
Evaluating the effectiveness of heuristic
worst-case noise analysis in FHE

Anamaria Costache1, Kim Laine2, and Rachel Player1

1 Royal Holloway, University of London, UK
{anamaria.costache}, {rachel.player} @rhul.ac.uk
2 Microsoft Research, USA kim.laine@microsoft.com

Abstract. The purpose of this paper is to test the accuracy of worst-
case heuristic bounds on the noise growth in ring-based homomorphic
encryption schemes. We use the methodology of Iliashenko (PhD thesis,
2019) to provide a new heuristic noise analysis for the BGV scheme.
We demonstrate that for both the BGV and FV schemes, this approach
gives tighter bounds than previous heuristic approaches, by as much as
10 bits of noise budget. Then, we provide experimental data on the noise
growth of HElib and SEAL ciphertexts, in order to evaluate how well
the heuristic bounds model the noise growth in practice. We find that,
in spite of our improvements, there is still a gap between the heuristic
estimate of the noise and the observed noise in practice. We extensively
justify that a heuristic worst-case approach inherently leads to this gap,
and hence leads to selecting significantly larger parameters than needed.
As an additional contribution, we update the comparison between the
two schemes presented by Costache and Smart (CT-RSA, 2016). Our
new analysis shows that the practical crossover point at which BGV
begins to outperform FV occurs for very large plaintext moduli, well
beyond the crossover point reported by Costache and Smart.

1 Introduction

Fully homomorphic encryption enables the evaluation of arbitrary polynomials
on encrypted data, without requiring access to the secret key. In contrast, some-
what homomorphic encryption enables the evaluation of limited functions on
encrypted data; this is usually characterised by a bound of the depth of the
circuits that can be evaluated. The first fully homomorphic encryption scheme
was presented by Gentry [22], whose construction augmented a somewhat ho-
momorphic encryption scheme with a technique known as bootstrapping.

In all homomorphic encryption schemes ciphertexts contain noise that grows
during homomorphic evaluation operations. Once the noise exceeds a certain
threshold, decryption will fail. In practice, managing the noise to ensure it is
always below the threshold can be done in two ways. The first approach uses
the bootstrapping procedure, which takes as input a ciphertext with large noise,
and outputs a new ciphertext which has less noise and can be further computed
on. Hence by bootstrapping at appropriate points, the entire evaluation can be



performed. The second approach is to pre-determine the function to be evalu-
ated and set the parameters so as to allow for the noise growth that this specific
function will incur. Using this method, we are sure that the output ciphertext at
the end of the evaluation will have noise below the threshold, thus no bootstrap-
ping will be necessary and correct decryption is ensured. In either case, good
understanding of the noise growth behaviour is essential to achieve correctness
and optimal performance. In fact, a good understanding of the noise growth in
any scheme is crucial to parameter setting, large parameters remaining one of
the main hurdles in homomorphic encryption development.

Contributions. This paper presents two main contributions. Firstly, we evalu-
ate the effectiveness of the heuristic worst-case method. We do so by reworking
the noise growth estimates produced by this method for the somewhat homomor-
phic encryption (SHE) schemes BGV [10] and FV3 [21]. We use the Iliashenko
method [27] for obtaining the heuristic bounds. The bounds for FV were pre-
sented in [27], with the exception of modulus switching, while the BGV bounds
we present using this method are new. We compare these new bounds against
the previous heuristic analyses [18, 24, 23], and show that Iliashenko’s approach
improves on the previous approach by as much as 10 bits of noise budget in cer-
tain settings, particularly so for the FV scheme. To demonstrate this, we provide
the noise estimated by the old bounds and the new approach in Tables 1, 2, 3,
and 4.

Next, we evaluate the practical noise growth incurred when evaluating ho-
momorphic operations in BGV and FV by looking at their implementations in
the HElib [26] and SEAL [36] libraries, respectively. The first HElib noise results
concern the growth of the critical quantity [18] and can be found in Table 1. In
order to facilitate comparison, we define and implement in HElib a noise budget
for the critical quantity for BGV, analogous to the invariant noise budget [36]
for FV that is implemented in SEAL. The results in terms of the noise budget
are presented in Table 2. Our SEAL noise results are presented in Tables 3 and
Table 4, for the binary encoding and batch settings, respectively. We find that,
despite the improvements mentioned above, the predictions are not tight, and
that a significant gap between the predicted noise and the actual noise remains.
We will refer to this gap as the heuristic-to-practical gap.

We conclude that a worst-case heuristic estimate of homomorphic noise growth
is inadequate. That is to say, we conjecture that the theoretical bounds we
present in this work cannot be made tighter. We give an extensive justification for
this conjecture, and comment on other methods we attempted for improvement,
in Section 6. Therefore, we propose further tightening the heuristic-to-practical
gap as an open problem. We believe that a better model of the noise growth
behaviour can only be achieved by fine-tuning the analysis of a specific scheme
to its specific implementation.

Our second main contribution, which can be of independent interest, is to
use our improved analysis to update the Costache-Smart [18] comparison of the

3 FV is based on a scheme of Brakerski [9] and hence is sometimes referred to as BFV.

2



BGV and FV schemes. We improve upon the previous work of Costache-Smart
in several ways. As well as applying the updated noise analysis following [27],
we use a different notion of noise for FV than that used in [18], namely the
invariant noise. In addition, our comparison relies on an up-to-date security
analysis conforming to HE standards [1]. Indeed, it has since been shown [17]
that parameters used in [18] that were estimated to have 80 bits of security are
now estimated to have as little as 50. In contrast, the HE standards security
recommendations start at the level of 128 bits [1].

The BGV and FV schemes remain two of the most popular SHE schemes, as
they continue to see many performance improvements and optimisations and are
implemented in several actively maintained homomorphic encryption libraries,
including PALISADE4 as well as SEAL and HElib. It is therefore an important
question to accurately assess how they perform and compare them against one
another.

We conduct our comparison for a range of plaintext moduli t and present
our results in Tables 5, 6, 7, 8 and 9. We expect that BGV will outperform FV
asymptotically and our results remain consistent with this. An important issue
in practice is to understand where the crossover point is, and our key conclusion
is that the crossover point is somewhere between t = 232 and t = 264, far beyond
the crossover point t ≈ 28 reported in [18].

In most cases, our results show that BGV and FV present only minor per-
formance differences in terms of supporting a specific homomorphic evaluation.
We can conclude that, from the perspective of computational capabilities, the
question of whether or not BGV should be preferred to FV should not be an
important one when deciding between the two schemes.

