
A taxonomy of pairings, their security, their complexity

Razvan Barbulescu1, Nadia El Mrabet2, and Loubna Ghammam3

1 CNRS, University of Bordeaux, France
razvan.barbulescu@u-bordeaux.fr

2 Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS, France
nadia.el-mrabet@emse.fr

3 ITK-Engineering, Germany
loubna.ghammam@itk-engineering.de

Abstract. The Kim-Barbulescu attack against pairings made it necessary to increase the key
sizes of the most popular families of pairings: BN, BLS-12, KSS-16, KSS-18 and BLS-24. The
computation of new key sizes was a slow process because it was done in two waves: first a series
of theoretical estimations, then a wave of precise estimations based on practical models BD
model [5] and GS [43]. In this paper, we propose an up-to-date security evaluation for more
than hundred pairing friendly elliptic curves. We evaluate the complexity of a complete pairing
execution taking into account the Miller algorithm for different degrees of twist and the final
exponentiation for the most promising curves. At 128 bits of security we find that the best
pairings in the BD model are BLS-24 and BLS-12. The best pairings are not affected by the
new polynomial selection method [43]. At 192 bits of security, we find that the new champions
are the less known BLS-24, KSS-16 and KSS-18. At 256 bits of security we conclude that the
best pairing is k27method66.

1 Introduction

Pairings are a crucial ingredient in a series of public-key protocols which started with Joux’ [48]
tri-partite Diffie-Hellman scheme and Boneh and Franklin’s [16] identity-based encryption.
Then followed protocols for short signatures [19], a wide variety of aggregate, instance and
verifier-local revocation signatures [17,15,51], broadcast encryption [18], cloud computing [2],
privacy enhancing environments [84], deep package inspection over encrypted traffic [85,20] and
many others. The NIST [72] pilots a project dedicated to pairings. Efficient implementations of
pairings [13,12,42,88,54] made them interesting for industrial development [87,21,26].
Pairings are not suited for post-quantum applications as they are based on the difficulty of
discrete logarithms. However, quantum computer is not readily available for large computations
and one can continue to use pairings for applications where the keys are used for a short period
of time.
This paper is the mature result of a work we started a few years ago in which we reacted to the
Kim-Barbulescu TNFS attack. Before the attack, the security of pairings was a function of the
key sizes, regardless on which family of pairings was used. In that context, the fastest pairings
were BN, BLS12, KSS16 at the 128 bits security level, KSS18 and BLS24 for higher security
which had small values of a parameter called ρ. A recent article [5] showed that these pairings
are affected by the TNFS attack. We raised the question whether there are families which are
less affected and which become the new champions and whether the existing order is reshuffled.
For this we worked over hundred families of pairings. A precise analysis allows us to make the
following recommendations, which confirm that the order has changed and that there are new
champions:

– 128 bits: BLS-24 and BLS-12 are the champions, followed by KSS 16 and DCC 15 families;
– 192 bits: BLS-24 is the champion, followed by KSS-16 and KSS-18;
– 256 bits: k27method66 is the clear champion.

At a high level, a pairing is a non-degenerate and bilinear map, e : G1 × G2 → G3, where G1

and G2 are subgroups of an elliptic curve and G3 is a multiplicative sub-group of a finite field.
The security of pairing-based cryptography relies on one side on the discrete logarithm problem
(DLP) over G1 (and consecutively over G2) which are elliptic curves, we call this the curve side
security and note that it is very well understood on the classical computers. On the other side,
it relies on the discrete logarithm problem over G3 which is the multiplicative sub-group of a
finite field, this is the field side security.
The hardness of computing discrete logarithms in a finite field is difficult to evaluate. In a
first time one used the approximation that its cost is equal to that of factoring, which is done
with a variant of the same algorithm: the number field sieve (NFS). Hence, the first key sizes
proposed for pairings [63] were such that log2 #G3 matches the required bit size for an RSA
modulus offering the same security level. In a second time, one computed the cost using a
theoretical upper bound [68,82] and the recommended key sizes were used go generate new
seeds [34,91] and to propose efficient implementations [37]. In a recent article, Barbulescu and
Duquesne [5] made a precise real-life analysis with no theoretical assumption. Hence, they found
the optimal parameters for each variant of NFS and obtained key sizes which can be used in
a future standardization for 5 families of pairing friendly elliptic curves. All the recent works
use the practical estimation: we used it in a working version of this article [6], Martindale and
Fotiadis [35,36] used it to compute the security of pairings whose embedding degree is even and
respectively composite, Guillevic [43] made a short list at 128 bits of security and Guillevic and
Singh [45] used it in a preliminary presentation for some families at 192 bits of security.
The core of the security analysis is actually the daily difficulty for a NFS implementer and
developer: select polynomials and tune parameters. This task is not automatic in the CADO-NFS
software as the tabulated parameters for factoring integers between 80 and 100 decimal digits are
not guaranteed to be optimal. It is an open question to rapidly select the optimal parameters for
NFS, especially for the smallest values where NFS is the choice algorithm, i.e. integers of about
80 decimal digits. In our case however, of 128 bits of security, tuning parameters is negligible
and we used a brute force approach: we test a wide range of NFS variants and parameters
and experimentally measure and extrapolate the cost of an NFS computation until we find the
optimal set of parameters. Guillevic found errors in the first version of this article because the
range of parameters was not wide enough. We solved this by using more computational time
and by launching computations in an automatic manner.
Once the security has been settled, we continue by finding seeds of small NAF weight and
optimize as much as possible the computation of the Ate pairing: Miller’s loop and final
exponentiation. To shorten presentation we use BN as a broom wagon at 128 bits of security
and similarly for the higher levels: if Miller’s loop of a pairing costs more than the complete
computation for BN then we discard this pairing from the final exponentiation optimization.

Our contribution

We make an extensive literature inspection to find as many pairing-friendly families as pos-
sible. The main reference is the taxonomy [38] whose title we copy, but we discovered some
families [28,64] which weren’t included in that work. We also add a small number of families
which were published after the taxonomy: [27,82]. Before the key sizes had to be corrected, the
BN family was much faster and received much more attention than the other families in the
taxonomy, some of which remained to the status of theoretical formulae.
We continue along the lines of the recent works and make the precise estimations of the security
for a large number of families. In the case of the families studied in [43] and [45] the authors
used a slightly different model which results in key sizes which are within an error of 5% from
the model of [5] and [36]. For a fair comparison we compute here the key sizes in the same
model as BN, BLS and KSS. We present the first precise analysis at 256 bits of security.
We evaluate the complexity of the pairings at the sizes which resist to the new attacks. In
the case of pairings whose embedding degree is divisible by 5, 7 or 11 we discuss the formulae
introduced in [71,32,79].

2

Paper overview

In Section 2, we recall the basic notations on pairings, present the classical optimizations of the
implementation and recall the various constructions of pairings. In Section 3, we draw the big
lines of the NFS algorithm, recall what are the choices for an attacker and compute the updated
key sizes for a large number of families. For each family, we construct pairings and evaluate the
cost of Miller’s loop, first in arithmetic then in binary operations, at 128 bits (Section 4) and
respectively 192 and 256 bits of security (Section 4.9 and 4.10). Then, in Section 5 we present
the final exponentiation complexity for the Optimal Ate pairings in some of proposed curves.
We obtain the overall cost and conclude in Section 6, the result tables are at the end of the
article.

2 Some background on pairings

In this section we present the definition of pairings and we give an overview of the optimization
methods for efficient implementations of pairings. The notations about arithmetic are introduced
and we give the definition of the Optimal Ate pairing according to the method used to construct
pairing-friendly elliptic curves. For a more detailed introduction we refer to [31] for instance.

2.1 Definition of pairings

We briefly recall here elementary definition on pairings [90]. Let E be an elliptic curve defined
over a finite field Fq, with q a large prime integer. We denote by O the neutral element of the
additive group law over E. The elliptic curve is described in the Weierstrass model:
E(Fq) = {(x, y), y2 = x3 + ax+ b, a, b ∈ Fq}.
Let r be a large prime divisor of the group order]E(Fq) and k be the embedding degree of E
with respect to r, i.e. the smallest integer k such that r divides qk − 1.
The Weil [90] and the Tate [86] pairings are constructed using the Miller algorithm [69]. For
the Ate, twisted Ate [47], Optimal Ate pairing [89] and pairing lattices [46], the most efficient
pairings are constructed on the Tate model. Hence, we only recall here the definition of the
reduced Tate pairing, a more complete definition being given in [14, §IX.5].

Definition 1 (Tate pairing). Let E(Fq) be an elliptic curve over the finite field Fq for q a
large prime number. Let r be a prime divisor of](E(Fq)). Let k be the embedding degree of E
relatively to r. Let G1 = E(Fq)[r], G2 = E(Fqk)/rE(Fqk) and G3 = {µ ∈ Fqk such that µr = 1}.
The reduced Tate pairing is defined as

eT : G1 ×G2 → G3,

(P,Q) → fr,P (Q)
qk−1
r ,

where fr,P (Q) is the Miller function defined by the divisor D = r(P)− (rP)− (r − 1)(O).

The Miller function is computed through the Miller’s algorithm [69], which is constructed on
the double and add scheme using the construction of rP and based on the notion of divisors.
We only give here the essential elements for the pairing computation.
The Miller algorithm constructs the rational function fr,P associated to the point P , where P
is a generator of G1; and at the same time, it evaluates fr,P (Q) for a point Q ∈ G2 ⊂ E(Fqk).
The final exponentiation is used to ensure the uniqueness of the resulting value of two equal
pairing computations (e.g. e(P, [2]Q) = e([2]P,Q)). The final exponentiation maps the result of
the Miller algorithm into the group formed by the rth roots of unity in F∗qk .

2.2 Optimizations for pairings

The optimisations of pairings rely on an accurate choice of the embedding degree, the parametriza-
tion family of elliptic curves, the use of a twist for E(Fqk), the research for particular curves
inside the chosen family.

3

Choice of the embedding degree The most general optimisations for a pairing imple-
mentation are obtained when k is chosen to have only small prime factors, more particularly
when k is a product of powers of 2 and 3 [31]. This property allows the extension field Fqk to
be constructed using tower field extensions, which have a good arithmetic.

The pairing friendly elliptic curves which are the most interesting for implementation purposes
are obtained from families, a taxonomy of which was made by Freeman, Scott and Teske in [38],
to which we add some other constructions [28,64] and families which were published after the
taxonomy : [27,82], and [43]. We do not add the families of [36] as there were studied and our
analysis does not improve the results.

Existence of twisted elliptic curve An important trick when computing a Tate-like
pairing is the elimination of denominators. This is possible when k is a multiple of 2 [61] or
3 [64] together with the use of a twisted elliptic curve. An elliptic curve E/Fq of embedding
degree k is said to have a twist of degree d if d is a factor of k and there exists an elliptic
curve E′/Fqk/d which is Fqk -birationally isomorphic to E/Fqk/d . The larger d is, the faster the
pairing is because one can replace the operations over E(Fqk) by operations over E(Fqk/d) using
the embedding map into E(Fqk). The existence of a twist relies on the value of the complex
multiplication discriminant ∆ (if D is the squarefree part of t2 − 4q we set ∆ = −D if D ≡ 1
(mod 4) and −4D otherwise; D il also call discriminant abusively [47, Prop. 2]). If ∆ = 3 and 3
(resp. 6) divides k, we can use a twist of degree 3 (resp. 6). If ∆ = 4 and 4 divides k, then we
can use a quartic twist d = 4. Else, if k is even, we can use a quadratic twist d = 2.

Table 2 in Section 2.4 presents the complexity of Miller’s step according to possible twists.

Choice of parameters inside a family A family of pairing friendly elliptic curves with
embedding degree k is given by a triple (q(x), r(x), t(x)) of polynomials with coefficients in Q. In
this representation, q(x) is the characteristic of the finite field, r(x) a prime factor of]E(Fq) and
t(x) is the trace of the elliptic curve. If u is an integer such that q(u) and r(u) are prime numbers,
then there exists an elliptic curve with embedding degree k and parameters (q(u), r(u), t(u)).
The integer u is used in the exponent in the Miller loop, the final exponentiation, and it can
have a great impact on the Fqk arithmetic [29]. For this reason, u should have a NAF weight as
small as possible in order to improve the efficiency of the pairing computation. Once we have
found an integer u such that q(u) and r(u) are prime integers, we have to construct the equation
of the elliptic curve. This can be done thanks to the complex multiplication (CM) method [38].
There exists several models for elliptic curves, but the most efficient computation of pairings
are obtained using Weierstrass model: E : y = x3 + ax+ b with a ∈ {0,−3} and b ∈ Fq.
As the expression of the final exponentiation is the same for every pairings, the goal is to
obtain the shortest Miller loop. In practice, the reduction of Miller’s loop is performed using
the definition of optimal pairing [89]. Last but not least, one must discard the seeds u which are
target of the subgroup attack [9].

2.3 Arithmetic for finite fields

Notations. In the following we use the classical notations Aq, Mq, Sq and Iq for the binary
cost of the addition, multiplication, squaring and respectively inversion over Fq. We denote by
Mk, Sk and Ik the binary cost of the multiplication, squaring and inversion in the field Fqk . For
our level of optimization, the crude estimation M = S is enough. When a multiplication by
an element of Fq is necessary (for instance a multiplication by a, denoted da, in the doubling
of points) we make the coarse estimation that da = Mq. We call D, A, MA and L the cost
of a doubling, addition and mixed addition on the elliptic curve and respectively a final line
evaluation.

4

Arithmetic. The complexity of the multiplication Mk is a very challenging task in pairing-
based cryptography. Several papers present optimized algorithms for the extension over a finite
field [60,71,32,1,92,29,83,75]. Of course, the schoolbook method can always be applied but for a
value k, the complexity of Mk is k2Mq. The tricks for multiplication in Fqk are made to decrease
the number of multiplications in Mq, but as all magic comes with a price the tricks increase the

number of additions in Mq. The ratio R =
Mq
Aq

is then the threshold precising if we could use a

method over another.

In Table 1 we recall classical complexities that are used in pairings, then we summarize results
from the literature [71,33,32] which are asymptotically better but are yet to prove their efficiency
in the pairing implementations. These latter formulae often achieve the mathematical lower
bound for the number of Mq with the cost of increasing the number of Aq. We use the inequalities
M11 ≤M12, M13 ≤M14, M17 ≤M18, and M19 ≤M20.

Classical exponents

extension Fq2 Fq3 Fq4 Fq12 Fq16 Fq18 Fqn
Mk/Mq 3 5 9 54 81 108 n(n+1)

2

non classical exponents

extention Fq5 Fq6 Fq7 Fq11 Fq13 Fq14 Fq15 Fq17 Fq19 ; Fq20
Mk/Mq Upper bound 13 17 22 46 49 53 75 94 105

Mk/Mq Lower bound 9 11 13 33 39 39 45 65 99

Table 1: Optimized complexities of the multiplication over extension fields

We go from the arithmetic complexity to the binary complexity using the crude estimate that
Mq counts for w2 word multiplications, where w is the number of machine words of q. We
denote by m32 (resp. m64) the cost of a word multiplication on a 32-bit (resp. 64-bit machine).
A comparison of hardware implementation is beyond the scope of this article because it is much
more difficult to take into account the dedicated architectures.

2.4 Cost of Miller’s loop

The Miller loop is a double-and-add algorithm similar to the fast exponentiation. Hence it
consists in a number of iterations of the doubling and addition step, plus a final line evaluation.
A doubling step followed by an addition step can be done together in a mixed step. The
complexity of each step depends on two parameters: the twist of the elliptic curve and the choice
of coordinates, as we summarize in Table 2.

