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Abstract. In this paper, we introduce two lightweight historical data based
multi-factor authenticated key exchange (HMAKE) protocols in the random or-
acle model. Our HMAKE protocols use a symmetric secret key, as their first
authentication factor, together with their second authentication factor, historical
data exchanged between the two parties in the past, and the third authentication
factor, a set of secret tags associated with the historical data, to establish a secure
communication channel between the client and the server.
A remarkable security feature of HMAKE is bounded historical tag leakage re-
silience, which means that (informally speaking) if a small portion of the secret
tags is leaked to an adversary, it will not affect the security of one HMAKE
protocol with an overwhelming probability. Our first HMAKE protocol can pro-
vide static bounded leakage resilience, meaning that the secret tags are leaked at
the beginning of the security game. To enhance its security, our second HMAKE
protocol makes use of our first protocol as a compiler to transform any passively
secure two-message key exchange protocol to an actively secure HMAKE protocol
with perfect forward secrecy, and therefore it can be secure even if the historical
tags are compromised adaptively by an attacker.
In addition to the strong security properties we achieved, our protocols can po-
tentially have great impacts in practice: they are efficient in computation, and
they are compatible with legacy devices in cyber-physical systems.

Keywords: Historical Data, Authentication, Authenticated Key Exchange, Se-
curity Model, Multi-Factor Authentication

1 Introduction

Cyber-Physical Systems (CPSs), like water treatment systems and nuclear plants, are
critical for the daily life of millions of people. However, the security of this kind of
systems is always an afterthought, which opens a tremendous attacking surface on CPSs
for malicious adversaries [21]. Even worse, many legacy devices with very limited or
no security protection are still in use. Since they have been running for decades, it
becomes a non-trivial task to upgrade or replace them. Therefore, security enhancements
of legacy devices are highly demanded in practice now. As the first step towards a secure
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system, we need to protect the communication between the devices in the field and the
servers/control centers, because most of the devices are required to report their status
and data acquired in the field to the server, and they accept commands from the server.
In the context of CPS, this kind of servers is usually called supervisory control and data
acquisition (SCADA) systems.

In the existing literature, many end-to-end encryption and message authentication
methods are suggested between controllers and SCADA system [5, 29], but none of them
answered the question about how to establish such a secure communication channel. Of
course, one can simply use a single factor authenticated key exchange protocol [13, 20],
but can we enhance its security by introducing another authentication factor? Because
it is a machine-to-machine (M2M) authentication, the existing two/multi-factor authen-
ticated key exchange (AKE) protocols [14, 42, 6, 27, 24], which usually use passwords or
fingerprints as the second factor, do not apply here. Multi-factor M2M AKE might be
instantiated from the generic framework [22] by Fleischhacker et al., which allows one to
build a protocol by securely mixing multiple types and quantities of authentication fac-
tors such as low-entropy (one-time) passwords/PINs, high-entropy private/public keys
and biometric factors. However, their framework does not cover the authentication fac-
tors that are lightweight while being able to satisfy leakage resilience. We have to find
another authentication factor on the server, and it should have a stronger security level
from a conventional secret key stored on the same machine.

Recall that CPS devices keep sending data to the SCADA system for monitoring.
Actually, for future data analysis, the historical data in most of the SCADA systems is
stored in a dedicated process historian, instead of their main servers [36]. This directly
implies that the historical data has a different security level from secret keys. Moreover,
a secret key, usually hundreds of bits, can be leaked very fast in a security breach, but a
large database on the same server will clearly at least slow down the secret leakage by a
few orders of magnitude, and consequently implies a different security level. Therefore,
a secret key, a database of historical data stored in a historian, and a database of data
associated tags stored on a SCADA server are the perfect authentication factors with
three different security levels, such that compromising one factor does not lead to a
corruption of another authentication factor. As another fact, the historical data and its
tag are growing all the time, so a piece of historical data leaked in the past may not be
valid as an authentication factor soon after. This makes an impersonation even harder.

Existing Historical Data based Authentication Protocols. The usage of historical
data as an authentication factor in an authentication protocol was introduced in [8]
and further developed in [9] at ESORICS’16. The early scheme [8] uses the historic
data straightforwardly as a symmetric key shared between the client and the server.
This imposes a non-trivial storage overhead to the client, which is sometimes infeasible
for a resource-constrained CPS device. At ESORICS’16, Chan et al. [9] introduced a
scalable historical data based two-factor authentication scheme (which will be referred
to as CWZT scheme). Namely, the first authentication factor is a long-term symmetric
key and the second authentication factor is a dynamically growing set of secret tags
associated with historical data. The CWZT protocol is wisely derived from the proof of
retrievability (PoR) protocol [35], in which the server authenticates itself to the client
by proving that it possesses all historical data sent by the client. As one of their major
contributions, the CWZT protocol only requires the client to store a small constant-sized
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secrets (e.g., 512 bits), which well fits CPS devices. Chan et al. also introduced historical
tag leakage resilience in a bounded-storage model [1, 19] as its security feature, so that
partial historical tag leakage does not affect much of its security.

Vulnerabilities of the CWZT Protocols. (1) According to our analysis in Section 4,
the CWZT protocol is vulnerable to a tag stealing attack. In short, we show that an
adversary can steal all the historical tags through legitimate interactions with the server,
given only one piece of historical tag (associated with one data piece) that is somehow
leaked. Notice that the partial historical tag leakage is allowed in the adversarial model of
the CWZT protocol, and was claimed as one of the major contributions in [9]. (2) In [9],
the authors suggested to use the first authentication factor to protect the transmission
of the second authentication factor (tags). This completely deviates from the motivation
of having two authentication factors. Thus how to secure the transmission of data and
tags from the client to the server is still an open problem.

Our Contributions. Due to the vulnerabilities and limitations of the existing protocols
mentioned above, we cannot simply extend the existing authentication protocols to an
AKE protocol. We have to reconsider the fundamental authentication problem based on
historical data, and redesign a new AKE protocol from scratch. More specifically, we
made four significant contributions as follows:

1. We analyze the stat-of-the-art historical data based authentication protocol (the
CWZT protocol [9] proposed at ESORICS’16) and propose a tag-stealing attack
which breaks the security claim of the CWZT protocol via legitimate interactions.

2. To build a solid theoretical foundation of our proposed HMAKE protocols, and to
avoid repeating the mistakes in the previous designs, we are the first to formally define
two indistinguishability-based security models for HMAKE, and later we analyze our
proposed protocols in these security models.

3. As one of the main contributions of this paper, we introduce two HMAKE protocols
ΠwoFS (without forward secrecy) and ΠFS (with forward secrecy) and proved their
security in the random oracle model.

4. To show the impact of our protocols in the real world, we demonstrate how to deploy
our protocols in the field to enhance legacy devices. Also, we implemented ΠwoFS and
ΠFS, and evaluated their performance experimentally.

Fig. 1: Overview of Our HMAKE Protocol

Technical Overview. An overview of our first HMAKE protocol ΠwoFS is presented
in Fig. 1. The client device and the server share a master key (mk) as their first au-
thentication factor. When the client sends data to the server, it would generate a secret
tag associated with the data using a tag generation key K. The server stores all tuples
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{(Datai, tagi)} separately as its second and third authentication factors respectively,
while the client only needs to store K as its second authentication factor. The client
only has two authentication factors due to its limited storage space, i.e. not storing the
historical data. In our HMAKE protocols, both parties can use their authentication cre-
dentials to run the key exchange procedure to generate a session key to establish a secure
channel, that is used to protect the underlying data and tag transmission.

In addition, ΠwoFS still has a remarkable security feature called historical tag leakage
resilience, such that a small portion of tag leakage will not affect the security of ΠwoFS

much. Notice that although this feature was first introduced in [9], they failed to achieve
it due to the tag stealing attack we introduced. Also, because of the clear separation of
the two authentication factors in ΠwoFS, ΠwoFS can be easily used to enhance the security
of legacy CPS devices. An additional device with the second factor can be attached to a
legacy device (with the first factor embedded), intercept its traffic, and complete most
of the computation in ΠwoFS.

One limitation of ΠwoFS is that it can only defend against static bounded-leakage
regarding the historical tags, and it does not provide perfect forward secrecy. In a static
bounded-leakage model, the adversary can only learn a fraction of the secret tags at the
beginning of the security game. Nevertheless, the static bounded-leakage resilience is still
valuable and useful for HMAKE in practice since the leaked tags will be out-dated quickly
when the historical data is growing. Theoretically, an attacker may try to adaptively at-
tack many sessions as formulated in the seminal work about entity authentication model
[2]. To achieve this adaptive bounded-leakage resilience and perfect forward secrecy, we
design the second HMAKE protocol ΠFS. In ΠFS, we use the first protocol ΠwoFS as a
compiler to transform any passively secure two-message key exchange (TKE) protocols
to be an actively secure HMAKE protocol. Because the session key does not depend on
the authentication keys (unlike ΠwoFS), ΠFS can resist adaptive bounded-leakage, i.e.,
the adversary can get access to a bounded number of valid historical tags at any time of
the security experiment.

