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Abstract. This paper presents CONCRETE (Commit−Encrypt−Send−
the−Key) a new Authenticated Encryption mode that offers CIML2 se-
curity, that is, ciphertext integrity in the presence of nonce misuse and
side-channel leakages in both encryption and decryption.
CONCRETE improves on a recent line of works aiming at leveled imple-
mentations, which mix a strongly protected and energy demanding imple-
mentation of a single component, and other weakly protected and much
cheaper components. Here, these components all implement a tweakable
block cipher TBC.
CONCRETE requires the use of the strongly protected TBC only once
while supporting the leakage of the full state of the weakly protected
components – it achieves CIML2 security in the so-called unbounded leak-
age model.
All previous works need to use the strongly protected implementation at
least twice. As a result, for short messages whose encryption and decryp-
tion energy costs are dominated by the strongly protected component,
we halve the cost of a leakage-resilient implementation. CONCRETE ad-
ditionally provides security when unverified plaintexts are released, and
confidentiality in the presence of simulatable leakages in encryption and
decryption.

Keywords: Leakage-resilience, authenticated encryption, leveled implementa-
tion, Ciphertext Integrity with Misuse and Leakage (CIML2).

1 Introduction

Authenticated encryption (AE) provides in a single scheme both confidentiality
and authenticity. Nowadays AE is a standard primitive[16,30,32,34,9] (e.g., it is
only the one accepted in TLS 1.3 [20]).
Although these schemes are secure in the black box model (that is, when adver-
saries have access only to the inputs and outputs), they may not be secure when
implemented, because their implementation may leak via side-channels (e.g., the



computation time, the power consumption, or the electromagnetic radiation)
some information about the secrets (as the key or the plaintext) involved in the
cryptographic algorithm [1,24,27,28,26]. These attacks may affect the Internet-
of-Things (IoT) since sensors, being deployed in a not-secure environment, are an
easy target for side-channel attacks. Against such threats there are three types
of countermeasures: hardware, software and protocol ones.
Hardware and software countermeasures (for example, noise addition, masking
or hiding) aim to reduce the information leaked by the implementation, but
they are very expensive and depend on technological assumptions, which may
be false [36,11,27,29]. In particular, a good masking scheme has a great overhead,
compared to a non protect implementation, which may be tens or hundred of
times [18].
A complementary approach is to design schemes which are inherently more se-
cure agaisnt side-channel attacks (for example, manipulating the plaintext and
the key as little as possible, using a key only a few number of times before chang-
ing it) [17]. This protocol approach, called leakage resilience, try to minimize the
use of the software and hardware countermeasures, without damaging the secu-
rity.
In particular, since cryptographich algorithms are based on cryptographic prim-
itives, like PRPs, PRFs and hash functions, a leakage resilient scheme may use
them protected in the same way (uniform implementation) or it may assume
that there is a weak protected implementation for all of them and, for only one,
a very well protected implementation, called leak free for simplicity, which is
very slow and, therefore, which should be used as little as possible. This is called
a leveled implementation [33,11]. Although, actually, no implementation is leak
free, we support this concept because, first, it models well protected components
(e.g. a PRP with an high order masking), second, it shows where the efforts to
protect against side-channel attacks should be concentrated.
Although leakage affects the two goals of leakage resilient authenticated encryp-
tion (LRAE), in this paper we care about authenticity only (for privacy we reuse
previous works [33,11]). Our goal is to achieve CIML2 (Ciphertext integrity with
coin misuse and leakage on encryption and decryption) in the unbounded leak-
age model.
CIML2, introduced by Berti et al. [13], assumes that the adversary receives the
leakage of every encryption and decryption query he does. Moreover, the ad-
versary has taken control of the random source used by the AE scheme. In the
unbounded leakage model everything computed by the scheme is leaked apart
from the key used in the leak free component (that is, all inputs and outputs of
every component and all the keys used by non leak free components). In particu-
lar, this implies that to have CIML2 in this model, the tag cannot be recomputed
during decryption, because, otherwise, it would be leaked.
By now, all modes [13,19,10] achieving CIML2 use at least 2 calls to the leak free
component per encryption or decryption query. That is, if cLF is the cost of a
call to a leak free component, which is a block cipher, cwp is the cost of a call to
a weak protected component, which is another block cipher with the same block
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size, the best cost to process a message of l blocks is 2cLF + 4lcwp [10]. Thus,
for short messages, which are usually those sent by sensors in the IoT, this cost
is dominated by the cost of the leak free component. It is desiderable to reduce
the number of calls to the leak free to one.
Moreover, constrained device may have to release unverified plaintexts (RUP),
(that is, the decryption of a ciphertext before assessing its authenticity), due to
little secure memory. This may be problematic [2,5,3].

Fig. 1. The scheme CONCRETE Commit − Encrypt − Send − the − Key. We use
red for long term secret, orange for ephemeral one and green for outputs. The gray
shadowed component is the leak free. The key k0 is randomly picked. It uses the PSV
encryption scheme [33], described in Fig. 2. For decryption, first k0 is recomputed
k0 = F∗,−1

k (h, cl−1), then, c0 is recomputed and cheked. From k0 decryption proceeds
in the natural way.

Our contribution We provide a mode which is CIML2 secure and uses only one
leak free call per execution in both encryption and decryption: CONCRETE(COmmit-
eNCRypt-sEnd-The-kEy), see Fig. 1. The cost for l block message is cLF + 4(l+
1)cwp. Thus, we, approximately, halve the cost when the message is short and
the leak free is much more expensive than the weak protected component.
The key idea is to use a random string k0 which is kept secret (as in [3,6,11])
as the key used to encrypt the message, obtaining c1, ..., cl. Moreover, the ci-
phertext contains a commitment of k0, c0, and an encryption of k0, cl+1 which
depends on all other values (c0, ..., cl). As the previous modes achieving CIML2
(for example, [13]), the leak free component is a strong tweakable pseudorandom
permutation, which is inverted during the decryption.
We also remove the hypothesis of range-oriented pre-image resistance for the
hash function to obtain CIML2.
In addition our scheme is an AE secure scheme which is secure when unverified
plaintexts are released (RUPAE) and provides privacy in the presence of leakage
(CPAL and CCAL [19]).
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Other works The security definitions in the presence of leakage are given in the
works of Guo et al. [19] and Barwell et al. [4]. While Barwell et al. allow all
components to leak, but not too much, that is, they assume an uniform imple-
mentation. Guo et al. give the definitions in the leveled setting. Moreover, they
use different leakage models (the unbounded for authenticity and the simulatable
one for confidentiality, introduced in [37]). Since we assume a leveled implemen-
tation, we use the definitional framework of Guo et al. [19].
With respect to the leakage resilient construction in a leveled implementation,
Pereira et al. [33] provide a leakage-resilient encryption mode (PSV), which uses
only one leak free. Berti et al. [11] used this mode as a key ingredient to provide
a leakage resilient AE mode which is misuse-resistant (called DTE) and CIML
secure (that is, CIML2 when decryption does not leak), which uses two leak free
calls. It has been modified by Berti et al. [13] in DTE2 to provide CIML2. More-
over, they provide EDT, another CIML2-secure mode (both of them use two leak
free calls). Guo et al. [19] provide a mode which is CIML2-secure and misuse
resistant (it uses still two leak free calls, but it uses more calls to the weak pro-
tected components). Berti et al. [10] propose TEDT a scheme which is CIML2
secure, in addition it is beyond birthday secure and provides multi-user security
(it, still, uses two call to the leak free components).
Dobraunig et al. [15] and Bertoni et al. [14] proposed two LRAE designs based
on sponge. Although their solutions are very interesting, there is an approximate
comprehension about leakages of sponges. Moreover, CIML2 in the unbounded
model seems unachievable with a construction based only on sponges, since it
seems impossible not to recompute the tag during decryption (differently from
what it is done in all CIML2 secure modes).
Finally, Barwell et al. [4] proposed an LRAE mode based on a uniform imple-
mentation. Moreover, for confidentiality, they assume that the challenge query
of the CPA and CCA game does not leak.

Structure of the paper We review in Sec. 2, the main definitions and notations
used in the paper. Then, in Sec. 3 we presented the specifications for our scheme
and the structure of previous constructions. After that, we present the rationale
of the design of CONCRETE. The security proofs of CIML2, AE, RUPAE, CPAL2
and CCAL2 conclude the paper. For space constraint, there is only a sketch of
the proofs, they can be found with all the details in the appendix, with an
extended background, a detailed analysis of previous works and the extension to
associated data.

2 Background

Notations We use (q1, ..., qd, t)- bounded adversaries who have access to the
oracles O1, ...,Od and can make at most qi queries to oracle Oi and who runs in
time bounded by t. If O is an oracle, OL is its leaking variant.
Given a string x, we denote with |x| its length. With {0, 1}n we denote the set
of all n bits long stings, with {0, 1}≤n the set of all at most n bits long strings
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(that is, {0, 1}≤n =
n
∪
i=1
{0, 1}i). 0j denotes the string composed by n zeros.

We denote with x
$← X the fact that the element x is picked uniformly at random

from the set X .

2.1 Primitives: Hash functions, PRFs and STPRPs

A hash function is a mapping H : S×M 7−→ B. We suppose that hash functions
are (0, t)-collision resistant, that is, for any (0, t) adversary the probability that
he, given the key s of the hash function, outputs a collision, (that is, two different
m0,m1 ∈ M s.t. Hs(m0) = Hs(m1)) is bounded by ε. From now, since the
adversary knows the key of the hash functions, we omit the key s. Thus, for
simplicity we refer to the hash function H.
A (q, t, ε)-pseudorandom function (PRF) is a mapping E : K×M 7−→ T s.t. there
is no (q, t)-adversary able to distinguish with probability better than ε, if he is
interacting with Ek9·) for a random key or with a random function f(·) with the
same signature as Ek(·).
A (q, t, ε)- strong tweakable pseudorandom function (STPRP) is a mapping F :
K × T W × M 7−→ T s.t. ∀(k, tw) ∈ K × T W Ftwk (·) is a permutation and
there is no (q, t)-adversary able to distinguish with probability better than ε, if
he is interacting with Fk(·, ·) and F−1k (·, ·) for a random key or with a random
permutation f with the same signature as Fk(·, ·)[25]. More details in App. A.2.

2.2 Authenticated encryption (AE)

For authenticated encryption (AE) schemes we use the syntax of encryption
schemes introduced in Katz and Lindell [22], which was used also in many works
about AE [7,23]. The reason we do not use the nAE notion (see Appendix(Def.10)
will be clear when scheme CONCRETE is presented.

Definition 1. An authenticated encryption scheme AE is a triple of algorithm
Π = (K,Enc,Dec) s.t. the keyspace K is a nonempty set, the encryption algo-
rithm Enc is a probabilistic algorithm which takes as input the tuple (k,m) ∈
K ×M and outputs a string c ← Enck(m). The decryption algorithm Dec is a
deterministic algorithm which takes as input the tuple (k, c) ∈ K×C and outputs
a string m← Deck(c) which is either a string inM or the symbol “⊥‘” (invalid).
We require that the algorithm Enc and Dec are the inverse of each other, asking
the correctness and tidiness property. If m← Deck(c) with m 6=⊥ we say that c
is valid, otherwise it is invalid.

2.3 Security for Authenticated Encryption

The security definition we require to AE schemes is:

Definition 2. An authenticated encryption AE scheme Π = (K,Enc,Dec) is
(qE , qD, t, ε)-AE secure if the following advantage

AdvAEΠ,A :=
∣∣∣Pr
[
AEnck(·),Deck(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]∣∣∣ ≤ ε
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for any (qE , qD, t)-adversary A, where the key k is picked uniformly at random,
the algorithm $(m) answers a random string of length |c| with c ← Enck(m),
and ⊥ (·) is an algorithm which answers always ⊥ (“invalid”). The adversary
A may ask qE encryption queries (to the left oracle) and qD decryption queries
(to the right oracle). If he receives c as an answer of the first oracle, [that is,
c ← Enck(m) (or c ← $(m))] he is not allowed to query the second oracle on
input c.

It provides both confidentiality and authenticity. It means, also, that Enc inter-
nally has a way to produce some randomness. More details in App. D.2.

2.4 Ciphertext integrity with misuse and leakage in encryption and
decryption

Berti et al. [13] introduced ciphertext integrity with misuse and leakage in en-
cryption and decryption. Again, we adapt it to the syntax used in Def. 1.

Definition 3. An authenticated encryption (AE) scheme Π = (K,Enc,Dec) is
(qE , qD, t, ε)-ciphertext integrity with misuse and leakage in encryption and de-
cryption (CIML2)-secure if, for all (qE , qD, t)-bounded adversaries, we have

Pr
[
AEncL(·),DecL(·) ⇒ c∗ s.t. c∗ is fresh and valid |

]
≤ ε

[ c∗ fresh means that it is not obtained an an answer of an EncL query]

According to our AE syntax (see Def. 1), we have to define misuse. We sup-
pose that the adversary has taken control of the random source (which may be,
for example, a pseudorandom generator). Thus, for us, misuse means that the
adversary chooses and provides the randomness to the encryption oracle, which,
thus, is now deterministic.

Without leakage, it is irrelevant if the adversary has or not has access to the
decryption oracle [22,12]. This is not the case in the presence of leakage [11].

Leakage model: the unbounded model We suppose that every input, out-
put and key is leaked apart the key of the leak free STPRP F∗. This is the
unbounded model, which is quite liberal [11].

A more formal treatment of CIML2 and of the unbounded model can be found
in App. A.6.
Since the core of this contribution is authenticity with leakage, we leave the def-
initions of security in a RUP (Release of unverified plaintext) scenario (RUPAE)
and confidentiality with leakage (CPAL2 and CCAL2) in the Appendix(App. A).
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3 Design constraints and previous solutions

Notations For F∗ and E, we assume K =M = T W = T = {0, 1}n. The message
space for Enc is {0, 1}≤Ln.
We call a block a n bit string. Given a message m, we parse it in (m1, ...,ml)
with |m1| = ... = |ml−1| = n and |ml| ≤ n (By abuse of notation ml is also
called a block).

The design constraints of the scheme are the following:

– AE secure in the black box model
– CIML2 secure in the unbounded model
– CPAL and CCAL secure with some hypothesis about the leakage
– only one leak free call per execution
– the key k of the scheme used only as a key of the leak free
– E changes keys as much as possible (rekeying)

The hypothesis on k is due to the fact that the key of the leak free is the
only internal secret not leaked in the unbounded model.
To reduce the possibility of leakage, the PRF E should not be used with more
than two different plaintexts for any key it uses in any security game.
There is such an encryption scheme, called PSV (see Fig. 2) [33] and some AE
scheme [11,13,19,10], based on the PRG proposed by Standaert et al. [37], which
use a PRF E and which is based on rekeying. At every round, this PRG changes
the key, called ephemeral, the PRF E is used with, and it is very hard that the
same key is used in two different rounds.
The problem how to use PSV in a bigger scheme is how to provide the first
ephemeral key. Usually, LRAE schemes based on PSV may be divided in three
parts, not necessarily in this order:

1 Generation of the first ephemeral key (for us k1)
2 Encryption, using PSV starting from k1
3 Authentication

The leak free calls are usually used in Step 1 and 3, and the verification should
be done in a clever way, not simply a basic recheck of the authentication part.

A more detailed analysis of one of this schemes EDT [13] with a formal
treatment of a rekeying scheme, can be found in App. C.

4 Design rationale of the Commit-Encrypt-Send-the-
Key CONCRETE transformation

We present here the ideas of CONCRETE(Fig. 1). In particular, how we treated
each of the three different parts of a LRAE scheme:

– Derivation of the first ephemeral key We pick a randomly k0 as first
ephemeral key. We use a round the PRG of Standaert et al. [37] to obtain
a commit of k0 (called c0) and a new fresh key (k1). That is, using the
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Fig. 2. The PSV encryption algorithm, presented at CCS 2015 by Pereira et al. [33].

public constants pA and pB (two strings of n bits, with pA 6= pB) we obtain
k1 = Ek0(pA) and c0 = Ek0(pB).

– Encryption From k1 the PSV [33] (see Fig. 2) encryption algorithm is used
to encrypt m, using the constants pA and pB , obtaining c1, ..., cl. We denote
the algorithm in this part enc.

– Authentication Since k0 is picked uniformly at random, it must be recom-
puted by the decryption algorithm Dec from the ciphertext c. Thus, to send
it, we hash the commitment c0 and the output of the encryption part c1, ..., cl
obtaining h = H(c0‖c1‖...‖cl) and we encrypt k0 obtaining cl+1 = F∗k(h, k0).
The ciphertext is c := (c0, c1, ..., cl, cl+1).

– Decryption First k0 is retrieved, with k0 = F∗,−1k (h, cl+1) with h = H(c0‖...‖cl),
then c̃0 = Ek0(pB) is computed. If c0 = c̃0, the ciphertext is deemed valid and
decryption proceeds in the natural way; otherwise, the ciphertext is deemed
invalid.

– Ciphertext expansion The ciphertext has an exapnsion of two blocks, that
is, given c← Enck(m), |c| = |m|+ 2n.

– Cost If the hash function is implemented with the Hirose construction [10],
thus its cost is 2cE for each block processed, then, the cost of CONCRETE
to process l block message is cF∗ + 4(l + 1)cE, with cF∗ and cE the cost,
respectively, of one call to F∗ and E.

A detailed description of the scheme can be found in Tab. 4 in the Appendix.
Note that c0, ..., cl can be seen as PSVk0(0n‖m).

Cautionary note It is possible, as discussed in the proofs, to replace PSV with
other encryption scheme based on rekeying. The security constraints of such
replacements are discussed after the proof in the Appendix.
Although CONCRETE is AE and CIML2 secure and it uses only one leak free call,
it is neither nonce-misuse resistance (as DTE [11] and FEMALE [19]) or secure
beyond birthday and in the multi-user case (as TEDT [10]).
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5 Security results for CONCRETE

For clarity, in this section we do not consider the time bounds. They will be
discussed in the Appendix, where the theorems are restated.

Notations We introduce some definitions and notations to make the proofs
lighter. We use superscripts to indicate to which encryption and decryption
query the message (or the ciphertext) is referred to.
Given a ciphertext c = (c0, ..., cl, cl+1) we define the partial ciphertext as the
vector (c0, ..., cl), that is, the ciphertext without considering the block cl+1 en-
crypting the key.
A value is fresh if it has never appeared before in the history of the game.

5.1 CIML2 security

Before proving the CIML2 security for CONCRETE, we have to define the leakage
function in the unbounded model. We observe that LE(r,m; k) := k0 = r, that
is the leakage is the randomness r used by Enck(·), because, from it all values,
not given in the ciphertext, can be recomputed apart from k.
On the other hand, LD(c; k) := k0, because from k0 the adversary is able to
recompute all values used in the decryption apart from k. Interestingly, when
there is misuse, that is, the adversary has taken control of the random generator
providing the randomness r, there is no leakage during encryption queries, since
r is already known to the adversary.

Theorem 1. Let F∗ be a (Q+1, εSTPRP)-strong tweakable pseudorandom permu-
tation (STPRP), let E be a (2, εPRF)-pseudorandom function (PRF) and let H be
a (0, εCR)-collision resistant hash function. Then, the mode CONCRETE, which
encrypts messages which are at most L-block long, is (qE , qD, ε)-CIML2 secure
with

ε ≤ εSTPRP + εCR +
(qD + 1)(L+ 1)(qD + 2qE)

2n+1
+
qD + 1

2n
+ (qD + 1)εPRF.

Observation on the bound We want to discuss some terms of the bound:
– εCR because, if there is a collision, the mode is broken,
– (qD+1)εPRF, because we do not check k0, but Ek0(pB). Otherwise, the mode

would not be AE secure.
– (qD+1)(L+1)(qD+2qE)

2n+1 because we need that, in every decryption query, k0 must

have not been used as ephemeral key. It may be improved to (qD+1)(qD+2qE)
2n+1

if E is not used in PSV, [for example, we may use a different PRF (this choice
requires one more component to be implemented)].

Proof (Sketch). In the proof, first, we replace F∗ with a random tweakable
permutation, then, we suppose that all the hash outputs are different (pro-
vided that their inputs are different). For fresh decryption queries, on input
c = (c0, c1, ..., cl, cl+1) we observe the following:
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1. If the partial ciphertext (c0, ..., cl) is fresh, then, its hash h is fresh. Thus, k0
is random. Consequently, the probability that c0 = Ek0(pB) is negligible.

2. If the partial ciphertext (c0, ..., cl) is not fresh and comes from an encryp-
tion query, then, the couple ((c0, ..., cl), cl+1) must be fresh; otherwise, ei-
ther the decryption query is not fresh [not possible by hypothesis] or it is
the repetition of a previous decryption query [so, its validity has already
been established]. Thus, k0 = F∗,−1k (h, cl+1) is still random. Then, again, the
probability that c0 = Ek0(pB) is negligible.

To prove that Pr[c0 = Ek0(pB)] is negligible, we use that E is a PRF, thus, we
must assume that k0 is fresh.

The complete proof can be found in App D.1 as well with the theorem with
the time bounds (Thm. 6).

5.2 AE security

After having proved the authenticity, we want to prove the confidentiality, which
should be based on the security of the PSV encryption scheme. We start studying
confidentiality in the blackbox model:

Theorem 2. Let F∗ be a (Q, εSTPRP)-strong tweakable pseudorandom permuta-
tion (STPRP), let E be a (2, εPRF)-pseudorandom function (PRF) and let H be
a (0, εCR)-collision resistant hash function. Then, the mode CONCRETE, which
encrypt messages which are at most L-block long, is (qE , qD, ε)-AE secure with

ε ≤ εSTPRP + εCR +
qD(L+ 1)(qD + 2qE)

2n+1
+
qD
2n

(qE(L+ 1) + qD)εPRF +
qE(L+ 1)[qE(L+ 1)− 1]

2n+1
+

(qD + qE)(qD + qE − 1)

2n+1
.

Observation on the bound In addition to the bound due to the CIML2 security
(which is the same as for the ciphertext integrity) we have:

– εSTPRP + (qE+qD)(qE+qD−1)
2n+1 because F∗ is a STPRP and not a PRF,

– (qE(L+ 1))εPRF is due to PSV,

– qE(L+1)[qE(L+1)−1]
2n+1 because we need that, in every encryption query, all keys

used by E are different.

Proof (Sketch). First, we observe that the scheme is ciphertext-integrity secure
(since it is CIML2 secure), then, we observe that all the ciphertext blocks can
be replaced by random ones since either they are obtained via a STPRP with a
different input (cl+1) or via the PSV encryption scheme using a different key k0
per encryption query.

The complete proof, the theorem with the time bounds (Thm. 7) and a discus-
sion of what happens if PSV is replaced with another scheme can be found in
App. D.2.
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5.3 The RUPAE security

Even if unverified plaintexts are released, CONCRETE is secure:

Theorem 3. Let F∗ be a (Q, εSTPRP)-strong tweakable pseudorandom permuta-
tion (STPRP), let E be a (2, εPRF)-pseudorandom function (PRF) and let H be
a (0, εCR)-collision resistant hash function. Then, the mode CONCRETE, which
encrypt messages which are at most L-block long, is (qE , qD, ε)-RUPAE secure
with ε bounded by

εSTPRP + εCR +Q(L+ 1)εPRF +
qD
2n

+
(L+ 1)Q[(L+ 1)Q− 1]

2n+1
+
qE(qE − 1)

2n+1

with Q = qE + qD.

Observation on the bound In addition to bounds due to the previous theorems,
we have
– Q(L+ 1)εPRF due to PSV,

– (L+1)Q[(L+1)Q−1]
2n+1 , because we suppose that every ephemeral key used in an

encryption or decryption query are different,

– εSTPRP+ qE(qE−1)
2n+1 because F∗ is a STPRP and not a PRF (a part of the bound

is in the previous term)

Proof (Sketch). We have already proved the CIML2 (thus, the ciphertext in-
tegrity) and the AE security. To prove the RUPAE is enough to observe that,
for invalid ciphertexts, the k0 obtained is random. Moreover, from a random k0,
PSV gives a random decryption.

The complete proof, the theorem with the time bounds (Thm. 8) and a
discussion of what happens if PSV is replaced with another scheme can be found
in App. D.3.

5.4 CPAL2 and CCAL2 security

In this section, we study confidentiality with leakage of CONCRETE. Similarly
to what done for PSV [33], we reduce the whole security of the scheme to the
EavL2s security of an ideal version of PSVI , where the PRF Ekji

is replaced with

a random function and the leakage of the Ekji
with simulated leakages, which

encrypts only one block message (see Tab. 1).
The EavL2s game (see Tab. 1) is a game where the adversary chooses two different
one block message and receives the encryption and the leakage of one of them,
and he has to guess what message has been encrypted. (A scheme is (qL, ε)-EavL2
secure if the probability he correctly guesses is bounded by 1

2 + ε.

Theorem 4 (informal). Let F∗ be a (qE + 1, εSTPRP)-STPRP, whose imple-
mentation is leak free, let E be a (2, εPRF)-PRF, whose implementation has some
leakage property, let PSVsI be (qL, εEavL2s)-EavL2-secure, then CONCRETE, if it
encrypts at most L block messages, is (qE , ε)-CPAL2-secure with

ε ≤ εSTPRP +
qE
2n

+ ε2-sim′ + (L+ 1)εPRF + L(ε2-sim + εEavL2s)
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The EavL2s game and the idealized variant of PSV which encrypts a
single block, PSVsI

EavL2s PSVsI

Initialization: GenI :

k0
$← K, pA, pB

$← {0, 1}n k0
$← {0, 1}n

b
$← {0, 1}

encsIk0(m):

Challenge output: y
$← {0, 1}n

(m∗,0,m∗,1)← AL(pA, pB) c = y ⊕m
(c, k1, LPSVsI )← encsLk0(m∗,b) k1

$← {0, 1}n
Return (c, k1)

Finalization:

b′ ← AL(c, k1, LPSVsI ) decsIk0(c) proceeds in the natural way.
If b = b′ Return 1, Else Return 0

The leakage resulting from encsI(m) is defined as LencsI (m, k1, y; k0) :=
(SL(k0, pA, k1),SL(k0, pB , y), L⊕(m, y), SL(k−, pA, k0), k−)

with k−
$← {0, 1}n.

Table 1. The EavL2s experiment and the idealized single block version PSVI . Note
that k1 is given as output for composability as used in App. D.4

About the bound we can observe:
– ε2-sim′ + Lε2-sim is due to the leakage assumptions,
– L(ε2-sim + εEavL2s) is the EavL2-security of PSV [33].

The leakages assumptions we use are presented in App. A.5, while the theorem
with the time bounds (Thm. 9) and the proof in App. 9.

Proof (Sketch). First, we reduce the EavL2 security of CONCRETE to the EavL2s
security of PSVsI , using the same argument as Pereira et al. [33] (we have to do
a little tweak in their proof to consider the additional leakage source of c0 and
cl+1).
Then, we replace the STPRP F∗ with a random function, and we replace its
leakage LF∗(·, ·; ·) with a simulated one SLF∗ (·, ·, ·, ·); after that, observing that,
since, k0 is randomly picked, the leakage of other encryption queries do not give
any more information about the challenge query, we reduce the CPAL2 adversary
to an EavL2 adversary.

Moreover, CONCRETE is CCAL2 secure:

Theorem 5 (informal). Let F∗ be a (qE + qD + 1, εSTPRP)-STPRP, whose
implementation is leak free, let E be a (2, εPRF)-PRF, whose implementation has
some leakage property, let H be a (0, εCR)-collision resistant hash function, let
PSVsI be (qL, εEavL2s)-EavL2-secure, then CONCRETE, if encrypts at most L block
messages, is (qE , qD, ε)-CCAL2-secure with

ε ≤ εSTPRP + εCR +
qE + qD

2n
+
qD(L+ 1)(qD + 2qE)

2n+1
+

(qD + L+ 1)εPRF + ε2-sim′ + L(ε2-sim + εEavL2s)

12



With respect to the CPAL2 bound, we have added only the CIML2 bound.

Proof (Sketch). We reuse the proof of the CPAL2 security (Thm. 4). We add
only that, due to the CIML2-security in the unbounded model, the adversary
can only due invalid decryption queries and invalid decryption queries may not
give any information about the challenge query, because the ephemeral k∗0 picked
during the challenge query is independent from the ephemeral key k0 recomputed
during their decryptions.

The leakages assumptions we use are presented in App. A.5, while the theo-
rem with the time bounds (Thm. 10) and the complete proof in App. 10.

6 Conclusion

With CONCRETE we have provided the first AE scheme achieving CIML2 in
the unbounded model with only one leak free call. It provides also RUPAE and
CPAL2 and CCAL2. This is a major improvement.
Its security is based crucially on the leak free assumption. Thus, try to keep
the CIML2 security using a more liberal assumption on the leak free, like unpre-
dictability with leakage, is an interesting scope for further research.
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A Extended background

A.1 Extended notation

Here we present the additional notation used in the proofs.

Given the sets A and B ,let FUNC(A,B) be the set of all functions f : A 7−→
B.
With Pr[A(x)O1(·),...,Od(·) ⇒ y|Z] we denote the probability that the adversary
with input x outputs y provided that event Z happens. This adversary has access
to the oracles (O1(·), ...,Od(·)).
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Given a string x of length l we denote with πl′(x) (with l ≤ l′), the string
composed by the first l, bits of x, that is, πl′(x) is the string x with the last l− l′
bits dropped.

A.2 Primitives: Hash functions, PRFs and STPRPs

First, we define collision resistant hash functions:

Definition 4. A (0, t, ε)-collision resistant hash function H : S ×M 7−→ B is
a function such that, for every (0, t)-bounded adversary A, the probability that
A(s) outputs a couple of distinct messages (m0,m1) ∈M2, m0 6= m1, such that

Hs(m0) = Hs(m1) is bounded by ε when s
$← S is picked uniformly at random,

that is:

Pr[A(s)⇒ (m0,m1) s.t. m0 6= m1,Hs(m0) = Hs(m1)|s $← S] ≤ ε

We call such a couple (m0,m1) a collision for Hs.
From now, since the adversary knows the key of the hash functions, we omit the
key s. Thus, for simplicity we refer to the hash function H.

For completeness, since we talk about scheme which are CIML2 secure, we
introduce the notion of range oriented pre-image resistant hash function:

Definition 5. A (1, t, ε)-range-oriented preimage resistant hash function H :
S ×M 7−→ B is a function such that, for every (t)-bounded adversary A, the
probability that A(s, y), for a y picked uniformly at random in B, outputs a

message (m) ∈ M, such that Hs(m) = y is bounded by ε when s
$← S is picked

uniformly at random, that is:

Pr[A(s, y)⇒ (m) s.t. Hs(m) = y |s $← S, y $← B] ≤ ε

Berti et al. [13] presented a definition where the adversary has access to multiple
targets (these two definitions are polynomially equivalent).

Then, we define pseudorandom functions:

Definition 6. A function E : K×M 7−→ T is a (q, t, ε)-pseudorandom function
(PRF) if for any (q, t)-bounded adversary, the advantage:

AdvPRFA :=
∣∣∣Pr
[
AEk(·) ⇒ 1

]
− Pr

[
Af(·) ⇒ 1

]∣∣∣ ≤ ε
with k and f picked uniformly at random from their domains, respectively K and
the set of functions FUNCT (M, T ).

If for every k, Ek(·) is a permutation and f is picked from set of permutations,
the function E is called a pseudorandom permutation PRP.

