
Efficient Message Authentication Codes
with Combinatorial Group Testing

Kazuhiko Minematsu

NEC Corporation, Japan
k-minematsu@ah.jp.nec.com

Abstract. Message authentication code, MAC for short, is a symmetric-
key cryptographic function for authenticity. A standard MAC verification
only tells whether the message is valid or invalid, and thus we can not
identify which part is corrupted in case of invalid message. In this paper
we study a class of MAC functions that enables to identify the part
of corruption, which we call group testing MAC (GTM). This can be
seen as an application of a classical (non-adaptive) combinatorial group
testing to MAC. Although the basic concept of GTM (or its keyless
variant) has been proposed in various application areas, such as data
forensics and computer virus testing, they rather treat the underlying
MAC function as a black box, and exact computation cost for GTM
seems to be overlooked. In this paper, we study the computational aspect
of GTM, and show that a simple yet non-trivial extension of parallelizable
MAC (PMAC) enables O(m + t) computation for m data items and t
tests, irrespective of the underlying test matrix we use, under a natural
security model. This greatly improves efficiency from naively applying
a black-box MAC for each test, which requires O(mt) time. Based on
existing group testing methods, we also present experimental results of
our proposal and observe that ours runs as fast as taking single MAC
tag, with speed-up from the conventional method by factor around 8 to
15 for m = 104 to 105 items.

Keywords: Message authentication code, Combinatorial group testing,
Data corruption, Provable security.

1 Introduction

Message authentication code (MAC) is a symmetric-key cryptographic function
for authenticity. A MAC function, F , takes a secret key K and a message M to
produce a tag T = F (K,M). A legitimate user with key K first takes (M,T)
and later verifies the validity of a tuple (M ′, T ′), which may be corrupted from
(M,T), by computing T ′′ = F (K,M ′) and checking if T ′′ = T ′ holds or not.
While MAC-based integrity check is simple and efficient, if verification fails one
can not obtain any further information on what part of message is corrupted. On
the other extreme side, by partitioning data into m items, say 4K-byte sectors of
HDD, and taking tags for each item, we can always identify all corrupted items.
However this can be impractical due to a huge impact to the storage.

This tread-off between the number of tags and the information on corrup-
tion can be improved by taking multiple MAC tags for overlapping parts of data
items. If we carefully choose overlapping parts it allows us to identify the cor-
rupted items if they are few. This is an interesting application of combinatorial
group testing (CGT) to message authentication, as pointed out by literatures in
various applications areas. Here, CGT is a method to identify defectives from
a large number of samples using group tests (see Du and Hwang [15] for a
good summary). For example, Goodrich, Atallah and Tamassia [20] proposed
a MAC scheme combined with CGT for data forensics applications. Crescenzo,
Ge, and Arce [11] proposed a MAC scheme for corruption localization not only
restricted to identification. For schemes other than MAC, Crescenzo, Jiang and
Safavi-Naini proposed corruption-localizing hash schemes [12] and it was fur-
ther improved and extended at [8, 10] incorporating the theory of CGT. We
can find various applications such as computer virus testing [13] and HDD in-
tegrity check [17]. Relationship between CGT and signature batch verification
was studied by Zaverucha and Stinson [30].

CGT has been extensively studied from the viewpoints of combinatorics and
coding theory. In particular, non-adaptive CGT (NCGT) using t tests for m
items is specified by a t×m binary test matrix, and there are numerous results
on the efficient matrix constructions with primary focus on the number of tests
(rows), both deterministic and randomized, see e.g. Du and Hwang [15] and Ngo
and Du [24]. In application of NCGT to MAC, we first choose a test matrix
and then take MAC tags following the chosen test matrix. We call such com-
bined MAC scheme group testing MAC (GTM). GTM can in principle use any
of known test matrix designs. In this paper, we study the computational cost of
GTM. This has not been deeply explored by previous researches as they assume
MAC function as a black box. Naturally we need to compute t MAC tags for
distinct parts of m items, and standard MAC needs O(m) time for computing
a tag for m items (assuming constant item length). Hence the computation cost
is O(w) where w is the weight of test matrix, which is at most O(mt). In prac-
tice GTM requires many overlapping items between distinct tests to have good
ability in corruption identification, thus the computation cost is quite higher
than taking single tag for all items as long as MAC function is used as a black
box. In this paper, we show that a special form of MAC enables to reduce the
computation cost of GTM to O(m + t) for any matrix of t tests and m items.
The crux of our proposal is the introduction of a parallelizable MAC defined
over a vector space which efficiently handles empty string (bit string of length
zero) without computation. This is a simple yet non-trivial extension of a paral-
lelizable blockcipher-based MAC called PMAC [7, 26]. Additionally our scheme
also enables efficient incremental update of data items in the same manner to
PMAC, and even the update of test matrix. To analyze the security of our pro-
posal we consider several formal security notions, and show that our scheme is
secure with respect to them, in a concrete provable security framework proposed
by Bellare et al. [3]. Our notions are rather straightforward extension of those

2

for deterministic MAC [5, 6], and have some similarities with those seen in [12,
20].

We also present experimental implementation of our scheme, using existing
NCGT matrix constructions and AES blockcipher. We show that our scheme
achieves essentially the same speed as the single tag computation, which is
the speed of AES itself if each item is sufficiently long. The factor of speed-
up compared to the conventional scheme is dependent on the matrix, and in
our experiments it is expected to be around 8 to 15 for 104 to 105 items. The
implementation results show that differences from theory and practice are quite
small.

2 Preliminaries

Let {0, 1}• be the set of all binary strings, including the empty string ε. We write

the bit length of X ∈ {0, 1}• by |X|. Here |ε| = 0. We define {0, 1}∗ def
= {0, 1}• \

ε. We define a vector space consisting of m non-empty strings as {0, 1}∗m def
=

({0, 1}∗)m. Similarly let {0, 1}•m def
= ({0, 1}•)m as a vector space consisting of m

possibly empty strings, which we call extended vector space. Here note that (ε, v)
and (v, ε) for v 6= ε are distinct elements of {0, 1}•2. Let M = (M [1], . . . ,M [m])
and M ′ = (M ′[1], . . . ,M ′[m]) be vectors of m strings in {0, 1}∗m. We define
diff(M,M ′) = {i : M [i] 6= M ′[i]} and ∆(M,M ′) = (Y [1], . . . , Y [m]) where
Y [i] = 1 if M [i] 6= M ′[i] and otherwise Y [i] = 0. Let x � 1 = x and x � 0 = ε
for any x ∈ {0, 1}∗, and for B = (B[1], . . . , B[m]) ∈ {0, 1}m, we let M � B =
(M [1]�B[1], . . . ,M [m]�B[m]) ∈ {0, 1}•m. Moreover, let M	B ∈ {0, 1}∗m be a
vector obtained by removing all empty strings from M �B. For example if M =
(M [1],M [2],M [3],M [4]) and B = (1, 0, 1, 0) we have M �B = (M [1], ε,M [3], ε)
and M 	B = (M [1],M [3]).