2 Related Work

Lightweight AKE Protocols. Due to the limitations of power constrained devices, e.g.,
sensor networks or IoT devices, researchers have been dedicated to develop lightweight
multi-factor AKE protocols in conjunction with specific communication models or appli-
cation scenarios. For example, the lightweight multi-factor AKE protocols proposed in
[14, 24] are designed for wireless sensor networks (WSN), and there are many protocols [6,
37] for Internet-of-Things (IoT). Recently, Dua et al. [18] proposed a protocol to protect
the communication of vehicles in smart cities. In [10], Chattaraj et al. proposed an AKE
protocol for cloud computing services. For different application scenarios and computa-
tion power of players, different authentication factors might be involved. The commonly
used authentication factors would be the long-term symmetric key and users’ memorable
password. Most of the long-term symmetric key based lightweight AKE schemes, e.g.,[14,
6, 24, 40], require some tamper-proof devices (such as smart cards) to store the authen-
tication key. To enhance its security, a protocol might also incorporate biometric factors
[14, 6] into authentication that has more entropy than a password. However, none of the
above lightweight AKE protocol covers the leakage resilient property as our proposals.
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Cryptographic Primitives for PFS. Considering the importance of PFS, many AKE
schemes are proposed with PFS based on Diffie-Hellman key exchange (DHKE), e.g.,
[14, 6, 39, 38, 24]. Fortunately, some results (e.g., [28, 12]) have shown that the DHKE
protocol might be feasible to be realized with the elliptic curves cryptography (ECC)
optimized for embedded systems. We also instantiate our protocol ΠFS with ECC based
DHKE protocol for comparison.

Generic AKE Compilers. A research line related to our second protocol ΠFS is the
AKE compiler that is to securely combine authentication protocols (AP) with passively
secure key exchange protocols (KE) in a modular and generic manner, e.g., [25, 30, 22,
41]. However, no existing AKE compilers leverage historical data based authentication
protocol as a building block. Our protocol ΠFS presents a new way to realize AKE
compilers.

3 Preliminaries

General Notations. Let κ ∈ N denote the security parameter and 1κ be a string of κ
ones. We let [n] = {1, . . . , n} ⊂ N denote the set of integers between 1 and n. We write

a
$← S to denote the operation sampling a uniform random element from a set S. We let

‖ denote the concatenation (operation) of two strings.

Random Oracles. Bellare and Rogaway [3] first used the random oracle as a tool to
prove the security of cryptographic schemes. In this paper, we assume that the hash
function h(·) is modeled as a random oracle. A random oracle is stateful. Namely, on
input a value m ∈ {0, 1}∗, the random oracle query h(m) proceeds as follows: (i) With
respect to the first query on m, the oracle just returns a true random value rm from the
output space, and records the tuple (m, rm) into its query list HL; (ii) If m ∈ HL, then
the oracle returns its associated random value rm recorded in HL.

As in [16], we use a uniformly random salt χ
$← X as input of h to sample a random

oracle h(χ, ·), where X is a salt space. When the salt is clear in the context, we may
write h(·) instead of h(χ, ·) for simplicity. The random salt can be used to prevent
vulnerabilities introduced in [16].

Passively Secure Two-message Key Exchange. We consider a two-message key
exchange (TKE) protocol in which the session key is established within only two protocol
passes. In each protocol pass, a single message is sent by a party. We further assume
that each player of the protocol does not hold any long-term secret key for simplicity.
Specifically, a general TKE protocol may consist of three polynomial time algorithms
(TKE.Setup,TKE.MSG,TKE.SKG) which are defined as follows:

– pms ← TKE.Setup(1κ): On input 1κ, the setup algorithm outputs pms, a set of
system parameters. We assume the other algorithms may implicitly use pms.

– mid1

$← TKE.MSG(id1, rid1
,mid2

): The message generation algorithm takes as input a

party’s identity id1, a randomness rid1

$← RTKE and a message mid2
∈MTKE received

from party id2, and outputs a message mid1
∈ MTKE to be sent, where RTKE is the

randomness space andMTKE is the message space. Note that if id1 is the sender then
mid2 = ∅.
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– K ← TKE.SKG(id1, rid1
, id2,mid2

): The session key generation algorithm takes as an
input the participants’ identities id1 and id2, the randomness rid1

and the received
message mid2

from party id2, and outputs a session key K ∈ KTKE, where KTKE is
the session key space.

We say that the TKE.SKG algorithm is correct, if for all random values rid1
, rid2

$←
RTKE and all messagesmid1

$← TKE.MSG(id1, rid1
, ∅) andmid2

$← TKE.MSG(id2, rid2
,mid1

),
it holds that TKE.SKG(id1, rid1

, id2,
mid2) = TKE.SKG(id2, rid2 , id1,mid1)

We define a security experiment for passively secure TKE protocols as follows.

Security Experiment: The security experiment is carried out as a game between a
challenger C and an adversary A based on a protocol TKE. During the setup phase,
C generates the parameters pms ← TKE.Setup(1κ) and two identities {ID1, ID2} of
protocol participants. The adversary is given pms and all identities as input. Next, A
will interact with C via asking at most d ∈ N times Execute(id1, id2) query; for each
Execute query, C runs a fresh protocol instance between id1 and id2, and returns the
corresponding protocol messages’ transcript T and session key K to A. At some point,
A submits a challenge request n. Upon receiving n, C runs a new protocol instance
obtaining the transcript T ∗ and the session key K∗1 , samples a random key K∗0 , and
tosses a fair coin b ∈ {0, 1}. Then, C returns (T ∗,K∗b ) to A. After the challenge query,
A may continue making Execute(id1, id2) queries. Finally, A may terminate and output
a bit b′.

Definition 1. We say that a two-message key exchange protocol TKE is (t, εTKE)-passively-
secure if for all probabilistic polynomial time (PPT) adversaries running the above ex-
periment in time t, it holds that
|Pr[b = b′]− 1/2| ≤ εTKE.

4 Cryptanalysis of the CWZT Scheme

In this section, we revisit the security property of CWZT scheme [9, §5.1] regarding
the resilience to the leakage of historical tags. We will introduce an attack to subvert
the leakage resilience of CWZT scheme. Note that the leakage resilience is an intrinsic
property that distinguishes historical data relevant authentication factors from other
symmetric key based authentication factors.

4.1 Protocol Review

We first briefly review the CWZT scheme. Let Zp be an abelian group with prime order
p that has κ bits. The CWZT protocol makes use of two pseudorandom functions f :
{0, 1}κ × {0, 1}∗ → Zp and E : {0, 1}κ × {0, 1}κ → {0, 1}κ, and a cryptographic hash
function h : {0, 1}∗ → Zp. The protocol running between a verifier idC and a prover idS

is shown in Fig. 2.
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Verifier idC Prover idS

Initialization

sk1idC,idS
= mk

$← {0, 1}κ −
sk1idC

−−−−−−−−−−−−→ sk1idS,idC
:= sk1idC,idS

K
$← Zp, K′

$← {0, 1}κ secure channel
L := 0

sk2idC,idS
= (K,K′) sk2idS,idC

= D = ∅
Tag Generation: for the i-th data

ki := f(K′, i) −
i, di, ti

−−−−−−−−−−−−→
ti := K · h(di) + ki

L := L+ 1 store (i, di, ti)→ D
Online Authentication

Sample z random indices:

I = (I1, I2, . . . , Iz)
$← [L] r′ := E(sk1idS,idC

, r)

r
$← {0, 1}κ −

I, r
−−−−−−−−−−−−→ for i ∈ I: (di, ti)← D

r′ := E(sk1idC,idS
, r) X :=

∑
i∈I f(r′, i) · h(di)

KI :=
∑
i∈I f(K′, i) · f(r′, i) ←−

X,Y
−−−−−−−−−−−− Y :=

∑
i∈I f(r′, i) · ti

Y ′ := KI +K ·X
accept iff Y ′ = Y

Fig. 2: The CWZT Protocol [9].

4.2 A Tag Stealing Attack

Here we introduce an attack where an attacker A who knows one secret tuple (h(dj), tj)
is able to steal all the other historical tags, i.e., {(h(di), ti)}i∈[L],i6=j . In our attack, we
exploit the fact that there is no authentication to the verifier. This fact enables an
attacker masquerading the verifier idC to choose two malicious selection sets I1 and I2
which only differ in one index that is associated with the target token which we want
to steal. In a nutshell, we need two assumptions that (i) A has corrupted the first
authentication key sk1idC,idS

= sk1idS,idC
, and (ii) A learns one secret tuple (h(dj), tj) with

arbitrary index j. Note that this is allowed by the CWZT scheme [9].
In the following, we show how the attacker A steals the i∗-th token (for i∗ ∈ [L] and

i∗ 6= j) holding by prover idS.

