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Abstract. Tweakable block cipher (TBC), a stronger notion than stan-
dard block ciphers, has wide-scale applications in symmetric-key schemes.
At a high level, it provides flexibility in design and (possibly) better
security bounds. In multi-keyed applications, a TBC with short tweak
values can be used to replace multiple keys. However, the existing TBC
construction frameworks, including TWEAKEY and XEX, are designed
for general purpose tweak sizes. Specifically, they are not optimized for
short tweaks, which might render them inefficient for certain resource
constrained applications. So a dedicated paradigm to construct short-
tweak TBCs (tBC) is highly desirable. In this paper, we present a ded-
icated framework, called the Elastic-Tweak framework (ET in short), to
convert any reasonably secure SPN block cipher into a secure tBC. We
apply the ET framework on GIFT and AES to construct efficient tBCs,
named TweGIFT and TweAES. We present hardware and software results
to show that the performance overheads for these tBCs are minimal. We
perform comprehensive security analysis and observe that TweGIFT and
TweAES provide sufficient security without any increase in the number
of block cipher rounds when compared to GIFT and AES. We also show
some concrete applications of ET-based tBCs, which are better than their
block cipher counterparts in terms of key size, state size, number of block
cipher calls, and short message processing. Some notable applications
include, Twe-FCBC (reduces the key size of FCBC and gives better secu-
rity than CMAC), Twe-LightMAC Plus (better rate than LightMAC Plus),
Twe-CLOC, and Twe-SILC (reduces the number of block cipher calls and
simplifies the design of CLOC and SILC).

Keywords: tweakable block cipher, GIFT, AES, TWEAKEY, XEX

1 Introduction

Since their advent in late 1970’s, block ciphers [7, 59] have become the ubiq-
uitous building blocks in various symmetric-key cryptographic algorithms, in-
cluding encryption schemes [3], message authentication codes (MACs) [5], and



authenticated encryption [4]. Due to their wide-scale applicability, block ciphers
are also the most well-analyzed symmetric-key primitives. As a result, the cryp-
tographic community bestows a high degree of confidence in block cipher based
designs. Block cipher structures are more or less well formalized and there are
formal ways to prove the security of a block cipher against the classical lin-
ear [55] and differential [14] attacks. The literature is filled with a plethora of
block cipher candidates, AES [7] being the most notable among them. AES is
currently the NIST standard block cipher [7], and it is the recommended choice
for several standardized encryption, MAC and AE schemes such as CTR [3],
CMAC [5], AES-GCM [6] etc. A recent block cipher proposal, named GIFT [11]
has generated a lot of interest due to its ultra-lightweight nature.

1.1 Some Issues in Block Cipher Based Designs

Key Size of Designs: Several designs use more than one independent block
cipher keys, which could be an issue for storage constrained applications. Some
notable examples of such designs are sum of permutations [23, 61], EDM [20],
EWCDM [20], CLRW2 [50], GCM-SIV-2 [37], Benes construction [60]. While some
of these designs have been reduced to single key variants, reducing a multi-keyed
design to single-key design is, in general, a challenging problem.

Auxiliary Secret State: FCBC, a three-key MAC by Black and Rogaway
[16], is a CBC-MAC type construction. CMAC [5], the NIST recommended MAC
design, reduces number of keys from three to one by using an auxiliary secret
state (which is nothing but the encryption of zero block). Though CMAC is
NIST recommended MAC design, it costs an extra block cipher call (compared
to FCBC) and holds an additional state. This may be an issue in hardware
applications, where area and energy consumption are very crucial parameters.
Further FCBC [44, 45] allows more number of queries per key, as compared to
CMAC [58].

Simplicity of Designs: Design simplification, is a closely related topic to
the single-keyed vs. multi-keyed debate. A simple design could be beneficial for
real life applications, and better understanding of designs themselves. Often,
the single-keyed variant of a block cipher based design is much more complex
than the multi-keyed version, both in implementation and security analysis. This
is due to the several auxiliary functions used chiefly for domain separation. For
instance CLOC and SILC [38] use several functions depending upon the associated
data and message length. In contrast, the multi-keyed variants of CLOC and SILC
would be much simpler.

Short Message Processing: An essential requirement in lightweight appli-
cations is efficient short input data processing, while minimizing the memory
consumption and precomputation. In use cases with tight requirements on delay
and latency, the typical packet sizes are small (way less than 1 Kilobytes) as
large packets occupy a link for longer duration, causing more delays to subse-
quent packets and increasing latency. For example, Zigbee, Bluetooth low energy
and TinySec [46] limit the maximum packet lengths to 127 bytes, 47 bytes and
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128 bytes, respectively. Similarly, CAN FD [1], a well-known transmission pro-
tocol in automotive networks, allows message length up to 64 bytes. The packet
sizes in EPC tag [2], which is an alternate to the bar code using RFID, is typically
12 bytes.

Cryptographic designs with low latency for shorter messages could be highly
beneficial for such applications. As it turns out, for many designs short message
performance is not that good due to some constant overhead. For instance CMAC
uses one block cipher call to generate a secret state, and SUNDAE [10] uses the
first call of block cipher to distinguish different possibilities of associated data
and message lengths. So, to process a single block message, SUNDAE requires
two block cipher calls. CLOC and SILC [38] have similar drawbacks. They cost
2 and 4 calls to process a single block message. LightMAC Plus [54], feeds a
counter-based encoded input to the block cipher, which reduces the rate.4

1.2 Motivation of short-tweak TBC

Tweakable Block Ciphers: The Hasty Pudding cipher [65], an unsuccess-
ful candidate for AES competition, was one of the first tweakable block ciphers.5

Later, Liskov et al. in formalized this in their foundational work on tweakable
block ciphers [52]. Tweakable block ciphers (TBCs) are more versatile and find a
broad range of applications, most notably in authenticated encryption schemes,
such as OCB [48], COPA [9], and Deoxys [41]; and message authentication codes,
such as ZMAC [39], NaT [19], and ZMAC+ [53]. TBCs can be designed from
scratch [21, 33, 65], or they can be built using existing primitives like block ci-
phers, and public permutations. LRW1, LRW2 [52], CLRW2 [50], XEX [62] and
XHX [43] are some examples of the former category, whereas Tweakable Even-
Mansour [19] is an example of the latter.

Tweakable block cipher can actually solve most of the aforementioned issues
in block ciphers quite easily. A secure TBC with distinct tweaks is actually
equivalent to independently keyed instantiations of a secure block cipher. This
naturally gives a TBC based single-keyed design for any block cipher based
multi-keyed design. For example, one can use this equivalence to define a single-
keyed version of FCBC which is as secure as FCBC. This resolves the issues with
CMAC. In some cases, TBCs can also avoid the extra block cipher calls. It also
helps to simplify designs like CLOC and SILC.

In all these cases, we observe that a short tweak space (in most of the cases
2-bit or 4-bit tweaks) is sufficient. In other words, a short-tweak tweakable block
cipher (in short we call tBC) would suffice for resolving these issues. An tBC is
better than large tweak TBCs in two respects: (i) state size for holding tweak is
small, and most importantly (ii) tBC would potentially be more efficient than
large tweak TBCs.

The TWEAKEY Framework: At Asiacrypt ’14, Jean et al. presented a generic
framework for TBC construction, called TWEAKEY [40], that considers the

4 No. of message blocks processed per block cipher call.
5 It used the term “spice” for tweaks.
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tweak and key inputs in a unified manner. Basically, the framework formalized
the concept of tweak-dependent keys. The TWEAKEY framework gave a much
needed impetus to the design of TBCs, with several designs like Kiasu [42], De-
oxys [41], SKINNY and Mantis [12] etc. As TWEAKEY is conceptualized with
general purpose tweak sizes in mind, it is bit difficult to optimize TWEAKEY
for tBC. For instance, take the example of SKINNY-128. To process only 4-bit
tweak, the additional register is limited but their computation modes must move
from TK1 to TK2, which increases the number of rounds by 8. This in turn af-
fects the throughput of the cipher. Although, some TWEAKEY-based designs,
especially Kiasu-BC [42] do not need additional rounds, yet this is true in most of
the existing TWEAKEY-based designs. We also note here that Kiasu-BC, which is
based on AES, is weaker than AES by one round, as observed in several previous
cryptanalytic works [30,31,67].

So, there is a need for a generic design framework for tBC, which (i) can
be applied on top of a block cipher, (ii) adds minimal overheads, and (iii) is as
secure as the underlying block cipher.

XE and XEX: Rogaway [62], proposed two efficient ways of converting a block
cipher into a tweakable block cipher, denoted by XE and XEX. These methods are
widely used in various modes such as PMAC [15], OCB [63], COPA [9], ELmD [27]
etc. However, XE and XEX have several limitations with respect to a short tweak
space, notably (i) security is limited to birthday bound, and (ii) precomputation
and storage overhead to generate the secret state. In addition, it also requires
to update the secret state for each invocation, which might add some overhead.

1.3 Our Contributions

Our main contributions can be divided into two parts:

1. Elastic-Tweak Framework: In this work, we address the above issues
and propose a generic framework, called the Elastic-Tweak framework (ET in
short), to transform a block cipher into a short tweak TBC. We consider tweaks
of size less than 16 bits as “short tweak” is a tweak with size less than or equal
to 16 bits and can be as small as 4 bits. This small size ensures that the tweak
storage overhead is negligible. In this framework, given the block cipher, we
first expand the short tweak using linear code, and then inject the expanded
tweak at intervals of some fixed number of rounds, say r. Designs under this
framework can be flexibly built over a secure block cipher, and are as secure as
the underlying block cipher.