2.5 Expression of Optimal Ate pairing

The expression of the Optimal Ate pairing is obtained after the reduction of a lattice constructed
using the polynomial expression of q(x) and r(x). As a consequence, for each method of
construction, we have a specific equation for the Optimal Ate pairing. There are constructions
where the value of k also changes the expression of the Optimal Ate pairing. We present in
Table 3 the simple expression, of the Miller loop for the Optimal Ate pairing depending on the
method of construction and the embedding degree. By raising the Miller expression to the power
qk−1
r

one obtains the expression of the Optimal Ate pairing. When the Optimal Ate pairing is
not uniquely defined we refer to the subsection where the reader can find the details on the
formulae.

5

Operation Complexity

Twist Sextic twist Quadratic twist

Doubling [23] (2k/d)Mq + 3Me + 5Se +Mk + Sk (2k/d)Mq + 2Me + 8Se + 1da +Mk + Sk
Addition [23] (2k/d)Mq + 14Me + 2Se + 1dc +Mk (2k/d)Mq + 12Me + 7Se +Mk

Mixed add [23] (2k/d)Mq + 10Me + 2Se + 1dc +Mk (2k/d)Mq + 9Me + 5Se +Mk

Final line eval. 2k/dMq + 5Me 5Me + 2k/dMq [5]

Operation Complexity

Twist Cubic twist Quartic twist

Doubling M3b + kMq + 3Me + 9Se +Mk + Sk [92] (2k/d)Mq + 3Me + 6Se +Mk + Sk [5]

Mixed kMq + 12Me + 5Se +Mk [92] (2k/d)Mq + 9Me + 5Se +Mk [5]

Final line eval. (5k − 4)Mq + Sq + Sk/d +Mk/d + 2MA 5Me + 2k/dMq [5]

Table 2: Complexity of Miller’s steps using twists

3 Overview of the NFS attacks

The extended tower number field sieve, exTNFS, encompasses all the variants of NFS: NFS,
SNFS, exTNFS-Conj, SexTNFS-JP etc. Let us present briefly the algorithm with a special care
on the choices that can be made by an attacker.

3.1 Big lines of the algorithm

At a high level, exTNFS on Fqk proceeds as follows. Let κ and η be two divisors of k so that
k = κη. Let h(t) be a polynomial of degree η in Z[t] which is irreducible modulo q, and call
ω a root of h(t) in Fq[t]/〈h〉. Then select two polynomials f(t, x) and g(t, x) in Z[t, x] such
that f(ω, x) and g(ω, x) have a common irreducible factor of degree κ in Fq(ω) = Fqη . This
step, called polynomial selection, takes a negligible time but determines the cost of the whole
algorithm.
In the sieving stage, for a given parameter A, one considers the pairs (a(t), b(t)) ∈ Z[t]2 of degree
less than η such that max(‖a‖∞, ‖b‖∞) ≤ A. We call norms of (a, b) the integers Nf (a, b) =
Rest(Resx(a(t)−xb(t), f(t, x)), h(t)) and Ng(a, b) = Rest(Resx(a(t)−xb(t), g(t, x)), h(t)). Given
a parameter B, the sieving stage outputs the list of (almost) all pairs (a, b) such that Nf (a, b)
and Ng(a, b) are B-smooth, i.e. all their prime factors are less than B.
In the linear algebra stage, the goal is to solve a linear system having twice as many elements
as primes less than B (the number of prime ideals in the number fields of f and g of norm less
than B). This is done in two steps: filtering where the size of the matrix is greatly reduced
and the proper linear algebra computations where the obtained linear system is solved. Due to
heuristic arguments in [5], the filtering stage reduces the size of the matrix by a factor log2 B
and the cost of the linear algebra is 27B2/(log(B) log2 B)2.
The results of the linear algebra allow to compute any discrete logarithm in Fqk . Since this step
is much faster than the sieving and the linear algebra stages, we neglect it in the complexity
analysis.

3.2 Identifying the best attacks

There is a consensus in the literature [5,36,43] that one obtains a precise estimation of the cost
of exTNFS by optimizing the following equation:

cost = csieve
2B

A logB
ρ

(
log2(Nf)

log2(B)

)−1

ρ

(
log2(Ng)

log2(B)

)−1

+ csieve
(2B)2

A2(logB)2c2filter

, (1)

6

Construction Embedding degree Twist Miller expression
for k′ an odd integer in the Optimal Ate

Method 6.2 k = k′ No

(
fx2,Q(P)×

l
qQ,x2Q

(P)

v
(x2+q)Q

(P)

)
Method 6.3 k = 2k′ 2

(
fx2,Q(P)× l−qQ,x2Q(P)

)
Method 6.4 k = 4k′ 4

(
fx,Q(P)× l−qQ,x2Q(P)

)
Method 6.6 k ≡ 0 mod 6 6 (fx,Q(P)× l−qQ,xQ(P))

k ≡ 3 mod 6 3 Section 4.4

k ≡ 2 mod 6 2
(
fx2,Qf

q
x,Q × ls1Q,x2Q × ls2Q,xqQ

)
s0 = x2 + xq + q2, s1 = −xq + q2, s2 = q2

k ≡ 4 mod 6 2 Section 4.4

k ≡ {1, 5} mod 6 No
(
fx2,Qf

q
−x,Q

l
s1Q,x

2Q

vs0Q

l
q2Q,−xqQ
vs1Q

)
s0 = x2 − xq + q2, s1 = −xq + q2

Method 6.7 k = 12 2 (fx2,Ql−qQ,x2Q)(P)

Method 6.7 k = 24 2 (fx,Ql−qQ, xQ)(P)

Method 6.7 k = 18, 30 2 (fx4,Ql−qQ,x4Q)(P)

Method 6.7 k = 15 No fx4−1,Q+ extra

Method 6.7 k = 9, 21, 27 No fx4,Q(P)
l
q5Q,x4Q

(P)

v
[x4+q5]Q

(P)

KSS even 4, 6 Section 4.7

Other families 9, 12, 15 3, 6 Section 4.8

Table 3: Expression of the Optimal Ate pairing: Miller expression power (qk − 1)/r.

where ρ is Dickman’s function and A is the number of automorphisms of h multiplied by the
number of common number of automorphisms of f and g (which can be upper bounded by
ηκ/ gcd(η, κ)) and where csieve, clin.alg and cfilter are constant or slowly increasing functions
explained below. The validity condition is that the number of relations is larger than the
cardinality of the factor base, which is as follows:

(2A+ 1)2η

2w
· ρ
(

log2(Nf)

log2(B)

)
ρ

(
log2(Ng)

log2(B)

)
≥ 2B

log(B)
, (2)

where ω is the half of the number of roots of unity of h.

Comparison between two models. The constants csieve, cfilter and clin.alg are functions which
increase very slowly so that they can be considered as constants up to one bit of security. In
order to evaluate the reduction factor cfilter one can take a default value of 20 which is easily
achieved for example with the CADO-NFS software on small computations where log2 q

k is
less than 300. The reduction factor can only increase for larger computations and with new
implementations, but it is hard to give an upper bound to use in security estimations. According
to [5, Conjecture 1] one can take as upper bound cfilter ≤ log2 B, and we discuss later that this
safe bound gives similar results to the more realistic but unsupported value csieve = 20:

1. (GS model) The textbook description of NFS states that asymptotically, on a computer
with infinite memory, the cost of sieving is the cost of some arithmetic operations which are
negligible plus the cost of loge loge(B) memory updates. Experiments of the CADO-NFS
team show that the value of clin.alg is the cost of w × log2 r/64 machine word additions
(replace 64 with the machine word length), where w is the average row weight of the
matrix and r is the largest prime factor of the cardinality of the discrete logarithm group.
This is in accordance with the textbook description of the block Wiedemann algorithm.

7

Hence, Guillevic and Singh [45] took cfilter = 20 and they set csieve = log logB and
clin.alg = 200 log2 r/64.

2. (BD model) Barbulescu and Duquesne [5] took cfilter = log2 B and chose the constants
which best fit the cost reported by the authors of a dozen NFS records of factorization and
discrete log: csieve = 1 and clin.alg = 128.

The BD model has the advantage that it is automatically scaled against the RSA key size. Indeed,
our study of NFS allows to compare the cost of a given pairing to the cost of RSA-1024, we
cannot directly compare a NFS computation to the security of a symmetric cryptosystem. When
RSA-1024 was evaluated to 80 bits of security by the NIST recommendations, the cryptography
community accepted an exchange rate between the NFS world and the symmetric cryptography.
Hence, by scaling against RSA-1024 we are sure to use the same exchange rate. In the following
we call normalized GS model the cost of the GS model divided by 4.
Let us recall the values of cfilter, csieve and clin.alg used by the models of Barbulescu and
Duquesne [5,36] on the one hand and Guillevic et all [45,44,43] on the other hand.

model BD normalized GS comment

cfilter log2 B 20 BD is an upper bound based on [5, Conjecture 1], GS is easily obtained by
the CADO software when factoring 100 digit integers and one can hope to
have at least this value in future NFS records

csieve 1 1
4

log logB ≈ 1 The BD constant is a lower bound based on the records in the literature, the
GS constant is based on the textbook description of NFS. For the security
table values this is actually between 1 and 1.5.

clin.alg 128 50 d|r|/64e ≈ 128 BD is an average of the records and could slowly increase with r, GS varies
between 100 and 150 at 128 bits of security.

The actual value of csieve when η > 1 depends on the innovation made on the high-dimensional
sieving. At the time when [5] published their model Gremy’s implementation [41] had a real-life
value of csieve ≈ 20. In a recent record, McGuire and Robinson [67] reduced its value to csieve ≈ 6.
So, the model used in [5,35] remains a safe lower bound for the security of pairings whereas the
model used in [45,43] corresponds to the state-of-the-art implementations. In this work we use
the model of [5]. We repeated our key estimations in the normalized GS model and concluded
that the same algorithms are the best and that the security estimation in the normalized GS
model is the same as the one of the BD model or the pairing has one bit too much security.
This is hence not necessary to add the GS estimations alongside the BD estimations. The BD
model is at least as conservative as the GS model for all the families.
Let us see how to select f , g and h. The values of A and ω are a consequence of the polynomial
selection and their choice is explained in [5].

Polynomial selection. The choice of the polynomials f and g for NFS in Fqk was the object
of many works. When q has a polynomial form one can obtain a product NfNg which is much
smaller than in the general case. This is emphasized by putting an S, for special, before the
name of each version of NFS: SNFS, STNFS or SexTNFS.

The special case. Let P ∈ Z[x] and u ∈ Z be such that q = P (u) and ‖P‖∞ = O(log(qk)).
When k is small or prime one can use STNFS [8], i.e. h an irreducible polynomial of degree
k, f = P (x) and g = x− u, or Joux-Pierrot [50], i.e. h = t (no tower), f = P (xk + S(x)) and
g = xk + S(x)− u where S(x) is a polynomial of degree less than k. When k is large and can be
written as k = κη, one can use SexTNFS [55]: one chooses h to be an irreducible polynomial of
degree η, f(t, x) = P (xκ + S(x) + t) and g(t, x) = xκ + S(x) + t− u. When gcd(κ, η) = 1 one
can drop t in the definition of f and g. In a recent article Guillevic [43] proposed a method
similar to the one used to factor Mersenne numbers [74].

8

The case of arbitrary finite fields. All primes q, of polynomial or non-polynomial form, must
withstand the variants of NFS for the general case. When k is small or prime one uses either
TNFS [8], i.e. h is an irreducible polynomial of degree k and f and g are chosen by the “base m”
method or the two algorithms of Kleinjung [58,59], or one uses a classical variant, i.e. h = x (no
tower) and any of the methods of polynomial selection: GJL [7, Sec. 3.2],[66], JLSV1 [49, Sec
3.2], JLSV2 [49, Sec 3.1], Sarkar and Singh’s algorithms A,B,C,D [76,78,77] and the Conjugation
method [7, Sec 3.3]. When k is large and can be written as k = κη, one uses exTNFS [55]: one
selects f and g adequated for DLP computations in Fqκ using the afore mentioned methods
and then sets h equal to an irreducible polynomial of degree η. If gcd(κ, η) 6= 1, one follows [56]
and replaces the polynomials with f(x+ t) and g(x+ t).

Optimizing parameters of for NFS attacks. For each construction of pairings and
for each of the security levels 128, 192 and 256, we generated pairings which guarantee that
the security on the curve side is greater than or equal to the required security level. The sole
condition that q is prime eliminates the existence of small key sizes for many families, for
example the families of embedding degree 20 or more have a field size log(qk) greater that 6000
for 128 bits of security on the curve side. We didn’t necessarily check that r is prime at this
stage because one generates correct values of q and r when computing complexity and because
checking the primality of r here doesn’t rule out many families.
Then, for each possible choice of κ, h, f and g, we solved by SageMath scripts the optimization
problem consisting in minimizing the cost in Equation (1) under the validity condition of
Equation (2): For each value of log2(A) and log2(B) up to a precision of 0.01 we estimated
experimentally Nf and Ng on a sample of 3000 pairs (a, b) chosen randomly in the sieving
space. If the field side security is not sufficient, we increase the size of log2 r and start over. We
automatized the attack and the script is available on request. The complete computations took
more than 1 CPU year. We summarize the results in the electronic complement available here
https://razvanbarbulescu.pages.math.cnrs.fr/Pairings/security.html, as well as in the
next section in the tables associated to each family, available at the end of the article. Our results
are close to those of Guillevic [43] but the models are slightly different. We don’t reproduce
here the results of Fotiadis and Martindale [35,36] because they were computed by the same
method as the other 150 families in our work.

3.3 An example of key size computations: RSA-1024 and MNT of
embedding degree 6

RSA 1024. Kleinjung [57] made a precise estimation of the security of a 1024-bit RSA modulus
and estimated it to one year on 12 million PCs with processors 2.2 GHz Athlon 64 and 2 GB
of main memory. We used the polynomials proposed in Kleinjung’s analysis and optimized
the parameters in the two models BD and GS. The sieving space consists of the primes up to
56 · 1012 as special-q’s, each of which is made of 215 · 216 pairs (a, b). It has the same cardinality
and pairs (a, b) of the same size as if, in a context without special-q, one used log2 A = 38.84.
The large prime bound is taken B = log2 B = 42.
Let us now do the optimization of the parameters for the BD and GS models. The linear algebra
cost is proportional to bit size length of the prime in the linear algebra: r for discrete logarithm
and 2 for factoring, so we divide clin.alg by 32 for BD and by log2 r for GS. We call BD and GS
the models in the literature and we call hybrid the GS model where cfilter equals its value in the
BD model.

model cfilter csieve clin.alg log2 A log2 B log2 cost

BD model log2 B 1 128/32 39.6 48.1 80.09
GS model 20 log(log(B)) 200/32 40.0 49.2 82.93
hybrid log2 B log(log(B)) 200/32 40.0 48.1 82.70

NIST recommendations 80

9

https://razvanbarbulescu.pages.math.cnrs.fr/Pairings/security.html

The GS and the hybrid models give similar results so the value of cfilter has a small impact on
the analysis. However, the constants csieve and clin.alg do not correspond to the estimation that
RSA 1024 offers 80 bits of security. The parameters A and B correspond relatively well to the
ones computed by Kleinjung, the parameter B being slightly larger in the models. Kleinjung
didn’t discuss in detail the exact choice of log2 B so that a larger value might be slightly better.
But a deeper reason might be that the models don’t take into account the state-of-the-art
implementation of ECM which is badly optimized to find large primes of size log2 B ≈ 48.

