma holds and (O,Eval) is a polynomially secure
differing inputs obfuscator, Hyb4,i−1 is indistinguishable from Hyb4,i.

Proof. From the previous claim, we know that it is computationally hard for any PPT adversary to
find a differing input for the two programs. Therefore, from the security of the obfuscator, the two
programs are computationally indistinguishable. We know that this is the only difference between
the two hybrids. Therefore, if there exists an adversary who can distinguish between the two
hybrids, then we can use that adversary to break the security of the differing inputs obfuscator.

32

Proof 2:
We now describe the proof for the second part of the lemma. That is, assuming sub-exponentially
secure indistinguishability obfuscation and sub-exponentially secure unique one time signature
schemes, the two hybrids are indistinguishable.

As mentioned earlier, the only difference between the two hybrids is in the programs that are
obfuscated to generate the ith function secret key f . In Hyb4,i−1, the program is generated as in
Figure 4 while in Hyb4,i, the program is generated as in Figure 5. The two programs only differ
on input ciphertexts of the form (VK∗,CT1, σ) such that OTS.Verify(VK∗,CT1, σ) = 1. That is, in
the first case, the program continues to decrypt the ciphertext while in the second case, it always
rejects on such inputs.

Recall that for each potential differing input, CT1 is a ciphertext generated using the underlying
PTBE scheme using tag VK∗. Without loss of generality, let’s assume that the set of all possible
ciphertexts that can be generated using the underlying PTBE scheme with tag VK∗ corresponds
to all strings of length |CT∗1|. Let’s say l = |CT∗1| and L = 2l. Now, let’s go one by one over all
these values. That is, we define one intermediate hybrid Hybj4,i−1 corresponding to each j ∈ L

such that Hyb04,i−1 is the same as Hyb4,i−1 and HybL4,i−1 is the same as Hyb4,i. We then prove that
every pair of intermediate hybrids is computationally indistinguishable. In more detail, here are
the intermediate hybrids:

• Hyb04,i−1: This is the same as Hyb4,i−1.

• For each j in [L], Hybj4,i−1 : This hybrid is same as the previous hybrid, except that the

ith function secret key SKf is now computed as an obfuscation of the following program G4
f,j .

Here, we use ≤ based on the lexicographic ordering of all binary strings.

Program G4
f,j

Input : ciphertext CT = (VK,CT1, σ)
Constants : SK,CT∗ = (VK∗,CT∗1, σ

∗)

1. If CT = CT∗, output y where y = f(m∗0) = f(m∗1).

2. Let CTj1 denote the jth string in {0, 1}l.

3. If VK = VK∗ and CT1 ≤ CTj1, output ⊥.

4. Compute m = PKE.Dec(SK,CT).

5. Output ⊥ if the decryption aborts.

6. Else, output f(m).

Figure 7: Program for generating function secret key

Note that HybL4,i−1 corresponds to Hyb4,i.

Claim 11. Assuming (O,Eval) is a sub-exponentially secure indistinguishability obfuscator and
OTS = (OTS.Setup,OTS.Sign,OTS.Verify) is a sub-exponentially secure unique one time signature
scheme, Hybj−14,i−1 is computationally indistinguishable from Hybj4,i−1 for all j ∈ [L].

33

Proof. The only difference between the two hybrids is in the program used to obfuscate the ith

function secret key. The two programs differ on inputs of the form (VK∗,CTj1, σ), (where CTj1 is the

jth string in {0, 1}l) if OTS.Verify(VK∗,CTj1, σ) = 1. On such inputs, the program in Hybj4,i−1 aborts

whereas the program in Hybj−14,i−1 doesn’t abort and instead continues decrypting the ciphertext.
First, observe that OTS is a unique signature scheme, there exists only value of σ such that

OTS.Verify(VK∗,CTj1, σ) = 1. Let’s call this value σj . Therefore, the two programs differ on exactly
one input. Now, similar to the proof of Sub−Lemma 1, it can be seen that no PPT adversary can
find a differing input between the two programs.

Now, we invoke a result of [BCP14] that states that if two programs differ on only a con-
stant number of points, then for such programs, diO is implied by iO. Therefore, now, since we
know that the two programs in Hybj−14,i−1 and Hybj4,i−1 respectively, differ on only 1 input and it
is computationally hard to find that input, by the security of the indistinguishability obfuscator,
these two obfuscated programs are computationally indistinguishable. This completes the proof of
indistinguishability between these two hybrids.

Observe that since we have an exponential number of hybrids, (i.e one for each PTBE ciphertext
with tag VK∗), we require that the adversary’s advantage in distinguishing each pair of consecutive
hybrids be sub-exponentially small. For this reason, we use sub-exponentially secure iO and sub-
exponentially secure unique one time signatures rather than polynomially secure ones. A similar
idea was previously explored in the work of Brakerski et al. [BCG+17].

Lemma 8. Assuming (O,Eval) is a secure {indistinguishability/differing inputs} obfuscator and
that the equivalent on all but challenge tag property holds for the scheme PTBE, Hyb5,i−1 is
computationally indistinguishable from Hyb5,i for all i ∈ {1, . . . , q}.

Proof. The only difference between the two hybrids is in the programs that are obfuscated to
generate the ith function secret key f . In Hyb5,i−1, the program is generated as in Figure 5 while in
Hyb5,i, the program is generated as in Figure 6. The two programs only differ in the way the input
ciphertext is decrypted. However, from the equivalent on all but okay property, we know that for
all m∗b ,VK

∗,CT1,VK with VK 6= VK∗, PTBE.Dec(SK,VK,CT1) = PTBE.Dec-Alt(SK-Alt,VK,CT1).
Therefore, the two programs are functionally equivalent, and so, from the security of the obfuscator,
the two hybrids are computationally indistinguishable.

Lemma 9. Assuming that the indistinguishability of alternate setups property holds for the
scheme PTBE, Hyb5,q is computationally indistinguishable from Hyb6.

Proof. Now, the only difference between the two hybrids is the way in which the values (PK,SK-Alt,CT∗1)
are generated. Suppose there exists an adversary A that can distinguish between the two hybrids.
We will design an adversary APTBE that interacts with a challenger C and breaks the indistinguisha-
bility of messages property of the scheme PTBE.