For n × m binary matrix M, Mi denotes the i-the row, Mi,j denotes the

entry at i-th row and j-th column. We let I(Mi)
def
= {j : Mi,j = 1}. We also let

Hw(M) =
∑
i |I(Mi)| to denote the hamming weight of M.

Keyed function and random function. For keyed function F : K × X → Y

with key K ∈ K, we may simply write FK : X → Y if key space is obvious, or
even write as F : X → Y if being keyed with K is obvious. If EK : X → X is
a keyed permutation, or a blockcipher, EK is a permutation over X for every
K ∈ K. Its inverse is denoted by E−1K . A tweakable keyed permutation, also
known as tweakable blockcipher (TBC) [23] is a family of keyed permutation
(blockcipher) over X indexed by a public parameter called tweak V ∈ V. It is

written as ẼK : V× X→ X. The encryption of TBC is written as C = ẼVK(M)
for plaintext M , tweak V and ciphertext C, and the decryption is written as
M = Ẽ−1,VK (C). For two keyed functions, FK , F

′
K′ : X → Y, we say they are

compatible, i.e. they have the same input and output domains. Here, the key
spaces are not necessarily identical. Let Func(n,m) be the set of all functions
{0, 1}n → {0, 1}m, and let Perm(n) be the set of all permutations over {0, 1}n.
A uniform random function (URF) having n-bit input and m-bit output is a

3

function family uniformly distributed over Func(n,m). We write X
$← X to

denote the uniform sampling of X over X. Then a URF is expressed as R
$←

Func(n,m). A uniform random permutation (URP) over n-bit space is similarly

denoted by P
$← Perm(n). We also define tweakable URP. Let V be a set of tweak

and PermV(n) be the set of all functions V×{0, 1}n → {0, 1}n such that, for any
f ∈ PermV(n) and v ∈ V, f(v, ∗) is a permutation. A tweakable n-bit URP with

tweak V ∈ V is denoted by P̃
$← PermV(n). In addition, a URF R : V×X→ Y is

also called a tweakable URF when V ∈ V is used as a tweak in the application
we discuss, and we also write it as R̃ : V× X→ Y.
Pseudorandom function. For c oracles, O1, O2, . . . , Oc, A

O1,O2,...,Oc denotes
the adversary A querying these c oracles. Let FK , GK′ : X → Y be two com-
patible keyed functions, and let A be an adversary trying to distinguish them
using queries with 1-bit final output. Then the (chosen-plaintext attack, CPA)
advantage of A is defined as

Adv
cpa
FK ,GK′ (A)

def
= Pr[AFK ⇒ 1]− Pr[AGK′ ⇒ 1],

where AFK ⇒ 1 denotes the event that A’s final output is 1 after queries to FK .
The probability is defined over a uniform sampling of K and internal randomness
of A. If F and G are tweakable, a tweak in a query is arbitrarily chosen by the
adversary. Using URF R compatible with FK , we define

Adv
prf
FK

(A)
def
= Adv

cpa
FK ,R

(A).

In a similar manner, using URP P compatible with a keyed permutation EK
we define Adv

prp
EK

(A)
def
= Adv

cpa
EK ,P

(A). For tweakable keyed permutation ẼK , we

also define Adv
tprp

ẼK
(A)

def
= Adv

cpa

ẼK ,P̃
(A), where P̃ is a tweakable URP compatible

with ẼK .
If adversary A is with time complexity, it means the total computation time

and memory of A required for query generation and final decision, in some fixed
model. If there is no description on time complexity of A, it means A has no
computational restriction. Conventionally we say FK is a pseudorandom function
(PRF) if AdvcpaFK

(A) is negligible for all practical adversaries (though the formal
definition [19] requires FK to be a function family). Similarly we say FK is a
pseudorandom permutation (PRP) if AdvprpFK

(A) is negligible and FK is invertible.

Tweakable PRP (TPRP) is similarly defined with Adv
tprp

ẼK
(A). We also introduce

the notion of tweakable PRF, which is essentially a PRF containing tweak space
as a part of input.

3 MAC for corruption identification

3.1 Combinatorial group testing

We start with a brief introduction of CGT and its application to MAC. CGT
was originally formulated by Dorfman [14] for medical testing of blood supplies

4

during World War II. Formally, let us assume that we have a set of m items,
M = {M [1], . . . ,M [m]}, and each item is either normal or defective. The goal
is to identify the defective items among M using group testing, that is, we
choose a subset S ⊂ M and query if S contains at least one defective item.
A response to a query is said to be positive if it indicates the existence of at
least one defective, and otherwise said to be negative. We usually assume a
prior knowledge or assumption about the maximum number of possible defective
items, and the central question of CGT is how to form effective tests to identify
all defective items. If each query is not depending on responses of other queries,
the scheme is called non-adaptive CGT (NCGT), which is specified by a t×m
binary test matrix Q. Here, t denotes the number of tests and Qi,j = 1 denotes
that M [j] is included in the i-th test. The construction of test matrix is deeply
related to the combinatorics and coding theory and there are numerous studies
on the construction of test matrix. See Du and Hwang [15] for a collection of
these results. It is known that we need t = O(d2 logm) non-adaptive tests to
identify all defective items if there are at most d defective items, hence we can
greatly reduce the number of tags from naively taking m tags. When d = 1
there is a simple Hamming code based matrix achieving t = dlogme. For d > 1
deterministic construction achieving Θ(d2 logm) is known [25], however, finding
a construction achieving the minimum number of tests (not asymptotically) is
generally not easy and remains as a vital research topic.

A conventional approach to GTM is as follows, which is also seen in the previ-
ous studies [20, 11]. Form data items represented as a vectorM = (M [1], . . . ,M [m]) ∈
{0, 1}∗m, we first prepare a conventional MAC function defined over input space
of {0, 1}∗ (or {0, 1}•), say HMAC, and using it with an appropriate input en-
coding, we build a MAC function for vector space MACK : {0, 1}∗m → {0, 1}n.
We also prepare a t×m test matrix Q. Then for each Qi we compute

T [i] = MACK(M 	Qi) (1)

to obtain the legitimate MAC tag vector, T = (T [1], . . . , T [t]). Later, given
potentially corrupted items, M ′ = (M ′[1], . . . ,M ′[m]), and T , we compute T ′ =
(T ′[1], . . . , T ′[t]) where T ′[i] = MACK(M ′	Qi), and compare T and T ′, obtain
Z = ∆(T, T ′). From the property of Q, if 0 ≤ |diff(M,M ′)| ≤ d holds true Z
is uniquely mapped to ∆(M,M ′), i.e. the indexes of all corrupted items. This
procedure is also called decoding in the field of CGT. It is possible to prove
that producing T ′ such that Z does not correctly indicate ∆(M,M ′) implies a
successful forgery against MACK (See Section 3.6).