To add more diversity and flexibility in the use of PRFs, Liskov et al. [25]
introduce tweakable pseudorandom permutations. We need a strong ones, that
is ones which are secure even if the adversary has access to their inverse:
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Definition 7. A function F : K × T W ×M 7−→M is a (q, t, ε)- strong tweak-
able pseudorandom function (STPRP) if for any (q, t)-bounded adversary, the
advantage:

AdvSTPRPA :=
∣∣∣Pr
[
AFk(·,·),F−1

k (·,·) ⇒ 1
]
− Pr

[
Af(·,·),f−1(·,·) ⇒ 1

]∣∣∣ ≤ ε
with k and f picked uniformly at random from their domains, respectively K and
the subset of the set FUNC(T W ×M,M) composed by the functions f(·, ·) s.t.
for every tweak tw ∈ T W, f(tw, ·) :M 7−→M is a permutation.

For tweakable strong pseudorandom permutations (STPRPs), we use the follow-
ing notation: we suppose that the adversary A has access to only one oracle
which is either implemented with (Fk(·, ·),F−1k (·, ·)) for a random key k, or with
(f(·, ·), f−1(·, ·)). Thus, when he queries his oracle, A uses an additional input
which is ±1. When he queries on input (tw, x, 1) it means A queries the left ora-
cle (either Fk(·, ·) or f(·, ·)) on input (tw, x), when on input (tw, x,−1) it means
A queries the right oracle (either F−1k (·, ·) or f−1(·, ·)) on input (tw, x).

We call hash functions, PRFs and STPRPs primitives.

A.3 Authenticated Encryption

We presented the definition of Authenticated Encryption in Def. 1, which uses
a probabilistic encryption algorithm. We restate it for clarity:

Definition 8. An authenticated encryption scheme (AE) is a triple of algorithm
Π = (K,Enc,Dec) s.t. the keyspace K is a nonempty set, the encryption algo-
rithm Enc is a probabilistic algorithm which takes as input the tuple key, message
(k,m) ∈ K ×M and outputs a string c ← Enck(m). The decryption algorithm
Dec is a deterministic algorithm which takes as input the tuple (k, c) ∈ K × C
and outputs a string m ← Deck(c) which is either a string in M or the symbol
“⊥‘” (invalid).
We require that the algorithm Enc and Dec are the inverse of each other, that is:
Correctness: if c← Enck(m) then m← Deck(c),
Tidiness: if m ← Deck(c) with m 6=⊥ then, c ∈ {c ← Enck(m)}, that is, c may

be obtained as encryption of m using key k.
If m← Deck(c) with m 6=⊥ we say that c is valid, otherwise it is invalid.

But usually encryption algorithms are deterministic, thus, we can see the Enc
algorithm of the previous definition, as composed by two elements: a standard
deterministic encryption algorithm Enc : K × R ×M 7−→ C and an algorithm
which provides to the previous one the randomness r ∈ R which is needed. Thus,
if we want to highlight this and “outsource” the random generator, we have the
following definition:

Definition 9. An IV-based authenticated encryption scheme (ivAE) is a triple
of algorithm Π = (K,Enc,Dec) s.t. the keyspace K is a nonempty set, the encryp-
tion algorithm Enc is a deterministic algorithm which takes as input the tuple
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(k, iv,m) ∈ K × IV ×M and outputs a string c ← Enck(iv,m). The decryp-
tion algorithm Dec is a deterministic algorithm which takes as input the tuple
(k, c) ∈ K × C and outputs a string m← Deck(c) which is either a string in M
or the symbol “⊥‘” (invalid).
We require that the algorithm Enc and Dec are the inverse of each other, that is:

Correctness: if c← Enck(iv,m), then, m← Deck(c),
Tidiness: if m← Deck(c) then, there exists an iv ∈ IV s.t. c← Enck(iv,m).

If m← Deck(c) with m 6=⊥ we say that c is valid, otherwise it is invalid.

This definition allows not to give as an output the IV, which, thus, may be
considered secret. This has been used by Berti et al. [11] to have confidentiality
in the presence of side-channel attacks and by Ashur et al. [3] to have the RUPAE
security.
For ivAE, we cannot suppose that the IV is only not repeated, because, in such
case, we loose the advantage of having it secret.

On the other hand, in the literature another notion is more used (for exam-
ple, [31,35,8]). Its idea is to use only deterministic encryption algorithms and
to provide them an additional input, which is transmitted with the ciphertext.
This additional input should only not be repeated (thus, it is called nonce).
This input makes the encryption still probabilistic (the security when this input
is repeated is called nonce-misuse [35]).

Definition 10. A nonce-based authenticated encryption scheme (nAE) is a
triple of algorithm Π = (K,Enc,Dec) s.t. the keyspace K is a nonempty set,
the encryption algorithm Enc is a deterministic algorithm which takes as input
the tuple (k, n,m) ∈ K × N ×M and outputs a string c ← Enck(n,m). The
decryption algorithm Dec is a deterministic algorithm which takes as input the
tuple (k, n, c) ∈ K ×N × C and outputs a string m← Deck(n, c) which is either
a string in M or the symbol “⊥‘” (invalid).
We require that the algorithm Enc and Dec are the inverse of each other, that is:

Correctness: if c← Enck(n,m), then, m← Deck(n, c),
Tidiness: if m← Deck(n, c) with m 6=⊥ then, c← Enck(n,m).

If m← Deck(n, c), with m 6=⊥, we say that c is valid, otherwise it is invalid.

This notion has been already used also in the leakage resilient contest [33,13,4].

Bellare [6] propose a syntax, which is halfway between that proposed in Def. 9
and that proposed in Def. 10, where a nonce is used, but it is not an input needed
by the decryption algorithm. This may prevent some attacks.

A.4 Other security notions for AE

For clarity, we start restating the security for AE schemes (which was stated in
Def. 2):
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Definition 11. An authenticated encryption AE scheme Π = (K,Enc,Dec) is
(qE , qD, t, ε)-AE secure if the following advantage

AdvAEΠ,A :=
∣∣∣Pr
[
AEnck(·),Deck(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]∣∣∣ ≤ ε
for any (qE , qD, t)-adversary A, where the key k is picked uniformly at random,
the algorithm $(m) answers a random string of length |c| with c ← Enck(m),
and ⊥ (·) is an algorithm which answers always ⊥ (“invalid”). The adversary
A may ask qE encryption queries (to the left oracle) and qD decryption queries
(to the right oracle). If he receives c as an answer of the first oracle, [that is,
c ← Enck(m) (or c ← $(m))] he is not allowed to query the second oracle on
input c.

This definitions provides confidentiality and authenticity in the same time. In
fact, it supposes that the adversary is never able to ask a decryption query with
a fresh and valid ciphertext. Moreover, ciphertexts should be indistinguishable
from random.

Similarly for what done for IV-based encryption schemes (see, for exam-
ple [22,12]), we can define the security for ivAE schemes, modifying the previous
security definition:

Definition 12. An authenticated encryption ivAE scheme Π = (K,Enc,Dec) is
(qE , qD, t, ε)-ivAE secure if the following advantage

AdvivAEΠ,A :=
∣∣∣Pr
[
AEnc$k(·),Deck(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]∣∣∣ ≤ ε
for any (qE , qD, t)-adversary A, where the key k is picked uniformly at random,

the oracle Enc$(·), first picks uniformly at random an IV iv
$← IV, then, it com-

putes Enck(iv,m), the algorithm $(m) answers a random string of length |c| with

c ← Enc$k(m), and ⊥ (·) is an algorithm which answers always ⊥ (“invalid”).
The adversary A may ask qE encryption queries (to the left oracle) and qD de-
cryption queries (to the right oracle). If he receives c as an answer of the first

oracle, [that is, c ← Enc$k(m) (or c ← $(m))] he is not allowed to query the
second oracle on input c.

This definition does not assume that the adversary knows iv. There are two
possibilities, each of them allowed by this definition: first, the iv is kept secret,
second, it is given as part of the ciphertext. n both case ivAE security is achiev-
able (in the second case, it is enough to observe that iv is random).

There is also a security notion for nAE schemes:

Definition 13. An authenticated encryption nAE scheme Π = (K,Enc,Dec) is
(qE , qD, t, ε)-nAE secure if the following advantage

AdvnAEΠ,A :=
∣∣∣Pr
[
AEnck(·,·),Deck(·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·) ⇒ 1

]∣∣∣ ≤ ε
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for any (qE , qD, t)-adversary A, where the key k is picked uniformly at random,
the algorithm $(n,m) answers a random string of length |c| with c← Enck(n,m),
and ⊥ (·, ·) is an algorithm which answers always ⊥ (“invalid”). The adversary
A may ask qE encryption queries (to the left oracle) and qD decryption queries
(to the right oracle). Moreover, he is not allowed to repeat the first input, the
nonce, in different encryption queries. If he receives c as an answer of the first
oracle, [that is, c← Enck(n,m) (or c← $(n,m))] he is not allowed to query the
second oracle on input (n, c).

Eliminating the requirement on non-repeating nonces, we obtain misuse-
resistant [35]:

Definition 14. An authenticated encryption mrAE scheme Π = (K,Enc,Dec)
is (qE , qD, t, ε)-mrAE ( misuse resistant) secure if the following advantage

AdvnAEΠ,A :=
∣∣∣Pr
[
AEnck(·,·),Deck(·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·) ⇒ 1

]∣∣∣ ≤ ε
for any (qE , qD, t)-adversary A, where the key k is picked uniformly at random,
the algorithm $(n,m) answers a random string of length |c| with c← Enck(n,m),
and ⊥ (·, ·) is an algorithm which answers always ⊥ (“invalid”). The adversary
A may ask qE encryption queries (to the left oracle) and qD decryption queries
(to the right oracle). If he receives c as an answer of the first oracle, [that is,
c ← Enck(n,m) (or c ← $(n,m))] he is not allowed to query the second oracle
on input (n, c).

There is a flourishing literature on misuse-resistant schemes [35,34].

A.5 Leakage

To be used the previous algorithms and primitives need to be implemented ei-
ther on hardware or on software. But this implementations may leak physical
information about their internal states and secrets (for example due to time [1],
power consumption [27,24] or electromagnetic radiation [26]). These leakages
have been used to break cryptographic schemes. Such attacks are called side-
channel attacks.

Let the algorithm Alg be called on input (x; k) where x is a public input and
k a secret one. We model the leakage function as LAlg(x; k). This is called the
leakage function.
First of all we observe that, to the best of our knowledge, we are not able to give
an explicit formula for the leakage function. It is even possible that it may not
be efficiently computable.
On the other hand, there are protection against such attacks. They are usually
very expensive [18]. Our approach is the following:
First, we observe that usually an encryption or a decryption algorithm are usu-
ally divided in many steps. Each of these steps uses a different primitive, that
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we call component.
Second, we consider the protection of each of these components. Instead. of pro-
tecting either everything well (very costly) or everything approximately (more
efficient, but dangerous) we decide to have a primitive with a very well protected
implementation and to have implementations of all components, including the
one which has a well protected implementation, which are weakly protected [or,
as we have already seen, for authenticity no protection at all]. This is called a
leveled implementation (see Def.16 for a formal definition of it).
Moreover, for the very well protected implementation, we model it with the
following definition:

Definition 15. A keyed component (that is, a primitive which uses a key which
is kept secret) has a leak free implementation if this primitive has an implemen-
tation which does not leak anything about its key.

For simplicity, we call it leak free.
We observe that we do not assume anything for the leakage of the inputs and
outputs of a leak free component. Some hypothesis about this leakage will be
needed in the rest of the paper (see Def. 31).

The existence of leak free implementations is an open problem, but we have
some primitives for which there exist very resistant to side-channel attacks imple-
mentations, for example block-ciphers implemented with an high order masking.
On the other hand they are very expensive, this is why we try to use them as
little as possible.
Thus, the AE mode we present, uses its primitives in a leveled implementation:

Definition 16. An encryption (resp. decryption) algorithm Enc (resp. Dec) has
a leveled implementation if Enc (resp. Dec) is implemented using a leak free
component and other less protected components.
Given Π = (K,Enc,Dec), if both Enc and Dec have a leveled implementation,
then, also scheme Π is has a leveled implementation.

The goal of leveled implementations is to achieve provable security in a leakage
scenario, being reasonably efficient.

For every security definition involving leakage, we precise the hypothesis that
we assume on the leakage protection of the less protected component and of the
inputs and outputs of the leak free component. We do this because in some
definition we need nothing, while in others something more. This highlights also
what happens if there is a security loss in the leakage protection of the less
protected components, that is, what security property may be lost and what
will be kept.

A.6 Ciphertext integrity with misuse and leakage in encryption and
decryption

Berti et al. [13] introduce ciphertext integrity with misuse and leakage in encryp-
tion and decryption which is an evolution of ciphertext integrity with misuse and
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leakage (in only encryption) introduced by Berti et al. [11]. Again we adapt it
to the syntax used in Def. 1.

Definition 17. An authenticated encryption (AE) scheme Π = (K,Enc,Dec)
is (qE , qD, t, ε)-ciphertext integrity with misuse and leakage in encryption and
decryption (CIML2)-secure if the for all (q, t)-bounded adversaries, we have

Pr [CIML2Π,LE ,LD,A ⇒ 1] ≤ ε

where the CIML2 experiment is defined in Tab. 2, where r is the randomness used
by Enc in the encryption of the message m.

CIML2Π,LE ,LD,A(1n) experiment

Initialization: Oracle EncDLk(r,m):
k ← K s.t. |k| = n c = EncDk(r,m)
S ← ∅ S ← S ∪ {c}

Finalization: Return (c, LE(r,m; k))

c← AEncDLk(·,·),DecLk(·)

If c ∈ S or ⊥ = Deck(c), Return 0 Oracle DecLk(c):
Return 1 Return (Deck(c), LD(c; k))

Table 2. The CIML2 experiment. The corresponding definition in the blackbox model
is ciphertext integrity [INT-CTXT] (with misuse) and is obtained from CIML2 imposing
that LE = LD = 0 (i.e., there is no leakage).

Given the syntax for AE schemes we use (see Def. 1), we have to under-
stand what means misuse. We suppose that the adversary has taken control
of the random source (which may be, for example, a pseudorandom generator)
which provides the randomness r. Thus, for us, misuse means that the adversary
chooses and provides the randomness r to the encryption oracle (thus, it may
be not picked randomly, but may be carefully chosen by the adversary and even
repeated). Consequently, we denote the Enc algorithm with EncD to denote it.
Now we have left the problem of what is the leakage.
As in the other works [11,13,19,10], we use the unbounded leakage model, which
is a very liberal model:

Definition 18. In the unbounded leakage model, the leakage function L of an
algorithm provides all internal states of the algorithm except those of the (even-
tual) leakfree components. In particular all keys, inputs, outputs and random
coins of the unprotected components are given (thus, also all inputs and outputs
(not the keys) of the leak free components).

This model is very permissive [11], arguably one of the most permissive.

A.7 Release of unverified plaintexts (RUP)

We follow the approach of many other other works ([2,5,3]) in the RUP setting
presenting separated AE schemes, but we have to adapt it to our AE syntax where
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the randomness is not given as an input to the encryption oracle but picked by
it. Moreover, only the ciphertext is transmitted, thus, the decryption algorithm
uses no additional input.

Definition 19. A separated AE scheme is a quadruple of algorithms Π = (K,Enc,SDec,SVer)
s.t. the keyspace K is a nonempty set, the encryption algorithm Enc is a proba-
bilistic algorithm which takes as input the tuple (k,m) ∈ K ×M and outputs a
string c ← Enck(m). The (separated) decryption algorithm SDec is a determin-
istic algorithm which takes as input the tuple (k, c) ∈ K×C and outputs a string
m← Deck(c) while the (separated) verification algorithm SVer is a deterministic
algorithm which takes as input the tuple (k, c) ∈ K × C and outputs either the
symbol
“> ” (valid) or “⊥‘” (invalid).

We require again the property of correctness and tidiness.

Correctness: if c← Enck(m)⇒ SDeck(c) = m and > ← SVerk(c)

Tidiness: if > ← SVerk(c)⇒ ∃m ∈M s.t. c ∈ {Enck(m)}

and if:> ← SVerk(c) and m← SDeck(c)⇒ c ∈ {Enck(m)}

Now we can define the RUPAE security definition:

Definition 20 ([5]). A separated AE scheme Π = (K,Enc,SDec,SVer) is
(qE , qD, t, ε)-RUPAE secure if for any (qE , qD, t)-adversary A the following ad-
vantage

AdvRUPAEΠ,A :=
∣∣∣Pr
[
AEnck(·),SDeck(·),SVerk(·) ⇒ 1

]
− Pr

[
A$E(·),$D,⊥(·) ⇒ 1

]∣∣∣ ≤ ε
where the key k is picked uniformly at random, the algorithm $E(m) answers
a random string of length |c| with c ← Enck(m), the algorithm $D(c) outputs a
random string of length |m| with m← SDeck(c) and ⊥ (·) is an algorithm which
answers always ⊥ (“invalid”). The adversary A is granted to qE encryption query
(to the left oracle) and qD decryption query (to the right oracle). If he receives
c as an answer of the first oracle, that is c← Enck(m) (or c← $(m)) he is not
allowed to query the second or third oracle on input c.

For completeness we introduce the integrity definition in the RUP setting, adapted
to our syntax: INT-RUP

Definition 21 ([2]). A separated AE scheme Π = (K,Enc,SDec,SVer) is
(qE , qD, t, ε)-INT-RUP-secure if the for all (q, t)-bounded adversaries, we have

Pr [INT-RUPΠ,A ⇒ 1] ≤ ε

where the INT-RUP experiment is defined in Tab. 3
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INT-RUPΠ,A(1n) experiment

Initialization: Oracle Enck(m):
k ← K s.t. |k| = n c = Enck(m)
S ← ∅ S ← S ∪ {c}

Return c
Finalization:

c← AdvEnck(·),SDeck(·),SVerk(·) Oracle SDeck(c):
If c ∈ S or ⊥ = SDeck(c), Return 0 Return (SDeck(c))
Return 1

Oracle SVerk(c):
Return (SVerk(c))

Table 3. The INT-RUP experiment.

We often denote the previous probability with

Pr[AEnck(·),SDeck(·),SVerk(·) wins INT-RUP]

Although it may appear that CIML2 security is stronger than INT-RUP one,
they are not comparable. In fact, it is possible that the plaintext may not be
recomputed until the validity of the ciphertext has been established. Thus, it
may not be leaked.
Instead, if in decryption the plaintext is recomputed and, thus, leaked, as it is
the case in this paper, the CIML2 security is stronger than the INT-RUP one.
In fact, in addition with the plaintext the CIML2 adversary receives all internal
states of the non leak free components and, in our syntax, he may also choose
the randomness used for encryption queries.

A.8 Confidentiality with leakage in both encryption and decryption
(CPAL2)

In this section we define confidentiality in the presence of leakage.
Pereira et al. [33] give the first definitions, while Guo et al. [19] do a detailed
study of all the possible definitions.

We want to model the ability of an adversary to break the confidentiality
when he receives leakage from encryption and decryption queries. It seems hard,
if not irrealistic, to have the indistinguishability from a random string with leak-
age (it may be difficult to compute a leakage for the random string which is
indistinguishable from a real execution of the algorithm [33]). Thus, we model
confidentiality as the probability that an adversary is able to distinguish the
encryption of two challenge plaintexts m∗,0 and m∗,1 of the same length, having
also access to the leakage of their computations (as done by Pereira et al. [33]).
Thus, we use the CPAL2 (chosen plaintext security with leakage in both en-
cryption and decryption) and CCAL2 (chosen ciphertext security with leakage
in both encryption and decryption) experiments, introduced by Guo et al. [19]
(see Tab. 4).
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We define the PrivKeyCPAL2 and PrivKeyCCAL2 games in Tab. 4. The difference
between the PrivKeyCPAL2 and PrivKeyCCAL2 game is that in the latter one the
adversary has access to a decryption oracle:

PrivKeyCPAL2Enc,LE ,LD,L
u
E
,A(1n) and PrivKeyCCAL2Enc,LE ,LD,L

u
E
,Lu

D
A(1n) experiments

Initialization: Oracle EncLk(r,m):

k ← K s.t. |k| = n, b
$← {0, 1} c = Enck(m)

Return (c, LE(m; k))
Challenge output :

(m∗,0,m∗,1)← AEncLk(·) Oracle Encchk(m∗,0,m∗,1):

If |m∗,0| 6= |m∗,1| Return 0; c∗ ← Enck(m∗,b)
Else Return (c∗, LE(mb; k), LD(c∗; k))

(c∗, LE(m∗,b; k), LD(c∗; k))← Encchk(m∗,0,m∗,1)
Oracle DecLk(c):

Finalization: Return (Deck(c), LD(c; k))

b′ ← AEncLk(·),DecLk(·) (c∗, LE(mb; k), LD(c∗; k))
If b = b′, Return 1
Return 0

Table 4. The PrivKeyCPAL2 and PrivKeyCCAL2 experiment. In the PrivKeyCPAL2 the ad-
versary has not access to the DecLk(·) oracle

Definition 22. An authenticated encryption AE scheme Π = (K,Enc,Dec) with
leakage L = (LE , LD) is (qE , t, ε)-CPAL2 ( chosen plaintext attack secure in the
presence of leakage in encryption and in encryption of the challenge plaintext
and in decryption of the challenge ciphertext) [resp. (qE , qD, t, ε)-CCAL2 ( chosen
ciphertext attack secure in the presence of leakage in both encryption and de-
cryption, and in encryption of the challenge plaintext and in decryption of the
challenge ciphertext)], if for every (qE , t) [resp. (qE , qD, t)]-bounded adversary
A, we have:

Pr
[
PrivKeyCPAL2A,Π,L = 1

]
≤ 1

2
+ ε[

resp. Pr
[
PrivKeyCCAL2A,Π,L = 1

]
≤ 1

2
+ ε

]
where the adversary is granted at most most qE encryption queries [resp. and
qD decryption queries] and he runs in time bounded by t.
If qE = qD = 0, that is, the adversary does only the challenge query, the scheme
is called (t, ε) ( eavesdropper secure in the presence of leakage in encryption
and decryption) (EavL2) secure. If also LD = 0 (that is, there is no leakage in
decryption), the scheme is called (t, ε) ( eavesdropper secure in the presence of
leakage in encryption) (EavL) secure.

(The 2 of CPAL2, etc., is to remind that the adversary A has access to the leakage
of the decryption of the challenge query[ies]).
Guo et al. [19] allowed the adversary to ask multiple challenge queries, here, for
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simplicity we consider only one.

Leakage model (the PSV one) We are left with the problem of what leakage
model we use. Since, we do not introduce any novelty in the encryption part, we
decide to reuse the model presented by Standaert et al. [37]: the simulatability.
(At the end we have to introduce some technical addition, whose necessity will
be clear in Sec. D.4.

The notion of simulatability is based on the q-sim game presented in Tab. 5.
In this game we measure the capability of a simulator to produces leakages which
seem consistent with the input and outputs of a PRF, without knowing the key
used by the PRF. Thus, we can define:

Game q-sim(A,PRF, L,S, b) [37, Section 2.1].

The challenger selects two random keys k, k∗
$← K. The

output of the game is a bit b′ computed by AL based on the
challenger responses to a total of at most q adversarial
queries of the following type:

Query Response if b = 0 Response if b = 1

E, LE \ E,SL(x) Ek(x), L(k, x) Ek(x), SL(k∗, x,Ek(x))

and one query of the following type:

Query Response if b = 0 Response if b = 1

Gen-S(z, x) SL(z, x, k) SL(z, x, k∗)

Table 5. The q-sim experiment of Standaert et al. [37].

Definition 23. [q-simulatable leakages [37, Def. 1]] Let E be a PRF having leak-
age function L. Then E has (qS , tS , qA, tA, εq-sim) q-simulatable leakages if there
is a (qS , tS)-bounded simulator SL such that, for every (qL, t)-bounded adversary
AL, we have

|Pr[q-sim(A,E, L,SL, 1) = 1]− Pr[q-sim (A,E, L,SL, 0) = 1]| ≤ εq-sim.

We observe that A is granted qL queries to the leakage oracle. This queries
are different from the queries done by the challenger. In fact for the queries done
by A, he chooses the key and the plaintext, thus, they are intended to profile the
leakage of E.

This assumption is useful to reduce the leakage security of the whole en-
cryption to the leakage security of the encryption of a single block. What is the
leakage security of a single block is still an open problem, but it may be studied
and evaluated much more easily [33].

The EavL [33,11] and EavL2 [13] security of PSV has already been established
in the literature. It was possible to reduce the security of the whole scheme to
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the security of an adversary who has only access to an ideal encryption of a
single n bit (a block) message, called PSVsI (see Tab. 7).

Other leakage assumptions In addition, with respect to the PSV model [33],
we need some additional hypothesis on the leakage of E and F∗. The reasons,
why we need them, are discussed in Sect. D.4, in particular in Lemma 4.

Definition 24. The leak free implementation of keyed primitive has
(q, qS′ , t, tS′)-indistinguishable leakage if for any (q, t) adversary, there exists a
(qS′ , tS′)-simulator such that the leakage LF∗(x, y; k) of the computation z ←
F∗k(x, y) is indistinguishable from the simulated leakage SLF∗

F∗ (x, y, z, k∗) for a
random key k∗.

Since, by hypothesis, the leak free component hides the key it uses, the pre-
vious definition can be assumed given the leak free hypothesis, although it is
very strong. In particular, we suppose that the leakage of F∗ depends only on
its inputs and outputs. We may also suppose that the difference is bounded by
ε, but we choose to suppose that they are completely indistinguishable, due to
the hypothesis that F∗ has a leak free implementation.

Regarding the leakage of k0, when it is picked uniformly at random, we
suppose that its leakage is given by a simulator S$ which uses as only input k0.

Now, we can modify the q-sim game in order to consider the additional source
of leakage for k0, obtaining the q-sim′ game:

Game q-sim′(A,PRF, L,S,SF∗ , b)
The challenger selects three random keys k, k∗, k+

$← K
and a random value w

$← {0, 1}n. The output of the game
is a bit b′ computed by AL based on the challenger re-
sponses to a total of at most q adversarial queries of the
following type:

Query Response if b = 0 Response if b = 1

E, LE \
E,SL(x)

Ek(x), L(k, x) Ek(x), SL(k∗, x,Ek(x))

and one query of the following type:

Query Response if b = 0 Response if b = 1

Gen-S ′() L$(k) L$(k∗)

and one query of the following type:

Key-Send(h) SLF∗
F∗ (h, k, k+, w) SLF∗

F∗ (h, k∗, k+, w)

Table 6. The q-sim′ experiment used for the first block. Note that A may choose h
after having received the answer of the previous queries.

Definition 25. [q-simulatable leakages’ ] Let E be a PRF having leakage func-
tion L and let F∗ be a STPRP having (qS′ , tS′)-indistinguishable leakage (see
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Def. 31). Then E has (qL, qS , qS′ , t, tS , tS′ , εq-sim) q-simulatable’ leakage if there
is a (qS , tS)-bounded simulator SL such that, for every (qL, t)-bounded adversary
AL, we have

|Pr[q-sim′(A,E, L,SL, 1) = 1]− Pr[q-sim′(A,E, L,SL, 0) = 1]| ≤ εq-sim.

(The q-simulatability’ assumption is clearly the q-simulatability assumption
[Def. 23 or [33]] with the two modifications: the key k is not generated via E but
picked uniformly at random and it is also encrypted using F∗ with a tweak h
chosen by the adversary A).

Other leakage model Yu et al. [39], reused by Berti et al. [10] model the
leakage function of the PRF E as L = (LinE , L

out
E ), where LinE is the leakage given

by the first part of the computation of E, while LoutE by the last part of the
computation. In particular, they suppose that LinE is a function of the inputs and
the key of the PRF E, that is, if y = Ek(x), then  LinE (x; k) :=  Lin(x; k), and LoutE

is a function of the outputs and the key, that is,  LoutE (x; k) :=  Lout(y; k).
This allows to avoid unrealistic attacks [for example, consider a stateful PRG
based on E, (this PRG provides a key stream), which rekeys at every round of
its execution, we want to avoid the possibility of a completely unrealistic attack
where the leakage of a round may give information about the key used 10 rounds
after].
Since, in their hypothesis the PRG which PSV is based on, is leakage resilient, also
CONCRETE should be leakage resilient in that model. But, for space constraints,
we do not study this in detail and we leave it as an open problem.

B Extension to Associated Data

B.1 Syntax and security

It may happen that there are some data which need to be authenticated, but
not encrypt (for example, an header containing metadata like the sender, the
receiver, the time). In such situation in the nonce case, syntactically the scheme
is:

Definition 26. [[31]] A nonce-based authenticated encryption with associated
data scheme (nAEAD) is a triple of algorithm Π = (K,Enc,Dec) s.t. the keyspace
K is a nonempty set, the encryption algorithm Enc is a deterministic algorithm
which takes as input the tuple (k, n, a,m) ∈ K×N×AD×M and outputs a string
c ← Enck(n, a,m). The decryption algorithm Dec is a deterministic algorithm
which takes as input the tuple (k, n, a, c) ∈ K×N ×AD×C and outputs a string
m← Deck(n, a, c) which is either a string in M or the symbol “⊥‘” (invalid).
We require that the algorithm Enc and Dec are the inverse of each other, that is:
Correctness: if c← Enck(n, a,m), then, m← Deck(n, a, c),
Tidiness: if m← Deck(n, a, c) with m 6=⊥ then, c← Enck(n, a,m).
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If m← Deck(n, a, c), with m 6=⊥, we say that c is valid, otherwise it is invalid.

For such a scheme, its security is defined as follow:

Definition 27. An authenticated encryption with associated data nAEAD scheme
Π = (K,Enc,Dec) is (qE , qD, t, ε)-nAE secure if the following advantage

AdvnAEADΠ,A :=
∣∣∣Pr
[
AEnck(·,·,·),Deck(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ ≤ ε
for any (qE , qD, t)-adversary A, where the key k is picked uniformly at ran-
dom, the algorithm $(n, a,m) answers a random string of length |c| with c ←
Enck(n, a,m), and ⊥ (·, ·, ·) is an algorithm which answers always ⊥ (“invalid”).
The adversary A may ask qE encryption queries (to the left oracle) and qD de-
cryption queries (to the right oracle). Moreover, he is not allowed to repeat the
first input, the nonce, in different encryption queries. If he receives c as an an-
swer of the first oracle, [that is, c← Enck(n, a,m) (or c← $(n, a,m))] he is not
allowed to query the second oracle on input (n, a, c).

Now, we have to adapt these definitions to our environment, where, instead
of a nonce, a random value is picked and kept secret. First, we define the syntax:

Definition 28. An authenticated encryption with associated data scheme (AEAD)
is a triple of algorithm Π = (K,Enc,Dec) s.t. the keyspace K is a nonempty set,
the encryption algorithm Enc is a probabilistic algorithm which takes as input
the tuple (k, a,m) ∈ K × AD ×M and outputs a string c ← Enck(a,m). The
decryption algorithm Dec is a deterministic algorithm which takes as input the
tuple (k, a, c) ∈ K×AD×C and outputs a string m← Deck(a, c) which is either
a string in M or the symbol “⊥‘” (invalid).
We require that the algorithm Enc and Dec are the inverse of each other, that is:
Correctness: if c← Enck(a,m), then, m← Deck(a, c),
Tidiness: if m← Deck(a, c) with m 6=⊥ then, c← Enck(a,m).
If m← Deck(a, c), with m 6=⊥, we say that c is valid, otherwise it is invalid.

