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Abstract. State-of-the-art implementations of homomorphic encryp-
tion exploit the Fan and Vercauteren (FV) scheme and the Residue Num-
ber System (RNS). While the RNS breaks down large integer arithmetic
into smaller independent channels, its non-positional nature makes op-
erations such as division and rounding hard to implement, and makes
the representation of small values inefficient. In this work, we propose
the application of the Hybrid Position-Residues Number System repre-
sentation to the FV scheme. This is a positional representation of large
radix where the digits are represented in RNS. It inherits the benefits
from RNS and allows to accelerate the critical division and rounding
operations while also making the representation of smaller values more
compact. This directly benefits the decryption and the homomorphic
multiplication procedures, reducing their asymptotic complexity, in di-
mension n, fromO(n2 logn) toO(n logn) and fromO(n3 logn) toO(n3),
respectively. This has also resulted in noticeable speedups when experi-
mentally compared to related art RNS implementations.

Keywords: Fan-Vercauteren · Residue Number System · Homomorphic
Encryption

1 Introduction

Homomorphic Encryption (HE) enables the processing of encrypted data and
has a large number of applications including secure electronic voting [1], verifi-
able computing [10] and multi-party computation [8]. One of the most efficient
Somewhat Homomorphic Encryption (SHE) schemes, that allows for a predeter-
mined number of operations, was due to Fan and Vercauteren [9]. Ciphertexts
1 was initially supported by Sorbonne Université for this project.
2 was initially supported by University of Toulon (France) for this project.



are represented as a vector of polynomials that grows as homomorphic multipli-
cations are applied. In order to prevent the continuous growth of this vector, one
has to apply Relinearisation [9]. This operation is currently the main bottleneck
of the scheme, and has thus been the focus of study of previous works [12,5,11].

The Residue Number System (RNS) is a number representation that breaks
down large integer arithmetic into many independent smaller channels [15]. With
it, additions and multiplications are computed independently for each channel,
resulting in a reduction of complexity when compared to traditional positional
representations. In particular, since the Fan-Vercauteren (FV) scheme operates
on polynomials with large coefficients, the RNS is useful to accelerate homomor-
phic processing [12,5,11]. However, while for positional notations the size of the
representation of a number is proportional to its magnitude, the RNS represen-
tation of a number is as large as the largest number representable in it. During
the relinearisation procedure, an operation requires polynomial coefficients to
be decomposed to values of a smaller magnitude. Hence, after applying this de-
composition, the RNS becomes a suboptimal representation. Furthermore, the
non-positional nature of RNS makes it more difficult to implement operations
such as division and rounding, which are required by both FV homomorphic
multiplication and decryption procedures.

This work proposes to exploit instead the Hybrid Position-Residues Number
System (HPR) [6] representation of numbers to accelerate the cryptographic op-
erations of FV. This hybrid representation is of a positional nature, but each digit
is represented in RNS. It not only inherits the parallel nature of RNS but it also
makes the relinearisation, and division and rounding operations more efficient.
As a result, in dimension n, the complexity of FV decryption (resp. homomorphic
multiplication) is asymptotically reduced from O(n2 log n) to O(n log n) (resp.
O(n3 log n) to O(n3)). Complexity gains are translated in practice into speedups
of up to 8.0 and 8.6 for the decryption operation and of up to 2.0 and 1.6 for the
homomorphic multiplication, for the parameters considered in this article and
two state-of-the-art schemes, with an upward trend for larger parameters.

2 Background

The ring R = Z[X]/(Xn + 1) can be seen as the set of polynomials with in-
teger coefficients and degree smaller than n. Rq is used to denote the poly-
nomials in R whose coefficients are reduced modulo an integer q. When q =
1 (mod 2n), elements of Rq can be represented in the Number Theoretic Trans-
form (NTT)-domain, which allows for coefficient-wise additions and multiplica-
tions [2]. Henceforth, boldface letters are used to denote polynomials and the
infinity norm ‖ · ‖∞ returns the largest absolute value of the polynomial’s coeffi-
cients. The expansion factor associated to R is defined as δR = sup

{
‖a·b‖∞
‖a‖∞‖b‖∞ ,

for a, b ∈ R− {0}}. a ← D and a ← χ are used to denote that a is drawn
uniformly at random from the set D or according to a distribution χ, respec-
tively. The notation | · |q (resp. [·]q) is used to denote the residue modulo q in
[0, q) (resp. in [−q/2, q/2)). Moreover, for a ∈ Q, b = bae is used to denote the



closest integer b ∈ Z to a. The computational complexity is herein evaluated
in terms of the amount of Elementary Modular Multiplications (EMMs), floating
point operations (FPOs) and forward and inverse NTTs required.

2.1 FV cryptosystem

A private-key of the FV scheme [9] is generated as a polynomial s ← χkey,
and the corresponding public-key is generated as b = ([−(a · s+ e)]q ,a) ∈ R2

q;
with a ← Rq drawn uniformly at random and e ← χerr. χkey is such that
for s ← χkey, ‖s‖∞ 6 Bkey for a small Bkey, while the distribution χerr has
standard deviation σerr such that elements sampled from this distribution have
their infinite norm smaller than Berr = 6σerr with very high probability.

A relinearisation key is defined with respect to a pair of functions D and P,
such that [〈D(a),P(b)〉]q = [a ·b]q and the infinite norm of D(a) is “small”. The
relinearisation key, which can be interpreted as a vector of pseudo-encryptions
of P(s2), is defined as: −−→rlk = (

[
P(s2)− (−→e +−→a · s)

]
q
,−→a ) ∈ R2l

q , where
−→e ←

χlerr and −→a ← Rlq. A ciphertext ct = (c0, c1) ∈ R2
q, encrypting [m]t, satisfies

c0 + c1 · s = ∆[m]t + v mod q, where ∆ = bq/tc. ct can be correctly decrypted
as long as the noise v remains small enough – ‖v‖∞ < ∆/2− |q|t/2, through:

m =

[⌊
t

q
[c0 + c1 · s]q

⌉]
t

. (1)

The homomorphic addition of two ciphertexts corresponds to the pairwise ad-
dition of their coefficients modulo q. The homomorphic multiplication of ct and
ct′ is performed in two steps. First, we compute the three elements ciphertext:

c̃tmult =

([⌊
t

q
c0 · c′0

⌉]
q

,

[⌊
t

q
(c0 · c′1 + c1 · c1)

⌉]
q

,

[⌊
t

q
c1 · c′1

⌉]
q

)
∈ R3

q, (2)

satisfying c̃0 + c̃1s+ c̃1s2 = ∆[m ·m′]t + v′ mod q. In a second step, c̃tmult is
converted back to a two element ciphertext, by multiplying D(c̃2) by −−→rlk and
adding the result to (c̃0, c̃1):

ctmult =

([
c̃0 +

〈
D(c̃2),

−−→
rlk0

〉]
q
,
[
c̃0 +

〈
D(c̃2),

−−→
rlk1

〉]
q

)
(3)

The result ctmult, can be decrypted with (1) to produce [m ·m′]t. As homomor-
phic operations are applied, the noise associated with ciphertexts grows, limiting
the number of operations that can be applied.