Related work. The BGV and FV schemes are among the primary schemes
being considered in the ongoing effort to standardise homomorphic encryption5.
Indeed, the Homomorphic Encryption Security Standard [1] explicitly mentions
the comparison of BGV and FV as an open problem, and motivates the present
work. The analysis presented in our work should be expected to feed into the
ongoing effort of the standardisation consortium [11] towards automation such
as compilers or optimiser toolchains. An accurate noise growth estimator is likely
to be a central component of any such tool.

A comparison of BGV as implemented in HElib and FV as implemented
in SEAL was identified as an interesting and challenging open problem in [13].
Al Badawi et al. [35] investigate the behaviour of the BEHZ [5] and HPS [25]
variants of FV6, and call for further study on BEHZ-FV noise growth, which
further motivates the present work.

Previous comparisons of homomorphic encryption schemes include [18, 28,
30]. In our comparison, we do not consider newer schemes such as CKKS [15] or
TFHE [16], which come with entirely different trade-offs. We also do not consider

4 https://git.njit.edu/palisade/PALISADE
5 HomomorphicEncryption.org
6 The results of [35] were recently revisited by Bajard et al. [6].

3

https://git.njit.edu/palisade/PALISADE
http://HomomorphicEncryption.org


the NTRU-based schemes YASHE [8] and LTV [32], which are vulnerable to
attacks in “overstretched” parameter settings of interest [4, 29].

2 Preliminaries

For reasons of space, we recall the BGV scheme in Appendix A and the FV
scheme in Appendix B. As in prior work [18], we deviate from the original de-
scription of FV by also defining a modulus switching operation. In particular,
we describe switching from a modulus q to a modulus p.

Parameters. A Ring-LWE-based (levelled) FHE scheme is parameterised by
L, n, Q, t, χ, S, w, ` and λ. There are L primes p0, . . . , pL−1 which are used
to form the chain of moduli q0, . . . , qL−1. Elements in the chain of moduli are

formed as qk =
∏k
j=0 pj . The dimension n is a typically chosen as a power

of two, and we will only use such n in this work. The dimension n, plaintext
modulus t and the chain of moduli parameterise the underlying plaintext and
ciphertext rings. In particular, the ciphertext modulus Q = qL−1 =

∏L−1
j=0 pj is

the product all the primes. Each intermediate prime qj corresponds to a level and
all ciphertexts are with respect to a specific level. We denote by q some fixed level
when describing the schemes, so that the ciphertext space at any given moment
is Rq = Zq[x]/(xn + 1). Note that for key generation and for fresh ciphertexts,
we always have q = Q. The plaintext space is always Rt = Zt[x]/(xn + 1). Let w
be a base, then `+ 1 = blogw qc+ 1 is the number of terms in the decomposition
into base w of an integer in base q. The security parameter is λ.

The Ring-LWE error distribution is denoted χ and is typically a discrete
gaussian with standard deviation σ = 3.2 [1]. The underlying Ring-LWE prob-
lem, parameterised by n, Q and σ, is a variant with small secret. The parameter
S denotes the secret key distribution. In the FV scheme [21] the distribution S is
the uniform distribution on the subspace of Rq consisting of polynomials whose
coefficients are in the set {0, 1}. In the SEAL implementation [36] the distribu-
tion S is the uniform distribution on the subspace of Rq consisting of polynomials
whose coefficients are in the set {−1, 0, 1}. In the BGV scheme [10], the distribu-
tion S is the same as the error distribution χ. In the HElib7 implementation [26],
S is the distribution on the subspace of Rq consisting of polynomials whose coef-
ficients are in the set {−1, 0, 1} where each coefficient is sampled as follows: the
element 0 is sampled with probability 0.5 and the elements ±1 are each sampled
with probability 0.25. To obtain the heuristic bounds for both BGV and FV, we
take S to be the uniform distribution on the subspace of Rq consisting of poly-
nomials whose coefficients are in the set {−1, 0, 1}. This ensures our comparison
of the two schemes in Section 5 is fair.

Canonical embedding norm. Following previous work [18, 23, 24, 27], we will
present heuristic bounds for the noise growth behaviour of FV and BGV with

7 Since January 2019 the HElib default secret distribution is no longer sparse.

4



respect to the canonical embedding norm ‖·‖can. Throughout this work, the
notation ‖a‖ refers to the infinity norm of a, while ‖a‖can refers to the canonical
embedding norm. The canonical embedding norm of an element a is defined to
be the infinity norm of the canonical embedding8 σ(a) of a, so ‖a‖can = ‖σ(a)‖.

We will use the following properties of the canonical embedding norm. For any
polynomial a ∈ R we have ‖a‖ ≤ cm ‖a‖can ≤ ‖a‖1 where cm is a constant known
as the ring expansion factor (see [20]). We have cm = 1 when the dimension n is
a power of two [20]. In this case, it suffices for correctness to ensure that ‖v‖can
is less than the maximal value of ‖v‖ such that decryption succeeds. For any
polynomials a, b we have ‖ab‖can ≤ ‖a‖can ‖b‖can.

For our bounds, we use the method presented in [27]. This allows us to
improve our noise bounds compared to previous ones [18, 23, 24] by as much
as 11 bits of noise budget in certain settings. Therefore, the noise bounds we
present in this work are much tighter than ones presented in previous works.

Let R = Z[x]/(xn + 1) and let ζ be a primitive 2nth root of unity (it does
not matter which one, by the definition of the canonical embedding norm). Let
a ∈ R be a polynomial for which the variance of each coefficient is Va. Then, the
variance of the random variable a(ζ) is nVa [18, 24, 27]. We use the fact that
erfc(6) ≈ 2−55 to obtain the following bound ‖a‖can ≤ 6

√
n
√
Va.

We also use the following facts. Let Va and Vb the variances of the coefficients
of two polynomials a ∈ R and b ∈ R chosen from zero-mean distributions, and
let γ be a constant. The variance of the coefficients of the polynomial a + b
is Va+b = Va + Vb. The variance of the coefficients of the polynomial γa is
Vγa = γ2Va. The variance of the coefficients of the polynomial ab is Vab = nVaVb
(see [27] for a proof).

The variances in situations of interest for this paper are as follows. The
coefficients of a polynomial f that are distributed uniformly in [−k2 ,

k
2 ] have

variance Vf ≈ k2

12 . The coefficients of a polynomial e that are drawn from an
error distribution χ, which has standard deviation σ, have variance Ve = σ2.
The coefficients of a polynomial s that are drawn from the uniform distribution
on the ternary set {−1, 0, 1} have variance Vs = 2

3 .

3 BGV noise growth in practice

3.1 Noise growth behaviour

In this section we present new heuristic bounds on the noise growth behaviour
of BGV, developed using the methodology of [27]. In Section 3.2 we compare our
bounds with those that would be obtained following the methodology presented
in prior work [18, 23, 24], and show that our analysis provides a better estimate
of the noise growth.