First, APTBE receives the challenge messages (m∗0,m
∗
1) fromA. Then, it generates (SigK∗,VK∗)←

OTS.Setup(1n) and submits (VK∗,m∗0,m
∗
1) to the challenger C. APTBE receives (PK, SK-Alt,CT∗1)

from C. Then, APTBE sets (PK,SK-Alt) as the setup parameters of the FE scheme and interacts
with A exactly as in Hyb5,q. Observe that if (PK,SK-Alt,CT∗1) were generated by running the al-
gorithms PTBE.Setup-Alt on input (VK∗,m∗1), then this exactly corresponds to Hyb5,q while if they
were generated using PTBE.Setup-Alt on input (VK∗,m∗0), then this corresponds to Hyb6. There-
fore, if A can distinguish between the two hybrids, APTBE can use the same distinguishing guess to
break the indistinguishability of alternate setups property.

34

Lemma 10. Assuming that the indistinguishability of messages property holds for the scheme
PTBE, Hyb6 is computationally indistinguishable from Hyb7.

Proof. First, observe that in Hyb6, if the challenger sets b = 0, then the two hybrids are identical.
Therefore, they can potentially be distinguished only if b = 1 in Hyb6.

Now, the only difference between the two hybrids is the way in which the values (PK,SK-Alt,CT∗1)
are generated. Suppose there exists an adversary A that can distinguish between the two hybrids.
We will design an adversary APTBE that interacts with a challenger C and breaks the indistinguisha-
bility of messages property of the scheme PTBE.

First, APTBE receives the challenge messages (m∗0,m
∗
1) fromA. Then, it generates (SigK∗,VK∗)←

OTS.Setup(1n) and submits (VK∗,m∗0,m
∗
1) to the challenger C. APTBE receives (PK, SK-Alt,CT∗1)

from C. Then, APTBE sets (PK, SK-Alt) as the setup parameters of the FE scheme and interacts with
A exactly as in Hyb6. Observe that if (PK,SK-Alt,CT∗1) were generated by running the algorithms
PTBE.Setup-Alt-1 on input (VK∗,m∗1), then this exactly corresponds to Hyb6 while if they were
generated using PTBE.Setup-Alt-1 on input (VK∗,m∗0), then this corresponds to Hyb7. Therefore, if
A can distinguish between the two hybrids, APTBE can use the same distinguishing guess to break
the indistinguishability of messages property.

8 Acknowledgements

The third author’s research is supported in part from a DARPA/ARL SAFEWARE award, NSF
Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant 2012378,
a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel,
and an Okawa Foundation Research Grant. This material is based upon work supported by the
Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-
0205. The views expressed are those of the authors and do not reflect the official policy or position
of the Department of Defense, the National Science Foundation, or the U.S. Government.

The fourth author’s research is supported by NSF CNS-1228599 and CNS-1414082, DARPA
SafeWare, Microsoft Faculty Fellowship, and Packard Foundation Fellowship. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Department of Defense or the U.S. Government.

References

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in
Computer Science, pages 308–326. Springer, 2015.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In Eurocrypt, 2004.

[BCG+17] Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sahai, and Gil
Segev. Hierarchical functional encryption. In ITCS, 2017.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Theory
of Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA,
USA, February 24-26, 2014. Proceedings, pages 52–73, 2014.

35

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In
Crypto, 2001.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
2001.

[BGJS15] Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai. Multi-input
functional encryption for unbounded arity functions. In Tetsu Iwata and Jung Hee
Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st International Con-
ference on the Theory and Application of Cryptology and Information Security, Auck-
land, New Zealand, November 29 - December 3, 2015, Proceedings, Part I, volume 9452
of Lecture Notes in Computer Science, pages 27–51. Springer, 2015.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Advances in
Cryptology - EUROCRYPT ’94, Workshop on the Theory and Application of Crypto-
graphic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, pages 92–111, 1994.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, 2011.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, re-
visited. J. ACM, 51(4):557–594, 2004.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. In Eurocrypt, 2004.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In CRYPTO, 1999.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
CRYPTO, 2010.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology
- EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Pro-
ceedings, volume 8441 of Lecture Notes in Computer Science, pages 578–602. Springer,
2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. IACR
Cryptology ePrint Archive, 2017.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Asiacrypt
2002, 2002.

36

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In ASIACRYPT, 2000.

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature aggrega-
tors. In EUROCRYPT, 2015.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
Eurocrypt, 2002.

[HLW12] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries:
A new approach for chosen ciphertext security. In EUROCRYPT, 2012.

[JK03] Jakob Jonsson and Burt Kaliski. Public-key cryptography standards (pkcs)# 1: Rsa
cryptography specifications version 2.1. 2003.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC, 2006.

[Lam79] Lamport. Constructing digital signatures from a one-way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

[MH14] Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via UCE. In Hugo
Krawczyk, editor, Public-Key Cryptography - PKC 2014 - 17th International Conference
on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March
26-28, 2014. Proceedings, volume 8383 of Lecture Notes in Computer Science, pages
56–76. Springer, 2014.

[MS09] Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS, 2009.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC, 1990.

[PW07] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. IACR
Cryptology ePrint Archive, page 279, 2007.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
STOC, 2008.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS, 1999.

[SP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without
interaction (extended abstract). In 33rd Annual Symposium on Foundations of Com-
puter Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 427–436.
IEEE Computer Society, 1992.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[SW08] Amit Sahai and Brent Waters. Slides on functional encryption, powerpoint presentation.
2008.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 475–484, 2014.

37

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. IACR Cryptology ePrint Archive, 2014:588, 2014.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under
LWE. IACR Cryptology ePrint Archive, 2017.

A Security Notions for Public Key Encryption

A.1 CCA Security

We define the security notion for a public key encryption scheme using the following game (Adaptive− IND− CCA)
between a challenger and an adversary.

Setup Phase: The challenger generates (PK, SK)← PKE.Setup(1n) and then hands over the pub-
lic key PK to the adversary.
Decryption Oracle Phase 1: The adversary adaptively queries the decryption oracle with any
ciphertext CT of his choice. The challenger responds by giving the adversary the corresponding
plaintext m← PKE.Dec(SK,CT).
Challenge Phase: The adversary chooses two messages (m∗0,m

∗
1) of the same size (each in X\))

and sends them to the challenger. The challenger selects a random bit b ∈ {0, 1} and sends a
ciphertext CT∗ ← PKE.Enc(PK,m∗b) to the adversary.