As mentioned there are plenty of efficient construction methods for Q from
the literature, deterministic or random, with various additional properties, and
we can basically adopt any of them with any MAC. What we here ask is the com-
putation cost given Q. Defining the unit of computation as an internal operation
of MAC to process each item, e.g. the compression function of HMAC-SHA2,
the conventional approach described above, taking MAC as a black box, gener-
ally requires O(Hw(Q)) ≤ O(mt) computation, which can be significantly larger
than O(m), the time for taking one MAC tag for M . Once given Q and MACK

5

it is possible to find some optimizations, however this will be cumbersome as we
need ad-hoc optimization for each Q. In the following, we show that a simple
parallelizable MAC enables to reduce the computation cost to O(m+ t) for any
Q with t rows. Usually m is much greater than t thus our result implies that
GTM can run mostly as fast as single MAC computation.

3.2 MAC for extended vector space

Let V and V′ be sets of integers used as tweak spaces. Let FK : V × {0, 1}∗ →
{0, 1}n be a keyed function and let FK : V × {0, 1}• → {0, 1}n be defined as
FK(i, x) = FK(i, x) if x 6= ε and FK(i, x) = 0n otherwise, for any i ∈ V. Let
GK′ : V′ × {0, 1}n → {0, 1}n be a tweakable keyed permutation over n bits. We
may write F iK(x) and GjK′(z) to denote FK(i, x) and GK′(j, z).

Let gtm[FK , GK′] be a MAC function which takes an extended vector X ∈
{0, 1}•m for fixed m and outputs an n-bit tag with tweak h ∈ V′, defined as

gtm[FK , GK′](h,X) = GhK′(F 1
K(X[1])⊕ . . .⊕ FmK (X[m])). (2)

For example, ifm = 3 and a, b ∈ {0, 1}∗, gtm[FK , GK′](h, (a, ε, b)) = GhK′(F 1
K(a)⊕

F 3
K(b)) holds. Assuming |X[i]| ≤ n for all i ≤ m and the use of n-bit blockcipher
EK for instantiations of F and G, gtm is similar to parallelizable blockcipher-
based MAC called PMAC [7, 26]. However, we observe important differences
that in PMAC the input X is in {0, 1}• and we apply partitioning to X into
n-bit blocks, and the last item X[m] is directly XORed to the state. Moreover,
PMAC does not allow X[i] to be empty for any i,1 thus to process X ∈ {0, 1}•m
with PMAC we need some encoding of X into {0, 1}•. In Section 3.6 we will
prove that gtm[FK , GK′] is a tweakable PRF: V′×{0, 1}•m → {0, 1}n if FK is a
tweakable PRF with tweak space V = {1, . . . ,m}, and GK′ is an n-bit tweakable
PRP with tweak space V′.

We stress that (2) is not secure if input space contains extended vectors
of different number of strings (i.e. m can be changed). Indeed, if m could be
changed we have the same outputs for X = (X[1]) and X ′ = (X[1], ε). Such
attack can be prevented by taking the number of component strings as a part
of G’s tweak. We prefer (2) for its simplicity and the fact that gtm for fixed m
is enough to provide a secure GTM for any fixed-size, t×m test matrix.

3.3 Efficient group testing MAC

Given a t ×m test matrix Q and a list of m items denoted by M ∈ {0, 1}∗m,
now what we want to compute is

T [i] = gtm[FK , GK′](i,M �Qi) for all i = 1, . . . , t. (3)

Since any test that includes M [j] adds F jK(M [j]) to its internal state, F jK(M [j])
can be shared for all tests that include M [j]. In other words, the computation

1 Unless entire input is an empty string.

6

of (3) can be done by reading each M [j], computing F jK(M [j]), and XORing
to the state memory block for the i-th test (denoted by S[i]) for all i such that
Qi,j = 1. Then we compute T [i] = GiK′(S[i]) for all i. This requires m calls
of F and t calls of G using t state memory blocks for any Q. Note that such
computation can not be done by a black-box application of PMAC with input
encoding (from {0, 1}•m to {0, 1}•).

We write this procedure as GTM[FK , GK′].Tag, which uses gtm as a sub-
routine but in a decomposed way described above. It is shown in Fig. 1. A
simple procedure for the corruption identification, also known as naive decoder,
is to apply GTM[FK , GK′].Tag for the (possibly corrupted) data items, and re-
moves all data items which is included in a test with negative outcome, i.e. a
test that correctly passed. The remaining items are considered to be corrupted.
This procedure is defined as GTM[FK , GK′].Ident. Moreover, we require that
GTM[FK , GK′] to work as an ordinal MAC for the whole data items or each
subset specified by Qi. The corresponding verification functions are defined as
GTM[FK , GK′].Verify and GTM[FK , GK′].Verify(i) shown in Fig. 1. The corre-
sponding security notions will be described in Section 3.4.

In the definition of GTM we assume M ∈ {0, 1}∗m, however extension to
M ∈ {0, 1}•m is trivially possible by additional input encoding for F .
Properties. We remark that gtm[FK , GK′] is parallelizable. It also supports
incremental update in the same manner to PMAC. For example, if we have T [i] =
gtm[FK , GK′](i,M �Qi) for some i and j with Qi,j = 1, re-computation of T [i]
with incremental update of M [j] to M ′[j] 6= M [j] requires two invocations of F
and G, i.e., we apply G−1,iK′ to T [i] and compute F jK(M [j])⊕F jK(M ′[j]) to renew
the state, and finally apply GiK′ to the state to renew T [i]. This incremental
update is useful when the data is large and frequently updated by items.

We also remark that even the incremental update of Q (i.e. a change in the
test matrix) is efficiently handled. For instance, if we want to change Qi,j = 0 to

Qi,j = 1 then we add F jK(M [j]) toG−1,iK′ (T [i]). However, we have not investigated
the practical application of this functionality.

3.4 Security notions

To consider the security of our proposal, we need formal security notions. Gen-
erally GTM can be considered as an extension of deterministic MAC, having
input in {0, 1}∗m and output in ({0, 1}n)t with a t × m binary matrix Q as
a public parameter, equipped with corruption identification procedure in addi-
tion to tagging and verification procedures. Therefore we make our notions as
natural extensions of those for deterministic MACs [5, 6]. We intend to define
our notions so that they can be satisfied if item subset specified by a test (i.e.
{M [j] : Qi,j = 1}) is processed by a PRF, independent for each test, and the
underlying Q is appropriate for both MAC and corruption identification. We
later show that GTM[FK , GK′] is in fact secure with respect to our notions.