Its security is provided by the following definition:

Definition 29. An authenticated encryption with associated data nAEAD scheme
Π = (K,Enc,Dec) is (qE , qD, t, ε)-nAE secure if the following advantage

AdvAEADΠ,A :=
∣∣∣Pr
[
AEnck(·,·),Deck(·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·) ⇒ 1

]∣∣∣ ≤ ε
for any (qE , qD, t)-adversary A, where the key k is picked uniformly at random,
the algorithm $(a,m) answers a random string of length |c| with c← Enck(a,m),
and ⊥ (·, ·) is an algorithm which answers always ⊥ (“invalid”). The adversary
A may ask qE encryption queries (to the left oracle) and qD decryption queries
(to the right oracle). Moreover, if he receives c as an answer of the first oracle,
[that is, c← Enck(a,m) (or c← $(a,m))] he is not allowed to query the second
oracle on input (a, c).

which is Def. 27 adapted to the syntax introduced in Def. 28.
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B.2 CONCRETE for associated data

It is easy to modify CONCRETE to consider also authenticated data (AD).
The first idea is that it is enough instead of computing h = H(c0‖...‖cl), we
can compute h = H(a‖c0‖...‖cl). This works, if the hash function treats dif-
ferently the associated data and the ciphertext; otherwise it may create prob-
lem: consider the AD a parsed in n-bit blocks a = (a1, ..., al′), we have that
H(a1, ..., al′ , c0, c1, ..., cl) = H(c′0, ..., c

′
l′+l+1) with c′0 = a1, ..., c

′
l′ = al′ , c

′
l′+1 =

c0, ..., c
′
l′+l+1 = cl (thus, we may have a collision on h simply moving some

blocks from AD to ciphertext. It may be used to create a forgery.
Thus, we propose to modify the hash function, defining H′(a,m) :=
– parse a in n-bit blocks, a = (a1, ..., al′) (the last block is padded if necessary)
– parse c in n-bit blocks, m = (c0, ..., cl) (again, the last block is padded if

necessary)
– H′(a,m) := H(a1‖0‖a2‖0‖...‖al′‖0‖c0‖1‖c1‖1‖...‖cl‖1)

(that is, we pad a 0 after every AD block and a 1 after every ciphertext block).

In this way, the previous attack is ruled out. (It is described in Fig. 1)

It may be proved that this variant has the same security as the original
CONCRETE.

C Previous works

Notations Since we use the PRF E : K(= {0, 1}n) × {0, 1}n ← {0, 1}n and the
leakfree STPRP F∗ : K(= {0, 1}n) × T W(= {0, 1}n) × {0, 1}n ← {0, 1}n, we
call block a string of n bits. When we parse a message m in blocks, (that is,
m = (m1, ...,ml) with m = m1‖...‖ml, |m1| = ... = |ml−1| = n and ml| ≤ n)
the last block may not be full, that is, its length may be ≤ n. Doing an abuse of
notation we call it also a block. Let l be the number of blocks of the plaintext
m.

There is an interesting line of works to achieve leakage-resilient authenticated
encryption (AE), started at CCS 2015 by Pereira et al. ([33,11,13,19,10]). All this
works assumes the existance of a very well-protected (leak free) component and
others much less protected.
Assuming these hypothesis on the components, the key k of the scheme (usually
called master key) should only be used in the leak free components as a key.

Their schemes are based on the rekeying, that is, every key used in the less
protected component is used a few number of times in all the history of the
game (typically 2). To do this they use, for example, the PRG (pseudorandom
generator) of Standaert et al. [37], which, in every execution, computes a new
internal key (called ephemeral key) and outputs a (pseudo)random value, thus,
it may be used to generate a key stream.
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All these schemes can be divided in 3 parts, see for example Fig. 3 showing
it for EDT [13]:

Derivation of the first ephemeral key The first ephemeral key (which is
usually denoted with either k0 or k1) is obtained using the master key k and
the leak free component F∗. It may be obtained as F∗k(x) where x may be picked
uniformly at random ([33]), a nonce [13,19,10] or the tag ([11] to obtain nonce-
misuse).

Encryption Usually, the encryption scheme introduced at CCS 2015 by Pereira
et al. [33] is used. This scheme, presented in Fig. 2 uses the PRG of Standaert
et al. [37]: starting from an ephemeral key k1, a stream of pseudorandom bits
is created which is XORed to the plaintext. It may happen that also the ran-
domness may be encrypted (e.g. [11]). Guo et al. [19] use a more complicated
scheme, which is substantially a double pass, in order to achieve nonce-misuse
resistance. Berti et al. [10] used a variant of PSV using tweakable blockcipher to
obtain multi-user security and beyond birthday security.

Authentication The tag τ is computed as τ = F∗k(h) where h is the hash
of either the plaintext and the randomness ([11,13] or the ciphertext and the
randomness ([13,19,10]). (A tweak may also be used).
To achieve CIML2, following the work of Berti et al. [13], the verification is not
done recomputing the tag τ and checking if it is equal to the tag provided in the
plaintext, but computing h′ = F∗,−1k (τ) and checking if it is equal to the actual
hash value (together with the pre-image resistance [13] of the hash function).
That is, the decryption oracle, instead of saying “the ciphertext is invalid since
I know the right tag [which is τ ′ (6= τ)]”, (thus, risking to leak the right tag τ ′),
says “the ciphertext is invalid since the tag τ is not the tag for this ciphertext, [but
for those ciphertexts whose hash is h′]”. Moreover, since h′ is randomly picked
(since F∗ is a STPRP then, to obtain the security, it is enough to assume that it
is difficult to find an hash pre-image for h′ (range-oriented pre-image resistance).

It is not necessary that this the authentication is the last step, for example
DTE, introduced by Berti et al. [11] starts with the authentication, then com-
putes a first ephemeral key and finally encrypts the plaintext (it is based on the
Tag-then-Encrypt paradigm).

Since we have isolated the encryption part, we want to give a syntax for it:

Definition 30. A rekeyed encryption scheme Π = (K, enc, dec) is a triple of
algorithm s.t. the keyspace K is a nonempty set, the encryption algorithm enc
is a deterministic algorithm which takes as input the tuple (k,m) ∈ K×M and
outputs a string c ← enck(m). The decryption algorithm dec is a deterministic
algorithm which takes as input the tuple (k, c) ∈ K × C and outputs a string
m← deck(c) which is either a string in M or the symbol “⊥‘” (invalid).
We require that the algorithm enc and dec are the inverse of each other, that is:

Correctness: if c← enck(m) then m← Deck(c),
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Tidiness: if m ← deck(c) with m 6=⊥ then, c ∈ {c ← enck(m)}, that is, c may
be obtained as encryption of m using key k.

If m← deck(c) with m 6=⊥ we say that c is valid, otherwise it is invalid.

We observe that rekeyed encryption scheme are deterministic. This is not a
problem, because, they should be used with a different key for every encryption
query.

Fig. 3. The EDT mode separated in the three different phases. We use red for long
term secret, orange for ephemeral one and green for outputs.

D Proofs

Notations We introduce some definitions and notations to make the proofs
lighter. We use superscripts to indicate to which encryption and decryption
query the message (or the ciphertext) is referred to. We use the set of index
{1, ..., qE} for the encryption queries and {1, ..., qD} for decryption ones. [For-
mally, to make this two sets disjoint, we should write every index as (i, j) where
j is either e or d, thus, for example, (i, e) indicates the ith encryption query. To
make the notation lighter we omit the second component, because it is always
clear if a query is an encryption or a decryption one].
The transcripts of the game consists of all queries made by the adversary to his
oracles, the oracles’s answers and the final output of the adversary. In a tran-
script every request is immediately followed by its answer.
Given a ciphertext c = (c0, ..., cl, cl+1) we define the partial ciphertext as the
vector (c0, ..., cl), that is, the ciphertext without considering the block cl+1 en-
crypting the key.
An ephemeral key ki is fresh if it should be picked uniformly at (pseudo)random.
During a game, a previous query is a query which appears before in the tran-
script of the game. It may be either an encryption or a decryption query.
During a game, given the partial ciphertext (c0, ..., cl) we say that it is fresh
if there exists no ciphertext c′ obtained in a previous encryption query which
has the same partial ciphertext [that is, (c0, ..., cl) = (c′0, ..., c

′
l)] and there is no

ciphertext c′′ asked for a previous decryption query which has the same partial
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ciphertext [that is, (c0, ..., cl) = (c′′0 , ..., c
′′
l )].

Given a partial ciphertext (c0, ..., cl), we say that the block cl+1 is fresh with
respect to the partial ciphertext (c0, ..., cl) if there exists no ciphertext c′ appear-
ing in the transcription of the game s.t. c′ = (c0, ..., cl, cl+1) even if the partial
ciphertext (c0, ..., cl) is not fresh. That is, the block encrypting the key has never
been paired with that particular partial ciphertext.
In the proofs we have also to consider the time needed to obtain a random block.
We denote this time with t$. We suppose that every adversary has access to an
own infinite random tape. Whenever he needs a random block, he reads n bits
of this tape, thus t$ is the time needed to read n bits from this tape.

D.1 CIML2

Before proving the CIML2 security for CONCRETE, we have to define the leakage
function in the unbounded model. We observe that LE(r,m; k) := k0 = r, that is
the leakage is the randomness r used by Enck(·), because, from it all values can
be recomputed apart k and cl+1 (but the latter is provided in the ciphertext).
In particular all the inputs and outputs of every function can be recomputed by
the adversary from r and the ciphertext. Moreover, also all the keys used in the
non leak free components can be recomputed from r.
On the other hand, LD(c; k) := k0, because from k0 the adversary is able to
recompute all values used in the decryption apart from k. Interestingly, when
there is misuse, that is, the adversary has taken control of the random genera-
tor providing the randomness r, there is no leakage during encryption queries,
since r is already known to the adversary, who has chosen it. We observe that
if the adversary has obtained c ← EncDk(r,m), the decryption leakage of c is
LD(c; k) := k0 = r, thus, there is no additional information that a CIML2 ad-
versary can obtain via a leaking decryption query of a ciphertext he has already
obtained as answer of an encryption query. Thus, to make the proof easier, we
assume that the adversary does not ask the decryption of a ciphertext c if the
adversary has obtained c as an answer of a encryption query.

Theorem 6. Let F∗ be a (Q + 1, t + (Q + 1)(tH + (2L + 1)tE), εSTPRP)-strong
tweakable pseudorandom permutation (STPRP), let E be a (2, t + (Q + 1)(tH +
(2L+ 1)tE) + tf(Q+1), εPRF)-pseudorandom function (PRF) and let H be a (0, t+
(Q+1)(tH+(2L+1)tE)+tf(Q+1), εCR)-collision resistant hash function. Then, the
scheme CONCRETE, which encrypts messages which are at most L-block long,
is (qE , qD, t, ε)-CIML2 secure with

ε ≤ εSTPRP + εCR +
(qD + 1)(L+ 1)(Q+ qE)

2n+1
+
qD + 1

2n
+ (qD + 1)εPRF

where Q = qE + qD, tH is the time necessary to evaluate the hash function H,
tE is the time to compute y = Ek(x), tf(Q+1) is the time needed to lazy sample a
tweakable random permutation at most Q+ 1 times.
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Proof. We uses a series of games. For simplicity, we call the decryption query
induced by the output of A as the qD + 1 decryption query.

Game 0 This is the real CIML2 game where A attacks scheme CONCRETE. Let
E0 be the event that A wins Game 0.

Game 1 In this game, we replace STPRP F∗k(·, ·) with the random tweakable
permutation f∗(·, ·). Let E1 be the event that A wins Game 1.

Transition from Game 0 to Game 1 It is easy to build a (Q+1, t+(Q+1)(tH+
(2L+ 1)tE))-STPRP adversary B whose STPRP advantage is |Pr[E0]− Pr[E1]|.

The STPRP adversary B The adversary B receives the key length n and has
access to an oracle which is either implemented either via F∗k(·, ·) and F∗,−1k (·, ·)
or via f∗(·, ·) and f∗,−1(·, ·). B has to distinguish the situations. In detail:
At the start of the game, B picks 2 constants pA, pB ∈ {0, 1}n with pA 6= pB and
an hash function H : {0, 1}∗ 7−→ {0, 1}n and sends to A (pA, pB ,H). Moreover,
B sets S as an empty set.
When A does an encryption query on input (ri,mi), with mi = (mi

1, ...,m
i
li),

B simply (1) sets ki0 := ri, then, (2) from the ephemeral key ki0, he computes
(ci0, ..., c

i
li), after that, (3) he computes hi = H(ci0‖...‖cili) and (4) he queries his

oracle on input (hi, ki0,+1) obtaining cili+1, finally (5) B sets LE(ri,mi; k) := ri

and answers A (ci, ri) with ci = (ci0, ..., c
i
li , c

i
li+1). Then, he updates the set S

adding the ciphertext ci. For every encryption query B does 1 oracle query, more-
over, he evaluates E 2li + 1 ≤ 2L+ 1 times and once the hash function H; thus,
answering to A takes at most (2L+ 1)tE + tH time.
When A makes a decryption query on input cj with cj = (cj0, ..., c

j
lj , c

j
lj+1),

B (1) computes the hash hj = H(cj0, ..., c
j
lj ), (2) queries his oracle on input

(hj , cjlj+1,−1) obtaining kj0, (3) computes c̃j0 = Ekj0
(pB), then (4) if cj0 6= c̃j0

he sets mj =⊥, that is, he answers “invalid”, otherwise, (5) from kj0, B is able

to compute mj = (mj
1, ...,m

j
lj ), finally, (6) B sets LD(cj , k) := kj0 and he an-

swers (mj , kj0). For every decryption query B does 1 oracle query, moreover, he
evaluates once the hash function H, once E if cj is deemed invalid, otherwise
2lj + 1 ≤ 2L+ 1 times; thus, answering to A takes at most (2L+ 1)tE + tH time.
When A outputs the challenge ciphertext c = cqD+1, B proceeds as for the others
decryption queries. Thus, he uses for this decryption query again 1 oracle query
and at most time (2L+ 1)tE + tH. If the decryption query c is valid and c /∈ S,
B outputs 1, 0 otherwise.
Thus B runs in time bounded by t+ (Q+ 1)(tH + (2L+ 1)tE) and does at most
Q+ 1 oracle queries.

Bounding |Pr[E0] − Pr[E1]| ≤ εSTPRP. Clearly if the oracle is implemented
with (F∗k(·, ·),F∗,−1k (·, ·)) B is correctly simulating Game 0; otherwise, Game 1.

Thus Pr[BF∗k(·,·),F
∗,−1
k (·,·) ⇒ 1] = Pr[A wins Game 0] = Pr[E0]
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and Pr[Bf∗(·,·),f∗,−1(·,·) ⇒ 1] = Pr[A wins Game 1] = Pr[E1].

Consequently

|Pr[E0]− Pr[E1]| =
∣∣∣Pr[BF∗k(·,·),F

∗,−1
k (·,·) ⇒ 1]− Pr[Bf∗(·,·),f∗,−1(·,·) ⇒ 1]

∣∣∣
which is bounded by εSTPRP since F∗(·, ·) is a a (Q + 1, t + (Q + 1)(tH + (2L +
1)tE), εSTPRP)-strong tweakable pseudorandom permutation (STPRP) and B is a
(Q+ 1, t+ (Q+ 1)(tH + (2L+ 1)tE)-STPRP adversary.

Game 2 Game 2 is Game 1 where we suppose that all hash values hi are different
provided that their inputs are different. Let E2 be the event that A wins Game 2.

Transition between Game 1 and Game 2 We introduce a failure event CR,
so defined:

CR :=

{
∃i, i′ ∈ {1, ..., qE} ∪ {1, ..., qD+1}, i

%

6= i′

s.t. hi = hi
′
and (ci0, ..., c

i
li) 6= (ci

′

0 , ..., c
i′

li′
)

}

(With the symbol
%

6= we mean that the inequality i 6= i′ always holds if one index
is picked from {1, ..., qE} and the other from {1, ..., qD+1})
To compute the probability of event CR, which clearly consists on a collision for
the hash function H, we build a collision resistant adversary C.

The (0, t+(Q+1)(tH +(2L+1)tE)+ tf(Q+1)) collision resistance adversary
C The collision resistant adversary C wants to output a collision for the hash
function H he has access to and he is based on the CIML2 adversary A. To emu-
late either Game 1 or Game 2 for A, C simply picks two values pA, pB ← {0, 1}n
and a tweakable random permutation f∗. To make the adversary more efficient
we allow him to lazy sample [8] the tweakable random permutation f∗. Then he
behaves as adversary B emulating Game 0 (or 1) for A with two differences: first,
to obtain cil+1 in encryption queries (step 4) and kj0 in decryption queries (step
2), instead of querying his oracle and using its answers, C lazy samples f∗(·, ·);
second, he has a list H which he updates adding (hi, (ci0, ..., c

i
li)) every time he

has to compute the hash function H (that is, he keeps track of all inputs and
outputs of the hash function). At the end of the game, C looks up into his list H:
if he finds a collision, if it is the case, he outputs it, otherwise he outputs (0, 1). C
does no query and he runs in time bounded by t+(Q+1)(tH+(2L+1)tE)+tf(Q+1),
where tf(Q)+1 is the time needed to lazy sample f∗ Q+ 1 times.

Bounding Pr[CR] If event CR happens, clearly C wins because he has output
a collision. Thus

Pr[CR] ≤ Pr[C produces a collision] ≤ εCR
since the hash function H is (0, t+(Q+1)(tH+(2L+1)tE)+tf(Q+1), εCR)-collision
resistant and C is a (0, t+ (Q+ 1)(tH + (2L+ 1)tE) + tf(Q+1))-adversary.
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Bounding |Pr[E1]− Pr[E2]| Since Game 1 and Game 2 are identical if event
CR does not happen, then Pr[E1] ≤ Pr[E2] + Pr[CR] ≤ Pr[E2] + εcr.

Game 3 Game 3 is Game 2 where we suppose that all fresh decryption queries
are invalid. Let E3 be the probability that A wins Game 3. Clearly Pr[E3] = 0.

Transition between Game 2 and 3 To bound the difference |Pr[E2]−Pr[E3]|
we build a sequence of qD + 2 games Game 20, ..., Game 2qD+1.

Game 2i Game 2i is Game 2 where the first i decryption queries ci, if they
are fresh, are answered with (⊥, ki0) with ki0 = LD(ci). Let Ei2 be the event that
adversary wins Game 2i.
Clearly Game 2 is Game 20 and Game 3 is Game 2qD+2.

Transition between Game 2i−1 and Game 2i We observe that the only
difference between Game 2i−1 and Game 2i is how the ith decryption query is
treated. Consider the following event:

Fi := { the ith decryption query is valid and fresh}

If event Fi does not happen, Game 2i−1 and Game 2i are indistinguishable since
the answer to the ith decryption query is the same. Thus∣∣Pr[Ei−12 ]− Pr[Ei2]

∣∣ ≤ Pr[Fi].

Bounding Pr[Fi] Let ci = (ci0, c
i
1, ..., c

i
li , c

i
li+1) be the ith decryption query.

There are two possibilities:

F 1 The partial ciphertext (ci0, ..., cli) is fresh,
F 2 The partial ciphertext (ci0, ..., cli) is not fresh

Clearly every fresh ciphertext falls in exactly one of the previous case. We call
event F ji event F j ∩ Fi.

Event F 1
i Since the partial ciphertext (ci0, ..., c

i
li) is fresh, then its hash hi is

fresh due to the fact that event CR has not happened. Since at least one of
the input (the tweak in this case, which is equal to hi) of the tweakable ran-
dom permutation f∗,−1 is fresh, then, ki0 := f∗,−1(hi, cili) is picked uniformly at
random via lazy sampling of the tweakable random permutation. Thus, event
F 1
i happens only if Eki0(pB) = ci0 for a random key. This event is called COi

(collision output). To compute Pr[COi] we introduce Game 3i replacing Eki0(·)
with the random function fi(·) in the computation of the ith decryption query.

Game 3i Game 3i is Game 2i where we replace in the ith decryption query
Eki0 with the random function fi0. We call event COi2 the event that ci0 = c̃i0 in

Game 2i, and event COi3 the event that ci0 = c̃i0 in Game 3i.
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Transition between Game 2i and Game 3i To do it we build a (2, t+ (Q+
1)(tH + (2L+ 1)tE) + tf(Q+1))-PRF adversary Di based on A.

The (2, t + (Q + 1)(tH + (2L + 1)tE) + tf(Q+1))-PRF adversary Di The PRF
adversary Di has access to an oracle which is implemented either with Eki0(·)
where ki0 is a key picked uniformly at random or with a random function fi(·). Di
has to distinguish the two situations. To emulate Game 2i for A, Di simply picks
two values pA, pB ← {0, 1}n and a tweakable random permutation f∗, which,
for efficiency, he lazy samples. Then he behaves as adversary C emulating Game
1 for A, before the ith decryption query. When Di receives the ith decryption
query on input ci = (ci0, ..., c

i
li , c

i
li+1), by hypothesis (F 1) the partial ciphertext

is fresh, thus, its hash hi is fresh (CR). Then, Di calls his oracle on input pB ,
receiving y as an answer and he sets c̃i0 = y. After that, he calls his oracle on
input pA receiving y′ and he sets ki1 = y′. Moreover, he picks a random key k̃i0
and he sets the leakage LD(ci; k) = k̃i0. From now on, he behaves as C in Game
1. At the end of the game, if c̃i0 = ci0, Di outputs 1, otherwise he outputs 0. Di

does only two queries to his oracle and he runs in time bounded by

t+(qE + i−1)(tH +(2L+1)tE)+ tf(Q+1) ≤ t+(Q+1)(tH +(2L+1)tE)+ tf(Q+1).

(Even if adversary Di had not answered correctly to the ith decryption query, or
if he had not simulated correctly the game after that query, this would not have
created any problem since Di’s output does not depend on what the adversary
A does after his ith decryption query.)
Moreover, with regard to the correctness of the simulation, we observe that, if the
key ki0 is a key which has already been used in the game as a key for E during a
previous encryption or decryption query, it is not possible to replace Eki0(·) with
a random function only in the ith decryption query. Apart from this case, the
computation of c̃i0 is correctly simulated if the oracle is implemented with fi(·)
for Game 3i, while if the oracle is implemented with Eki0(·) for a random key

ki0 Game 2i is correctly simulated by Di. Thus, we define the event KCi (key
collision):

KCi :=

{
∃ a previous encryption query (rj ,mj)

or ∃ a previous decryption query cj
s.t. ∃λ s.t. ki0 = kjλ

}

where among encryption queries j can run only among the encryption queries
A has done before the ith decryption query, which are (≤ qE) and with the first
i− 1 decryption queries.

Bounding Pr[KC]i Since ki0 is randomly picked and since there are at most i−
1+qE possible values that it cannot have, we can bound Pr[KCi] ≤ qE(L+1)+(i−1)(L+1)

2n .

Bounding
∣∣Pr[COi2]− Pr[COi3]

∣∣ Since Di is a (2, t+ (Q+ 1)(tH + (2L+ 1)tE) +
tf(Q+1))-PRF adversary and E(·) is a (2, t+(Q+1)(tH+(2L+1)tE)+tf(Q+1), εPRF)-
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PRF secure, thus∣∣Pr[COi2]− Pr[COi3]
∣∣ =

∣∣∣Pr[D
E
ki
0
(·) ⇒ 1]− Pr[Dfi(·) ⇒ 1]

∣∣∣ ≤ εPRF
Bounding Pr[COi3] We can compute Pr[COi3] = 2−n, since fi0(·) is a random
function, thus the probability that c̃i0 is equal to ci0 is equal to |T |−1 with T the
target space of the function fi0(·).

We are finally able to bound Pr[F 1
i ]:

Bounding Pr[F 1
i ] If Di simulates correctly event F 1

i happens iff event CO2
i

happens, thus

Pr[F 1
i ] ≤ Pr[KCi] + Pr[COi2] ≤ Pr[KCi] + Pr[COi3] +

∣∣Pr[COi2]− Pr[COi3]
∣∣

Using the previous results, we obtain:

Pr[F 1
i ] ≤ Pr[KCi] + Pr[COi3] +

∣∣Pr[COi2]− Pr[COi3]
∣∣ ≤

qE(L+ 1) + (i− 1)(L+ 1)

2n
+ 2−n + εPRF =

qE(L+ 1) + (i− 1)(L+ 1) + 1

2n
+ εPRF

Bounding Pr[F 2
i ] Now the partial ciphertext (ci0, ..., c

i
li) is not fresh and it

has been obtained in encryption 1 and/or decryption queries. Now we can reuse
everything we used to bound Pr[F 1

i ] since cli+1 is fresh with respect to the partial
ciphertext (ci0, ..., c

i
li) and thus ki0 is fresh. Consequently, it is uniformy picked

at random. Still, Pr[KCi] ≤ qE(L+1)+(i−1)(L+1)
2n . Consequently we can bound

Pr[F 2
i ] ≤ Pr[KCi] + Pr[COi3] +

∣∣Pr[COi2]− Pr[COi3]
∣∣ ≤

qE(L+ 1) + (i− 1)(L+ 1)

2n
+ 2−n + εPRF =

qE(L+ 1) + (i− 1)(L+ 1) + 1

2n
+ εPRF

Bounding Pr[Fi] Since Pr[Fi] ≤ max{Pr[F 1
i ],Pr[F 2

i ]} we have bounded

Pr[Fi] ≤
qE(L+ 1) + (i− 1)(L+ 1) + 1

2n
+ εPRF

1 This may be done finding at most qE different keys k10, ..., k
qE
0 s.t. Ek10 (pB) = ... =

EkqE0
(pB) [very unlikely, but possible] and choosing mi

j = m1
j ⊕ Ek1j

(pB)⊕ Ekij
(pB).

This can be done since the adversary chooses the ki0s so he can anticipates all the
values Ekij

(pB) for every i and j. This is related to what we explain for the tidiness
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Bounding
∣∣Pr[A wins Game 2i−1]− Pr[A wins Game 2i]

∣∣ We have already

proved that
∣∣Pr[A wins Game 2i−1]− Pr[A wins Game 2i]

∣∣ ≤ Pr[Fi] thus we ob-
tain that ∣∣Pr[A wins Game 2i−1]− Pr[A wins Game 2i]

∣∣ ≤ Pr[Fi] ≤

qE(L+ 1) + (i− 1)(L+ 1)

2n
+ εPRF

Bounding |Pr[A wins Game 3]− Pr[A wins Game 2]| Since Game 2 is Game
20 and Game 3 is Game 2qD+1 we have:

|Pr[A wins Game 3]− Pr[A wins Game 2]| ≤
qD+1∑
i=1

∣∣Pr[A wins Game 2i−1]− Pr[A wins Game 2i]
∣∣ ≤

qD+1∑
i=1

(
qE(L+ 1) + (i− 1)(L+ 1) + 1

2n
+ εPRF

)
=

(qD + 1)qE(L+ 1)

2n
+

qD(qD+1)(L+1)
2

2n
+
qD + 1

2n
+ (qD + 1)εPRF =

(qD + 1)(L+ 1)(Q+ qE)

2n+1
+
qD + 1

2n
+ (qD + 1)εPRF

Bounding Pr[E3] Since all fresh decryption queries are deemed invalid in Game
3 there is no possibility that the adversary wins such Game thus Pr[E3] = 0.

We now are able to finally conclude the proof.
Bounding Pr[E0] Using all the bounds about the event Ei (i = 0, ..., 3) we
obtain that

Pr[E0] ≤ εSTPRP + εCR +
(qD + 1)(L+ 1)(Q+ qE)

2n+1
+
qD + 1

2n
+ (qD + 1)εPRF

Observation on the bound Since we have supposed that all k0 used in the
decryption query are different (and different from all other ephemeral keys), the
previous bound covers also the difference εSTPRP \εtprf if we see F∗ as a tweakable
PRF, (that is, if F∗k(·, ·) is indistinguishable from a random function with the
same signature).

Interestingly, we use the fact that E is a PRF to prove that the probability
that c0 = Ek0(pB) is negligible. This is a difference with respect to the other-
works ([13,19,10]) where no hypothesis on E was used in the CIML2 proof. The
hypothesis that E is a PRF is too strong. We discuss this after the proof. On the
other hand, since we need that E is a PRF is necessary to have the AE security,
it is meaningful to prove the theorem with this hypothesis.
To make lighter the notation we do not use EncDk(·, ·), but we use Enck(·, ·)
since it is clear that for CIML2 the encryption algorithm is deterministic since
the randomness is provided by the adversary.
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Observation on the proof The constraint, which we use for E, is stronger than
what is in reality necessary, but, since, anyway we need that E is a (2, t, εPRF) for
AE security (see Sec. 5.2) we assume anyway this hypothesis. On the other hand,
we would have been able to prove the CIML2 security, even if we had replaced E
with the identity. The real security property that we need for the commitment
c0 = c0(k0) is the following:

∀c0 ∈ {0, 1}n Pr[c̃0(k0) = c0 if k0
$← K′] ≤ εCOM

where c̃0(k0) is the correct commitment for the ephemeral key k0 which must be
picked uniformly at random (in Thm. 1 we should replace εPRF with εCOM). That
is, given a commit c0, the probability that it is correct for a random ephemeral
key k0, is negligible. In particular, this is true if the commitment is given by a
PRF or by any injective function.

This also allows us to replace the term (qD+1)(L+1)(Q+qE)
2n+1 with (qD+1)(Q+qE)

2n+1 ,
that is, we suppose only that all k0 used in decryption queries are different.

Note on the ciphertext integrity (INT-CTXT) We do not prove ciphertext in-
tegrity, because it is implied by the CIML2-security. Anyway, the proof would be
similar and the bound would be the same.

Tidiness We observe that our scheme is tidy. In fact, in the CIML2 proof
(Thm. 1), it may happen that, by pure chance the adversary is able to produce
a ciphertext whose commitment c0 is correct, thus, the ciphertext is valid. But,
in such a case, this is the correct commitment for the ephemeral key k0 obtained
in the decryption. Thus, it is the ciphertext obtained when the randomness is
r = k0 and the message is the message obtained in decryption.

D.2 AE security

After having proved the authenticity, we want to prove the confidentiality, which
should be based on the security of the PSV encryption scheme. We start studying
confidentiality in the blackbox model, using the AE security definition, leaving
the security in the presence of leakage to Sec. 5.4.
First, we prove the security for the scheme CONCRETE. At the end, we give an
idea the constraint we need on enc (which may replace the PSV) in order to have
the AE security.

Theorem 7. Let F∗ be a (Q, t + Q(tH + (2L + 1)tE), εSTPRP)-strong tweakable
pseudorandom permutation (STPRP), let E be a (2, t′, εPRF)-pseudorandom func-
tion (PRF) and let H be a (0, t+Q(tH+(2L+1)tE)+tf(Q), εCR)-collision resistant
hash function. Then, the scheme CONCRETE, which encrypt messages which are
at most L-block long, is (qE , qD, t, ε)-AE secure with

ε ≤ εSTPRP + εCR +
qD(L+ 1)(Q+ qE)

2n+1
+
qD
2n

(qE(L+ 1) + qD)εPRF +
qE(L+ 1)[qE(L+ 1)− 1]

2n+1
+
Q(Q− 1)

2n+1
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where Q = qE + qD, tH is the time necessary to evaluate the hash function H,
tE is the time to compute y = Ek(x), tf(Q) is the time needed to lazy sample a
tweakable random permutation at most Q times, t$ the time necessary to obtain
a random block and t′ ≤

t+ tf(qE) + qEtH + 2 max
j=1,...,L

[jt$ + (L− j)tE] + 2(L+ 1) max
i=1,...,qE

[(it$ + (qE − i)tE].