Our bounds use the critical quantity [18] definition of noise, which is the
notion of noise used in the HElib implementation of BGV. We assume that the
plaintext is chosen uniformly at random from the plaintext space. We further

8 For a definition of the canonical embedding and other algebraic background, see [33].

5



assume that the secret key distribution S is the uniform ternary distribution.
Earlier heuristic bounds for BGV [18, 23, 24] were presented assuming a sparse
secret distribution, in line with earlier versions of HElib. For comparison with
our new bounds, we redo the prior analysis so that in Tables 1 and 2, the ‘[18]’
column refers to bounds that would be obtained using the heuristic method
presented in [18] and assuming a uniform ternary distribution for the secret key.

Definition 1 (BGV critical quantity [18]). Let ct = (c0, c1) be a BGV ci-
phertext encrypting the message m ∈ Rt. Its critical quantity v is the polynomial

v = [ct(s)]q = (c0 + c1s) (mod q) .

During decryption, we first compute the critical quantity and then take the
result modulo t. If there is no wraparound modulo q then for some integer poly-
nomial k, the critical quantity satisfies [ct(s)]q = m+ tk. The reduction modulo
t hence returns m. Therefore for correctness, we require that ‖v‖ ≤ q/2.

Lemma 1 (Maximal noise [18]). A BGV ciphertext ct encrypting a message
m can be correctly decrypted if the critical quantity v satisfies ‖v‖ < q/2.

Encrypt: Let ct be a fresh BGV encryption of a message m ∈ Rt. With high
probability, the critical quantity v in ct satisfies

‖v‖can ≤ 6t

√
n

12
+ nσ2

(
4

3
n+ 1

)
.

To see this, we use that for a polynomial a with coefficients with variance Va,
and a scalar t, the polynomial ta has coefficients with variance Vat = t2Va. The
noise polynomial is v = m+ t(e1 + e2s− eu). Its coefficients have variance

Vv = Vm+t(e1+e2s−eu) = Vm + t2Ve1+e2s−eu = t2
(

1

12
+ σ2

(
4

3
n+ 1

))
.

Hence ‖v‖can ≤ 6
√
nVv = 6

√
nt2
(

1
12 + σ2

(
4
3n+ 1

))
.

Add [18]: Let ct1 and ct2 be two BGV ciphertexts encrypting m1,m2 ∈ Rt,
and having critical quantities v1, v2, respectively. Then the critical quantity vadd
in their sum ctadd satisfies ‖vadd‖can ≤ ‖v1‖can + ‖v2‖can.

Mult [18]: Let ct1 and ct2 be two BGV ciphertexts encrypting m1,m2 ∈ Rt,
and having critical quantities v1, v2, respectively. Then the critical quantity vmult

in their product ctmult satisfies ‖vmult‖can ≤ ‖v1‖can · ‖v2‖can.

Relinearize: Let ct be a BGV ciphertext encrypting m and having noise v. Let
ctrelin be the ciphertext obtained by the relinearization of ct. Then with high
probability, the critical quantity vrelin in ctrelin satisfies

‖vrelin‖can ≤ ‖v‖can + t
√

(`+ 1)nwσ
√

3 .

The justification is analogous to the FV relinearization bound proved in [27].

6



n
Enc Add Mult ModSwitch

[18] E x [18] E x [18] E x [18] E x

2048 19.0 17.1 5.12 20.0 18.1 5.62 39.0 35.1 14.7 - - -
4096 20.0 18.1 5.19 21.0 19.1 5.69 40.9 37.1 15.3 15.5 14.1 3.62
8192 21.0 19.1 5.25 22.0 20.1 5.76 42.9 39.1 15.8 16.5 15.1 3.65
16384 22.0 20.1 5.31 23.0 21.1 5.81 44.9 41.1 16.4 17.5 16.1 3.70

Table 1. The column x gives the logarithm to base 2 of the observed mean of the
noise in HElib ciphertexts over 10000 trials of a specific homomorphic evaluation for
parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}. The column E gives an
estimate of the noise growth using heuristic bounds obtained following our analysis.
The remaining column gives an estimate of the noise growth using heuristic bounds
obtained following an analysis as in [18].

n
Enc Add Mult ModSwitch

[18] E x [18] E x [18] E x [18] E x

2048 34.0 35.0 41.1 33.0 34.0 40.2 14.0 17.0 26.0 - - -
4096 88.0 89.0 97.9 87.0 88.0 97.0 67.0 70.0 82.4 38.0 39.0 38.1
8192 196 197 209 195 196 209 174 177 194 146 147 150
16384 415 416 433 414 415 432 392 395 416 365 366 373

Table 2. The column x gives the observed mean of the noise budget in HElib cipher-
texts over 10000 trials of a specific homomorphic evaluation for parameter sets with
dimension n ∈ {2048, 4096, 8192, 16384}. The column E gives an estimate of the noise
budget using heuristic bounds obtained following our analysis. The remaining column
gives an estimate of the noise budget using heuristic bounds obtained following an
analysis as in [18].

ModSwitch: Let ct be a BGV ciphertext encrypting m with critical quantity v
with respect to a modulus q. Let ctmod be the ciphertext encrypting m obtained
by modulus switching to the modulus p. Then with high probability, the critical
quantity vmod in ctmod satisfies

‖vmod‖can ≤
p

q
‖v‖can + t

√
3n+ 2n2 .

Let ctmod = (c′0, c
′
1), the result of the modulus switching operation applied

to ct = (c0, c1). As in [18], we let τi be the rounding error of p
q · δi. Then:

‖c′0 + c′1s‖
can ≤ p

q

(
‖c0 + c1s‖can + ‖δ0 + δ1s‖can

)
≤ p

q
‖v‖can + ‖τ0 + τ1s‖can

≤ p

q
‖v‖can + 6t

√
n

12

(
1 +

2n

3

)
.

3.2 Practical experiments

In this section we compare the observed critical quantity in HElib ciphertexts
formed as a result of certain homomorphic evaluation operations with expected

7



estimates on the noise growth from the heuristic upper bounds. We run the
following experiment for a certain number of trials: we step through a specific
homomorphic evaluation, and for each operation, we record the observed noise
growth. We then output the mean of the observed noise. Separately, we com-
pute an estimate of the noise growth using the heuristic bounds presented in
Section 3.1.

HElib offers a debugging function9 that implements an augmented decryp-
tion, which also returns the critical quantity v. We modify this to create a func-
tion that returns ‖v‖.

The evaluation is as follows in the i-th trial. We first generate fresh cipher-
texts ct1 and ct2 encrypting i+1 and i. Next, generate ct3 as the homomorphic
addition of ct1 and ct2. Next, generate ct4 as the homomorphic multiplication
of ct3 and ct2. Finally, generate ct5 by modulus switching ct4 down to the next
prime in the chain.