Let Q be a t × m binary matrix. Let MACK : M → T with M = {0, 1}∗m

and T = ({0, 1}n)t be a GTM scheme using test matrix Q. We also let MAC
(i)
K :

7

Algorithm
GTM[FK , GK′].Tag(M):

1. for i = 1 to t do
2. S[i]← 0n

3. for j = 1 to m do
4. Z ← F j

K(M [j])
5. for i = 1 to t do
6. if Qi,j = 1
7. then S[i]← S[i]⊕ Z
8. for i = 1 to t do
9. T [i]← Gi

K′(S[i])
10. T ← (T [1], . . . , T [t])
11. return T

Algorithm
GTM[FK , GK′].Verify(M ′, T ′):

1. T̂ ← GTM[FK , GK′].Tag(M ′)

2. if T̂ = T ′ return >
3. else return ⊥

Algorithm
GTM[FK , GK′].Verify(i)(M ′, T ′[i]):

1. T̂ ← GTM[FK , GK′].Tag(M ′)

2. if T̂ [i] = T ′[i] return >
3. else return ⊥

Algorithm
GTM[FK , GK′].Ident(M ′, T ′):

1. P← {1, . . . ,m}
2. T̂ ← GTM[FK , GK′].Tag(M ′)
3. for i = 1 to t do
4. if T̂ [i] = T ′[i] do P← P \ I(Qi)
5. return P

Fig. 1. GTM[FK , GK′] with t×m test matrix Q.

M→ {0, 1}n for i = 1, . . . , t to denote the corresponding MAC for the i-th test,

that is, MACK(M) = (MAC
(1)
K (M), . . . ,MAC

(t)
K (M)).

To define the security notions for MAC, we introduce several oracles.

Definition 1. Let M,M ′ ∈ M = {0, 1}∗m and T, T ′, T̂ ∈ T = ({0, 1}n)t.
Let MACK.Tag be tagging oracle which takes M and returns output as T =
MACK(M). Let MACK.Verify be the verification oracle which takes (M ′, T ′) ∈
M× T and evaluates T̂ = MACK(M ′), and returns > if T ′ = T̂ (i.e. it is valid)

and otherwise ⊥ (i.e. it is invalid). We define verification-i oracle MACK.Verify(i)

which takes (M ′, T ′[i]) to compute T̂ [i] = MAC
(i)
K (M ′) and returns > if T̂ [i] =

T ′[i], and ⊥ otherwise. We also define identification oracle MACK.Ident which
takes (M ′, T ′) and computes the index set of possibly corrupted items, simply
obtained by evicting I(Qi) from {1, . . . ,m} for all i such that i-th test is failed.

By setting MACK = GTM[FK , GK′], these oracles are formally defined by
Fig. 1.

We define the following three security notions. Let OT , OV , O
(i)
V , and OI

respectively denote tagging, verification, verification-i, and identification oracles
for MACK. Here we fix the number of items, m, and t×m test matrix Q.

1. Tag vector forgery (TVF). Let A1 be the adversary who queries (OT ,OV).
Suppose A1 obtains (M1, T1), . . . , (Mq, Tq) via q (adaptive, chosen-plaintext)
queries to OT (where (Mi, Ti) ∈ {0, 1}∗m × ({0, 1}n)t) and then determines

8

(M ′, T ′) ∈ {0, 1}∗m× ({0, 1}n)t as a query to OV . We say A1 forges if A1 re-
ceives > from OV and (M ′, T ′) 6= (Mi, Ti) for all i = 1, . . . , q. The advantage
of A1 is defined as

AdvmacMACK
(A1)

def
= Pr[AOT ,OV

1 forges]. (4)

We say MACK is secure against tag vector forgery if AdvmacMACK
(A1) is negli-

gibly small for all practical adversaries.
2. Tag string forgery (TSF). Fix i ∈ {1, . . . , t}. Let A2 be the adversary

who queries (OT ,O
(i)
V). Suppose A2 first obtains (Mj , Tj) for j = 1, . . . , q via

q queries to OT , and then determines a query to O
(i)
V as (M ′, T ′[i]). We say

A2 forges if A2 receives > from O
(i)
V and (M ′ 	Qi, T ′[i]) 6= (Mj 	Qi, Tj [i])

for all j = 1, . . . , q. The advantage of A2 is defined as

Adv
mac(i)
MACK

(A2)
def
= Pr[A

OT ,O
(i)
V

2 forges], (5)

and we say MACK is secure against tag string forgery if Adv
mac(i)
MACK

(A2) is
negligibly small for all practical adversaries, for all i = 1, . . . , t.

3. Corruption misidentification (CM). Let A3 be a d-corruptive adversary
who first performs q distinct queries to OT and obtains (M1, T1), . . . , (Mq, Tq),
and then queries (M ′, T ′) to OI such that T ′ = Ti for some i and 1 ≤
|diff(M ′,Mi)| ≤ d. We say A3 forges if (1) we have Ti = Tj for some
i 6= j or (2) all Tis are unique and OI returns P ⊆ {1, . . . ,m} such that
P 6= diff(M ′,Mi) (where index i is uniquely determined from T ′). We define

Adv
ident(d)
MACK

(A3)
def
= Pr[AOT ,OI

3 forges]. (6)

For some fixed d, we say MACK is secure against corruption misidentification

if Adv
ident(d)
MACK

(A3) is negligibly small for all practical d-corrupting adversaries.

We will call these notions as TVF, TSF, and CM-security respectively. Note that
in CM-security we safely let the adversary win if it finds a tag vector collision
while querying OT . Finally we say MACK is secure if it is secure with respect to
all three notions.
Requirements on test matrix. To fulfill all of our security notions, test ma-
trix Q needs to satisfy some conditions. We naturally assume that all rows of Q
are unique. In the standard scenario of NCGT, it is known that Q should be at
least d-separable2, that is, unions (bitwise logical OR) of up to d columns of Q
are all distinct. Here a union can include no column of Q which is all-zero vec-
tor, and thus Q cannot have all-zero column. A stronger definition is d-disjunct
which means that any union of up to d columns does not contain a column of
Q. This notion is useful in practice since if Q is d-disjunct, correct decoding
(corruption identification in our case) is always possible by naive decoder men-
tioned earlier which simply evicts all items used in at least one test that was

2 It is also written as d-separable, and in this case d-separable means that unions of
exactly d columns are distinct.

9

negative. Moreover, we could always detect the existence of more than d de-
fective items. See e.g. [15, 16, 24] for more details. Following these observations
we set GTM[FK , GK′].Ident as naive decoder and require Q to be d-disjunct for
CM-security with d-corrupting adversaries. The existence of all-zero column also
immediately implies a trivial attack against TVF-security.