The ET framework distributes the effect of the tweak into the block cipher
state that can generate several active bytes. In particular we choose a linear code
with high branch number to expand the input tweak. This design is particularly
suitable for short tweaks to ensure the security against differential cryptanalysis
because the small weight of the short input always results in a large weight of
the output.

Another advantage of the framework is the easiness of the security evaluation.
First, for zero tweak value, the plaintext-ciphertext transformation is exactly the
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same as the original cipher (i.e. it has backward compatibility feature). There-
fore, to evaluate the security of the new construction, we only need to consider
the attacks that exploit at least one non-zero tweak. Second, the large weight of
the expanded tweak ensures relatively high security only with a small number
of rounds around the tweak injection. This allows a designer to focus on the se-
curity of the r-round transformation followed by the tweak injection and further
followed by the r-round transformation, which is called “2r-round core.”

We instantiate this framework with several designs over two well known block
ciphers AES [7] and GIFT [11] with different tweak sizes varying from 4 to 16.
We implement the designs both in software and hardware and find that these
tweakable versions have negligible overhead compared to the original block ci-
phers.

We also present extensive security analysis of all the instantiations. In TweAES,
the expanded tweak is divided into 8 parts and XORed to the top 2 rows of the
state in every 2 rounds. We ensure that any non-zero tweak activates at least
15 active S-boxes for the 4-round core. We also show that by starting from the
middle of the 2-round gap, 8 rounds can be attacked with impossible differen-
tial attacks. This attack, from a different viewpoint, demonstrate that attacking
full rounds is difficult by exploiting tweak difference. We also discuss difficul-
ties of applying boomerang, meet-in-the-middle, and integral attacks. Security
of TweGIFT is similarly evaluated. We use MILP-based tools to evaluate its se-
curity against differential cryptanalysis. Owing to the large state and complex
structure of GIFT, the automatic search is infeasible for the entire 40 rounds of
TweGIFT128. Our framework with the approach using the 2r-round core enables
us to derive the upper bound of the differential probability for the entire rounds.

2. Applications of tBC: Here we demonstrate the applicability of tBC in
various constructions:

1. Reducing the Key Size in Multi-Keyed Modes: The primary applica-
tion of tBC is to reduce the key space of several block cipher based modes
that use multiple independently sampled keys. We depict the applicability
of tBC on FCBC MAC, Double Block Hash-then-Sum (DbHtS) paradigm,
Sum of permutations, EDM, EWCDM, CLRW2, GCM-SIV-2 and the Benes
construction.

2. Efficient Processing of Short Messages: tBC can be used to reduce the
number of block cipher calls, which in turn reduces the energy consumption
for short messages. We take the instance of Twe-LightMAC Plus to demon-
strate this application of tBC. Twe-LightMAC Plus achieves a higher rate
as compared to it’s original counterpart LightMAC Plus. In addition, the
number of keys is reduced from 3 to 1. However, this is also applicable to
Twe-CLOC and Twe-SILC (tBC based counterparts of CLOC and SILC [38]
respectively).

3. Replacement for XE and XEX. tBC can be viewed as an efficient replace-
ment of XE and XEX especially when we target short messages (say of size
up to 1 MB). In such cases, instead of using a secret state (that we need
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to precompute, store and update), one can simply use tBC with the block-
counters as the tweak. The applicability of this paradigm can be depicted
on several MAC modes such as PMAC; encryption mode such as COPE and
AEAD modes such as ELmD, COLM.
In addition to the above applications, we show that tBCs can also simplify

the internal structures of various block cipher based authenticated encryption
modes. For example, CLOC, SILC use several auxiliary functions mainly for do-
main separation. We propose tBC-based variants for these, named Twe-CLOC
and Twe-SILC, which simplify the original designs (by cleaning up the auxiliary
functions) and reduces the number of block cipher calls. These in turn help in
reducing the area of hardware implementation, and significantly increasing the
throughput for short messages.

2 Preliminaries

Notations: For n ∈ N, [n] denotes the set {1, . . . , n}, and {0, 1}n denotes the
set of all n-bit binary strings. We use {0, 1}+ to denote the set of all non-empty
binary strings. ⊥ denotes the empty string and {0, 1}∗ = {0, 1}+ ∪{⊥}. For any
string X ∈ {0, 1}n, |X| denotes the number of bits in X, and for i ∈ [|X|], xi
denotes the i-th significant bit (x|X| being the most significant bit). For X ∈
{0, 1}+ and n ∈ N, (X)[`] := (X1, . . . , X`)

n← X, denotes the n-bit block parsing
of X into (X)[`], where |Xi| = n for [` − 1], and X` ∈ [n]. For k ≤ n ∈ N, and
X ∈ {0, 1}n, bXck := X1 . . . Xk. The expression a ? b : c evaluates to b if a is
true and c otherwise.

For n,m ∈ N, Perm(n) denotes the set of all permutations over {0, 1}n, and
Func(m,n) denotes the set of all functions from {0, 1}m to {0, 1}n. For n, κ ∈ N,
TPerm(κ, n) denotes the set of all families of permutations Pk := P (k, ·) ∈
Perm(n) indexed by k ∈ {0, 1}κ. By extending notation, we use TPerm(κ, τ, n)
to denote the set of all families of permutations Pk,t ∈ Perm(n), indexed by
(k, τ) ∈ {0, 1}κ × {0, 1}τ .

(Tweakable) Block Cipher: A block cipher with key size κ and block size
n is a family of permutations E ∈ TPerm(κ, n). For a fixed key k ∈ {0, 1}κ,
we write Ek(·) = E(k, ·), and its inverse is written as E−1

k (·). A tweakable block
cipher with key size κ, tweak size τ , and block size n is a family of permutations
E ∈ TPerm(κ, τ, n). For a fixed key k ∈ {0, 1}κ and tweak t ∈ {0, 1}τ , we write
Etk(·) = E(k, t, ·), and its inverse is written as E−tk (·). Throughout this paper we
fix κ, τ, n ∈ N as the key size, tweak size, and block size, respectively, of the
given (tweakable) block cipher.

3 The Elastic-Tweak Framework

In this section, we introduce the Elastic-Tweak framework (illustrated in Figure
3.1) on SPN based block ciphers that allows one to efficiently design tweakable
block ciphers with short tweaks. As the name suggests, Elastic-Tweak refers to
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elastic expansion of short tweaks and we typically consider tweaks of size less
than or equal to 16 bits. Using this framework, one can convert a block cipher
to a short tweak tweakble block cipher denoted by tBC. We briefly recall the
SPN structure on which this framework would be applied. An SPN block cipher
iterates for rnd many rounds, where each round consists of three operations:
(a) SubCells (divides the state into cells and substitutes each cell by an s-bit

S-box which is always non-linear),
(b) LinLayer (uses a linear mixing layer over the full state to create diffusion),

and
(c) AddRoundKey (add a round keys to the state).

The basic idea of the framework is to expand a small tweak (of size t) using
a suitable linear code of high distance and then the expanded tweak (of size
te) is injected (i.e. xored) to the internal block cipher state affecting a certain
number of S-boxes (say, tic). We apply the same process after every gap number
of rounds. An important feature of tBC is that it is implemented using very
low tweak state and without any tweak schedule (only tweak expansion). In the
following, we describe the linear code to expand the tweak and how to inject
the tweak into the underlying block cipher state. If BC denotes the underlying
SPN block cipher, we denote the tweakable block cipher as Twe BC [t, te, tic, gap]
where t, te, tic, gap are suitable parameters as described above.

3.1 Exp: Expanding the Tweak

In this section, we describe our method to expand the tweak T of t bits to an
expanded tweak Te of te bits. We need the parameters to satisfy the following
conditions:
(a) te is divisible by 2t and tic. Let w := te/tic, the underlying word size.
(b) w divides t and w ≤ s.
The tweak expansion, called Exp, follows an “Expand then (optional) Copy”
style as follows:
(i) Let τ := t/w, and we view T = (T1, . . . , Tτ ) as a 1 × τ vector of elements

from F2w . We expand T by applying a [2τ, τ, τ ]-linear code6 over F2w with
the generating matrix Gτ×2τ = [Iτ : Iτ ⊕Jτ ], where Iτ is the identity matrix
of dimension τ and J is the all 1 square matrix of dimension τ over F2w .
Let T ′ = T · G be the resultant code. Note that, T ′ can be computed as
S ⊕ T1‖ · · · ‖S ⊕ Tτ where S = T1 ⊕ · · · ⊕ Tτ .

(ii) Finally, we compute the expanded tweak by concatenating te/2t many copies
of T ′ i.e.

Te = T ′‖ · · · ‖T ′.
Note that, Te can be viewed as an application of [tic, τ, tic/2]-linear code on
T . The main rationale behind the choice of this expansion function is that it
generates high distance codes (which is highly desired from the cryptanalysis
point of view) with a low cost (only (2τ − 1) addition over F2w is required).

6 An [n, k, d]-linear code over a field F is defined by a k × n matrix G called the
generator matrix over F such that for all nonzero vectors v ∈ Fk, v ·G has at least
d many nonzero elements.
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Fig. 3.1: Elastic-Tweak Construction.

Function Exp[te, w](T )

1. τ ← |T |
w

2. Te ← φ

3. (T1, T2, . . . , Tτ )
w← T

4. T ′ ← T‖(T ⊕ T · Jτ )

5. for i = 1 to te/2t

6. Te ← Te‖T ′

7. return Te

Algorithm tBC [te, tic, gap](X,K, T )

1. w ← te/tic

2. Te ← Exp[te, w](T )

3. for i = 1 to rnd

4. X ← SubCells(X)

5. X ← LinLayer(X)

6. (K,X)← AddRoundKey(K,X, i)

7. if i % gap = 0 and i < rnd

8. AddTweak[tic](X,Te)

9. return X

Fig. 3.2: Function Exp(T, te, w) and tBC (X,K, T ). Here, AddTweak[tic](X,Te) repre-
sents the xoring tweak in to the state of the block cipher.