Decryption Oracle Phase 2: The adversary can continue querying the decryption oracle
adaptively on all ciphertext except the challenge ciphertext CT∗.
Guess: The adversary submits a guess b

′
and wins if b

′
= b. The adversary’s advantage in this

game is defined to be 2 ∗ |Pr[b = b
′
]− 1/2|.

We also define the selective security game, which we call (Selective− IND− CCA) where the
adversary outputs the challenge message pair even before seeing the master public key.

Definition 5. An encryption scheme FE is selective/adaptive IND− CCA secure if all PPT adver-
saries have at most a negligible advantage in the Selective/Adaptive− IND− CCA security game.

A.2 CPA Security

The IND− CPA security notion is same as IND− CCA except that in the security game, the adver-
sary does not get access to the decryption oracle.

B Further Preliminaries

B.1 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation for circuits[BGI+01, GGH+13].

Definition 6. A pair of uniform PPT machines (O,Eval) is called an indistinguishability obfuscator
for a circuit class {Cλ}λ∈N if the following conditions are satisfied:

• Functionality :
For every λ ∈ N, every C ∈ Cλ , every input x to C :

Pr[Eval(O(C), x) 6= C(x)] <= negl(|C|),

38

where the probability is over the coins of O.

• Polynomial Slowdown :
There exists a polynomial q such that for every λ ∈ N and every C ∈ Cλ, we have that
|O(C)| <= q(|C|).

• Indistinguishability :
For all PPT distinguishers D, there exists a negligible function α such that for every λ ∈ N,
for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then

|Pr[D(O(C0))]− Pr[D(O(C1))]| ≤ α(λ)

.

B.2 Differing Inputs Obfuscation

In this section, we recall the notion of differing inputs obfuscation for circuits [BGI+01]. First, we
describe the notion of a differing-inputs circuit family. Intuitively, we call a circuit family to be
differing-inputs circuit family if there does not exist any PPT adversary who, given two circuits
sampled from a distribution defined on this circuit family, can output a value such that both the
circuits differ on this input.

Definition 7 (Differing-Inputs Sampler). A circuit family C associated with a PPT Sampler is said
to be a differing-inputs circuit family if for every PPT adversary A there exists a negligible function
α such that:

Pr
[
C0(x) 6= C1(x) : (C0, C1, aux)← Sampler(1λ), x← A(1λ, C0, C1, aux)

]
≤ α(λ)

Definition 8 (Differing-Inputs Obfuscator). A pair of uniform PPT machines (O,Eval) is called
a differing-inputs obfuscator for a differing-inputs circuit class {Cλ}λ∈N if the following conditions
are satisfied:

• Functionality :
For every λ ∈ N, every C ∈ Cλ , every input x to C :

Pr[Eval(O(C), x) 6= C(x)] <= negl(|C|),

where the probability is over the coins of O.

• Polynomial Slowdown :
There exists a polynomial q such that for every λ ∈ N and every C ∈ Cλ, we have that
|O(C)| <= q(|C|).

• Indistinguishability :
For all PPT distinguishers D, there exists a negligible function α such that the following holds:
for every λ ∈ N, for all (C0, C1, aux)← Sampler(1λ), we have that

|Pr[D(O(C0), aux)]− Pr[D(O(C1), aux)]| ≤ α(λ)

.

39

B.3 Lockable Obfuscation

We recall the recently introduced notion of lockable obfuscation[GKW17, WZ17]. We take this
section verbatim from [GKW17].

A lockable obfuscator takes as input a program P , a message m, and a ‘lock’ α. It outputs an
obfuscated program P̃ which has the same domain as the program P . The program P̃ , on input
x, outputs the message m if P (x) = α. If not, then with overwhelming probability, it will output
⊥. For security, we require that for all programs P and messages m, P̃ for a uniformly random
α can be efficiently simulated given only the sizes of P and m. We will now present the syntax,
correctness and security definition.

Let n,m, d be polynomials, and Cn,m,d(λ) be the class of depth d(λ) circuits with n(λ) bit input
and m(λ) bit output. A lockable obfuscator for Cn,m,d consists of algorithms O and Eval with the
following syntax. Let M be the message space.

• O(1λ, P,m, α) → P̃ . The obfuscation algorithm is a randomized algorithm that takes as
input the security parameter λ, a program P ∈ Cn,m,d, message m ∈ M and ‘lock string’
α ∈ {0, 1}m(λ). It outputs a program P̃ .

• Eval(P̃ , x)→ y ∈ M∪ {⊥}. The evaluator is a deterministic algorithm that takes as input a
program P̃ and a string x ∈ {0, 1}n(λ). It outputs y ∈M∪ {⊥}.

B.3.1 Correctness

For correctness, we informally require that if P (x) = α, then the obfuscated program P̃ ←
O(1λ, P,m, α), evaluated on input x, outputs m, and if P (x) 6= α, then P̃ outputs ⊥ on input
x. definitions, which differ in the case where P (x) 6= α.

Definition 9 (Perfect Correctness). A lockable obfuscation scheme is said to be perfectly correct if
it satisfies the following properties:

1. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and messages
m ∈M, if P (x) = α, then

Eval(O(1λ, P,m, α)), x) = m.

2. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and messages
m ∈M, if P (x) 6= α, then

Eval(O(1λ, P,m, α)), x) = ⊥ .

B.3.2 Security

Definition 10. Let n,m, d be polynomials and λ be the security parameter. A lockable obfuscation
scheme (O,Eval) for Cn,m,d and message spaceM is said to be secure if there exists a PPT simulator
Sim such that for all PPT adversaries A = (A0,A1), there exists a negligible function negligible(·)
such that the following function is bounded by negligible(·):∣∣∣∣∣Pr

[
A1(P̃b, st) = 1 :(P,m, st)← A0(1

λ), b← {0, 1}, α← {0, 1}m(λ),

P̃0 ← O(1λ, P,m, α), P̃1 ← Sim(1λ, 1|P |, 1|m|)

]
− 1

2

∣∣∣∣∣

40

C Proof of Security for Special-CCA

We now prove that the above scheme is selective IND-CCA secure by proving the indistinguishability
of the following series of hybrid arguments. Consider a challenger C who interacts with an adversary
A.

• Hyb1 : The adversary sends two messages (m∗0,m
∗
1) to C. The challenger then runs PKE.Setup(1n)

to generate (PK,SK). C computes CT∗ = PKE.Enc(PK,m∗b) where b is picked randomly. Then,
C gives (PK,CT∗) to the adversaryA. C answers the adversary’s decryption queries by running
the algorithm PKE.Dec.