MNT 6 at 128 bits of security. Let us consider the family of Section 3.3 of the taxonomy [38]:
the base field is Fq where q is a prime of the form q(u) = 4u2 +1, the elliptic curve order #E(Fq)
is r(u) = 4u2 − 2u+ 1 and the embedding degree equals 6, so the target of the pairing is the
multiplicative group of Fq6 . The polynomial form of q is important, and we must compute all
the manners to write q(u) as a polynomial with small coefficients. In the case of MNT 6 we
take v = 2u and P (v) = v2 + 1 so that P (v) ≡ 0 (mod q(u)).
One tests in Table 4 the various algorithms and values of κ on the example of MNT-6 such that
log2 q = 700. We didn’t compare SexTNFS with Guillevic’s polynomial selection because this is
used to reduce the degree of the q(t) polynomial, which is 2 for the MNT-6 family.

algorithm κ η h f g field security

SexTNFS 1 6 Φ7 x2 + 1 x− u, log2 u = 351 199.5
SexTNFS 2 3 t3 − 2t2 − t− 1 x4 + 1 x2 − u, log2 u = 351 141.7
SexTNFS 3 2 t2 + 1 x6 + 2tx3 + t2 + 1 x3 + t− u, log2 u = 351 128.0
SexTNFS 6 1 t x12 + 2tx6 + t2 + 1 x6 + t− u, log2 u = 351 148.0

exTNFS base-m 1 6 Φ7

∑6
i=0 fix

i, log2 u = 98 g1x− g0, log2 gi = 98 150.5
exTNFS-Conj 2 3 t3 − 2t2 − t− 1 x4 + 3 g1x

2 − g0, log2 gi = 351 141.8
exTNFS-Conj 3 2 t2 + 1 x6 + 3 vx3 − u, log2 gi = 351 128.2
exTNFS-Conj 6 1 t x12 + 3 g1x

6 − g0, log2 gi = 351 150.0

Table 4: Security of Fq6 DLP when log2 q = 700.

We conclude that the algorithm SexTNFS with κ = 3 is the best option. For this choice we
optimize the parameters A and B in Table 5.

model cfilter csieve clin.alg log2 A log2 B log2 cost

BD model log2 B 1 128 31.25 70.90 128.0
GS model 20 log(log(B)) 200/32 32.0 73.6 130.1
hybrid log2 B log(log(B)) 200/32 32.0 73.6 130.0

Table 5: The SexTNFS algorithm with κ = 3 on MNT-6 with log2 q = 700.

Because of the small differences in the scaling of the BD and GS models one cannot directly
compare the tables computed in the two models. For a given a key size, the two security
estimations are within a 2% error. The converse problem, given a security level, compute the
key sizes is sensible on the rescaling as we show in Table 6. The GS and the hybrid models
correspond to the lower and respectively the upper bound on the key sizes computed in [45],
except that the bounds are slightly enlarged to take care of the uncertainty on the Monte Carlo

10

estimation of the norms. The BD key size is 6.6% larger than the lower bound fond with the
GS model. Note that the GS keys are correct in the BD model but not vice-versa.

model cfilter csieve clin.alg log2 A log2 B log2 q log2(q6)

BD model log2 B 1 128 31.25 70.90 700 4212
GS model 20 log(log(B)) 200/32 32.0 73.6 666 3948
hybrid log2 B log(log(B)) 200/32 32.0 73.6 674 4008

Table 6: Computing log2 q so that the SexTNFS algorithm with κ = 3 on MNT-6 has a cost of 128
bits of security.

Remark on Murphy’s α. The BD and the GS models are within 2% to each other despite the
fact that GS uses Murphy’s α whereas BD considers α ≈ 0. We conclude that the influence of α
is below the estimation error of the two models.
The impact of α was analysed in the FSS case, which is analoguous to NFS, in [4] with
the conclusion that the gain is of a few dozen percentages. Experience shows that α has a
Gaussian distribution centered about a real value close to 0.6 (the exact value is in [3]) and
a standard deviation which depends on the degree of f which is between 2 and 8 in the
record computations. In the S(exT)NFS case, which is the relevant one for all top 5 families
of pairings, we only have a few dozen possibilities for f so its α is close to the average or
worst, which is positive. In this case BD is a safe realistic lower bound by setting α = 0. In the
non-special case, e.g used in MNT, one can have α ≈ −7. The impact on the cost of NFS is
ρ(log2 Nf/ log2 B)/ρ((log2(Nf) + α(f))/ log2 B), where ρ is Dickman’s function. Say in a mock
example that log2 Nf = 1000 and log2 B = 70, then NFS is 1.51 times faster, i.e one looses 0.59
bits of security due to Murphy’s α. Note that in practice all the record computations make
use of polynomials with good α (for instance although Joux doesn’t make reference to α in his
articles he told the first author that he did compute the number of roots of f modulo small
primes to make his choice of polynomials).

3.4 Security results

We keep the model of security of Barbulescu and Duquesne [5] which is conservative in that it
assumes perfect conditions for an attacker (sieving in TNFS for which no computation record is
available, perfect matrix reduction in the filtering step, no memory limitation, ECM having the
same performances for slightly larger smoothness bounds). The results are more precise than
these obtained by forgetting the o(1) term in the complexity as in [34,24] because we don’t omit
any term in Equation (1). The analysis is also more precise than that of Menezes, Sarkar and
Singh [68] because we evaluate numerically the size of the norms Nf and Ng instead of using
the mathematical upper bound.
In the following table we list the known families of pairings with 9 ≤ k ≤ 54, which is a safety
margin since the choices among BN, BLS and KSS have k between 12 and 24. The labels follow
the format k, value of k, m, a two or three digits number which designs the construction number
in the taxonomy [38], e.g. k9m62 denotes the family having k = 9 in the section 6.2 of the
taxonomy, whereas k11m620 denotes the family of k = 11 of section 6.20 in the taxonomy.
The sizes of the Dupont-Enge-Morain and Cocks-Pinch were computed in [44] and are much
slower than the other families; we don’t keep them in our results. To verify the results one has
to use Equation 1 and compute the best values of log2 A and log2 B (we provide our results
and scripts on demand and we will maintain an online taxonomy together with the files which
determine the security results).

11

k9method62 5940. 128 STNFS k=1 14450. 192 STNFS k=1 25340. 257 STNFS k=1
k9method66 5890. 128 STNFS k=1 12730. 192 STNFS k=1 29320. 256 STNFS k=1
k9method67 4764. 129 STNFS-G k=1 12570. 192 STNFS-G k=1 23260. 256 STNFS-G k=1
k9methodLZZW 5314. 128 STNFS k=1 12800. 192 STNFS k=1 21800. 256 STNFS k=1
k10method53 5306. 128 SexTNFS k=2 12250. 192 SexTNFS k=2 21450. 258 SexTNFS k=2
k10method624 4695. 128 SexTNFS k=2 9825. 192 SexTNFS k=2 22120. 256 SexTNFS k=5
k10method63 5720. 128 STNFS k=1 13630. 192 SexTNFS k=2 23080. 256 SexTNFS k=2
k10method66 5104. 142 STNFS k=1 14180. 192 STNFS k=1 30380. 256 STNFS k=1
k11method62 5412. 128 STNFS k=1 14990. 192 STNFS k=1 24860. 256 STNFS k=1
k11method620 5258. 128 STNFS k=1 10140. 192 STNFS k=1 17400. 256 STNFS k=1
k11method66 3896. 128 STNFS-G k=1 14630. 192 STNFS k=1 27700. 258 STNFS k=1
BN 5534. 128 SexTNFS k=2 13120. 192 SexTNFS k=3 25310. 256 SexTNFS k=3
k12method53 5138. 130 SexTNFS k=2 9962. 193 STNFS k=1 26590. 256 SexTNFS k=2
k12method64 6120. 134 SexTNFS k=2 12550. 192 SexTNFS k=2 24220. 256 SexTNFS k=3
k12method66 5525. 128 SexTNFS k=2 14960. 192 SexTNFS k=2 26120. 256 SexTNFS k=2
k12method67 5340. 128 STNFS k=1 14750. 192 SexTNFS k=2 20120. 256 SexTNFS k=2
k13method62 4565. 128 STNFS-G k=1 13690. 192 STNFS k=1 28830. 256 STNFS-G k=1
k13method66 4083. 154 STNFS-G k=1 8472. 192 STNFS-G k=1 18940. 256 STNFS-G k=1
k14method63 5348. 128 STNFS k=1 13330. 192 STNFS k=1 21640. 257 SexTNFS k=2
k14method66 4906. 154 STNFS k=1 11180. 192 STNFS-G k=1 27980. 256 STNFS-G k=1
k15method53 6495. 145 STNFS k=1 13520. 192 STNFS k=1 27560. 256 STNFS k=1
k15method62 8131. 175 exTNFS-Conj k=5 12210. 201 exTNFS-Conj k=5 20050. 256 exTNFS-Conj k=5
k15method620 7650. 158 STNFS k=1 12270. 192 STNFS k=1 21330. 256 STNFS k=1
k15method66 5736. 138 STNFS k=1 14150. 192 STNFS k=1 26980. 256 STNFS k=1
k15method67 9104. 188 STNFS-G k=1 12030. 206 STNFS-G k=1 23040. 256 STNFS-G k=1
k15methodDCC 5745. 139 STNFS k=1 13940. 192 STNFS-G k=1 26980. 256 STNFS-G k=1
k16method66 5608. 146 exTNFS-Conj k=4 10090. 192 exTNFS-Conj k=4 18940. 256 exTNFS-Conj k=4
k16methodKSS 5281. 142 STNFS k=1 13360. 192 STNFS k=1 23760. 257 SexTNFS-G k=2
k17method62 5152. 183 STNFS k=1 11270. 193 STNFS-G k=1 20560. 256 STNFS-G k=1
k17method66 5914. 149 STNFS-G k=1 10110. 192 STNFS-G k=1 25600. 256 STNFS-G k=1
k18method624 7929. 152 SexTNFS k=2 13330. 192 SexTNFS k=2 23650. 256 SexTNFS k=2
k18method63 8412. 155 STNFS k=1 14620. 192 STNFS k=1 16990. 287 SexTNFS k=2
k18method67 7243. 156 STNFS-G k=1 11630. 193 STNFS-G k=1 21320. 258 STNFS-G k=1
k18methodKSS 6401. 156 STNFS k=1 12180. 192 STNFS k=1 26060. 257 SexTNFS-G k=2
k19method62 5754. 145 STNFS-G k=1 11290. 194 STNFS-G k=1 20800. 256 STNFS-G k=1
k19method66 6041. 233 STNFS-G k=1 8180. 241 STNFS-G k=1 12060. 258 STNFS-G k=1
k20method64 7640. 151 SexTNFS k=2 14660. 192 SexTNFS k=2 26960. 257 SexTNFS k=2
k20method66 7013. 161 exTNFS-Conj k=4 10970. 195 exTNFS-Conj k=5 19930. 256 exTNFS-Conj k=5
k21method62 10500. 206 exTNFS-Conj k=3 15420. 244 exTNFS-Conj k=7 20570. 264 exTNFS-Conj k=7
k21method66 7135. 171 exTNFS-Conj k=3 10720. 207 exTNFS-Conj k=3 25560. 256 STNFS-G k=1
k21method67 12560. 227 exTNFS-Conj k=3 15190. 235 exTNFS-Conj k=7 19910. 273 exTNFS-Conj k=7
k22method63 10940. 161 STNFS k=1 14600. 193 STNFS k=1 27410. 257 STNFS-G k=1
k22method66 7901. 197 STNFS-G k=1 11830. 223 STNFS-G k=1 18170. 256 STNFS-G k=1
k23method62 10250. 192 STNFS-G k=1 10250. 192 STNFS-G k=1 21650. 256 STNFS-G k=1
k23method66 9614. 202 STNFS-G k=1 9614. 205 STNFS-G k=1 19290. 256 STNFS-G k=1
k24method66 7642. 167 STNFS k=1 13340. 192 STNFS k=1 24440. 256 STNFS-G k=1
k24method67 9144. 173 STNFS k=1 13750. 200 STNFS k=1 26930. 258 STNFS-G k=1
k25method62 11820. 201 exTNFS-Conj k=5 13130. 210 exTNFS-Conj k=5 20880. 259 STNFS-G k=1
k25method66 12160. 180 STNFS-G k=1 15130. 192 STNFS-G k=1 29990. 257 STNFS-G k=1
k26method624 8340. 172 SexTNFS k=2 12180. 212 STNFS k=1 18850. 256 STNFS k=1
k26method63 8346. 184 STNFS-G k=1 12440. 203 SexTNFS-G k=2 23670. 256 SexTNFS-G k=2
k26method66 7758. 209 STNFS-G k=1 11610. 234 STNFS-G k=1 16040. 257 STNFS-G k=1
k27method62 14810. 251 exTNFS-Conj k=3 17200. 266 exTNFS-Conj k=3 22250. 313 exTNFS-Conj k=3

12

k27method66 7638. 175 exTNFS-Conj k=3 11840. 218 exTNFS-Conj k=3 15980. 256 STNFS-G k=1
k27method67 14360. 242 exTNFS-Conj k=3 18360. 275 exTNFS-Conj k=3 24770. 322 exTNFS-Conj k=3
k27methodBLS 7697. 175 exTNFS-Conj k=3 11540. 215 exTNFS-Conj k=3 16100. 257 STNFS-G k=1
k28method53 11200. 233 STNFS k=1 16580. 247 STNFS k=1 21950. 266 STNFS k=1
k28method64 14280. 207 SexTNFS k=2 14280. 207 SexTNFS k=2 25480. 258 SexTNFS k=2
k28method66 10140. 191 exTNFS-Conj k=4 15190. 230 exTNFS-Conj k=4 20260. 261 exTNFS-Conj k=7
k29method62 8292. 232 STNFS-G k=1 15960. 245 STNFS-G k=1 18580. 257 STNFS-G k=1
k29method66 18650. 268 STNFS-G k=1 18650. 268 STNFS-G k=1 18650. 268 STNFS-G k=1
k30method53 13260. 209 STNFS k=1 19500. 236 STNFS k=1 25740. 263 STNFS k=1
k30method63 16270. 241 STNFS-G k=1 24420. 258 STNFS k=1 32580. 287 STNFS k=1
k30method66 11470. 212 exTNFS-Conj k=3 17230. 237 exTNFS-Conj k=5 22990. 270 exTNFS-Conj k=6
k30method67 16510. 231 exTNFS-Conj k=5 20900. 260 exTNFS-Conj k=5 27760. 293 exTNFS-Conj k=6
k31method62 18650. 266 STNFS-G k=1 18650. 266 STNFS-G k=1 18650. 266 STNFS-G k=1
k31method66 21780. 240 STNFS-G k=1 21780. 240 STNFS-G k=1 23900. 257 STNFS-G k=1
k32method613 14830. 227 exTNFS-Conj k=4 14870. 281 exTNFS-Conj k=4 19440. 260 exTNFS-Conj k=4
k32method66 13010. 210 exTNFS-Conj k=4 13010. 210 exTNFS-Conj k=4 19330. 257 exTNFS-Conj k=4
k48method66 13750. 290 STNFS k=1 20660. 304 STNFS k=1 27570. 320 STNFS k=1
KSS54 17060. 480 exTNFS-Conj k=2 23900. 360 STNFS-G k=1 31580. 388 STNFS-G k=1
k3MNT 4211. 128 SexTNFS k=3 9371. 192 SexTNFS k=3 16090. 256 exTNFS-Conj k=3
k4MNT 4344. 128 SexTNFS k=4 10520. 192 exTNFS-Conj k=4 19040. 256 exTNFS-Conj k=4
k6MNT 4140. 128 SexTNFS k=3 9792. 192 SexTNFS k=6 21010. 256 SexTNFS k=6

Our results are consistent with those of Guillevic [43]. At 128 bits of security on the curve
side, the security on the field side is larger than or equal to 128 whenever k ≥ 13, in all the
models considered in the literature BD, GS or hybrid. Hence, the small difference between our
results and the ones in [43] make no change on the key sizes of pairings with k ≥ 13. We note
for completeness that for k13method66 and k17method62 Guillevic obtains large differences
between the key sizes for a general seed (Table 4 of her work) and a low weight seed (Table 5 of
her work). In the case of k = 9, 10, 11 and 12 there are differences between the BD and the GS
models, as we write in Table 6. As explained in Section 3.3, the two models are very similar,
the difference is due to the security they estimate for RSA-1024.

family 1
2

log2 r log2(q12) [5] model [45] model

BN(method6.8) 228 5534 128 135
BLS12(k12method66) 153 5525 128 135

k12method67 128 5340 128 134
k12method64 128 6120 134 138

Table 8: Differences between the field security in the two models of [5] and [45] when k = 12.