– A somehow corrupts sk1idC,idS
and (dj , tj).

– A masquerades as the verifier idC to choose a randomness r and a selection set I1,
such that i∗ /∈ I1 and j ∈ I1.

– A sends (I1, r) to idS in a session, and receives the authentication messages (X1, Y1).
– In another session, A chooses a selection set I2 by replacing the index j with i∗,

and sends (I2, r) to idS in another session, and receives the authentication messages
(X2, Y2).

– A computes r′ := E(sk1idC,idS
, r), f(r′, j), and f(r′, i∗).

– Then A can obtain h(di∗) and ti∗ by Equation 1 and Equation 2 respectively.

By repeating the above attack steps, the attacker can obtain other authentication tokens
as it wishes.
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h(di∗) =
X2 −X1 + f(r′, j) · h(dj)

f(r′, i∗)
(1)

=
(
∑
i∈I1\j f(r′, i) · h(di) + f(r′, i∗) · h(di∗))−

∑
i∈I1\j f(r′, i) · h(di)

f(r′, i∗)
.

ti∗ =
Y2 − Y1 + f(r′, j) · tj

f(r′, i∗)
=

(
∑
i∈I1\j f(r′, i) · ti + f(r′, i∗) · ti∗)−

∑
i∈I1\j f(r′, i) · ti

f(r′, i∗)
. (2)

Attack Discussion. Note that the computation on the authentication proof Y is a lin-
ear combination of the secrets derived from those authentication factors (i.e., ephemeral
key f(r′, i) generated based on the symmetric key sk1idS,idC

and historical tags ti ). How-

ever, the ephemeral keys derived by the first authentication factor sk1idS,idC
cannot provide

any protection for the historical tags in the computation of Y , since sk1idS,idC
might be

corrupted. Hence, the security of those authentication factors should be considered inde-
pendently in the protocol design. Since the verifier (i.e., the client idC) cannot be explicitly
authenticated (within two passes), the selection set I can be malicious which implies that
the the authentication proof Y is generated maliciously as well. Hence, the selection set
should be determined by both parties instead. Based on the above observations, we will
show how to avoid this problem in our HMAKE constructions.

5 HMAKE Security Model

In this section, we define new indistinguishability-based security models for historical
data based multi-factor authenticated key exchange protocols (HMAKE). In these secu-
rity models, we will formulate the security goals that our upcoming HMAKE protocols
can achieve. The new models basically follow from the security models for AKE in lit-
erature, e.g., [2, 22, 31, 11]. In contrast to previous models, we particularly formulate the
authentication factors related to historical data, and the security property regarding
leakage resilience.

Execution Environment. Here we consider an environment where two honest parties
exist, i.e., an honest client idC

∗ and an honest server idS
∗. In the following, we let ID be

a general identity to denote one of the honest parties in {idC
∗, idS

∗}.1 However, we would
allow an adversary to register new malicious clients. The client idC and the server idS

would share a long-term symmetric authentication key sk1idC,idS
as the first authentication

factor. The second authentication key of a client is denoted by sk2idC,idS
(which is used to

verify the authentication message from idS). Besides the first symmetric authentication
factor shared with the client, the server idS would store distinct authentication factors,
i.e., historical data D1 and the corresponding secret historical tags D2, where each piece
of historical data is associated with a secret historical tag. We denote them by sk2idS,idC

=

D1 and sk3idS,idC
= D2 such that skαidS,idC

= (skαidS,idC
(1), skαidS,idC

(2), . . . , skαidS,idC
(L)) for

1 Here we only consider two honest parties for simplicity. Multiple honest parties’ security can
be asymptotically derived from the two-party case.
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α ∈ {2, 3} that comprises of the sub-authentication keys denoted by skαidS,idC
(i) for i ∈

[L], where L ∈ N is the number of the stored historical data. Moreover, each party
also maintains states {csti} denoting the i-th authentication factor corruption status
csti ∈ {exposed, fresh} for i ∈ {1, 2, 3}. For example, if sk2idS,idC

is corrupted, the party

idS must have cstiidS,idC
= exposed. We assume the authentication factors of a party are

stored independently, so that the corruption of a factor does not affect the others. To
emulate the protocol executions, we assume that each party ID can carry out at most
ρ ∈ N sessions that are modeled by a set of oracles {πuID : i ∈ [`], u ∈ [ρ]}. All oracles
can have access to the authentication keys of its owner. Moreover, we assume each oracle
πuID maintains a list of independent internal state variables: (i) ΦuID – session decision
ΦuID ∈ {accept, reject}; (ii) piduID – identity of the intended communication partner;
(iii) Ku

ID – session key of πuID; (iv) TuID – protocol messages orderly sent and received
by πuID. We assume that the session key Ku

ID will be assigned with a non-empty value
if and only if ΦuID = accept. 2

Adversarial Model. To model the power of an active adversary A, we realize A as a
probabilistic polynomial time (PPT) algorithm that can ask the following queries:

– Send(ID, u,m): The adversary can send any message m to the oracle πuID via this
query. Oracle πuID will respond the next protocol message m∗ (if any) to be sent
according to the protocol specification and its internal states. An oracle of the honest
client idC

∗ is initiated via sending the oracle the first message m = > consisting of
a special initialization symbol >. The oracle variables will be updated accordingly
(following the protocol specification) after each Send query.

– RevealKey(ID, u): The oracle πuID responds with the contents of Ku
ID.

– Corrupt1(ID1, ID2): For honest parties (ID1, ID2) ∈ {idC
∗, idS

∗}, this query returns
the first authentication key sk1ID1,ID2

of an honest party ID1, and sets cst1ID1,ID2
=

cst1ID2,ID1
:= exposed.

– Corrupt2(ID1, ID2): For honest parties (ID1, ID2) ∈ {idC
∗, idS

∗}, this query re-
turns the second authentication key sk2ID1,ID2

of an honest party ID1, and sets

cst2ID1,ID2
:= exposed.

– Corrupt3: This query returns the third authentication key sk3idS
∗,idC

∗ , and sets cst3idS
∗,idC

∗ :=
exposed.

– RevealR(ID, u): This query returns the randomness generated by πuID.

– HTLeak(i): This query returns the i-th sub-key sk3idS
∗,idC

∗(i).

– RegClient(idCi, sk
1
idCi,idS

∗ , sk2idCi,idS
∗ , sk2idS

∗,idCi
, sk3idS

∗,idCi
): This query allows the adver-

sary to register malicious clients and authentication keys. If idCi exists, then the old
keys will be replaced with the input ones.

– Test(ID, u): If the oracle πuID has ΦuID 6= accept, then the oracle returns a failure
symbol ⊥. Otherwise, it flips a random bit b, samples a random key K0, and sets
K1 = Ku

ID. Finally, the key Kb is returned. We call the oracle πuID in this query as
a test oracle.

2 Note that, throughout the paper, the superscript u of an oracle or a state of an oracle is the
index of the oracle, while the other superscripts are 1, 2 or 3 (e.g. sk1idC,idS

, sk2idC,idS
, and sk3idC,idS

)
denoting which authentication factor it is referring to. The subscript always represents the
ID of a user.
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Secure HMAKE Protocols. We first review a notion called matching conversations
that was first introduced in [2] to formulate the relation between two sessions. We will
use a variant that is refined in [26].

Matching Conversations. An oracle πuID is said to have a matching conversation to an
oracle πvpidu

ID
, if either (i) πuID has sent all protocol messages and T vpidu

ID
is a prefix of

TuID, or (ii) πvpidu
ID

has sent all protocol messages and TuID is a prefix of T vpidu
ID

. We also

call πvpidu
ID

meeting all above conditions to be the partner oracle of πuID.

Correctness. We say a HMAKE protocol Π is correct, if two accepted oracles πuidC
∗ and

πvidS
∗ have matching conversations, then both oracles should generate the same session

key.
We will use the variable MN ∈ {FS,woFS} to denote the HMAKE security either with

PFS (Perfect Forward Secrecy) or without PFS (woFS). In the following, we present a
unified security experiment with/without FS based on MN. For a HMAKE protocol
without PFS, we only define static historical tag leakage, explicit authentication for the
server, and the implicit authentication for the client. However, for a HMAKE protocol
with PFS, we define mutual explicit authentication and adaptive historical tag leakage.
HMAKE Security Experiment (Π,MN): A challenger C will play a game with an ad-
versary A based on a target HMAKE protocol Π and the security variable MN. In the
initialization phase of the game, C first implements a collection of oracles {πuID : ID ∈
{idC

∗, idS
∗}, u ∈ [ρ]} for the honest client idC

∗ and the honest server idS
∗ respectively.