• Hyb2 : In this hybrid, the challenger doesn’t run the algorithm PKE.Setup directly. Instead, he
does the following: generate (VK∗,SigK∗)← OTS.Setup(1n) and computes (PK, SK, SK-Alt,CT∗1)←
PTBE.Setup-Alt(1n,VK∗,m∗b) where b is picked at random. C sets the public key of the scheme
to be PK and the secret key to be SK. Then, computes σ∗ = OTS.Sign(SigK∗,CT∗1) and sets
CT∗ = (VK∗,CT∗1, σ

∗). C gives (PK,CT∗) to the adversary and answers the decryption queries
as before by running the algorithm PKE.Dec. Notice that SK-Alt is not used at all in this
hybrid.

• Hyb3 : This hybrid is same as the previous hybrid except that now, the decryption oracle,
in addition to the challenge ciphertext, outputs ⊥ also to queries of the following form:
CT = (VK∗,CT1, σ) where OTS.Verify(VK∗,CT1, σ) = 1 (this form also captures the challenge
ciphertext).

• Hyb4 : This hybrid is same as the previous hybrid except that the decryption oracle on input
a ciphertext CT now does the following:

1. Parse CT = (VK,CT1, σ).

2. If VK = VK∗ and OTS.Verify(VK∗,CT1, σ) = 1, output ⊥.

3. Output ⊥ if OTS.Verify(VK,CT1, σ) = 0.

4. Output m = PTBE.Dec-Alt(SK-Alt,VK,CT1).

Notice that we start using SK-Alt now and the secret key SK is no longer used. The red
coloured text highlights the difference from the previous decryption oracle.

• Hyb5 : This is same as the previous hybrid except that (PK, SK-Alt,CT∗) is computed using
the algorithm PTBE.Setup-Alt-1. That is, we run PTBE.Setup-Alt-1(1n,VK∗,m∗b).

• Hyb6 : This hybrid is same as the previous hybrid except that now CT∗ is computed as an
encryption of m∗0. That is, we run PTBE.Setup-Alt-1(1n,VK∗,m∗0).

Observe that in this last hybrid, the challenge ciphertext is created independent of the bit b.
Hence, the attacker’s advantage in this hybrid is negligible.

We will now show the indistinguishability of every successive pair of hybrids.

Lemma 11. Assuming that the indistinguishability of parameters property holds for the
scheme PTBE, Hyb1 is computationally indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is the way in which the values (PK,SK,CT∗1) are
generated. Suppose there exists an adversary A that can distinguish between the two hybrids. We

41

will design an adversary APTBE that interacts with a challenger C and breaks the indistinguishability
of parameters property of the scheme PTBE.

First, APTBE generates (SigK∗,VK∗)← OTS.Setup(1n) and sends (VK∗,m∗b) to the challenger C.
APTBE gets back (PK, SK,CT∗1) from the challenger C. Then, APTBE sets (PK,SK) as the public key
and secret key and interacts withA exactly as in Hyb1 except for generating the challenge ciphertext.
It computes the challenge ciphertext as (VK∗,CT∗1, σ

∗) where σ∗ = OTS.Sign(SigK∗,CT∗1). Recall
that CT∗1 was given by the challenger C. Now observe that if (PK,SK,CT∗1) were generated by
running the algorithms PTBE.Setup and PTBE.Enc, then this exactly corresponds to Hyb1 while
if they were generated using PTBE.Setup-Alt, then this corresponds to Hyb2. Therefore, if A can
distinguish between the two hybrids, APTBE can use the same distinguishing guess to break the
indistinguishability of parameters property.

Lemma 12. Assuming OTS = (OTS.Setup,OTS.Sign,OTS.Verify) is a strongly secure one time
signature scheme, Hyb2 is computationally indistinguishable from Hyb3.

Proof. The only difference between the two hybrids is that in Hyb3, the decryption oracle outputs
⊥ for all queries of the form (VK∗,CT1, σ) such that OTS.Verify(VK∗,CT1, σ) = 1 whereas in Hyb2,
the decryption oracle doesn’t reject such queries (except the challenge ciphertext). Suppose there
exists an adversary A that can distinguish between the two hybrids. We will design an adversary
AOTS that interacts with a challenger C and breaks the security of the one time signature scheme
OTS.
AOTS interacts with a challenger C and receives a verification key VK∗. Also, AOTS interacts with

A and receives two messages (m∗0,m
∗
1). AOTS generates (PK,SK, SK-Alt,CT∗1)← PTBE.Setup-Alt(VK∗,m∗b)

where b is picked randomly. Then, AOTS sends CT∗1 to C and receives back a signature σ∗. Then,
AOTS sends CT∗ = (VK∗,CT∗1, σ

∗) to A as the challenge ciphertext.
Now if A can distinguish between the two hybrids, it must make a decryption query of the form

CT = (VK∗,CT1, σ) such that CT 6= CT∗ and OTS.Verify(VK∗,CT1, σ) = 1. At this point, Aots
aborts the experiment with A and outputs (CT1, σ) as a forgery to the challenger C thus breaking
the security of the one time signature scheme and this is a contradiction.

Lemma 13. Assuming that the equivalent on all but challenge tag property holds for the
scheme PTBE, Hyb3 is computationally indistinguishable from Hyb4.

Proof. The difference between the two hybrids is in the decryption oracle’s response. That is,
given a query of the form CT = (VK,CT1, σ) with VK 6= VK∗ and OTS.Verify(VK,CT1, σ) =
1, in Hyb4, the decryption oracle outputs PTBE.Dec(SK,VK,CT1) while the output in Hyb5 is
PTBE.Dec-Alt(SK-Alt,VK,CT1).
However, from the equivalent on all but okay property, we know that for all m∗b ,VK

∗,CT1,VK with
VK 6= VK∗, PTBE.Dec(SK,VK,CT1) = PTBE.Dec-Alt(SK-Alt,VK,CT1). Therefore, the two hybrids
are computationally indistinguishable.

Lemma 14. Assuming that the indistinguishability of alternate setups holds for the scheme
PTBE, Hyb4 is computationally indistinguishable from Hyb5.

Proof. Now, the only difference between the two hybrids is the way in which the values (PK,SK-Alt,CT∗1)
are generated. Suppose there exists an adversary A that can distinguish between the two hybrids.
We will design an adversary APTBE that interacts with a challenger C and breaks the indistinguisha-
bility of alternate setups property of the scheme PTBE.