Our results can be downloaded at:

https://razvanbarbulescu.pages.math.cnrs.fr/Pairings/Pairings.html

4 Complexity of Miller’s algorithm

In this section, we search for nice parameters for the optimal Ate pairing in order to make a
comparison between the most promising families at the 128, 192, and 256 bits security level. We
choose the families according to two main criteria:

13

https://razvanbarbulescu.pages.math.cnrs.fr/Pairings/Pairings.html

– the popularity of the curve in previous works, which is basically based on a smooth
embedding degree multiple of 6;

– the size of the field Fqk , indeed embedding degrees that are not 0 mod 6 were not taken
into account in previous works, but as the size of the finite field increases drastically for
the most popular curves, we though it worth testing them. The results were interesting as
according to our estimation, the most popular curves are no longer the one providing an
efficient pairing.

We propose seeds for each pairing to match the security results in the previous section. We
obtain the cost of Miller’s loop in term of operations in Fq and then binary operations. Since
we will obtain that the overall cost of the BLS-12 Ate pairings is 3 million 32-bit operations, we
keep for the following sections only the pairings whose Miller loop is less than 3 million 32-bit
operations. Similarly we keep only a short list which can beat BLS-24 for the 192 and 256 bits
of security.
In Section 4.1 to Section 4.8, we study the 128 bits security level. We select one promising
family by each method of construction and compare them all together in Table 15. For them we
compute the cost of the final exponentiation at each level of security.
For the comfort of the reader we give all the details of the computations, but one can skip
forward to the results of the Miller loop in Table 15.

4.1 Construction 6.2 from [38]

In this metafamily of curves we can construct curves whose embedding degree is odd. The curves
admit a discriminant D = −1 (we abusively replace D in the sequel by its absolute value), so
we have no twist.
The complexity of Ate pairing for construction 6.2 is log2(u2) doubling step, plus HW (u2)

addition step and an extra doubling step for the evaluation of
l
qQ,u2Q

(P)

v
(u2+q)Q

(P)
.

The curves with no twist were not taken into consideration as the pairings computation cannot
be improved by the denominator evaluation. We consider them in our study as they are quite
resistant to the NFS attack. As a consequence, the size of Fq is smaller for curves without twist
and the number of doubling step for the Miller algorithm is also smaller.
We computed the arithmetic cost of each step in Table 9.

Operation Complexity affine Complexity projective Complexity Jacobian Modified Jacobian[22]

Doubling step 2Mk + Sk + Ik 3kMq + 12Mk + 7Sk 3kMq + 10Mk + 8Sk 8Mk + 10Sk
Addition step 5Mk + 2Sk + Ik 3kMq + 16Mk + 2Sk 3kMq + 19Mk + 14Sk 12Mk + 5Sk

Table 9: Complexity of Miller’s steps without twist

We use the estimation Mk = Sk and find that the doubling step in projective coordinates has a
cost of 3kMq + 19Mk. Compare this to that in Jacobian coordinates which is 3kMq + 18Mk.
For the addition step, the difference between the two types of coordinates is more important: in
projective coordinates we obtain 3kMq+18Mk and in Jacobian ones we get 3kMq+33Mk. Let α
denotes the length of Miller loop and HW (α) be the Hamming Weight of α. The complexity of
the pairing evaluation without twist is more efficient for projective coordinates when compared
with Jacobian as long as 15HW (α) ≥ log2(α). As our goal is to give a first estimation of
the pairing complexity, we do not search especially for parameters with very small Hamming
weight. Note that the affine coordinates could be more interesting than the projective ones if
the complexity of the inversion in Fqk is smaller than 20Mk. This coarse estimation is obtained
by considering that Mk = Sk and kMq = Mk. The expected gain is not important enough, so
we don’t continue with a precise estimation in this case.
The curves of embedding degree 9 are the champion among the curves of construction 6.2
without twists. Yet, they are no match for the curves admitting twists in following constructions.

14

4.2 Construction 6.3 from [38]

Using this construction, we obtain elliptic curves having an embedding degree k = 2k′, for k′ an
odd number. Those curves have a discriminant D = 1, they admit a twist of degree 2.

The optimal Ate pairing for curves constructed using method 6.3 consists in one Miller’s
algorithm indexed over x2, plus an extra line evaluation.

The Table 10 presents the value that we find by a quick research and using very large estimation
for the cost of arithmetic in the tower field. We used the estimation cost from Table 2 as we are
working on elliptic curves with discriminant 1 and a quadratic twist.

The smallest number of iterations for Miller’s algorithm could be reached for the curve with
k = 38, but unfortunately, in practice, we do not find a value of u that makes q and r prime
below 15 bits.

The smallest size for Fq is theoretically obtained for the curve with embedding degree 26, 34 and
46. Together with the theoretically smallest number of iterations during the Miller algorithm.
In practice, the less expensive Miller’s algorithm corresponds to k = 14. For this value we also
have the smallest finite field Fq. As a consequence, the best choice for the method 6.3 using a
quadratic twist at the 128 bits of security should be the curve with k = 14.

4.3 Construction 6.4 from [38]

In this metafamily of curves, we construct curves with embedding degrees 4k′ where k′ is an
odd integer. The discriminant is D = 1, consequently, curves in this family admit a twist of
degree 4.

The optimal Ate pairing for curves constructed using method 6.4 is composed by one Miller’s
algorithm indexed over x, plus an extra line evaluation. The Table 10 presents some examples
of values for u that minimize the number of addition steps during Miller’s algorithm.

We compare the curves with approximately 10 000 Mq (k = 12, 20, 28) and the curve with the
smallest field Fq (k = 44). On a 32 bits architecture, it seems that the curves constructed by
method 6.4 with k = 28 provides the most efficient pairing, on a 64 bits architecture, it should
be the curve with k = 20. Of course, those results highly depends on the architecture and the
implementation.

4.4 Construction 6.6 from [38]

In this metafamily of curves, also called BLS when k = 0 mod 6 except when 18 | k, we can
construct curves with discriminant D = 3. Hence, in this case the elliptic curves can admit a
twist of degree 3 or 6. The method of construction depends on the residue of k modulo 6, and
we studied all the families from k = 9 to k = 53, all being possible except those for which 18
divides k, i.e. 18, 36 and 54.

Curves admitting a twist of degree 6. When k = 0 mod 6, then the elliptic curve
admits a twist of degree 6. The corresponding embedding degrees are k ∈ {12 (i.e. BLS12), 24
(i.e. BLS24), 30, 36, 42, 48 }.

The smallest number of operations over Fq is obtained for k = 12, but the smallest field is
obtained for k = 24.

In order to compare those two curves, we have to estimate the complexity of the Miller algorithm
in terms of machine word operations. The Table 12 presents our estimation. We consider that a
multiplication over Fq is computed using the schoolbook multiplication.

According to our estimation, the optimal Ate pairing seems to be more efficient on BLS24 than
on BLS12 curves.

15

Curves admitting a twist of degree 3. Among the elliptic curves constructed by method
6.6, those for which k = 3 mod 6 admit a twist of degree 3. The expression of the optimal Ate pair-
ing depends on the embedding degree. For each embedding degree k ∈ {15, 21, 27, 33, 39, 45, 51},
we obtain a different short vector that should be used in order to compute the pairing. The expres-
sion of the pairing follows a common pattern for k ∈ {15, 33, 51}, respectively for k ∈ {27, 45};
and for k ∈ {21, 39}.
For k ∈ {15, 33, 51} using the construction 6.6, we obtain the same pattern for a short vector:
[x,−1, 0, . . . 0,−1, 0, . . . , 0].
We give here the definition of an optimal Ate pairing for k = 15.
We choose [x,−1, 0, 0, 0, 0,−1, 0, . . . , 0] as short vector. The expression of the optimal Ate pairing
using this vector is the following:
OptAtek156.6d3 : G1 ×G2 → G3,

(P,Q)→
(

(
fx,Q

v
q+q6

Q

ls1Q,xQ
vs0Q

ls2Q,−qQ
vs1Q

)(P)

) qk−1
r

, where s0 = x−q−q6, s1 = −q−q6 and s2 = −q6.

When using a twist of degree 3, the vertical line does not vanish during the final exponentiation.
We can however simplify the pairing expression. Zhang and Lin in [92] proposes the latest record
for the computation of pairings over curves with a twist of degree 3. They barely improve the
result of [23] but the method is very helpful for the simplification of the optimal Ate pairing in
our case. We use Zhang and Lin formulas for the complexity of Miller’s algorithm’s step 2.
Applying the method developed by Zhang and Lin in [92], we can make the following transfor-

mation 1
(vQ)

(P) =
X2
Q+XQZQxP+x2q

Z2
Q

.

Indeed, using the method developed by Zhang and Lin in [92], we can transform the fraction
ls1Q,xQ
vs0Q

into

X2
s0Q − Zs1QZxQ(Zs1QXxQ −Xs1QZxQ)2(Zs1QYxQ − Ys1QZxQ)(Ys0Q − Zs0QyP)+

Xs0QZs0QxP + Z2
s0Qx

2
q

which correspond to an extra addition step s0Q = s1Q+ xQ. We can apply the same method

to the other fraction
ls2Q,−qQ
vs1Q

. The Miller algorithm output the point xQ. We remark that

s1Q = s2Q+ (−Qq), thus the evaluation of
ls2Q,−qQ
vs1Q

correspond to the addition step between

s2Q and −Qq. We also can notice that s0Q = s1Q+xQ, we then obtain that
ls1Q,xQ
vs0Q

correspond

to the addition step between s1Q and xQ the output of Miller’s algorithm.In order to perform

these computations, we have to precompute the points s2Q = −Qq
6

, s1Q = −Qq + Qq
6

and

s0Q = xQ−Qq +Qq
6

. Those computations correspond to two Frobenius Qq and Qq
6

. We follow
the example of [5] and the coarse estimation that a Frobenius evaluation cost (k − 1)Mq.
We want to simplify the evaluation of 1

(vQ)q+q
6 . The power q + q6 could be split into two

Frobenius evaluation. We will modify the expression of 1
(vQ)

by the following way:

1

(vQ)
(P) =

1

xQ − xP
we begin with affine coordinates

=
(y2
Q − y2

q)

(xQ − xP)(y2
Q − y2

q)
,

=
x2
Q + xQxP + x2

q

y2
Q − y2

q

.

Using a twist of degree 3, we have that y2
Q − y2

q belongs to Fqk/d and as a consequence will
vanish during the final exponentiation.
In [92], the authors made the assumption that affine coordinates should be more efficient than
projective one as long as Ik ≤ 5.6Mk. In order to be the more general, we will consider only the

16

projective coordinates. We than transform the affine expression into the following projective
one:

1

(vQ)
(P) =

X2
Q +XQZQxP + x2

q

Z2
Q

.

When using a twist, the coordinates ZQ belongs to Fqk/d .

As a consequence, the evaluation of 1
(vQ)

is composed by Sq+kMq+Sk/d+Mk/d operations. We

need two Frobenius maps (one by q and one by q6) plus Mk in order to compute 1

(vQ)q+q
6 . Finally

the total complexity of (
fx,Q

v
q+q6

Q

ls1Q,xQ
vs0Q

ls2Q,−qQ
vs1Q

)(P) is the computation of Miller’s algorithm plus

(5k − 4)Mq + Sq + Sk/d +Mk/d + 2MA + 2Mk. We present in Table 11 the estimation of the
Miller algorithm when k ∈ {15, 33, 51}.
For k ∈ {27, 45} we obtain a short vector on the pattern [x, 0, . . . 0, 1, 0, . . . , 0]. The optimal Ate

pairing expression is then

(
fx,Q

l
q10Q,xQ

v
(x+q10Q

)
(P)

) qk−1
r

. An alternative family for the k27method66

family was proposed by Zhang and Lin [92]. They used a substitution of x by −1/x. The optimal

Ate pairing expression is simplified into (fx,Q)
qk−1
r . Another advantage to the Zhang and Lin

family for BSL27 is the existence of x such that q and r are both prime.

For k = 45, the fraction is
l
q16Q,xQ

v
(x+q16Q)

.

As a consequence, for k ∈ {27, 45} the pairing complexity is one Miller execution, plus one
addition step.

For k = 21, we obtain this short vector [0, 0, 0, 0, 0, 0, x2,−x, 1, 0, 0, 0] and for k = 39 this one
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x2,−x, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0].

We obtain the following expressions for the pairings

(
f
q6

x2,Q

f
q7

x,Q
v
q7

xQ

l
s7Q,x

2Q

vs6Q

ls8Q,−xqQ
vs7Q

vQ
vs8Q

(P)

) qk−1
r

,

where s6 = x2q6−xq7+q8, s7 = −xq7+q8 and s8 = q8 and

(
f
q12

x2,Q

f
q13

x,Q
v
q13

xQ

l
s13Q,x

2Q

vs12Q

ls14Q,−xqQ
vs13Q

vQ
vs14Q

) qk−1
r

,

where s12 = x2q12 − xq13 + q14, s13 = −xq13 + q14 and s14 = q14.

The pairing computation consists in one Miller execution as its result, fx,Q, is an intermediate step
of the computation of fx2,Q. The point xQ can also be saved during the execution of fx2,Q. The

output is the point x2Q. We must perform 6 Frobenius. The computation of
l
s13Q,x

2Q

vs12Q

ls14Q,−xQ
vs13Q

are two extra addition steps. The denominators vs13Q and vs14Q cost 2(Sq +kMq +Sk/d+Mk/d).
The complexity of the pairing computation for k = 21 and k = 39 is then one Miller execution
fx2,Q plus the extra computations 26(k−1)Mq +2MA+2(Sq +kMq +Sk/d+Mk/d)+5Mk+ Ik.

The Table 11 presents our results. The best candidates among those curves are for k = 15 and
k = 27.

Curves admitting a twist of degree 2. The curves constructed using method 6.6 admits
a twist of degree 2, when k mod 6 ∈ {2, 4}. This means that k ∈ {14, 16, 20, 22, 26, 28, 32,
34, 38, 40, 44, 46, 50, 52}.
The optimal Ate pairing expression depends on the value of k mod 6. For every k = 2 mod 6
we find the same short vector: [x2, x, 1, 0, . . . 0]. The expression of the optimal Ate pairing is

then
(
fx2,Qf

q
x,Qls1Q,x2Qls2Q,xqQ

) qk−1
r , where s0 = x2 + xq + q2, s1 = −xq + q2 and s2 = q2.

As the results xQ and fx,Q are computed during the computation of fx2,Q we count only one
Miller evaluation. Two line evaluations plus 3 Frobenius and 3Mk are also necessary.

17

Its complexity is equal to log2(u2) doubling steps, plus HW (u2) addition steps and an extra
doubling step for the evaluation of lqQ,x2Q(P). As we do not need the coordinates of the point
(x2 +q)Q, this line evaluation (Le) is cheaper than a full doubling step [5]4. We use the projective
coordinates, which are better than the affine ones at 128 bits of security [23,92].
The Table 11 presents the cost of the Miller execution.
When k = 4 mod 6, one short vector is [x2, 0, . . . , 0,−x, 0, . . . , 0, 1, 0, . . . , 0]. For instance, for
k = 16, the optimal Ate pairing is then(
f
x2,Q

f
q3

x,Q

ls1Q,x2Qls2Q,−xq3Q

) qk−1
r

, where s0 = x2 + xq3 + q6, s1 = −xq3 + q6 and s2 = q6. The

cost is one Miller execution, plus 3 Frobenius, two line evaluations, 3Mk and one inversion over
Fqk .
Note that D = 1 and the equation of the elliptic curve is y2 = x3 + ax. We use the formulas
from [23].
The Ate pairing computation is more efficient. Indeed, it is composed of one execution of the
Miller algorithm, which has log2(u2) iterations using the denominator elimination. The vertical
line v(x2+q)Q(P) belongs to Fqk/2 and is eliminated by the final exponentiation. The Ate pairing
expression is simplified into:(
fx2,Q(P)× lqQ,x2Q(P)

) qk−1
r .