3.2 Injecting Expanded Tweak into Round Functions

Note that the expanded tweak can be viewed as Te,1‖ · · · ‖Te,tic where each Te,i is
of size w-bits and w ≤ s. Now we xor these tweak in addition to the round keys
in tic number of S-boxes. The exact choices of S-box would be design specific so
that the diffusion due to tweak difference is high.

The tweak injection is optional for each round, the tweak injection starts
from round start and it is injected at an interval of gap rounds and stops at
round end. To be precise, we inject tweak at the round number start, start +
gap , start + 2.gap , . . . , end. To have a uniformity in the tweak injection rounds,
we typically choose start = gap and inject the tweaks at an interval of gap rounds.
This implicitly sets end = gap.b rnd−1

gap c.

Requirements from Twe BC. We must ensure Twe BC should have same
security level as the underlying block cipher.

From the performance point of view, our target is to obtain the above men-
tioned security

“minimizing te (signifies the area) and te.b rnd−1
gap c (signifies the energy).”
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Features of Twe BC.

1. Our tBC is applied to any SPN based block ciphers.

2. Due to linear expansion of tweak, tBC with zero tweak turns out to be same
as the underlying block cipher (note that we keep same number of rounds
as the block cipher). This feature would be useful to reduce overhead due to
nonzero tweak. Later we see some applications (e.g., application on FCBC)
where the nonzero tweaks is only applied to process the last block.

3.3 Tweakable GIFT and AES

In this section, we provide various instantiation of tBC built upon the two pop-
ular block ciphers GIFT and AES. We are primarily interested on tweak size
4, 8, 16, and hence considered t ∈ {4, 8, 16}.

Instantiation of tBC with 4 bit Tweak. All the recommendations with 4-bit
tweaks have extremely low overhead over the original block cipher and they can
be ideal for reducing multiple keys scheme to an equivalent single key scheme
instance with a minuscule loss in efficiency. Detailed description can be found in
Sect. 5.

(i) GIFT-64[4, 16, 16, 4]. In this case the tweak is expanded from 4 bits to 16 bits
and the expanded tweak is injected at bit positions 4i+ 3, for i = 0 , . . . , 15.

(ii) GIFT-128[4, 32, 32, 5]. Here we expand the 4 bit tweak to 32 bits and the
expanded tweak is injected at bit positions 4i+ 3, for i = 0 , . . . , 31.

(iii) AES[4, 8, 8, 2]. Here we expand the 4 bit tweak to 8 bits and the expanded
tweak is injected at the least-significant bits of each of the 8 S-Boxes in the
top two rows.

Instantiation of tBC with 8 and 16 bit Tweak. tBC with tweak size of
8/16-bits are ideal for replacing the length counter bits (or masking) used in
many constructions. Detailed description can be found in Sect. 5.

(i) AES[8, 16, 8, 2]. For 8 bit tweak, we only use AES. The tweak is first extended
to 16 bits and the tweak is injected at the two least-significant bits of each
of the 8 S-Boxes in the top two rows.

(ii) GIFT-128[16, 32, 32, 4]. Here we expand the 16 bit tweak to 32 bits and the
expanded tweak is injected at bit positions 4i+ 3, for i = 0 , . . . , 31.

(iii) AES[16, 32, 8, 2]. Here we expand the 16 bit tweak to 32 bits and expanded
tweak is injected at the four least-significant bits of each of the 8 S-Boxes in
the top two rows.
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3.4 Performance

In this section, we provide the hardware implementation details for all our rec-
ommended TweGIFT and TweAES versions and compare their hardware over-
heads respective to their original counterparts GIFT and AES. We give a brief
comparison on software implementation of TweAES and AES in supplementary
material C. For each instantiations, we present both the encryption/decryption
(ED) version and only encryption (E) version. The VHDL code of our imple-
mentations are synthesized using Xilinx ISE 14.7 tool in a Virtex 7 FPGA
(XC7VX415TFFG1761). We have used the default options (optimized for speed)
and all the S-boxes and memories to store the round keys are mapped to LUTs,
and no block rams are used. We present the results obtained from the tool after
performing place and route process.

Table 3.1: Implementation results for AES and TweAES on Virtex 7 FPGA.

BC or tBC LUTs FF Slices Frequency Clock Throughput
(MHz) cycles (Mbps)

AES-ED 2945 533 943 297.88 11 3466.24

TweAES-ED[4,8,8,2] 2960 534 1044 295.97 11 3444.01

TweAES-ED[8,16,8,2] 2976 534 1129 295.81 11 3442.15

TweAES-ED[16,32,8,2] 3006 534 1134 292.87 11 3407.94

AES-E 1605 524 559 330.52 11 3846.05

TweAES-E[4,8,8,2] 1617 524 574 328.27 11 3819.87

TweAES-E[8,16,8,2] 1632 524 593 325.17 11 3783.79

TweAES-E[16,32,8,2] 1659 524 592 326.56 11 3799.97

Table 3.1 depicts that the area-overhead (LUT counts) introduced by the tweak
injection is negligeable. For Considering the combined encryption-decryption
(ED) implementation, TweAES have overheads (in LUTs) of 0.5%, 1.05% and
2.07% for tweak size of 4, 8 and 16 bits respectively. As we move to the encryption
(E) only implementation, our recommended TweAES versions have negligeable
area overheads of 0.7%, 1.68% and 3.36% respectively. Note that, the reduction
in the speed is also negligeable.
Table 3.2 summerizes the hardware performances of our recommended TweGIFT
versions along with the original GIFT. For ED implementation, our recommended
version of TweGIFT-64 has an overheads of 0.3% for 4 bit tweaks, and TweGIFT-
128 has overheads of 4.04% and 9.89% for tweak size of 4 and 16 bits respectively.
As we move to the E implementation, TweGIFT-64 has an overheads of 6.68%
for 4 bit tweaks, and TweGIFT-128 has overheads of 4.32% and 5.5% for tweak
size of 4 and 16 bits respectively.

4 Security Analysis

In this section, we provide the various cryptanalysis that we had performed
on TweAES and TweGIFT. Note that our target is single-key security, and any
related-key attacks are out of our scope.
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Table 3.2: Implementation results for GIFT and TweGIFT on Virtex 7 FPGA.

BC or tBC LUTs FF Slices Frequency Clock Throughput
(MHz) cycles (Mbps)

GIFT-64-ED 615 277 236 455.17 29 1004.51

TweGIFT-64-ED[4,16,16,4] 617 277 234 430.29 29 946.60

GIFT-64-E 449 275 153 596.66 29 1316.77

TweGIFT-64-E[4,16,16,4] 479 275 179 595.09 29 1313.30

GIFT-128-ED 1113 408 432 447.83 41 1398.10

TweGIFT-128-ED[4,32,32,5] 1158 408 419 416.50 41 1300.29

TweGIFT-128-ED[16,32,32,4] 1223 408 428 429.32 41 1340.31

GIFT-128-E 763 403 330 596.30 41 1861.62

TweGIFT-128-E[4,32,32,5] 796 403 332 597.59 41 1865.65

TweGIFT-128-E[16,32,32,4] 805 403 377 598.78 41 1869.36

4.1 General Approach

Without exploiting the tweak, TweAES and TweGIFT offer exactly the same
security as the original AES and GIFT. Hence in this paper, we focus our attention
on the attacks that exploit the tweak injection.

The tweak expansion function is chosen to have a high branch number. This
is very suitable for small tweaks because the small weight of the input (small
tweak) ensures a large weight of the output (expanded tweak).

The exact security bound, e.g. the lower bound of the number of active
S-boxes and the upper bound of the maximum differential characteristic proba-
bility, can be obtained by using various tools based on MILP and SAT, however
to derive such bounds for the entire construction is often infeasible. Here, we in-
troduce an efficient method to ensure the security against differential and linear
cryptanalyses by exploiting the fact that the expanded tweak has a large weight.

Suppose that the expanded tweak is injected to the state in every r rounds.
Then we focus on 2r rounds around the tweak injection, namely a sequence of
the following three operations: the r-round transformation, the tweak injection,
and another r-round transformation. We call those operations “2r-round core,”
which is depicted for AES and GIFT64 in Fig. 4.1. Because the entire construc-
tion includes several 2r-round cores, security of the entire construction can be
bounded by accumulating the bound for the single 2r-round core. The large
weight of the expanded tweak ensures a strong security bound for the 2r-round
core, which is sufficient to ensure the security for the entire construction.

4.2 Security Analysis of TweAES

Number of Active S-boxes. All of three instantiations introduced in Sect. 3
inject the expanded tweak in every 2 rounds. As explained in Sect. 4.1, we
evaluate the minimum number of differentially and linearly active S-boxes for
the 4-round core. The 4-bit, 8-bit and 16-bit tweaks of AES[4, 8, 8, 2], AES[8, 16,
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Fig. 4.1: 4-round Core of TweAES[∗,∗,∗,2] and 8-round Core of GIFT64[∗,∗,∗,4].

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

(𝟗) 

(𝟎) 

(𝟔) 

(𝟎) 

(𝟎) 

(𝟒) 

(𝟎) 

(𝟏𝟏) 

Fig. 4.2: Two Examples of Differential Trails with 15 Active S-boxes.