All authentication keys are generated according to the protocol specifications. C gives
the adversary A all identities as input. There are two phases in the game, and in each
phase, distinct queries can be asked. In the first phase, A is allowed to ask queries to
HTLeak, to model static historical tag leakage. A can send C a symbol ` to switch to
the next phase. In the second phase, A can ask a polynomial number of queries to Send,
Corrupt1, Corrupt2, Corrupt3, RevealKey, RevealR, and RegClient. If MN = woFS, the
HTLeak query is not allowed in the second phase. However, if MN = FS, the adversary
can query HTLeak in this phase to model adaptive leakage. During the second phase, A
may issue a Test(ID, u) query at most once. After the Test query, A can keep asking
other queries as it wishes. Eventually, A may terminate and output a bit b′ as its guess
for b in the Test query.

The difference between static and adaptive historical tag leakage is whether HTLeak
query is allowed in the second phase of the above security experiment. We give a for-
mulation of full corruption (of a party) as follows, so that the partial corruption is its
complement.

Full Corruption. We define the full corruption of a party ID ∈ {idC, idS} via a func-
tion FullC which takes as input two identities (idC, idS) and the number ql of HTLeak
query that is allowed, and outputs 1 to denote full corruption of ID and 0 otherwise.
FullC(ID, idC, idS, ql) = 1 if one of the following conditions holds:

1. idC was taken as input to any RegClient query;
2. cst1idC,idS

= cst2idC,idS
= exposed;

3. cst1idS,idC
= cst2idS,idC

= cst3idS,idC
= exposed;

4. cst1idS,idC
= cst2idS,idC

= exposed and A queried more than ql HTLeak queries;

5. ID = idC and cst1idS,idC
= cst3idS,idC

= exposed;

6. ID = idC, cst1idC,idS
= exposed and A queried more than ql HTLeak queries.
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The last two conditions are added because idC has one less authentication factors than
idS. Basically, we intend to model the authentication for a specific party ID ∈ {idC, idS}
when FullC(ID, idC, idS, ql) = 0.

In the following security definition, we let ID∗ denote the party that is submitted

to the Test query, and let ĨD∗ denote the identity that is required to provide explicit

authentication. That is, ĨD∗ denotes idS
∗ when MN = woFS, and ĨD∗ denotes either

idS
∗ or idC

∗ when MN = FS.

Definition 2 (HMAKE Security). We say a PPT adversary A (t, ε, ql,MN)-breaks
an HMAKE protocol Π in the security experiment with MN, if A runs in time t, and
one of the following conditions is satisfied:

– Authentication: When A terminates, then with probability ε there exists an oracle
πu
ĨD∗

such that

• FullC(ĨD∗, ĨD∗, piduĨD∗ , ql) = 0 when πu
ĨD∗

accepts, and

• πu
ĨD∗

has no unique partner oracle at the party piduĨD∗ .
We say that πu

ĨD∗
accepts maliciously if it accepts satisfying the above conditions.

– Key Exchange: When A terminates and outputs a bit b′, and
• A asked a Test(ID∗, u) query without failure, and
• if MN = woFS then FullC(ID∗, ID∗, piduID∗ , ql) = 0 and FullC(piduID∗ , ID

∗, piduID∗ , ql) =
0, and
• if MN = FS then FullC(ID∗, ID∗, piduID∗ , ql) = 0 and FullC(piduID∗ , ID

∗, piduID∗ , ql) =
0 when πuID∗ accepts, and
• A neither asked RevealKey(ID∗, u) nor RevealR(ID∗, u), and
• if πvpidu

ID∗
is a partner oracle of the test oracle πuID∗ , A queried either RevealKey(piduID∗ , v)

or RevealR(piduID∗ , v),
and then the probability b′ equals to the bit b sampled in the Test query satisfies
|Pr[b′ = b]− 1/2| ≥ ε. We say that A answers the session-key-challenge correctly if
b′ = b and all the above conditions are met.

We say that an HMAKE protocol is (t, ε, ql,MN)-secure, if there exists no PPT ad-
versary that (t, ε, ql,MN)-breaks it.

6 An Efficient HMAKE Protocol

In this section, we develop an efficient HMAKE Protocol in the random oracle model
denoted by ΠwoFS. The main construction idea of ΠwoFS is to directly use authentication
factors to derive a session key.

Protocol Description. Let Zp be a cyclic group with a prime order p that has a bit-
length `p, and Z∗p = Zp/{0}. In our protocol, we need a cryptographic hash function
h : {0, 1}∗ → Zp. We assume that the server chooses a uniform salt χidS

for each client to
randomize the hash function, which is implicitly used as input of h. Let `r be a bit-length
defining a randomness space. In our protocols, the historical data is considered as one
of the authentication factors, so we assume it to be unpredictable and have some min-
entropy3. As stated in [4], any unpredictable string (regardless of its min-entropy) with

3 As a validation of this assumption, we evaluated the min-entropy of sensor measurements in
real industrial control systems based on one dataset of the operations of a real-world water
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bit-length that is larger than `p, in the random oracle model, can be used to extract an
unpredictable `p-bit uniform random string in Zp. To avoid the leakage of historical data
and tags being over the security threshold, we adopt a sliding window alike approach.
We let SI be an set with size L, which stores the indices of historical data and tags that
will be used for authentication and key exchange. We assume that the indices in SI can
be used at most φ times, so once they have been use φ times, we will refresh SI with the
next L unused historical data and tags from (D1,D2).

client idC server idS

Initialization

sk1idC,idS
= mk

$← {0, 1}κ −
sk1idC

−−−−−−−−−−−−−→ sk1idS,idC
:= sk1idC,idS

sk2idC,idS
= K

$← Z∗p secure channel sk2idS,idC
= D1 = ∅

cnt := 0 sk3idS,idC
= D2 = ∅

Tag Generation: for the i-th data

ki := h(K||i) −
i, di, ti

−−−−−−−−−−−−−→
ti := K · h(di||i) + ki secure channel

cnt := cnt+ 1 store (i, ti)→ D2

Online Authentication and Key Exchange
Sample z distinct random indices: Sample z distinct random indices:

IC = (i1, i2, . . . , iz)
$← SI IS

$← SI\IC

r1
$← {0, 1}`r −

IC , r1
−−−−−−−−−−−−−→ r2

$← {0, 1}`r

I = IC ∪ IS ←−
IS , r2, X,M
−−−−−−−−−−−−− I = IC ∪ IS

sid := idC||r1||idS||X||r2||I for i ∈ I: (h(di||i), ti)← D1&D2

KI :=
∑
i∈I h(K||i) X :=

∑
i∈I h(di||i)

Y ′ := KI +K ·X Y :=
∑
i∈I ti

M ′ := h(mk||Y ′||sid||‘Auth’) sid := idC||r1||idS||X||r2||I
reject if M 6= M ′ M := h(mk||Y ||sid||‘Auth’)

accept Ks := h(mk||Y ′||sid||‘SeK’) accept Ks := h(mk||Y ||sid||‘SeK’)

Fig. 3: An Efficient HMAKE Protocol ΠwoFS.

The protocol ΠwoFS running between a client idC and a server idS is shown in Fig. 3,
which consists of three phases described below.

– Initialization. In this phase, the client idC and the server idS first randomly generate

a symmetric authentication key sk1idC,idS
= sk1idS,idC

:= mk
$← {0, 1}κ which is used as

the first authentication factor. The second authentication factor of idC is randomly

chosen as sk2idC,idS
= K

$← Z∗p, whereas the second and third authentication factors

of idS are initialized (temporarily) with empty sets (sk2idS,idC
, sk3idS,idC

) = (D1,D2) =
(∅, ∅). However, we assume that before the protocol is running in practice, the client
should generate enough authentication tokens for the server with random data via
the following tag generation procedure.

treatment system [23]. The min-entropy of each individual sensor data is in the range between
5.518 and 8.848.
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– Tag Generation. When the client idC sends a data di to the server idS, idC would
compute an authentication tag ti based on sk2idC,idS

= K. Each tag is generated as
ti := K · h(di||i) + ki (mod p), where ki := h(K||i). After the tag is generated, idC

would locally increase the tag counter cnt by one, and the tuple (i, di, ti) is sent to idS

over a secure channel. Then idS privately stores the tuple (i, di, h(di||i)) → D1 and
(i, ti)→ D2, i.e., sk2idS,idC

(i) = (i, di, h(di||i)) and sk3idS,idC
(i) = (i, ti). Meanwhile, the

secure channel might be established by out-of-band mechanism (at the initialization
phase) or the session key established during the following online authentication and
key exchange phase.