Its complexity is equal to log2(u2) doubling steps, plus HW (u2) addition steps and an extra
doubling step for the evaluation of lqQ,x2Q(P) which is also cheaper than a full doubling step. We
use the projective coordinates, which are better than the affine ones at 128 bits of security [23,92].

Curves without twists. The remaining elliptic curves (k = 1 or 5 mod 6) do not admit
twists. As we have seen for construction 6.2, even if the theoretical dimension of Fqk is smaller
for prime embedding degree than for not prime embedding degrees, the lack of denominator
elimination is a heavy drawback.
The complexity of the optimal Ate pairing computation is one Miller’s algorithm execution, two
extra addition steps, two Frobenius, hence a total of 5Mk + Ik operations.
Comparison among the method 6.6 (BLS) pairings. The curve k27method66 in the
version of Zhang and Lin provides the smallest field Fq and the smallest number of operation
over Fq. This curve seems to provide the most efficient choice when considering the Miller loop
among the BLS families. We analyse the final exponentiation in Section 5. The curves BLS 24
seems to provide the second most efficient Miller loop. Considering that, the BLS 24 curves
have a degree 6 twist and that log2(qk24) = 7656 (when log2(qk27) = 8058), the comparison with
the final exponentiation will decide between this two curves. Potentially, the BLS 15 curves
could also be a competitor if a nice arithmetic over Fq5 can be deployed. Indeed, if we compare

log2(qk15) = 5745 and log2(qk24) = 7656, which is roughly the size of the exponent for the final
exponentiation, the BLS15 curve provide smaller field but the BLS24 curve can be implemented
using the compressed squarings when no practical optimization are available in the literature for
k = 15. As a conclusion, a precise implementation and analysis is necessary, in order to choose
one between those three families.

4.5 Construction 6.7 from [38]

In this metafamily, we can construct curves with discriminant D = 2. They admit a twist of
degree 2 if k is even, and no twist otherwise.

Curves having a twist of degree 2. The optimal Ate pairing is different for k = 12,
k = 24 and respectively k ∈ {18, 30}. The formulas are presented in Table 3. Table 10 presents
the complexity of its implementation. The curves k12m67 and k24m67 are the most promising
for this family.

4 We count 5Me in the evaluation of Le instead of 4Me as presented in [5] because when we wrote down the
equation we do not see how to save one more Me

18

Curves without twists. The optimal Ate pairing is different for k = 15 and k ∈ {9, 21, 27}.
For k = 15, the shortest vector found is [x4 − 1, 1, 0,−1, 1,−1, 0, 1], the cost of the optimal
Ate pairing in this case is the evaluation of fx4−1,Q, plus 6 addition steps, hence a total of
10Mk + Ik.

For k ∈ {9, 21, 27}, it is

(
fx4,Q

l
q5Q,x4Q

v
[x4+q5]Q

) qk−1
r

.

For k = 21, there are very few possible values for u, so that we could not provide a realistic
example of such pairing,

Best candidate for method 6.7. The cost of Miller’s loop for the curves without twists
is much more expensive than the cost for curve with a quadratic twist. Among the curves with
quadratic twists, the curves with k = 12 and k = 24 are the most promising. With k = 12 we
have the least number of operation over Fq, with k = 24 the smallest field Fq. According to
our estimation, the most efficient pairing for curves constructed with method 6.7 should be
implemented over the curve with k = 12.

4.6 Construction 6.20, 6.24 and ”+” from [38]

We denote by ”+” the construction described in [38] that relies on the application of Theorem
6.19 [38]. The method is to use one construction among 6.2, 6.3, 6.7, 6.20 or 6.24 and made
the substitution x2 → αx2 in the definition of q and r, where α is a square free positive integer.
The best choices for α are described in the Algorithm for Generating Variable-Discriminant
Families [38]. The ”+” doesn’t change the security (and hence doesn’t change the key sizes)
because we obtain the same values of k, log2 q and polynomials in the SexNFS attacks. Indeed,
if the fastest SexTNFS attack against a family uses two polynomials f and g, one could use
either the same polynomials or f(αx2) and g(αx2) for the ”+” family. However, the degree of
f and g is ”too high” for all the families tested, so an attacker is bound to continue to use f
and g.
For example, using the ”+” method, we generate values of u such that log2(u) = 13 for k = 11
and construction 6.20, but for 128 bits of security u should be at least 20 bits. One can use our
results and try to generate curves with nice discriminant. It is very important to remark that
using the construction ”+”, we can construct elliptic curve with any discriminant. For instance,
in the construction 6.2, when k = 3 mod 6, we cannot use any twist, but with construction
”6.2+”, we can generate curves with discriminant D = 3 and then use twists in order to improve
the computation. By the same way, when k = 0 mod 6, the construction 6.2 allows a quadratic
twist, while the construction ”6.2+” allows a sextic twist.
Using construction 6.20 and 6.24, we obtain elliptic curves with discriminant D = 1. As a
consequence, if k is even, we have a quadratic twist, otherwise we do not have a twist. For some
embedding degrees, q(x) is reducible so we had to apply the ”+” construction.
The only drawback of the ”+” method is that instead of searching for parameters u of a given
bit size b we search for parameters y0 of approximately b/2 bits. This gives less choices and we
could not find parameters of low NAF weight for the constructions 6.20+ and 6.24+. We leave
it as an open problem the generation of nice parameters and curves using the ”+” method.

4.7 KSS families from [38]

The KSS families of elliptic curve were introduced by [52]. It is a promising complete family for
specific values of k. They are defined for k = 16, 18, 32, 36, 40 in [52]. Scott and Guillevic [82]
found a similar family with k = 54.
The KSS16 and KSS18 were already studied in the literature, we confirm the results from [5].

For k = 32, an expression of the optimal Ate pairing is fx,Qf
q
−3,Qf

q8

2,Qls1Q,xQl2q8Q,−3Q, with

s1 = −3q + 2q8. This is almost the same expression for KSS36 curves, the difference is that the

19

power of q is 7 and not 8. For both KSS32 and KSS36 curves, we search for a value u such that
the most significant bits are both 1, this will guarantee that the computation of 3Q is the first
addition step during the computation of fx,Q. As a consequence the cost of this optimal Ate
pairing is one Miller execution fx,Q plus 3πq + 2L + 4Mk + Ik.

For k = 40, fx,Qf
q11

2,Qls1Q,xQl2q11Q,−Q, with s1 = −q+2q11. The cost is fx,Q plus 2πq+2L+3Mk.

For k = 54, fq
9+1
x,Q lq9xQ+q10Q,xQlq10Q,q9xQ [82].

4.8 Other families

The article [38] presents a non exhaustive list of pairing-friendly elliptic curve constructions at
the beginning of 2010.

The MNT curves [70] are ordinary curves with embedding degree k = 3, 4, 6. In [73,80,62], some
constructions or examples of MNT curves are given. These parameters are more rare than for
the complete families and the algorithms to compute them are more costly, so it is beyond the
scope of this article to propose numerical values of u [53]. A non exhaustive list is available
in [65]. In our work, we estimate the cost of Miller’s loop for this curves, but when considering
Table 12, the MNT family is not at all competitive.

There were other constructions like [28,64] not included in [38]. In 2010, the ρ value was
important when considering the efficiency of pairings. The curves constructed in [28] have
embedding degree already included in [38] but with larger ρ. It could be a reason why the
results from [28] were not included in [38]. However, the curve with embedding degree 15 in [28]
resists better the Kim-Barbulescu attack and we choose to evaluate them in our study. In [28],
other families are constructed with embedding degree k = 12, 13, 14, 24, 48. They do not provide
efficient pairings, either because of the lack of discriminant D = 3 (k = 13, 14) or because the
Kim-Barbulescu attack is very efficient and the required bit sizes make the pairing less efficient
than others families (k = 12, 24, 48).

The k = 9 family from [64] and the k = 15 family from [28] were studied in [37], where Fouotsa
et al. evaluate the cost the optimal Ate pairing computation for curves with odd embedding

degree. The expression of the optimal pairing for this family is nice: (fx,Q)
qk−1
r . It is the same

expression for the family with embedding degree 9 studied by Lin et al. in [64]. Their results
were that the k = 9 family is a little bit more expensive than the BN family.

We report in Table 14 the estimation of the Miller loop for those families at the 128 bits
security level. We add the results for BN curves. According to our new security evaluation,
the results from [5] do not provide exactly the 128 bits security, a nice candidate could be
u = 1 + 23 + 213 + 214 + 232 but the complexity of pairing over BN curves is less efficient than
others and we keep the same results as [5].

Between those three curves, the construction from [28] with k = 15 is the more efficient when
considering the Miller loop. We provide in Section 5 the expression of the final exponentiation
in order to decide between those two families. The BN family is no longer a good choice for
pairing-based cryptography.

4.9 Complexity of the Miller’s algorithm at 192 bits security level

We only provide here our most efficient curves for each construction.

We select one promising family by method of construction and compare them all together in
Table 15.

It seems that the curve with k = 27 and construction 6.6 version Zhang Lin could provide the
most efficient Miller’s algorithm at the 192 bits security level. Other good candidates could be
BLS 15, BLS 24 k = 28 construction 6.4 and DCC 15. The final exponentiation could shuffle
this ranking. In Section 5 we compare the cost of the final exponentiation in order to determine
which curve will provide the most efficient optimal Ate pairing.

20

4.10 Miller’s complexity at 256 bit security level

We choose to give the estimation of the pairing computation for the curves such that log2(qk) is
not greater then 15 000 and of course to the curves that provide efficient pairing implementation
at 128 and 192 bits security level.

The curves providing log2(qk) ≤ 15000, are curves without twist and/or expensive pairing
computation. We found out that even if the extension field Fqk is not very large, the estimation
cost for the Miller loop (see Table 15) is much more expensive than curves admitting twists
reported in Table 15.

According to Table 15, the most efficient Miller’s loop would be for the curves k = 28 construction
6.4 in [38], BLS15 and k27method66. Those curves correspond to the families such that log(q)
is smaller than 1 000 bits.

5 The Computation of the final exponentiation

The computation of Tate pairing and its variants, e.g. Ate, require two steps: Miller’s loop
(treated in Sections 4, 4.9, and 4.10) and the final exponentiation. None of the two steps is
negligible: whereas in the earliest implementations of pairings Miller’s loop was more expensive,
the final exponentiation has become a significant component of the global computation. For
example the family k27method66 which is the champion at 256 bits of security is an exception
where the final exponentiation dominates. We do the first analysis of the final exponentiation as
previous results in the literature [43] only consider Miller’s loop.

Thanks to the cyclotomic polynomial, the final exponentiation can be broken down into two
components as follows:

qk − 1

r
=
qk − 1

φk(q)
× φk(q)

r

where k is the embedding degree.
In this work, we are only interested in the computation of the second factor, called the hard
part, which dominates the computations of the final exponentiation. The computation of the
easy part, not treated, requires merely several Frobenius computations (2 if k is even), several
multiplications and an inversion in Fqk .

In Section 4 we explained why we can make a short list of the complete computations based
only on the analysis of Miller’s loop. Hence we have a preliminary short list consistng only of
pairings of embedding degree k = 9, 15, 12, 16; 20; 24 and 28 for the 128 bits security level.
For the security levels 192 and 256, we use the same method presented below, we have just to
change the parameter u.

Throughout this section, d denotes the hard part of the final exponentiation, i.e, d =
φk(q)

r
and

d′ denotes a multiple of d with r not dividing d′.

We keep the notations Mq, Sq, Iq for the cost of the multiplication, of the squaring and of the
inversion in Fq and similarly Mk, Sk and Ik for the operations in Fqk as they were introduced
in Section 2.3. When it is clear from the context we drop the k index and write M , S and I for
Mk, Sk and Ik. We add the notations Eu for an exponentiation by the parameter u and Fk for
the cost of a Frobenius map in Fqk .

As we said in the introduction of this work, we computed the final exponentiation (easy part+hard
part) of the Optimal Ate pairing defined in several elliptic curves of different embedding degrees.
Since we can not give all computation details in this paper version, we invite the reader to check
the complete version available on Eprint [6].
In the current version, we chose to give the details about computing the final exponentiation of
the Optimal Ate pairing on elliptic curves of embedding degree k = 12, 18, and 27

21

5.1 The case of k = 12

We showed in Section 4 that for computing Miller loops in the case of elliptic curves of embedding
degree k = 12, it is better to consider BLS12 than BN curves. In this paragraph, we compare
the cost of the final exponentiation of Optimal Ate pairing in both curves. Recall that

q12 − 1

r
= (q6 − 1)× (q2 + 1)× q4 + q2 + 1

r
.

The computation of the first part of the final exponentiation, i.e: the result of Miller loop raised
to power (q6 − 1)× (q2 + 1), has almost the same cost for the two families (2 q−Frobenius, 2
multiplications and one inversion in Fqk a finite field of 5535 bits for BN curves and respectively
5532 bits for BLS curves).

We present now the cost of computing the second part.

BN curves. We briefly present the BN elliptic curve [11] which is defined over Fq by E : y2 =
x3 + b, where b 6= 0 is neither a square nor a cube and by a parameter u such that

r = 36u4 + 36u3 + 18u2 + 6u+ 1 and q = 36u4 + 36u3 + 24u2 + 6u+ 1.

The parameter u is chosen such that both q and r are prime numbers, we consider the parameter
suggested in [5]: u = 2114 + 2101 − 214 − 1.

From the given expressions of q and r, the hard part of the final exponentiation can be written
as a function of u:

q4 − q2 + 1

r
= Λ0 + Λ1q + Λ2q

2 + Λ3q
3 with

Λ0 = −36u3 − 30u2 − 18u− 2,
Λ1 = −36u3 − 18u2 − 12u+ 1,
Λ2 = 6u2 + 1,
Λ3 = 1.

There are many efficient methods for computing the hard part of the final exponentiation
presented in [81,25,39] and in [30]. In this paragraph we present our new developments of the
multiple of this part presented by Fuentes et al. in [39], which makes the computation of the
part in question more efficient (we know that an exponent of a pairing is a pairing). So we give
the following presentation:

2u
(
6u2 + 3u+ 1

) q4(u) + q2(u) + 1

r(u)
=
(
12u2(u+ 1)− 6u2 + 4u− 1)q3 + (12u2(u+ 1)− 6u2 + 6u

)
q2

+
(
12u2(u+ 1)− 6u2 + 4u)q + (12u2(u+ 1) + 6u+ 1

)
,

= Λ′3q
3 + Λ′2q

2 + Λ′1q + Λ′0,

with,

Λ′0 = (12u2(u+ 1) + 6u) + 1 = c+ 1,
Λ′1 = (α2 − 2u),
Λ′2 = c− 6u2,
Λ′3 = α1 − 1.

Since the parameter u is odd, an exponentiation by u + 1 is more efficient than by u since
HW (u + 1) < HW (u). Therefore, our algorithm for computing the hard part of the final
exponentiation, is more efficient than the methods presented in [30] and [5]. Our algorithm
requires 2Eu + Eu+1 + 9M12 + 3S12 + 3F12. The overall cost of the final exponentiation is
3Eu + 10M12 + 3S12 + 5F12. In term of complexity in Fq, our method for computing the final
exponentiation requires 7381M + I when we use the cyclotomic squaring and 5598M + 4I in
the case of considering the compressed squaring in the cyclotomic subgroup.

22

BLS12 curves. BLS12 [10] are defined over Fq by E : y2 = x3 + b and by a parameter u ∈ Z
such that:

q = (u− 1)2(u4 − u2 + 1)/3 + u,
r = u4 − u2 + 1,
t = u+ 1.