2.2 Hybrid Position-Residue Number System

Using [6] and considering a modulus q such that q = pd, one can represent
polynomials a ∈ Rq in a positional system of large radix base p – i.e. such that
a =

∑d−1
i=0 aip

i with (a0, . . . ,ad−1) ∈ (Rp)d.



Moreover, if the modulus p is chosen as a product of small distinct primes
p = p1 · · · pk, the Chinese Remainder Theorem (CRT) states that there is a ring
isomorphism between Rp and Rp1 × . . . × Rpk . In this case, the digits ais can
be represented in RNS as fp(ai) = ([ai]p1 , . . . , [ai]pk) which allows to break
down the arithmetic over the large coefficients into several smaller channels and
thus enhance performance. The RNS representation can be reversed, and ai
recovered, by computing:

f−1p ([ai]p1 , . . . , [ai]pk) =

[
k∑
i=1

[
[ai]pi

pi
p

]
pi

p

pi

]
p

=

k∑
i=1

[
ai
pi
p

]
pi

p

pi
−αip (4)

However, since the HPR is of a positional nature (a =
∑d−1
i=0 aip

i), one has
to consider the propagation of carries over the digits after additions or multipli-
cations. In order to compute the carries, the digits should be able to grow larger
than p. Thus, the digits arithmetic cannot be performed directly modulo p and
we must adjoined a second RNS basis B = {b1, . . . , bk} to P = {p1, . . . , pk}, so
that the digits can grow larger than p to compute the carries.

In order to approximate the carry caused by the ith digit, we add a modulus
bsk to B to form Bsk, and use a Shenoy-Kumaresan approach [14]. First, we use
a fast base extension (FBE),

FBE(ai,P,Bsk) =

(
k∑
i=1

[
ai
pi
p

]
pi

· p
pi

mod b

)
b∈Bsk

,

to obtain [ai]p + αi · p in base Bsk with ‖αi‖∞ 6 (k − 1)/2. Then, the approx-
imated carry c̃i =

ai−FBE(ai,P,Bsk)
p = bai

p e − αi is produced in Bsk. To finalise
the procedure, the value of c̃i is extended exactly to P. An inexact extension
first computes FBE(c̃i,B,P) = c̃i + βi · b in basis P with b = b1 · · · bk and
‖βi‖∞ 6 (k − 1)/2. Then, the extra residue modulo bsk is used to correct βi · b,
by computing βi with:

[βi]bsk =

[
1

b

(∑̀
i=1

[
ai
bi
b

]
bi

b

bi
− [c̃i]bsk

)]
bsk

. (5)

With this procedure, values ‖c̃i‖ < λB can be exactly represented and extended
from B so long as bsk ≥ 2(k + λ) [5, Lemma 6]. For the parameters considered
in this article, bsk can have the same bitwidth as the other moduli in P and B,
which is enough to get the residues of [ai]p+αi ·p and of c̃i = ci−αi in P∪Bsk.

Afterwards, c̃i can be added to the digit of index i+1 and one can re-run the
procedure to compute the carry c̃i+1 caused by the digit of index i + 1. If one
assumes an element to belong to Rq, the representation of the (d− 1)th digit in
basis B can be discarded. The (d− 1)th digit is implicitly multiplied by pd−1, so
any value larger than p/2 in absolute value would lead to representations larger
than q/2 = p× pd−1/2, which are redundant.



Practical complexity The computation of a carry for a single HPR digit requires
a first fast base extension from P to the k+1 moduli of Bsk (nk(k+2)) EMMs),
followed by the product by 1/p in base Bsk (n(k + 1) EMMs), and a Shenoy-
Kumaresan extension (n(k2 + 3k + 1) EMMs). Finally, since, when operating
modulo q, carries are consecutively computed for all the digits but the last, the
carry propagation procedure applied to an element in Rdp requires the following
amount of EMMs: {

C1_carry = n(2k2 + 6k + 2) EMMs
Call_carries = (d− 1) · C1_carry.

(6)

3 Proposed HPR-based FHE System

In this section, we propose an efficient HPR variant of the FV scheme. Key
generation, encryption and homomorphic addition take place as in the original
scheme [9], but with polynomial coefficients represented in HPR.

3.1 Proposed HPR-based Decryption Algorithm

The computational costs of RNS-based approaches to FV decryption are dom-
inated by the amount of NTTs one needs to compute [11,5]. Since polynomial
coefficients are therein represented in RNS, NTTs are computed for moduli
{q1, . . . , qKRNS

} such that q1 · · · qKRNS
= q. With an HPR approach, NTTs can

be computed only for the most-significant digit of the ciphertext polynomials.
Since each digit is represented in an RNS basis d times smaller than KRNS , the
amount of NTTs one needs to compute is also reduced d times.

We assume that the HPR representation of a ciphertext (c0, c1) ∈ R2
q has

digits satisfying ‖ci,j‖ 6 β ·p for i = 0, 1 and 0 6 j 6 d−2: β may take the value
of k/2 if carry propagation has been applied; or might be even slightly larger
for cases where the ciphertext represents an homomorphic sum. Lemma 1 proves
that, for the considered setting, the value of c0(p) + c1(p) · s can be efficiently
approximated having only access to the mod-P representation of the (d − 1)th
digits of c0 and c1 without causing a large error.

Lemma 1. For i = 0, 1, let ci be such that ‖ci,j‖∞ 6 βp for j ∈ [[0, d−2]], then:

[c0,d−1 + c1,d−1 · s]p =
∆[m]t + v + qu

pd−1
+ e+ ε · p (7)

for some ε ∈ R, with the error e verifying ‖e‖∞ 6 p
p−1β(1 + δRBkey).

Proof. In Appendix A.

Decryption consists in efficiently computing (8) modulo t based on the values
of c0,d−1 and c1,d−1.⌊

t · [c0,d−1 + c1,d−1 · s]p
p

⌉
= [m]t + bẽe+ t(u+ ε) (8)



with ẽ =
(
t · v − |q|t[m]t + tpd−1e

)
/q which has a norm bounded up by:

‖ẽ‖∞ 6
t

q
‖v‖∞ +

t|q|t
2q

+
t

p− 1
β(1 + δRBkey) (9)

We use a strategy similar to [5] to compute (8) with a fast basis extension
but without any error. By scaling the computation in (8) by an integer γ, any
extension errors will be detected since they will be nonzero modulo γ. After
efficiently getting [γt(c0,d−1 + c1,d−1 · s)]p +αp through a fast conversion from
P to {γt}, (10) can be computed.

r =
γt[c0,d−1 + c1,d−1 · s]p − ([γt(c0,d−1 + c1,d−1 · s)]p +αp)

p
mod γt

=
γ (t[c0,d−1 + c1,d−1 · s]p − [t(c0,d−1 + c1,d−1 · s)]p)

p
+

γ[t(c0,d−1 + c1,d−1 · s)]p − [γt(c0,d−1 + c1,d−1 · s)]p
p

−α mod γt

= γ

⌊
t
[c0,d−1 + c1,d−1 · s]p

p

⌉
+

⌊
γ
[t(c0,d−1 + c1,d−1 · s)]p

p

⌉
−α mod γt

= γ ([m]t + bẽe) +
⌊
γ
[t(c0,d−1 + c1,d−1 · s)]p

p

⌉
−α mod γt

= γ[m]t + γ bẽe+
⌊
γ
[pẽ]p
p

⌉
−α mod γt (10)

Now, through the application of Lemma 2 to (10), [m]t can be computed as
(r − [r]γ)/γ mod t.