TSF-security is independent of Q because Qi specifies the input space of

MAC
(i)
K , and if MAC

(i)
K is an independent, secure MAC for each i, TSF-security

is trivially satisfied for any Q.
For TVF-security, however, we require that Q contains an all-one row, which

shows a separation between TSF and TVF-securities.

Proposition 1. For any GTM using t×m test matrix Q, if Q does not contain
an all-one row, TVF-security can be broken using at most t+ 1 queries.

Proof. Let us assume Q has no all-one row. Let a and b be two distinct non-empty
strings. Then, for each i = 1, . . . , t the adversary queriesMi = (Mi[1], . . . ,Mi[m])
to the tagging oracle, where Mi[j] = a if Qi,j = 1 and Mi[j] = b if Qi,j = 0,
and receives Ti = (Ti[1], . . . , Ti[t]). Then the adversary queries (M ′, T ′) to the
verification oracle, where M ′ = (a, . . . , a) and T ′[j] = Tj [j]. This query is always
accepted. ut

Consequently we require the following.

Definition 2. We say t×m test matrix Q is sound for d-corruptive adversaries,
if Q is d-disjunct and contains an all-one row.

In the following, without loss of generality we assume that if Q is sound for
d-corruptive adversaries, Q1 is the all-one row.

3.5 Remarks

Multiple verification queries. For simplicity the notions defined at Sec-

tion 3.4 require that the adversary uses one query to OV or O
(i)
V or OI . They can

be extended so that the adversary can use qv > 1 queries to these oracles, and
from the result of [4] we could generally prove that if MACK is secure with the
case qv = 1, it is also secure when qv > 1.
The need of tag string security. We remark that TSF-security notion is
rather optional as if MACK is secure against tag vector forgery, any forgery is
detectable by checking a tag for the all-one row. We think however one may want
to quickly check authenticity of a part of data items (M 	Qi) by computing tag
for Qi. Tag computation for M 	Qi can be significantly faster than computing
a tag for the all-one row. If MACK is only TVF-secure and not TSF-secure,
a forgery against M 	 Qi may not be detected until a user performs a tag
verification for the all-one row.
Extending CM-security. Notions of TVF and TSF securities allow the ad-
versary to freely choose tags at the final query, while that of CM-security does
not (i.e. adversary can not arbitrarily choose T ′ in querying OI , only to choose

10

it from T1, . . . , Tq). However this is unlikely to hold when MAC tags are stored
at the same storage as data items. In addition, a user may be interested in cor-
ruption localization, that is, finding a superset of corrupted items (i.e. allowing
some false positives in the guess) if exact identification of all corrupted items is
difficult. These important extensions are already mentioned and independently
studied. For example, corruption localization was studied by [13, 11, 12, 8], and
identification of corrupted items under tag corruption was described at [20].

We remark that these extensions also have been studied in the field of CGT
design. If M � Qi for some i is not corrupted but T [i] = gtm(i,M � Qi) is
corrupted to T ′[i], the corresponding test is considered as invalid, that is, a false
positive occurs at the i-th test. Test matrix that can tolerate false positives, and
even false negatives3, has been studied in the literature, such as Cheraghchi [9],
Thierry-Mieg [27] and Ngo, Porat and Rudra [25]. Some of these papers also
study the case where final output is only required to be a superset of corrupted
items with an allowable margin, which is a form of corruption localization. By
using test matrices from these studies, it would be possible to built a GTM
scheme having CM-security notion with some extended model allowing a more
freedom in choosing a query to OI (e.g. (M ′, T ′) with |diff(M ′,Mi)| ≤ d1 and
|diff(T ′, Ti)| ≤ d2 for some d1, d2) and corruption identification with some false
positives. Formalizing these ideas and providing a concrete security result using
existing results on CGT will be an interesting future direction.

3.6 Provable security of GTM

We first prove that gtm[FK , GK′] is a tweakable PRF for input domain {0, 1}•m,
tweak space V = {1, . . . , t}. In what follows we fix the t×m test matrix Q and
assume it is sound for d-corruptive adversaries.

Theorem 1. Let gtm[R̃, P̃] : V × {0, 1}•m → {0, 1}n be the tweakable keyed

function defined as (2), using a tweakable URF, R̃, compatible with FK and

tweakable URP, P̃, compatible with GK′ . Then we have

Adv
prf

gtm[R̃,P̃]
(A) ≤ q2

2n
(7)

for any adversary A using q queries.

Proof. Let gtm[R̃, R̃
′
] be the function that substitutes P̃ with R̃

′
, an independent

tweakable URF compatible with P̃. Let R̃gtm be the tweakable URF compatible

with gtm[R̃, P̃]. Then we have

Adv
prf

gtm[R̃,P̃]
(A) ≤ Adv

cpa

gtm[R̃,P̃],gtm[R̃,R̃
′
]
(A′) + Adv

cpa

gtm[R̃,R̃
′
],R̃gtm

(A′′) (8)

for some adversaries A′, A′′ using q queries. The first term in the right hand
side of (8) is simply bounded by an extended form of PRP/PRF switching

3 It corresponds to successful MAC forgeries, which we consider negligibly small chance
to occur.

11

lemma (e.g. [6]) and we have Adv
cpa

gtm[R̃,P̃],gtm[R̃,R̃
′
]
(A′) ≤ q2/2n+1. To analyze the

second term, let (Vi, Xi) ∈ {1, . . . , t} × {0, 1}•m with Xi = (Xi[1], . . . , Xi[m])

be the i-th query of A′′ accessing gtm[R̃, R̃
′
]. From the assumption we have

(Vi, Xi) 6= (Vj , Xj) if i 6= j. Let Si =
⊕

j=1,...,m,Xi[j]6=ε R̃
j
(Xi[j]), which denotes

the i-th input (with tweak Vi) to R̃
′

for the i-th query made by A′′ accessing to

gtm[R̃, R̃
′
]. Here R̃

j
is not computed for input being ε following (2).