For computing the hard part of the final exponentiation, we refer to the algorithm presented
in [40]. For the 128 security level, we consider the parameter u = −277 + 250 + 233. Then,
in terms of complexity in Fq, the final exponentiation requires 8151M + I when we use the
cyclotomic squaring and 6188M + 6I in the case of considering the compressed squaring in the
cyclotomic subgroup.
For the 192 security level, we consider the parameter u = −2207+2206+2105+211+27+26+22+2.
Then, in terms of complexity in Fq, the final exponentiation requires 21201M + I when we use
the cyclotomic squaring and 15500M + 6I in the case of considering the compressed squaring in
the cyclotomic subgroup.

5.2 The case of k = 18

In this paragraph, we give the cost of computing the final exponentiation of the Optimal Ate
pairing on elliptic curves of embedding degree k = 18.
For the complexity of computing the final exponentiation for the 128-bit security level we
consider the parameter u presented in [5] u = 244 + 222 − 29 + 26 requires 20141M+I when
considering the cyclotomic squaring and 17831M+8I when considering the compressed squaring.
For the 192 security level, we consider also the parameter u proposed in [5] u = 26−226−231−285.
With this parameter, the computation of the final exponentiation requires 30473M+I when
considering the cyclotomic squaring and 24719M+8I when considering the compressed squaring.
For the 256 security level, we consider the parameter u proposed in 4.10, u = 2− 23− 27− 212 +
215 + 216 + 220 + 2174. The complexity of the final exponentiation when using this parameter
requires 55925M+I when considering the cyclotomic squaring and 42695M+8I when considering
the compressed squaring (41687M+8I in the case of using the parameter u proposed in [5]
u = 2186 + 275 − 222 + 24).

5.3 The case of k = 24

BLS curves of embedding degree 24 are important candidates for computing Optimal Ate pairing
for both of the 128 and 192 security levels [5]. Recall that BLS24 curves are families of elliptic
curves defined over Fq by the parametrization:

q = (u− 1)2(u8 − u4 + 1)/3 + u,
r = u8 − u4 + 1,
t = u+ 1.

The final exponentiation for BLS24 curves is decomposed into two parts thanks to the cyclotomic
polynomial

q24 − 1

r
=
(
q12 − 1

) (
q4 + 1

) q8 − q4 + 1

r
.

The hard part of the final exponentiation can be decomposed in basis q [81] as:

q8 − q4 + 1

r
=

φ(24)−1∑
i=0

Λiq
i = Λ0 + Λ1q + Λ2q

2 + · · ·+ Λ7q
7,

where

23

Λ0 = u9 − 2u8 + u7 − u5 + 2u4 − u3 + 3,
Λ1 = u8 − 2u7 + u6 − u4 + 2u3 − u2,
Λ2 = u7 − 2u6 + u5 − u3 + 2u2 − u,
Λ3 = u6 − 2u5 + u4 − u2 + 2u− 1,
Λ4 = u5 − 2u4 + u3,
Λ5 = u4 − 2u3 + u2,
Λ6 = u3 − 2u2 + u,
Λ7 = u2 − 2u+ 1.

The best result in the literature to our knowledge is the one presented in [40]. In their work,
the hard part of the final exponentiation is presented as follows:

Λ0 = Λ1u+ 3, Λ1 = Λ2u,
Λ2 = Λ3u, Λ3 = Λ4u− Λ7,
Λ4 = Λ5u, Λ5 = Λ6u,
Λ6 = Λ7u, Λ7 = u2 − 2u+ 1.

The overall cost of the hard part of the final exponentiation is then 8 exponentiations by u,
one exponentiation by u/2 (since u is even), one squaring, 10 multiplications and 7-Frobenius
operations in Fq24 . Then, we need to add two Frobenius operations, two multiplications and one
inversion in Fq24 to compute the final exponentiation. For computing the Optimal ate pairing
over BLS24 curves for the 128 bit security level, we consider the arithmetic presented in [1] and
the parameter u = −232 + 228 + 212 proposed in Section 4 the final exponentiation requires
18732 multiplications and 10 Inversions in Fq when considering the compressed squaring and
23400 multiplications and one inversion when the cyclotomic squaring is considered.
For computing the Optimal ate pairing over BLS24 curves for the 192 bit security level, we
consider the parameter u = −256−243 + 29−26 proposed in Section 4.9 the final exponentiation
requires 27985 multiplications and 10 Inversions in Fq when considering the compressed squaring
and 36573 multiplications and one inversion when the cyclotomic squaring is considered.
For computing the Optimal ate pairing over BLS24 curves for the 256 bit security level, we
consider the parameter u = 21032101 + 268 + 250 proposed in Section 4.9 the final exponentiation
requires 43213 multiplications and 10 Inversions in Fq when considering the compressed squaring
and 59415 multiplications and one inversion when the cyclotomic squaring is considered.

5.4 The case of k = 27

Elliptic curves of embedding degree k = 27 are suitable for computing Miller loop. In this
paragraph, we give the computation of the final exponentiation on this category of curves which
is defined by the parameter u as follow [92]

q = 1/3(u− 1)2(u18 + u9 + 1) + u,
r = 1/3(u18 + u9 + 1),
t = u+ 1.

In this case, the final exponentiation consists on computing

q27 − 1

r
= (q9 − 1)

q18 + q9 + 1

r
.

Then, the representation of the hard part of the final exponentiation can be given as described
in [92] as follow.

(u− 1)2 × (q9 + u9 + 1)× (q8 + uq7 + u2q6 + u3q5 + · · ·+ u7q + u8) + 3.

This decomposition requires one inversion in Fq27 , 17 exponentiations by u, 2 exponentiations
by (u − 1), 11 multiplications, 2 q9, q, q2, q3, q4, q5, q6, q7 and q8 Frobenius maps. When

24

considering our parameter u = 23 + 24 + 211 + 215 given in Section 4 the overall cost of the
final exponentiation for computing the final exponentiation for the 128-bit security level is then
76980 multiplications and one inversion in Fq.
For the 192-bit security level, we consider the parameter u = −25 + 28 + 212 + 216 + 221 + 222

proposed in Section 4.9, and then, the cost of computing the final exponentiation of the Optimal
ate pairing is about 96626 multiplications and one inversion in Fq.

For the 256 bit security level, we consider the parameter u = −22 − 24 + 210 − 228 proposed in
Section 4.9, and then, the cost of computing the final exponentiation of the Optimal ate pairing
is about 112625 multiplications and one inversion in Fq.
In the following Tables, we summarize the cost of the final exponentiation of the Optimal Ate
pairing in the target elliptic curves for each security level: 128, 192 and 256.

6 Conclusion and recommendations

In this article we update the key size for pairing-based cryptography according to the latest
discrete logarithm attack. We unify the results according of the NFS attack and apply them to
more than 150 pairing-friendly elliptic curves. Our motivation was that the NFS attack is more
efficient on BN and BLS 12 elliptic curves which were the most popular for the implementation
of pairing due to their efficient arithmetic. Once we obtain the security evaluation of the curves,
we compare the efficiency of the optimal Ate computation on them. To do so, we first give an
estimation for the Miller loop, and we evaluate the final exponentiation for the most promising
curves. Indeed, the Miller loop alone is not sufficient to evaluate the complexity of the pairing
computation as the final exponentiation represents the half of optimal Ate pairing computation.
We evaluate the final exponentiation only for curves with a very efficient Miller loop, the criteria
of efficiency being the complexity of the Miller loop for the BLS-12.
Table 17 presents the cost of the optimal Ate pairing for our short list of candidates at the 128,
192, and 256-bits security level.

Some informal remarks

We deliberately avoided to use our insight to eliminate bad candidates because we wanted to be
sure that we don’t miss any good pairing. We can however make a list of a posteori informal
remarks:

– At 128 bits of security, among the good candidates in Table 17, the bit size of the target
field varies between 5281 and 7642 bits, which represents a 45% difference. A larger field
means a larger cost of the arithmetic, but this remains less than the factor three which is
the advantage of multiples of 6 when compared to degrees which are coprime to 6. All the
good pairings at 128 bits of security in Table 17 are multiples of 6.

– Fifteen is not the new twelve.5 A simplified manner to choose k is to take kρ equal to the
bit size of the target field, which is now about 5000 bits for 128 bits of security, divided by
the lower bound on r which is 256. Hence one could have set kρ = 20 and, for many BLS
pairings ρ = 1.33 so a possible guess of k is 15. But the above remark says that 12 and 24
are better candidates because they are multiples of 6.

– k = 27 at 256 bits is a compromise between good arithmetic and strength against the TNFS
attack.6 Indeed, 27 has a unique divisor between 2 and 8 so an NFS attack can be done
in a restricted number of manners. At 256 bits of security, an ideal situation would be to
have 5, 6 or 7 as a divisor, so 3 is a bad approximation of the optimal parameters. Hence

5 In a personal communication Tanja Lange asked the first author if 15 is the new 12.
6 As a direct remark on the exTNFS attack, Pierrick Gaudry told the first author that a good candidate

would be a compromise: a degree k which is not coprime to 6 but which has few small divisors, e.g. k = 2p
with p ≥ 5 prime.

25

k27method66 resists well to the TNFS attack albeit not as good as a pairing of prime
degree. In the same time 27 is not coprime to 6 so it has a fast pairing.

– BLS-24 is the new challenger of BLS-12 at the 128 bits security level. The detailed analysis
of the security, the complexity of the Miller loop and the final exponentiation shows that
the two pairings are relatively similar. A detail which attracts our attention is the cost of
the arithmetic in a field Fq12 vs. Fq24 when the field has approximately 100 machine words.
The arithmetic in Fq is done using a schoolbook algorithm because q has few machine
words, whereas the field extension arithmetic is done using Karatsuba tricks. This could
help BLS-24 to be a good alternative to BLS-12.

To conclude, if one wants an efficient pairing implementation using existing arithmetic that
will support several security levels the BLS 24 curve is the one to be chosen, even if at the
256 security level k27method66 is twice more efficient according to our estimation. On another
hand, if we are willing to find the most efficient pairing, further works are necessary to improve
the final exponentiation for the k27method66 family. It is possible that with a more efficient
final exponentiation, the k27method66 would provide the most efficient pairing at the 192 or
128-bits security level. Indeed, the Miller algorithm for k27method66 is very efficient at each
security level, the overall cost of pairing is penalized by the final exponentiation.

References

1. Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and Francisco
Rodŕıguez-Henŕıquez. Implementing pairings at the 192-bit security level. In Pairing-Based
Cryptography - Pairing 2012 - 5th International Conference, Cologne, Germany, May 16-18,
2012, Revised Selected Papers, pages 177–195, 2012.

2. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy
re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf.
Syst. Secur., 9(1), February 2006.

3. R. Barbulescu and A. Lachand. Some mathematical remarks on the polynomial selection in
NFS. Mathematics of Computation, 86(303), 2017.

4. Razvan Barbulescu. Selecting polynomials for the function field sieve. Mathematics of
Computation, 84(296):2987–3012, 2015.

5. Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pairings.
J. of Cryptology. Published online at https: // link. springer. com/ article/ 10. 1007%
2Fs00145-018-9280-5 , 2018.

6. Razvan Barbulescu, Nadia El Mrabet, and Loubna Ghammam. A taxonomy of pairings,
their security, their complexity. Cryptology ePrint Archive, Report 2019/485, 2019.

7. Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François Morain. Improving
NFS for the discrete logarithm problem in non-prime finite fields. In Advances in Cryptology
- Eurocrypt 2015, volume 9056 of Lecture Notes in Computer Science, 2015.

8. Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The Towed Number Field
Sieve. In Advances in Cryptology – Asiacrypt 2015, volume 9453 of Lecture Notes in
Computer Science, 2015.

9. Paulo S. L. M. Barreto, Craig Costello, Rafael Misoczki, Michael Naehrig, Geovandro C.
C. F. Pereira, and Gustavo Zanon. Subgroup security in pairing-based cryptography. In
Progress in cryptology –LATINCRYPT 2015, volume 9230 of Lecture Notes in Computer
Science, 2015.

10. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with
prescribed embedding degrees. In Security in Communication Networks, 2002.

11. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order.
In Selected Areas in Cryptography - SAC 2005, 2005.

12. Jean-Luc Beuchat, Jorge E. González-Dı́az, Shigeo Mitsunari, Eiji Okamoto, Francisco
Rodŕıguez-Henŕıquez, and Tadanori Teruya. High-speed software implementation of the
optimal Ate pairing over Barreto–Naehrig curves. In Pairing-Based Cryptography – Pairing
2010, volume 6487 of Lecture Notes in Computer Science, 2010.

26

https://link.springer.com/article/10.1007%2Fs00145-018-9280-5
https://link.springer.com/article/10.1007%2Fs00145-018-9280-5

13. Jean-Luc Beuchat, Emmanuel López-Trejo, Luis Mart́ınez-Ramos, Shigeo Mitsunari, and
Francisco Rodŕıguez-Henŕıquez. Multi-core implementation of the Tate pairing over super-
singular elliptic curves. In Cryptology and Network Security – CANS 2009, volume 5888 of
Lecture Notes in Computer Science, 2009.

14. I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cambridge University
Press, 1999.

15. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in
Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, 2004.

16. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Advances in Cryptology – CRYPTO 2001, volume 2139 of LNCS, 2001.

17. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Advances in Cryptology - Eurocrypt 2003,
volume 2656 of Lecture Notes in Computer Science, 2003.

18. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In Advances in Cryptology - CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, 2005.

19. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. J. of
Cryptology, 17(4), 2004.

20. Sébastien Canard, Aı̈da Diop, Nizar Kheir, Marie Paindavoine, and Mohamed Sabt. Blin-
dIDS: Market-compliant and privacy-friendly intrusion detection system over encrypted
traffic. In Asia Conference on Computer and Communications Security. ACM, 2017.

21. Steve Chang. Trend micro. http://www.trendmicro.fr, 2008.
22. Sanjit Chatterjee, Alfred Menezes, and Francisco Rodŕıguez-Henŕıquez. On instantiat-

ing pairing-based protocols with elliptic curves of embedding degree one. IEEE Trans.
Computers, 66(6):1061–1070, 2017.

23. Craig Costello, Tanja Lange, and Michael Naehrig. Faster pairing computations on curves
with high-degree twists. In Public Key Cryptography – PKC 2010, volume 6056 of Lecture
Notes in Computer Science, 2010.

24. Quentin Deschamps, Aurore Guillevic, and Shashank Singh. Estimating size requirements
for pairings: Simulating the tower-NFS algorithm in GF(pn), 2017. Slides are available at
https://ecc2017.cs.ru.nl/slides/ecc2017-guillevic.pdf.

25. Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. Implementing cryptographic
pairings over Barreto-Naehrig curves. In Pairing-Based Cryptography – Pairing 2007, volume
4575 of Lecture Notes in Computer Science, 2007.

26. Zcash developers. Zcash. https://www.zfnd.org/.
27. Robert Dry lo. On constructing families of pairing-friendly elliptic curves with variable

discriminant. In Progress in cryptology – INDOCRYPT 2011, volume 7107 of Lecture Notes
in Computer Science, 2011.

28. Pu Duan, Shi Cui, and Choong Wah Chan. Special polynomial families for generating more
suitable elliptic curves for pairing-based cryptosystems. In The 5th WSEAS International
Conference on Electronics, Hardware, Wireless and Optimal Communications, 2005.

29. Sylvain Duquesne, Nadia El Mrabet, Safia Haloui, and Franck Rondepierre. Choosing and
generating parameters for low level pairing implementation on BN curves. Appl. Algebra
Eng. Commun. Comput., 29(2), 2018.

30. Sylvain Duquesne and Loubna Ghammam. Memory-saving computation of the pairing final
exponentiation on BN curves. Groups Complexity Cryptology, 8(1), 2016.

31. N. El Mrabet and M. Joye. Guide to Pairing-Based Cryptography. Chapman & Hall/CRC
Cryptography and Network Security Series. CRC Press, 2017.