– Authentication and Key Exchange Phase. The client idC and the server idS

would interactively run the authenticated key exchange protocol online to generate
a session key Ks as shown in Fig. 3. The established session key will be used to
protect the underlying data and tag transmission. During this phase, both parties

would first respectively exchange two random nonces r1, r2
$← {0, 1}`r , and two ran-

dom index selection sets (IC , IS) with z distinct random indices in each set, where

IC
$← SI and IS

$← SI\IC . Let I = IC ∪ IS . Next, idS makes use of its historical data
(indexed by I) to compute a message X :=

∑
i∈I h(di||i) (mod p), and an interme-

diate secret Y :=
∑
i∈I ti (mod p). In our scheme, the hash values of data are not

secrets. Next, Y is used as a secret seed to generate the authentication message
M := h(mk||Y ||sid||‘Auth’) and the final session key Ks := h(mk||Y ′||sid||‘SeK’),
where sid is the session identifier concatenating the protocol messages and identities
of participants. The messages (X,M) are sent to idC for authentication. To ver-
ify M , idC computes KI :=

∑
i∈I h(K||i) (mod p), Y ′ := KI + K · X (mod p), and

M ′ := h(mk||Y ′||sid||‘Auth’). If M ′ 6= M then idC rejects the session. Otherwise, it
generates the session key as idS. We assume that two parties synchronize a variable
ξ which stores the times of the selection set SI that has been used. If ξ = φ then all
indices in SI plus L.

Construction Discussions. To improve upon the CWZT protocol, we modify and
add several critical steps to fix the vulnerabilities of the CWZT protocol and achieve
the HMAKE functionality. We highlight our main differences with the state-of-the-art
CWZT protocol [9] below.

– Security improvement for authentication. In Section 4, we have shown an attack to
subvert the leakage resilient security property of the CWZT scheme, that an attacker
who corrupts the first authentication factor and one piece of data and its tag can then
steal all other secret tags. To circumvent this attack, the server in ΠwoFS contributes
a random set IS , such that the subset of selected historical data is determined by
both parties (see Fig. 3), instead of only relying on the client.

– New session key exchange feature. Unlike the CWZT protocol, our protocol realizes
the full-fledged authenticated key exchange (achieving both authentication and ses-
sion key security goals). Our protocol enables both parties to establish a session key
for securely transmitting the new authentication factors (i.e. data and its tags), so
that the historical data based authentication and key exchange make sense.

– Other security considerations. We consider data and its tag as distinct authentication
factors, because they are stored separately. The adversary who then only corrupts
either the tags or the data cannot actively impersonate as the server to the client.
For instance, if the adversary does not know the data then it is unable to generate
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a valid X to make the client accept M . Moreover, unlike the CWZT protocol, each
party should contribute a nonce ri (for i ∈ {1, 2}) so that the session identifier is
unique in each session to resist replay attacks.

– Performance improvement. Unlike the CWZT protocol, our protocol does not derive
many session specific ephemeral keys from the first authentication factor to protect
Y . Since Y is protected by a hash function in our scheme, we could simplify its
computation to achieve better performance. As a result, we roughly save 3× hash
operations comparing to the CWZT protocol, although we provide an additional key
exchange functionality.

Limitations. Nevertheless, one of the limitations of ΠwoFS is that it cannot provide
forward secrecy, when all secrets used to compute a session key Ks are compromised
from either player. If the client is not fully corrupted, then along with the growth of the
second authentication factor, the newly generated session key depending on the selection
set (which is chosen from an increasingly larger range) can still be secure. As we will show
in the security proof that the probability regarding the event: all indices of a selection set
chosen in a session are compromised by the adversary before, is negligible with a proper
choice of z (e.g., z = 161 for 128 bits security). Thus, the attacker needs to either keep
stealing the second and third authentication factors or try to compromise the client’s
device which might be located in a more physically secure place in CPSs.

Another limitation of ΠwoFS is that it can only satisfy static historical tag leakage.
When the HTLeak query can be asked adaptively, the adversary will be able to ask
HTLeak queries with indices appeared in the Test query to break the session key security.
In addition, if the adversary obtained more than ql tags, then the key exchange security
is jeopardized since the session key is derived from those tags. This limitation of ΠwoFS

is caused by the side-effect of using the secret tags for both authentication and key
exchange features.

Theorem 1. Suppose that the hash function h is modeled as a random oracle that
can be asked at most qh times, and each data piece is unpredictable. Then ΠwoFS is

(t′, εΠwoFS
, ql,woFS)-secure with t′ ≤ t, φ ≤ ql, and εΠwoFS

≤ ρ2

2`r−1 + 14ρ · ( ql
L−z )z +

(14ρ+22+6L)·qh
2`p

.

Security Analysis. We divide adversaries into two categories to analyze the authentica-
tion and key exchange respectively: (i) Authentication-adversary can succeed in making
an oracle accept maliciously; (ii) Session-Key-adversary is able to answer the session-
key-challenge correctly.

To prove Theorem 1, we present two lemmas. Each analyzes one of the security
properties of the proposed protocol. Specifically, Lemma 1 bounds the success probability
εauth of authentication-adversaries, and Lemma 2 bounds the success probability εskey of
session-key-adversaries. Then we have εΠwoFS

≤ εauth + εskey.

The full proof of Theorem 1 is given in Appendix A. In the following, we just present
the outline of the proof.

Lemma 1. For any adversary A running in time t′ ≈ t, the probability that there exists

an oracle Πu
idC
∗ that accepts maliciously is at most εauth ≤ ρ2

2`r
+ 6ρ · ( qlL )z + (6ρ+9+3L)·qh

2`p
.
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The proof of this lemma has three main steps. First, we exclude the collision among

the random nonces, which occurs with negligible probability ρ2

2`r
due to the birthday

paradox. Let S be the set of indices that are submitted to the HTLeak query. Then, in
a second step, when the third authentication factor is not corrupted (which occurs with
probability 1/3 since there are 3 authentication factors), then the probability that an
oracle πuidC

∗ accepts maliciously and sends out a selection set I∗C such that I∗C ⊆ S is about

1− (Pr[I∗C ⊆ S])ρ = 1− (1− ( qlL )z)ρ < ρ · ( qlL )z. This implies that at least one factor of a
party, which is not fully corrupted, is not known by the adversary. Hence, the adversary
is only able to break the security of the protocol by its random guesses.

Lemma 2. For any adversary A running in time t′ ≈ t, the probability that there exists

an adversary A which answers session-key-challenge correctly is at most εskey ≤ ρ2

2`r
+

8ρ · ( ql
L−z )z + (8ρ+13+3L)·qh

2`p
.

The proof of this lemma mainly relies on the authentication security and the compro-
mised secret tags. The key issue here is whether the adversary knows all secret tags used
to compute the session key of the test oracle. Note that the adversary can only manipu-
late the selection set of the client IC which is not authenticated. Hence, the probability
that the selection set I∗S used by the test oracle such that I∗S ⊆ S is about ρ ·( ql

L−z )z which
can be negligible with proper parameters.

7 A HMAKE Protocol with Stronger Security

In this section, we propose an HMAKE protocol called ΠFS, which overcomes the lim-
itations of ΠwoFS. The idea of the construction of this protocol is to make use of the
authentication procedure as a compiler to transform a general passively secure two-
message key exchange protocol to achieve HMAKE security. To realize our idea, we need
to add one more authentication message to achieve mutual explicit authentication for
both parties. Comparing with ΠwoFS, the protocol ΠFS can achieve not only PFS but
also the resilience of adaptive historical tag leakage. Also, ΠFS can still guarantee au-
thentication and key exchange security when all tags are corrupted but the historical
data is not corrupted. It is because that the session key in ΠFS does not depend on the
tags anymore.

Protocol Description. In this protocol, one more primitive is needed, i.e. a TKE pro-
tocol with parameters pms← TKE.Setup(1κ). We assume that the randomness space of
TKE is RTKE = {0, 1}`r . We depict the protocol ΠFS in Fig. 4.

Theorem 2. Suppose that the hash function h is modeled as a random oracle that can
be asked at most qh times, each data piece is unpredictable, and the two-message key
exchange protocol TKE is (t, εTKE)-passively-secure. Then ΠFS is (t′, εΠFS

, ql,FS)-secure

with t′ ≤ t, φ ≤ ql, and εΠFS
≤ ρ2

2`r−1 + 18ρ · ( ql
L−z )z + (18+6L+18ρ)·qh

2`p
+ 2ρ · (2ρ+ 2) · εTKE.