Since gtm[R̃, R̃
′
] can be seen as a variant of classical Carter-Wegman MAC,

the second term is bounded by the collision probability of (V, S) against non-
adaptive strategy in the same manner to the analysis of [6, 26], and we have

Adv
cpa

gtm[R̃,R̃
′
],R̃gtm

(A′′) ≤max Pr
gtm[R̃,R̃

′
]

[(Vi, Si) = (Vj , Sj) for some i 6= j] (9)

≤ max
∑

i<j,Vi=Vj

Pr
gtm[R̃,R̃

′
]

[Si = Sj], (10)

where the maximum is taken for (V1, X1), . . . , (Vq, Xq). Without loss of generality
we focus on the event S1 = S2 and assume X1[1] 6= X2[1] and V1 = V2. If

X1[1] 6= ε and X2[1] 6= ε, S1 ⊕ S2 = R̃
(1)

(X1[1]) ⊕ R̃
(1)

(X2[1]) ⊕ δ, where δ is

independent of R̃
(1)

(as it is a sum of some outputs of R̃
(2)
, . . . , R̃

(m)
or 0n). If

X1[1] = ε and X2[1] = x 6= ε (or vice versa), S1 ⊕ S2 = R̃
(1)

(x) ⊕ δ holds. For
both cases the probability of S1 ⊕ S2 = 0n is clearly 1/2n. Thus the right hand
side of (10) is bounded by

(
q
2

)
/2n < q2/2n+1. This concludes the proof. ut

Theorem 2. Let R̃ and P̃ be the tweakable URF and tweakable URP compatible
with FK and GK′ in GTM[FK , GK′]. Then, we have

Advmac
GTM[R̃,P̃]

(A1) ≤ 5t2q2

2n
, (11)

Adv
mac(i)

GTM[R̃,P̃]
(A2) ≤ 5t2q2

2n
for all i = 1, . . . , t, (12)

Adv
ident(d)

GTM[R̃,P̃]
(A3) ≤ 6t2q2

2n
, (13)

where Aj for j = 1, 2, 3 uses q queries to OT and a query to OV (for j = 1) or

O
(i)
V (for j = 2) or OI (for j = 3).

Proof. For (11), let R̃gtm be the tweakable URF compatible with gtm[R̃, P̃]. Let
Ri : {0, 1}∗ci → {0, 1}n be the independent URF where ci = |I(Qi)|, and let

R̃GTM be an ideal primitive for GTM[R̃, P̃], which takes M ∈ {0, 1}∗m and outputs
T = (T [1], . . . , T [t]) for T [i] = Ri(M 	Qi). We observe that a tagging query to

12

GTM[R̃, P̃] yields queries to gtm[R̃, P̃](i, ·) for each i = 1, . . . , t. Thus we have

Advmac
GTM[R̃,P̃]

(A1) ≤ Adv
cpa

GTM[R̃,P̃],R̃GTM

(A′1) + Advmac
R̃GTM

(A1) (14)

≤ Adv
prf

gtm[R̃,P̃]
(A′′1) +

1

2n
(15)

≤ t2(q + 1)2

2n
+

1

2n
, (16)

where A′1 uses q + 1 queries, and A′′1 uses t(q + 1) queries. The second in-

equality follows from the fact that, to forge R̃GTM, the adversary has to guess
T ′[1] = R1(M ′	Q1) = R1(M ′) given tags for M1, . . . ,Mq for certain M ′ 6=∀ Mi.
Thus T ′[1] is independent and uniformly random over n bits. The last inequality
follows from Theorem 1.

For (12), the bound is similarly derived as

Adv
mac(i)

GTM[R̃,P̃]
(A2) ≤ Adv

cpa

GTM[R̃,P̃],R̃GTM

(A′2) + Adv
mac(i)

R̃GTM

(A2) (17)

≤ Adv
prf

gtm[R̃,P̃]
(A′′2) +

1

2n
(18)

≤ (tq + 1)2

2n
+

1

2n
(19)

where A′′2 uses (tq+1) queries to gtm[R̃, P̃](i, ·) or R̃gtm(i, ·). The second inequality
follows from that the adversary needs to guess Ri(M

′	Qi) for some M ′ satisfying
M ′ 	Qi 6= M1 	Qi, . . . ,Mq 	Qi, and the last follows from Theorem 1.

For (13), we observe that the adversary must find a pair of distinct M
and M ′ causing an exploitable collision between tag strings, throughout ac-
cessing tagging oracle, since otherwise it reduces to the original combinato-
rial problem setting where tests never fail, and thus the identification oracle
never fails due to d-disjunctness of Q. Here, an exploitable collision means that
there exists a pair of distinct (M,M ′) such that for some i ∈ {1, . . . , t} with

M 	 Qi 6= M ′ 	 Qi we have T [i] = T ′[i], for (T [1], . . . , T [t]) = GTM[R̃, P̃](M)

and (T ′[1], . . . , T ′[t]) = GTM[R̃, P̃](M ′). Here, note that an exploitable collision
at the final identification query directly means a win but an exploitable collision
invoked at tagging queries also implies a win. Hence the advantage is bounded
by the probability of exploitable collision throughout the game.

We then define a collision-finding game, where adversary A (adaptively)
queries a tagging oracle implementing a GTM, MACK. Let Mi ∈ {0, 1}∗m be
the i-th query and Ti ∈ ({0, 1}n)t be the i-th response. We assume A never
makes duplicate queries, and say A wins there is an exploitable collision, i.e.
Ti[h] = Tj [h] for some 1 ≤ i < j ≤ q and h ∈ {1, . . . , t}, and we denote the

13

probability of win by AdvcollMACK
(A). Then we have

Adv
ident(d)

GTM[R̃,P̃]
(A3) ≤ Advcoll

GTM[R̃,P̃]
(A′3) (20)

≤ Adv
prf

gtm[R̃,P̃]
(A′′3) + Advcoll

R̃GTM
(A′3) (21)

≤ t2(q + 1)2

2n
+
t(q + 1)2

2n+1
, (22)

where A′3 uses (q + 1) queries, A′′3 uses t(q + 1) queries. The first term of the
last inequality follows from Theorem 1, and the second term follows from the
fact that R̃GTM’s outputs are completely random and a simple counting of events
(Ti[h] = Tj [h] for some 1 ≤ i < j ≤ q and h ∈ {1, . . . , t}) having probability
1/2n. This concludes the proof. ut

Practical instantiations. The above analysis shows security bounds based
on information-theoretic primitives, however we can easily derive the security
bounds with practical instantiations having computational security. For con-
crete instantiations, R̃ in gtm[R̃, P̃] can be instantiated by HMAC-SHA2 or
CMAC [2] with AES, where tweak is (e.g.) encoded into a fixed-length sequence

and prepended to to input. Also P̃ can be instantiated by a computationally-
secure TBC. It can be instantiated by a blockcipher mode of operation such
as XEX [26] or a dedicated constructions, such as Threefish [18] or TBCs by
Jean, Nikolić and Peyrin [22] which are used in their proposals for CAESAR
competition for authenticated encryption [1]. If we use CMAC with n-bit URP

for R̃ and XEX with another n-bit URP for P̃, and each data item is at most n`
bits, then combining the provable security bounds of CMAC, shown by Iwata
and Kurosawa [21], and XEX and Theorem 2, the resulting security bounds (for
TVF, TSF and CM) are shown to be O(σ2/2n), where σ = q`w ≤ q`mt and
w = Hw(Q) with a small constant. When URP is substituted with a real block-
cipher, deriving computational counterparts is also standard, see e.g. Bellare et
al. [3].