32. Nadia El Mrabet, Aurore Guillevic, and Sorina Ionica. Efficient multiplication in finite field
extensions of degree 5. In Progress in Cryptology - AFRICACRYPT 2011 - 4th International
Conference on Cryptology in Africa, Dakar, Senegal, July 5-7, 2011. Proceedings, pages
188–205, 2011.

33. H. Fan and M. A. Hasan. Comments on ”five, six, and seven-term karatsuba-like formulae.
IEEE Transactions on Computers, 56(5):716–717, 2007.

27

https://ecc2017.cs.ru.nl/slides/ecc2017-guillevic.pdf
https://www.zfnd.org/

34. Georgios Fotiadis and Elisavet Konstantinou. Generating pairing-friendly elliptic curve
parameters using sparse families. Journal of Mathematical Cryptology, 12(2), 2018.

35. Georgios Fotiadis and Chloe Martindale. Optimal tnfs-secure pairings on elliptic curves
with even embedding degree. Cryptology ePrint Archive, Report 2018/969, 2018. https:

//eprint.iacr.org/2018/969.
36. Georgios Fotiadis and Chloe Martindale. Optimal TNFS-secure pairings on elliptic curves

with composite embedding degree. Cryptology ePrint Archive, Report 2019/555, 2019.
37. Emmanuel Fouotsa, Nadia El Mrabet, and Aminatou Pecha. Optimal Ate Pairing on Elliptic

Curves with Embedding Degree 9, 15 and 27. Journal of Groups, Complexity, Cryptology,
Volume 12, issue 1, April 2020.

38. David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic
curves. J. of Cryptology, 23(2), 2010.

39. Laura Fuentes Castañeda, Edward Knapp, and Francisco Rodŕıguez Henŕıquez. Faster
hashing to G2. In Selected Areas in Cryptography – SAC 2011, volume 2259 of Lecture
Notes in Computer Science, 2011.

40. Loubna Ghammam and Emmanuel Fouotsa. Improving the computation of the optimal ate
pairing for a high security level. J. Appl. Math. Comput., 1, 2018.

41. Laurent Grémy. Higher-dimensional sieving for the number field sieve algorithms. The Open
Book Series, 2(1):275–291, 2019.

42. Gurleen Grewal, Reza Azarderakhsh, Patrick Longa, Shi Hu, and David Jao. Efficient
implementation of bilinear pairings on ARM processors. In Selected Areas in Cryptography –
SAC 2012, volume 7707 of Lecture Notes in Computer Science, 2012.

43. Aurore Guillevic. A short-list of pairing-friendly curves resistant to Special TNFS at the
128-bit security level. In Public key cryptology – PKC 2020, 2020.

44. Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Cocks–Pinch curves of embedding
degrees five to eight and optimal ate pairing computation. Designs, Codes and Cryptography,
pages 1–35, 2020.

45. Aurore Guillevic and Shashank Singh. On the alpha value of polynomials in the tower
number field sieve algorithm, 2019. article available in https://eprint.iacr.org/2019/885,
source code available in https://gitlab.inria.fr/tnfs-alpha/alpha.

46. Florian Hess. Pairing lattices. In Pairing-based cryptography – Pairing 2008, volume 5209
of Lecture Notes in Computer Science, 2008.

47. Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The Eta pairing revisited. IEEE
Trans. Information Theory, 52(10), 2006.

48. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic Number
Theory (ANTS-IV), volume 1838 of Lecture Notes in Computer Science, 2000.

49. Antoine Joux, Reynald Lercier, Nigel P. Smart, and Frederik Vercauteren. The number
field sieve in the medium prime case. In Advances in Cryptology - CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, 2006.

50. Antoine Joux and Cécile Pierrot. The special number field sieve in Fpn – application to
pairing-friendly constructions. In Pairing-Based Cryptography - Pairing 2013, volume 8365
of Lecture Notes in Computer Science, 2013.

51. Marc Joye and Gregory Neven, editors. Identity-Based Cryptography, volume 2 of Cryptology
and Information Security Series. IOS press, 2009.

52. Ezekiel J. Kachisa, Edward F. Schaefer, and Michael Scott. Constructing Brezing-Weng
pairing-friendly elliptic curves using elements in the cyclotomic field. In Pairing-Based
Cryptography – Pairing 2008, 2008.

53. Koray Karabina and Edlyn Teske. On prime-order elliptic curves with embedding degrees
k = 3, 4, and 6. In Alfred J. van der Poorten and Andreas Stein, editors, Algorithmic
Number Theory, 8th International Symposium, ANTS-VIII, Banff, Canada, May 17-22,
2008, Proceedings, volume 5011 of Lecture Notes in Computer Science, pages 102–117.
Springer, 2008.

54. Md. Al-Amin Khandaker, Yuki Nanjo, Loubna Ghammam, Sylvain Duquesne, Yasuyuki
Nogami, and Yuta Kodera. Efficient optimal ate pairing at 128-bit security level. In Progress

28

https://eprint.iacr.org/2018/969
https://eprint.iacr.org/2018/969
https://eprint.iacr.org/2019/885
https://gitlab.inria.fr/tnfs-alpha/alpha

in Cryptology - INDOCRYPT 2017, volume 10698 of Lecture Notes in Computer Science,
2017.

55. T. Kim and R. Barbulescu. The extended tower number field sieve: A new complexity
for the medium prime case. In Advances in Cryptology – CRYPTO 2016, volume 9814 of
Lecture notes in computer science, 2016.

56. Taechan Kim and Jinhyuck Jeong. Extended Tower Number Field Sieve with Application
to Finite Fields of Arbitrary Composite Extension Degree. In Serge Fehr, editor, Public-
Key Cryptography – PKC 2017, pages 388–408, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

57. T KLEINJUNG. Cofactorisation strategies for the number field sieve and an estimate for the
sieving step for factoring 1024-bit integers. In European Network of Excellence (ECRYPT),
editor, Special-purpose Hardware for Attacking Cryptographic Systems Workshop– SHARCS
2006, 2006.

58. Thorsten Kleinjung. On polynomial selection for the general number field sieve. Math.
Comp., 75(256), 2006.

59. Thorsten Kleinjung. Polynomial selection, 2008. In CADO workshop on integer factorization,
INRIA Nancy, 2008. http://cado.gforge.inria.fr/workshop/slides/kleinjung. pdf.

60. Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.

61. Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security levels. In
IMA Int. Conf., volume 3796 of Lecture Notes in Computer Science, 2005.

62. Duc-Phong Le, Nadia El Mrabet, Safia Haloui, and Chik How Tan. On the near prime-order
mnt curves. Applicable Algebra in Engineering, Communication and Computing, 30(2),
2019.

63. Arjen K Lenstra. Unbelievable security: Matching AES security using public key systems.
In Advances in cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer
Science, 2001.

64. Xibin Lin, Chang-An Zhao, Fangguo Zhang, and Yanming Wang. Computing the ate pairing
on elliptic curves with embedding degree k= 9. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, 91(9), 2008.

65. Ben Lynn. Mnt curves. https://crypto.stanford.edu/pbc/mnt.html.
66. Dmitrii Viktorovich Matyukhin. Effective version of the number field sieve for discrete

logarithm in a field GF (pk). Trudy po Diskretnoi Matematike, 9, 2006.
67. Gary McGuire and Oisin Robinson. A new angle on lattice sieving for the number field

sieve. arXiv preprint arXiv:2001.10860, 2020.
68. Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with assessing the impact

of NFS advances on the security of pairing-based cryptography. In Paradigms in Cryptology
- Mycrypt 2016, volume 10311 of Lecture Notes in Computer Science, 2016.

69. Victor S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology, 17(4), 2004.
70. Atsuko Miyaji, Masaki Nakabayashi, and Shunzo Takano. Characterization of elliptic curve

traces under FR-reduction. In ICISC, volume 2015 of Lecture Notes in Computer Science,
2000.

71. Peter L. Montgomery. Five, six, and seven-term karatsuba-like formulae. IEEE Trans.
Computers, 54(3):362–369, 2005.

72. Dustin Moody and Lily Chen. Pairing project. https://csrc.nist.gov/Projects/Pairing-
Based-Cryptography, 2011.

73. D. Page, N. P. Smart, and F. Vercauteren. A comparison of MNT curves and supersingular
curves. Applicable Algebra in Engineering, Communication and Computing, 17(5), 2006.

74. John M Pollard. Factoring with cubic integers. In The development of the number field
sieve, volume 1554 of Lecture Notes in Mathematics, pages 4–10. Springer, 1993.

75. Francisco Rodŕıguez-Henŕıquez and Erkay Savas. Special issue in honor of peter lawrence
montgomery. J. Cryptographic Engineering, 8(3):185–187, 2018.

76. P. Sarkar and S. Singh. Fine tuning the function field sieve algorithm for the medium prime
case. IEEE Transactions on Information Theory, 62(4), 2016.

29

https://crypto.stanford.edu/pbc/mnt.html

77. P. Sarkar and S. Singh. A generalisation of the conjugation method for polynomial selection
for the extended tower number field sieve algorithm. Cryptology ePrint Archive, Report
2016/537, 2016.

78. Palash Sarkar and Shashank Singh. New complexity trade-offs for the (multiple) number
field sieve algorithm in non-prime fields. In Advances in Cryptology – Eurocrypt 2016,
volume 9665 of Lecture Notes in Computer Science, 2016.

79. Michael Scott. Missing a trick: Karatsuba variations. Cryptography and Communications,
10(1):5–15, 2018.

80. Michael Scott and Paulo S. L. M. Barreto. Generating more mnt elliptic curves. Designs,
Codes and Cryptography, 38(2):209–217, Feb 2006.

81. Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez Perez, and Ezekiel J.
Kachisa. On the final exponentiation for calculating pairings on ordinary elliptic curves. In
Pairing-Based Cryptography – Pairing 2009, 2009.

82. Michael Scott and Aurore Guillevic. A new family of pairing-friendly elliptic curves. In
Finite Fields arithmetic – WAIFI 2018, Lecture Notes in Computer Science, 2018.

83. Mike Scott. Missing a trick: Karatsuba revisited. IACR Cryptology ePrint Archive, 2015:1247,
2015.

84. Caroline Sheedy. Privacy Enhancing Protocols using Pairing Based Cryptography. PhD
thesis, Dublin City University, 2010.

85. Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blindbox: Deep
packet inspection over encrypted traffic. ACM SIGCOMM Computer communication review,
45(4), 2015.

86. John Tate. Duality theorems in galois cohomology over number fields. In International
Congress of Mathematicians Stockholm 1962, Djursholm: Inst. Mittag-Leffler. MR 0175892,
1963.

87. Executive Team. Voltage security. https://www.voltage.com, 2005.
88. T. Unterluggauer and E. Wenger. Practical attack on bilinear pairings to disclose the secrets

of embedded devices. In 2014 Ninth International Conference on Availability, Reliability
and Security, Sept 2014.

89. Frederik Vercauteren. Optimal pairings. IEEE Trans. Information Theory, 56(1), 2010.
90. André Weil. Sur les fonctions algebriques à corps de constantes fini. Les Comptes rendus de

l’Academie des sciences, 210(MR 0002863), 1940.
91. Meng Zhang and Maozhi Xu. Generating pairing-friendly elliptic curves using parameter-

ized families. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 101(1), 2018.

92. Xusheng Zhang and Dongdai Lin. Analysis of optimum pairing products at high security
levels. In Progress in Cryptology – INDOCRYPT 2012, volume 7668 of Lecture Notes in
Computer Science, 2012.

30

Method 6.2

k
min

log2 q
min

log2 u
u log2 q Miller’s cost ≈

9 484 22 −1+23+24+25+29+210+222 482 44D+20A+1D+Mk+Ik 31 155Mq + Ik
11 336 13 −1 + 28 + 214 363 28D+4MA+1D+Mk+Ik 65 316Mq + Ik
13 351 12 1+2+23+24+28+210+214+220 599 20D+14A+1D+Mk+Ik 110 085Mq + Ik
15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 complexity higher than 203 985Mq + Ik
37, 39, 43, 45 no value for u below 211

Method 6.3

10 572 40 1 + 23 + 24 + 28 + 239 + 240 432 79D+15MA+L+Mk 23 816

14 382 21 1−22+26+29−212−215−219+222 390 44D+14MA+L+Mk 12 228

18 467 21 1+2+23+25+27+28+210+212+213+222 482 44D+11MA+L+Mk 23 458

22 497 19 1 + 2 + 24 + 214 + 215 403 30D+9MA+L+Mk 78 423

26 321 11 1 + 28 + 212 360 24D+5MA+L+Mk 81 248

30 542 16 1 + 22 + 23 − 210 + 214 + 216 552 32D+11MA+L+Mk 26 687

34 307 8 1− 24 + 210 + 214 533 28D+6MA+L+Mk 165 138

38 356 5 1 + 23 + 29 + 211 + 217 713 34D+11MA+L+Mk 268 200

42 508 11 1 + 24 + 27 + 28 + 210 + 211 539 24D+7MA+L+Mk 225 150

46 302 6 1 + 2 + 29 + 210 + 213 660 26D+9MA+L+Mk 315 415

50 453 9 1 + 24 − 27 + 210 + 211 + 214 746 28D+9MA+L+Mk 50 603

54 395 7 1 + 2 + 23 + 25 + 28 + 29 + 211 664 23D+9MA+L+Mk 74 466

Method 6.4

12 510 63, 7 1 + 2 + 23 + 28 + 29 + 211 + 264 510 64D+6MA+L+Mk 10 141

20 382 31, 8 1 + 24 + 216 + 232 383 32D+3MA+L+Mk 9 116

28 350 21, 8 1 + 2 + 23 + 24 + 28 + 29 + 222 350 22D+6MA+L+Mk 10 278

36 438 21, 9 1 + 22 + 210 + 214 + 216 + 222 438 22D+5MA+L+Mk 18 901

44 310 12, 9 1 + 27 + 28 + 212 + 214 342 14D+4MA+L+Mk 59480

52 306 10, 9 1− 26 + 29 + 212 + 213 380 13D+4MA+L+Mk 81134

Method 6.7, degree 2 twist

12 445 32 1 + 214 + 217 + 232 445 64D+9MA+L+Mk 13 976

24 381 4.4 1 + 22 + 28 + 29 + 232 381 32D+4MA+L+Mk 20 192

30 550 10 1 + 2 + 25 − 27 + 212 691 48D+25MA+L+Mk 56 133

36 541 16 1 + 23 + 25 − 28 + 211 + 213 + 216 547 32D+13MA+L+Mk 56 963

42 667 9 no value for u below 211

48 525 24 1 + 23 + 25 + 26 + 28 + 210 + 214 + 224 525 24D+7MA+L+Mk 72 348

Method 6.7, without twists

9 507 11 −1 + 24 + 25 + 29 + 211 520 48D+15MA+MA+Mk+Ik 31 369Mq + Ik
15 607 9 1 + 22 + 24 + 27 + 29 + 210 + 212 + 214 950 56D+34MA+6MA+10Mk+Ik 85 050Mq + Ik
21 598 7 1 + 2 + 24 + 27 − 210 + 213 1100 52D+23MA+MA+Mk+Ik 97 135Mq + Ik
27 465 4 1− 22 − 27 + 210 + 211 1218 48D+16MA+MA+Mk+Ik 157 460Mq + Ik

33, 39, 45 no value for u below 210

Table 10: Methods 6.2, 6.3, 6.4 and 6.7 at 128 bits of security

31

Method 6.6

Degree 6 twist

k
min

log2 q
min

log2 u
u log2 q Miller’s cost ≈Mq

12 461 64 −277 + 250 + 233 460 77D+2MA+L+Mk 7 438

24 318 32 −232 + 228 + 212 319 32D+2MA+L+Mk 9 381

30 383 32 232 + 214 + 213 + 23 + 1 383 32D+4MA+L+Mk 9 887
42 350 22 −222 + 218 + 26 349 22D+2MA+L+Mk 9 738

48 286 16 216 + 214 + 213 + 211 + 26 296 17D+4MA+L+Mk 17 042

Degree 2 twist

k
min

log2 q
min

log2 u
u log2 q Miller’s cost ≈

14 350 21, 9 −1+26+27+29+210+213+217+222 352 44D+11MA+2L+3πq+3Mk 11 173Mq

16 350, 5 16 23+25+26−28+211−214+217 369 66D+4MA+2L+3πq+3Mk+Ik 28 282Mq + Ik
20 350, 65 16 1+26+217 372 34D+4MA+2L+3πq+3Mk 15 990Mq