Relinearization for BGV as defined in Appendix A above is not implemented
in HElib. Instead, a different variant is implemented (see [24]). Indeed, relin-
earization can be (and, in practice, is) implemented in a number of ways, all
with easy-to-understand additive noise growth. Therefore, we do not investigate
the noise growth behaviour during relinearization in our practical experiments.

Table 1 gives the results of this experiment for 10000 trials. We used the
follow default parameter settings in HElib: we set the standard deviation of the
error distribution as σ = 3.2 and the security parameter10 λ = 80. The HElib
parameter c, which relates to relinearization, was set as a default value c = 2.
We set the number of plaintext slots as s = 1 as we did not require batching
functionality. We used the default HElib secret distribution, which slightly differs
from a uniform ternary secret distribution, as discussed in Section 2.

We set the dimension11 n ∈ {2048, 4096, 8192, 16384}. The HElib parameter
nBits is passed to the function buildModChain which sets an appropriate chain
of moduli for which the product of all the primes, Q, satisfies Q ≈ 2nBits. We
set nBits ∈ {54, 109, 218, 438}, which are the same values as for the default Q
in SEAL [36]. The parameters for n = 2048 were not large enough to perform
modulus switching. We set the plaintext modulus12 as t = 3. Such a small
plaintext modulus means that the values encrypted in our trials ‘cover’ the whole
plaintext space and hence the assumption used in the noise bounds that m is a
random plaintext is reasonable.

Table 1 shows that the heuristic bounds hold on average: the actual observed
mean noise is less than the estimated noise. However, it will be difficult to directly
compare these results with those for experiments in SEAL, which are given in

9 decryptAndPrint
10 In HElib, the security parameter is typically denoted as k. This may not be an

accurate security estimate [3].
11 In HElib, the dimension is selected as m where n = ϕ(m) and ϕ(·) is the Euler

totient function. Hence, we set m ∈ {4096, 8192, 16384, 32768}. We verified that our
other choices allowed for these m using the function FindM.

12 In HElib, the plaintext modulus is parameterised as pr hence we set p = 3 and r = 1.

8



terms of a noise budget, rather than the noise itself [36]. In order to facilitate an
easier comparison, we define a noise budget for BGV that is analogous to the
invariant noise budget in FV.

Definition 2 (BGV noise budget). Let ct be a BGV ciphertext with respect
to modulus q having critical quantity v. The noise budget for this ciphertext is
defined as

log2 (q)− log2 (‖v‖)− 1 .

To see that this is an analogous definition, note that for FV the invariant
noise budget is defined in [36] as − log2(2 · ‖v‖) = log2 (q) − log2 (q · ‖v‖) − 1.
This captures that for correctness in FV, we require that q · ‖v‖ < q

2 . Similarly,
Definition 2 captures that for correctness in BGV, we require ‖v‖ ≤ q/2.

We implemented a function in HElib to measure the noise budget, and a
function to estimate the noise budget using the heuristic bounds. We then ran
the same experiment as detailed above to compare the growth of the observed
noise budget in HElib ciphertexts with that predicted from the heuristic bounds.
Table 2 gives the results of this experiment for 10000 trials.

We see from Tables 1 and 2 that the heuristic bounds hold: the observed
mean noise is less than the estimated noise, so the observed mean noise budget
is more than the estimated noise budget. Moreover, we see that using our new
analysis to obtain the heuristic bounds gives an estimate closer to the observed
noise than an analysis as in the line of prior work [18, 23, 24].

Despite this improvement, the heuristic bounds are still not tight13. For ex-
ample, for fresh ciphertexts, our heuristic bound predicts 6 to 17 fewer bits of
remaining noise budget than the mean observed. We see that the gap compounds
as we move through the computation: after multiplication, the gap is 9 to 21 bits.
The gap narrows after modulus switching, to below 7 bits. Although the HElib
implementation uses a secret key distribution that is slightly different from the
uniform ternary distribution assumed in the heuristic bounds, we do not expect
this to significantly contribute to the gap.

We also found that the observed noise budgets follow narrow distributions,
which gives us confidence that the heuristic bounds will hold very often, and
so could be relied upon to set parameters for correctness. However, since the
heuristic bounds are not tight, they may lead us to choose larger parameters than
is necessary. It is not clear that choosing BGV parameters using the heuristic
bounds will be optimal for performance.

4 FV noise growth in practice

4.1 Heuristic upper bounds

To evaluate the effectiveness of heuristic worst-case noise analyses for FV, we
will use the heuristic upper bounds for FV presented by Iliashenko [27]. For

13 An exception is modulus switching for n = 4096, which seems to be well-modelled
by both approaches for obtaining heuristic bounds.

9



reasons of space we do not reproduce these bounds, except for modulus switching,
for which a bound was not presented in [27]. In Section 4.2 we compare these
bounds with those that would be obtained following the methodology of previous
work [14, 18, 23, 24], and show that the Iliashenko method provides a better
estimate of the noise growth.

The bounds use the invariant noise definition for noise [14], as used in the
SEAL [36] implementation of FV. We assume that the secret key distribution
S is the uniform ternary distribution, as in SEAL [36], and that plaintexts are
chosen uniformly at random in the plaintext space.

Definition 3 (FV invariant noise [36]). Let ct = (c0, c1) be an FV ciphertext
encrypting the message m ∈ Rt. Its invariant noise v is the polynomial with the
smallest infinity norm such that, for some integer coefficient polynomial a,

t

q
ct(s) =

t

q
(c0 + c1s) = m+ v + at .

The intuition for this definition of noise is that v is exactly the term which will
be removed by the rounding in a successful decryption. Therefore for correctness,
we require that ‖v‖ < 1

2 [36].

ModSwitch: Let ct be an FV ciphertext encrypting m with invariant noise v with
respect to a modulus q. Let ctmod be the ciphertext encrypting m obtained by
modulus switching to the modulus p. Then with high probability, the invariant
noise vmod in ctmod satisfies

‖vmod‖can ≤ ‖v‖can +
t

p
·
√

3n+ 2n2 .

The bound can be seen as analogous to the BGV modulus switching bound
(Section 3.1) and is justified by a similar argument.

4.2 Practical experiments

In this section we compare the observed noise in SEAL ciphertexts formed as
a result of certain homomorphic evaluation operations with expected estimates
on the noise growth from the heuristic upper bounds. We run the following ex-
periment for a certain number of trials: we step through a specific homomorphic
evaluation and for each operation we record the observed noise growth. We then
output the mean of the observed noise. Separately, we compute an estimate of
the noise growth using the heuristic bounds.

Recall that since ‖v‖ ≤ ‖v‖can, we can use the bounds presented in Section 4.1
as upper bounds for the infinity norm ‖v‖ of the invariant noise v. Rather than
working with the invariant noise v directly, since it can be an extremely small
quantity, SEAL instead uses the current invariant noise budget [36], which is
defined as − log2(2 · ‖v‖).