42

First, APTBE receives the challenge messages (m∗0,m
∗
1) fromA. Then, it generates (SigK∗,VK∗)←

OTS.Setup(1n) and submits (VK∗,m∗0,m
∗
1) to the challenger C. APTBE receives (PK, SK-Alt,CT∗1)

from C. Then, APTBE sets (PK, SK-Alt) as the setup parameters of the scheme and interacts with
A exactly as in Hyb4. Observe that if (PK,SK-Alt,CT∗1) were generated by running the algorithms
PTBE.Setup-Alt-1 on input (VK∗,m∗1), then this exactly corresponds to Hyb4 while if they were
generated using PTBE.Setup-Alt-1 on input (VK∗,m∗0), then this corresponds to Hyb5. Therefore, if
A can distinguish between the two hybrids, APTBE can use the same distinguishing guess to break
the indistinguishability of alternate setups property. Further, note that since SK-Alt is equal in
both cases, the decryption oracle answers exactly the same way.

Lemma 15. Assuming that the indistinguishability of messages property holds for the scheme
PTBE, Hyb5 is computationally indistinguishable from Hyb6.

Proof. First, observe that in Hyb5, if the challenger sets b = 0, then the two hybrids are identical.
Therefore, they can potentially be distinguished only if b = 1 in Hyb5.

Now, the only difference between the two hybrids is the way in which the values (PK,SK-Alt,CT∗1)
are generated. Suppose there exists an adversary A that can distinguish between the two hybrids.
We will design an adversary APTBE that interacts with a challenger C and breaks the indistinguisha-
bility of messages property of the scheme PTBE.

First, APTBE receives the challenge messages (m∗0,m
∗
1) fromA. Then, it generates (SigK∗,VK∗)←

OTS.Setup(1n) and submits (VK∗,m∗0,m
∗
1) to the challenger C. APTBE receives (PK, SK-Alt,CT∗1)

from C. Then, APTBE sets (PK, SK-Alt) as the setup parameters of the scheme and interacts with
A exactly as in Hyb5. Observe that if (PK,SK-Alt,CT∗1) were generated by running the algorithms
PTBE.Setup-Alt-1 on input (VK∗,m∗1), then this exactly corresponds to Hyb5 while if they were
generated using PTBE.Setup-Alt-1 on input (VK∗,m∗0), then this corresponds to Hyb6. Therefore, if
A can distinguish between the two hybrids, APTBE can use the same distinguishing guess to break
the indistinguishability of messages property.

D Examples of Special-CCA Secure Encryption Schemes

In this section, we show that the CCA secure encryption schemes in several popular works in
literature are in fact “Special-CCA” as defined in Section 7.2.

D.1 Scheme in [CHK04]

Let X denote the CCA secure encryption scheme constructed by Canetti et al.[CHK04]. X is
constructed by adding one time signatures to the below scheme Y (based on any selective-id
secure identity based encryption[BF01]) exactly the way we convert any puncturable tag based
encryption into a Special-CCA secure encryption scheme in Section 7.2. Therefore, in order
to prove that X is a Special-CCA secure encryption scheme, it is enough to prove that Y is a
puncturable tag based encryption scheme. However, note that the scheme Y implicitly described
in the work of [CHK04] has only three algorithms - Y.Setup,Y.Enc,Y.Dec. Therefore, in order
to prove that it is a puncturable tag based encryption, we have to design three more algorithms
Y.Setup-Alt,Y.Setup-Alt-1,Y.Dec-Alt that together satisfy the required properties.

For better understanding, we first describe the scheme Y (just with the 3 algorithms) that
is implicit in [CHK04]. In the next sub-section, we show that if we use the selective-id secure
IBE scheme of Boneh and Boyen[BB04], Y is a puncturable tag based encryption scheme. In the
subsequent subsection, we show that if Y is instantiated using any selective-id secure Hierarchical
IBE scheme [GS02, HL02], then Y is a puncturable tag based encryption scheme.

43

Notation: Let the security parameter be λ. Let IBE = (IBE.Setup, IBE.Enc, IBE.KeyGen,
IBE.Dec) be any selective-id secure identity-based encryption scheme. The scheme Y = (Y.Setup,Y.Enc,Y.Dec)
is as follows:

Construction:

• Y.Setup(1λ) :

1. Generate (PK,SK)← IBE.Setup(1λ).

• Y.Enc(PK, tag,m) :

1. Output CT = IBE.Enc(PK, tag,m). That is, set the identity as tag.

• Y.Dec(SK, tag,CT) :

1. First, compute SKtag = IBE.KeyGen(SK, tag).

2. Output m = IBE.Dec(SKtag,CT).

D.1.1 [CHK04] using IBE scheme in [BB04]

In this section, we show that when instantiated with the selective-id secure IBE scheme of Boneh
and Boyen[BB04], Y is a puncturable tag based encryption scheme.

Notation: Let G be a bilinear group of prime order p (the security parameter determines the size
of G). Let e : G×G→ G1 be the bilinear map. Let the space of all tags be Zp. Let the message space
be all elements in G1. The scheme Y = (Y.Setup,Y.Enc,Y.Dec,Y.Setup-Alt,Y.Setup-Alt-1,Y.Dec-Alt)
is as follows:

Construction:

• Y.Setup(1λ) :

1. Choose (g, h) ∈ G and (a, b) ∈ Zp randomly.

2. Set u = ga, v = e(g, g)ab.

3. Define a function f : Zp → G such that for any value t ∈ Zp, f(t) = ut · h.

4. The public key is PK = (g, h, u, v, f) and the secret key is SK = gab.

• Y.Enc(PK, tag,m) :

1. Choose s ∈ Zp randomly.

2. Compute CT0 = m · vs, CT1 = gs, CT2 = f(tag)s.

3. Output CT = (CT0,CT1,CT2).

• Y.Dec(SK, tag,CT) :

1. Choose r ∈ Zp randomly.

2. Compute K1 = SK · f(tag)r and K2 = gr.

3. Output m = CT0 · e(K2,CT2) · e(K1,CT1)
−1.

44

• Y.Setup-Alt(1λ, tag∗,m∗) :

1. Choose g ∈ G and (a, b, y) ∈ Zp randomly.

2. Set u = ga, v = e(g, g)ab.

3. Set h = u−tag
∗ · gy.

4. Define a function f : Zp → G such that for any value t ∈ Zp, f(t) = ut · h.

5. The public key is PK = (g, h, u, v, f), the secret key is SK = gab and the alternate secret
key is SK-Alt = (gb, y, tag∗).