First, we observe that the scheme is INT-CTXT secure (since it is CIML2 secure),
then, we observe that all the ciphertext blocks can be replaced by random ones
since either they are obtained via a STPRP with a different input (cl+1) or via
the PSV encryption scheme using a different key [since we can see the partial
ciphertext (c0, ..., cl+1) as the PSV encryption of the message 0n‖m].

Proof. We define Π = (K,Enc,Dec) where Enc is Enc where we replace the
STPRP Fk∗(·, ·) with the tweakable random permutation f∗(·, ·) and we suppose
that there are no collisions for the hash function. Dec is modified accordingly.
We observe that in reality the key of Enck is f∗, so we denote it with Encf∗ .
As done by Berti et al. [12] we have that:

AdvAEΠ,A :=
∣∣∣Pr
[
AEnck(·),Deck(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]∣∣∣ =∣∣∣Pr
[
AEnck(·),Deck(·) ⇒ 1

]
− Pr

[
AEncf∗ (·),⊥(·) ⇒ 1

]
+

Pr
[
AEncf∗ (·),⊥(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]∣∣∣ ≤∣∣∣Pr
[
AEnck(·),Deck(·) ⇒ 1

]
− Pr

[
AEncf∗ (·),⊥(·) ⇒ 1

]∣∣∣+∣∣∣Pr
[
AEncf∗ (·),⊥(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]∣∣∣ ≤∣∣∣Pr
[
AEnck(·),⊥(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]∣∣∣
εSTPRP + εCR +

qD(L+ 1)(Q+ qE)

2n+1
+
qD
2n

+ qDεPRF

where the last inequality can be obtained by Thm. 1. In fact the proof of the
aforementioned theorem can be used with the following changes:

– the adversary has no more a final decryption query, thus we replace qD + 1
with qD in the bound;

– The adversary A cannot pick the randomnesses rs, nor he may see them,
thus all adversaries B, C, D used in the previous proof, when they have to
simulate encryption queries for A they pick the randomnesses rs uniformly
at random;

– since there is no leakage, the adversaries B, C, D used in the previous proof,
have not to compute it and give it to A;

Since the oracle ⊥ can be simulated correctly by anyone (it is enough to answer
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⊥ to every decryption query without regarding it) we obtain∣∣∣Pr
[
AEncf∗ (·),⊥(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]∣∣∣ =∣∣∣Pr
[
AEncf∗ (·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]∣∣∣
Now the proof is really similar to the proof done by Berti et al. [11]. We do it
using again a series of games:

Game 0 It is the Game where the adversary is playing against Encf∗(·). Let E0

be the probability A outputs 1 at the end of this Game.

Game 1 It is Game 0 where there is no collision on the randomnesses rs. Thus,
we introduce the event randomness collision

RC :=
{
∃i, i′ ∈ {1, ..., qE}, i 6= i′ s.t. ri = ri

′
}

and we suppose it does not happen. This forces all the first ephemeral keys ki0
to be different. Let E1 be the probability that A outputs 1 at the end of this
Game.

Bounding Pr[RC] Since the randomnesses rs are picked uniformly at random,

we can use the birthday bound paradox([22]), thus, Pr[RC] ≤ qE(qE−1)
2n+1 because

the last randomness rqE cannot be equal to one of the others qE − 1 random-
nesses ris.

Bounding |Pr[E0] − Pr[E1]| Since Game 0 and Game 1 are identical if event
RC does not happen, we have that

|Pr[E0]− Pr[E1]| ≤ Pr[RC] ≤ qE(qE − 1)

2n+1
.

Game 2 It is Game 1 where we have replaced all ciphertext blocks of the partial
ciphertexts with random blocks. Let E2 be the probability A outputs 1 at the
end of this Game.

Transition between Game 1 and Game 2 We use at most qE(L+2) Games
2I,J with I = 1, ..., qE , J = −1, ..., li ≤ L.

Game 2I,J it is Game 1 where for the first I − 1 encryption queries we have
replaced all blocks (ci0, ..., c

i
li) with random values. Moreover for the Ith encryp-

tion query, we replaces the first J ′ blocks (cI0, ..., c
I
J′) with random values, where

J ′ = min(J, lI) [we do this, in order not to touch the last block cIlI which is
obtained via f∗]. Moreover, at most (I−1)(L+1)+J+1 random keys (ki0, ..., k

i
li

and kIj , for i = 1, ..., I − 1 and j = 0, ..., J) are picked uniformly at random;

in addition if J ≤ lI , a random key kIJ+1 is picked uniformly at random. From
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kIJ+1 the remaining ciphertext blocks are computed. Let EI,J2 be the probability
A outputs 1 at the end of the Game.

Transition between Game 2I,J−1 and Game 2I,J If J ≥ lI + 1 Game
2I,J and Game 2I,J+1 are identical, since we have replaced the same blocks of
ciphertext with random and nothing more. Thus, Pr[EI,J−12 ] = Pr[EI,J2 ].
Otherwise, we build a (2, t′, εPRF)-PRF adversary BI,J against the PRF E(·) with
t′ ≤

t+ tf(qE) + qEtH + 2 max
j=1,...,L

[jt$ + (L− j)tE] + 2(L+ 1) max
i=1,...,qE

[(it$ + (qE − i)tE].

The (2, t′)-PRF adversary BI,J adversary The PRF adversary BI,J has access
to an oracle which is implemented either with EkIJ (·) or with a random function

fIJ(·). He has to distinguish to the two situations. In detail:
First, the oracle, which adversary BI,J faces, picks uniformly at random a key
kIJ ← {0, 1}n. Then, BI,J picks 2 constants pA, pB ∈ {0, 1}n with pA 6= pB and
an hash function H : {0, 1}∗ 7−→ {0, 1}n and sends (pA, pB ,H) to A. BI,J also
picks a tweakable random permutation f∗(·, ·) which he lazy samples.
When A does an encryption query on input mi, with mi = (mi

1, ...,m
i
li), if i < I,

BI,J simply (1) picks uniformly at random ri = ki0, after that, (2) he picks
uniformly at random li + 1 blocks (ci0, ..., c

i
li) with |cili | = |mi

li |, then, (3) he
computes hi = H(ci0‖...‖cili) and (4) he computes cili+1 = f∗(hi, ki0) and answers

ci to A with ci = (ci0, ..., c
i
li , c

i
li+1). Moreover (5) he picks li ephemeral keys

ki1, ..., k
i
li uniformly at random. For every of the first I − 1 encryption queries

adversary BI,J lazy samples f∗ one time, moreover, he picks uniformly at random
li+1 ≤ L+1 blocks a randmoness ri = k0 and at most L ephemeral keys ki1, ..., k

i
l

and he computes once the hash function H; thus, answering to A takes at most
tf + tH + 2(L+ 1)t$ time.
When A does an encryption query on input mi, with mi = (mi

1, ...,m
i
li), if i = I,

if J ≥ lI + 1 adversary BI,J encrypts mI as he does for the first I−1 encryption
queries; otherwise BI,J simply (1) picks uniformly at random rI and he sets
k̃I0 = rI , then, (2) for each j < J he randomly picks the block cIj , (with |cIlI | =
|mI

lI |), after that, (3) for the Jth block he calls his oracle on input pB receiving
yII and, if J 6= lI on input pA obtaining kIJ+1 (if J = lI , BI,J calls his oracle
only once on input PB), then, (4) he computes cIJ := yIJ ⊕mJ

I (if J = lI , cIJ =
π|mJ

I |(y
I
J)⊕mI

J , if J = 0, cIJ = yIJ) after that, (5) from kIJ+1 he is able to correctly

compute (cIJ+1, ..., c
I
lI ) then, (6) he computes hI = H(cI0‖...‖cIlI ) and finally (7)

he computes cilI+1 = f∗(hI , k̃I0) and answers A cI with ci = (cI0, ..., c
I
lI , c

I
lI+1).

Moreover (8) he picks J − 1 ephemeral keys kI1 , ..., k
I
J−1 at random. We observe

that, although kI0 6= k̃I0 , that is the key BI,J sends may be different from the key
used in the oracle, this is not a problem since the tweak is fresh (due to event
CR), so the value cIlI+1 is in both cases picked uniformly at random. For the Ith

encryption query BI,J lazy samples f∗ one time, moreover, he picks uniformly at
random J blocks, a randomness rI = kI0 and J − 1 ephemeral keys kI1 , ..., k

I
J−1

evaluates E(·) 2(lI−J) ≤ 2(L−J) times, and he computes once the hash function
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H; thus, answering to A takes at most tf + tH + 2Jt$ + 2(L − J)tE which is
bounded by tf + tH + max

J=1,...,L
[2Jt$ + 2(L−J)tE] time, with tf the time necessary

to lazy sample f∗(·, ·). When A does an encryption query on input mi, with
mi = (mi

1, ...,m
i
li), if i > I, B simply (1) picks uniformly at random ri and sets

ki0 := ri, then, (2) from the ephemeral key ki0, he computes (ci0, ..., c
i
li), after that,

(3) he computes hi = H(ci0‖...‖cili) and finally (4) he computes cili+1 = f∗(hi, ki0)

and (5) BI,J answers ci to A with ci = (ci0, ..., c
i
li , c

i
li+1). For every of the last

qE − I encryption queries BI,J lazy samples f∗ one time, moreover, he evaluates
E(·) 2(li + 1) ≤ 2(L + 1) times, and he computes once the hash function H;
thus, answering to A takes at most tf + tH + 2(li + 1)tE which is bounded by
tf + tH + 2(L + 1)tE time. At the end of the Game A outputs a bit b, which is
the bit output by BI,J . Thus in total the adversary BI,J does 2 queries to his
oracle, moreover he runs in time bounded by

t+tf(qE)+qEtH+2(I−1)(L+1)t$+ max
j=1,...,L

[2jt$+2(L−j)tE]+(qE−I−1)2(L+1)tE ≤

t+ tf(qE) + qEtH + max
j=1,...,L

[jt$ + 2(L− j)tE] + 2(L+ 1) max
i=1,...,qE

[(it$ + (qE − i)tE]

Ephemeral key collisions We want that the ephemeral keys are all different, in
order to correctly simulate. We have already supposed that all the randomnesses
rs are different (event RC). Now, we suppose that all rekeyed keys are different.
To do this, it is enough to suppose that for the adversary BI,J , the ephemeral key
kIJ+1 (if calculated) is different from all the other keys previously picked (that
is, all the ki0 for i = 1, ..., qE and all kIj s for i < I, j = 1, ..., li (with li ≤ L) and

all kIj for 1 ≤ j ≤ J). In fact, in these cases adversary BI,J will have problems

to correctly simulate Game 2I,J+1. Thus, we define the event of ephemeral key
collision

EKCI,J :=

{
kIJ+1 = kij for an i = 1, ..., I − 1 or if i = I and
j = 0, ..., J − 1 or if i = I + 1, ..., qE and j = 0

}
If the event EKCI,J happens in Game 2I,J we abort. In Game 2I,J since kIJ is

picked uniformly at random Pr[EKCI,J ] ≤ (L+1)(I−1)+J+qE−I
2n .

Bounding |Pr[EI,J−12 ]−Pr[EI,J2 ]| After having supposed that event EKCI,J−1

does not happen, we observe that BI,J simulates Game 2I,J−1 if the oracle is
implemented with EkIJ (·) otherwise Game 2I,J . Since E(·) is a (2, t′, εPRF)-PRF
we can bound if J 6= 0

|Pr[EI,J−12 ]− Pr[EI+1,J
2 ]| ≤ εPRF + Pr[EKCI,J ] ≤

εPRF +
(I − 1)(L+ 1) + J − 1 + qE − I

2n

while if J = 0, since event RC does not happen

|Pr[EI,J−12 ]− Pr[EI+1,J
2 ]| ≤ εPRF + Pr[EKCI,J ] ≤ εPRF + 0
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Bounding |Pr[EI,L1 ]−Pr[EI+1,0
1 ]|We observe that Game 2I,L and Game 2I+1,0

are identical since in both games all the blocks of the partial ciphertexts of the
first I encryption queries are random, and all the others are computed using
Enc(·). Thus, Pr[EI,L2 ] = Pr[EI+1,0

2 ].

Bounding |Pr[E1]−Pr[E2]| Using the previous 2 transitions and iterating them,
we are finally able to bound |Pr[E1]− Pr[E2]|

|Pr[E1]− Pr[E2]| ≤
qE∑
i=1

 L∑
j=0

|Pr[Ei,j1 ]− Pr[Ei,j−11 ]|

+

qE−1∑
i=1

|Pr[Ei,L1 ]− Pr[Ei+1,0
1 ]| ≤

qE∑
i=1

 L∑
j=0

εPRF +

L∑
j=1

(i− 1)(L+ 1) + j − 1 + qE − i
2n

+ 0 ≤

qE(L+ 1)εPRF +

qE∑
i=1

 L∑
j=1

(i− 1)(L+ 1) + j − 1 + qE − i
2n

 ≤
qE(L+ 1)εPRF +

qE(L+ 1)[qE(L+ 1)− 1]

2n+1
− qE(qE − 1)

2n+1

where the last term is obtained observing that
qE∑
i=1

(
L∑
j=1

(L+1)(i−1)+j−1+qE−i
2n

)
is

the sum of the first qE(L+1)−1 natural numbers less the sum of the first qE−1
natural numbers.

Game 3 It is Game 2 where we have replaced all ciphertexts with random
strings of the same length. Let E3 be the event that the adversary outputs 1 at
the end of this game. We observe Pr[E3] = Pr[A$(·) ⇒ 1].

Transition between Game 2 and Game 3 We have that the difference
between Game 3 and Game 4 is between using a PRF instead of a STPRP.
In fact, for every ciphertext ci the first li + 1 blocks (ci0, ..., c

i
li) are randomly

picked, but the last ciphertext block cili+1 is randomly picked according to a
STPRP in Game 2, while in Game 3 is picked uniformly art random. Using the
well known result about distinguishing a PRP from a PRF [8], we obtain that

Pr[E3] ≤ Pr[E2] + Q(Q−1)
2n+1 .

Bounding Pr[E0] This conclude our proof, since using all the bounds already
computed we obtain that
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|Pr[E0]− Pr[E1]| ≤

εSTPRP + εCR +
qD(L+ 1)(Q+ qE)

2n+1
+
qD
2n

+ qDεPRF +
qE(qE − 1)

2n+1
+

qE(L+ 1)εPRF +
qE(L+ 1)[qE(L+ 1) + 1]

2n+1
− qE(qE − 1)

2n+1
+
Q(Q− 1)

2n+1
≤

εSTPRP + εCR +
qD(L+ 1)(Q+ qE)

2n+1
+
qD
2n

(qE(L+ 1) + qD)εPRF +
qE(L+ 1)[qE(L+ 1)− 1]

2n+1
+
Q(Q− 1)

2n+1

Generic rekeyed encryption scheme If, we replace the PSV rekeyed encryption
scheme with a generic one Π = (K′, enc, dec), the security we ask to Π in order
to have the AE-security for scheme CONCRETE is the following:
for every (0, t′)-adversary, the advantage

AdvΠ,A :=
∣∣∣Pr[A(c)⇒ 1; k′

$← K′,m← A, c← enck′(m)]−

Pr[A(c)⇒ 1;m← A, c← $(m)]
∣∣∣ ≤ ε

where $(·) is an oracle which outputs a random string of length |enck′(·)|.
That is, for a single encryption query, if the key is randomly picked, the output
is indistinguishable from a random one.
The proof that our assumption is enough is a simple adaptation of the previous
one.

D.3 The RUPAE security

After having proved the AE security in the blackbox model, we want to study
the security when unverified plaintexts are released. We prove in this section
that CONCRETE is RUPAE secure.

First we observe that, for CONCRETE, being CIML2 secure implies being
INT-RUP secure, because, from the leakage the adversaries receives in decryp-
tion, that is, ki0, they are able to recompute the plaintext decrypted.

To prove the AE security, since we have proved that CONCRETE is AE secure
and CIML2 (thus, INT-RUP) secure, it is enough to observe that during the
decryption, a random ephemeral key k0 is used. Thus, if using a random key,
dec outputs a random result, we should be able to prove the RUPAE.

The separated syntax for CONCRETE First, we introduce the separated syntax
for CONCRETE, that is, we have to define SDec and SVer: SDeck(·) is Deck with-
out the three lines labeled as Verification in Fig. 4. That is, c̃0 = Ek0(pB) is not
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computed and there is not the check c̃0
?
= c0.

Instead SVerk(·) consists in the six lines labeled either as “common” or “verifica-
tion” in Fig. 4. That is, k0 = F∗,−1(h, cl+1) is recomputed. From it, c̃0 = Ek0(pB)
is recomputed and c̃0 is compared to c0. If it is the case, SVerk(·) returns >, oth-
erwise, ⊥.

Now we can prove the following

Theorem 8. Let F∗ be a (Q, t+Q(tH+(2L+1)tE), εSTPRP)-strong tweakable pseu-
dorandom permutation (STPRP), let E be a (2,max(t′, t′′), εPRF)-pseudorandom
function (PRF) and let H be a (0, t + (Q + 1)(tH + (2L + 1)tE) + tf(Q+1), εCR)-
collision resistant hash function. Then, the scheme CONCRETE, which encrypt
messages which are at most L-block long, is (qE , qD, t, ε)-RUPAE secure with ε
bounded by

εSTPRP + εCR +Q(L+ 1)εPRF +
qD
2n

+
(L+ 1)Q[(L+ 1)Q− 1]

2n+1
+
qE(qE − 1)

2n+1

where Q = qE + qD, tH is the time necessary to evaluate the hash function H,
tE is the time to compute y = Ek(x), tf(Q) is the time needed to lazy sample a
tweakable random permutation at most Q times and t′ is bounded by

t+ tf(Q) +QtH + 2(L+ 1) max
i=1,...,qD

[(i− 1)t$ + (qD − i)tE]+

max
j=0,...,L+1

[(2J − 1 + χ0(J))t$ + [2(L− J)− 1]tE] + 2(L+ 1)qEtE

and t′′ is bounded by

t+ tf(Q) +QtH + qD(2L+ 1)t$ + 2 max
j=0,...,L

[jt$ + (L− j)tE]+

max
i=1,...,qE

[(i− 1)(2L+ 1)t$ + (qE − i)(2L+ 1)tE]

and χ0(J) is the characteristic function of the set {0}.
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Following the same approach as in Sec. 5.2 we have that

AdvRUPAEΠ,A :=∣∣∣Pr
[
AEnck(·),SDeck(·),SVerk(·) ⇒ 1

]
− Pr

[
A$E(·),$D(·),⊥(·) ⇒ 1

]∣∣∣ =∣∣∣Pr
[
AEnck(·),SDeck(·),SVerk(·) ⇒ 1

]
− Pr

[
AEncf∗ (·),SDecf∗ (·),⊥(·) ⇒ 1

]
+

Pr
[
AEncf∗ (·),SDecf∗ (·),⊥(·) ⇒ 1

]
− Pr

[
AEncf∗ (·),$D(·),⊥(·) ⇒ 1

]
+

Pr
[
AEncf∗ (·),$D(·),⊥(·) ⇒ 1

]
− Pr

[
A$E(·),$D(·),⊥(·) ⇒ 1

]∣∣∣ ≤∣∣∣Pr
[
AEnck(·),SDeck(·),SVerk(·) ⇒ 1

]
− Pr

[
AEncf∗ (·),SDecf∗ (·),⊥(·) ⇒ 1

]∣∣∣+∣∣∣Pr
[
AEncf∗ (·),SDecf∗ (·),⊥(·) ⇒ 1

]
− Pr

[
AEncf∗ (·),$D(·),⊥(·) ⇒ 1

]∣∣∣+∣∣∣Pr
[
AEncf∗ (·),$D(·),⊥(·) ⇒ 1

]
− Pr

[
A$E(·),$D(·),⊥(·) ⇒ 1

]∣∣∣ ≤∣∣∣Pr
[
AEnck(·),SDeck(·),SVerk(·) ⇒ 1

]
− Pr

[
AEncf∗ (·),SDecf∗ (·),⊥(·) ⇒ 1

]∣∣∣+∣∣∣Pr
[
AEncf∗ (·),SDecf∗ (·) ⇒ 1

]
− Pr

[
AEncf∗ (·),$D(·) ⇒ 1

]∣∣∣+∣∣∣Pr
[
AEncf∗ (·) ⇒ 1

]
− Pr

[
A$E(·) ⇒ 1

]∣∣∣
where the last inequality is given by the fact that the oracle ⊥ (·) is easily
emulated by anyone, while the oracle $(·) is easily emulated picking random
at most qD(L + 2)n random bits (this costs time at most (qD(L + 2))t$ and
no oracle queries). We use, similar to Thm. 2, Π = (K,Enc,SDec,SVer) which
is the scheme Π used in that theorem, written with the separated syntax (in
particular, for scheme Π we replace F∗(·, ·) with f∗(·, ·) and we suppose that
there are no collisions for the hash function).
Now we have to separately study each piece. The first term∣∣∣Pr

[
AEnck(·),SDeck(·),SVerk(·) ⇒ 1

]
− Pr

[
AEncf∗ (·),SDecf∗ (·),⊥(·) ⇒ 1

]∣∣∣ = (4)

can be easily bounded by the CIML2 advantage we have already computed
(Thm. 1). We use the same argument used in Thm. 2 to bound it. Thus, we
bound it

(4) ≤ εSTPRP + εCR +
(qD + 1)(L+ 1)(Q+ qE)

2n+1
+
qD + 1

2n
+ (qD + 1)εPRF

The second term has not been already bounded and it is the core of the proof.∣∣∣Pr
[
AEncf∗ (·),SDecf∗ (·) ⇒ 1

]
− Pr

[
AEncf∗ (·),$D(·) ⇒ 1

]∣∣∣
The idea of the proof is to prove that SDec outputs a random string if the
first ephemeral key ki0 is randomly picked (This assumption is correct happens
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because ki0 = f∗,−1(·, ·) where f∗(·, ·) is a strong tweakable random permutation
which is called always with different inputs [H is collision resistant and we have
supposed that there are no collision for the hash function]).
Regarding the third term∣∣∣Pr

[
AEnc$f∗ (·) ⇒ 1

]
− Pr

[
A$$E(·) ⇒ 1

]∣∣∣ ,
the proof of Thm 2 bounds it.

Although if we follow this pattern, we will be able to do a correct proof, we
do few modifications to it in order to have a better bounds. In detail:

Proof. We use a sequence of games. As in other proofs, we use two progressive nu-
meration for queries, one for encryption queries, the other for decryption queries.

Game 0 It is the Game where the adversary A has access to the oracles
Enc$k(·),SDeck(·) and SVerk(·). Let E0 be the event that adversary A outputs
1 at the end of this game.

Game 1 It is Game 1 where we replace the STPRP F∗k(·) with the random
tweakable permutation f∗(·) and we suppose that all hash values hi are differ-
ent, provided that their inputs are different. Let E1 be the event that A outputs
1 at the end of this game.

Bounding |Pr[E0]− Pr[E1]| Using the proof of Thm. 1 we can easily bound

|Pr[E0]− Pr[E1]| ≤ εSTPRP + εCR.

Game 2 It is Game 1 where we replace the oracle SDecf∗(·) with $D(·) (A has
still access to the real SVerk(·)). Moreover, we suppose that also the blocks c̃0
are random. Let E2 be the event that A outputs 1 at the end of this game.

Transition between Game 1 and Game 2 We do it using qD(L+ 2) Games
1i,j with i = 1, ..., qD and j = −1, ..., L.

Game 1I,J It is Game 2 where for the first I − 1 decryption queries, we have
replaced all the blocks (mi

1, ...,m
i
li) and c̃0

i with random blocks. For the Ith

decryption query, if J = −1, the plaintext mI and c̃0
I are computed as usual;

if J = 0 c̃0
I is random, while mI is computed normally; otherwise, we have re-

placed the first J−1 blocks (mI
1, ...,m

I
J) and c̃0

I with random values. Moreover,
at most (I − 1)(L + 1) + J + 1 random keys ki0, ..., k

i
li for i = 1, ..., I − 1 and

kIj , j = 0, ..., J are picked uniformly at random; in addition if J ≤ lI , a random

key kIJ+1 is picked uniformly at random. Let EI,J1 be the event that adversary
A outputs 1 at the end of this game.
We observe that for all I = 1, ..., qD Game 1I,0 and Game 1I,1 are the same
in their outputs (thus, they are indistinguishable), but we need these games in
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order to replace correctly the ephemeral key stream.
Moreover, we observe that Game 1 is Game 11,0 while Game 2 is Game 1qD,L+1.

Transition between Game 2I,J−1 and Game 2I,J To do it we build a (2, t′)-
PRF adversary BI,J against the PRF E(·), with t′ bounded by

t+ tf(Q) +QtH + 2(L+ 1) max
i=1,...,qD

[(i− 1)t$ + (qD − i)tE]+

max
j=0,...,L+1

[(2J − 1 + χ0(J))t$ + [2(L− J)− 1]tE] + 2(L+ 1)qEtE

where tf(Q) is the time needed to lazy sample f∗ Q times, tH is the time needed
to evaluate the hash function, t$ is the time needed to obtain a random block
and tE is the time needed to evaluate the PRF E.

The (2, t′)-PRF adversary BI,J adversary The PRF adversary has access to
an oracle which is implemented either with EkIJ (·) or with a random function

fIJ(·). He has to distinguish the two situations. In detail:
First BIJ picks 2 constants pA, pB ∈ {0, 1}n with pA 6= pB and an hash function
H : {0, 1}∗ 7−→ {0, 1}n and sends to A (pA, pB ,H). He also picks a tweakable
random permutation f∗(·, ·) which he lazy samples.
When A does an encryption query on input mi, with mi = (mi

1, ...,m
i
li), the

adversary BJI easily simulates it. In detail: BIJ simply (1) picks uniformly at ran-
dom ri and sets ki0 := ri, then, (2) from the ephemeral key ki0, he computes
(ci0, ..., c

i
li), after that, (3) he computes hi = H(ci0‖...‖cili) and finally (4) he com-

putes cili+1 = f∗(hi, ki0) and (5) BI,J answers A ci with ci = (ci0, ..., c
i
li , c

i
li+1). For

every encryption queries BI,J lazy samples f∗ one time, moreover, he evaluates
E(·) 2(lI +1) ≤ 2(L+ 1) times, and he computes once the hash function H; thus,
answering to A takes at most tf + tH + 2(li + 1)tE [≤ tf + tH + 2(L+ 1)tE].
When A does a decryption query on input ci, with ci = (ci0, c

i
1, ..., c

i
li , c

i
li+1), if i <

I BI,J simply (1) computes the hash hi = H(ci0, ..., c
i
l) and ki0 = f∗,−1(hi, cili+1),

(2) picks uniformly at random li blocks (mi
1, ...,m

i
li) with |mi

li | = |c
i
li |, and an-

swers mi to A with mi = (mi
1, ...,m

i
li). Moreover (3) he picks li ≤ L ephemeral

keys , ki1..., k
i
li uniformly at random and a random block c̃i0. At the end, if c̃i0 = ci0

he answers > to the following verification query, otherwise ⊥.
For every of the first I−1 decryption queries BI,J computes once the hash func-
tion H and lazy sample once f∗, he, also, picks uniformly at random li+1 ≤ L+1
blocks and li + 1 ≤ L + 1 ephemeral keys; thus, answering to A takes at most
tH + tf + 2Lt$ time.
When A does a decryption query on input ci, with ci = (ci0, c

i
1, ..., c

i
li , c

i
li+1),

if i = I, BI,J simply (1) computes hI = H(cI0‖...‖cIlI ), if J 6= 0, he com-
putes kI0 = f∗,−1(hI , cIlI+1), picks at random J − 1 blocks (mI

1, ...,m
I
J−1) with

|mI
lI | = |c

I
lI | (if J = 0 he skips this step), then, (2) he queries his oracle on input

pA and pB obtaining respectively kIJ+1 and yIJ (if J = LI + 1, BI,J does not
query his oracle on input pA, but only on input pB) after that, (3) he computes
mI
J = yIJ ⊕ cIJ (instead if J = 0 he sets c̃I0 = yI0) then, (4) from kIJ+1 he com-
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putes correctly (mI
J+1, ...,m

I
lI ) and answers mI to A with mI = (mI

1, ...,m
I
lI ).

Moreover, (5) he picks J − 2 ephemeral keys kI1 ..., k
I
J−1 and a random block c̃i0

(if J 6= 0) uniformly at random. At the end, if c̃i0 = ci0 he answers > to the
following verification query, otherwise ⊥.
For the Ith decryption query, BI,J queries at most twice his oracle (only once if
j = lI ; otherwise twice), computes at most once the hash function H and lazy
sample at most once f∗, he picks uniformly at random J blocks, one block is
obtained via the oracle queries and he evaluates 2(lI − J) ≤ 2(L− J) times the
PRF E. Moreover, he picks uniformly at random max(J − 1, 0) ephemeral keys;
thus, answering to A takes at most tH + tf +(2J−1+χ0(J))t$ +[2(LI−J)−1]tE
time (χ0(J) is because if J = 0 no random value is picked and not −1 random
value).
When A does a decryption query on input ci, with ci = (ci0, c

i
1, ..., c

i
li , c

i
li+1),

if i > I, BI,J simply (1) computes hi = H(ci0, ..., c
i
li , c

i
li+1), then (2) he com-

putes ki0 = f∗,−1(hi, cili+1) from which he (3) is able to correctly compute

mi = (mi
1, ...,m

i
li) and c̃i0. He answers mi to A. At the end, if c̃i0 = ci0 he

answers > to the following verification query, otherwise ⊥.
For every of the last qD− I decryption queries, BI,J evaluates one time the hash
function H(·), he lazy samples once f∗(·, ·) and evaluates the PRF E 2li+1 ≤ 2L+1
times; thus, answering to A takes at most tf + tH + [2L+ 1]tE time.
When A outputs a bit, BI,J outputs the same bit.
Thus in total the adversary BI,J does 2 queries to his oracle, moreover he runs
in time bounded by

t+tf(Q)+QtH−{2[(I−1)(L+1)+J ]−1+χ0(J)}t$+2[(L−J)+(Q−I)(L+1)]tE ≤
t+ tf(Q) +QtH + 2(L+ 1) max

i=1,...,qD
[(i− 1)t$ + (qD − i)tE]+

max
j=0,...,L+1

[(2J − 1 + χ0(J))t$ + [2(L− J)− 1]tE] + 2(L+ 1)qEtE

Ephemeral key collisions We observe that, if the key kIJ used in the oracle
is the same as one of the ephemeral keys picked randomly, or an ephemeral key
used in an encryption query, there is a problem, because, in such a case the
outputs of the oracle are not consistent. Thus, we define the event of ephemeral
key collision (EKC)

EKCI,J :=


kIJ = kij for an i = 1, ..., I − 1
or if i = I and j = 0, ..., J − 1

or if i belongs to an encryption query


If the event EKCI,J happens in Game 1I,J−1, it creates a problem to simu-
late correctly Game 1I,J . In Game 1I,J since kiJ is picked uniformly at random

Pr[EKCI,J ] ≤ (L+1)(I−1+qE)+J
2n .

Bounding |Pr[EI,J−11 ] − Pr[EI,J1 ]| After having supposed that event EKCI,J

does not happens, we observe that BI,J simulates Game 1I,J−1 if the oracle is
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implemented with EkIJ (·) otherwise Game 1I,J . Since E(·) is a (2, t′, εPRF)-PRF
we can bound

|Pr[EI,J−11 ]− Pr[EI,J1 ]| ≤ εPRF + Pr[EKCI,J ] ≤

εPRF +
(L+ 1)(I − 1 + qE) + J

2n

Transition between Game 1I,L+1 and Game 1I+1,0 As in the proof of
Thm. 2, Game 1I,L+1 and Game 1I+1,0 are the same, since we have replaced
with random the same plaintext blocks and the others are computed in the
same way. Thus, Pr[EI,L+1

1 ] = Pr[EI+1,0
1 ].