We conduct the same evaluation in SEAL as we did in Section 3.2 for HElib.
In particular, this means we do not measure the noise growth in relinearization.

10



Apart from the reasons discussed in Section 3.2, this is also necessary for two
reasons. Firstly, the choice of the parameter w is no longer part of the API
in SEAL, so it is difficult to compare to the relinearization heuristic bound.
Secondly, SEAL reserves one of the chain of moduli as ‘special prime’ used both in
relinearization and in a modulus switching implemented as part of the encryption
operation. This reduces noise in a fresh SEAL ciphertext, but deviates from
a plain FV encryption, and hence would not be accurately captured by the
fresh noise bound presented in [27]. We modify SEAL to disable this special
prime functionality. This enables us to obtain data on the noise growth in an
implementation of plain FV encryption, at the cost of being unable to investigate
relinearization.

The evaluation is as follows in the i-th trial. First, generate fresh ciphertexts
ct1 and ct2 encrypting i + 1 and i. Next, generate ct3 as the homomorphic
addition of ct1 and ct2. Next, generate ct4 as the homomorphic multiplica-
tion of ct3 and ct2. Finally, generate ct5 by modulus switching ct4 down to
the next prime in the chain. We ran this evaluation over 10000 trials, using the
SEAL default parameters n, Q, σ for the 128-bit security level for dimensions
n ∈ {2048, 4096, 8192, 16384}. The SEAL default parameters for n = 2048 cor-
respond to a chain of only one modulus, and hence we cannot perform modulus
switching in this case. We used a plaintext modulus t = 256. Such a plaintext
modulus means that the values encrypted in our trials ‘cover’ the whole plaintext
space and hence the assumption used in the noise bounds that m is a random
plaintext is reasonable. To generate the plaintexts encoding i+ 1 and i, we used
the default binary encoder. Table 3 reports on the results of this experiment14.

In a second experiment, we repeated the above evaluation using a batch
encoder. In each trial we generate two plaintexts, encoding the values j and
j+ 1 for j ∈ {0, 1, . . . , n} respectively in each of the n slots. To enable batching,
we changed the plaintext modulus to be t = 65537, a prime congruent to 1
modulo 2n. All other parameters were kept the same. Table 4 reports on the
results of this experiment for 10000 trials.

Tables 3 and 4 show that the heuristic bounds indeed hold: the observed mean
noise is less than the estimated noise, so the observed mean noise budget is more
than the estimate obtained using the heuristic bounds. This gives us confidence
that the heuristic bounds will hold very often, and so can be used reliably to
set parameters to ensure correctness. However, the bounds do not appear to be
tight. Indeed, for encryption, the heuristic bound predicts 6 to 8 (respectively 6
to 12) fewer bits of remaining noise budget than the mean observed in Table 3
(respectively Table 4). This gap is compounded as the number of operations
increases, reaching 8 to 17 (respectively 7 to 14) bits after multiplication in
Table 3 (respectively Table 4, for n = 4096 and above). It appears that the gap
reduces after modulus switching, with 8 or 9 fewer bits of remaining noise budget

14 Bajard et al. [6] recently identified a bug in the implementation of multiplication
in SEAL, resulting in a ciphertext that is has more noise than expected when the
plaintext modulus is large. Our experiments, using a small plaintext modulus t = 256,
are not affected. This bug is expected to be fixed in SEAL v3.5.

11



n
Enc Add Mult ModSwitch

[14] E x [14] E x [14] E x [14] E x

2048 27.0 29.0 35.4 26.0 28.0 35.0 0.000 8.00 16.9 - - -
4096 81.0 83.0 90.0 80.0 82.0 89.1 51.0 61.0 69.8 31.0 33.0 50.2
8192 189 191 198 188 190 198 157 168 178 139 141 151
16384 408 410 418 407 409 417 375 386 396 358 360 365

Table 3. Binary encoder setting. The column x gives the observed mean of the invariant
noise budget in SEAL ciphertexts over 10000 trials of a specific homomorphic evaluation
for parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}. The column E gives
an estimate of the noise budget using heuristic bounds obtained following our analysis.
The remaining column gives an estimate of the noise budget using heuristic bounds
obtained following an analysis as in prior work [14].

n
Enc Add Mult ModSwitch

[14] E x [14] E x [14] E x [14] E x

2048 19.0 21.0 27.4 18.0 20.0 27.0 0.000 0.00 1.00 - - -
4096 71.0 71.0 82.0 70.0 70.0 81.1 32.0 41.0 54.0 23.0 25.0 42.3
8192 179 179 190 178 178 190 139 148 161 131 133 143
16384 398 398 410 397 397 409 356 366 380 350 352 357

Table 4. Batching setting. The column x gives the observed mean of the invariant noise
budget in SEAL ciphertexts over 10000 trials of a specific homomorphic evaluation for
parameter sets with dimension n ∈ {2048, 4096, 8192, 16384}. The column E gives an
estimate of the noise budget using heuristic bounds obtained following our analysis.
The remaining column gives an estimate of the noise budget using heuristic bounds
obtained following an analysis as in prior work [14].

than the mean observed in both Table 3 and Table 4. Comparing to Table 2 we
see that these trends are all similar to the HElib case. Finally, notice that while
the new method tightens the bounds by up to 3 bits for BGV as seen in Tables 1
and 2, for FV the improvement is more dramatic. Indeed, the new analysis
tightens the bounds by as much as 10 bits in the case of the multiplication
operation, as seen in Tables 4 and 3. This difference can be explained by looking
at the multiplication bounds. The BGV bound is very simple (recall Section 3.1)
while the complexity of the FV bound implies that this scheme has a much larger
benefit from a tighter analysis.

5 Updated comparison between BGV and FV

In this section we compare the BGV and FV schemes, improving on a prior
comparison by Costache and Smart [18]. Our first main improvement is to select
parameters that achieve a security level λ = 128 according to the Homomorphic
Encryption Standard [1]. In contrast, the prior work [18] relied on a security
analysis by Lindner and Peikert [31], which has been shown to be incorrect [2, 3].
In fact, as shown in [17], FHE parameters which were estimated by [31] to have 80

12



Scheme
Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 4.75 6.77 8.77 8.77 10.8 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8
FV 4.75 6.77 8.77 8.77 8.77 10.8 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8

Table 5. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 3.

Scheme
Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 6.77 8.77 8.77 10.8 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 - -
FV 4.75 6.77 8.77 8.77 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8

Table 6. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 256. The symbol ‘-’ indicates that the computation
was too large to be supported by any parameter set.