6. The challenge ciphertext CT∗ is computed by running the algorithm Y.Enc.

• Y.Setup-Alt-1(1λ, tag∗,m∗) :

1. Choose g ∈ G and (a, b, y) ∈ Zp randomly.

2. Set u = ga, v = e(g, g)ab.

3. Set h = u−tag
∗ · gy.

4. Define a function f : Zp → G such that for any value t ∈ Zp, f(t) = ut · h.

5. The public key is PK = (g, h, u, v, f), the secret key is SK = gab and the alternate secret
key is SK-Alt = (gb, y, tag∗).

6. The challenge ciphertext CT∗ is computed as follows: pick s ∈ Zp randomly. Choose an
element R ∈ G1 randomly. Compute CT∗0 = m∗ · R, CT∗1 = gs,CT∗2 = gcy. The challenge
ciphertext is CT∗ = (CT∗0,CT

∗
1,CT

∗
2).

• Y.Dec-Alt(SK-Alt, tag,CT) :

1. Choose r1 ∈ Zp randomly. Set r2 = −y
tag−tag∗ + r1.

2. Compute K1 = (gb)r2 and K2 = gr2 .

3. Output m = CT0 · e(K2,CT2) · e(K1,CT1)
−1.

We now prove that the scheme Y satisfies all the properties of a puncturable tag based encryption.

1. Equivalent on all but challenge tag:
This property follows from the correctness of the challenger’s responses in the IBE security
game with the adversary, on all but the challenge identity. This is elaborated in the proof of
security in [CHK04]. At a high level, for every key query made by the adversary in the IBE
security game, the challenger generates the key using SK-Alt using which the adversary can
decrypt any ciphertext. In order for IBE security to hold, all these decryptions must also be
correct.

2. Indistinguishability of parameters:
The only difference in the two distributions is the way in which the public parameter h is
generated. In both cases, it is randomly chosen (notice that the random value gy acts as a
mask in the algorithm Y.Setup-Alt). Therefore, the two distributions are identical and hence
the property easily follows.

3. Indistinguishability of alternate setups:
This property follows from the Bilinear DDH assumption. At a high level, given a BDDH
tuple (ga, gb, gc,T) where either T = e(g, g)abc or is uniformly random, the challenger in this

45

game can do the following: use ga, gb from the tuple as is. In the challenge ciphertext, set
CT∗0 = m∗T, CT∗1 = gc and CT∗2 = gcy. Now, if T = e(g, g)abc, this corresponds to the
distribution output by Y.Setup-Alt while if T is random, this corresponds to the distribution
output by Y.Setup-Alt-1. In more detail, this is very similar to the proof of security in [CHK04]
where they show that the adversary can’t guess the bit used in the challenge ciphertext
without breaking the BDDH assumption.

4. Indistinguishability of messages:
Since the message m is masked by a uniformly random value R in the ciphertext, even an
unbounded adversary can’t win this game (defined in this property) except with negligible
probability. Hence, the property holds.

D.1.2 [CHK04] using any HIBE scheme

In this section, we show that when instantiated with any selective-id secure HIBE scheme, Y is a
puncturable tag based encryption scheme.

Notation: Let the security parameter be n. Let HIBE = (HIBE.Setup,HIBE.Enc,HIBE.KeyGen,
HIBE.Dec) be any selective-id seucre hierarchical identity-based encryption scheme. Let the identity
space be the same as the space of all tags for the scheme Y. In particular, let’s say each tag is of size n
bits. Similarly, the messages spaces are also the same. The scheme Y = (Y.Setup,Y.Enc,Y.Dec,Y.Setup-Alt,Y.Setup-Alt-1,Y.Dec-Alt)
is as follows:

Construction:

• Y.Setup(1λ) :

1. Generate (PK,SK)← HIBE.Setup(1n).

• Y.Enc(PK, tag,m) :

1. Output CT = HIBE.Enc(PK, tag,m). That is, set the identity as tag.

• Y.Dec(SK, tag,CT) :

1. Let’s denote tag by the n-bit string (b1b2 . . . bn).

2. Denote tagi = (b1 . . . bi).

3. Compute the private key for identity tag. That is, for i = 1, . . . , n, compute SKi =
HIBE.KeyGen(SKi−1, tagi). Here SK0 = SK.

4. Set SKtag = SKn.

5. Output m = HIBE.Dec(SKtag,CT).

• Y.Setup-Alt(1λ, tag∗,m∗) :

1. Generate (PK,SK)← HIBE.Setup(1n).

2. Let’s denote tag∗ by the n-bit string (b∗1b
∗
2 . . . b

∗
n).

3. Let SKid denote the private key for identity id.

4. Compute SK-Alt = {tag∗,SKb∗1
, SKb∗1b

∗
2
,SKb∗1b

∗
2b
∗
3
, . . . ,SKb∗1b

∗
2...b

∗
n−1b

∗
n
}.

5. Compute the challenge ciphertext as CT∗ = HIBE.Enc(PK, tag∗,m∗).

46

• Y.Setup-Alt-1(1λ, tag∗,m∗) :

1. This algorithm is same as the previous one - Y.Setup-Alt(1λ, tag∗,m∗).

• Y.Dec-Alt(SK-Alt, tag,CT) :

1. Recall that SK-Alt = {tag∗, SKb∗1
,SKb∗1b

∗
2
, SKb∗1b

∗
2b
∗
3
, . . . ,SKb∗1b

∗
2...b

∗
n−1b

∗
n
}.

2. Let’s denote tag by the n-bit string (c1c2 . . . cn). We know that tag 6= tag∗.

3. Also, denote tagi = (c1 . . . ci).

4. Find the largest j such that (c1 . . . cj) = (b∗1 . . . b
∗
j−1b

∗
j).

5. Compute the private key for identity tag as follows: That is, for i = (j + 1), . . . , n,
compute SKi = HIBE.KeyGen(SKi−1, tagi). Here SKj = SKb∗1b

∗
2...b

∗
j−1b

∗
j
.

6. Set SKtag = SKn.

7. Output m = HIBE.Dec(SKtag,CT).

We now prove that the scheme Y satisfies all the properties of a puncturable tag based encryption.