Bounding |Pr[E1]−Pr[E2]| Using the previous 2 transitions and iterating them,
we are finally able to bound |Pr[E1]− Pr[E2]|

|Pr[E1]− Pr[E2]| ≤
qD∑
i=1

 L∑
j=0

|Pr[Ei,j−11 ]− Pr[Ei,j1 ]|

+

qD−1∑
i=1

|Pr[Ei,L+1
1 ]− Pr[Ei+1,0

1 ]| ≤

qD∑
i=1

 L∑
j=0

εPRF +
(L+ 1)(i− 1 + qE) + j

2n

+ 0 ≤

qD(L+ 1)εPRF +
(L+ 1)Q[(L+ 1)Q− 1]

2n+1
− (L+ 1)qE [(L+ 1)qE − 1]

2n

where the last inequality is given by the fact that

qD∑
i=1

L∑
j=0

[(L+ 1)(i− 1 + qE) + j] =

(L+1)Q−1∑
λ=(L+1)qE

λ =

(L+1)Q−1∑
λ=0

λ−
(L+1)qE−1∑

λ=0

λ

and, by the well known fact, that the sum of the first M natural numbers is

M∑
i=1

i =
M(M + 1)

2

and Q = qE + qD.

Game 3 It is Game 2 where we replace the SVerf∗(·) oracle with the ⊥ (·) oracle.
Let E3 be the event that A outputs 1 at the end of this game.

Transition between Game 2 and Game 3. We build qD + 1 games Game
2i, for i = 0, ..., qD.

Game 2i It is Game 2 where the SVerf∗(·) oracle answers ⊥ to the first i de-
cryption queries, without evaluating them. We observe that Game 20 is Game
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2, while Game 2qD is Game 3. Let Ei2 be the event that A outputs 1 at the end
of Game 2i.

Transition between Game 2i and Game 2i+1 Consider the following event
(valid ciphertext):

V Ci := { ciphertext ci is valid} = {c̃i0 = ci0}.

Clearly if event V Ci does not happen, Game 2i−1 and Game 2i are iden-
tical. Moreover, since in Game 2 all the c̃i0 are picked uniformly at random
Pr[V Ci] = 1

2n . Thus, we can bound
∣∣Pr[Ei−12 ]− Pr[Ei2]

∣∣.
Bounding

∣∣Pr[Ei−12 ]− Pr[Ei2]
∣∣

∣∣Pr[Ei−12 ]− Pr[Ei2]
∣∣ = Pr[V Ci] =

1

2n

Bounding |Pr[E2]− Pr[E3]| Adding the previous bounds
∣∣Pr[Ei−12 ]− Pr[Ei2]

∣∣
we obtain:

|Pr[E2]− Pr[E3]| =
qD∑
i=0

∣∣Pr[Ei−12 ]− Pr[Ei2]
∣∣ =

qD∑
i=1

1

2n
=
qD
2n

Game 4 It is Game 3 where we replace the oracle Encf∗(·) with $E(·). Let E4

be the event that A outputs 1 at the end of this game.

Transition between Game 3 and Game 4 It is similar to the transition be-
tween Game 1 and 2. We do it using qE(L+2) games Games 3i,j with i = 1, ..., qE
and j = −1, ..., L+ 1.

Game 3I,J It is Game 3 where for the first I − 1 encryption query, we have
replaced all the blocks (ci0, ..., c

i
li) with random blocks (we do not touch the last

block cili). For the Ith encryption query we have replaced the first J blocks
(cI0, ..., c

I
J) with random values. Moreover, at most (I−1)(L+1)+J +1 random

keys ki0, ..., k
i
li for i = 1, ..., I−1 and kIj , j = 0, ..., J are picked uniformly at ran-

dom; in addition if J ≤ lI , a random key kIJ+1 is picked uniformly at random.

Let EI,J3 be the event that adversary A outputs 1 at the end of this game.
We observe that Game 3 is Game 31,−1 while Game 4 is Game 3qE ,L+1.

Transition between Game 3I,J−1 and Game 3I,J for J < L+ 2 To do it,
for J < L+ 2, we build a (2, t′′)-PRF adversary CI,J against the PRF E(·), with
t′′ ≤

t+ tf(Q) +QtH + qD(2L+ 1)t$ + 2 max
j=0,...,L

[jt$ + (L− j)tE]+

max
i=1,...,qE

[(i− 1)(2L+ 1)t$ + (qE − i)(2L+ 1)tE]
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The (2, t′′)-PRF adversary CI,J adversary The PRF adversary has access to
an oracle which is implemented either with EkIJ (·) or with a random function

fIJ(·). He has to distinguish the two situations. In detail:
First, CI,J picks 2 constants pA, pB ∈ {0, 1}n with pA 6= pB and an hash func-
tion H : {0, 1}∗ 7−→ {0, 1}n and sends to A (pA, pB ,H). He also picks a tweakable
random permutation f∗(·, ·) which he lazy samples.
When A does an encryption query on input mi, with mi = (mi

1, ...,m
i
li), if

i < I the adversary CJI proceeds as follow: first, (1) he picks uniformly at ran-
dom ri and he sets ki0 := ri, then, (2) he picks uniformly at random li + 1
blocks (ci0, c

i
1, ..., c

i
li , c

i
li+1) with |cili | = |mi

li |, and (5) CI,J answers ci to A with

ci = (ci0, ..., c
i
li , c

i
li+1). Finally, (6) he computes hi = H(ci0‖...‖cili) and lazy sam-

ples cili+1 = f∗(hi, ki0). Moreover, (7) he picks li random keys ki1, ..., k
i
li uniformly

at random (we observe that also ki0, being equal to the randomness ri is picked
uniformly at random). For the first I − 1 encryption queries CI,J computes one
the hash function H, lazy samples once f∗, picks at random li+1 < L+1 random
blocks and li + 1 < L + 1 ephemeral keys; thus, answering to A takes at most
tH + tf∗ + 2(li + 1)t$ [≤ tH + tf∗ + 2(L+ 1)t$] time.
When A does the Ith encryption query on input mI = (mI

1, ...,m
I
lI ), CIJ proceeds

as follow: first, (1) he picks uniformly at random ri and he ki0 := ri, then, (2) he
picks uniformly at random J blocks cI0, ..., c

I
J−1, after that (3) he calls his oracle

on inputs pA and pB receiving respectively kIJ+1 and yIJ (if J = LI , CIJ queries his
oracle only on input pB) then, (4) he computes cIJ = yIJ⊕mI

J (if J = 0, cI0 = yI0),
after that, (5) from kIJ+1, CIJ is able to correctly compute cIJ+1, ..., c

I
lI , then (6), if

J < lI + 1, he computes the hash hI = H(cI0‖...‖cIlI ) and cIlI+1 = f∗(hI , rI), oth-

erwise he picks a random block cIlI+1, finally, (7) he answers cI = (cI0, ..., c
I
lI+1)

to A. Moreover, (8) he picks J random keys kI0 , k
I
1 , ..., k

I
J−1 uniformly at ran-

dom (kI0 is picked uniformly at random, being equal to rI). When A does the
Ith encryption query, CIJ lazy samples f∗(·, ·) one time, computes once the hash
function H, moreover, he picks at random J random blocks and max(J, 1) ran-
dom keys, he evaluates the PRF E 2(lI − J) ≤ 2(L − J) times, thus answering
to A takes time bounded by tf + tH + 2(L− J)tE2Jt$.
When A does an encryption query on input mi, with mi = (mi

1, ...,m
i
li), if i > I

the adversary CJI easily simulates it. In detail: CIJ simply (1) picks uniformly at
random ri and sets ki0 := ri, then, (2) from the ephemeral key ki0, he computes
(ci0, ..., c

i
li), after that, (3) he computes hi = H(ci0‖...‖cili) and finally (4) he com-

putes cili+1 = f∗(hi, ki0) and (5) CI,J answers ci to A with ci = (ci0, ..., c
i
li , c

i
li+1).

For every of the last qE − I encryption queries CI,J lazy samples f∗ one time,
moreover, he evaluates E(·) 2(lI + 1) ≤ 2(L + 1) times, and he computes once
the hash function H; thus, answering to A takes at most tf + tH + 2(li + 1)tE
[≤ tf + tH + 2(L+ 1)tE] time, with tf the time necessary to lazy sample f∗(·, ·).
When A does a decryption query on input ci, with ci = (ci0, c

i
1, ..., c

i
li , c

i
li+1),

CI,J simply (1) picks uniformly at random li blocks (mi
1, ...,m

i
li) with |mi

li | =
|cili |, and answers A (mi) with mi = (mi

1, ...,m
i
li). Moreover, (2) he computes

hi = H(ci0‖...‖cili) and lazy samples ki0 = f∗,−1(hi, cili+1). Finally, (3) he picks
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li ≤ L ephemeral keys ki1..., k
i
li uniformly at random. Then, he answers ⊥ to the

following verification query.
For every decryption queries CI,J lazy samples f∗(·, ·) one time, computes once
the hash function H, picks uniformly at random li ≤ L blocks and li ≤ L
ephemeral keys; thus, answering to A takes at most tH + tf + (2L+ 1)t$ time.
When A outputs a bit, CI,J outputs the same bit.
Thus in total the adversary CI,J does 2 queries to his oracle, moreover he runs
in time bounded by

t+ tf(Q) +QtH + [qD(2L+ 1) + (I − 1)(2 + 1) + 2J ]t$+

2[(L− J) + (qE − I)(L+ 1)]tE ≤
t+ tf(Q) +QtH + qD(2L+ 1)t$ + 2 max

j=0,...,L
[jt$ + (L− j)tE]+

max
i=1,...,qE

[(i− 1)(2L+ 1)t$ + (qE − i)(2L+ 1)tE]

Ephemeral key collisions We observe that if the key kIJ used in the oracle
is the same as one of the ephemeral key picked randomly there is a problem,
because the simulation would not be correct (we have already supposed that all
epehemeral keys, used in decryption queries, were different). Thus, we define the
event of ephemeral key collision (EKC)

EKCI,J :=

{
kIJ = kij for an i = 1, ..., I − 1 and any j

or if i = I and j = 0, ..., J − 1

}
We observe that event EKC covers also the event of a collision in the random-
nesses (being them equal to ki0).
If the event EKCI,J happens in Game 3I,J

′1, it would be problematic to simu-
late correctly Game 3I,J . In Game 3I,J since kIJ is picked uniformly at random

Pr[EKCI,J ] ≤ (L+1)(I−1)+J+1
2n .

Bounding |Pr[EI,J−13 ] − Pr[EI,J3 ]| for J ≤ L + 1 After having supposed that
event EKCI,J does not happens, we observe that CI,J simulates Game 3I,J−1

if the oracle is implemented with EkIJ (·) otherwise Game 3I,J . Since E(·) is a

(2, t′′, εPRF)-PRF we can bound

|Pr[EI,J−13 ]− Pr[EI,J
′1

3 ]| ≤ εPRF + Pr[EKCI,J ] ≤

εPRF +
(L+ 1)(I − 1) + J

2n

Transition between Game 3I,L and Game 3I,L+1 The difference between
Game 3I,L and Game 3I,L is how the block cIlI+1 is computed. But since cIlI+1 is
in both games randomly picked, but in the first according to a tweakable random
permutation with fresh inputs, thus, using the lemma about switching a PRP
with a PRF |Pr[EI,L3 ]− Pr[EI,L+1

3 ]| = q−D+I−1
2n .
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Transition between Game 3I,L+1 and Game 3I+1,−1 As in the proof of
Thm. 2, Game 3I,L+1 and Game 3I+1,−1 are the same, since we have replaced
with random the same ciphertext blocks and the others are computed in the
same way. Thus, Pr[EI,L+2

3 ] = Pr[EI+1,−1
3 ].

Bounding |Pr[E3]−Pr[E4]| Using the previous 3 transitions and iterating them,
we are finally able to bound |Pr[E3]− Pr[E4]|

|Pr[E3]− Pr[E4]| ≤
qE∑
i=1

 L∑
j=0

|Pr[Ei,j−13 ]− Pr[Ei,j3 ]|

+

qE∑
i=1

|Pr[Ei,L3 ]− Pr[Ei,L+1
3 ]|+

qE−1∑
i=1

|Pr[Ei,L+1
3 ]− Pr[Ei+1,−1

3 ]| ≤

qE∑
i=1

 L∑
j=0

εPRF +
(L+ 1)(qD + i− 1) + j

2n

+
I − 1

2n
+ 0 ≤

qE(L+ 1)εPRF +

qE∑
i=1

L+1∑
j=1

(L+ 1)(i− 1) + j

2n
+
qD + I − 1

2n

 ≤
qE(L+ 1)εPRF +

(L+1)qE−1∑
λ=0

λ

2n
+
qDqE

2n
+

qE−1∑
i=0

i

2n
≤

qE(L+ 1)εPRF +
(L+ 1)qE [(L+ 1)qE − 1]

2n+1
+
qDqE

2n
+
qE [qE − 1]

2n+1

where the second to last inequality is obtained observing that

qE∑
i=1

 L∑
j=0

L(i− 1)

 =

(L+1)qE−1∑
λ=0

λ

is the sum of the natural numbers in [0, (L+ 1)qE − 1].

Bounding Pr[E0] This concludes the proof since using all the bounds computed,
we are finally able to bound Pr[E0]

Pr[E0] ≤ εSTPRP + εCR + qD(L+ 1)εPRF +
(L+ 1)Q[(L+ 1)Q− 1]

2n+1
−

(L+ 1)qE [(L+ 1)qE − 1]

2n
+
qD
2n

+ qE(L+ 1)εPRF+

(L+ 1)qE [(L+ 1)qE − 1]

2n+1
+
qDqE

2n
+
qE [qE − 1]

2n+1
≤

εSTPRP + εCR +Q(L+ 1)εPRF +
qD
2n

+
(L+ 1)Q[(L+ 1)Q− 1]

2n+1
+
qE(qE − 1)

2n+1
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Observation We do not see completely the term Q(Q−1)
2n+1 needed to replace

a PRP with a PRF, but this is due to the fact that part of it is in the term
(L+1)Q[(L+1)Q−1]

2n+1 , which forces all the ephemeral keys used to be different.

Modification to the previous pattern . We replaced before SDeck than SVerk(·)
because we can replace Eki0(pA) and Eki0(pB) at the same moment in every de-

cryption query (so, we did not have to “recompute ki1 in every decryption query
in the previous proofs (Thm. 1 and Thm. 2)).

Security requirement for a generic rekeyed encryption scheme If, instead of PSV
we had used another rekeyed encryption scheme Π ′ = (K, enc′, dec′), to have the
RUPAE security, we need that Π ′ has the following property:
for every (0, t)-bounded adversary A the advantage

AdvΠ,A :=
∣∣∣Pr[A(m)⇒ 1; k′

$← K′,m← A,m← deck′(m)]−

Pr[A(m)⇒ 1; c← A,m← $(c)]
∣∣∣ ≤ ε

where $(·) is an oracle which outputs a random string of length |deck′(·)|.
That is, for a single decryption query, if the key is randomly picked, the output
is indistinguishable from a random one.
The proof that this is enough is a simple adaptation of the previous one.

D.4 CPAL2 and CCAL2 security

Now we want to study the confidentiality with leakage. In this section, we prove
that CONCRETE is CPAL2 and CCAL2 with the simulatable hypothesis for the
leakage of E, reducing the CPAL2 and CCAL2 security of the whole scheme to the
eavesdropper security with leakage of an ideal variant of PSV which encrypts a
single block.
First, we study the source of leakage, then, we introduce the ideal single block
variant of PSV (called PSVsI) and we reduce the Eavesdropper security of PSVs,
(that is, the single block variant of PSV) to that of PSVsI . After that, we can
prove the Eavesdropper security with leakage of the whole PSV scheme based
on that of PSVsI . Then, we study and bound the leakage of the first block and
we are finally able to prove the eavesdropper security with leakage of the whole
CONCRETE. From this, we are able to prove the CPAL2 and CCAL2 security of
CONCRETE.

Leakage We have four components that can leak: the PRF E(·) the ⊕(·, ·) used to
obtain the ciphertexts, the STPRP leak free F∗(·, ·) (the latter may only leak its
inputs and outputs, not the key used) and the random generator used internally
by CONCRETE. We observe that, even if there is an hash function, we do not
consider its leakage, since its key and its inputs and outputs, as well, are known
by the adversary [h = H(c0‖...‖cl)].
We suppose that E is implemented with a simulatable leakage.
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The EavL2 security of scheme CONCRETE The aim of this section is to
reduce the EavL2s security of the whole scheme to the security of an ideal en-
cryption scheme which encrypts a single block. To do this, first, we study the
security of PSV for a single block (PSVs) and then we use this result to prove
the security for the whole PSV. Then, we study the security of the first block
and we finish combining everything to obtain the given bound.
The proof is based on the original one for PSV [33]. We observe that given a mes-
sagem, and c← Enck(m), the ciphertext c can be seen as PSVk0(0n‖m)‖F∗k(h, k0),
for an ephemeral key k0 picked uniformly at random.

Single block PSV First we consider PSVs, defined in Tab. 7. This is a version
of PSV where only one block is encrypted. With respect to the standard PSV
scheme an additional output is given k1, that is, the refreshed key. This is useful
to compose PSVs in order to obtain PSV and does not compromise the security.
Its leakage is given by the leakage given by the leakage of E, ⊕ and by the leak-
age of the generation of k0, which we simulate via a simulator SL which should
simulate the leakage of k0 when is generated via Ek−(pA) using a random key
k−.
Let us consider the EavL2s experiment, defined in Tab. 8. We want to compute
the probability that a (0, t)-adversary is able to win this experiment. To compute
this, we introduce an idealized version of PSVs, PSVsI . We say that a scheme is
(t, ε)-EavL2(s)-secure if for every (t)-adversary, the probability that he wins the
EavL2(s) game is bounded by 1

2 + ε.

Idealized version single block PSVsI We idealize PSVs, giving birth to
PSVsI , which is described in the right column of Tab. 7. Instead of obtaining y
and k1 via the PRF E, they are picked at uniformly at random.
For the leakage, the leakage of E is replaced with the leakage produced by its
simulator.
We consider again the probability that a (0, t) adversary is able to win the EavL2s
experiment (Tab. 8).

Relation between Pr[A wins EavL2sPSVs] and Pr[A wins EavL2sPSVsI ] We
can prove that the real and ideal version of the single block version are indistin-
guishable with the following lemma:

Lemma 1. Let E : {0, 1}n × {0, 1}n 7−→ {0, 1}n be a (2, t − qLtL(E) − 3tS −
tL(⊕)−2t$), εPRF)-PRF whose implementation has a leakage function L which has

(qS , tS , qL, t−qLtL(E)− tsim− tL(⊕)− t$, ε2-sim)-2-simulatable leakage and let SL be
an appropriate (qS , tS)-bounded leakage simulator. Then, for every m, pA, pB ∈
{0, 1}n with pA 6= pB, and every (qL, t) adversary AL, the following holds:∣∣Pr[AL(m,PSVLsk0(m))⇒ 1]− Pr[AL(m,PSVLsIk0(m))⇒ 1]

∣∣ ≤
ε2-sim + εPRF

where tsim is the time needed to relay the content of the two E, LE \E,SL and the
Gen-S query (that is, the queries needed in the simulatable game, see Tab. 5),
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PSVs and PSVsfb: the single block variant of PSV and the single block
variant for the first block and their ideal counterparts PSVsI (and
PSVsfbI)

Gen: GenI :
k0 ← {0, 1}n k0 ← {0, 1}n
[ k ← {0, 1}n ]

encsk0,k(m) : [encsfbk0,k(h) :] encsI(m): [encsfbIk0(h) :]

y = Ek0(pB) y
$← {0, 1}n

c = y ⊕m [c = y] c = y ⊕m [c = y]

k1 = Ek0(pA) k1
$← {0, 1}n

[ d = F∗k(h, k0)] [ d← {0, 1}n]
Return (c, k1) [(c, k1, d)] Return (c, k1) [(c, k1, d)]

decsk0(c) and decsfbk0,k proceed in
the natural way.

decsIk0(c) and decsfbIk0,k proceed in the
natural way.

The leakage resulting from
encsk0(m)[encsfbk0,k(m,h)]
is defined as Lencs(m; k0) :=
(LE(pA; k0), LE(pB ; k0), L⊕(m, y),
SL(k−, pA, k0), k−) [Lencsfb(h; k0, k)
:= (LE(pA; k0), LE(pB ; k0), L⊕(m, y),
L$(k0), LF∗(k0, h; k))] with

k−
$← {0, 1}n.

The leakage resulting from
encsI(m)[encsfbIk(m,h)] is de-
fined as LencsI (m, k1, y; k0) :=
(SL(k0, pA, k1),SL(k0, pB , y), L⊕(m, y),
SL(k−, pA, k0), k−)
[LencsfbI (h, k1, y; k0, k) :=
(SL(k0, pA, k1),SL(k0, pB , k1), L⊕(m, y),

L$(k0),SLF∗ (k, h, k0, d))] with k−
$←

{0, 1}n.

Table 7. PSVs: the single block variant of PSV. The variant for the first block, PSVsfbI ,
adds the element in the square brackets

tL(E) is the time needed to collect the leakage of a call to E, tL(⊕) is the time
needed to collect the leakage of XOR of two blocks, tS is the time needed to
simulate one leakage query and t$ is the time needed to collect a random block.

The proof is identical to the proof of Lemma 2 [33] which, is inspired by
Lemma 1 [37].

Proof. Again we use a sequence of games:

Game 0 Let Game 0 be the game where the adversary AL(pA, pB) is going
against scheme PSVsk0 choosing the message m and receiving the ciphertext c,
the rekeyed key k1 and the leakage Lencs(m; k0) for a random key k0. He is given
the constants pA, pB . (That is, it is an eavesdropper game with leakage where
the adversary outputs a single plaintext). The adversary AL is granted to qL
queries to the leakage oracle.
Let E0 be the probability that the adversary AL outputs 1 at the end of the game.

Game 1 Let Game 1 be Game 0 where we have replaced the leakages (LE(pA; k0),
LE(pB ; k0),SL(k−, pA, k0)) with (SL(k∗, pA, k1),SL(k∗, pB , y), SL(k−, pA, k

∗)) for
a random key k∗ in the leakage of encsk0 .
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The EavL2sPSVs,LE,L⊕,A(1n) and EavL2sPSV,LE,L⊕,A(1n) experiments

Initialization: Oracle encsLk0(m∗):
k0 ← K s.t. |k| = n, c← encsk0(m∗)
pA, pB ∈ {0, 1}n Lencs = L(encsk0(m∗)

b
$← {0, 1} Return (c, Lencs)

Challenge output for PSVs [for PSVs] : Oracle encLk0(m∗):

(m∗,0,m∗,1)← AL(pA, pB) c← enck0(m∗)
If |m∗,0| 6= |m∗,1| Return 0 Lencs = L(enck0(m∗)
[If |m∗,0| = |m∗,1| 6= n Return 0] Return (c, Lenc)

Else ((c, k1), L)← enc[s]Lk0(m∗,b);

Finalization:
b′ ← A((c, k1), L)
If b = b′, Return 1
Return 0

Table 8. The EavL2s experiment agaisnt scheme PSVs (adding the part in bracket)
and against PSV.

Let E1 be the probability that the adversary AL outputs 1 at the end of the game.

Transition between Game 0 and 1 We build a (qL, t − tsim − tL(⊕) − t$)-

adversary BL against the 2-simulatability of E based on A to bound the absolute
difference |Pr[E0]− Pr[E1]|.

The (qL, t − tsim − tL(⊕) − t$) 2-simulatability adversary BL BL is playing
the 2-simulatability game (see Sec. ?? and Tab. 5) and he has to simulate either
Game 0 or Game 1 for AL. At the start of the game, BL chooses two constants
pA, pB ∈ {0, 1}n with pA 6= pB which he gives to AL.
When AL does a leakage query, BL does the same query and relays its answer to
AL.
When AL asks his query on input m, BL first picks a random key k− in {0, 1}n,
then, he simply issues the query E, LE \ E,SL(pB), receiving (y := Ek0(pB), L1),
where L1 is either LE(pB ; k0) or SL(k∗, pB ,Ek0(pB)), then, the query E, LE \
E,SL(pA), receiving (k1 := Ek0(pA), L2), where L2 is either LE(pA; k0) or SL(k∗, pA,Ek0(pA)),
and finally, the query Gen-S(k−, pA), receiving L3 which is either SL(k−, pA, k0)
or SL(k−, pA, k

∗). (k∗ is the random key picked by the challenger in the q-sim
Game). The challenger uses 3qS queries and tsim time to answer to the queries
made by BL. Then, BL computes c = y⊕m and collects its leakage L⊕(m, y). This
takes time tL(⊕). Then BL answers ((c, k1), L) to AL, with L = (L2, L1, L⊕(m, y), L3, k−).

Answering to AL needs at most 3qS queries and tsim + tL(⊕) time.

When AL outputs a bit b′, then, BL outputs the same bit b′′ = b′.
BL runs in time t− tsim − tL(⊕) + t$ and he does qL leakage queries. We observe

that if the 2-simulatability challenger picks the bit b = 0, BL is correctly simu-
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lating game 0 for AL; otherwise, he correctly simulates Game 1.

Bounding |Pr[E0]− Pr[E1]| Clearly Pr[2-sim(BL,E, L,SL, 0) = 1] = Pr[E0],
while, Pr[2-sim(BL,E, L,SL, 0) = 1] = Pr[E1].
Since E has (qS , tS , qL, t − tsim − tL(⊕), ε2-sim) simulatable leakage and BL is a
(qL, t− tsim − tL(⊕)) 2-simulatability adversary we have that∣∣Pr[2-sim(BL,E, L,SL, 0) = 1]− Pr[2-sim(BL,E, L,SL, 1) = 1]

∣∣ ≤ ε2-sim
thus |Pr[E0]− Pr[E1]| ≤ ε2-sim.

Game 2 Let Game 2 be the game where the adversary AL is going against
scheme PSVsIk0 , choosing the message m and receiving the ciphertext c, the
rekeyed key k1 and the leakage LencsI (m; k0) for a random key k0.
Let E2 be the probability that the adversary AL outputs 1 at the end of the game.

Transition between Game 1 and 2 We build a (2, t − 3tsim − tL(⊕) − t$)-

adversary C against the PRF E based on AL.

The (2, t− qLtL(E) − 3tS − tL(⊕) − 2t$)-PRF adversary C C is playing the PRF
game against an oracle, which is either implemented with the PRF Ek∗ , where
k∗ is a random key, or a random function f. He is based on the adversary AL and
he has to simulate either Game 0 or Game 1 for this adversary AL. At the start
of the game, C chooses two constants pA, pB ∈ {0, 1}n with pA 6= pB , which he
gives to AL. Moreover, C picks two random key k0, k−.
When AL does a leakage query on input (x; k), C computes the leakage LE(x; k).
It takes time tL(E) (AL may do at most qL such queries).

When AL asks his query on input m, C first picks a random key k− in {0, 1}n,
then, he simply queries his oracle on inputs pB and pA, receiving y and k1
respectively. Then, he computes c = y ⊕ m. Finally, he simulates the leak-
ages SL(k0, pB , y), SL(k0, pA, k1), SL(k−, pA, k0) and L⊕(m, y) and he answers
((c, k1), (SL(k0, pB , y),SL(k0, pA, k1),SL(k−, pA, k0), L⊕(m, y), k−) to AL. This takes
3tS + tL(⊕) + 2t$ time.

When AL outputs a bit b′, C outputs the same bit b′′ = b′.
C runs in time t− qLtL(E) − 3tsim − tL(⊕) − 2t$ and does 2 queries to his oracle.

We observe, that, if the oracle is implemented with Ek0(·), AL is playing Game
1; otherwise, Game 2.
We observe that if the 2-simulatability challenger picks the bit b = 0, BL is cor-
rectly simulating game 1 for AL; otherwise, he correctly simulates Game 2.

Bounding |Pr[E1]− Pr[E2]| Clearly Pr[E1] = Pr[CEk∗ (·) ⇒ 1], while, Pr[E2] =
Pr[Cf(·) ⇒ 1].
Since E is a (2, t− qLtL(E) − 3tS − tL(⊕) − 2t$), εPRF)-PRF C is a (2, t− qLtL(E) −
3tS − tL(⊕) − 2t$))-PRF adversary we have that∣∣∣Pr[CEk∗ (·) ⇒ 1]− Pr[Cf(·) ⇒ 1]

∣∣∣ ≤ εPRF
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thus |Pr[E1]− Pr[E2]| ≤ εPRF.

Bounding Pr[E0] This concludes the proof since we can bound:∣∣∣Pr[AL(m,PSVsk0(m))⇒ 1]− Pr[AL(m,PSVsIk0(m))⇒ 1]
∣∣∣ =

|Pr[E0]− Pr[E2]| ≤ ε2-sim + εPRF

We are able to prove the previous lemma, even if the adversary AL outputs two
plaintexts (m∗,0,m∗,1) of the same length, and only the first (or the second) is
encrypted in all games (that is, Game 0,1 and 2) of the proof. This allow us to
reduce the eavesdropper security with leakage of PSVs to that of PSVsI :

Pr[A wins EavL2sPSVs] =

Pr[AL
PSVs ⇒ 1|b = 1] Pr[b = 1] + Pr[AL

PSVs ⇒ 0|b = 0] Pr[b = 0] =

1

2
Pr[AL

PSVs ⇒ 1|b = 1] +
1

2

(
1− Pr[AL

PSVs ⇒ 1|b = 0]
)

=

1

2

(
1 + Pr[AL

PSVs ⇒ 1|b = 1]− Pr[AL
PSVs ⇒ 1|b = 0]

)
=

1

2

(
1 + Pr[AL

PSVsI ⇒ 1|b = 1]− Pr[AL
PSVsI ⇒ 1|b = 0] + 2ε2-sim + 2εPRF

)
=

ε2-sim + εPRF +
1

2

(
Pr[AL

PSVsI ⇒ 1|b = 1] + Pr[AL
PSVsI ⇒ 0|b = 0]

)
=

ε2-sim + εPRF + Pr[A wins EavL2sPSVsI ]

where the second to last equality is given by Lemma 1 with (m∗,0,m∗,1)← AL,
as just discussed.

Discussion of Pr[A wins EavL2sPSVsI ] Since in the proof, we are going to re-
duce the CPAL2 (and the CCAL2) security of CONCRETE, it is worth to discuss
the probability Pr[A wins EavL2sPSVsI ]:
First, we observe that it is not clear what this advantage means. In particular, it
seems difficult to find a reduction from this advantage to an hard mathematical
or physical problem. (Although the leakage problem is less studied than the PRF
problem for block cipher, it is the same situation as for AES. There is no proof
that AES is a good PRF based on an hard assumption, but the problem is well
studied and AES is believed to be a good PRF).
Second, we do not think that this probability may be negligible at the present
moment.
Third, we believe that this probability may be evaluated by laboratories and it
is much easier to evaluate the probability of success for a single block than for
a complete message.
Fourth, understand the leakage of a single block is an easier and more realistic
target for research.
Having considered all the pros and cons, we believe that our approach to reduce
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the CPAL2 (and CCAL2) security of the whole scheme to the EavL2s security of a
single ideal block is the most promising path to have some guarantees of security
(same approach as [37,33,11,13,10]).