4 Experimental implementation

We implemented our algorithm with two existing CGT methods. The first is
Shifted Traversal Design (STD) by Thierry-Mieg [27]. Thierry-Mieg and Bailly
also developed a tool to produce CGT test matrix based on STD, Interpool [28].
The second is Chinese Reminder Sieve (CRS) proposed by Eppstein, Goodrich
and Hirschberg [16].

The first method, STD, is based on the repetition and rotation of sub-matrix.
A parameter set of STD is written as (n, q, k), where n denotes the number of
items, q denotes the number of tests in a layer and k denotes the number of
layers. Here k specifies redundancy in the design and each item is included
exactly in k tests. We need q to be a prime and q < n and k ≤ q + 1. The
number of tests is q · k. Each test contains bn/qc or bn/qc+ 1 items. Let Γ (q, n)

14

be min{γ : qγ+1 ≥ n}. Then STD can identify t corrupted items if t ·Γ (q, n) ≤ q
and k = t · Γ (q, n) + 1 hold. Moreover with E observation errors (false positives
or negatives) it works if t · Γ (q, n) + 2E ≤ q and k = t · Γ (q, n) + 2E + 1 hold.
See [27] for details.

The second method, CRS, is based on number theory and its test matrix is
specified by a sequence of powers of primes, (t1, . . . , tk) = (pe11 , . . . , p

ek
k), satisfy-

ing
∏
j tj ≥ nd, where n denotes the number of items and d denotes the number

of corrupted items that can be identified. Test matrix consists of k sub-matrices
and j-th sub-matrix is determined by tj and has tj rows (tests). Thus CRS con-
sists of t =

∑
j tj tests. [16] suggests a backtracking search to find an appropriate

sequence (t1, . . . , tk) and shows a Python code doing it.

Details. We chose several parameter settings for both STD and CRS methods,
and implemented our algorithm for tag computation. Verification and corruption
identification procedures are not implemented at this moment. For STD we chose
(n, q, k) = (940, 13, 13) with 169 tests and (2000, 11, 11) with 121 tests, which
allows to detect up to 6 and 3 corruptions respectively. For CRS, we chose
(n, d) = (104, 2) and (104, 5) and (105, 2). Number of tests are 89, 378, and 131
respectively. We did not include the all-one row as the effect to performance is
quite small.

To implement GTM[FK , GK′], we used CMAC for F jK , where tweak j is
encoded as a 4-byte sequence and prepended to the input, and used XEX forGiK′ ,
both with AES-128. Each tag is 16 bytes. For storing a large binary test matrix,
a natural way is to have an array, A[i][j], which denotes the j-th item index to be
included in the i-th test, as employed by Interpool. In C language we can store
it as a two-dimensional array of pointers. This expression, which we call item-
index expression, is however quite inefficient to implement GTM[FK , GK′].Tag
in Fig. 1, since it incurs a search over A for every item. Instead we made the
inverse array, B[i][j], which denotes the j-th test index used in the i-th item,
which we call test-index expression. Using this expression the algorithm of Fig. 1
is easily implemented, where lines 4 and 5 are replaced with simple successive
reading of array B.

For comparison we also implemented a conventional computation of gtm[FK , GK′],
which uses gtm[FK , GK′](i, ·) as a black-box tweakable MAC function for each
test index i, using item-index array. This needs Hw(Q) calls of F and t calls of
G.

We used a standard C implementation of AES using four 1K-byte tables,
called T-tables, on Intel CPU (Ivybridge Core i7 3770, 3.4 GHz), running 64-bit
Windows. Here AES-128 runs at 13.3 cycles/byte.

The implementation results are shown in Table 1 for STD and Table 2 for
CRS, where each item has a fixed length, from 16 to 2048 bytes, shown in the
first row. The data items are randomly generated. The figures denote the average
cycles for input byte (i.e. total cycles divided by the total bytes of all data items).
We also show Figure 2 for the case STD (940, 13, 13) and CRS (105, 131), where
horizontal axis shows the data item length in bytes, and vertical axis shows the
average cycles for input byte. These tables and figures show that the speed of our

15

Table 1. Implementation results for STD, with parameter (n, q, k).

Parameter (940, 13, 13), Hw(Q) = 12, 220, Hw(Q)/m = 13

(m, t) = (940, 169) 16 32 64 128 256 512 1024 2048

Proposed 63.4 64.0 26.8 20.5 17.3 15.7 14.8 14.4
Conventional 430.2 312.2 249.4 219.8 200.4 190.8 186.7 184.0

Parameter (2000, 11, 11), Hw(Q) = 22, 220, Hw(Q)/m = 11.11

(m, t) = (2000, 121) 16 32 64 128 256 512 1024 2048

Proposed 55.3 33.9 27.3 20.2 16.8 15.1 14.5 14.1
Conventional 361 259.7 206.9 180.7 166.8 159.5 155.9 153.8

Table 2. Implementation results for CRS, with parameter (n, d).

Parameter (104, 5), Hw(Q) = 150, 000, Hw(Q)/m = 15

(m, t) = (104, 378) 16 32 64 128 256 512 1024 2048

Proposed 60.9 37.6 25.8 20 17.1 15.6 14.8 14.5
Conventional 492.4 353.5 285 251.4 233 226.9 218.2 215.5

Parameter (104, 2), Hw(Q) = 80, 000, Hw(Q)/m = 8

(m, t) = (104, 89) 16 32 64 128 256 512 1024 2048

Proposed 51 30.8 22.6 18.4 16.4 15.3 14.7 14.5
Conventional 259.5 189.7 156.1 135.5 125.7 121.2 117.7 116.3

Parameter (105, 2), Hw(Q) = 1, 000, 000, Hw(Q)/m = 10

(m, t) = (105, 131) 16 32 64 128 256 512 1024 2048

Proposed 49.7 31.9 23 18.6 16.3 15.1 14.5 14.1
Conventional 319.6 237.5 190.7 171.6 158.1 148.9 144.1 141.5

algorithm is much faster than the conventional one, and it is mostly the same
as AES itself if each data item is more than 1K bytes. In theory the speed-up of
the proposed scheme from the conventional one is proportional to Hw(Q)/m for
m items and t tests. The actual speed-up factor is 8 to 15 in our experiments
for data items of 2K bytes, and the difference from the ratio Hw(Q)/m is quite
small.

5 Concluding remarks

This paper has studied a class of MAC function which is used with combinato-
rial group testing to identify the part of corruption. While such MAC function
generally needs O(mt) computation for m data items and t tests, we propose
to use a variant of PMAC to reduce the cost to O(m + t) irrespective of the
contents of these tests. From our experiments, we observe that an AES-based
implementation of our scheme can in fact run as fast as AES itself for practical
size of problems. An important next direction is to investigate practical impact
of our proposal to real-life security applications for which a group testing MAC
is useful.