8, 2] and AES[16, 32, 8, 2] are divided into 4 parts denoted by T1, T2, T3, T4, where
the size of each Ti is 1-bit, 2-bits and 4-bits for each construction, respectively.

When the tweak input has a non-zero difference, the expanding function
ensures that at least 4 bytes are affected by the tweak difference. It is easy to
check by hand that the minimum number of active S-boxes under this constraint
is 15. We also modeled the problem by MILP and experimentally verified that the
minimum number of active S-boxes is 15. This is a tight bound. Two examples
of the differential trails achieving 15 active S-boxes are given in Fig. 4.2. Both
trails leave one of the 2-round transformations in the 4-round core blank.

Given that the maximum differential probability of the AES S-box is 2−6,
the probability of the differential propagation through the 4-round core with
non-zero tweak difference is upper bounded by 2−6×15 = 2−90. The probability
of the differential propagation of TweAES is upper bounded by 2−90×2 = 2−180

because 10 rounds of TweAES includes two 4-round cores.

Reduced-Round Versions Starting from Middle Rounds. Security of full
TweAES is based on the strong property of the 4-round core. We argue that the
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reduced-round versions of TweAES in which the first or the last round is located
in the middle of the 4-round core can be attacked for relatively long rounds.
Owing to this unusual setting, the attacks here do not threaten the security of
full TweAES, however we still demonstrate the attacks for better understanding
of the security of TweAES.

7-Round Boomerang/Sandwich Attacks The first approach is the boomerang
attack [68] or more precisely formulated version called the sandwich attack [32].
The boomerang attack divides the cipher E into two parts E0 and E1 such that
E = E1 ◦ E0, and builds high-probability differentials for E0 and E1 almost
independently. The attack detects a quartet of plaintext x that satisfy the non-
ideal behavior shown below with probability p−2q−2, where p and q are the
differential probability for E0 : α→ β and E1 : γ → δ, respectively.

Pr
[
E−1

(
E(x)⊕ δ

)
⊕ E−1

(
E(x⊕ α)⊕ δ

)
= α

]
= p−2q−2.

7-rounds of TweAES including two tweak injections that starts from the tweak
injection are divided into E0 and E1 as follows.

E0 := tweak − 1RAES− 1RAES− tweak − 1RAES,

E1 := 1RAES− tweak − 1RAES− 1RAES− tweak − 1RAES.

With this configuration, the attacker can avoid building the trail over the 4-round
core for both of E0 and E1.

The framework of the sandwich attacks show that by dividing the cipher E
into three parts E = E1◦Em◦E0, the probability of the above event is calculated
as p−2q−2rqua, where rqua is the probability for a quartet defined as

rqua := Pr
[
E−1
m

(
Em(x)⊕ γ

)
⊕ E−1

m

(
Em(x⊕ β)⊕ γ

)
= β

]
.

We define Em of this attack as the first S-box layer in the above E1. The
configuration and the differential trails are depicted in Fig. 4.3 The probability
when Em is a single S-box layer can be measured by using the boomerang con-
nectivity table (BCT) [18]. The trails for E0 and E1 include 4 active S-boxes,
hence both of the probability p and q are 2−24. That is, p2q2 = 2−96. The BCT
of the AES S-box shows that the probability for each S-box in Em is either
2−5.4, 2−6, or 2−7 if both of the input and output differences are non-zero, and
is 1 otherwise. Hence, the trail contains 5 active S-boxes with some probabilistic
propagation and we assume that the probability of each S-box is 2−6. Then, the
probability rqar is 2−6×5 = 2−30. In the end, p−2q−2rqua = 2−126, which would
lead to a valid distinguisher for 7 rounds.

8-Round Impossible Differential Attacks against AES[16-32-8-2]. Due to 2 in-
terval rounds between tweaks, distinguishers based on impossible differential
attacks [13] can be constructed for relatively long rounds (6 rounds) by cancel-
ing the tweak difference with the state difference. The distinguisher is depicted
in Fig. 4.4.
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Fig. 4.3: Differential Trails for Boomerang Attacks. The cells filled with black and gray
represent active byte positions in E0 and E1, respectively.
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1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

Fig. 4.4: 6-round Impossible Differential Distinguisher. The bytes filled with black,
white, and gray have non-zero difference, zero difference, and arbitrary difference, re-
spectively.

The first and last tweak differences are canceled with the state difference with
probability 1. Then we have 2 blank rounds. After that, the tweak difference is
injected to the state, which implies that the tweak difference must be propagated
to the same tweak difference after 2 AES rounds. However, this transformation
is impossible because

• 1-round propagation in forwards have 4 active bytes for the right-most col-
umn, while

• 1-round propagation in backwards have at least 2 inactive bytes in the right-
most column.

For the key recovery, two rounds can be appended to the 6-round distin-
guisher; one is at the beginning and the other is at the end, which is illustrated
in Fig. 4.5. As shown in Fig. 4.5 the trail includes 8 and 4 active bytes at the in-
put and output states. Partial computations to the middle 6-round distinguisher
involve 8 bytes of subkey K1 and 4 bytes of subkey K9.
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Fig. 4.5: Extension to 8-round Key Recovery

Recall that the attack target is AES[16-32-8-2], where the tweak size is 16
bits. The attack procedure is as follows.
1. Choose all tweak values denoted by T i where i = 0, 1, . . . , 216 − 1.
2. For each of T i, fix the value of inactive 8 bytes at the input, choose all 8-byte

values at the active byte positions of the input state. Query those 264 values
to get the corresponding outputs. Those outputs are stored in the list Li

where i = 0, 1, . . . , 216 − 1.

3. For all
(

216

2

)
≈ 231 pairs of Li and Lj with i 6= j, find the pairs that do not

have difference in 12 inactive bytes of the output state. About 231+64+64−96 =
263 pairs will be obtained.

4. For each of the obtained pairs, the tweak difference is fixed and the differences
at the input and output states are also fixed. Those fix both of input and
output differences of each S-box in the first round and the last round. Hence,
each pair suggests a wrong key.

5. Repeat the procedure 240 times from the first step by changing the inactive
byte values at the input. After this step, 263+40 = 2103 wrong-key candi-
dates (including overlaps) will be obtained. The remaining key space of the

involved 12 bytes becomes 296 × (1 − 2−96)2103 ≈ 296 × e−128 ≈ 2−88 < 1.
Hence, the 8 bytes of K1 and 4 bytes of K9 will be recovered.

6. Exhaustively search the remaining 8 bytes of K1.
The data complexity is 216 × 264 × 240 = 2120. The time complexity is also

2120 memory accesses. The memory complexity is to recored the wrong keys of
the 12 bytes, which is 296.

Summary. We demonstrated two attacks against reduced-round variants that
start from the middle of the 4-round core. Because security of TweAES using
tweak difference relies on the fact that the large-weight tweak difference will
diffuse fast in the subsequent 2 rounds, those reduced-round analysis will not
threaten the security of the full TweAES. From a different viewpoint, one can
see the difficulty to extend the analysis by 1 more round from Figs. 4.3 and 4.5.
The number of involved subkey bytes easily exceeds 16.

Remarks on Other Attacks.
• Integral attacks [22, 47] collect 28 distinct values for a particular byte or

distinct 232 values for a particular diagonal. Integral attacks exploiting the
tweak is difficult because the tweak will not affect all the bits in each byte,
which prevents to collect 28 distinct values for any byte.
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Table 4.1: The Best Differential Trail for 8-Round Core of TweGIFT64[4,16,16,4]. The
first and the second masks are for the S-box input and S-box output, respectively.

Round Differential Mask Probability

1
0000 0000 0000 000c

2−2

0000 0000 0000 0004

2
0000 0004 0000 0000

2−2

0000 0005 0000 0000

3
0000 0400 0000 0100

2−5

0000 0500 0000 0500

4
0000 0101 0000 0404

2−12

0000 0909 0000 0d0d

tweak difference: 0808 0808 0808 0808

5
0000 090d 0000 090d

2−10

0000 0104 0000 0104

6
0000 0004 0000 0000

2−6

0000 0505 0000 0000

7
0a00 0000 0000 0000

2−2

0100 0000 0000 0000

8
0000 1000 0000 0000

2−3

0000 8000 0000 0000

• Meet-in-the-middle attack [28,29] exploits the 4-round truncated differentials
1→ 4→ 16→ 4→ 1 and focuses on the fact that the number of differential
characteristics satisfying this differential is at most 280. The large-weight of
the expanded tweak in TweAES does not allow such sparse differential trails,
which makes it hard to be exploited in the meet-in-the-middle attack.

4.3 Security Analysis of TweGIFT

In TweAES, security analysis was identical for all instantiations because the
different expanded tweak sizes only result in different number of active bits in
the same truncated differentials. In contrast, GIFT is a bit-oriented cipher (see
supplementary material D). Different expanded tweak sizes result in different
active S-boxes patterns. Hence, we need security analysis for each instantiation.

Security of TweGIFT64[4,16,16,4]. We evaluated the maximum probability
of the differential trail for the 8-round core by MILP under the constraints that
at least one of the tweak bits is active. The tweak expansion guarantees that 8 S-
boxes are activated by the tweak difference. As a result, the maximum probability
is 2−42, which is smaller than 2−40 of the 8-round differential characteristic of
original GIFT reported by Zhu et al. [70].