1. Equivalent on all but challenge tag:
This property follows from the correctness of the HIBE scheme. That is, for all identities
except the challenge identity, the two algorithms Y.Dec and Y.Dec-Alt in fact do the exact
same operations.

2. Indistinguishability of parameters:
The values (PK, SK,CT∗) are generated the same way in both cases. Therefore, the property
is trivially true.

3. Indistinguishability of alternate setups:
This is trivially true as both alternate setup algorithms are the same.

4. Indistinguishability of messages:
This property follows from the selective-id security of the underlying HIBE scheme. That
is, the adversary is essentially getting the private key for all identities except the challenge
identity and should not be able to distinguish between the two encryptions. Therefore, if the
adversary can break this property, then we can break the security of the HIBE scheme which
would be a contradiction.

D.2 Scheme in [PW08]

Let X denote the CCA secure encryption scheme constructed by Peikert and Waters [PW08]. X is
constructed by adding one time signatures to the below scheme Y (based on lossy trapdoor func-
tions) exactly the way we convert any puncturable tag based encryption into a Special-CCA secure
encryption scheme in Section 7.2. Therefore, in order to prove that X is a Special-CCA secure en-
cryption scheme, it is enough to prove that Y is a puncturable tag based encryption scheme. How-
ever, note that the scheme Y implicitly described in the work of [PW08] has only three algorithms
- Y.Setup,Y.Enc,Y.Dec. Therefore, in order to prove that it is a puncturable tag based encryption,
we have to design three more algorithms Y.Setup-Alt,Y.Setup-Alt-1,Y.Dec-Alt that together satisfy
the required properties.

47

Notation: Let the security parameter be λ. We refer the reader to [PW08] for the definition
of lossy trapdoor functions and ABO trapdoor functions. Let (Sltdf ,Fltdf ,F

−1
ltdf) give a collection of

(n, k)-lossy trapdoor functions. Recall from the definition that this implicitly gives us two algorithms
Sinj(·) = Sltdf(·, 0) and Sloss(·) = Sltdf(·, 1). let (Sabo,Gabo,G

−1
abo) give a collection of (n, k′)-ABO

trapdoor functions having branches Bλ = {0, 1}v (which contains the space of signature verification
keys which is also the space of tags we use). We require that the total lossiness k + k′ ≥ (n + κ)
for some κ = κ(n) = ω(log n). Let H be a family of pairwise independent hash functions from
{0, 1}n to {0, 1}l, where l ≤ κ− 2 log(1/ε) for some negligible ε = negligible(λ). The message space
is {0, 1}l.

The scheme Y = (Y.Setup,Y.Enc,Y.Dec,Y.Setup-Alt,Y.Setup-Alt-1,Y.Dec-Alt) is as follows:

Construction:

• Y.Setup(1λ) :

1. First, generate an injective trapdoor function: (s, t)← Sinj(1
λ).

2. Then, generate an ABO trapdoor function having lossy branch 0v: (s′, t′)← Sabo(1
λ, 0v).

3. Finally, choose a hash function h← H.

4. The public key is PK = (s, s′, h) and the secret key is SK = (t,PK).

• Y.Enc(PK, tag,m) :

1. Choose x ∈ {0, 1}n uniformly at random.

2. Compute CT1 = Fltdf(s, x), CT2 = Gabo(s
′, tag, x) and CT3 = m⊕ h(x).

3. Output CT = (CT1,CT2,CT3).

• Y.Dec(SK, tag,CT) :

1. Compute x = F−1ltdf(t,CT1).

2. Check that CT1 = Fltdf(s, x) and CT2 = Gabo(s, tag, x). If not true, output ⊥.

3. Else, output m = CT3 ⊕ h(x).

• Y.Setup-Alt(1λ, tag∗,m∗) :

1. First, generate an injective trapdoor function: (s, t)← Sinj(1
λ).

2. Then, generate an ABO trapdoor function having lossy branch tag∗: (s′, t′)← Sabo(1
λ, tag∗).

3. Finally, choose a hash function h← H.

4. The public key is PK = (s, s′, h), the secret key is SK = (t,PK), the alternate secret key
is SK-Alt = (t′,PK).

5. Compute the challenge ciphertext CT∗ by running the algorithm Y.Enc.

6. Output (PK, SK,SK-Alt,CT∗).

• Y.Setup-Alt-1(1λ, tag∗,m∗) :

1. First, generate a lossy trapdoor function: (s,⊥)← Sloss(1
λ).

2. Then, generate an ABO trapdoor function having lossy branch tag∗: (s, t)← Sabo(1
λ, tag∗).

3. Finally, choose a hash function h← H.

48

4. The public key is PK = (s, s′, h), the secret key is SK = (⊥,PK), the alternate secret key
is SK-Alt = (t′,PK).

5. Compute the challenge ciphertext CT∗ by running the algorithm Y.Enc.

6. Output (PK,SK,SK-Alt,CT∗).

• Y.Dec-Alt(SK-Alt, tag,CT) :

1. Compute x = G−1abo(t, tag,CT2).

2. Check that CT1 = Fltdf(s, x) and CT2 = Gabo(s, tag, x). If not true, output ⊥.

3. Else, output m = CT3 ⊕ h(x).

Correctness of the scheme follows directly from the correctness of the underlying primitives.
We refer the reader to [PW08] for a detailed description.

We now prove that the scheme Y satisfies all the properties of a puncturable tag based encryption.

1. Equivalent on all but challenge tag:
This property follows from the proof of Claim 4.5 on page 21 of of [PW07]. [PW07] is the
Eprint version of the paper and the scheme is the same. Briefly, the two decryptions are
always equal if the lossy and ABO collections are both perfect.

2. Indistinguishability of parameters:
This property follows from the proof of Claim 4.4 on page 21 of [PW07]. Briefly, it follows from
the hidden lossy branch property that the ABO trapdoor function returns computationally
indistinguishable outputs.

3. Indistinguishability of alternate setups:
This property follows from the proof of Claim 4.6 on page 22 of [PW07]. Briefly, it follows
from the indistinguishability of the lossy and injective functions of the lossy TDF collection.

4. Indistinguishability of messages:
This property follows from the proof of Claim 4.7 on page 22 of [PW07]. In fact, the two
distributions can’t be distinguished even by an unbounded adversary. Briefly, this follows
from an information theoretic argument due to the “lossiness” of the underlying functions.