Interestingly, the idea shown here can not work fine in the keyless setting,
say by replacing F and G by keyless hash functions, since the resulting incre-

16

mental hash function is quite weak against generalized birthday attack [29], and
thus we need to greatly increase the internal state (the output size of F). The
problem here seems deeply related to the construction of secure, space-efficient
incremental hash function, and needs further study.

Acknowledgments. The author would like to thank Kengo Mori, Jun Fu-
rukawa and Toshihiko Okamura for fruitful discussions, and Hiroyasu Kubo for
initial-stage implementation, and anonymous reviewers for helpful comments.

References

1. CAESAR : Competition for Authenticated Encryption: Security, Applicability, and
Robustness, http://competitions.cr.yp.to/index.html/

2. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication. NIST Special Publication 800-38B (2005), national Institute of
Standards and Technology.

3. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment
of Symmetric Encryption. In: FOCS ’97. pp. 394–403. IEEE Computer Society
(1997), http://dx.doi.org/10.1109/SFCS.1997.646128

4. Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Mes-
sage Authentication and Authenticated Encryption. Cryptology ePrint Archive,
Report 2004/309 (2004), http://eprint.iacr.org/

5. Bellare, M., Kilian, J., Rogaway, P.: The Security of the Cipher Block Chaining
Message Authentication Code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

6. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-Key
Constructions. In: Bellare, M. (ed.) CRYPTO 2000. Lecture Notes in Computer
Science, vol. 1880, pp. 197–215. Springer (2000)

7. Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Mes-
sage Authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. Lecture Notes
in Computer Science, vol. 2332, pp. 384–397. Springer (2002), http://dx.doi.

org/10.1007/3-540-46035-7_25
8. Bonis, A.D., Crescenzo, G.D.: Combinatorial Group Testing for Corruption Local-

izing Hashing. In: Fu, B., Du, D. (eds.) COCOON 2011. Lecture Notes in Com-
puter Science, vol. 6842, pp. 579–591. Springer (2011), http://dx.doi.org/10.

1007/978-3-642-22685-4_50
9. Cheraghchi, M.: Noise-resilient group testing: Limitations and constructions. Dis-

crete Applied Mathematics 161(1-2), 81–95 (2013), http://dx.doi.org/10.1016/
j.dam.2012.07.022

10. Crescenzo, G.D., Arce, G.R.: Data forensics constructions from cryptographic
hashing and coding. In: Shi, Y., Kim, H., Pérez-González, F. (eds.) IWDW 2011.
Lecture Notes in Computer Science, vol. 7128, pp. 494–509. Springer (2011),
http://dx.doi.org/10.1007/978-3-642-32205-1_39

11. Crescenzo, G.D., Ge, R., Arce, G.R.: Design and analysis of dbmac, an error lo-
calizing message authentication code. In: GLOBECOM ’04. pp. 2224–2228. IEEE
(2004), http://dx.doi.org/10.1109/GLOCOM.2004.1378404

12. Crescenzo, G.D., Jiang, S., Safavi-Naini, R.: Corruption-Localizing Hashing. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. Lecture Notes in Computer Sci-
ence, vol. 5789, pp. 489–504. Springer (2009), http://dx.doi.org/10.1007/

978-3-642-04444-1_30

17

13. Crescenzo, G.D., Vakil, F.: Cryptographic hashing for virus localization. In: Jaha-
nian, F. (ed.) WORM 2006. pp. 41–48. ACM Press (2006), http://doi.acm.org/
10.1145/1179542.1179550

14. Dorfman, R.: The Detection of Defective Members of Large Populations. The An-
nals of Mathematical Statistics 14(4), 436–440 (1943)

15. Du, D., Hwang, F.: Combinatorial Group Testing and Its Applications. Applied
Mathematics, World Scientific (2000), http://books.google.co.jp/books?id=

KW5-CyUUOggC
16. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved Combinatorial Group

Testing Algorithms for Real-World Problem Sizes. SIAM J. Comput. 36(5), 1360–
1375 (2007), http://dx.doi.org/10.1137/050631847

17. Fang, J., L., J.Z., Yiu, S., Hui, L.C.: Hard Disk Integrity Check by Hashing with
Combinatorial Group Testing. CSA 2009 pp. 1–6 (2009)

18. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T.,
Callas, J., Walker, J.: Skein Hash Function. SHA-3 Submission (2008), http:

//www.skein-hash.info/
19. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness.

Springer-Verlag, Algorithms and Combinatorics (1998)
20. Goodrich, M.T., Atallah, M.J., Tamassia, R.: Indexing Information for Data Foren-

sics. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. Lecture Notes
in Computer Science, vol. 3531, pp. 206–221 (2005), http://dx.doi.org/10.1007/
11496137_15

21. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE. Lecture Notes in Computer Science, vol. 2887, pp. 129–153. Springer (2003)

22. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The
TWEAKEY Framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
Lecture Notes in Computer Science, vol. 8874, pp. 274–288. Springer (2014),
http://dx.doi.org/10.1007/978-3-662-45608-8_15

23. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp. 31–46. Springer
(2002), http://dx.doi.org/10.1007/3-540-45708-9_3

24. Ngo, H.Q., Du, D.Z.: A Survey on Combinatorial Group Testing Algorithms with
Applications to DNA Library Screening. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science (2000)

25. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently Decodable Error-Correcting List Dis-
junct Matrices and Applications - (Extended Abstract). In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) Automata, Languages and Programming - 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 6755, pp. 557–568. Springer (2011),
http://dx.doi.org/10.1007/978-3-642-22006-7_47

26. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. Lecture Notes in
Computer Science, vol. 3329, pp. 16–31. Springer (2004), http://dx.doi.org/10.
1007/978-3-540-30539-2_2

27. Thierry-Mieg, N.: A New Pooling Strategy for High-Throughput Screening: the
Shifted Transversal Design. BMC Bioinformatics 7(28) (2006)

28. Thierry-Mieg, N., Bailly, G.: Interpool: interpreting smart-pooling results. Bioin-
formatics 24(5), 696–703 (2008)

29. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
Lecture Notes in Computer Science, vol. 2442, pp. 288–303. Springer (2002), http:
//dx.doi.org/10.1007/3-540-45708-9_19

18

30. Zaverucha, G.M., Stinson, D.R.: Group testing and batch verification. In: Kuro-
sawa, K. (ed.) ICITS 2009. Lecture Notes in Computer Science, vol. 5973, pp.
140–157. Springer (2009), http://dx.doi.org/10.1007/978-3-642-14496-7_12

19

Fig. 2. (Top) The case for STD (940, 13, 13) which implements (m, t, d) = (940, 169, 6).
(Bottom) The case for CRS (105, 131).

20