Lemma 2. Let γ > k/2 and ‖α‖∞ 6 (k − 1)/2. If we have

‖v‖∞ <
q

2t

(
1− k

γ
− 2tβ

p− 1
(1 + δRBkey)

)
− |q|t

2
(11)

then bẽe = 0, and
⌊⌊
γ
[pẽ]p
p

⌉
−α

⌉
γ
=
⌊
γ
[pẽ]p
p

⌉
− α. Hence, the correction tech-

nique from [5] works.

Proof. In Appendix B.

3.2 Summarising

The above-described decryption steps are featured in Algorithm 1. First, c0,d−1+
c1,d−1 ·s is computed as an approximation to (c0(p)+c1(p) ·s)/pd−1. Then (10)
is computed modulo γt. Notice that since γt · [c0,d−1 + c1,d−1 · s]p = 0(modγt),
the expression for r can be simplified as

r =
− ([γt(c0,d−1 + c1,d−1 · s)]p +αp)

p
mod γt



In order to get the value of [γt(c0,d−1 + c1,d−1 · s)]p +αp, c0,d−1 + c1,d−1 · s
is scaled by γt modulo p and extended to basis γt. The function ξP computes
ξP(a) = ([ap1/p]p1 , . . . , [apk/p]pk) for a polynomial a ∈ Rp and is used to
prepare the extension to γt. In particular,

FBE(a,P, {γt}) = 〈ξP(a), ([p/p1]γt, . . . , [p/pk]γt)〉 mod γt

After −FBE([γt(c0,d−1 + c1,d−1 · s)],P, γt)/p mod γt is computed, the extension
result is corrected using the centred remainder modulo γ. Lemma 2 ensures that
r will hold γ[m]t plus some noise. This noise can be recovered through the
centred residue of r modulo γ, and then used to extract the message.

Algorithm 1 HPR-based Decryption
Require: c0,d−1, c1,d−1 in base P × B, NTT(s) in base P
Ensure: m mod t.
1: ([h]p1 , . . . , [h]pk )← ξP(γt · (c0,d−1 + NTT−1(NTT(c1,d−1)� NTT(s)))) mod p
2: r mod γt← 〈([h]p1 , . . . , [h]pk ), (| − 1/p1|γt, . . . , | − 1/pk|γt)〉 mod γt
3: return (r − [r]γ) /γ mod t

Notice that as in [5], if γ is chosen as a power of two, division by γ can be
replaced with a shift. Hence, Algorithm 1 has a computational cost of:

k NTT+ 2kn EMM+ k NTT−1 + kn EMMγt.

4 Proposed HPR-based Homomorphic Multiplication

A main issue with RNS approaches to the homomorphic multiplication of FV
has to do with the multiplication in Z it requires, that is followed by a divi-
sion and rounding. Since RNS operations are inherently modular, one needs to
extend the polynomial coefficients to large enough bases to handle the multi-
plications without any modular reduction. In our proposal, the extension of the
most significant digit suffices to lift elements from Rq to R. In addition, with
RNS approaches, other expensive basis extensions are required to achieve the
division and rounding. Given the positional nature of HPR, herein division and
rounding is achieved by only computing the most significant digits of a product.
Finally, the RNS representation of any value is as large as the representation of
the largest value representable in the RNS basis. Since an NTT has to be com-
puted for each modulus in the RNS basis, a large amount of NTTs is required
even for small values. With HPR, small values can be represented as a single
digit, reducing the amount of NTTs one has to compute d-fold.

For homomorphic multiplications in HPR we consider two ciphertexts ct =
(c0(Y ), c1(Y )) and ct′ = (c′0(Y ), c′1(Y )), with their elements represented in
HPR, encrypting respectivelym andm′, such that c0+ c1 · s = ∆[m]t+v+ rq
and c′0 + c′1 · s = ∆[m′]t + v

′ + r′q where r and r′ satisfy the following bound:



‖r‖∞, ‖r′‖∞ 6
δRBkey + 1

2
+ 1︸ ︷︷ ︸

r∞

. (12)

The polynomial digits are assumed to be bounded in a similar way to how they
were bounded during decryption in Section 3.1, i.e. ∀(i, j) ∈ {0, 1} × {0, . . . , d−
1}, ‖ci,j‖∞, ‖c′i,j‖∞ 6 β · p with β ' k/2.

Until now, we only needed to represent the digit of index d−1 in basis P, since
we were dealing with elements of R modulo q. However, during homomorphic
multiplication, the first product in (2) is not reduced modulo q. Therefore we
have to extend the digits of index d − 1 to the basis P × Bsk. This extension
is done exactly with the approach proposed in [11]. First, FBE(c̃i,P,Bsk) =
[ci,d−1]p +αi · p is computed. Then, αi is produced as

αi =

 k∑
j=1

[
c̃i
pj
p

]
pj

pj

 , (13)

using floating point operations to compute the quotients and rounding to the
nearest integer. Finally, the term αi · p is subtracted from the intermediate
result. The lifting procedure has a practical complexity of n(k2 + 3k + 1) EMMs
and n(k + 1) Floating-Point Operations (FPOs).

Notice that the approximation of (13) with floating point arithmetic may
lead to an erroneous computation of αi. There is a region Z+ 1

2 ± ε, where ε is
related to the used precision and the number of moduli in the basis P (|ε| < 2−51

for IEEE 754 double precision and k ≤ 4), to which the value computed in (13)
may belong before rounding, causing a possible error of at most 1. While one can
detect when this happens, and redo the computation with a higher precision to
reduce ε, we have chosen, as in [11], to skip this error detection. We will discuss
the possible effects of this choice in Remark 2.