Note that the probability of 2−42 in the 8-round core is the tight bound.
Namely there exists an actual differential characteristic. The detail of the char-
acteristic is given in Table 4.1. Here, among the 4-bit tweak T1, T2, T3, T4, T1

and T3 are active. This makes the expanded tweak difference 0808 0808 0808

0808, which ensures that the sum of the number of active S-boxes in rounds 4
and 5 is at least 8.
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Table 4.2: Upper Bound of Differential Probability of TweGIFT128[16,32,32,r]

r 1 2 4 5

Max prob of 2r-round core 2−8 2−16.4 2−26.4 2−30

# of 2r-round cores in 40 rounds 20 10 5 4
Upper bound for 40 rounds 2−160 2−164 2−132 2−120

As shown in Fig. 4.1, 28 rounds of TweGIFT64 contains at least three 8-round
cores, which upper bounds the maximum differential probability for 28 rounds
is 2−42×3 = 2−126.

Security of TweGIFT128[4,32,32,5]. In this expansion, the 4-bit tweak ex-
pands to 8 bits and those 8 bits are copied three times to achieve a 32-bit tweak.
When the 4-bit tweak has some non-zero difference, the expanded 32-bit tweak
is ensured to have at least 16 active bits, which ensures at least 16 active S-boxes
in 2 rounds around the tweak injection.

Owing to the large state size and a large number of active S-boxes, it is
infeasible to find the tight bound of the maximum probability of the differential
characteristic for the 10-round core by using MILP. The tool so far provided
that the maximum probability of the differential characteristic is upper bounded
by 2−64.5. Given that the entire TweGIFT128 consists of 40 rounds and thus
contains 4 of the 10-round cores, the upper bound of the entire construction is
2−64.5×4 = 2−258, which is sufficient to resist the attack.

Security of TweGIFT128[16,32,32,r]. TweGIFT128[16,32,32,r] allows the at-
tacker to have more control over the tweak compared to TweGIFT128[4,32,32,r].
Hence the security of TweGIFT128[16,32,32,r] is strictly weaker than that of
TweGIFT128[4,32,32,r].

We evaluated the maximum differential probability for the 2r-round core of
TweGIFT128[16,32,32,r] for several choices of r by using MILP, which further
leads to the upper bounds for the entire construction based on the number of
the 2r-round cores. The results are shown in Table 4.2.

Considering that the number of interval rounds between tweaks should be as
large as possible to save the total number of computations, we chose r = 4. Be-
cause the entire TweGIFT128 contains 5 of the 8-round cores, the maximum dif-
ferential characteristic probability for TweGIFT128[16,32,32,4] is upper bounded
by 2−26.4×4 = 2−132. The strongest choice is r = 2 as shown in Table 4.2.

The detail of the best differential characteristics for TweGIFT128[16,32,32,2]
and TweGIFT128[16,32,32,4] is given in the supplementary material E (see Ta-
ble E.1). The differential characteristic for TweGIFT128[16,32,32,2] has 1 active
bit in the tweak bit T18. The characteristic for TweGIFT128[16,32,32,4] has two
active bits in T0 and T4.
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5 Applications of Short-Tweak Tweakable Block Ciphers

Now, we present some use cases where an efficient tBC could be beneficial. Please
see supplementary material A for details on security notions used here.

5.1 Reducing the Key Size in Multi-Keyed Modes of Operation

Several block cipher based modes of operation employ a block cipher with mul-
tiple independently sampled keys. In general, this is done either to boost the
security, or to simplify the analysis of the overall construction. The number
of keys can be naturally reduced to a single key by replacing the multi-keyed
block cipher with a single keyed tBC where distinct tweaks are used to simulate
independent block cipher instantiations. Proposition 1 below gives the theoret-
ical justification for this remedy. The proof is obvious from the definitions of
(tweakable) random permutation.

Proposition 1. For some fixed t ∈ N, and k ∈ [2t]. Let (Π1, . . . ,Πk)←$ (Perm[n])k

and Π̃←$ TPerm[t, n]. Let OΠ;k and OΠ̃;k be two oracles giving bidirectional ac-

cess to (Π1, . . . ,Πk), and (Π̃1, . . . , Π̃k), respectively. Then, for all distinguisher
A, we have

∆A(OΠ;k;OΠ̃;k) :=
∣∣∣Pr[AOΠ;k = 1]− Pr[AOΠ̃;k = 1]

∣∣∣ = 0.

Now, we demonstrate the utility of this idea through some examples.

FCBC MAC: FCBC mode is a 3-key message authentication code, by Black and
Rogaway [16], which is defined as follows:

Σ := EK0

(
Mm−1 ⊕ EK0

(
Mm−2 ⊕ EK0

(
· · · ⊕ (M2 ⊕ EK0

(M1))
)))

,

FCBC[E](M) := EKt
(
Σ ⊕ ozp(Mm)

)
, where t← (|Mm| = n)? 1 : 2.

FCBC has not received much appreciation in its existing 3-key form, even though
it offers better security, O(q2/2n + q`2/2n + q2`4/22n) in [44, 45, Theorem 3
and Remark 5], than CMAC [5, 36], O(q2`/2n + q2`4/22n) in [58, Theorem 4.6].
Quantitatively, the number of queries per key increases from 23n/8 to 2n/2 for
message lengths up to 2n/4 blocks. This is mainly due to presence of three keys
which not only costs keys size of the algorithm but it requires to run three key
scheduling algorithms. Keeping these in mind, we define Twe-FCBC, as follows:

Σ := Ẽ0
K

(
Mm−1 ⊕ Ẽ0

K

(
Mm−2 ⊕ Ẽ0

K

(
· · · ⊕ (M2 ⊕ Ẽ0

K(M1))
)))

,

Twe-FCBC[Ẽ](M) := ẼtK
(
Σ ⊕ ozp(Mm)

)
, where t← (|Mm| = n)? 1 : 2.

It is clear that Twe-FCBC is a variant of FCBC, that follows the principle es-
tablished in Proposition 1, and replaces the 3 block ciphers EK0 , EK1 , EK2 with

Ẽ0
K , Ẽ1

K and Ẽ2
K , respectively. Using Proposition 1 and [44, Theorem 3 and Re-

mark 5], we get the PRF security for Twe-FCBC in a straightforward manner in
Proposition 2.
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Proposition 2. Assuming all queries are of length ` ≤ 2n/4, and σ ≤ q`, we
have

Advprf

Twe-FCBC[Ẽ]
(t, q, σ) ≤ Advtprp

Ẽ
(t′, σ) +O

(
q2

2n

)
.

Clearly, Twe-FCBC has two major advantages over CMAC- (i) no need to hold
an additional state for final message block masking, (ii) security bound is free of
length factor for all reasonably sized messages (close to 6 Gigabyte for a 128-bit
block cipher). In addition, Twe-FCBC can also avoid the additional block cipher
call used to generate the masking. Due to backward compatibility, except the
last block we have used the original block cipher. So the performance overhead
due to nonzero tweak only applies to the last block cipher call. This features
ensures to get similar performance (or even better) for long message.

Double Block Hash-then-Sum: The very basic version of Double-block Hash-
then-Sum or DbHtS [24], is defined as below

DbHtS(M) := EK1
(Σ)⊕ EK2

(Θ),

where H is a 2n-bit output hash function, (Σ,Θ) := HL(M), and L,K1,K2 are all
sampled independently. DbHtS is a generic design paradigm that captures several
popular BBB secure MACs such as PMAC Plus, LightMAC Plus, SUM ECBC and
3kf9. Using a tBC, the two block cipher keys can now simply be replaced by a
single tweakable block cipher key and two distinct tweaks. Formally, we define
Twe-DbHtS as follows

Twe-DbHtS(M) := Ẽ1
K(Σ)⊕ Ẽ2

K(Θ).

Moreover, one can also generate the dedicated hash key using the tweak-
able block cipher key itself. Suppose the hash function is block cipher based,
then the tBC key can be used along with a different tweak to replace the
dedicated hash key. In all other cases, the hash key can be derived as L :=
(Ẽ0
K(0)‖Ẽ0

K(1)‖ · · · ‖Ẽ0
K(h − 1)), where |L| = hn. Since Ẽ0

K(i)’s are sampled in

without replacement manner, this adds an additional factor of h2

2n due to the
PRP-PRF switching, which can be ignored for small h. One can easily verify
that due to Proposition 1, the result on DbHtS [24, Theorem 2.(iii)] also applies
to Twe-DbHtS. Formally, the security of Twe-DbHtS is given by Proposition 3.

Proposition 3.

Advprf

Twe-DbHtS[H,Ẽ]
(q, `, t) ≤ 2Advtprp

Ẽ
(2q, t′) + Advprf

C∗3 [H,π0,π1,π2](q, `, t).

In this way, we have one-key versions of different well known designs PMAC Plus,
LightMAC Plus, SUM ECBC, 3kf9 etc. We note that one key version of PMAC Plus
based on solely block cipher has been proposed [25]. However, one key version
of the other designs either are not known or it can be shown to be secure up to
the birthday bound.7

7 1kf9 is proposed in ePrint [26], which later found to be attacked in birthday com-
plexity [51].
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Other Designs: Several more constructions use multiple keys to achieve bet-
ter security. Some notable examples are (1) sum of two permutations (2) En-
crypted Davis Meyer (EDM) [20] (3) Encrypted Wegman Carter Davis Meyer
(EWCDM) [20] (4) Chained LRW2 (CLRW2) [50] (5) GCM-SIV-2 [37] and (6)
The Benes Construction [60]. One can apply similar treatment as above to re-
duce these multi-keyed constructions to single-keyed designs with exactly same
security guarantee. We provide some details on the tBC variants for (1)-(6) in
the supplementary material B.

Remark 1. Note that, OCB like schemes use encrypted nonce as the masking
value, so the above idea (i.e. removal of the masking value using tBC) is not
applicable to them. Still, the advantage of using tBC in such cases is that we do
not have to update the mask for each block, rather the block counter, which is
used as the tweak takes care of that.