Scheme
Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 6.77 8.77 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 - - - -
FV 6.77 8.77 8.77 10.8 10.8 10.8 12.8 12.8 12.8 12.8 12.8 12.8 - - -

Table 7. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 32768. The symbol ‘-’ indicates that the computation
was too large to be supported by any parameter set.

Scheme
Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 6.77 8.77 10.8 12.8 12.8 12.8 12.8 - - - - - - - -
FV 8.77 10.8 10.8 10.8 12.8 12.8 12.8 12.8 - - - - - - -

Table 8. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 232. The symbol ‘-’ indicates that the computation
was too large to be supported by any parameter set.

bits of security had as little as 51 bits of security according to [3, 2]. Our second
main improvement is to use a heuristic noise analysis following the methodology
of Iliashenko [27]. Our experimental results in Sections 3 and 4 show that this
analysis more closely represents the noise growth in implementations than the
heuristic analysis that was used in [18].

Methodology. We now describe the homomorphic evaluation function used in
our comparison, which is the same as was used in [18]. We begin by guessing the

13



Scheme
Level L

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BGV 8.77 10.8 12.8 12.8 12.8 - - - - - - - - - -
FV 10.8 10.8 12.8 12.8 - - - - - - - - - - -

Table 9. Logarithm to base 2 of the minimal ciphertext size in kilobytes required in
the BGV and FV schemes to support the described homomorphic evaluation for L
levels, for plaintext modulus t = 264. The symbol ‘-’ indicates that the computation
was too large to be supported by any parameter set.

dimension n. We go through a pre-determined circuit as follows: we take a fresh
ciphertext, perform ζ additions, followed by a multiplication, and a relineariza-
tion. We then modulus switch down to the next prime in the chain, perform
ζ additions, followed by a multiplication and relinearization, and so on. After
modulus switching to the smallest prime, we check if we get a decryption error.
If that is the case, we increase the guess, and repeat the procedure until decryp-
tion succeeds. Each of the circuits we consider in this work is parameterised by
a number of additions ζ and a multiplicative depth L. Any circuit that is to be
homomorphically evaluated consists of additions and/ or multiplications, thus
this approach is as comprehensive as can be. We refer to the reader to [19] for
real-life applications of such circuits.

Parameter selection. For the given circuit, and for a fixed level L, plaintext
modulus t, and security level λ, our goal is to find the smallest parameter set,
in terms of ciphertext size in kilobytes, such that decryption succeeds. While we
could have considered other criteria such as key size, it is ciphertexts which are
sent over networks and computed on, thus a very large ciphertext could present
the biggest overhead in an implementation. Therefore, we believe ciphertext size
is the most relevant criterion.

To keep the comparison fair, we assume a uniform ternary distribution for
the secret keys, as well for the ephemeral keys sampled in encryption, in both
BGV and FV. Following the choice in [18], we perform ζ = 8 additions before
each multiplication. The ring constant is set to cm = 1, as n (and hence m)
is always a power of two. We consider a range of levels L of circuits, choosing
L ∈ {2, 4, 6, . . . , 30}. We set the standard deviation σ = 3.2, which follows
the recommendation in the Homomorphic Encryption Standard [1]. We set the
parameters n and (top modulus) Q as those recommended in the Homomorphic
Encryption Standard [1] to achieve a security level λ = 128 when the secret
follows a uniform ternary distribution.

Asymptotically, we expect that BGV will outperform FV. We investigate
a range of plaintext moduli to understand where the practical crossover point
is. We first perform the comparison using plaintext modulus t = 3, which was
shown to be optimal among integral bases for encoding by Costache et al. [19],
and is well within the regime for which FV is reported to be more performant
in [18]. We then consider a plaintext modulus t = 256, a choice slightly beyond

14



the crossover point according to [18]. We also perform the comparison with the
plaintext moduli t = 32768, t = 232 and t = 264, which are all well beyond the
reported crossover point.

Results and analysis. Table 5 presents the results of the comparison for plain-
text modulus t = 3. We see that, as the level increases, the point at which we
need to switch to the next parameter set is often the same for both schemes.
However, for L ∈ {10, 18} we see that BGV required a larger parameter set
than FV. This would suggest that for small plaintext modulus, FV is sometimes
preferable to BGV. This is in agreement with the findings of [18].

Table 6 presents the results of the comparison for plaintext modulus t = 256.
Again, for most values of L, the ciphertext sizes were the same for both BGV
and FV. However, for L ∈ {2, 4, 8, 28, 30} we see from Table 6 that BGV required
a larger parameter set than FV. Indeed, the computation for L ∈ {28, 30} could
not be supported for BGV using any parameter set. The results for plaintext
modulus t = 32768, presented in Table 7, are similar. This would suggest that
FV continues to outperform BGV even after the crossover point reported in [18].

In Table 8, for plaintext modulus t = 232, we see that depending on the
level, sometimes BGV outperforms FV and sometimes vice versa. In Table 9, for
plaintext modulus t = 264, we see that FV required a larger parameter set than
BGV for L = 2 and BGV could support up to L = 10 levels while FV could only
support L = 8. This would suggest that by plaintext modulus t = 264 we have
entered the regime in which BGV outperforms FV.

In summary, our results are consistent with the asymptotic expectation that
BGV will outperform FV. However, they also indicate that the practical crossover
point is far beyond that reported in [18], being somewhere between t = 232 and
t = 264. Across all tables, we see that for most values of L, both BGV and FV
required the same minimal values of n and Q to support the computation and
hence the ciphertext sizes were the same. We can additionally conclude that
BGV and FV present only minor performance differences from the point of view
of computational capabilities.

Limitations. We stress that this is a comparison of how the noise growth be-
haviour impacts correctness in the BGV and FV schemes: we ignore correctness
issues coming from decoding failure. Our comparison is naturally limited in sev-
eral other aspects. For example, we only consider a certain specific computation,
for which we do not attempt to make any scheme-specific optimisations that
may be possible. Also, we note that while the choice of plaintext modulus t = 3
is optimal for integral bases, recent work has demonstrated the benefits of using
non-integral bases [7, 12] or using t a polynomial rather than an integer [14].

6 Improving the heuristic-to-practical gap

In this section, we present additional supporting evidence for our main conclusion
that the worst-case heuristic approach is inadequate.

15



Different definitions of noise result in a similar gap. In a fresh FV en-
cryption (see Appendix B), the message m is scaled up by ∆ = bq/tc to put it in
the high-order bits. In decryption, we cancel ∆ by multiplying by t/q, but this
introduces a rounding term of the form rt(q) ·m, since typically q is not exactly
divisible by t. The invariant noise, defined such that t/q · (ct(s)) = m+ v + at,
folds this rounding term into the noise. However, notice that this rt(q) ·m term
is only introduced by the decryption process: this term is not a part of the noise
that the ciphertext carries before a decryption is performed. Therefore, including
this term in every intermediate ciphertext will lead to overestimates that com-
pound. We modified our experiments to take this into account and found that
while this would represent a slight improvement for modelling the noise in fresh
ciphertexts, it does not significantly improve the heuristic-to-practical gap.