At this point, we aim at computing (2). To do so we start by computing the
NTTs of all the digits of the two input ciphertexts (4d(2k + 1) NTTs in total).
Then the product is computed through a Karatsuba-like pattern: c̃0(Y ) = t · c0(Y ) · c′0(Y )

c̃2(Y ) = t · c1(Y ) · c′1(Y )
c̃1(Y ) = t · (c0(Y ) + c′1(Y )) · (c1(Y ) + c′0(Y ))− c̃0(Y )− c̃2(Y )

The products of polynomials in Y are performed as usual, i.e. in the power basis,
and the products of digits, which are in NTT form, are made component-wise.
Since the product is not reduced modulo q, no reduction modulo Y d is done.
Thus we obtain polynomials of degree (2d− 2) in Y . The division by q = pd and
the rounding can be approximated by computing only the d− 1 most significant
digits of the products. Nonetheless, in order to reduce the noise added by this
approximation, we also keep the carry coming from the digits of index d− 1.



Remark 1. The products of polynomials in Y required for the computations of
the c̃is, for i = 0, 1, 2, can be written as a vector-matrix product with the matrix
in Toeplitz form. Therefore, they can be performed with subquadratic asymp-
totic complexity: O(dlog2(3)) products of digits, i.e. with O(dlog2(3))× n(2k + 1)
products of residues. However, the small values of d considered for practical
parameters can make a naive (quadratic) algorithm more efficient.

Lemma 3. Let i ∈ {0, 1, 2} and bc̃i,d−1/pe − αi,d−1 be the carry coming from
c̃i,d−1 with ‖αi,d−1‖∞ 6 (k − 1)/2 (see Section 2.2). We have:⌊

c̃i,d−1
p

⌉
−αi,d−1 + c̃i,d + · · ·+ c̃i,2d−2 · pd−2 =

c̃i
q

+ ei, (14)

with:

‖ei‖∞ 6 6δRtβ
2p

(
d− 1

p− 1
− 1− p−d

(p− 1)2

)
+
k

2︸ ︷︷ ︸
Be

. (15)

Proof. In Appendix C.

At this point, three polynomials of degree d− 1 in Y have been produced, in
NTT form, which approximate ctmult with an error ei. They may be interpreted
as encrypting [m ·m′]t. The next proposition states the inherent noise of this
encryption, depending on the input noises v and v′.

Proposition 1. For i ∈ {0, 1, 2}, let ĉi =
⌊
c̃i,d−1

p

⌉
−αi,d−1 +

∑2d−2
j=d c̃i,d · pj−d

as in (14), then we have:

ĉ0 + ĉ1 · s+ ĉ2 · s2 ≡ ∆ · [m ·m′]t + v̂ mod q,

with:

‖v̂‖∞ 6 δRt

(
r∞ +

1

2

)
(‖v‖∞ + ‖v′‖∞) +

δR
2

min(‖v‖∞, ‖v′‖∞)

+
1

2
+ t

(
1

2
+ tδR(1 + r∞)

)
+Be

(
1 + δRBkey + δ2RB

2
key

) (16)

with Be as in (15) and r∞ as in (12).

Proof. In Appendix D.

Remark 2. In the case where an error has occured in the HPS basis extension,
before the multiplication, then we would obtain c̃i = ci+ qu with ‖u‖∞ = 1 (or
c̃′i = c′i + qu′ with ‖u′‖∞ = 1). In this case r∞ would increase to 3(δRBkey +
1)/2 + 1. As explained in [11, Section 4.5], this would only impact the size of
δRt (r∞ + 1/2) (‖v‖∞ + ‖v′‖∞) by less than 3% in the worst case. Considering
that this error occurs with probability smaller than 4n · 2−51 ≤ 2−43 on each
multiplication (n ≤ 216, on our parameters), its effect on the noise growth in
practice would be negligible.



After having performed the products, the carries of ĉ0,d−1 and ĉ1,d−1 are
computed to achieve an accurate approximation. These can be stored apart
in coefficient representation and added after the relinearisation step to the final
output. The computation of the two carries requires 2(2k+1) NTT−1 to leave the
NTT representation, and 2×C1_carry. Therefore, at this point the three elements
ciphertext has the 2(d − 1) digits of ĉ0 and ĉ1 and the d digits of ĉ2 in NTT
representation; and the two carries stored apart in coefficient representation.

Practical complexity All in all, if we consider that each vector-matrix product is
performed with a naive algorithm requiring nkd(d + 1) EMM, the homomorphic
multiplication (before relinearisation) requires:

Cmult. = n(k2 + 3k + 1)EMMs+ n(k + 1)FPOs+ 4d(2k + 1) NTTs
+2(2k + 1) NTTs−1 + 3nd(2k + 1)(d+ 3)/2 EMMs+ 2 · C1_carry

4.1 Relinearisation

As stated in Section 2.1, relinearisation starts by decomposing ĉ2 into a vec-
tor of digits with small norm, according to a function D. These values are
afterwards multiplied by the relinearisation-key, and added to (ĉ0, ĉ1). The
relinearisation-key contains pseudo-encryptions of P(s2), for a function P sat-
isfying

[〈
D(ĉ2),P(s2)

〉]
q
= [ĉ2 · s2]q. In the end, a two-element ciphertext is

produced encrypting [m ·m′]t. The main goal of this section is to set up efficient
D and P functions that take advantage of the properties of HPR.

The value of ĉ2 is represented as an array of d digits resulting from the
computation in Proposition 1:

∑d−2
i=−1 ĉ2,ip

i. At the beginning of relinearisation,
these digits are converted from the NTT to the canonical domain at a cost of
d(2k + 1) NTT−1. Then, carry propagation is applied and the digit of weight
p−1 is discarded, producing a vector: ĉ′2(p) =

∑d−1
i=0 ĉ

′
2,ip

i. By construction, the
digits a = ([a′0,P ,a

′
0,B], . . . , [a

′
d−1,P ,a

′
d−1,B])HPR that result from propagating

carries satisfy: [
Y if−1P∪B([a

′
i,P ,a

′
i,B])

]
q
=
[
Y iFBE(a′i,P ,P,Z)

]
q

(17)

where f−1P∪B corresponds to reverting the RNS representation with respect to
the (P,B) basis (see (4)). Concretely, this means that once the carry propaga-
tion has been done, the residues of ĉ′2 in base B are no longer required for the
relinearisation process. Based on (17), [ĉ′2 · s2]q may be rewritten as:

[ĉ′2 · s2]q =

[
d−1∑
i=0

FBE(ĉ′2,i,P,Z) · s2Y i
]
q

=

d−1∑
i=0

k∑
j=1

[
ĉ′2,i

pj
p

]
pj

p

pj
Y is2


q

. (18)

Thus, D(ĉ2) is defined as the vector (ri,j) satisfying: ri,j =
[
ĉ′2,i

pj
p

]
pj

and P(s2)

is defined as the vector (ψi,j) with ψi,j =
[
Y i ppj s

2
]
q
, for 0 6 i 6 d− 1 and 1 6

j 6 k. Clearly, the ‖ri,j‖∞ < pj/2 are small, and
[
〈D(ĉ′2),P(s2)〉

]
q
= [ĉ′2 · s2]q.