Remark: Note that here we crucially use the fact that we have 2 alternate setup algorithms
that allow us to switch from using the original secret key to an alternate punctured secret key
- that is, in the first algorithm PTBE.Setup-Alt, we can puncture the ABO trapdoor function on
the branch tag∗ while still maintaining the same secret key t generating using the lossy trapdoor
function to guarantee the indistinguishability of parameters property. Then, in the next algorithm
PTBE.Setup-Alt-1, we can switch the lossy trapdoor function from being in the injective mode to
lossy mode and here, we no longer need the original secret key to prove any property.

E Key Only FE-Compatibility

In this section, we define a weaker notion of FE-compatibility for a public key encryption scheme
that we call Key Only FE-Compatibility. Informally, this states that given a public key encryption
scheme, we can retain only the setup algorithm and design new encryption, decryption and function
secret key generation algorithms for the FE scheme. Additionally, we will also work in the CRS
model. That is, there exists a one time universal setup algorithm CRS.Setup that generates a CRS
which will be made part of the public key. Formally:

49

Definition 11. Given a one time universal setup algorithm CRS.Setup(·) that, on input the se-
curity parameter outputs a common random string CRS, a public key encryption scheme PKE =
(PKE.Setup,PKE.Enc,PKE.Dec) is said to be selective/adaptive Key Only FE-Compatible relative
to a family of functions F if there exists three algorithms (FE.Enc,FE.Keygen,FE.Dec) such that
(FE.Setup,FE.Enc,FE.Keygen,FE.Dec) is a selectively/adaptively secure functional encryption scheme
for the family F where:

• If PKE.Setup(n) outputs (PK, SK), the output of FE.Setup(n) is MPK = (PK,CRS) and MSK =
(SK,CRS).

Note that unlike the case of FE-Compatibility, here, the resulting FE scheme may not be
compact.

E.1 Construction from iO

In this section, we show that every public key encryption scheme is Key Only FE-Compatible.
That is, we construct a one time setup algorithm CRS.Setup relative to which, every public key
encryption scheme can be upgraded into a functional encryption scheme. To achieve this, we use
the construction of functional encryption from indistinguishability obfuscation given by Garg et al.
[GGH+13]. Formally, we show that :

Theorem 9. In the common random string model, every public key encryption scheme is selective
Key Only FE-Compatible for any function family Fn and poly(n) function key queries assuming
the existence of polynomially secure versions of the following:

1. Indistinguishability obfuscation,

2. Public key encryption and

3. Statistically simulation sound non-interactive zero knowledge proofs (SSS-NIZKs)

Notation: Let n be the security parameter. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be any
public key encryption scheme that encrypts messages of length p(n). Let CPA = (SetupCPA,EncCPA,DecCPA)
be a fixed public key encryption scheme that also encrypts messages of length p(n). Let NIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify) be a SSS-NIZK system. The construction is as follows:

• CRS.Setup(1n) :

1. Compute (PKCPA, SKCPA)← SetupCPA(1n).

2. Compute CRSNIZK ← NIZK.Setup(1n).

3. Output CRS = (PKCPA,CRSNIZK).

• FE.Setup(1n) : Compute (PK, SK) ← PKE.Setup(1n) and output MPK = (PK,CRS) and
MSK = (SK,CRS).

• FE.Enc(m,MPK) :

1. Parse MPK = (PK,PKCPA,CRSNIZK).

2. Compute CT1 = PKE.Enc(m,PK; r1) and CT2 = EncCPA(m,PKCPA; r2) using randomness
r1 and r2 respectively.

50

3. Using CRSNIZK and the algorithm NIZK.Prove, compute a proof π for the statement
(CT1,CT2) ∈ L using witness (m, r1, r2) where the language L is defined by the following
relation R:
Statement: st = (CT1,CT2)
Witness: w = (m, r1, r2)
R(st, w) = 1 if CT1 = PKE.Enc(m,PK; r1) and CT2 = EncCPA(m,PKCPA; r2).

4. Output CT = (CT1,CT2, π).

• FE.Keygen(MSK, f): Output SKf = O(Gf) where the program Gf is described below.

• FE.Dec(SKf ,CT) Run the program SKf on input CT to output a string y.

Program Gf

Input : ciphertext CT = (CT1,CT2, π)
Constants : SK,CRS = (PKCPA,CRSNIZK)

1. Check that π is a valid NIZK proof (using the algorithm NIZK.Verify and CRSNIZK) for
the statement (CT1,CT2) ∈ L.

2. Compute m = PKE.Dec(SK,CT1).

3. Output ⊥ if the decryption aborts.

4. Else, output f(m).

Figure 8: Program for generating function secret key

Security Proof: Notice that the scheme is identical to the one in [GGH+13] and the proof of
security also follows directly.

Using just a Common Random String: Notice that in the above construction, the CRS we
use is a common reference string. Let’s see how to instead rely on just a common random string.

First, from the construction of SSS-NIZK in [GGH+13], observe that CRSNIZK consists of two
parts - a random string that is the CRS of a NIZK system and a non-interactive commitment to 0.
If we use a non-interactive commitment scheme that produces psuedo-random commitments, then
CRSNIZK would be a uniformly random string.

The other component of the common reference string that we use is the public key PKCPA.
Assuming dense cryptosystems [SP92], the public key can be replaced by a uniformly random
string. Thus, this gives us a common random string CRS.

51

	Introduction
	Technical Overview
	Organization

	Preliminaries
	Defining Functional Encryption Compatibility
	Public Key Encryption
	Functional Encryption
	Security

	FE-Compatibility

	An Impossibility Result
	 An Attack
	IND-CCA Security
	Proof of [clm:badevent]Claim 1

	On the Difficulty of Proving Functional Encryption Compatibility for Fujisaki-Okamoto and RSA-OAEP
	Construction
	Attack

	Building FE-Compatible Encryption Schemes
	Puncturable Tag Based Encryption
	Special-CCA secure encryption scheme
	Instantiating Special-CCA encryption
	Building selectively secure FE
	Security Proof

	Acknowledgements
	Security Notions for Public Key Encryption
	CCA Security
	CPA Security

	Further Preliminaries
	Indistinguishability Obfuscation
	Differing Inputs Obfuscation
	Lockable Obfuscation
	Correctness
	Security

	Proof of Security for Special-CCA
	Examples of Special-CCA Secure Encryption Schemes
	Scheme in CHK04
	CHK04 using IBE scheme in BB04
	CHK04 using any HIBE scheme

	Scheme in PW08

	Key Only FE-Compatibility
	Construction from iO