Multiple block PSV After having proved the security for the single block case,
we are going to consider the whole PSV encryption scheme. Again, we define
an idealized scheme PSVI , where the values k1, ..., kl and y1, ..., yl are randomly
picked and not obtained via the PRF E (see for more details Tab. 9 [Similarly to
what we did for PSVs we add a random key, k0, for composability]).

PSV its ideal counterpart PSVsI

Gen: GenI :

k0 ← {0, 1}n, k1 = Ek0(pA) k1, k0
$← {0, 1}n

enck1(m): encIk1(m):
Pad m = (m1, ...,ml) with Pad m = (m1, ...,ml) with
|m1| = ... = |mi| = n with |m1| = ... = |mi| = n
and |ml| ≤ n and |ml| ≤ n

For i = 1, ...l − 1 For i = 1, ...l − 1

yi = Eki(pB) yi
$← {0, 1}n

ci = yi ⊕mi ci = yi ⊕mi

ki+1 = Eki(pA) ki+1
$← {0, 1}n

yl = Ekl(pB) yl
$← {0, 1}n

cl = π|ml|(yl)⊕ml cl = π|ml|(yl)⊕ml

Return c = (c1, ..., cl) Return c = (c1, ..., cl)

deck1(c) proceeds in the natural way. decI proceeds in the natural way.

The leakage resulting from Gen is
LE(pA; k0).

The leakage resulting from GenI is
SL(k0, pA, k1).

The leakage resulting from enck1(m)
is defined as Lenc(m; k1) :=
(LE(pB ; k1), L⊕(m1, y1), LE(pA; k1),
..., LE(pA; kl−1), LE(pB ; kl),
L⊕(ml, π|ml|(yl))).

The leakage resulting from encI(m)
is defined as LencI (m; k1) :=
(SL(k1, pB , y1), L⊕(m1, y1),
SL(k1, pA, k2), ...,SL(kl−1, pA, kl),
SL(kl, pB , yl), L⊕(ml, π|ml|(yl))).

Table 9. PSVs: the single block variant of PSV. The adversary receives the leakage
given by Gen and enc at the same moment.

Similarly to what we did in the single block case, we are able to relate the
probability that the an adversary wins the EavL2s game when is playing against
PSV with the same probability when he is playing against the idealized version,
with the following lemma (inspired by Pereira et al. [33]):

Lemma 2. Let E : {0, 1}n×{0, 1}n 7−→ {0, 1}n be a (2, t−qLtL(E)−qLtL(E)−t′−
3tS−tL(⊕)−t$), εPRF)-PRF whose implementation has a leakage function L which

has (qS , tS , qL, t− t′ − tsim − tL(⊕), ε2-sim)-2-simulatable leakage and let SL be an
appropriate (qS , tS)-bounded leakage simulator. Then, if PSV takes messages at
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most L bits long, for every m, pA, pB ∈ {0, 1}n with pA 6= pB, and every (qL, t)
adversary AL, the following holds:∣∣∣Pr[AL(m,PSVk0(m))⇒ 1]− Pr[AL(m,PSVIk0(m))⇒ 1]

∣∣∣ ≤
L (ε2-sim + εPRF)

where tsim is the time needed to relay the content of the two E, LE \E,SL and the
Gen-S query, tL(E) is the time needed to collect the leakage of a call to E, tL(⊕) is
the time needed to collect the leakage of XOR of 2 blocks, tS is the time needed
to simulate one leakage query, t$ is the time needed to collect a random block
and t′ is

(L− 1)tL(⊕) + max
i=1,...,L−1

[
(2i− 1)t$ + (2i− 3)tS + (2(L− i)− 1)(tE + tL(E))

]
.

Proof. We uses a sequence of games:
Game 0 Let Game 0 be the game where the adversary AL(pA, pB) is going
against scheme PSVk1 choosing the message m = (m1, ...,ml), with |m1| = ... =
|ml−1| = n, |ml| ≤ n and l ≤ L, and receiving the ciphertext c = (c1, ..., cl) and
the leakage Lenc(m; k1) for a random key k1. At the start of the game he is given
the constants pA, pB . (It is Game 0 of Lemma 1 with a bigger message). The
adversary AL is granted qL queries to the leakage oracle.
Let E0 be the probability that the adversary AL outputs 1 at the end of the game.

Game 1 Let Game 1 be the game where the adversary AL(pA, pB) is going
against scheme PSVIk1 choosing the message m = (m1, ...,ml), with |m1| = ... =
|ml−1| = n, |ml| ≤ n and l ≤ L, and receiving the ciphertext c = (c1, ..., cl) and
the leakage LencI (m; k1) for a random key k1. At the start of the game he is given
the constants pA, pB . The adversary AL is granted to qL queries to the leakage
oracle.
Let E1 be the probability that the adversary AL outputs 1 at the end of the game.

Transition between Game 0 and Game 1 We use at most L + 1 games
Game 1i with i = 0, ..., L to bound |Pr[E0]− Pr[E1]|.

Game 1i In this game the adversary A is playing against the following scheme.
The first i blocks are computed as PSVIk1 obtaining (c1, ..., ci, ki+1) [if i = l, ki+1

is not computed], while last l− i blocks are computed as PSVki+1(mi+1, ...,ml).
In detail: given a key k1, for the first i block of plaintext, the corresponding
ciphertext block is obtained via (ci, ki + 1) ← PSVsIki(mi) with the leakage
lencsI (mi; ki), while for the last l − i blocks of plaintext, the corresponding ci-
phertext block are obtained via (ci, ki + 1) ← PSVsIki(mi) with the leakage
lencsI (mi; ki) [we observe that, for i = 1, k0 is obtained via leakage as k− in the
leakage of PSVsI ]. When the last block ml is processed, the key kl+1 is not com-
puted as well as its corresponding leakage (either LE(pA; kl) or SL(kl, pA, kl+1)).
Let Eii be the event that AL outputs 1 at the end of the game.
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We observe that Game 10 is Game 0, while Game 1L is Game 1.

Transition between Game 1i and Game 1i−1 We build an adversary (qL +
(2L− 3)qS , t

′) BL
i who has to distinguish PSVs from PSVsI , where t′ ≤

(L− 1)tL(⊕) + max
i=1,...,L

[
(2i− 3)t$ + (2i− 3)tS + (2(L− i))(tE + tL(E))

]
.

The (qL, t− t′)-adversary BL
i BL

i has to distinguish if the oracle he is facing is
implemented with PSVski or with PSVsIki . He runs in time t′ bounded as before.

At the start of the Game BL
i picks 2 constants pA and pB in {0, 1}n with pA 6= pB .

This takes time at most 2t$.
When AL does a leakage query on input (u;w), BL

i does the same query and relays
the answer to AL. When AL does the challenge query on input m = (m1, ...,ml),
BL
i , first asks its oracle the encryption of mi receiving (y, z) with, as well,

the leakage (L1, L2, L⊕(mi, y), L3, k−) where L1, L2 and L3 are respectively ei-
ther LE(pA; ki), LE(pB ; ki) and SL(k−, pA, ki) or SL(ki, pA, z) SL(ki, pB , y) and
SL(k−, pA, ki).
First, Bi sets ki−1 = k−, then, he picks i−2 keys k1, ..., ki−2. Moreover, he picks
i− 1 random values y1, ..., yi−1 which he then XORes to m1, ...,mi−1 obtaining
c1, ..., ci−1. After that, he computes the leakages SL(k1, pB , y1), L⊕(y1,m1),SL(k1, pA, k2), ...,
SL(ki−2, pA, ki−1), SL(ki−1, pB , yi−1), L⊕(yi−1,mi−1) (the leakage SL(ki−1, pA, ki)
has already been obtained via the oracle query as L3). This takes at most
(2i− 3)t$ + (2i− 3)tS + (i− 1)tL(⊕) time and at most (2i− 3)qS queries.

Second, BL
i sets ki+1 = z, from which he is able to compute all the values yj and

cj , for j = i+ 1, ..., l, and kh, for h = i+ 2, ..., l− 1, with yj = Ekj (pB) and kh =
Ekh−1

(pA) and cj = yj ⊕mj (if j = l, cl = π|ml|(yl)⊕ml), as well with the leak-
age LE(pB ; kj), LE(pA; kh−1) and L⊕(yj ,mj). Computing the last blocks needs at
most (2(l−i)−1)(tE+tL(E))+(l−i)tL(⊕) ≤ (2(L−i)−1)(tE+tL(E))+(L−i)tL(⊕)
time.
At the end, BL

i answers (c, [SL(k1, pB , y1), L⊕(y1,m1),SL(k1, pA, k2), ..., SL(ki−2, pA, ki−1),
SL(ki−1, pB , yi−1), L⊕(yi−1,mi−1), L3, L2, L⊕(yi,mi), L

1, LE(pB ; ki+1), L⊕(yi+1,mi+1), LE(pA; ki+1), ..., LE(pA; kl−2),
LE(pB ; k1), L⊕(y1,m1)]) to AL, with c = (c1, ..., cl).
When AL outputs a bit b′, BL

i outputs the same bit b′′ = b′.
Thus, BL

i needs at most time

(2i− 1)t$ + (2i− 3)tS + (i− 1)tL(⊕) + (2(l − i)− 1)(tE + tL(E)) + (l − i)tL(⊕) ≤

(L− 1)tL(⊕) + (2i− 1)t$ + (2i− 3)tS + (2(L− i)− 1)(tE + tL(E)) ≤

(L− 1)tL(⊕) + max
i=1,...,L−1

[
(2i− 1)t$ + (2i− 3)tS + (2(L− i)− 1)(tE + tL(E))

]
and at most (2L− 3)qS queries and qL queries.
We observe that, if the oracle BL

i is facing, is implemented with PSVs, BL
i cor-

rectly simulate Game 1i−1 for AL; otherwise, Game 1i.

Bounding
∣∣Pr[Ei−11 ]− Pr[Ei1]

∣∣ We observe that A is playing the EavL2s game.
Now, we can apply Lemma 1 since adversary BL

i is running in time bounded
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by t − t′ and E : {0, 1}n × {0, 1}n 7−→ {0, 1}n is a (2, t − qLtL(E) − t′ − 3tS −
tL(⊕)− t$), εPRF)-PRF, whose implementation has a leakage function L which has

(qS , tS , qL, t − t′ − tsim − tL(⊕), ε2-sim)-2-simulatable leakage and where SL is an
appropriate (qS , tS)-bounded leakage simulator. Thus, we can bound,∣∣Pr[Ei−11 ]− Pr[Ei1]

∣∣ ≤ ε2-sim + εPRF

Bounding |Pr[E1]− Pr[E0]| Iterating the previous bound, we conclude the
proof:

|Pr[E1]− Pr[E0]| =
∣∣Pr[El1]− Pr[E0

1 ]
∣∣ =

l∑
i=1

∣∣Pr[Ei−11 ]− Pr[Ei1]
∣∣ ≤

L∑
i=1

(ε2-sim + εPRF) ≤ L (ε2-sim + εPRF) .

Consequently, to bound the EavL (see Tab. 8) security of PSV, we have to
bound the same security for PSVI .

Lemma 3. If PSVsI is (qL, t+t
′, ε)-EavL secure, and if PSVI encrypts messages

at most L block long, then, PSVI is (t, Lε)-EavL secure, if it encrypts messages
at most L blocks long. with t′ = (2L− 5)t$ + (2L− 5)tS + (L− 1)tL(⊕)

Proof. Consider an adversary AL playing the EavL game against PSVI . During
this game, he outputs two messages m0 = (m0

1, ...,m
0
l ),m

1 = (m1
1, ...,m

1
l ) of

the same size (|m0| = |m1| ≤ Ln), receiving the encryption of one of them
(c← PSVIk0(mb) where b is a secret bit picked uniformly at random). AL has to
guess this bit. We use a sequence of games:

Game 0 Let Game 0 be the EavL game when b = 0. Let E0 be the event that
the bit, output by AL at the end of the game, is 1.

Game 1 Let Game 1 be the EavL game when b = 1. Let E1 be the event that
the bit, output by AL at the end of the game, is 1.

Transition between Game 0 and Game 1 We build a sequence of L games
Game 1i with i = 0, ..., L to bound |Pr[E0]− Pr[E − 1]|.

Game 1i Let Game 1i be the EavL game when the message encrypted is
m∗ = (m1

1, ...,m
1
i ,m

0
i+1, ...,m

0
l ) (that is, the first i− 1 block of the message en-

crypted are those of m1 while the last are those from m0). Let Ei1 be the event
that the bit, output by AL at the end of the game, is 1. We observe that Game
0 is Game 10, while Game 1 is Game 1L.

Transition between Game 1i−1 and Game 1i. We build a (qL, t− t′)-EavL2s
adversary BL

i to bound
∣∣Pr[Ei−11 ]− Pr[Ei1]

∣∣.
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The (qL, t − t′)-adversary BL
i BL

i has to distinguish if the oracle he is facing,
which is implemented with PSVsI , is encrypting either m0

i or m1
i .

At the start of the Game, the oracle, which BL
i faces, picks 2 constants pA and

pB in {0, 1}n with pA 6= pB . Moreover, it picks two random keys ki, k
− in {0, 1}n

which it keeps secret.
When AL does a leakage query on input (u;w), BL

i does the same query and
relays the answer to A. When AL does the EavL query on input (m0,m1) with
mj = (mj

1, ...,m
j
l ), |m

j
1| = ... = |mj

l−1| = n and |mj
l | ≤ n, for j = 0, 1 BL

i , first
challenges his oracle on input (m0

i ,m
1
i ) receiving (y, z) with as well the leak-

age (L1, L2, L⊕(mb
i , y), L3, k−) where L1, L2 and L3 are respectively SL(ki, pA, z)

SL(ki, pB , y) and SL(k−, pA, ki).
First, Bi sets ki−1 = k−, then, he picks i−2 keys k1, ..., ki−2. Moreover, he picks
i− 1 random values y1, ..., yi−1 which he then XORes to m1

1, ...,m
1
i−1 obtaining

c1, ..., ci−1. After that, he computes the leakages SL(k1, pB , y1), L⊕(y1,m
1
1),SL(k1, pA, k2), ...,

SL(ki−2, pA, ki−1), SL(ki−1, pB , yi−1) and L⊕(yi−1,m
1
i−1) (the leakage SL(ki−1, pA, ki)

has already been obtained via the oracle query as L3). This takes at most
(2i− 3)t$ + (2i− 1)tS + (i− 1)tL(⊕) time and at most (2i− 3)qS queries.

Second, BL
i sets ki+1 = z, then, he picks l − i − 2 ≤ L − i − 2 keys ki+2, ..., kl.

Moreover, he picks l−i ≤ L−i random values yi+1, ..., yl which he then XORes to
m0
i+1, ...,m

0
l obtaining ci+1, ..., cl (for the last block, cl = π|m0

l |(yl)⊕m
0
l ). After

that, he computes the leakages SL(ki+1, pB , yi+1), L⊕(yi+1,m
0
i+1),SL(ki+1, pA, ki+2), ...,

SL(kl−1, pA, kl), SL(kl, pB , yi−1), L⊕(yl,m
0
l ) [because the leakage SL(ki, pA, ki+1)

has already been obtained via the oracle query as L2]. This takes at most
2(l−i−1)t$+2(l−i−1)tS+(i−1)tL(⊕) ≤ 2(L−i−1)t$+2(L−i−1)tS+(i−1)tL(⊕)
time and at most 2(l − i− 1)qS ≤ 2(L− i− 1)qS queries.
At the end, BL

i answers (c = (c1, ..., cl), (SL(k1, pB , y1), L⊕(y1,m
1
1), SL(k1, pA, k2),

..., SL(ki−2, pA, ki−1), SL(ki−1, pB , yi−1), L⊕(yi−1,m
1
i−1), L3, L2, L⊕(yi,m

b
i ), L

1, SL(ki+1, pB , yi+1),
L⊕(yi+1,m

0
i+1),SL(ki+1, pA, ki+2), ..., SL(kl−1, pA, kl), SL(kl, pB , yi−1), L⊕(yl,m

0
l )))

to AL.
When AL outputs a bit b′, BL

i outputs the same bit b′′ = b′.
Thus, BL

i needs at most

(2i−3)t$ +(2i−1)tS +(i−1)tL(⊕) +2(l− i−1)t$ +2(l− i−1)tS +(i−1)tL(⊕) ≤

(2i−3)t$ +(2i−1)tS+(i−1)tL(⊕) +2(L− i−1)t$ +2(L− i−1)tS+(i−1)tL(⊕) ≤

(2L− 5)t$ + (2L− 5)tS + (L− 1)tL(⊕) = t′

time to simulate the challenge query for AL and at most

(2i− 3)qS + 2(l − i− 1)qS ≤ (2i− 3)qS + 2(L− i− 1)qS ≤ (2L− 5)qS

queries to the simulator.
We observe that if the message, encrypted by the oracle PSVsI , which BL

i is
facing, is m0,i, BL

i correctly simulate Game 1i−1 for AL; otherwise, Game 1i.
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Bounding
∣∣Pr[Ei−11 ]− Pr[Ei1]

∣∣ We observe that the probability BL
i wins the

previous EavL2s game against PSVsI is

Pr[AL ⇒ 0|b = 0] Pr[b = 0] + Pr[AL ⇒ 1|b = 1] Pr[b = 1] =

1

2

(
1− Pr[AL ⇒ 1|b = 0] + Pr[AL ⇒ 1|b = 1]

)
≤ 1

2
− |Pr[Ei−11 ]− Pr[Ei1]|

2
.

Since BL
i is a (qL, t− t′)-adversary and since PSVsI is (qL, t− t′, ε)-EavL2s-secure,

we can bound ∣∣Pr[Ei−11 ]− Pr[Ei1]
∣∣ ≤ 2ε.

Bounding |Pr[E0]− Pr[E1]| Iterating the previous bound, we conclude the
proof:

|Pr[E0]− Pr[E1]| =
∣∣Pr[E0

1 ]− Pr[EL1 ]
∣∣ ≤

L∑
i=1

∣∣Pr[Ei−11 ]− Pr[Ei1]
∣∣ ≤ 2Lε

Bounding the EavL2s security of PSV I Now we can compute the probability
that AL wins the EavL2s game against PSVI :

Pr[AL ⇒ 0|b = 0] Pr[b = 0] + Pr[AL ⇒ 1|b = 1] Pr[b = 1] =

1

2

(
1− Pr[AL ⇒ 1|b = 0] + Pr[AL ⇒ 1|b = 1]

)
≤

1

2
− |Pr[E0]− Pr[E1]|

2
≤ 1

2
+

2Lε

2
.

which concludes the proof, showing that PSVI is (qL, t− t′, Lε)− EavL2s-secure.

We observe that for PSVI , k0 can be given as leakage, without any security
problem, (it is k− of the first block.

Security of the first block c0 We cannot extend the previous analysis to
the complete CONCRETE because, although the first block c0 can be seen as
PSVsk0(0n), there is an additional source of leakage given by cl+1 = F∗k(h, k0)
(the leak free component protects only its key, not its input). Moreover, the key
k0 is picked uniformly at random by the algorithm (and not via k0 = Ek−1(pA)),
which may leak differently. On the other hand, since c0 does not depend on the
challenge plaintext, we do not care of the EavL2s-security of the first block, but
we require only to be able to replace the computation of this first bloc, with an
ideal one, which does not affect the security of the following PSVI .
In order to do this, we have to modify the q-sim definition to consider these
additional sources of leakage. But, first we have to simulate these leakages
LF∗(h, k0; k) and L$(k0).
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Definition 31. A leak free component has (q, qS′ , tS′ , t)-indistinguishable leak-
age if for any (q, t) adversary, there exists a (qS′ , tS′)-simulator such that the
leakage LF∗(x, y; k) of the computation z ← F∗k(x, y) is indistinguishable from the

simulated leakage SLF∗
F∗ (x, y, z, k∗) for a random key k∗.

Since, by hypothesis, the leak free component hides the key it uses, although
it is very strong, the previous definition can be assumed given the leak free hy-
pothesis. In particular, we suppose that the leakage of F∗ depends only on its
inputs and outputs.

Regarding the leakage of k0, when it is picked uniformly at random, we
suppose that its leakage is given by a simulator S$ which uses as only input k0.

Now, we can modify the q-sim game in order to consider the additional source
of leakage for k0, obtaining the q-sim′ game:

Game q-sim′(A,PRF, L,S,SF∗ , b)
The challenger selects three random keys k, k∗, k+

$← K
and a random value w

$← {0, 1}n. The output of the game
is a bit b′ computed by AL based on the challenger re-
sponses to a total of at most q adversarial queries of the
following type:

Query Response if b = 0 Response if b = 1

E, LE \
E,SL(x)

Ek(x), L(k, x) Ek(x), SL(k∗, x,Ek(x))

and one query of the following type:

Query Response if b = 0 Response if b = 1

Gen-S ′() L$(k) L$(k∗)

and one query of the following type:

Key-Send(h) SLF∗
F∗ (h, k, k+, w) SLF∗

F∗ (h, k∗, k+, w)

Table 10. The q-sim′ experiment used for the first block

Definition 32. [q-simulatable leakages’ ] Let E be a PRF having leakage func-
tion L and let F∗ be a STPRP having (qS′ , tS′)-indistinguishable leakage (see
Def. ??). Then E has (qS , q

′
S , qA, tS , t

′
S , tA, εq-sim) q-simulatable’ leakage if there

is a (qS , tS)-bounded simulator SL such that, for every (qA, tA)-bounded adversary
AL, we have

|Pr[q-sim′(A,E, L,SL, 1) = 1]− Pr[q-sim′(A,E, L,SL, 0) = 1]| ≤ εq-sim.

(The q-simulatability’ assumption is clearly the q-simulatability assumption
[Def. 23 or [33]] with the two modifications: the key k is not generated via E but
picked uniformly at random and it is also encrypted using F∗).

Now, we want to study the security of the first block c0: we introduce a
scheme PSVsfb and its ideal counterpart PSVsfbI .

70



Lemma 4. Let F∗ be a (1, t + t′′, εSTPRP)-STPRP, whose implementation has
(1, qS′ , tS′ , t + t′)- indistinguishable leakage, let E be a (2, t + t′′′, εPRF)-PRF,
whose implementation has (qS , q

′
S , qL, tS , t

′
S , t + t′′′, ε2-sim′)-2-simulatable’ leak-

age let then, for any (qL, t)-adversary AL,∣∣∣Pr[AL(PSVsfb)⇒ 1]− Pr[AL(PSVsfbI)⇒ 1]
∣∣∣ ≤ εSTPRP + ε2-sim′ + εPRF

where
t′ = t$ + tL($) + 2tE + 2tL(E) + tF∗

t′′ = qLtL(E) + 2t$ + tL($) + 2tE + 2tL(E) + tS′

t′′′ = qLtL(E) + 2tS + t′S + 3t$ + tL($)

t$ is the time necessary to pick uniformly a random block and tL($) is the time
needed to collect its leakage, tE is the time needed to compute E and tL(E) the
time to collect its leakage, tF∗ is the time needed to compute F∗, tsim′ is the time
needed to run the 2-simulatability’ experiment.

This lemma is Lemma 1 adapted to the situation for the first block, where
no message is used, but where there is an additional source of leakage. The proof
is a straightforward adaptation of that proof.

Proof. Again we use a sequence of games:

Game 0 Let Game 0 be the game where the adversary AL(pA, pB) is going
against scheme PSVsfbk0,k, choosing an input h (it is not a message, because
it is not encrypted, it is the tweak used by F∗k), receiving the ciphertext c, the
rekeyed key k1 and the leakage Lencsfb(h; k0, k) for two random keys k0, k. He is
given the constants pA, pB . (That is, it is an eavesdropper game with leakage
where the adversary receives only the output of an execution of the algorithm).
The adversary AL is granted to qL queries to the leakage oracle.
Let E0 be the probability that the adversary AL outputs 1 at the end of the game.

Game 1 Let Game 1 be Game 0 where we have replaced the leakage LF∗(k0, h; k)
with SLF∗ (k′, k0, h, d) for a random key k′ in the leakage of encsfbk0 .
Let E1 be the probability that the adversary AL outputs 1 at the end of the game.

Transition between Game 0 and 1 We build a (1, t−t′)-adversary BL against
the indistinguishability of the leakage of F∗ based on A to bound the absolute
difference |Pr[E0]− Pr[E1]|.

The (1, t′) indistinguishability adversary BL BL has to distinguish if the
leakage he obtains is LF∗(k0, h; k) or SLF∗ (k′, k0, h, d) for a random key k′. At
the start of the game, BL chooses two constants pA, pB ∈ {0, 1}n with pA 6= pB
which he gives to AL.
When AL does a leakage query, BL does the same query and relays its answer to
AL.
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When AL asks to run PSVsfb on input h, BL first picks two random keys k0, k
in {0, 1}n, then, he simply issues computes c = yEk0(pB), k1 = Ek0(pA) and
d = F∗k(k0, h). Then he queries his oracle on input (k0, h; k0) receiving a leakage
L1 which is either LF∗(k0, h; k) or SLF∗ (k′, k0, h, d). after that, he computes the
leakage LE(pA; k0), LE(pB ; k0) and  L$(k0) answering to AL ((c, k1), (LE(pA; k0),
LE(pB ; k0),  L$(k0), L1)). Answering to AL needs at most 1 oracle query and
t$ + tL($) + 2tE + 2tL(E) + tF∗ = t′ time.

When AL outputs a bit b′, then, BL outputs the same bit b′′ = b′.
BL runs in time t − t′ and he does 1 query to his oracle. We observe that if
the indistinguishability adversary picks the bit b = 0, BL is correctly simulating
game 0 for AL; otherwise, he correctly simulates Game 1.

Bounding |Pr[E0]− Pr[E1]| Clearly Pr[BLF∗ ⇒ 1] = Pr[E0], while,

Pr[BS
lfF∗ ⇒ 1] = Pr[E1].

Since F∗ has (1, qS′ , tS′ , t − t′)-indistinguishable leakage and BL is a (1, t − t′)
adversary we have that∣∣∣Pr[BLF∗ ⇒ 1]− Pr[BS

lfF∗ ⇒ 1]
∣∣∣ = 0

thus Pr[E0] = Pr[E1].

Game 2 It is Game 1 where d is picked uniformly at random in stead of being
computed as d = F∗k(k0, h).

The (1, t − t′′)-STPRP adversary C C is playing the STPRP game against an
oracle, which is either implemented with the STPRP F∗k, where k is a random
key, or a random tweakable permutation f. He is based on the adversary AL and
he has to simulate either Game 1 or Game 2 for this adversary AL. At the start
of the game, C chooses two constants pA, pB ∈ {0, 1}n with pA 6= pB , which he
gives to AL. Moreover, C picks two random keys k0, k

∗ and collects the leakage
L$(k0).
When AL does a leakage query on input (x; k), C computes the leakage LE(x; k).
It takes time tL(E) (AL may do at most qL such queries).

When AL asks to run PSVsfb on input h, C simply computes c = y = Ek0(pB)
and k1 = Ek0(pA) and collects the leakage LE(pB ; k0) and LE(pA; k0), then, he
simply queries his oracle on inputs (k0, h), receiving d. Finally, he simulates the
leakages SLF∗ (k∗, k0, h, d) and he answers ((c, k1), (LE(pB ; k0),
LE(pA; k0)L$(k0),SLF∗ (k∗, k0, h, d))) to AL. This takes 2t$+tL($)+2tE+2tL(E)+tS′

time and 1 oracle query.
When AL outputs a bit b′, C outputs the same bit b′′ = b′.
C does 1 query to his oracle and runs in time bounded by t− t′′ with

t′′ = qLtL(E) + 2t$ + tL($) + 2tE + 2tL(E) + tS′

We observe, that, if the oracle is implemented with F∗k(·, ·), C correctly simulates
Game 1 for AL; otherwise, Game 2.
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Bounding |Pr[E1]− Pr[E2]| Clearly Pr[E1] = Pr[CF∗k(·,·) ⇒ 1], while, Pr[E2] =
Pr[Cf(·,·) ⇒ 1].
Since F∗ is a (1, t − t′′), εSTPRP)-STPRP and C is a (1, t − t′′)-STPRP adversary
we have that ∣∣∣Pr[CFk(·,·) ⇒ 1]− Pr[Cf(·,·) ⇒ 1]

∣∣∣ ≤ εSTPRP
thus |Pr[E1]− Pr[E2]| ≤ εSTPRP.
(We observe that a (1, t, εSTPRP) is a (1, t, εPRF) since there is only one query and
there is no need to difference between a permutation and a function).

Game 3 Let Game 3 be Game 2 where we have replaced the leakages (LE(pA; k0),
LE(pB ; k0)) with (SL(k∗, pA, k1),SL(k∗, pB , y)) for a random key k∗ in the leak-
age of encsfbk0 .
Let E3 be the probability that the adversary AL outputs 1 at the end of the game.

Transition between Game 2 and 3 We build a (qL, t − t′′′)-adversary DL

against the 2-simulatability’ of E based on AL to bound the absolute difference
|Pr[E2]− Pr[E3]|.

The (qL, t+t
′′′)-2-simulatability adversary DL DL is playing the 2-simulatability’

game (see Sec. 5.4 and Tab. 10) and he has to simulate either Game 2 or Game
3 for AL. At the start of the game, DL chooses two constants pA, pB ∈ {0, 1}n
with pA 6= pB which he gives to AL.
When AL does a leakage query, DL does the same query and relays its answer to
AL.
When AL asks to execute PSVsfb on input h, BL first picks two random keys
k0, k

+ in {0, 1}n, then, he simply issues the query E, LE \ E,SL(pB), receiving
(y := Ek0(pB), L1), where L1 is either LE(pB ; k0) or SL(k∗, pB ,Ek0(pB)), then,
the query E, LE \ E,SL(pA), receiving (k1 := Ek0(pA), L2), where L2 is either
LE(pA; k0) or SL(k∗, pA,Ek0(pA)), after that, the query Gen-S(), receiving L3

which is either L$(k) or L$(k∗) and, finally, after having picked a random w, DL

asks the Key-Send(h) query, obtaining L4 which is either SLF∗
F∗ (k+, k0, h, w) or

SLF∗
F∗ (k+, k∗, h, w). (k∗ is the random key picked by the challenger in the q-sim′

Game). The challenger uses 2qS and q′S queries and tsim′ time to answer to
the queries made by BL. Then, DL computes c = y ⊕ m and collects its leak-
age L⊕(m, y). This takes time tL(⊕). Then DL answers ((c, k1, d), L) to AL, with

L = (L2, L1, L⊕(m, y), L3, L4). Answering to AL needs at most 3qS queries and
tsim′ + tL(⊕) time, where tsim′ is the time necessary to run the 2-sim′ experiment.

When AL outputs a bit b′, then, BL outputs the same bit b′′ = b′.
BL runs in time t− tsim − tL(⊕) and he does qL leakage queries.
If the challenger involved in the 2-simulatability’ experiment picks the bit b = 0,
DL correctly simulates Game 2; otherwise, Game 3.

Bounding |Pr[E3]− Pr[E2]| Clearly Pr[2-sim′(DL,E, L,SL, 0) = 1] = Pr[E2],
while, Pr[2-sim′(DL,E, L,SL, 0) = 1] = Pr[E3].
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Since E has (qS , q
′
S , qL, tS , t

′
S , t− tsim′ − tL(⊕), ε2-sim′) simulatable’ leakage and DL

is a (qL, t− tsim′ − tL(⊕)) 2-simulatabilityà adversary we have that∣∣Pr[2-sim′(DL,E, L,SL, 0) = 1]− Pr[2-sim′(DL,E, L,SL, 1) = 1]
∣∣ ≤ ε2-sim′

thus |Pr[E2]− Pr[E3]| ≤ ε2-sim′ .