As explained in Section 2.1, the relinearisation-key (−−→rlk) is composed of
pseudo-encryptions of the ψi,j values. To produce the pseudo-encryption with re-
spect to ψi,j , a Ring Learning with Errors (RLWE) sample ([−(ai,j · s+ ei,j ]q) ,
ai,j) is drawn, and p

pj
· s2 is added to the i-th digit of the first element of the

pair. Then, the whole relinearisation key is stored in NTT form.

Remark 3. Note that, since ‖s2‖∞ 6 δRB
2
key < pj for moduli pj of practical

size, p/pjs2 is representable as a single HPR digit. Thus, the RLWE samples
used to mask the ψi,j = p

pj
· Y i · s2, for a fixed i and 1 ≤ j ≤ k, do not need

to have a degree higher than i in Y . The d− 1− i most significant digits of the
k elements of the relinearisation-key associated with these ψi,j are set to zero.
In practice, RLWE samples are drawn with respect to a modulus pi 6 pd, but
with an error of same standard deviation σerr. Thus, the security of the scheme
is not reduced. This technique allows us to not only reduce the size of −−→rlk, but
also to further reduce the practical complexity of the relinearisation.

Remark 4. As in [5, Appendix B1], it is still possible to use another level of
decomposition by using the binary representation of the ri,js. It may also be
possible to use the ciphertext truncation methods from [7, Section 5.4] and/or
the key-size reduction as explained in [5, Section 4.6] by applying them to the
least significant digits. The method from [7] would consist in truncating c′2 by pi,
i.e. of removing the i least significant digits of c′2 and of −−→rlk. With the method
from [5] we would ignore certain residues of the digits by setting them to zero. It
should be noted that both methods will still cause a larger noise growth during
the relinearisation.

When a small polynomial ri,j has been extracted from a residue modulo pj ,
it is easily extended to the base (P,Bsk) through a simple copy-paste operation.
Then, since its representation is a single digit, the computation of its NTT form
only requires (2k + 1) NTTs. In the next step, the ri,js are multiplied by the
corresponding −−→rlk elements and the results are accumulated in ĉ0, ĉ1.

The relinearisation step causes an increase in the noise associated with the
ciphertext. More concretely, for a homomorphic multiplication result (c0, c1)

[c0 + c1s]q =
[
ĉ0 + ĉ1 · s+ 〈D(ĉ′2),P(s2)− (−→e +−→a · s)〉+ 〈D(ĉ′2),

−→a 〉 · s
]
q

=
[
ĉ0 + ĉ1 · s+ ĉ′2 · s2 − 〈D(ĉ′2),

−→e 〉
]
q

=
[
ĉ0 + ĉ1 · s+ ĉ′2 · s2 + erelin

]
q

The extra noise caused by this step is bounded by:

‖erelin‖∞ 6 δR · d ·Berr · (p1 + · · ·+ pk) (19)

Practical complexity After the carry propagation of c2, we have to compute
the NTT of 1-digit polynomials ri,j in base (P,Bsk). Since there are d × k such
polynomials, this step requires (2k+1)·dk NTTs. Then, for each i, the single-digit



polynomial ri,j is computed with n elementary products and is multiplied by a
relinearisation-key element of degree i, resulting in a total of d(d+1)×(2k+1)×n
elementary products. The results of these products are added to ĉ0 and ĉ1.
Once all intermediate products have been accumulated, 2 × d(2k + 1) NTT−1s
are used to obtain the result in the canonical domain. Finally, carry propagation
is applied. This operation limits the size of the ciphertext polynomials digits,
enabling the application of further homomorphic multiplications or decryption.

Thus, the total cost of the relinearisation step is:

Crelin. = dk(2k + 1) NTTs+ 3d(2k + 1) NTTs−1

+dkn((d+ 1)(2k + 1) + 1) EMMs+ (3d− 2)C1_carry
(20)

Remark 5. As for any other variant of FV, the bit size of the noise grows linearly
with the multiplicative depth L. The maximal depth Lmax is determined by the
worst case scenario about the size of fresh noise and is reached when the next
multiplication makes the noise larger than ' ∆

2 (see Lem. 2). Consequently,
when the current depth L reaches around Lmax

d , the noise affects more than
one digit in the worst case scenario. Knowing that, it is possible to decrease
the asymptotic and practical complexity of the relinearisation by using a coarse
grain decomposition.

Instead of relinearising ciphertexts at the residue level, the residues can be
combined into a single digit during the decomposition step. In other words, the
sum with index j in (18) can be computed by the decomposition function prior to
the product with the relinearisation key. With this technique, the decomposition
polynomials become ri =

∑k
j=1

[
ĉ′2,i

pj
p

]
pj
× p

pj
, and the new relinearisation key

contains ψi =
[
Y is2

]
q
.

Since ri is not a single residue, its conversion toward base B is not a simple
copy-paste. However, the carry propagation performed prior to the relinearisa-
tion already involves such a base conversion. So, ri is obtained in the full RNS
base at no extra cost. Moreover, one may disregard an increasingly larger num-
ber of least significant digits during relinearisation as noise grows. If one assumes
that only the d′ most significant digits are taken into account for ĉ′2,i (in the
case where L ' (d− d′)Lmax

d ), the total cost boils down to

Crelin.,d′ = d′(k + `+ 1) NTTs+ 3d′(k + `+ 1) NTTs−1

+nd′(d′ + 1)(k + `+ 1) EMMs+ (3d′ − 2)C1_carry
(21)

Notice that a smoother approach may be taken by progressively reducing the
number of considered residues of the least significant digit used for relinearisa-
tion, instead of entirely removing whole digits at once.

4.2 Overall Procedure

An overview of the proposed HPR-based homomorphic multiplication procedure
can be found in Fig. 1. Two ciphertexts (c0, c1), (c

′
0, c
′
1) ∈ R2

q, encrypting [m]t



(c0, c1) (c′0, c
′
1)

1. Lift from Rq to R

2. NTT

3.
(c̃0,d, . . . , c̃0,2d−2) ← ĉ0 · ĉ′0
(c̃2,d, . . . , c̃2,2d−2) ← ĉ1 · ĉ′1
(c̃1,d, . . . , c̃1,2d−2) ← (ĉ0 + ĉ1) · (ĉ′0 + ĉ′1)− c̃0 − c̃2

4. c2 ← CarryProp ◦NTT−1(c̃2)

5. (ĉ
(0)
2 , ĉ

(1)
2 )← Relin(c2)

6.
ĉ0 ←

(
bNTT−1(c̃0,d)/pe, 0, · · · , 0

)
+ NTT−1

(
(c̃0,d+1, . . . , c̃0,2d−2, 0) + c̃

(0)
2

)
ĉ1 ←

(
bNTT−1(c̃1,d)/pe, 0, · · · , 0

)
+ NTT−1

(
(c̃1,d+1, . . . , c̃1,2d−2, 0) + c̃

(1)
2

)

ĉ0,d, ĉ1,d

7.
ĉ0 ← CarryProp(ĉ0)
ĉ1 ← CarryProp(ĉ1)

Fig. 1: HPR-based homomorphic multiplication procedure: the ciphertexts
(c0, c1) and (c′0, c

′
1) encrypting [m]t and [m′]t are homomorphic multiplied to

produce (ĉ0, ĉ1) encrypting [m ·m′]t.



and [m′]t, are the input. Since the first product between the ciphertexts’ elements
must not be reduced modulo q, c0, c1, c′0 and c′1 are lifted to R by extending
their most significant digits to (P,Bsk). This is done in Step 1 through the base
extension proposed in [11].