5.2 Efficient Processing for Short Messages

In energy constrained environments, reducing the number of primitive invoca-
tions is crucial, as for short messages, this reduction leads to efficient energy
consumption. The tBC framework can be used to reduce the number of primi-
tive invocations for many existing constructions such as LightMAC Plus [56].

LightMAC Plus is a counter-based PMAC Plus in which 〈i〉m‖Mi is input to
the i-th keyed block cipher call, where 〈i〉m is the m-bit binary representation
of i and Mi is the i-th message block of n −m bits. The counters ensure that
there is no input collision, which indirectly helps in negating the influence of
`. LightMAC Plus has been shown to have O(q3/22n) PRF security. However, it
has two shortcomings: (i) it requires 3 keys, and (ii) it has rate 1−m/n which
increases the number of block cipher calls. This is highly undesirable in low
memory and energy constrained scenarios.

To resolve these shortcomings specifically for short to moderate length mes-
sages (slightly less than 1 Megabyte), we propose Twe-LightMAC Plus, which can
be viewed as an amalgamation of LightMAC Plus [56] and PMACx [53]. The key
idea is to use the block counters as tweak in hash layer, while having distinct
tweaks for the finalization. The pictorical description of the algorithm is given in
Fig. 5.1. It is easy to see that Twe-LightMAC Plus is single-keyed and it achieves
rate 1. This reduces the number of block cipher calls by up to 50% for short
messages, which has direct effect on reducing the energy consumption.

We claim that Twe-LightMAC Plus is as secure as LightMAC Plus. Formally,
we have the following security result.

Proposition 4. For q ≤ 2n−1,

Advprf

Twe-LightMAC Plus[Ẽ]
(t, q, `) ≤ Advtprp

Ẽ
(t′, q`) +O

(
q3

22n

)
.

Proof. Twe-LightMAC Plus is an instance of Twe-DbHtS, and hence offers similar
security. The security bound of Twe-DbHtS includes a term

Advprf
C∗3 [H,π0,π1,π2](q, `, t)
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Fig. 5.1: Twe-LightMAC construction.

from [24]. One can verify from [24, Proof of Theorem 2.(iii)], that this term is
predominantly bounded by two probabilities:

1. Pr[∃ distinct i, j, k such that Σi = Σj , Θi = Θk].
2. Pr[∃ distinct i, j such that Σi = Σj , Θi = Θj ].

Now the hash layer of Twe-LightMAC Plus is exactly same as the PHASHx of [53].
Using similar arguments as in [53, Proof of Theorem 1] it can be shown that 1.
is upper bounded by O(q3/22n), and 2. is upper bounded by O(q2/22n). The
result follows by combining 1 and 2. ut

We note that similar improvements can also be applied to PMAC, PMAC Plus.

5.3 A Note on tBC’s Advantages over XE and XEX

The XE and XEX modes, by Rogaway [62], are two reasonably efficient ways
of converting a block cipher into a tweakable block cipher. These methods are
widely used in various modes such as PMAC [15], OCB [63], COPA [9], ELmD [27]

etc. The XE scheme to generate a TBC Ẽ from a BC E is defined as

XE : Ẽi1,··· ,itK (M) := EK(∆⊕M)

where ∆ = αi11 · · ·αitt · L. Here L is generally an n-bit secret state, which is
generated using block cipher call.8 It is sufficient for us to compare XE and tBC,
as XEX is much similar to XE. Now one may think of using XE instead of tBC to
convert multi-keyed modes to single-keyed mode, as above. But in comparison
to tBC, XE lacks two important features:

1. Degradation to Birthday Bound Security: XE (and XEX) is proved
to be birthday bound secure TBC mode. This is not a big issue for birthday
secure multi-keyed modes. In fact, the CMAC mode can be viewed as an
example that uses the XE mode, much in the same way as Twe-FCBC uses

8 Alternative constructions to define ∆ can be found in [17,34].
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tBC. However, if we use XE in multi-keyed applications such as DbHtS or
XOR2, the security of these constructions would degrade to birthday bound.
So, we cannot use XE or XEX, in a black box fashion, to instantiate the
tweakable variants, without a significant degradation in the security of the
modified mode. In contrast, tBC directly works on the block cipher level,
and hence does not suffer from such degradation unless the block cipher is
itself weak.

2. Additional Computational and Storage Overheads: The XE mode
requires, precomputation of the secret state L, (ii) an additional block ci-
pher invocation to generate L, and (iii) an additional storage to store L.
This cannot be neglected in constrained computation and communication
environments, as mentioned earlier. On the other hand, the tBC framework
incurs far less overheads. In this respect, one can easily define simple tBC-
variants of PMAC [62] (based on XE), COPE [9] (based on XEX), COLM [8]
(XE like processing) etc. much along the same line as Twe-LightMAC Plus.

6 Simplification of Authenticated Encryption Schemes

In the previous section, we showed some examples where the use of tBC leads
to simpler and lighter (in terms of state size and/or number of block cipher
calls) designs. In this section, we demonstrate some AE schemes that achieve a
combination of these advantages. Various security definitions and notions used
here, are available in supplementary material A.

6.1 Twe-CLOC and Twe-SILC

We propose tBC variant for CLOC and SILC, called Twe-CLOC and Twe-SILC, re-
spectively. CLOC and SILC are nonce-based authentication encryption (NAEAD)
modes, which aim to optimize the implementation overhead beyond the block ci-
pher calls, the precomputation complexity, and the memory requirement. CLOC
is suitable for uses in embedded processors, and SILC aims to optimize hard-
ware implementation cost. Our choices of CLOC and SILC are motivated by two
factors (see subsection 6.2 below): design simplification and reduction in block
cipher calls.

The three tBC variants are described in Fig. 6.1. We have made minimal
changes in the original schemes. CLOC and SILC employ Encrypt-then-PRF
paradigm and use a variant of CFB [3] mode in its encryption part and a variant
of FCBC in the authentication part.

6.2 Features of the Proposed AE Schemes

The proposed tBC-based AE schemes offer two added features over the existing
block cipher based schemes.

Design Simplification: Twe-CLOC and Twe-SILC simplifies their respective
original algorithms very efficiently. CLOC and SILC require several linear func-
tions (f , g1, g2, h1, h2 for CLOC and g for SILC) for domain separations and bit
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CFB(V,M, t)

1. M1‖ · · · ‖Mm ←M

2. C1 ← V ⊕M1

3. for i = 2 to m

4. Ci ← bẼ tK(Ci−1)c|Mi| ⊕Mi

5. return (C1‖ · · · ‖Cm)

ivFCBC(T,D, t0, t1, t2)

1. D1‖ · · · ‖Dd ← D

2. for i = 1 to d− 1

3. T ← Ẽ
t0
K (T ⊕Di)

4. t← (|Dd| = n)? t1 : t2

5. T ← Ẽ tK
(
T ⊕ pad(Dd)

)
6. return T

Twe-SILCK(N,A,M)

1. T ← ivFCBC(0n, N‖A, 0, 0‖1, Len‖1)

2. C ← CFB(T,M, 0‖2)

3. T ← ivFCBC(0, C, 1, 0‖3, Len‖0)

4. return (C, T )

Twe-CLOCK(N,A,M)

1. T ← ivFCBC(T,A‖N, 0, 1, 2)

2. C ← CFB(T,M, 3)

3. T ← ivFCBC(0, C, 4, 5, 6)

4. return (C, T )

Fig. 6.1: Encryption and algorithm of Twe-SILC and Twe-CLOC. pad uses 10∗ padding
for Twe-CLOC and 0∗ padding for Twe-SILC.

fixing operations. Twe-CLOC and Twe-SILC perform all the domain separations
by using distinct tweaks, which significantly simplifies the design.

Table 6.1: Comparison between the number of (tweakable) block cipher invocations for
original CLOC and SILC, and their tBC counterparts. Here a, and m denote the length
of associated data and plaintext, respectively.

Modes No. of BC calls No. of tBC calls
a 6= 0 a = 0 a 6= 0 a = 0

CLOC a+ 2m+ 1 2m+ 2 a+ 2m 2m

SILC a+ 2m+ 3 2m+ 2 a+ 2m 2m

Energy Efficient for Short Inputs: Apart from the simplification of
the original designs, the proposed AE schemes offer another advantage over
the non-tweaked versions. They require lesser number of block cipher calls for
shorter/empty AD or message processing, which essentially makes them more
efficient in terms of energy consumption.

The number of block cipher invocations required to process an associated
data of a blocks and message of m blocks are given in Table 6.1. As seen from
the table, SILC requires 4 block cipher calls to process 1 block AD and empty
message, Twe-SILC requires only 1 block cipher call.

6.3 Security of the Proposed AE Schemes

Twe-CLOC and Twe-SILC are in essence just the multi-key variants of CLOC and
SILC, respectively. So, intuitively they should be at least as secure as the original
modes, and the security argument for these schemes is relatively easier than the
original schemes. We show in Proposition 5 that our intuitions are correct to a
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large extent. For the sake of simplicity, we refrain from giving exact bounds, and
instead give the asymptotic expressions.

Security of Twe-CLOC and Twe-SILC: We first look at the abstract design
paradigm behind Twe-CLOC and Twe-SILC, which is the so-called Encrypt-then-
PRF, or EtPRF.