Game 4 Let Game 4 be the game where the adversary AL is going against
scheme PSVsfbIk0 , choosing the message m and receiving the ciphertext (c, d),
the rekeyed key k1 and the leakage LencsfbI (m; k0) for a random key k0.
Let E4 be the probability that the adversary AL outputs 1 at the end of the game.

Transition between Game 3 and 4 We build a (2, t + qLtL(E) + 2tS + t′S +

3t$ + tL($))-adversary EE against the PRF E based on AL.

The (2, t + qLtL(E) + 2tS + t′S + 3t$ + tL($))-PRF adversary EE EE is playing
the PRF game against an oracle, which is either implemented with the PRF Ek∗ ,
where k∗ is a random key, or a random function f. He is based on the adversary
AL and he has to simulate either Game 0 or Game 1 for this adversary AL. At
the start of the game, EE chooses two constants pA, pB ∈ {0, 1}n with pA 6= pB ,
which he gives to AL. Moreover, C picks two random keys k0, k.
When AL does a leakage query on input (x; k), EE computes the leakage LE(x; k).
It takes time tL(E) (AL may do at most qL such queries).

When AL asks to run PSVsfb on input h, C first picks a random key k0 in
{0, 1}n, then, he simply queries his oracle on inputs pB and pA, receiving y
and k1 respectively. Then, he sets c = y. After that, he picks uniformly at
random a value d in {0, 1}n. Finally, he simulates the leakages SL(k0, pB , y),

SL(k0, pA, k1) and SLF∗
F∗ (k, k0, h, d) and computes the leakage L$(k0) and he an-

swers ((c, k1, d), (SL(k0, pB , y),SL(k0, pA, k1),L$(k0),SLF∗
F∗ (k, k0, h, d)) to AL. This

takes 2tS + t′S + 3t$ + tL($) time.

When AL outputs a bit b′, EE outputs the same bit b′′ = b′.
EE runs in time t+qLtL(E) +2tS+ t′S+3t$ + tL($) and does 2 queries to his oracle.

We observe, that, if the oracle is implemented with Ek∗(·), AL is playing Game
3; otherwise, Game 4.

Bounding |Pr[E3]− Pr[E4]| Clearly Pr[E3] = Pr[EEEk∗ (·) ⇒ 1], while, Pr[E4] =

Pr[EEf(·) ⇒ 1].
Since E is a (2, t+qLtL(E)+2tS+t′S+3t$+tL($), εPRF)-PRF EE is a (2, t+qLtL(E)+
2tS + t′S + 3t$ + tL($))-PRF adversary we have that∣∣∣Pr[EEEk∗ (·) ⇒ 1]− Pr[EEf(·) ⇒ 1]

∣∣∣ ≤ εPRF
thus |Pr[E4]− Pr[E3]| ≤ εPRF.
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Bounding Pr[E0] This concludes the proof since we can bound:∣∣∣Pr[AL(m,PSVsk0(h))⇒ 1]− Pr[AL(m,PSVsIk0(h))⇒ 1]
∣∣∣ =

|Pr[E4]− Pr[E0]| ≤ εSTPRP + ε2-sim′ + εPRF

We observe that if we allow the adversaries to choose h after having re-
ceived c, k1 and the leakages LE(pB ; k0), LE(pA; k0), L$(k0), this does not change
anything, since in the q-sim′ game it is allowed (For the other games, the ind-
stinguishability, the STPRP and the PRF game, it does not change)/

This allow us to, finally, prove the EavL2 security of CONCRETE:

Proposition 1. Let F∗ be a (1, t + t′ + t2, εSTPRP)-STPRP, whose implemen-
tation has (1, qS′ , t + t′ + t1, tS′)- indistinguishable leakage, let E be a (2, t +
max(t′ + t3, t

′′ + t4 + t5), εPRF)-PRF, whose implementation has (qS , qL, t+ t′′ +
t4 + t6, tS , ε2-sim)-2-simulatable leakage and (qS , qS′ , qL, t+ t′+ t3, tS , tS′ , ε2-sim′)-
2-simulatable’ leakage let PSVsI be (qL, t + t′′ + t7, εEavL2s)-EavL2-secure, then
CONCRETE, if encrypts at most L block messages, is (qL, t, ε)-EavL2-secure with

ε ≤ εSTPRP + ε2-sim′ + (L+ 1)εPRF + L(ε2-sim + εEavL2s)

where

t′ = t$ + 2LtE + 2LtL(E) + LtL(⊕) + tH

t′′ = 3t$ + tL($) + tH + tS + tS′

t1 = t$ + tL($) + 2tE + 2tL(E) + tF∗

t2 = qLtL(E) + 2t$ + tL($) + 2tE + 2tL(E) + tS′

t3 = qLtL(E) + 2tS + t′S + 3t$ + tL($)

t4 = (L−1)tL(⊕)+ max
i=1,...,L−1

[
(2i− 1)t$ + (2i− 3)tS + (2(L− i)− 1)(tE + tL(E))

]
t5 = qLtL(E) + 3tS + tL(⊕) + 2t$

t6 = qLtL(E) + tsim + tL(⊕) + 2t$

t7 = (2L− 5)t$ + (2L− 5)tS + (L− 1)tL(⊕)

where t$ is the time needed to sample a random block, tL($) is the time needed to
collect the leakage of the random sampling of a block, tE the needed to execute E,
tL(E) the time needed to collect the leakage of E, tL(⊕) the time needed to collect
the leakage of the XOR (⊕) of two blocks, tH is the time needed to execute once
the hash function, tF∗ is the time needed to execute once the STPRP F∗ and tsim
is the time needed to relay the content of the two E, LE \ E,SL and the Gen-S
query.

The idea of the proof is first, to replace the computation of c0 and cl+1 with
PSVsfbI (see Tab. 7) and, finally, to use the EavL2 security of PSV.
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Proof. Game 0 It is the standard EavL2 game played by AL against mode
CONCRETE. Let E0 be the probability that AL wins Game 0.

Game 1 It is Game 0, where we have replaced c0, k1 and cl+1 with random
values and the leakages LE(pB ; k0), LE(pA; k0) and LF∗(k0, h; k) respectively with
the simulated leakages SL(k0, pB , c0),SL(k0, pA, k1) and SLF∗ (k, h, k0, cl+1). Let
E1 be the probability that AL wins Game 1.
We observe that Game 1 is Game 0, where instead of PSVsfb, PSVsfbI is used
in mode CONCRETE.

Transition between Game 0 and Game 1 We build a (qL, t+ t′)-adversary
BL who wants to distinguish PSVsfb from PSVsfbI based on AL.
The (qL, t + t′)-adversary BL BL has to distiguish PSVsfb from PSVsfbI . At

the start of the game, the oracle picks two keys k0 and k uniformly at random
in {0, 1}n.
When AL does a leakage query, BL does the same query and relays the answer
to AL.
When AL outputs his challenge plaintexts (m0,m1), with |m0| = |m1| ≤ Ln, BL

proceeds as follow: first, he picks uniformly at random a bit b ← {0, 1} and he
parses the message mb in mb = (mb

1, ...,m
b
l ) with |mb

1| = ... = |mb
l−1| = n

and |m1
l | ≤ n, then, he runs its oracle to obtain the first part of PSVsfb,

that is, (c0, k1) and the leakages (L1, L2, L3), where L1 is either LE(pB ; k0) or
SL(k0, pB , c0), L2 is either LE(pA; k0) or SL(k0, pA, k1) and L3 is L$(k0); after
that, from k1 he is able to compute c1, ..., cl with ci = yi ⊕ mb

i (for i = l,
ci = π|mb

l |
(yi) ⊕ mb

i ), yi = Eki(pB) and ki = Eki−1
(pA) and the leakages

LE(pB ; k1), L⊕(mb
1, y1), LE(pA; k1), ..., LE(pA; kl−1), LE(pB ; kl), L⊕(mb

l , yl); then,
he computes h = H(c0‖...‖cl−1‖cl) and he runs his oracle on input h to obtain
cl+1 with the leakage L4 which may be either LF∗(k0, h; k) or SLF∗ (k, k0, h, cl+1).
Finally, he answers c = (c0, ..., cl, cl+1) with the leakages (L1, L2, L3, LE(pB ; k1), L⊕(mb

1, y1), LE(pA; k1), ..., LE(pA; kl−1),
LE(pB ; kl), L⊕(mb

l , yl), L
4). To answer to AL uses one query to his oracle and time

bounded by

t$ + 2ltE + 2ltL(E) + ltL(⊕) + tH ≤

t$ + 2LtE + 2LtL(E) + LtL(⊕) + tH = t′

When AL outputs a bit b′, BL outputs 1 if b = b′ (that is, AL has won the EavL2
game; otherwise, 0.
BL does one query to his oracle and runs in time bounded by t+ t′.
We observe that, if the oracle BL faces, is implemented with PSVsfb, BL correctly
simulates Game 0 for AL; otherwise, Game 1.

Bounding |Pr[E0] − Pr[E1]| We can observe that Pr[E0] = Pr[BL(PSVsfb) ⇒
1] and Pr[E1] = Pr[BL(PSVsfbI) ⇒ 1]. Since BL is a (qL, t + t′)-adversary, F∗

is a (1, t + t′ + t2, εSTPRP)-STPRP, whose implementation has (1, qS′ , tS′ , t +
t′ + t1)- indistinguishable leakage, let E be a (2, t + t′ + t3, εPRF)-PRF, whose
implementation has (qS , q

′
S , qL, tS , t

′
S , t + t′ + t3, ε2-sim′)-2-simulatable’ leakage,
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we can use Lemma 4. Thus:

|Pr[E0]− Pr[E1]| = |Pr[BL(PSVsfb)⇒ 1]− Pr[BL(PSVsfbI)⇒ 1]| ≤

εSTPRP + ε2-sim′ + εPRF

Game 2 It is Game 1, where we have replaced y1 = Ek1(pB), ..., yl = Ekl(pB)
and k2, ..., kl with random value. Moreover, the leakages LE(pB ; k1), LE(pA; k1),...,
LE(pA; kl−1), LE(pB ; kl) have been replaced by the simulated one SL(k1, pB , y1),
SL(k1, pA, k2),..., SL(kl−1, pA, kl), SL(kl, pB , yl). (Substantially we have replaced
PSV with PSVI). Let E2 be the event that AL guesses correctly the bit b.

Transition between Game 1 and 2 Although we cannot apply straightfor-
wardly Lemma 2, we can reapply that proof, adding that every adversary, used in
that proof, has to pick a random key k, 2 random values c0 and cl+1, compute h =
H(c0‖...‖cl), collect the leakages L$(k0), SL(k0, pB , c0) and SLF∗ (k, k0, h, cl+1) (k0
and SL(k0, pA, k1) are obtained by all adversaries used in the proof of Lemma 2).
Thus, all adversaries need additional t′′ = 3t$ + tL($) + tH + tS + tS′ .

Bounding |Pr[E2] − Pr[E1]| Since E : {0, 1}n × {0, 1}n 7−→ {0, 1}n be a
(2, t + t′′ + t4 + t5), εPRF)-PRF whose implementation has a leakage function
L which has (qS , tS , qL, t + t′′ + t4 + t6, ε2-sim)-2-simulatable leakage and let SL
be an appropriate (qS , tS)-bounded leakage simulator, we can apply the bound
of Lemma 2. Thus,

|Pr[E2]− Pr[E1]| = L(ε2-sim + εPRF)

Computing Pr[E2] To compute Pr[E2], again, we cannot reapply straight-
forwardly Lemma 3, but we can reapply that proof adding that every adver-
sary, used in that proof, has to pick a random key k, 2 random values c0 and
cl+1, compute h = H(c0‖...‖cl), collect the leakages L$(k0), SL(k0, pB , c0) and
SLF∗ (k, k0, h, cl+1) (k0 and SL(k0, pA, k1) are obtained by all adversaries used in
the proof of Lemma 2). Thus, all adversaries need additional t′′.
Thus, since PSVsI is (qL, t+ t′′ + t7, εEavL2)-secure, then,

Pr[E3] ≤ 1

2
+ LεEavL2s.

Bonding Pr[E0] Applying everything we obtain that:

Pr[E0] ≤ εSTPRP + ε2-sim′ + εPRF + L(ε2-sim + εPRF) +
1

2
+ LεEavL2s ≤

1

2
+ εSTPRP + ε2-sim′ + (L+ 1)εPRF + L(ε2-sim + εEavL2s)

which concludes the proof
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The CPAL2 security From the EavL2 security of CONCRETE we can derive the
CPAL2 and CCAL2. First, we observe that the decryption of the challenge query
does not give additional information via leakage, if we suppose that the leakage
L⊕(x, y) gives the same information as L⊕(x, z) (with z = x⊕y) and the leakage
SLF∗ (k, x, y, z) gives the same information as the leakage SLF∗,−1 (k, z, y, x) (with
z = F∗k(x, y)).

With the following theorem we reduce the CPAL2 security of CONCRETE to
the EavL2s-security of PSVsI :

Theorem 9. Let F∗ be a (qE + 1, t+ t2, εSTPRP)-STPRP, whose implementation
has (qE+1, qS′ , t+t1, tS′)- indistinguishable leakage, let E be a (2, t+t3+max(t4+
t5, t6 + t7 + t8), εPRF)-PRF, whose implementation has (qL, qS , t+ t3 + t6 + t7 +
t9, tS , ε2-sim)-2-simulatable leakage and (qL, qS , qS′ , t+t3+t4+t5, tS+tS′ , ε2-sim′)-
2-simulatable’ leakage let PSVsI be (qL, t+t3+t6+t10, εEavL2s)-EavL2-secure, then
CONCRETE, if encrypts at most L block messages, is (qE , t, ε)-CPAL2-secure with

ε ≤ εSTPRP +
qE
2n

+ ε2-sim′ + (L+ 1)εPRF + L(ε2-sim + εEavL2s)

where

t1 = (qE + 1)
(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tF∗

)
t2 = (qE + 1)

(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S

)
t3 = qE

(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S+

)
+ tf(qE)

t4 = t$ + 2LtE + 2LtL(E) + LtL(⊕) + tH

t5 = qLtL(E) + 2tS + t′S + 3t$ + tL($)

t6 = 3t$ + tL($) + tH + tS + tS′

t7 = (L−1)tL(⊕)+ max
i=1,...,L−1

[
(2i− 1)t$ + (2i− 3)tS + (2(L− i)− 1)(tE + tL(E))

]
t8 = qLtL(E) + 3tS + tL(⊕) + 2t$

t9 = qLtL(E) + tsim + tL(⊕) + 2t$

t10 = (2L− 5)t$ + (2L− 5)tS + (L− 1)tL(⊕)

where t$ is the time needed to sample a random block, tL($) is the time needed to
collect the leakage of the random sampling of a block, tE the needed to execute E,
tL(E) the time needed to collect the leakage of E, tL(⊕) the time needed to collect
the leakage of the XOR (⊕) of two blocks, tH is the time needed to execute once
the hash function, tF∗ is the time needed to execute once the STPRP F∗, tsim is
the time needed to relay the content of the two E, LE \E,SL and the Gen-S query
and tf(qE) is the time needed to lazy sample the tweakable random permutation
qE times.
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Proof. We use, as usual, a sequence of games:
Game 0 It the standard CPAL2 game. Let E0 be the event that the adversary
A wins the CPAL2 game, that is, he guesses correctly the bit b.

Game 1 It is Game 0, where we have replaced the leakage LF∗ with the simu-
lated SLF∗ . Let E1 be the event that the adversary guesses correctly the bit b.

Transition between Game 0 and 1 We build a (qE + 1, t + t1)-adversary
BL against the indistinguishability of the leakage of F∗ based on A to bound the
absolute difference |Pr[E0]− Pr[E1]|.

The (qE + 1, t+ t1) indistinguishability adversary BL BL has to distinguish
if the leakage he obtains is LF∗(k0, h; k) or SLF∗ (k′, k0, h, d) for a random key
k′. At the start of the game, BL chooses two constants pA, pB ∈ {0, 1}n with
pA 6= pB and an hash function H, which he gives to AL. Moreover, BL picks a
key k uniform at random in {0, 1}n and a bit b uniformly at random in {0, 1}
which he keeps secret.
When A does a leaking encryption query on input mi = (mi

1, ...,m
i
li), B pro-

ceeds as follow: first, (1) he picks a random value ri in {0, 1}n, he sets ki0 = ri

and collects the leakage L$(k∗0), moreover he checks if li > L, in this case
he returns ⊥, then, (2) from k0 he computes all the values ci0, ..., c

i
li−1, c

i
li ,

where cij = yij ⊕ mi
j with yij = Ekij (pB) (for j = 0, ci0 = yi0; for j = li,

cili = π|mi
li
|(yli) ⊕mi

li) and kij+1 = Ekij (pA); moreover, he collects the leakages

LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1), L⊕(yili+1,m

i
li), af-

ter that, (3) he computes hi = H(ci0‖...‖cili−1‖c
i
li) and cili+1 = F∗k(hi, ki0). He calls

his oracle receiving L1, which is either the leakage LF∗(h
i, ki0; k) or the simulated

one SLF∗ (k′, hi, ki0, c
i
li); finally, (4) he answers to A ci with ci = (ci0, ..., c

i
li , c

i
li+1)

and the leakages (L$(k0), LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1),

L⊕(yili+1,m
i
li), L

1).
To answer to a leaking encryption query B queries once his oracle and runs in
time bounded by

t$ + tL($) + 2(li + 1)tE + 2(li + 1)tL(E) + tH + tF∗ ≤

t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tF∗ .

When A does the challenge query on input (m∗,0,m∗,1) withm∗,j = (m∗,j1 , ...,m∗,jl∗,j ),
with j = 0, 1, B proceeds as follow: first, he checks if |m∗,0| = |m∗,1|, if it is not
the case he returns ⊥, moreover he checks if l∗,b > L, if it is the case he answers
⊥, after that, (1) he sets m∗; = m∗,b, he picks a random value r∗ in {0, 1}n,
he sets k∗0 = r∗ and collects the leakage L$(k∗0), then, (2) from k0 he com-
putes all the values c∗0, ..., c

∗
l∗−1, c

∗
l∗ , where c∗j = y∗j ⊕m∗j with y∗j = Ek∗j (pB) (for

j = 0, c∗0 = y∗0 ; for j = l∗, c∗l∗ = π|m∗
l∗ |(yl

∗) ⊕m∗l∗) and k∗j+1 = Ek∗j (pA); more-

over, he collects the leakages LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m
∗
1) ,...,

LE(pA; kil∗−1), L⊕(yil∗+1,m
∗
l∗), after that, (3) he computes h∗ = H(c∗0‖...‖c∗l∗−1‖c∗l∗)
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and c∗l∗+1 = F∗k(h∗, k∗0). He calls his oracle receiving L1, which is either the leakage

LF∗(h
∗, k∗0 ; k) or the simulated one SLF∗ (k′, h∗, k∗0 , c

∗
l∗); finally, (4) he answers to A

c∗ with c∗ = (c∗0, ..., c
∗
l∗ , c

∗
l∗+1) and the leakages (L$(k0), LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m

∗
1)

,..., LE(pA; k∗l∗−1), L⊕(y∗l∗+1,m
∗
l∗), L

1).
To answer to the challenge query B queries once his oracle and runs in time
bounded by

t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tF∗ .

At the end of the game A outputs a bit b′, if b = b′, then, B outputs 1, otherwise
0.
BL runs in time t + t1 (since A runs in time t) and he does qE + 1 query to his
oracle, with

t1 = (qE + 1)
(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tF∗

)
We observe that if the oracle B faces is implemented with LF∗(·, ·; ·), B correctly
simulates Game 0 for A; otherwise, Game 1.

Bounding |Pr[E0]− Pr[E1]| Clearly Pr[BLF∗ ⇒ 1] = Pr[E0], while,

Pr[BS
lfF∗ ⇒ 1] = Pr[E1].

Since F∗ has (qE + 1, q′S , t
′
S , t + t1)-indistinguishable leakage and BL is a (qE +

1, t+ t1) adversary we have that∣∣∣Pr[BLF∗ ⇒ 1]− Pr[BS
lfF∗ ⇒ 1]

∣∣∣ = 0

thus Pr[E0] = Pr[E1].

Game 2 It is Game 1, where we have replaced the STPRP F∗ with the random
permutation f∗. Let E2 be the event that the adversary guesses correctly the bit b.

Transition between Game 1 and 2 We build a (qE + 1, t+ t2)-adversary C
against the STPRP F∗ based on A to bound the absolute difference |Pr[E1] −
Pr[E2]|.

The (qE + 1, t + t2) STPRP adversary C C has to distinguish if he is inter-
acting with an oracle implemented with the STPRP F∗k(·, ·) or with a tweakable
random permutation f∗ for a random key k. At the start of the game, C chooses
two constants pA, pB ∈ {0, 1}n with pA 6= pB and an hash function H, which he
gives to AL. Moreover, C picks a key k′ uniform at random in {0, 1}n and a bit
b uniformly at random in {0, 1} which he keeps secret.
When A does a leaking encryption query on input mi = (mi

1, ...,m
i
li), C pro-

ceeds as follow: first, (1) he picks a random value ri in {0, 1}n, he sets ki0 = ri

and collects the leakage L$(k∗0), moreover he checks if li > L, in this case
he returns ⊥, then, (2) from k0 he computes all the values ci0, ..., c

i
li−1, c

i
li ,
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where cij = yij ⊕ mi
j with yij = Ekij (pB) (for j = 0, ci0 = yi0; for j = li,

cili = π|mi
li
|(yli) ⊕mi

li) and kij+1 = Ekij (pA); moreover, he collects the leakages

LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1), L⊕(yili+1,m

i
li), af-

ter that, (3) he computes hi = H(ci0‖...‖cili−1‖c
i
li), he calls his oracle on in-

put (hi, ki0) receiving cili+1 and he simulates the leakage SLF∗ (k′, hi, ki0, c
i
li+1);

finally, (4) he answers to A ci with ci = (ci0, ..., c
i
li , c

i
li+1) and the leakages

(L$(k0), LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1), L⊕(yili+1,m

i
li),

SLF∗ (k′, hi, ki0, c
i
li)).

To answer to a leaking encryption query C queries once his oracle and runs in
time bounded by

t$ + tL($) + 2(li + 1)tE + 2(li + 1)tL(E) + tH + t′S ≤

t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S .

When A does the challenge query on input (m∗,0,m∗,1) withm∗,j = (m∗,j1 , ...,m∗,jl∗,j ),
with j = 0, 1, C proceeds as follow: first, he checks if |m∗,0| = |m∗,1|, if it is not
the case he returns ⊥, moreover he checks if l∗,b > L, if it is the case he answers
⊥, after that, (1) he sets m∗; = m∗,b, he picks a random value r∗ in {0, 1}n,
he sets k∗0 = r∗ and collects the leakage L$(k∗0), then, (2) from ki0 he com-
putes all the values c∗0, ..., c

∗
l∗−1, c

∗
l∗ , where c∗j = y∗j ⊕m∗j with y∗j = Ek∗j (pB) (for

j = 0, c∗0 = y∗0 ; for j = l∗, c∗l∗ = π|m∗
l∗ |(yl

∗) ⊕m∗l∗) and k∗j+1 = Ek∗j (pA); more-

over, he collects the leakages LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m
∗
1) ,...,

LE(pA; kil∗−1), L⊕(yil∗+1,m
∗
l∗), after that, (3) he computes h∗ = H(c∗0‖...‖c∗l∗−1‖c∗l∗),

he calls his oracle on input (h∗, k∗0) and he simulates the leakage SLF∗ (k′, h∗, k∗0 , c
∗
l∗);

finally, (4) he answers to A c∗ with c∗ = (c∗0, ..., c
∗
l∗ , c

∗
l∗+1) and the leakages

(L$(k0), LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m
∗
1) ,..., LE(pA; k∗l∗−1), L⊕(y∗l∗+1,m

∗
l∗),

SLF∗ (k′, h∗, k∗0 , c
∗
l∗)).

To answer to the challenge query C queries once his oracle and runs in time
bounded by

t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S .

At the end of the game A outputs a bit b′, if b = b′, then, C outputs 1, otherwise
0.
C runs in time t + t2 (since A runs in time t) and he does qE + 1 query to his
oracle, with

t2 = (qE + 1)
(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S

)
We observe that if the oracle B faces is implemented with F∗, C correctly simu-
lates Game 1 for A; otherwise, Game 2.

Bounding |Pr[E1]− Pr[E2]| Clearly Pr[CF∗k(·,·) ⇒ 1] = Pr[E1], while,
Pr[Cf∗(·,·) ⇒ 1] = Pr[E2].
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Since F∗ is a (qE + 1, t + t2)-STPRP and BL is a (qE + 1, t + t2) adversary we
have that ∣∣∣Pr[CF∗k(·,·) ⇒ 1]− Pr[Cf∗(·,·) ⇒ 1]

∣∣∣ ≤ εSTPRP
thus |Pr[E1]− Pr[E2]| ≤ εSTPRP.

The (qL, t+ t3) EavL2 adversary D Based on the CPAL2 adversary, we build
a EavL2 adversary D.
At the start of the game D receives the two constants pA and pB and the hash
function H which he forwards to A.
D is playing an EavL2 against CONCRETE′, which is CONCRETE where we have
replaced the STPRP F∗ with a random tweakable permutation g∗ (since g∗ is
only used once in the game, to compute c∗l∗+1, it is equivalent to suppose that
c∗l∗+1 is picked uniformly at random) and the leakage LF∗(·, ·; ·) is replaced with

the simulated one SLF∗ (·, ·, ·, ·).
When A does a leakage query, D does the same query.
When A does a leaking encryption query on input mi = (mi

1, ...,m
i
li), D pro-

ceeds as follow: first, (1) he picks a random value ri in {0, 1}n, he sets ki0 = ri

and collects the leakage L$(k∗0), moreover he checks if li > L, in this case
he returns ⊥, then, (2) from ki0 he computes all the values ci0, ..., c

i
li−1, c

i
li ,

where cij = yij ⊕ mi
j with yij = Ekij (pB) (for j = 0, ci0 = yi0; for j = li,

cili = π|mi
li
|(yli) ⊕mi

li) and kij+1 = Ekij (pA); moreover, he collects the leakages

LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1), L⊕(yili+1,m

i
li), af-

ter that, (3) he computes hi = H(ci0‖...‖cili−1‖c
i
li), he lazy samples f∗, obtaining

cili+1, and he simulates the leakage SLF∗ (k′, hi, ki0, c
i
li+1); finally, (4) he answers to

A ci with ci = (ci0, ..., c
i
li , c

i
li+1) and the leakages (L$(k0), LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m

i
1)

,..., LE(pA; kili−1), L⊕(yili+1,m
i
li), S

LF∗ (k′, hi, ki0, c
i
li)).

To answer to a leaking encryption query D runs in time bounded by

t$ + tL($) + 2(li + 1)tE + 2(li + 1)tL(E) + tH + t′S + tf ≤

t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S + tf

. When A does the challenge query on input (m∗,0,m∗,1) withm∗,j = (m∗,j1 , ...,m∗,jl∗,j ),
with j = 0, 1, D forwards (m∗,0,m∗,1) as his challenge query. He receives the ci-
phertext c∗ = (c∗0, ..., c

∗
l∗+1) and the leakage L1, which he forwards to A.

At the end of the game A outputs a bit b′, if b = b′, then, C outputs 1, otherwise
0.
C runs in time t+ t3 (since A runs in time t) and does only the challenge query
to his oracle and qL leakage query, with

t3 = qE
(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S+

)
+ tf(qE).

The event TPC We observe that, if the the following event Tweakable Permu-
tation Collision (TPC)

TPC := {for j = 1, ..., qE s.t. h∗ = hj , c∗l∗+1 6= cjlj+1}
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does not happen, the EavL2 adversary correctly simulates Game 2 for the CPAL2
adversary A. Event TPC happens when there is an incoherence in the way the
STPRP is simulated. Since there are for cl∗+1, at most qE problematic values
out of 2n possible values and cl∗+1 is picked uniformly at random we can bound
Pr[TPC] ≤ qE

2n .

Bounding Pr[E2] Let E3 the probability that D wins the EavL2 game. We
observe that if D has correctly simulated Game 2 for A then D wins if and only
if A wins. Thus Pr[E2] ≤ Pr[E3] + Pr[TPC].
Since E is a (2, t+t3 +max(t4 + t5, t6 + t7 +t8), εPRF)-PRF whose implementation
has (qL, qS , t+t3+t6+t7+t9, tS , ε2-sim)-2-simulatable leakage and (qL, qS , qS′ , t+
t3+t4+t5, tS+tS′ , εtwosim′)-2-simulatable’ leakage and PSVsI is (qL, t+t3+t6+
t10, εEavL2s)-EavL2-secure and D is a (qL, t + t3)-EavL2-adversary, we can bound
Pr[E3] using Propo. 1

Pr[E3] ≤ 1

2
+ ε2-sim′ + (L+ 1)εPRF + L(ε2-sim + εEavL2s)

(when we apply the proof of Propo. 1, we can skip the first two games of Lemma 4
since we have already replaced the leakage LF∗(·, ·; ·) of F∗ with the simulated
one SLF∗ (·, ·, ·, ·) and the STPRP F∗ with the random tweakable permutation f∗).

Bounding Pr[E0]. Putting everything together we can bound

Pr[E0] ≤ εSTPRP +
qE
2n

+
1

2
+ ε2-sim′ + (L+ 1)εPRF + L(ε2-sim + εEavL2s)

which concludes the proof.

CCAL2 security Since CONCRETE is CIML2-secure in the unbounded model
and it is CPAL2-secure, we expect that it is CCAL2-secure. This is proved by the
following theorem:

Theorem 10. Let F∗ be a (qE + qD + 1, t + t2, εSTPRP)-STPRP, whose imple-
mentation has (qE + qD + 1, qS′ , t + t1, tS′)- indistinguishable leakage, let E be
a (2, t + max(t3 + t4 + t5, t3 + t6 + t7 + t8, t11 + t12), εPRF)-PRF, whose imple-
mentation has (qL, qS , t + t3 + t6 + t7 + t9, tS , ε2-sim)-2-simulatable leakage and
(qL, qS , qS′ , t + t3 + t4 + t5, tS + tS′ , ε2-sim′)-2-simulatable’ leakage, let H be a
(0, t+ t11 + t12, εCR)-collision resistant hash function, let PSVsI be (qL, t+ t3 +
t6+t10, εEavL2s)-EavL2-secure, then CONCRETE, if encrypts at most L block mes-
sages, is (qE , qD, t, ε)-CCAL2-secure with

ε ≤ εSTPRP + εCR +
qE + qD

2n
+
qD(L+ 1)(qD + 2qE)

2n+1
+

(qD + L+ 1)εPRF + ε2-sim′ + L(ε2-sim + εEavL2s)

where

t1 = (qE + qD + 1)
(
2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tF∗

)
+ (qE + 1)

(
t$ + tL($)

)
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t2 = (qE + qD + 1)
(
2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tS′

)
+ (qE + 1)

(
t$ + tL($)

)
t3 = tf(qE+qD) +(qE +qD)(tH + tS′)+(tE + tL(E))(2(L+1)qE +qD)+qE(t$ + tL($))

t4 = t$ + 2LtE + 2LtL(E) + LtL(⊕) + tH

t5 = qLtL(E) + 2tS + t′S + 3t$ + tL($)

t6 = 3t$ + tL($) + tH + tS + tS′

t7 = (L−1)tL(⊕)+ max
i=1,...,L−1

[
(2i− 1)t$ + (2i− 3)tS + (2(L− i)− 1)(tE + tL(E))

]
t8 = qLtL(E) + 3tS + tL(⊕) + 2t$

t9 = qLtL(E) + tsim + tL(⊕) + 2t$

t10 = (2L− 5)t$ + (2L− 5)tS + (L− 1)tL(⊕)

t11 = qLtL(E) + (qE + qD + 1)(2(L+ 1)(tE + tL(E)) + tH + t′S + (qE + 1)(tL($) + t$)

t12 = (qE + qD + 2)(tH + 2(L+ 1)tE) + tf(qE+qD+2)

where t$ is the time needed to sample a random block, tL($) is the time needed
to collect the leakage of the random sampling of a block, tE the needed to execute
E, tL(E) the time needed to collect the leakage of E, tL(⊕) the time needed to collect
the leakage of the XOR (⊕) of two blocks, tH is the time needed to execute once
the hash function, tF∗ is the time needed to execute once the STPRP F∗, tsim is
the time needed to relay the content of the two E, LE \E,SL and the Gen-S query
and tf(qE) is the time needed to lazy sample the tweakable random permutation
qE times.