Similarly, we prove Theorem 2 via the following two lemmas.
To prove Theorem 2, we present two lemmas. Lemma 3 bounds the success probability

εauth of authentication-adversaries, and Lemma 4 bounds the success probability εskey of
session-key-adversaries. Then we have εΠFS

≤ εauth + εskey.
In the following, we just present the outline of the proof.
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client idC server idS

The Initialization and Tag Generation phases are identical to those of ΠwoFS

Online Authentication and Key Exchange
Sample z distinct random indices: Sample z distinct random indices:

IC = (i1, i2, . . . , iz)
$← SI IS

$← SI\IC
r̃1

$← {0, 1}`r r̃2
$← {0, 1}`r

m1 ← TKE.MSG(idC, r̃1, ∅) −
IC ,m1

−−−−−−−−−−−−−→ m2 ← TKE.MSG(idS, r̃2,m1)

I = IC ∪ IS ←−
IS , X,m2,M2
−−−−−−−−−−−−− I = IC ∪ IS

sid := idC||idS||X||m1||m2||I for i ∈ I: (h(di||i), ti)← D1&D2

KI :=
∑
i∈I h(K||i) X :=

∑
i∈I h(di||i)

Y ′ := KI +K ·X Y :=
∑
i∈I ti

M ′2 := h(mk||Y ′||sid||‘Auth’||2) sid := idC||idS||X||m1||m2||I
reject if M2 6= M ′2 M2 := h(mk||Y ||sid||‘Auth’||2)

Kke ← TKE.SKG(idC, r̃1, idS,m2) M ′1 := h(mk||Y ||sid||‘Auth’||1)

M1 := h(mk||Y ||sid||‘Auth’||1) −
M1

−−−−−−−−−−−−−→ reject if M1 6= M ′1
Kke ← TKE.SKG(idS, r̃2, idC,m1)

accept Ks := h(Kke||sid) accept Ks := h(Kke||sid)

Fig. 4: An HMAKE Protocol ΠFS with Perfect Forward Secrecy.

Lemma 3. For any adversary A running in time t′ ≈ t, the probability that there ex-

ists an oracle Πu
ID∗ that accepts maliciously is at most ρ2

2`r
+ 2ρ · εTKE + 9ρ · ( ql

L−z )z +
(9+3L+9ρ)·qh

2`p
.

Lemma 4. For any adversary A running in time t′ ≈ t, the probability that there exists

an adversary A which answers session-key-challenge correctly is at most ρ2

2`r
+9ρ·( ql

L−z )z+
(9+3L+9ρ)·qh

2`p
+ 2ρ · (2ρ+ 1) · εTKE.

Basically, the proof of this theorem can be extended from the proof of Theorem 1. We
outline our proof idea as follows. In contrast to ΠwoFS, ΠFS can provide mutual explicit
authentication. The authentication message M1 sent from the client is computed in a
similar way as M in ΠwoFS and M2 in ΠwoFS, therefore we can reduce the authentication
security regarding M1 in a similar way as the proof of Theorem 1 when the tags leakage
is below a threshold. The advantage of an adversary A breaking the authentication of
ΠFS is twice of breaking the authentication of ΠwoFS. Also, the random values r1 and
r2 in ΠwoFS are replaced with m1 and m2 in ΠFS, because of the security of the TKE
protocol [30, Lemma1].

Moreover, if there is no adversary that can break the authentication property of ΠFS,
then there would be only passive adversary between the test oracle and its partner oracle
(which must exist due to the explicit authentication messages M1 and M2). This fact
enables us to reduce the key exchange security of ΠFS to the security of TKE. We present
the specific security reduction in Appendix B.
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8 Security Enhancement for Legacy Devices

In this section, we show an important practical aspect of our HMAKE protocols, i.e. they
are able to strengthen the security of existing legacy devices without modifying them.

Here we consider a legacy device that has a symmetric key mk shared with the server
(i.e., the first authentication factor in our scheme)4. A common (toy) AKE solution
deployed on a legacy device might be like that two parties generate the session key
(or the authentication message) in a form Ks := h(mk, rC ||rS ||aux), where rC and rS
are nonces selected by the client and the server respectively (in the toy AKE scheme),
and aux may contain other protocol messages if any (e.g., Diffie-Hellman public keys).
Our HMAKE protocols can be simply adapted to enhance the security of such a legacy
device with the above toy AKE without modifying its original operations. To deploy our
protocol, a separate secure device, storing the tag key K of the client, is directly and
securely connected to the legacy device (e.g., via local LAN cables). After the new device
executes our HMAKE protocol steps except the session key generation, it only needs to
send the secret hash value H(Y ||sid||‘SeK’) to the legacy device as the rS in the toy
AKE scheme. The server can compute the same session key in the exactly same way.
Meanwhile, we can choose to drop the explicit authentication message M in our protocol
depending on whether the legacy protocol has explicit message authentication steps5.

To apply the above security enhancement in practice, we only need to check whether
the legacy device runs an AKE protocol (or its variant – Authenticated Confidential
Channel Establishment [31]) in the above form of toy example. One famous protocol in-
stance meeting our requirement is the Transport Layer Security (TLS) Protocol with pre-
shared key cipher-suits [15, 34, 31, 17] which are proposed for power-constrained devices
(such as EMV card [33]). For example, our first protocol ΠwoFS can be used to enhance
the security of TLS PSK, and the second protocol ΠFS is suitable for TLS DHE PSK,
where TLS PSK uses only symmetric key (PSK) for authentication, and TLS DHE PSK
uses a Diffie-Hellman exchange authenticated with a pre-shared key. Besides, the TLS
protocols have explicit authentication steps.

9 Implementation and Experimental Results

Implementation Parameters. We consider the upper-bound of the sessions of each
party to be ρ = O(230) in practice, ql

L−z ≈ 1/2, qh = 230 and L = 215. In the following,
we list the parameters used in our implementation of ΠwoFS and ΠFS based on the
corresponding security levels: (i) for the security level κ = 80, we use `r = 141, z = 113,
`p = 145 for ΠwoFS, and `p = 224 for ΠFS; (ii) for the security level κ = 128, we use
`r = 189, z = 161, `p = 193 for ΠwoFS, and `p = 320 for ΠFS.

4 In case the legacy devices do not have an AKE built in, it becomes trivial for us to enhance
their security. We can simply add a new device like what the authors did in [5] to intercept
the traffic of legacy devices and run the complete HMAKE protocols with the server. This is
still legacy-compliant. However, the practical difficulty is how to be compatible with legacy
devices which run common AKE protocols.

5 The CWZT scheme is not legacy-compliant since the computation of Y needs two authenti-
cation factors, so it should be deployed in one device where both authentication factors are
stored together.
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Experiments Setup. We used one PC (with Intel Core i7-8750H processor) as a server,
and a Raspberry Pi 3 (with Quad Core 1.2GHz Broadcom BCM2837 CPU and 1GB
RAM) is taken as a client. Our implementation is based on MIRACL cryptographic li-
brary [32], where the hash function used is SHA256 in ΠwoFS and SHA384 in ΠFS , and
the TKE protocol used in our second protocol is the Diffie-Hellman key exchange protocol
based on the standard elliptic curve (over GF (p)) provided by MIRACL. Performance

Evaluation. We first measured the tag generation time on the client. It takes 0.55 ms
per tag, assuming data size is 1KB. Also, we measured the time consumed by the authen-
tication protocol and the key generation procedure separately on both the server and
the client. The performance is reported in milliseconds in Table 1; ‘KE’ denotes the time
for ephemeral key and the session key generations, and ‘Auth’ denotes the performance
of all other steps in authentication. The performance bottleneck is clearly on the client
side, because it is a resource-constrained embedded system device, and it needs 2z hash
operations for one authentication. However, even for 128 bits security, the performance
of the client in ΠwoFS is only 24.695 ms, which is efficient enough to be deployed in
real-world applications.

ΠwoFS ΠFS

Server Client Server Client

Auth 0.137/0.213 17.184/24.336 1.986/4.056 65.561/82.795

KE 0.030/0.045 0.299/0.359 1.827/3.879 54.530/69.842

Table 1: The performance of the proposed HMAKE protocols for (80-bit security/128-bit
security), measured in ms.

10 Conclusions and Open Problems

In this paper, we have shown two ways to build multi-factor AKE protocols based on
historical data in the random oracle model. The proposed protocols are efficient enough
for resource-constrained devices in CPS or IoT. In particular, the first protocol only
requires a few hash operations on the client. One open problem worth solving in the
future is how to construct a HMAKE protocol in the standard model. Its challenge is to
generate a pseudo-random seed from the authentication tags.
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A Proof of Theorem 1

The proof of Theorem 1 has two parts: (i) the proof of Lemma 1 for authentication
security, and (ii) the proof of Lemma 2 for key exchange security.

A.1 Proof of Lemma 1

In the following, we show the proof of Lemma 1 in a sequence of games. Let Sauthi denote
an event that there exists an authentication-adversary wins in Game i.
Game 0. This game equals the real security experiment described in Section 5. Mean-
while, all oracle queries are answered honestly according to our protocol specification.
Thus, we have that

Pr[Sauth0 ] = εauth.

Game 1. In this game, the challenger C proceeds exactly like the previous game, but
adds an abort rule to all Send queries that it aborts if: two oracles generate the same
nonce (i.e., either r1 or r2). Note that there are ρ oracles at each honest party. By
applying the birthday paradox, we have that

Pr[Sauth0 ] ≤ Pr[Sauth1 ] +
ρ2

2`r
.