The EtPRF Paradigm: EtPRF [57, Construction A5] is a design paradigm
to construct NAEAD schemes. It is composed of three stages (illustrated in
Figure 6.2): a random IV generator, G that generates iv using the nonce N
and (possibly) the AD A; an IV-based encryption phase, ivE that generates
the ciphertext C using iv as the random IV; and a tag-generation phase, F
that generates the tag on the input N,A,C. Formally, for key space K × L the
encryption algorithm of EtPRF is defined by the following mapping

(K,L,N,A,M) 7→ ivE(K,N,A,M)
∥∥F (L,N,A, ivE(K,N,A,M)) ,

for all (L,K,N,A,M) ∈ L × K × A ×M. Here, C := ivE(K,N,A,M) ∈ M,
and T := F(L,N,A,C) ∈M. Note that, for the sake of simplicity we subsumed
the G function within the ivE phase. In [57], Namprempre et al. showed that the
NAEAD security of an EtPRF scheme, A, given by:

Advae
A (q, `, σ) ≤ Advprf

F (q, `, σ) + Advprf
G (q, `, σ) + Advpriv$

ivE (q, `, σ), (1)

where PRIV denotes the Priv$ security (see supplementary material A).

ivEK [G] FL

M A N

C T

Fig. 6.2: The EtPRF paradigm based on an IV-based encryption scheme ivE for the
encryption phase, and a PRF F for the tag generation phase. The [G] denotes that ivE
internally uses G to generate the random IV.

In case of both Twe-CLOC and Twe-SILC, G and F are variants of Twe-
FCBC, and hence can be shown to have O(σ2/2n) PRF security [16]. ivE phase
is an instance of the CFB mode with random IV, which has been shown to have
O(σ2/2n) security in [69]. Hence, by substituting the relevant bounds in Eq. (1),
we get the following security result for Twe-CLOC and Twe-SILC.

Proposition 5. The security of Twe-CLOC and Twe-SILC is given by:

Advae
Twe-CLOC[Ẽ]

(t, q, `, σ) ≤ Advtprp

Ẽ
(t′, q`) +O(

σ2

2n
),

Advae
Twe-SILC[Ẽ]

(t, q, `, σ) ≤ Advtprp

Ẽ
(t′, q`) +O(

σ2

2n
).
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where t, q, `, σ denote the computational time, query bound, maximum query
length, and the total number of tBC calls across all encryption and decryption
queries, respectively.

Remark 2. The security of CLOC and SILC do not follow from Eq. (1), in a
straightforward way, as the tag generation and encryption share the same key.

7 Further Applications and Future Directions

We think that tBC can have several other applications. For instance, consider
a scenario where two multiple algorithms are running on the same platform,
sharing the same secret key. We could find several examples where such an
arrangement could be vulnerable. For example, consider a scenario where AES-
GCM and AES-CMAC are running on the same device, sharing the same secret
key. Now, it is easy to see that, an adversary can trivially forge a tag for AES-
CMAC using an encryption query on AES-GCM. tBC can efficiently take care of
such problems by separating these algorithms using different tweak values, i.e.
unique tweak values for each of these algorithms.

We have defined the Elastic-Tweak framework for SPN based block ciphers.
Extending this further for ARX based constructions could be an interesting
problem. Also, it would be interesting to see designs for short-tweak tweakable
public permutations, which might have strong impact on the simplification of
permutation based constructions such as Sponge, Beetle, Minalpher etc.
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Supplementary Material

A Security Definitions

(Tweakable) Random Permutation and Random Function: For any
finite set X , X←$X denotes uniform and random sampling of X from X .

We call Π←$ Perm(n) a (uniform) random permutation, and Π̃←$ TPerm(τ, n)
a tweakable (uniform) random permutation on tweak space {0, 1}τ and block

space {0, 1}n. Note that, Π̃i is independent of Π̃j for all i 6= j ∈ {0, 1}τ . We call
Γ←$ Func(m,n) a (uniform) random function from {0, 1}m to {0, 1}n.

We say that a distinguisher is “sane” if it does not make duplicate queries, or
queries whose answer is derivable from previous query responses. In this paper,
we assume that the distinguisher is limited to at most q queries and t computa-
tions.

Tweakable Strong Pseudorandom Permutation (TSPRP): The TSPRP

advantage of any distinguisher A against Ẽ instantiated with key K←$ {0, 1}κ,
is defined as

Advtsprp

Ẽ
(A) :=

∣∣∣Pr[AẼ±K = 1]− Pr[AΠ̃± = 1]
∣∣∣ .

The TSPRP security of Ẽ, is defined as

Advtsprp

Ẽ
(q, t) := max

A
Advtsprp

Ẽ
(A). (2)

TPRP or tweakable pseudorandom permutation and its advantage Advtprp

Ẽ
(q, t)

is defined similarly when adversary has no access of the inverse oracle.

Pseudorandom Function (PRF): The PRF advantage of distinguisher A
against a keyed family of functions F := {FK : {0, 1}m → {0, 1}n}K∈{0,1}κ is
defined as

Advprf
F (A) :=

∣∣∣∣ Pr
K←$ {0,1}κ

[AFK = 1]− Pr[AΓ = 1]

∣∣∣∣ .
The PRF security of F against A(q, t) is defined as

Advprf
F (q, t) := max

A
Advprf

F (A). (3)

The keyed family of functions F is called weak PRF family, if the PRF security
holds when the adversary only gets to see the output of the oracle on uniform
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random inputs. This is clearly a weaker notion than PRF. We denote the weak
prf advantage as Advwprf

F (q, t).

IV-Based Encryption: An IV-Based Encryption ivE scheme is a tuple Ψ :=
(K,N ,M,Enc,Dec). Encryption algorithm Enc takes a key K ∈ K and a message
M ∈ M and returns (iv, C) = Enc(K,M), where iv ∈ N is the initialization
vector and C ∈ M is the ciphertext. Decryption algorithm Dec takes K, iv, C
and returns M = Dec(K, iv, C). Correctness condition says that for all K ∈ K
and M ∈M Dec(K,Enc(K,M)) = M . The Priv$ advantage [35,37,57,64] of A
is defined as

Advpriv$
ivE (A) :=

∣∣∣Pr
K

[
AEncK = 1

]
− Pr

Γ

[
AΓ = 1

]∣∣∣
where K←$K and Γ is a random function fromM→N×M. The Priv$ security
of ivE, is defined as

Advpriv$
ivE (q, t) := max

A
Advpriv$

ivE (A). (4)

(Nonce-Based) Authenticated Encryption with Associated Data: A
(nonce-based) authenticated encryption with associated data or NAEAD scheme
A consists of a key space K, a (possibly empty) nonce space N , a message space
M, an associated data space A, and a tag space T , along with two functions
Enc : K×N ×A×M→M×T , and Dec : K×N ×A×M×T →M∪ {⊥},
with the correctness condition that for any K ∈ K, N ∈ N , A ∈ A,M ∈ M, we
must have Dec(K,N,A,Enc(M)) = M . When the nonce space is empty, we call
the AE scheme a deterministic AE or DAE scheme.

Following the security definition in [35, 37, 57, 64], we define the NAEAD
(DAE for deterministic AE) advantage of A as

Advae
A (A) :=

∣∣∣Pr
K

[
AEncK,DecK = 1

]
− Pr

Γ

[
AΓ,⊥ = 1

]∣∣∣,
where K←$K and Γ is a random function from N ×A×M→M×T , and ⊥ is
the reject oracle that takes (N,A,C, T ) as input and returns the reject symbol
⊥. The NAEAD/DAE security of A, is defined as

Advae
A (q, t) := max

A
Advae

A (A). (5)

B Other Applications

B.1 Sum of Permutations

The sum of permutations is a popular approach of constructing an n-bit length
preserving PRF. Given 2 independent instantiations, EK0 and EK1 , of a secure
block cipher over {0, 1}n, the sum of permutations, denoted XOR2, is defined by
the mapping x 7→ EK0

(x)⊕ EK1
(x).
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The XOR2 construction has been proved to be n-bit secure independently
by Patarin [61] and Dai et al. [23], though the proof by Patarin still has some
unresolved gaps. There is a single key variant of XOR2, but it sacrifices one bit
(i.e. defined from {0, 1}n−1 to {0, 1}n) for domain separation. Instead we can
use a tBC to simply replace the two block cipher keys with one tBC key and two
distinct tweaks. We define Twe-XOR2(x) := Ẽ0

K(x) ⊕ Ẽ1
K(x). Again combining

Proposition 1 with [23, Theorem ], we obtain

Proposition 6. For q ≤ 2n−4,

Advprf
Twe-XOR2(t, q) ≤ Advtprp

Ẽ
(t′, q) + (q/2n)1.5.

B.2 Tweaking Various Other Constructions

In the following list, we apply similar technique as above to several other con-
structions with multiple keys. The security of all the tBC-based variants is sim-
ilar to the multi-key original constructions, so we skip their explicit security
statements.
1. Encrypted Davis Meyer (EDM) [20]: EDM uses two keys and obtains

BBB PRF security. We define the tBC-based variant as follows:

Twe-EDM(x) := Ẽ1
K(Ẽ0

K(x)⊕ x).

2. Encrypted Wegman Carter Davis Meyer (EWCDM) [20]: EWCDM is
a nonce-based BBB secure MAC that requires two block cipher keys and a
hash key. The tBC-based variant of EWCDM is defined as:

Twe-EWCDM(N,M) := Ẽ2
K

(
Ẽ1
K(N)⊕N ⊕HẼ0

K(0)(M)
)
.

3. Chained LRW2 (CLRW2) [50]: The CLRW2 construction is a TBC that
achieves BBB TSPRP security using two independent block cipher keys and
two independent hash keys. We define a tBC-based variant of CLRW2 as
follows:

Twe-CLRW2(M,T ) := Ẽ2
K

(
Ẽ1
K(M ⊕ hL1(T ))⊕ hL1(T )⊕ hL2(T )

)
⊕ hL2(T ),

where L1 and L2 can be derived using Ẽ as before. It is easy to see that one
can easily extend the idea to obtain single keyed CLRWr [49] using r distinct
tweaks.