Then, the digits of (c0, c1), (c′0, c′1) are converted to the NTT domain in Step
2, as a preparation for the computation of (c̃0, c̃1, c̃2) = (bt/qc0 · c0e, bt/q(c0 ·
c′1 + c1 · c′0)e, bt/qc1 · c′1e). One of the advantages of the HPR is that, since
pd = q, a division by q can be achieved by discarding the d least significant
digits. More concretely, we only need to compute the d most significant digits
of the c′i, c′j products in Step 3. Due to the regularity of the operations, these
can be achieved with a Vector-Toeplitz Matrix Product (VTMP) with a reduced
complexity. However, for the small values of d considered in this article, a naive
vector-matrix multiplication is of sufficient performance. We keep the first of the
d produced digits, of weight p−1, to improve accuracy and we discard it after its
carry has been computed. Notice that by adding the carries at the end of the
algorithm, as depicted in Fig. 1 in Step 6, instead of when they are computed,
the amount of NTTs is further reduced.

Afterwards, the three-element ciphertext (c̃0, c̃1, c̃2) is converted back to a
two-elements ciphertext. First, we convert c̃2 from the NTT to the canonical
domain and propagate its carries in Step 4. Then, we can use the residues of
c̃2 in basis P to extract the small elements ri,j = [c̃2pj/p]pj which will be used
for the relinearisation. Unlike previous RNS approaches where, even though the
norm of the elements of DRNS(c̃′2) was small, their representation was large,
here the elements of D(c̃′2) are represented as a single HPR digit. This difference
allows to reduce by a factor of d the number of NTTs one needs to compute.
The inner products of D(c̃′2) and

−−→
rlk are computed in Step 5, and the result is

accumulated in (ĉ0, ĉ1) in Step 6.
Finally, we convert the result back to the canonical domain, and a full carry

propagation is conducted to reduce the size of the resulting coefficients. Lemma 4
quantifies the noise associated with this result.

Lemma 4. Given two ciphertexts encrypting [m]t and [m′]t with respective
noises v and v′, then the HPR-FV homomorphic multiplication provides an en-
cryption of [m ·m′]t with noise vmult such that

‖vmult‖∞ 6 δRt
(
r∞ + 1

2

)
(‖v‖∞ + ‖v′‖∞) + δR

2 min(‖v‖∞, ‖v′‖∞)

+ 1
2 + t

(
1
2 + tδR(1 + r∞)

)
+Be

(
1 + δRBkey + δ2RB

2
key

)
+δRdBerr(p1 + · · ·+ pk)

(22)

Practical complexity By adding the costs of the multiplication and relinearisation
procedures, homomorphic multiplication has the following computational cost:

Chom. mult. = d(k + 4)(2k + 1) NTTs+ (3d+ 2)(2k + 1) NTTs−1 + 3 · dC1_carry
+ n(2k + 1)

(
1 + 3dd+3

2 + dk(d+ 1)
)
+ nk(k + d+ 1) EMMs

+ n(k + 1)FPOs



5 Related Art

A first adaptation of FV [9] to the RNS was achieved in [5]. Due to the reduced
complexity, speedups from 2 up to 4 and from 5 up to 20 were achieved for the
homomorphic multiplication and decryption operations, respectively, in com-
parison to an implementation based on a generic multiprecision library. Later,
[11] proposed modifications to [5], namely by computing part of the RNS basis
extensions with floating point arithmetic.

There has been experimental work [4] comparing [11] and [5]. However, the
performance results of [4] are of limited applicability. The λ factor in [5, Lemma
6] is therein ignored, leading to RNS bases larger than what was originally pro-
posed in [5]. Moreover, implementation optimisations are ignored, like consider-
ing as an invariant that the polynomials are multiplied by x with x = qi/q mod qi
or x = bi/b mod bi. If these factors are included in the precomputations one needs
to store, while more multiplications are needed to remove this factor from one
of the operands before polynomial products are performed, the complexity of
bases extensions is reduced, leading to an overall improvement in performance.
Also, due to a reduction in the size of the constants one needs to store for the
decryption operation of [11] (instead of [qi/q]qiq/qi, only the q/qi need to be
precomputed), the moduli bit-size restriction therein is removed. In addition, if
one selects γ as a power of two and qi with qi = 1 mod γt, a large number of the
EMMs in the decryption of [5] are unnecessary.

It has also been noticed in [4] that for similar cryptographic parameters, [5]
offers a lower multiplicative depth than [11]. While we were able to determine
that this was partially due to the use in [4] of a positive remainder instead of
a centred remained during the SmMRqm̃ algorithm of [5], this did not completely
solve the issue. Hence, as discussed in [4], we herein base our lifting from Rq to
R on the basis extension proposed in [11] to fix this problem.

6 Complexity Analysis

In this section, a comparison between the complexity of the proposed HPR-based
FV scheme and [5,11] is performed. Herein, KRNS corresponds to the size of the
RNS bases of [5,11]. Both [5,11] make use of secondary bases of size KRNS + 1.
With the proposed HPR-based scheme, each polynomial coefficient is associated
with d digits, each of them represented in an RNS basis of size k, and a secondary
RNS basis with k+1 moduli. The value of k is about d times smaller thanKRNS .

6.1 Decryption

A comparison of the costs of the decryption operation for the related art and
the proposed scheme can be found in Table 1. For simplicity, we associate both
forward and inverse NTTs with the NTTs column. In all schemes, the compu-
tational cost is dominated by the amount of NTTs. A radix-2 NTT requires
n
2 log2 n EMMs [13]. In practice, [5,11] require KRNS forward NTTs and KRNS



inverse NTTs; whereas k forward NTTs and k inverse NTTs are required for
the HPR-based decryption. As a consequence, the cost of decryption in HPR
is nearly d times smaller than that of [5,11]. Since for security reasons KRNS

and K ∈ O(n) and that NTTs have a quasi-linear complexity, the asymptotic
complexity for the decryption procedure is reduced from C(DecRNS) for [5,11] to
C(DecHPR) for the proposed scheme:

C(DecRNS) ∈ O(n2 log n)→ C(DecHPR) ∈ O(n1+ε log n).

where k = Kε, with ε ∈ (0, 1). As a consequence, when the number of digits
d increases, k and ε decrease, which results in a more efficient algorithm. In
particular for d = K, and thus k = 1, we obtain a quasi-linear complexity.