Due to the modification in this game, each session identifier sid including r1||r2 is uniquely
shared with its partner oracle. The unique sid ensures the uniqueness of each authenti-
cation message M generated involving sid is unique as well (even though the selection
set I has collision).
Game 2. Note that the adversary can choose to corrupt either the first authentication
factor or the second authentication factor, but not both of them. Hence we need to
proceed with the proof following one of the following corruption cases:
– Corruption Case 1: A did not ask any Corrupt1(·) query;
– Corruption Case 2: A did not ask any Corrupt2(·) query;
– Corruption Case 3: A did not ask any Corrupt3(·) query, and A asked no more than
ql queries to HTLeak(3, ·).

In this game, C guesses which the above corruption case would occur. If C guesses incor-
rectly, then it halts the game. The probability that C succeeds in guessing the corruption
case is bounded by 1/3. Thus, we have that

Pr[Sauth1 ] = 3 · Pr[Sauth2 ].

Game 3. Let S be the set of indices that are submitted to the HTLeak query. In this
game, when the corruption case 2 or case 3 occurs, then we add an abort rule: C aborts
if there is an oracle πuidC

∗ which accepts maliciously and sends out a selection set I∗C such
that I∗C ⊆ S (which means all secrets associated with indices in I∗C are leaked). Note that
the size of I∗C is z and the size of S is ql >> z. We bound the probability

Pr[I∗C ⊆ S] =

(
ql
z

)(
L
z

) < (
ql
L

)z.
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Let abortauthMS denote the event that C aborts in this game. Since there are at most ρ
oracles at idC

∗ we have that

Pr[abortauthMS ] = 1− (Pr[I∗C ⊆ S])ρ

= 1− (1− (
ql
L

)z)ρ < ρ · (ql
L

)z,

with sufficient large z. Therefore, we have that

Pr[Sauth2 ] = Pr[Sauth3 ] + Pr[abortauthMS ] < Pr[Sauth3 ] + ρ · (ql
L

)z.

Note that here we only consider the selection set I∗C not IS since IS might be chosen
by the adversary in an impersonation attack. If C does not abort in this game, then it
implies that each session must choose a I∗C containing at least one uncompromised index
when most of the secret tags are uncompromised.
Game 4. In this game, C aborts if one of the uncompromised secrets (which could be
any factors) is asked by the adversary A in a random oracle query. This implies A knows
the uncompromised secret. Note that the input of each hash operation is unique (by
assumptions) that would result in a unique random hash value. To learn an uncompro-
mised secret, an adversary may test many random oracle queries with its own inputs.
Specifically, C aborts if and only if one of the following condition holds:

– When the corruption case 1 occurs, sk1idC
∗,idS

∗ is asked by A in a random oracle query;
– When the corruption case 2 occurs, either K of idC

∗ or one of the uncompromised
data pieces is asked by A in a random oracle query.

– When the corruption case 3 occurs, either K of idC
∗ or one of the uncompromised

tags is asked by A in a random oracle query.

Since each data piece is not known by the adversary (under the corruption case 2) and
unpredictable, and all the confidential secretes {K, di, sk1idC

∗,idS
∗} are chosen uniformly

at random with bit-length at least `p, and A can only guess them with qh trials in
conjunction with her random oracle queries. Thus we have that

Pr[Sauth3 ] = Pr[Sauth4 ] +
(3 + L)qh

2`p
.

Game 5. C proceeds this game exactly as before, but aborts if an oracle πuidC
∗ such that

FullC(idC
∗, piduidC

∗) = 0 (throughout the game) received an Xu
idC
∗ which is not sent from

its partner oracle. As each selection set SI is only used for φ ≤ ql times, the maximum
hashed data h(di||i) leaked from X is bound to ql. With the similar argument in the
Game 3, we have that the Xu

idC
∗ should be computed involving a secret value h(d∗i ||i∗)

that is not compromised (under the corruption case 2) with probability ρ · ( qlL )z. Since
Xu

idC
∗ is computed based on the distinct selection set SI and uniform random hash values

(due to the random oracle queries with unique inputs), each Xu
idC
∗ is unique as well. So

that Xu
idC
∗ cannot be forged or replayed with non-negligible probability. Namely, A can

only randomly guess Xu
idC
∗ . Hence, we have that

Pr[Sauth4 ] ≤ Pr[Sauth5 ] + ρ · (ql
L

)z +
ρ · qh
2`p

.



Multi-factor Authenticated Key Exchange from Historical Data 23

Game 6. In this game, C aborts if A asked a random oracle query with the value Y uidC
∗ of

an oracle πuidC
∗ such that FullC(idC

∗, piduidC
∗) = 0 throughout the game. Recall that Y uidC

∗

should be computed involving a secret tag ti∗ with index i∗ that has not been submitted
to the HTLeak query. Furthermore, Y uidC

∗ is hidden by the hash function. Hence, A who
does not know ti∗ cannot compute Y uidC

∗ (respectively) due to the modification in the
previous game. So that A can only randomly guess Y uidC

∗ . Analogously, we have that

Pr[Sauth5 ] = Pr[Sauth6 ] +
ρ · qh
2`p

.

Game 7. In this game, for each oracle πuidC
∗ such that FullC(idC

∗, piduidC
∗ , ql) = 0, πuidC

∗

rejects if it receives a message which is not sent by its partner oracle having a matching
conversation to πuidC

∗ . Since A cannot compute Y uidC
∗ used by πuidC

∗ for verification, it is
unable to distinguish this game from the previous game. Thus the advantage of A in this
game is zero.

Summing up the probabilities in all the above games, we have the result of Lemma 1.

A.2 Proof of Lemma 2

Let Skei denote an event that there exists a session-key-adversary answers the session-
key-challenge correctly in Game i. The proof of this lemma is quite similar to the proof
of Lemma 1. We may omit some similar details to avoid repetition. We show the proof
of this lemma by the following games.
Game 0. This game equals the real security experiment described in Section 5. We
have that

Pr[Ske0 ]− 1/2 = εskey.

Game 1. In this game, C aborts if the owner of the test oracle πuID∗ such that ID∗ =
idC
∗, FullC(ID∗, piduID∗ , ql) = 0, and πuID∗ accepts without a partner oracle at piduID∗ .

Due to the authentication property of the protocol, we have that

Pr[Ske0 ] = Pr[Ske1 ] + εauth.

Hence, if the owner of the test oracle is the honest client then it must have a matching
conversation at the server.
Game 2. In this game, C would guess in advance which corruption case will occur to
the test oracle and its partner oracle. Note that the corruption case 3 will never occur
by the security definition. C aborts if it guesses incorrectly. Thus we have

Pr[Ske1 ] = 2 · Pr[Ske2 ].

Game 3. Recall that S is assumed to be the set of indices that are submitted to the
HTLeak query. We add an abort rule: C aborts if the test oracle’s owner is idS

∗ and πuidS
∗

sends out a selection set I∗S such that I∗S ⊆ S. Note that the I∗S is chosen from SI\IC∗ ,
where IC∗ is the selection set received by πuidS

∗ (that may be chosen by A). Similarly, we
bound the probability

Pr[I∗S ⊆ S] =

(
ql
z

)(
L−z
z

) < (
ql

L− z
)z.
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Let abortkeMS denote the event that C aborts in this game. Therefore, we have

Pr[Ske2 ] = Pr[Ske3 ] + Pr[abortkeMS ] < Pr[Ske3 ] + ρ · ( ql
L− z

)z.

Game 4. In this game, C aborts if one of the uncompromised secrets is asked by the
adversary A in a random oracle query. Thus we have that

Pr[Ske3 ] = Pr[Ske4 ] +
2qh
2`p

.

Game 5. In this game, C aborts if A asked a random oracle query with the value
Y uID∗ of the test oracle πuID∗ such that FullC(ID∗, piduID∗) = 0 (throughout the game).
Therefore, we have that

Pr[Ske4 ] = Pr[Ske5 ] +
ρ · qh
2`p

.

Game 6. We replace the session key of the test oracle and its partner oracle (if any)
with a truly random key that is independent of the bit chosen by the test oracle. Thus
the adversary gains no advantage in this game, i.e.,

Pr[Ske5 ] = Pr[Ske6 ] = 0.

Summing up the probabilities in the above games, we obtain the result of Lemma 2.

B Proof of Theorem 2

The proof of Theorem 2 consists of the proof of Lemma 3 and the proof of Lemma 4.

B.1 Proof of Lemma 3

Let Sauthi denote an event that there exists an authentication-adversary wins in Game i.
Game 0. This game equals the real security experiment described in Section 5. We
have that

Pr[Sauth0 ] = εauth.

Game 1. In this game, the challenger C proceeds exactly like the previous game, but
aborts if two oracles generate the same randomness (i.e., either r̃1 or r̃2). Due to the
birthday paradox, we have that

Pr[Sauth0 ] ≤ Pr[Sauth1 ] +
ρ2

2`r
.