4. GCM-SIV-2 [37]. GCM-SIV-2 is an MRAE scheme with 2n/3-bit security.
However, it requires 6 independent block cipher keys along with 2 indepen-
dent hash keys. We can easily make it single keyed using a tBC:

V1 := HẼ0
K(0)(N,A,M) , V2 := HẼ0

K(1)(N,A,M)

T1 := Ẽ1
K(V1)⊕ Ẽ2

K(V2) , T2 := Ẽ3
K(V1)⊕ Ẽ4

K(V2),

Ci := Mi ⊕ Ẽ5
K(T1 ⊕ i)⊕ Ẽ6

K(T2 ⊕ i).
Extending the same approach, one can get a single keyed version of GCM-SIV-ras
well.
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5. The Benes Construction [60]: The Benes construction is a method to
construct 2n-bit length preserving PRF construction with n-bit security that
uses 8 independent n bit to n bit PRFs. Formally,

L′ := f1(L)⊕ f2(R)

R′ := f3(L)⊕ f4(R)

Benes(L,R) := (f5(L′)⊕ f6(R′), f7(L′)⊕ f8(R′)).

Now these fi functions can be constructed using sum of two permutations,
however that would essentially require 16 block cipher keys. With a tBC, we
can reduce the number of keys to one by instantiating fi := Ẽ2i

K ⊕ Ẽ2i+1
K for

each i ∈ [8].

C Software Performance

In this section, we provide a comparison between the software implementations of
different TweAES variants with their original counterpart, i.e. AES. Our reference
implementations of TweAES are fully based on an AES-NI based implementation
of AES, given in the white paper by Gueron. For GIFT and TweGIFT we are not
presenting the exact cpb values. But, based on our experiments on the reference
implementation of GIFT available in [66], we believe that TweGIFT should have
at most 25% overhead over GIFT.

Platform Setup and Benchmarking Methodology: We have imple-
mented and benchmarked all the schemes on Intel’s Skylake microarchitecture.
We use gcc compiler with the flags “-maes -msse4 -O3”. All measurements were
taken on a single core of an Intel Core i7-6500U CPU with Turbo Boost and Hy-
perthreading disabled. The cache warmup parameter is set at 1000 iterations.
The reported performance data were obtained as the median of 101 averaged
cycles per byte (cpb) of 10000 measurements each [48].

Implementation Details and Comparison between TweAES and AES:
The only difference between our implementation TweAES and AES, is the in-
clusion of a tweak expansion function, which contributes the major part of the
overhead. We initialize the extended tweak to all zeroes. The tweak expansion
function is only called for non-zero tweaks. This helps in reducing the overheads,
in case of zero tweak, to negligible value (the cpb values differ after 3rd decimal
place) as observed from Table C.1. For non-zero tweaks there is an increase in
cpb values due to the call to tweak expansion function. Still we think the perfor-
mance values are tolerable for non-zero tweaks as well. Note that the cpb values
for TweAES-128[8,16,8,2] are similar to TweAES-128[16,32,32,5] as the expansion
functions are quite similar in the two cases. Table C.1 summarizes the encryp-
tion (first row) and decryption (second row) call cpb results for AES-128 and the
three TweAES variants.
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Table C.1: Comparison between AES-128 and the three TweAES variants. For TweAES
tBCs the entry “a, b” denotes the pair of cpb values corresponding to zero tweak and
non-zero tweak, respectively.

AES-128 TweAES-128[4, 8, 8, 2] TweAES-128[8, 16, 8, 2] TweAES-128[16, 32, 32, 5]

2.82 2.82, 3.15 2.82, 3.63 2.82, 3.68

2.82 2.82, 3.16 2.82, 3.65 2.83, 3.67

D Specification of GIFT

GIFT [11] is a lightweight block cipher supporting 64- and 128-bit block and
128-bit key size. The former and the latter are called GIFT64 and GIFT128,
respectively. Here we introduce the specification GIFT64. Refer to the original
specification for the detailed description of GIFT128.

A 64-bit plaintext P is loaded to a 64-bit state s0. Then the state is updated
by iteratively applying a round function RF : {0, 1}64 × {0, 1}32 7→ {0, 1}64 28
times as si ← RF (si−1, ki−1) for i = 1, 2, · · · , 28, where ki are 28 round keys
generated from a 128-bit user-specified key K by a key scheduling function KF :
{0, 1}128 7→ ({0, 1}32)28 as (k0, k1, · · · , k27)← KF (K). We call the computation
for index i “round i.” The last state, s28, is a ciphertext C.

Round Function (RF ). Let x63, x62, · · · , x0 be a 64-bit state value. The round
function consists of the following three operations: SubCells, PermBits, and Ad-
dRoundKey.
SubCells: It applies a 4-bit to 4-bit S-box S shown in Table D.1 to 16 nibbles

x4i+3, x4i+2, x4i+1, x4i, ∀i = 0, 1, · · · , 15 in parallel.

Table D.1: S-box.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

PermBits: A bit-permutation π specified in Table D.2 is applied to the 64-bit
state.

AddRoundKey: This step consists of adding a round key and a round con-
stant. A 32-bit round key ki−1 is extracted from the key state, it is further
partitioned into two 16-bit words ki−1 = U‖V = u15u14 · · ·u0‖v15v14 · · · v0.
For GIFT-64, U and V are XORed to x4i+1 and x4i of the state respectively.

x4i+1 ← x4i+1 ⊕ ui, x4i ← x4i ⊕ vi, ∀i ∈ {0, 1, · · · , 15}.

Then, a single bit ‘1’ and a 6-bit round constant are XORed to the state at bit
positions 63, 23, 19, 15, 11, 7 and 3. Round constants are generated by a simple
linear feedback shift register. In our analysis, the round constants do not have
any impact, thus we ignore them hereafter. The schematic diagram of the GIFT
round function is shown in Fig. D.1.
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Table D.2: Bit-Permutation.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
π(x) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
π(x) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
π(x) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 

63 0 1 2 3 

𝑈 
𝑉 

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 

𝑈 
𝑉 

Fig. D.1: Schematic Diagram of Two Rounds of GIFT64.

Key Schedule Function (KF ). A 128-bit user-specified key K is loaded to
a 128-bit key state that is composed of eight 16-bit words κ7,κ6,κ5,κ4,κ3,κ2,κ1,
and κ0. A round key is first extracted from the key state before the key state
update. For GIFT64, two 16-bit words of the key state are extracted as the round
key ki−1 = U‖V ,

U ← κ1, V ← κ0.

The key state is then updated as follows,

κ7‖κ6‖κ5‖ · · · ‖κ1‖κ0 ← RotR(κ1, 2)‖RotR(κ0, 12)‖κ7‖ · · · ‖κ3‖κ2,

where RotR(X, i) is an i-bit right rotation of X within a 16-bit word. The
schematic diagram of the GIFT key schedule function is illustrated in Fig. D.2.
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Fig. D.2: Schematic Diagram of Key Schedule Function of GIFT64.

Short Remarks on GIFT128. The state size of GIFT128 is 128 bits, which
consists of thirty-two 4-bit nibbles. SubCells operation apply the same S-box
as GIFT64 to 32 nibbles and a 128-bit permutation is applied to the state. Ad-
dRoundKey extracts 64 bits from the key state and adds bit-position 4i+ 1 and
4i+ 2, where i = 0, 1, . . . , 31, of the state.
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E Best Differential Characteristics for 2r-Round Core of
TweGIFT128

Table E.1: The Best Differential Trail for 4-Round Core of TweGIFT128[16,32,32,2] and
8-Round Core of TweGIFT128[16,32,32,4].

Round Differential Mask Probability

1
0000 0000 0000 4000 0000 0000 0000 0000

2−2

0000 0000 0000 5000 0000 0000 0000 0000

2
0004 0000 0000 0000 0001 0000 0000 0000

2−6

0009 0000 0000 0000 000c 0000 0000 0000

∆ tweak: 8000 8000 0000 8000 0000 0000 8000 0000

3
0000 0000 0000 c000 0000 0000 9000 0000

2−5

0000 0000 0000 4000 0000 0000 8000 0000

4
0004 0000 0000 0000 0000 0000 0000 0080

2−3.4

0007 0000 0000 0000 0000 0000 0000 0030

Round Differential Mask Probability

1
0000 0000 0000 0000 0000 0000 0600 0000

2−1.4

0000 0000 0000 0000 0000 0000 0300 0000

2
0000 0020 0000 0010 0000 0000 0000 0000

2−5

0000 0060 0000 0060 0000 0000 0000 0000

3
0000 0000 0000 0000 0404 0000 0202 0000

2−8

0000 0000 0000 0000 0505 0000 0505 0000

4
0000 0000 0000 5050 0000 0000 0000 5050

2−12

0000 0000 0000 8080 0000 0000 0000 8080

∆ tweak: 0000 0000 0008 0008 0000 0000 0008 0008

5
0000 0000 0000 0000 0000 0000 0000 0000

1
0000 0000 0000 0000 0000 0000 0000 0000

6
0000 0000 0000 0000 0000 0000 0000 0000

1
0000 0000 0000 0000 0000 0000 0000 0000

7
0000 0000 0000 0000 0000 0000 0000 0000

1
0000 0000 0000 0000 0000 0000 0000 0000

8
0000 0000 0000 0000 0000 0000 0000 0000

1
0000 0000 0000 0000 0000 0000 0000 0000
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