22 364 13 25+217 474 34D+2MA+2L+3πq+3Mk+Ik 64 426Mq + Ik
26 306, 6 10, 9 22+23+25+27+213+214 407 28D+8MA+2L+3πq+3Mk 91 242Mq

28 373 10, 9 −22+27+28+210+214 478 28D+8MA+2L+3πq+3Mk+Ik 21 778Mq + Ik
32 280 8, 3 2+24+25+29 309 20D+6MA+2L+3πq+3Mk 32 990Mq

34 354 8, 8 2+23+25+210 400 20D+3MA+2L+3πq+3Mk+Ik 102 102Mq + Ik
38 356 8, 9 1+22+24+26+27+210 409 20D+9MA+2L+3πq+3Mk 152 518Mq

40 370 8 −23+27+210 466 20D+3MA+2L+3πq+3Mk+Ik 28 984Mq + Ik
44, 46, 50, 52 no value for u below 212

Degree 3 twist

k
min

log2 q
min

log2 u
u log2 q Miller’s cost ≈

15 382, 4 31, 8 1+22+212+216+232 383 32D+4MA+L+Mk 11 173Mq

21 350, 4 21, 9 −2−27+210+216+222 351 44D+11MA+ extra computation 19160Mq + Ik
27 298, 5 15, 1 1+23−210+215 300 15D+3MA 6 401Mq

33 311 13 1+2+27+29+214 336 14D+4MA+L+Mk 54 320Mq

39 308 11 24+27+210+211+213 375 26D+9MA+ extra computation 145 000Mq + Ik
45 351 11 1+2−23+28+210+211 373 12D+8MA+MA+Mk 17 832Mq

Without twist

k
min

log2 q
min

log2 u
u log2 q Miller’s cost ≈

11 311 13 24 + 26 + 27 + 29 + 210 + 214 338 27D+10A+Ik+Mk 84 538Mq + Ik
13 308 11 24 + 27 + 210 + 211 + 213 376 26D+6A+Ik+Mk 125 722Mq + Ik
29 643 10, 7 24 − 27 + 210 + 211 690 22D+7A+Ik+Mk 511 589Mq + Ik

17, 19, 23, 25, 31, 35, 37, 41, 43, 47, 49, 51, 53 no value for u below 212

Table 11: Method 6.6, 128 bits of security, twist of degree 6, 3, 2 and 1 (no twist)

k log32(q) Miller’s in m32 log64(q) Miller’s in m64

12 15 1 673 550 8 476 032

24 10 938 100 5 234 525

Table 12: Method 6.6, Comparison of the best candidates

32

Operation Complexity in projective coordinates

Doubling step [92] M3b + kMq + 3Me + 9Se +Mk + Sk
Mixed addition [92] kMq + 12Me + 5Se +Mk

Final line evaluation (5k − 4)Mq + Sq + Sk/d +Mk/d + 2MA

Table 13: Complexity of Miller’s steps using twist of degree 3

KSS

k
min

log2 q
min

log2 u
u log2 q ≈ Miller’s cost m32 m64

16 330 33 −234 + 227 − 223 + 220 − 211 + 1 340 7 534Mq 911 614 271 224

18 356 44 244 + 222 − 29 + 2 352 9 431Mq 1 358 064 339516

32 344 19 25 + 210 + 211 + 219 + 220 349 19 321Mq + Ik 2 337841 695 556

36 321 23 1 + 2 + 24 + 29 + 214 + 217 + 223 + 224 329 10 771Mq + Ik 1 303 291 387 756

40 376 17 1 + 24 + 27 + 28 + 213 + 218 377 18 254Mq 2 628 576 657 144

54 315, 9 15, 7 23 + 27 + 211 + 215 + 216 348 20 427Mq 2 471 667 735 372

other families

k
min

log2 q
min

log2 u
u log2 q ≈ Miller’ cost m32 m64

9 590 73 274 + 235 − 222 + 2 590 8 808Mq 2 050 048 512 512

BN − 12 472 118 −1− 214 + 2101 + 2114 456 12 068 2 715 300 772 352

15 383 31, 9 2 + 210 + 216 + 219 + 232 383 6 836Mq 984 384 246 096

Table 14: KSS, MNT, BN and other curves, 128 bits of security

33

128 bits

Method k u log2 q log2(qk) ≈Mq m32 m64

6.3 14 1− 22 + 26 + 29 − 212 − 215 − 219 + 222 390 5 460 12 228 2 066 532 599 172

6.4 20 1 + 24 + 216 + 232 383 7 660 9 116 1 312 704 328 176
6.4 28 1 + 2 + 23 + 24 + 28 + 29 + 222 350 9 800 10 278 1 243 638 370 008

6.6 12 −277 + 250 + 233 461 5 520 7 438 1 673 550 476 032
6.6 15 1 + 22 + 212 + 216 + 232 383 5 745 11 173 1 608 912 402 228
6.6 24 −232 + 228 + 212 319 7 656 9 381 938 100 234 525
6.6 27 1 + 23 − 210 + 215 300 8 058 6 401 640 100 160 025

6.7 12 1 + 214 + 217 + 232 445 5 340 13 976 2 739 296 684 824

KSS 16 −234 + 227 − 223 + 220 − 211 + 1 340 5 540 7 534 911 614 271 224

DCC 15 2 + 210 + 216 + 219 + 232 383 5 745 6 836 984 384 246 096

192 bits

Method k u log2 q log2(qk) ≈Mq m32 m64

6.3 14 1− 23 + 27 + 28 + 211 + 240 719 10 053 21 940 11 606 260 3 159 360

6.4 20 1 + 26 + 29 + 211 + 212 + 216 + 261 731 14 601 16 735 8 852 815 2 409 840
6.4 28 −231 − 213 − 21 − 1 495 13 833 13 250 3 392 000 848 000

6.6 12 2 + 22 + 26 + 27 + 211 + 2105 + 2206 + 2207 1 244 14 928 28 831 43 851 951 11 532 400
6.6 15 1− 28 + 212 + 215 + 216 − 272 + 275 897 13 442 13 320 11 202 120 2 997 000

6.6(ZL) 27 −25 + 28 + 212 + 216 + 221 + 222 438, 5 11 841 16 178 2 734 082 792 722

6.6 24 −256 − 243 + 29 − 26 559 13 403 16 368 4 730 352 1 325 808

6.7 24 −248 + 212 + 242 + 1 573 13 746 38 871 12 594 204 3 148 551

KSS 16 24 − 26 + 212 + 213 + 215 + 216 + 225 + 281 + 283 834 13 332 24 795 6 347 520 1 586 880
KSS 18 2− 25 + 29 + 211 + 214 + 282 657 11 809 13 488 5 948 208 1 632 048

DCC 15 23 + 28 + 216 − 218 + 221 + 277 927 13 891 13 507 12 156 300 3 039 075

256 bits, exotic k

Method k u (log2(q)) log2 q
k ≈Mq m32 m64

6.2 17 −1− 26 + 211 + 213 + 214 + 232 1215 20 639 40 277 58× 106 14× 106

6.3 18 −1 + 26 + 28 + 210 + 212 + 214 + 243 945 16 993 43 479 39 131 100 9 782 775

19 −24 +−210 + 213 + 215 610 11 587 55 455 22 182 000 5 545 500
20 2− 24 − 29 + 214 + 246 1011 8 914 20 209 48 958 464 12 239 616

6.6 22 1− 22 + 26 + 27 + 211 + 229 813 17 865 39 479 26 687 804 6 671 951
(BLS) 26 22 + 28 + 212 + 217 + 223 644 16 720 38 857 15 542 800 3 885 700

28 2 + 22 + 24 + 26 + 28 − 211 + 217 + 222 748 20 942 60 380 34 778 880 8 694 720

6.7 9 1 + 23 − 25 − 210 + 213 + 214 + 220 + 221 990 61 373 58 979 453 15 711 488

256 bits

Method k u (log2(q)) log2 q
k ≈Mq m32 m64

6.4 20 1+23−26+210−212+215+277+278+279 956 19 114 21 723 19 550 700 4 887 675

6.4 28 1+2+27+28−210+215+262 991 27 721 25 314 24 326 754 6 480 384

6.6 15 210 + 211 + 230 + 2150 1799 26 977 32 736 102 669 504 25 667 376

6.6 24 2103−2101+268+250 1026 24 621 37 126 38 017 024 9 504 256

6.6 27 −22 − 24 + 210 − 228 579 15 621 18 493 5 991 732 1 497 933

6.7 12 −1+24+29−212+215+2119 1664 19 957 57 279 > 154.106 > 38.106

KSS 16 1−25−28−211+213+2149+2150 1733 27 719 38 904 85 938 936 22 408 704

LZZW 9 24+27−212−217+219+2287 2295 20 650 35 755 185 353 920 46 338 480
DCC 15 1+2+23+25+26−28+215+2112 1345 20161 22 435 39 575 340 10 775 835

Table 15: Miller loop: comparison of the best candidates for 128, 192 and 256 bits of security

34

128 bits

Method k u (log2(q)) ≈Mq m32 m64

6.4 20 1 + 24 + 216 + 232 383 29 250 + I 4 212 144 1 053 036
28 1 + 2 + 23 + 24 + 28 + 29 + 222 350 50 302 + I 6 086 663 1 810 908

6.6 12 −277 + 250 + 233 460 6 188 + 6I 1 393 650 396 416
15 1 + 2 + 212 + 216 + 232 383 19 738 + I 2 842 416 710 604
24 −232 + 228 + 212 319 18 732 + 10I 1 874 200 468 550
27 1 + 23 − 210 + 215 300 76 980 + I 7 698 100 1 924 525

KSS 16 −234 + 227 − 223 + 220 − 211 + 1 340 18 514 + I 2 240 315 666 540

DCC 15 2 + 210 + 216 + 219 + 232 383 19 190 + I 2 763 504 690 876

BN 12 2114 + 2101 − 214 − 1 462 5 598 + 4I 1 260 450 358 528

192 bits

Method k u (log2(q)) ≈Mq m32 m64

6.4 20 1 + 26 + 29 + 211 + 212 + 216 + 261 733 57 762 + I 30 556 627 8 317 872
28 −231 − 213 − 21 − 1 494 121 550 + I 31 117 056 7 779 264

6.6 12 2 + 22 + 26 + 27 + 211 + 2105 + 2206 + 2207 1 246 15 500 + 6I 23 584 626 6 202 400
15 1− 28 + 212 + 215 + 216 − 272 + 275 899 42 707 + I 35 917 428 9 609 300

6.6(ZL) 27 −25 + 28 + 212 + 216 + 221 + 222 438, 5 100 730 + I 19 743 276 4 100 731

6.6 24 −256 − 243 + 29 − 26 518 27 985 + 10I 6 662 810 2 267 595

KSS 16 24 − 26 + 212 + 213 + 215 + 216 + 225 + 281 + 283 500 36 000 + I 9 216 256 2 304 064
18 2− 25 + 29 + 211 + 214 + 282 652 24 719 + 8I 10 904 607 2 991 967

DCC 15 23 + 28 + 216 − 218 + 221 + 277 929 41 942 + I 37 748 700 9 437 175

256 bits

Method k u (log2(q)) ≈Mq m32 m64

6.4 20 1+23−26+210−212+215+277+278+279 958 75 582 + I 68 024 700 17 006 175
28 1+2+27+28−210+215+262 989 175 550 + I 168 704 511 44 641 056

6.6 15 210 + 211 + 230 + 2150 1780 79 337 + I 248 803 968 62 200 992
24 2103−2101+268+250 1024 43 213 + 10I 44 260 352 11 065 088
27 −22−24+210−228 568 115 000 + I 37 260 324 9 315 081

KSS 16 1−25−28−211+213+2149+2150 1485 43 128 + I 95 271 961 24 842 304

DCC 15 1+2+23+25+26−28+215+2112 1342 60 257 + I 106 295 112 26 573 775

Table 16: Final exponentiation: Comparison of the best candidates for 128, 192 and 256 bits of security

35

128 bits

Method k u Miller Final Expo. ≈Mq m32 m64

6.3 14 −1−24+27−211+215+222 12 228 17 702 + I 29 931 + I 5 058 508 1 466 668

6.4 20 1+24+216+232 9 116 29 250 + I 38 366 + I 5 524 848 1 381 212

6.6 12 −277+250+233 7438 6 188 + 6I 13 626 + 6I 3 067 200 872 448
15 1+2+212+216+232 11 173 19 738 + I 30 911 + I 4 025 520 1 306 387
24 −232+228+212 9 381 18 732 + 10I 28 113 + 10I 2 812 300 703 075
27 23+24+211+215 6 401 76 980 + I 83 381 + I 8 338 200 2 084 550

KSS 16 −234+227−223+220−211+1 7 534 18 514 + I 26 048 + I 3 151 929 937 764

DCC 15 2+210+216+219+232 6 836 19 190 + I 26 026 + I 3 747 885 936 972

BN 12 2114+2101−214−1 12 068 5 598 + 4I 17600 + 4I 3 961 800 1 126 860

192 bits

Method k u Miller Final Expo. ≈Mq m32 m64

6.4 20 1 + 26 + 29 + 211 + 212 + 216 + 261 16 735 57 762 + I 72 497 + I 38 351 442 9 587 872
28 −231 − 213 − 21 − 1 13 250 121 550 + I 134 800 + I 34 508 800 8 627 200

6.6 12 2+22+26+27+211+2105+2206+2207 28 831 15 500 + 6I 44 331 + 6I 67 436 577 16 859 145
15 1− 28 + 212 + 215 + 216 − 272 + 275 13 320 42 707 + I 56 027 + I 47 119 548 11 779 887
24 −256 − 243 + 29 − 26 16 368 27 985 + 10I 44 353 + 10I 12 820 907 3 205 227

6.6[92] 27 −25 + 28 + 212 + 216 + 221 + 222 16 178 96 626 + I 112 804 + I 22 109 780 5 527 445

KSS 16 24−26+212+213+215+216+225+281+283 24 795 36 000 + I 60 795 + I 15 564 032 3 891 008
18 2− 25 + 29 + 211 + 214 + 282 13 488 24 719 + 8I 38 207 + 8I 16 852 815 4 213 204

DCC 15 23 + 28 + 216 − 218 + 221 + 277 13 507 41 942 + I 55 449 + I 49 905 900 12 476 475

256 bits

Method k u Miller Final Expo. ≈Mq m32 m64

6.4 20 1+23−26+210−212+215+277+278+279 21 723 75 582 + I 97 305 + I 87 575 400 21 893 850
28 1+2+27+28−210+215+262 25 314 175 550 + I 200 864 + I 193 031 265 48 257 816

6.6 15 210 + 211 + 230 + 2150 32 736 79 337 + I 112 073 + I 351 464 064 87 866 016
24 2103−2101+268+250 37 126 43 213 + 10I 80 339 + 8I 82 276 352 20 569 088
27 −22 − 24 + 210 − 228 18 493 112 625 + I 132 272 + I 42 856 452 10 714 113

KSS 16 1−25−28−211+213+2149+2150 38 904 43 128 + I 82 032 + I 144 706 212 36 176 553

DCC 15 1+2+23+25+26−28+215+2112 22 435 60 257 + I 82 692 + I 145 870 452 36 467 613

Table 17: Overall cost of the optimal Ate pairing

36

	A taxonomy of pairings, their security, their complexity