Worst-case bounds are inherently loose. Our approach to obtain heuristic
bounds requires us to bound Gaussian random variables in the canonical embed-
ding. For example, a Gaussian random variable e, with mean zero and standard
deviation σ is bounded as ‖e‖can ≤ B · σe, for some B, where σe = σ

√
n. Fol-

lowing [18], we use B = 6, while HElib uses B = 10 as a default [26]. On the
one hand, we never see ‖e‖can this large in experiments, which is not surprising
because the probability of ‖e‖can > B · σe is extremely low. On the other hand,
to prove a heuristic bound of this type in theory, we need to ensure B is large
enough (such as B = 5 or B = 6) to obtain a ‘reasonable’ failure probability.
For example, we have erfc(5) ≈ 2−40, while erfc(6) ≈ 2−50.

An average-case analysis would be complicated by nonlinearity. The
TFHE scheme [16] uses an appealing average-case approach to estimate noise
growth, rather than worst-case bounds. In this approach, the coefficients of the
noise in a TFHE ciphertext are modelled as independent subgaussians, and the
variance of these subgaussians is traced through the homomorphic evaluation
operations. This heuristic has been experimentally verified for the gate boot-
strapping operation [16, Figure 10], showing in this case the noise in an output
ciphertext can be modelled as a Gaussian of a certain variance. Moreover, every
elementary operation in TFHE can be implemented via gate bootstrapping on
a linear combination of ciphertexts [16, Table 1]. Hence, by linearity, all noises
in TFHE ciphertexts can be modelled as subgaussian and it is easy to follow
through the analysis of the variances.

In contrast, in the case of BGV and FV, we have a nonlinear noise growth in
multiplication. In [34] it was shown that while a Central Limit argument could be
used to approximate the noise in a BGV-like ciphertext as Gaussian, the quality
of such an approximation would tend to decrease after many multiplications
because the true noise distribution would have heavier and heavier tails. Hence
it is not clear if an average-case approach as used in [16] would tightly model the
noise growth in BGV or FV after many multiplications. Resolving this would be
an interesting direction for future work.

16



Acknowledgements. Player was partially supported by the French Programme
d’Investissement d’Avenir under national project RISQ P141580. Player and
Costache were partially supported by the European Union PROMETHEUS
project (Horizon 2020 Research and Innovation Program, grant 780701). Most
of this work was done while Costache was at Intel AI, San Diego. We thank Ilia
Iliashenko, Shai Halevi and Nigel Smart for helpful comments.

References

[1] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi,
J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D. Moody, T. Morrison,
A. Sahai, and V. Vaikuntanathan. Homomorphic encryption security standard.
Technical report, HomomorphicEncryption.org, 2018.

[2] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning
with errors. J. Mathematical Cryptology, 9(3):169–203, 2015.

[3] Martin R. Albrecht. On dual lattice attacks against small-secret LWE and pa-
rameter choices in HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 103–
129. Springer, Heidelberg, April / May 2017.

[4] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-
stretched NTRU assumptions - cryptanalysis of some FHE and graded encoding
schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 153–178. Springer, Heidelberg, August 2016.

[5] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. A full
RNS variant of FV like somewhat homomorphic encryption schemes. In Roberto
Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages
423–442. Springer, Heidelberg, August 2016.

[6] Jean-Claude Bajard, Julien Eynard, Paulo Martins, Leonel Sousa, and Vincent
Zucca. An HPR variant of the FV scheme: Computationally cheaper, asymptoti-
cally faster. IACR Cryptology ePrint Archive, 2019:500, 2019.

[7] Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter Castryck, Ilia Iliashenko,
and Frederik Vercauteren. Faster homomorphic function evaluation using non-
integral base encoding. In Wieland Fischer and Naofumi Homma, editors,
CHES 2017, volume 10529 of LNCS, pages 579–600. Springer, Heidelberg, Septem-
ber 2017.

[8] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved se-
curity for a ring-based fully homomorphic encryption scheme. In Martijn Stam,
editor, 14th IMA International Conference on Cryptography and Coding, volume
8308 of LNCS, pages 45–64. Springer, Heidelberg, December 2013.

[9] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer, Heidelberg, Au-
gust 2012.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS
2012, pages 309–325. ACM, January 2012.

[11] M. Brenner, W. Dai, S. Halevi, K. Han, A. Jalali, M. Kim, K. Laine, A. Maloze-
moff, P. Paillier, Y. Polyakov, K. Rohloff, E. Savaş, and B. Sunar. A standard

17



API for RLWE-based homomorphic encryption. Technical report, Homomorphi-
cEncryption.org, 2017.

[12] Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren. Homomorphic SIM2D
operations: Single instruction much more data. In Jesper Buus Nielsen and Vin-
cent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
338–359. Springer, Heidelberg, April / May 2018.

[13] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library -
SEAL v2.1. In Michael Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller,
Peter Y. A. Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano Sala, Federico
Pintore, and Markus Jakobsson, editors, FC 2017 Workshops, volume 10323 of
LNCS, pages 3–18. Springer, Heidelberg, April 2017.

[14] Hao Chen, Kim Laine, Rachel Player, and Yuhou Xia. High-precision arithmetic
in homomorphic encryption. In Nigel P. Smart, editor, CT-RSA 2018, volume
10808 of LNCS, pages 116–136. Springer, Heidelberg, April 2018.

[15] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic en-
cryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 409–
437. Springer, Heidelberg, December 2017.

[16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully ho-
momorphic encryption over the torus. Journal of Cryptology, Apr 2019.

[17] A. Costache. On the Practicality of Ring-Based Fully Homomorphic Encryption
Schemes. PhD thesis, University of Bristol, 2018.

[18] Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic
encryption scheme is best? In Kazue Sako, editor, CT-RSA 2016, volume 9610 of
LNCS, pages 325–340. Springer, Heidelberg, February / March 2016.

[19] Anamaria Costache, Nigel P. Smart, Srinivas Vivek, and Adrian Waller. Fixed-
point arithmetic in SHE schemes. In Roberto Avanzi and Howard M. Heys, editors,
SAC 2016, volume 10532 of LNCS, pages 401–422. Springer, Heidelberg, August
2016.

[20] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662.
Springer, Heidelberg, August 2012.

[21] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.
iacr.org/2012/144.

[22] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press, May / June
2009.

[23] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption
with polylog overhead. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 465–482. Springer, Heidelberg,
April 2012.

[24] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the
AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 850–867. Springer, Heidelberg, August 2012.