Proof. We use, as usual, a sequence of games:
Game 0 It the standard CCAL2 game. Let E0 be the event that the adversary
A wins the CCAL2 game, that is, he guesses correctly the bit b.

Game 1 It is Game 0, where we have replaced the leakage LF∗ with the simu-
lated SLF∗ . Let E1 be the event that the adversary guesses correctly the bit b.

Transition between Game 0 and 1 We build a (qE+qD+1, t+t1)-adversary
BL against the indistinguishability of the leakage of F∗ based on A to bound the
absolute difference |Pr[E0]− Pr[E1]|.

The (qE +qD+1, t+ t1) indistinguishability adversary BL BL has to distin-
guish if the leakage he obtains is LF∗(k0, h; k) or SLF∗ (k′, k0, h, d) for a random
key k′. At the start of the game, BL chooses two constants pA, pB ∈ {0, 1}n with
pA 6= pB and an hash function H, which he gives to AL. Moreover, BL picks a
key k uniform at random in {0, 1}n and a bit b uniformly at random in {0, 1}
which he keeps secret.
When A does a leaking encryption query on input mi = (mi

1, ...,m
i
li), B pro-

ceeds as follow: first, (1) he picks a random value ri in {0, 1}n, he sets ki0 = ri

and collects the leakage L$(k∗0), moreover he checks if li > L, in this case
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he returns ⊥, then, (2) from ki0 he computes all the values ci0, ..., c
i
li−1, c

i
li ,

where cij = yij ⊕ mi
j with yij = Ekij (pB) (for j = 0, ci0 = yi0; for j = li,

cili = π|mi
li
|(yli) ⊕mi

li) and kij+1 = Ekij (pA); moreover, he collects the leakages

LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1), L⊕(yili+1,m

i
li), af-

ter that, (3) he computes hi = H(ci0‖...‖cili−1‖c
i
li) and cili+1 = F∗k(hi, ki0). He calls

his oracle receiving L1, which is either the leakage LF∗(h
i, ki0; k) or the simulated

one SLF∗ (k′, hi, ki0, c
i
li); finally, (4) he answers to A ci with ci = (ci0, ..., c

i
li , c

i
li+1)

and the leakages (L$(k0), LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1),

L⊕(yili+1,m
i
li), L

1).
To answer to a leaking encryption query B queries once his oracle and runs in
time bounded by

t$ + tL($) + 2(li + 1)tE) + 2(li + 1)tL(E + tH + tF∗ ≤

t$ + tL($) + 2(L+ 1)tE) + 2(L+ 1)tL(E + tH + tF∗ .

When A does a decryption query on input ci = (ci0, ..., c
i
li , c

i
li+1), if li > L,

B returns perp; otherwise first (1) he computes hi = H(ci0‖...|cili+1), ki0 =

F∗,−1(hi, cili+1) and calls his oracle on input (k, ki0, h
i, cili+1) receiving Li which is

either the leakage LF∗,−1(cili+1, h
i) or the simulated one SLF∗,−1 (k′, cili+1, h

i, ki0),

then, (2) from ki0 he computes c̃i0 = Eki0(pB), he collects the leakage LE(pB ; ki0)

and verifies if c̃i0 = ci0, if it is not the case B breaks the execution and skips to step
(4); otherwise, after that, (3) he computes from ki0 all the valuesmi

1, ...,m
i
li−1,m

i
li ,

where mi
j = yij ⊕ cij with yij = Ekij (pB) (for j = li, mi

li = π|ci
li
|(yli) ⊕ cili) and

kij+1 = Ekij (pA); moreover, he collects the leakages LE(pA; ki0), LE(pB ; ki1), L⊕(yi1, c
i
1)

,..., LE(pA; kili−1), L⊕(yili+1, c
i
li). Finally (4), B answers (⊥, Li, LE(pB ; ki0) if the

ciphertext is deemed invalid; otherwise (mi
1, ...,m

i
li) as well with the leakage

(Li, LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1, c
i
1) ,..., LE(pA; kili−1), L⊕(yili+1, c

i
li)).

To answer to a leaking decryption query B queries once his oracle and runs in
time bounded by

2(li + 1)tE) + 2(li + 1)tL(E + tH + tF∗ ≤

2(L+ 1)tE) + 2(L+ 1)tL(E + tH + tF∗ .

When A does the challenge query on input (m∗,0,m∗,1) withm∗,j = (m∗,j1 , ...,m∗,jl∗,j ),
with j = 0, 1, B proceeds as follow: first, he checks if |m∗,0| = |m∗,1|, if it is not
the case he returns ⊥, moreover he checks if l∗,b > L, if it is the case he answers
⊥, after that, (1) he sets m∗; = m∗,b, he picks a random value r∗ in {0, 1}n,
he sets k∗0 = r∗ and collects the leakage L$(k∗0), then, (2) from k0 he com-
putes all the values c∗0, ..., c

∗
l∗−1, c

∗
l∗ , where c∗j = y∗j ⊕m∗j with y∗j = Ek∗j (pB) (for

j = 0, c∗0 = y∗0 ; for j = l∗, c∗l∗ = π|m∗
l∗ |(yl

∗) ⊕m∗l∗) and k∗j+1 = Ek∗j (pA); more-

over, he collects the leakages LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m
∗
1) ,...,

LE(pA; kil∗−1), L⊕(yil∗+1,m
∗
l∗), after that, (3) he computes h∗ = H(c∗0‖...‖c∗l∗−1‖c∗l∗)
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and c∗l∗+1 = F∗k(h∗, k∗0). He calls his oracle receiving L1, which is either the leakage

LF∗(h
∗, k∗0 ; k) or the simulated one SLF∗ (k′, h∗, k∗0 , c

∗
l∗); finally, (4) he answers to A

c∗ with c∗ = (c∗0, ..., c
∗
l∗ , c

∗
l∗+1) and the leakages (L$(k0), LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m

∗
1)

,..., LE(pA; k∗l∗−1), L⊕(y∗l∗+1,m
∗
l∗), L

1).
To answer to the challenge query B queries once his oracle and runs in time
bounded by

t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tF∗ .

At the end of the game A outputs a bit b′, if b = b′, then, B outputs 1, otherwise
0.
BL runs in time t + t1 (since A runs in time t) and he does qE + 1 query to his
oracle, with

t1 = (qE + 1)
(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tF∗

)
+

qD
(
2(L+ 1)tE) + 2(L+ 1)tL(E) + tH + tF∗

)
=

(qE + qD + 1)
(
2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tF∗

)
+ (qE + 1)

(
t$ + tL($)

)
.

We observe that if the oracle B faces is implemented with LF∗(·, ·; ·), B correctly
simulates Game 0 for A; otherwise, Game 1.

Bounding |Pr[E0]− Pr[E1]| Clearly Pr[BLF∗ ⇒ 1] = Pr[E0], while,

Pr[BS
lfF∗ ⇒ 1] = Pr[E1].

Since F∗ has (qE + qD + 1, q′S , t
′
S , t + t1)-indistinguishable leakage and BL is a

(qE + 1, t+ t1) adversary we have that∣∣∣Pr[BLF∗ ⇒ 1]− Pr[BS
lfF∗ ⇒ 1]

∣∣∣ = 0

thus Pr[E0] = Pr[E1].

Game 2 It is Game 1, where we have replaced the STPRP F∗ with the random
permutation f∗. Let E2 be the event that the adversary guesses correctly the bit b.

Transition between Game 1 and 2 We build a (qE + 1, t+ t2)-adversary C
against the STPRP F∗ based on A to bound the absolute difference |Pr[E1] −
Pr[E2]|.

The (qE+1+qD, t+t2) STPRP adversary C C has to distinguish if he is inter-
acting with an oracle implemented with the STPRP F∗k(·, ·) or with a tweakable
random permutation f∗ for a random key k. At the start of the game, C chooses
two constants pA, pB ∈ {0, 1}n with pA 6= pB and an hash function H, which he
gives to AL. Moreover, C picks a key k′ uniform at random in {0, 1}n and a bit
b uniformly at random in {0, 1} which he keeps secret.
When A does a leaking encryption query on input mi = (mi

1, ...,m
i
li), C pro-

ceeds as follow: first, (1) he picks a random value ri in {0, 1}n, he sets ki0 = ri
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and collects the leakage L$(k∗0), moreover he checks if li > L, in this case
he returns ⊥, then, (2) from k0 he computes all the values ci0, ..., c

i
li−1, c

i
li ,

where cij = yij ⊕ mi
j with yij = Ekij (pB) (for j = 0, ci0 = yi0; for j = li,

cili = π|mi
li
|(yli) ⊕mi

li) and kij+1 = Ekij (pA); moreover, he collects the leakages

LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1), L⊕(yili+1,m

i
li), af-

ter that, (3) he computes hi = H(ci0‖...‖cili−1‖c
i
li), he calls his oracle on input

(+1, hi, ki0) receiving cili+1 and he simulates the leakage SLF∗ (k′, hi, ki0, c
i
li+1);

finally, (4) he answers to A ci with ci = (ci0, ..., c
i
li , c

i
li+1) and the leakages

(L$(k0), LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1), L⊕(yili+1,m

i
li),

SLF∗ (k′, hi, ki0, c
i
li)).

To answer to a leaking encryption query C queries once his oracle and runs in
time bounded by

t$ + tL($) + 2(li + 1)tE) + 2(li + 1)tL(E + tH + t′S ≤

t$ + tL($) + 2(L+ 1)tE) + 2(L+ 1)tL(E + tH + t′S .

When A does a decryption query on input ci = (ci0, ..., c
i
li , c

i
li+1), if li > L, B re-

turns perp; otherwise first (1) he computes hi = H(ci0‖...|cili+1), calls his oracle on

input (−1, hi, cili+1) receiving ki0 and simulates the leakage SLF∗,−1 (k′, cili+1, h
i, ki0),

then, (2) from ki0 he computes c̃i0 = Eki0(pB), he collects the leakage LE(pB ; ki0)

and verifies if c̃i0 = ci0, if it is not the case B breaks the execution and skips to step
(4); otherwise, after that, (3) he computes from ki0 all the valuesmi

1, ...,m
i
li−1,m

i
li ,

where mi
j = yij ⊕ cij with yij = Ekij (pB) (for j = li, mi

li = π|ci
li
|(yli) ⊕ cili) and

kij+1 = Ekij (pA); moreover, he collects the leakages LE(pA; ki0), LE(pB ; ki1), L⊕(yi1, c
i
1)

,..., LE(pA; kili−1), L⊕(yili+1, c
i
li). Finally (4), C answers (⊥, Li, LE(pB ; ki0) if the

ciphertext is deemed invalid; otherwise (mi
1, ...,m

i
li) as well with the leakage

(Li, LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1, c
i
1) ,..., LE(pA; kili−1), L⊕(yili+1, c

i
li)).

To answer to a leaking decryption query B queries once his oracle and runs in
time bounded by

2(li + 1)tE) + 2(li + 1)tL(E + tH + tS′ ≤

2(L+ 1)tE) + 2(L+ 1)tL(E + tH + tS′ .

When A does the challenge query on input (m∗,0,m∗,1) withm∗,j = (m∗,j1 , ...,m∗,jl∗,j ),
with j = 0, 1, C proceeds as follow: first, he checks if |m∗,0| = |m∗,1|, if it is not
the case he returns ⊥, moreover he checks if l∗,b > L, if it is the case he answers
⊥, after that, (1) he sets m∗; = m∗,b, he picks a random value r∗ in {0, 1}n,
he sets k∗0 = r∗ and collects the leakage L$(k∗0), then, (2) from ki0 he com-
putes all the values c∗0, ..., c

∗
l∗−1, c

∗
l∗ , where c∗j = y∗j ⊕m∗j with y∗j = Ek∗j (pB) (for

j = 0, c∗0 = y∗0 ; for j = l∗, c∗l∗ = π|m∗
l∗ |(yl

∗) ⊕m∗l∗) and k∗j+1 = Ek∗j (pA); more-

over, he collects the leakages LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m
∗
1) ,...,

LE(pA; kil∗−1), L⊕(yil∗+1,m
∗
l∗), after that, (3) he computes h∗ = H(c∗0‖...‖c∗l∗−1‖c∗l∗),
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he calls his oracle on input (h∗, k∗0) and he simulates the leakage SLF∗ (k′, h∗, k∗0 , c
∗
l∗);

finally, (4) he answers to A c∗ with c∗ = (c∗0, ..., c
∗
l∗ , c

∗
l∗+1) and the leakages

(L$(k0), LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m
∗
1) ,..., LE(pA; k∗l∗−1), L⊕(y∗l∗+1,m

∗
l∗),

SLF∗ (k′, h∗, k∗0 , c
∗
l∗)).

To answer to the challenge query C queries once his oracle and runs in time
bounded by

t$ + tL($) + 2(L+ 1)tE) + 2(L+ 1)tL(E) + tH + t′S .

At the end of the game A outputs a bit b′, if b = b′, then, C outputs 1, otherwise
0.
C runs in time t+ t2 (since A runs in time t) and he does qE + 1 + qD query to
his oracle, with

t2 = (qE + 1)
(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S

)
+

qD
(
2(L+ 1)tE) + 2(L+ 1)tL(E) + tH + tS′

)
=

(qE + qD + 1)
(
2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tS′

)
+ (qE + 1)

(
t$ + tL($)

)
.

We observe that if the oracle C faces is implemented with F∗, C correctly simu-
lates Game 1 for A; otherwise, Game 2.

Bounding |Pr[E1]− Pr[E2]| Clearly Pr[CF∗k(·,·) ⇒ 1] = Pr[E1], while,
Pr[Cf∗(·,·) ⇒ 1] = Pr[E2].
Since F∗ is a (qE + 1, t+ t2)-STPRP and BL is a (qE + 1 + qD, t+ t2) adversary
we have that ∣∣∣Pr[CF∗k(·,·) ⇒ 1]− Pr[Cf∗(·,·) ⇒ 1]

∣∣∣ ≤ εSTPRP
thus |Pr[E1]− Pr[E2]| ≤ εSTPRP.

Game 3 It is Game 2 where we suppose that all decryption queries, which are
not the decryption of the ciphertext provided as answer of a previous encryption
query, are invalid. Let E3 the probability that A guesses correctly the bit b.

Transition from Game 2 to Game 3 We build a (qE + 1, qD, t+ t11)-CIML2
adversary D in the unbounded model to bound Pr[E2]− Pr[E3].

The (qE + 1, qD, t + t11)-CIML2 adversary D At the start of the game D re-
ceives the two constants pA and pB and the hash function H which he forwards
to A. Moreover, he picks uniformly at random a bit b in {0, 1} and a random
key k′ in {0, 1}n which he keeps secret.
D is playing an CIML2 against CONCRETE′, which is CONCRETE where we have
replaced the STPRP F∗ with a random tweakable permutation f∗. Moreover, for
A the leakage LF∗(·, ·; ·) is replaced with the simulated one SLF∗ (·, ·, ·, ·).
When A does a leakage query, on input (u,w), D computes L = LE(u;w) and
answers L to A. This takes time tL(E).
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When A does a leaking encryption query on input mi = (mi
1, ...,m

i
li), first (1), D

checks if li > L, in this case he returns ⊥, otherwise, he picks a random value ki0
and he does an encryption query on input (ki0,m

i) receiving ci = (ci0, ..., c
i
li , c

i
li+1)

with the leakage ki0, then, (2) he collects the leakage L$(ki0) and from ki0 he re-
computes all the values ci0, ..., c

i
li−1, c

i
li , where cij = yij ⊕mi

j with yij = Ekij (pB)

(for j = 0, ci0 = yi0; for j = li, cili = π|mi
li
|(yli)⊕mi

li) and kij+1 = Ekij (pA); more-

over, he collects the leakages LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,...,

LE(pA; kili−1), L⊕(yili+1,m
i
li), after that, (3) he computes hi = H(ci0‖...‖cili−1‖c

i
li)

and he simulates the leakage SLF∗ (k′, hi, ki0, c
i
li+1); finally, (4) he answers to A

ci with ci = (ci0, ..., c
i
li , c

i
li+1) and the leakages (L$(k0), LE(pB ; ki0), LE(pA; ki0),

LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1), L⊕(yili+1,m

i
li), S

LF∗ (k′, hi, ki0, c
i
li)). More-

over, he keeps in memory the query and its answer.
To answer to a leaking encryption query D needs time bounded by

t$ + tL($) + 2(li + 1)tE) + 2(li + 1)tL(E) + tH + tS′ ≤

t$ + tL($) + 2(L+ 1)tE) + 2(L+ 1)tL(E) + tH + tS′ .

When A does a decryption query on input ci = (ci0, ..., c
i
li , c

i
li+1, if li > L, D

returns ⊥, otherwise first (1) he does a decryption query on input ci receiving

the decryption and the leakage (ki0, c̃
i
0), then (2) he computes hi = H(ci0‖...|cili+1)

and simulates the leakage SLF∗,−1 (k′, cili+1, h
i, ki0), after that, (3) from ki0 he re-

computes c̃i0 = Eki0(pB), he collects the leakage LE(pB ; ki0) and verifies if c̃i0 = ci0,
if it is not the case B breaks the execution and skips to step (4); otherwise,
after that, (3) he computes from ki0 all the values mi

1, ...,m
i
li−1,m

i
li , where

mi
j = yij ⊕ cij with yij = Ekij (pB) (for j = li, mi

li = π|ci
li
|(yli) ⊕ cili) and kij+1 =

Ekij (pA); moreover, he collects the leakages LE(pA; ki0), LE(pB ; ki1), L⊕(yi1, c
i
1) ,...,

LE(pA; kili−1), L⊕(yili+1, c
i
li). Finally (4), D answers (⊥, Li, LE(pB ; ki0) if the ci-

phertext is deemed invalid; otherwise (mi
1, ...,m

i
li) as well with the leakage

(Li, LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1, c
i
1) ,..., LE(pA; kili−1), L⊕(yili+1, c

i
li)).

Moreover, he keeps in memory this decryption query and its validity and if it
is fresh (that is, if it is not the answer of a previous encryption, or challenge,
query).
To answer to a leaking decryption query D queries once his oracle and needs
time bounded by

2(li + 1)tE + 2(li + 1)tL(E) + tH + tS′ ≤

2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tS′ .

When A does the challenge query on input (m∗,0,m∗,1) withm∗,j = (m∗,j1 , ...,m∗,jl∗,j ),
with j = 0, 1, D checks if |m∗,0| = |m∗,1| ≤ Ln, if it is not the case he returns ⊥
to A, otherwise he sets m∗ = m∗,b and proceeds as follow:
first (1),he picks a random value k∗0 and he does an encryption query on input
(k∗0 ,m

∗), receiving c∗ = (c∗0, ..., c
∗
l∗ , c

∗
l∗+1) with the leakage k∗0 , then, (2) he col-

lects the leakage L$(k∗0) and from k∗0 he recomputes all the values c∗0, ..., c
∗
l∗−1, c

∗
l∗ ,
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where c∗j = y∗j ⊕ m∗j with y∗j = Ek∗j (pB) (for j = 0, c∗0 = yv0 ; for j = l∗,

c∗l∗ = π|m∗
l∗ |(yl

∗)⊕m∗l∗) and k∗j+1 = Ek∗j (pA); moreover, he collects the leakages

LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m
∗
1) ,..., LE(pA; k∗l∗−1), L⊕(y∗l∗+1,m

∗
l∗), af-

ter that, (3) he computes h∗ = H(c∗0‖...‖c∗l∗−1‖c∗l∗) and he simulates the leakage

SLF∗ (k′, h∗, k∗0 , c
∗
l∗+1); finally, (4) he answers to A c∗ with c∗ = (c∗0, ..., c

∗
l∗ , c

∗
l∗+1)

and the leakages (L$(k0), LE(pB ; k∗0), LE(pA; k∗0), LE(pB ; k∗1), L⊕(y∗1 ,m
∗
1) ,..., LE(pA; k∗l∗−1),

L⊕(y∗l∗+1,m
∗
l∗), SLF∗ (k′, h∗, k∗0 , c

∗
l∗)). Moreover, he keeps in memory the query

and its answer.
To answer to the challenge query D needs time bounded by

t$ + tL($) + 2(L+ 1)tE) + 2(L+ 1)tL(E) + tH + tS′ .

At the end of the game A looks if one of the decryption query he has in memory,
is fresh and valid. If it is the case, he outputs this query, otherwise, he outputs
the first decryption query he has done.
D runs in time t+ t3 (since A runs in time t) and does qE + 1 encryption queries
and qD decryption queries, with

t11 = qLtL(E) + (qE + 1)
(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S

)
+

qD(2(L+ 1)tE + 2(L+ 1)tL(E) + tH + tS′) =

qLtL(E) + (qE + qD + 1)(2(L+ 1)(tE + tL(E)) + tH + t′S + (qE + 1)(t$ + tL($)).

Bounding |Pr[E2]− Pr[E3]| We observe that D has correctly simulated Game
2 for A if all fresh decryption queries made by A are invalid. Only if it is not the
case, D may win (he do not always win since the freshness of a valid decryption
query may be invalidated by a subsequent encryption query). Thus, |Pr[E2] −
Pr[E3]| ≤ Pr[D wins].
Since E is a (2, t+ t11 + t12, εPRF)-PRF and H is a (0, t+ t11 + t12, εCR)-collision
resistant hash function, we can apply the Thm. 6 obtaining that

Pr[D wins] ≤ εCR +
(qD + 1)(L+ 1)(qD + 2qE + 1)

2n+1
+
qD + 1

2n
+ (qD + 1)εPRF

(since we have already replaced the STPRP F∗ with a random tweakable permu-
tation we can omit the term εSTPRP since we can skip the first transition in the
proof of Thm. 6).

Improving the bound |Pr[E2] − Pr[E3]| Since the decryption query the CIML2
adversary D output at the end of the game, its validity has already been es-
tablished. Thus, considering the proof of theorem 6, where we have studied the
possibility that each decryption query is valid one by one, we can improve the
previous bound:

Pr[D wins] ≤ εCR +
qD(L+ 1)(qD + 2qE)

2n+1
+
qD
2n

+ qDεPRF

90



(it is enough in the proof of Thm. 6, when we bound |Pr[A wins Game 3] −
Pr[A wins Game 2]| we can assume that

Pr[A wins Game 2qD+1] = Pr[A wins Game 2qD ] = 0

since, if the first qD decryption queries D does are not valid, then, also the last
is not valid since it is the repetition of one of the others qD decryption queries.

The (qL, t + t3) EavL2 adversary EE Based on the CCAL2 adversary A, we
build a EavL2 adversary EE.
At the start of the game EE receives the two constants pA and pB and the hash
function H which he forwards to A.
EE is playing an EavL2 against CONCRETE′, which is CONCRETE where we
have replaced the STPRP F∗ with a random tweakable permutation g∗ (since g∗

is only used once in the game, to compute c∗l∗+1, it is equivalent to suppose that
c∗l∗+1 is picked uniformly at random) and the leakage LF∗(·, ·; ·) is replaced with

the simulated one SLF∗ (·, ·, ·, ·).
When A does a leakage query, EE does the same query.
When A does a leaking encryption query on input mi = (mi

1, ...,m
i
li), EE pro-

ceeds as follow: first, (1) he picks a random value ri in {0, 1}n, he sets ki0 = ri

and collects the leakage L$(k∗0), moreover he checks if li > L, in this case
he returns ⊥, then, (2) from k0 he computes all the values ci0, ..., c

i
li−1, c

i
li ,

where cij = yij ⊕ mi
j with yij = Ekij (pB) (for j = 0, ci0 = yi0; for j = li,

cili = π|mi
li
|(yli) ⊕mi

li) and kij+1 = Ekij (pA); moreover, he collects the leakages

LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m
i
1) ,..., LE(pA; kili−1), L⊕(yili+1,m

i
li), af-

ter that, (3) he computes hi = H(ci0‖...‖cili−1‖c
i
li), he lazy samples f∗, obtaining

cili+1, and he simulates the leakage SLF∗ (k′, hi, ki0, c
i
li+1); finally, (4) he answers to

A ci with ci = (ci0, ..., c
i
li , c

i
li+1) and the leakages (L$(k0), LE(pB ; ki0), LE(pA; ki0), LE(pB ; ki1), L⊕(yi1,m

i
1)

,..., LE(pA; kili−1), L⊕(yili+1,m
i
li), S

LF∗ (k′, hi, ki0, c
i
li)).

To answer to a leaking encryption query EE runs in time bounded by

t$ + tL($) + 2(li + 1)tE) + 2(li + 1)tL(E) + tH + t′S + tf ≤

t$ + tL($) + 2(L+ 1)tE) + 2(L+ 1)tL(E) + tH + t′S + tf .

When A does a leaking decryption query on input ci = (ci1, ..., c
i
li , c

i
li+1), if li >

L, D returns ⊥, otherwise he proceeds as follow: first, (1) he computes hi =
H(ci0‖...|cili+1), he lazy samples ki0 = f∗,−1(hi, cili+1) and he simulates the leakage

SLF∗,−1 (k′, cili+1, h
i, ki0), after that, (2) from ki0 he computes c̃i0 = Eki0(pB), he

collects the leakage LE(pB ; ki0) and verifies if c̃i0 = ci0, if it is not the case EE
breaks the execution and skips to step (3); we observe that, by hypothesis, since
we are in Game 3, thus, all decryption query are invalid. Finally (3), D answers
(⊥, Li, LE(pB ; ki0) if the ciphertext is deemed invalid; To answer to a leaking
decryption query D queries once his oracle and needs time bounded by

tH + tf + tS + tE + tLE.
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When A does the challenge query on input (m∗,0,m∗,1) withm∗,j = (m∗,j1 , ...,m∗,jl∗,j ),
with j = 0, 1, EE forwards (m∗,0,m∗,1) as his challenge query. He receives the
ciphertext c∗ = (c∗0, ..., c

∗
l∗+1) and the leakage L1, which he forwards to A.

At the end of the game A outputs a bit b′, EE outputs the same bit b′. EE runs
in time t + t3 (since A runs in time t) and does only the challenge query to his
oracle and qL leakage query, with

t3 = qE
(
t$ + tL($) + 2(L+ 1)tE + 2(L+ 1)tL(E) + tH + t′S

)
+

tf(qE+qD) + qD(tH + tS + tE + tL(E)) =

tf(qE+qD) + (qE + qD)(tH + tS′) + (tE + tL(E))(2(L+ 1)qE + qD) + qE(t$ + tL($)).

The event TPC We observe that, if the the following event Tweakable Permu-
tation Collision (TPC)

TPC := {for j = 1, ..., qE s.t. h∗ = hj , c∗l∗+1 6= cjlj+1}

does not happen, the EavL2 adversary correctly simulates Game 2 for the CPAL2
adversary A. Event TPC happens when there is an incoherence in the way the
STPRP is simulated. Since there are for cl∗+1, at most qE problematic values
out of 2n possible values and cl∗+1 is picked uniformly at random we can bound
Pr[TPC] ≤ qE

2n .

Bounding Pr[E3] Let E4 the probability that EE wins the EavL2 game. We
observe that if A3 has correctly simulated Game 3 for A then, A3 wins if and
only if A wins. Thus Pr[E3] ≤ Pr[E4] + Pr[TPC].
Since E is a (2, t+t3 +max(t4 + t5, t6 + t7 +t8), εPRF)-PRF whose implementation
has (qL, qS , t+t3+t6+t7+t9, tS , ε2-sim)-2-simulatable leakage and (qL, qS , qS′ , t+
t3+t4+t5, tS+tS′ , εtwosim′)-2-simulatable’ leakage and PSVsI is (qL, t+t3+t6+
t10, εEavL2s)-EavL2-secure and D is a (qL, t + t3)-EavL2-adversary, we can bound
Pr[E4] using Propo. 1

Pr[E4] ≤ 1

2
+ ε2-sim′ + (L+ 1)εPRF + L(ε2-sim + εEavL2s)

(when we apply the proof of Propo. 1, we can skip the first two games of Lemma 4
since we have already replaced the leakage LF∗(·, ·; ·) of F∗ with the simulated
one SLF∗ (·, ·, ·, ·) and the STPRP F∗ with the random tweakable permutation f∗).

Bounding Pr[E0]. Putting everything together we can bound

Pr[E0] ≤ εSTPRP +
qE
2n

+ εCR +
qD(L+ 1)(qD + 2qE)

2n+1
+
qD
2n

+

qDεPRF +
1

2
+ ε2-sim′ + (L+ 1)εPRF + L(ε2-sim + εEavL2s) =

1

2
+ εSTPRP + εCR +

qE + qD
2n

+
qD(L+ 1)(qD + 2qE)

2n+1
+

(qD + L+ 1)εPRF + ε2-sim′ + L(ε2-sim + εEavL2s)

which concludes the proof.
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E CONCRETE

The leakage-resilient ivAE-scheme Π = (Gen,Enc,Dec)

Gen
– k ← K
– s← S

Public parameters:
– pA, pB ∈ {0, 1}n, pA 6= pB
– H := Hs

Enck(r,m)
– Parse m = (m1, ...,ml) with |m1| = ... = |ml−1| = n and |ml| ≤ n
– r = k0
– c0 = Ek0(pB)
– k1 = Ek0(pA)
– For i = 1, ..., l − 1
• ci = Eki(pB)⊕mi

• ki+1 = Eki(pA)
– yl = Ekl(pB)
– cl = π|ml|(yl)⊕ml

– h = H(c0‖c1‖...‖cl)
– cl+1 = F∗,hk (k0)
– Return c = (c0, ..., cl, cl+1)

Deck(c)
– Parse c = (c0, ..., cl+1) with |c0| = ... = |cl−1| = |cl+1| = N and |cl| ≤ N // Common: Step 1
– h = H = (c0‖...‖cl+1) // Common: Step 2
– k0 = F∗,−1,h

k (cl+1) // Common: Step 3
– c̃0 = Ek0(pB) // Verification: Step 1
– If c0 6= c̃0 // Verification: Step 2
• Return ⊥ // Verification: Step 3

– k1 = Ek0(pA)
– For i = 1, ..., l − 1
• mi = Eki(pB)⊕ ci
• ki+1 = Eki(pA)

– yl = Ekl(pB)
– ml = π|ml|(yl)⊕ cl
– Return m = (m1, ...,ml)

Fig. 4. The leakage resilient ivAE-scheme Π = (Gen,Enc,Dec) - Full description. If AD
are considered h = H′(a,m) replaces h = H(m) in both the Enc and Dec description as
explained in App. B.2
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