6.2 Homomorphic Multiplication

Similarly to Section 6.1, a comparison of the number of operations required for
the homomorphic multiplication for the three variants of the scheme is given in
Table 2. As previously, since KRNS and K ∈ O(n), the asymptotic complexity
of [5,11] is:

C(FV-MultRNS) ∈ O(n3 log n),

while, assuming k = Kε and d = K1−ε, for our HPR variant it is reduced to:

C(FV-MultHPR) ∈ O(n2+ε log n+ n3) = O(n3).

While asymptotically the choice of ε does not impact the complexity, in prac-
tice there is an optimal kn, or equivalently dn, that minimises the computational
cost presented in Table 2.

Remark 6. By considering Remark 5, the asymptotic complexity of relinearisa-
tion when applying a digit-wise decomposition can be reduced to

O(dkn log(n) + nd2k) = O(n2 log(n) + n3−ε) = O(n3−ε) EMM.

Scheme NTTs EMMs FPOs
[11] 2KRNS nKRNS n(1 +KRNS)
[5] 2KRNS 3nKRNS -

HPR 2k 3nk -

Table 1: Time complexity of decryption in HPR and in [5,11] in terms of number
of Number Theoretic Transforms (NTTs), Elementary Modular Multiplications
(EMMs) and Floating Point Operations (FPOs). KRNS denotes the number of
moduli in the RNS bases of [5,11], while k is the number of moduli used to
represent the digits in the HPR representation (k ' KRNS/d)



Scheme NTTs EMMs FPOs
[11] K2

RNS + 16KRNS + 7 n(12K2
RNS + 63KRNS + 49) n(10KRNS + 13)

[5] K2
RNS + 16KRNS + 7 n(10K2

RNS + 25KRNS + 7) -
HPR (2k + 1)(d(7 + k) + 2) n(2k + 1)

(
1 + 3d d+3

2
+ dk(d+ 1)

)
+ n(k + 1)

nk(6dk + k + d+ 4) + 6dn

Table 2: Time complexity of the homomorphic multiplication operation for the
HPR-based scheme and those proposed in [11,5] in terms of the amounts of Num-
ber Theoretic Transforms (NTTs), Elementary Modular Multiplications (EMMs)
and Floating Point Operations (FPOs). KRNS corresponds to the number of
moduli in the RNS bases of [11] and [5], respectively. The complexity of [11] was
computed from [11, Table 2] by setting the size of the secondary RNS basis to
KRNS + 1. The complexity of [5] was replicated from [5, Appendix B3].

7 Experimental Evaluation

The NTT-based Fast Lattice (NFL) library [2] was adapted to handle moduli
with the bitwidths featured in Table 3. The proposed HPR-based scheme and
[5,11] were implemented in C++, using the modified NFL library [2]5. They
were compiled with gcc 8.3.0 and executed on a single thread on an Intel Core
i7-6700K processor running at 4.0GHz with 32GB of main memory, operated
by CentOS 7.3. Experimental results regarding the execution time of decryption
and homomorphic multiplication for the proposed HPR-based scheme and [5,11],
for the cryptographic parameters presented in Table 3, are depicted in Figure 2.

n log2 q KRNS log2 qi (RNS) K = k × d log2 pi (HPR)
213 275 5 55 5 = 1× 5 55
214 549 9 61 9 = 3× 3 61
215 1098 18 61 18 = 3× 6 61
216 2196 36 61 36 = 3× 12 61

Table 3: Parameters achieving 100 bits of security according to [3] with σerr =
8.0. [11,5] have RNS bases of size KRNS ; while for the HPR-based approach d
digits are represented in bases of size k, such that K = k × d.

Asymptotically, decryption has a speed-up that is linear with n. This be-
haviour is more noticeable for n ≥ 214 in Figure 2.a because therein k = 1 is
featured for n = 213 and k = 3 for n ≥ 214, since k was chosen to minimise the
complexity of homomorphic multiplication. Maximum speed-ups of 8.6 and 8.0
are achieved when the proposed HPR-based scheme is compared with [5] and

5 The code has been made available at https://gitlab.com/fvhpr/hare



[11], respectively, for n = 216. In certain situations, for instance when decryp-
tion is executed in constrained devices, it might be beneficial to choose a smaller,
suboptimal, k to further reduce the execution time of decryption, at the cost of
less efficient homomorphic multiplications.

Figure 2.b suggests that the theoretically predicted O(log n) speed-up is only
achieved in practice for large parameters. While the novel HPR-based represen-
tation brings performance improvements to the multiplication part of the proce-
dure (i.e. without relinearisation), that are noticeable for most parameters, the
complexity improvements pertaining relinearisation only take effect for n ≥ 216.
This suggests that the proposed HPR-based scheme is preferable to [5,11] for
applications relying on sums of products, wherein relinearisation is only applied
once, after computing the homomorphic sum of the optimised products, or when
large parameters (n ≥ 216) are considered. Maximum speed-ups regarding the
whole procedure of 2.0 and 1.6 are achieved when the proposed scheme is com-
pared with [11] and [5], respectively.

Finally, since both [11] and the proposed scheme lift polynomials from Rq
to R using the floating-point based RNS basis extension, similar multiplicative
depths are achieved for both schemes [4]. More concretely, we have measured the
depth reached in practice by squaring several ciphertexts until they did not de-
crypt correctly and kept the smallest value as the practical multiplicative depth.
Experimental results show that, for the parameters in Table 3, the proposed
HPR-based scheme supports circuits with multiplicative depths of 15, 32, 64,
and 125, while [11] supports depths of 16, 32, 64, and 125, for n = 213, n = 214,
n = 215 and n = 216, respectively. In contrast, [5] achieves multiplicative depths
of 15, 31, 64, and 124, for n = 213, n = 214, n = 215 and n = 216, respectively.
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Fig. 2: Execution time (ms) of decryption and homomorphic multiplication for
the HPR-based scheme and [5,11] on an i7-6700K for the cryptographic param-
eters in Table 3. The y axes are logarithmic



8 Conclusions

Whereas state-of-the-art implementations of FV make use of the RNS, the FV
scheme requires operations that are inefficient to implement in this representa-
tion. In particular, division and rounding requires large basis extensions, and
the representation of small values is ample. Herein, an alternative approach to
accelerate FV was proposed, supported on the HPR. The HPR is an hybrid
representation system that inherits characteristics of positional systems, while
representing its digits in RNS to benefit from its arithmetic parallelism. Di-
visions are approximated by considering only the most significant digits of a
value. Since decryption requires a division operation, the HPR-based system
significantly reduces the amount of NTTs one has to compute when compared
with a pure RNS approach, reducing its asymptotic complexity from O(n2 log n)
to O(n log n). Since the homomorphic multiplication operation also depends on
division and rounding, it also benefits from the use of the HPR. Moreover, during
the relinearisation step of homomorphic multiplication, small values are operated
on. With the HPR, small values can be represented as a single digit, leading to
a significant reduction in the amount of NTTs one has to compute to operate on
them. As a result, the asymptotic complexity of homomorphic multiplication is
also reduced, namely from O(n3 log n) to O(n3), when comparing to RNS-based
approaches. When compared with two state-of-the-art schemes, experimental
speedups of up to 8.0 and 8.6 for the decryption operation and of up to 2.0 and
1.6 for the homomorphic multiplication are achieved. The experimental results
also confirm that the speed-up increases as n grows.
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A Proof of Lemma 1