[25] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved RNS variant of the
BFV homomorphic encryption scheme. In Mitsuru Matsui, editor, CT-RSA 2019,
volume 11405 of LNCS, pages 83–105. Springer, Heidelberg, March 2019.

[26] HElib. https://github.com/shaih/HElib, January 2019.

18

http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://github.com/shaih/HElib


[27] I. Iliashenko. Optimisations of fully homomorphic encryption. PhD thesis, KU
Leuven, 2019.

[28] M. Kim and K. Lauter. Private genome analysis through homomorphic encryp-
tion. BMC Medical Informatics and Decision Making, 15(5):S3, Dec 2015.

[29] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 3–26. Springer, Hei-
delberg, April / May 2017.

[30] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic en-
cryption schemes FV and YASHE. In David Pointcheval and Damien Vergnaud,
editors, AFRICACRYPT 14, volume 8469 of LNCS, pages 318–335. Springer,
Heidelberg, May 2014.

[31] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS,
pages 319–339. Springer, Heidelberg, February 2011.

[32] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 1219–
1234. ACM Press, May 2012.

[33] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. Cryptology ePrint Archive, Report 2013/293, 2013. http:

//eprint.iacr.org/2013/293.
[34] S. Murphy and R. Player. Discretisation and product distributions in Ring-LWE.

MathCrypt 2019, to appear, 2019.
[35] A. Qaisar Ahmad Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and

K. Rohloff. Implementation and performance evaluation of RNS variants of the
BFV homomorphic encryption scheme. IEEE Transactions on Emerging Topics
in Computing, pages 1–1, 2019.

[36] Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL, October
2019. Microsoft Research, Redmond, WA.

A The BGV scheme

In this section we introduce the BGV scheme [10]. The BGV scheme is comprised
of the SecretKeyGen, PublicKeyGen, EvaluationKeyGen, Encrypt, Decrypt,
Add, Multiply, Relinearize, and ModSwitch algorithms.

In the ModSwitch algorithm, we describe switching from a modulus q to a
modulus p where, for correctness, we require that p = q = 1 mod t [10, 23]. For
the algorithm as described here, we also need p | q, which will be the case when
moving down the chain of moduli.

• SecretKeyGen(λ): Sample s← S and output sk = s.
• PublicKeyGen(sk): Set s = sk and sample a← Rq uniformly at random and
e← χ. Output pk = ([−(as+ te)]q, a).
• EvaluationKeyGen(sk, w): Set s = sk. For i ∈ {0, . . . , `}, sample ai ← Rq

uniformly at random and ei ← χ. Output evk =
(
[−(ais+ tei) + wis2]q, ai

)
.

• Encrypt(pk,m): For the message m ∈ Rt. Let pk = (p0, p1), sample u ← S
and e1, e2 ← χ. Output ct = ([m+ p0u+ te1]q, [p1u+ te2]q).

19

http://eprint.iacr.org/2013/293
http://eprint.iacr.org/2013/293
https://github.com/Microsoft/SEAL


• Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Output m′ = [[c0 + c1s]q]t.
• Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).
• Multiply(ct0, ct1): Set c0 = [ct0[0]ct1[0]]q, c1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]q,

and c2 = [ct0[1]ct1[1]]q. Output ct = (c0, c1, c2).
• Relinearize(ct, evk) : Let ct[0] = c0, ct[1] = c1 and ct[2] = c2. Let
evk[i][0] = [−(ais + tei) + wis2]q and evk[i][1] = ai. Express c2 in base

w as c2 =
∑`
i=0 c

(i)
2 wi. Set c′0 = c0 +

∑`
i=0 evk[i][0]c

(i)
2 , and c′1 = c1 +∑`

i=0 evk[i][1]c
(i)
2 . Output ct′ = (c′0, c

′
1).

• ModSwitch(ct, p) : Let ct = (c0, c1). Fix δi such that δi = −ci (mod q
p ) and

δi = 0 (mod t). Set c′0 = p
q (c0+δ0) and c′1 = p

q (c1+δ1). Output ct = (c′0, c
′
1).

B The FV scheme

In this section we introduce the FV scheme [21], comprised of the algorithms
SecretKeyGen, PublicKeyGen, EvaluationKeyGen, Encrypt, Decrypt, Add,
Multiply, Relinearize and ModSwitch. Unlike for BGV, the constraint on the
chain of moduli that pi = 1 mod t is not required, though was enforced for FV
in [18]. Imposing this constraint may result in unfairly large parameters for FV,
hence our updated comparison can be seen as allowing a more flexible modulus
switching.

In order to define Encrypt, we must first define ∆ =
⌊
q
t

⌋
, where q is the

current ciphertext modulus, and t is the plaintext modulus. We also define rt(q)
as the remainder of q on division by t, so that q = ∆t+ rt(q).

• SecretKeyGen(λ): Sample s← S and output sk = s.
• PublicKeyGen(sk): Set s = sk and sample a← Rq uniformly at random and
e← χ. Output pk = ([−(as+ e)]q, a).

• EvaluationKeyGen(sk, w): Set s = sk. For i ∈ {0, . . . , `}, sample ai ← Rq
uniformly at random and ei ← χ. Output evk =

(
[−(ais+ ei) + wis2]q, ai

)
.

• Encrypt(pk,m): For the message m ∈ Rt. Let pk = (p0, p1), sample u ← S
and e1, e2 ← χ. Output ct = ([∆m+ p0u+ e1]q, [p1u+ e2]q).

• Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Outputm′ =
[⌊

t
q [c0 + c1s]q

⌉]
t
.

• Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q) .

• Multiply(ct0, ct1): Compute c0 =
[⌊

t
qct0[0]ct1[0]

⌉]
q
,

c1 =
[⌊

t
q (ct0[0]ct1[1] + ct0[1]ct1[0])

⌉]
q
, and c2 =

[⌊
t
qct0[1]ct1[1]

⌉]
q
.

Output ct = (c0, c1, c2).
• Relinearize(ct, evk) : Let ct[0] = c0, ct[1] = c1 and ct[2] = c2. Let
evk[i][0] = [−(ais + ei) + wis2]q and evk[i][1] = ai. Express c2 in base w

as c2 =
∑`
i=0 c

(i)
2 wi. Set c′0 = [c0 +

∑`
i=0 evk[i][0]c

(i)
2 ]q, and c′1 = [c1 +∑`

i=0 evk[i][1]c
(i)
2 ]q. Output ct′ = (c′0, c

′
1).

• ModSwitch(ct, p) : Let ct[0] = c0 and ct[1] = c1. Set c′0 =
[⌊

p
q c0

⌉]
p

and

c′1 =
[⌊

p
q c1

⌉]
p
. Output ct′ = (c′0, c

′
1).

20


	Evaluating the effectiveness of heuristic worst-case noise analysis in FHE