So that each invocation of TKE.MSG takes as input a unique randomness.
Game 2. In this game, C proceeds as the previous game, but aborts if two oracles
generate the same ephemeral public key of TKE (i.e., either m1 or m2). Let εcoll note the
event that two oracles have the identical ephemeral public keys. From [30, Lemma1], we
have that if TKE is (t, εTKE)-passively-secure without long-term key, then all ephemeral
public keys generated by TKE.MSG in the runs of TKE are (ρ, t, εcoll)-distinct such that
εcoll ≤ ρ · εTKE. Since there are two honest parties and each party has ρ oracles, we have
that

Pr[Sauth1 ] ≤ Pr[Sauth2 ] + 2ρ · εTKE.
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As a result, each session identifier sid including m1||m2 is uniquely shared with its partner
oracle.
Game 3. In this game, C guesses which the corruption case would occur (as in the
proof of Lemma 1). C aborts if it fails in such a guess. The probability that C succeeds
in guessing the corruption case is bounded by 1/3. Thus, we have that

Pr[Sauth2 ] = 3 · Pr[Sauth3 ].

Game 4. Let S be the set of indices that are submitted to the HTLeak query. In this
game, when the corruption case 2 or case 3 occurs, then C aborts if there is an oracle
πuID∗ which accepts maliciously and sends out a selection set I∗P such that I∗P ⊆ S (which
means all secrets associated with indices in I∗P are leaked), where P ∗ ∈ {C, S}. Note that
I∗P is chosen from an index set with size at least L − z. As in Game 3 in the proof of
Lemma 1, We bound the probability

Pr[I∗P ⊆ S] =

(
ql
z

)(
L−z
z

) < (
ql

L− z
)z.

Since there are at most 2ρ such honest selection sets (for either prover or verifier)
would be chosen, we have that

Pr[Sauth3 ] < Pr[Sauth4 ] + 2ρ · ( ql
L− z

)z.

Game 5. In this game, C aborts if one of the uncompromised secrets (which could be
any factors) is asked by the adversary A in a random oracle query.

With the similar argument in Game 4 in the proof of Lemma 1, we have that

Pr[Sauth4 ] = Pr[Sauth5 ] +
(3 + L)qh

2`p
.

Game 6. C proceeds this game exactly as before, but aborts if an oracle πuID∗ such that
FullC(idC

∗, piduidC
∗) = 0 (throughout the game) received an Xu

idC
∗ which is not sent from

its partner oracle. We would like to bound the probability that an adversary’s probability
on forging Xu

idC
∗ . As stated in Game 5 in the proof of Lemma 1, we have that

Pr[Sauth5 ] < Pr[Sauth6 ] + ρ · (ql
L

)z +
ρ · qh
2`p

.

Game 7. In this game, C aborts if A asked a random oracle query with the value Y uID∗
of an oracle πuID∗ such that FullC(ID∗, piduID∗) = 0 throughout the game. As Y uID∗ is
computed involving a secret tag ti∗ which is not exposed. Furthermore, Y uID∗ is hidden
by the hash function. Hence, A can only submit guessed Y uID∗ to random oracle queries.
Since there are at most 2ρ honest oracles that an adversary may try to attack, we have
that

Pr[Sauth6 ] = Pr[Sauth7 ] +
2ρ · qh

2`p
.

Game 8. In this game, for each oracle πuID∗ such that FullC(ID∗, piduID∗ , ql) = 0, πuID∗
rejects if it receives a message which is not sent by its partner oracle having a matching
conversation to πuID∗ . Since A cannot compute Y uID∗ used by πuID∗ for verification, it is
unable to distinguish this game from the previous game. Thus the advantage of A in this
game is zero.

Summing up the probabilities in all the above games, we have the result of Lemma 3.
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B.2 Proof of Lemma 4

Let Skei denote an event that there exists a session-key-adversary answers the session-
key-challenge correctly in Game i. We show the proof of this lemma by the following
games.
Game 0. This game equals the real security experiment described in Section 5. We
have that

Pr[Ske0 ]− 1/2 = εskey.

Game 1. In this game, C aborts if the owner of the test oracle πuID∗ such that
FullC(ID∗, piduID∗ , ql) = 0, and πuID∗ accepts without a partner oracle at piduID∗ . Due to
the authentication property of the protocol, we have that

Pr[Ske0 ] = Pr[Ske1 ] + εauth.

Hence, the test oracle must have a matching conversation at the server.
Game 2. This game proceeds exactly as the previous game but C aborts if it fails to
guess the test oracle πuID∗ and its partner oracle πspidu

ID∗
such that they have matching

conversations. Since there are 2 honest parties and ρ oracles for each party, the probability
that C guesses correctly is at least 1/(2ρ)2. Thus we have that

Pr[Ske1 ] ≤ 4ρ2 · Pr[Ske2 ].

Game 3. In this game, C replaces the key kke,∗ of the test oracle πuID∗ and its partner

oracle πspidu
ID∗

with the same random value K̃ke,∗. Note that the TKE protocol instance

executed between the test oracle and its partner oracle only allows for passive adver-
saries due to the change in the previous game. If there exists an adversary A which can
distinguish this game from the previous game, then we use it to construct an algorithm
B to break the passive security of TKE as follows. We assume that B interacts with the
TKE challenger CTKE through Execute query. Meanwhile, B simulates the AKE challenger
in this game for A as follows:

– Initially, B implements all honest oracles.
– Meanwhile, B generates the ephemeral key (i.e., m1 or m2) for each oracle πsIDi

using
the ephemeral randomness of her own choice and answers all oracle queries honestly
except for the test oracle and its partner oracle.

– As for the correctly guessed test oracle πspidu
ID∗

and its partner oracle πt
∗

j , B queries

CTKE for executing a TKE test protocol instance and obtains (T ∗,K∗b ) from CTKE.
Otherwise B simulates the ephemeral keys of πuID∗ and πspidu

ID∗
using the transcript

T ∗, and uses K∗b to compute the session key of the test oracle.
– Eventually, B returns the bit b′ given by A to CTKE.

The simulation of B is perfect since B can always correctly answer all queries from A.
If A can correctly answer the bit b of the Test query with non-negligible probability, so
can B. By applying the security of TKE, we obtain that

Pr[Ske2 ] ≤ Pr[Ske3 ] + εTKE.
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Game 4. We replace the session key of the test oracle and its partner oracle (if any) with
a truly random key that is independent of the bit chosen by the test oracle. This is possible

since the test oracle would submit a random key material K̃ke,∗ to the random oracle
which results in a random session key as well. Thus the adversary gains no advantage in
this game, i.e.,

Pr[Ske3 ] = Pr[Ske4 ] = 0.

Summing up the probabilities in the above games, we obtain the result of Lemma 4.

C Comparison

In this section, we briefly compare our proposed schemes with two recent typical lightweight
authenticated key exchange protocols, i.e., Das et al., [14], He et al. [24] and Challa et
al. [7], just for reference. Although these protocols are designed for the three-party case,
two-party AKE procedure is also involved. We compare these four protocols from the
following perspectives: (i) authentication factors, (ii) main security properties, (iii) num-
ber of communication passes, and (iv) computation cost. To compare the computational
cost, we instantiate our protocol ΠRO

FS with the elliptic curve cryptography (ECC) based
Diffie-Hellman key exchange protocol (as the other compared protocols). Furthermore, we
let ‘FE’ denote a fuzzy extractor operation to obtain a secret from biometrics. We let ‘S-
Auth’ denote single-side explicit authentication, ‘M-Auth’ denote mutual authentication,
‘B-Leak’ denote bounded leakage, ‘IA-SKS’ denote implicit authentication with session
key security. To compare the computation cost, let ‘H’ denote hash function operation
and ‘MUL’ denote an ECC multiplication. Let ‘Bio’ denote the biometric authentica-
tion factor, ‘PW’ denote password, ‘HD’ denote historic data, ‘HT’ denote historic tags,
’LSK’ denote long-term symmetric key, and ‘LPK’ denote the long-term public key.

We summarize the comparison in Table 2.

Protocol Authentication Factors
Security Properties Comm.

Pass
Comp.
CostS-Auth M-Auth IA-SKS B-Leak PFS

Das et al.[14] Bio+PW +LSK
√

×
√

×
√

2 31H+1FE+4MUL

He et al.[24] PW+LSK
√

×
√

×
√

2 21H+4MUL

Challa et al. [7] Bio+PW+LPK
√

×
√

× × 2 1Fe+14Mul+12h

ΠRO
woFS LSK+HD

√
×

√ √

(static)
× 2 326 H

ΠRO
FS LSK+HT+HD

√ √ √ √

(adaptive)

√
3 328H+4MUL

Table 2: Comparison

Though our protocols are less efficient than Das et al. and He et al. protocols, we
provide one more security property, i.e., bounded-leakage resilience. Since a hash oper-
ation is not expensive, the overall performance of ΠwoFS is still practical (as shown in
Table 1) for constrained devices.