A valid encryption of [m]t satisfies c0 + c1 · s = ∆[m]t + v + uq. Thus we have
that the approximation in (7) satisfies:



[c0,d−1 + c1,d−1s]p =
∆[m]t + v + qu

pd−1
−
d−2∑
i=0

(c0,i + c1,i · s)pi−d+1 + εp

with e = −
∑d−2
i=0 (c0,i + c1,i · s)pi−d+1. The norm of e can thus be bounded as

‖e‖∞ ≤
d−2∑
i=0

(βp+ δRβpBkey)p
i−d+1 ≤ p

p− 1
β(1 + δRBkey).

ut

B Proof of Lemma 2

First, we show that if

‖ẽ‖∞ <
1

2

(
1− k

γ

)
(23)

is satisfied then bẽe = 0 and
∥∥∥⌊γ [pẽ]p /p⌉−α∥∥∥∞ < γ/2. In particular, bẽe = 0

since k, γ > 0 and hence ‖ẽ‖∞ < 1/2. In addition, [pẽ]p = pẽ since ‖pẽ‖∞ < p/2.
Thus,

∥∥∥⌊γ [pẽ]p /p⌉−α∥∥∥∞ =

∥∥∥∥γpẽ− [γpẽ]p
p

−α
∥∥∥∥
∞

<
γp(1− k/γ) + p

2p
+
k − 1

2
≤ γ/2

Finally, it will be shown that (11) implies (23). This is achieved by exploiting
(9) to bound ‖ẽ‖∞, and as consequence ‖v‖∞:

‖ẽ‖∞ 6
t

q
‖v‖∞ +

t|q|t
2q

+
t

p− 1
β(1 + δRBkey) <

1

2

(
1− k

γ

)
.

Through a manipulation of the previous expression, (11) is finally reached:

t

q
‖v‖∞ +

t|q|t
2q

+
t

p− 1
β(1 + δRBkey) <

1

2

(
1− k

γ

)
⇔‖v‖∞ <

q

2t

(
1− k

γ
− 2tβ

p− 1
(1 + δRBkey)

)
− |q|t

2

ut



C Proof of Lemma 3

For i ∈ {0, 1, 2} we have by definition: c̃i =
∑2d−2
j=0 c̃i,j · pj . Moreover, given

that the digits of cl and c′l, for l = 0, 1, have their norm smaller than βp then:
for i ∈ {0, 2} and for j ∈ {0, . . . , d − 2}, ‖c̃i,j‖∞ 6 δRt(j + 1)β2p2; and for
j ∈ {0, . . . , d− 2}, ‖c̃1,j‖∞ 6 6δRt(j + 1)β2p2. Now by using the second bound
for every c̃i,j we can write:

‖c̃i,0 + · · ·+ c̃i,d−2 · pd−2 + ([c̃i,d−1]p + pαi,d−1) · pd−1‖∞

6 6δRtβ
2p2(1 + 2p+ · · ·+ (d− 1)pd−2) +

(
1

2
+
k − 1

2

)
pd

6 6δRtβ
2p2
(
(d− 1)pd−1

p− 1
− pd − 1

p(p− 1)2

)
+
k

2
pd.

Recalling that pd = q, we have:(⌊
c̃i,d−1
p

⌉
−αi,d−1 + c̃i,d + c̃i,d+1 · p+ · · ·+ c̃i,2d−2 · pd−2

)
=
c̃i
q
− c̃i,0 + · · ·+ c̃i,d−2 · p

d−2 + [c̃i,d−1]p · pd−1 +αi,d−1 · pd

pd

and then we deduce (14) with:

ei = −
c̃0,0 + · · ·+ c̃0,d−2 · pd−2 + [c̃0,d−1]p · pd−1 +α0,d−1 · pd

pd
.

In particular, we obtain (15): ‖ei‖∞ 6 6δRtβ
2p
(
d−1
p−1 −

1−p−d

(p−1)2

)
+ k

2 . ut

D Proof of Proposition 1

Knowing that∆t = q−|q|t, [m]t·[m′]t = [m·m′]t+trm and v·v′ = ∆rv+[v·v′]∆,
we can write:

t

q
(c0 + c1 · s) · (c′0 + c′1 · s) =

t

q
(∆ · [m]t + v + rq) · (∆ · [m′]t + v′ + r′q)

=
t

q

(
∆2[m]t · [m′]t +∆([m]t · v′ + [m′]t · v) +∆q([m]t · r′ + [m′]t · r)

+v · v′ + q(v · r′ + v′ · r) + q2r · r′
)

=
q − |q|t

q
(∆ ([m ·m′]t + trm) + [m]t · v′ + [m′]t · v + rv) + t(v · r′ + v′ · r)

+ (q − |q|t)([m]t · r′ + [m′]t · r) +
t

q
[v · v′]∆ + tqr · r′

=∆[m ·m′]t + vmult + q([m]t · r′ + [m′]t · r + rm + tr · r′),



with: vmult =([m]t · v′ + [m′]t · v + rv)

(
1− |q|t

q

)
+ t(v · r′ + v′ · r)

+
t

q
[v · v′]∆ −

|q|t
q
∆[m ·m′]t − |q|t ([m]t · r′ + [m′]t · r)

− rm|q|t
(
2− |q|t

q

)

As shown in [7], we have: ‖rm‖∞ 6
δRt

2
and ‖rv‖∞ 6

δR
2

min(‖v‖∞, ‖v′‖∞).
Therefore:

‖vmult‖∞ 6
t

2
δR(‖v′‖∞ + ‖v‖∞) +

δR
2

min(‖v‖∞, ‖v′‖∞) + tδRr∞(‖v′‖∞ + ‖v‖∞)

+
t

q

∆

2
+
t2

2q
∆+ t2δRr∞ + t2δR

6δRt

(
r∞ +

1

2

)
(‖v‖∞ + ‖v′‖∞) +

δR
2

min(‖v‖∞, ‖v′‖∞)

+
1

2
+ t

(
1

2
+ tδR(1 + r∞)

)
However in the conditions herein considered, we need also to take into account
the errors ei coming from (14), thus:

ĉ0 + ĉ1 · s+ ĉ2 · s2

=
t

q
c0 · c′0 + e0 +

(
t

q
(c0 · c′1 + c1 · c0) + e1

)
· s+

(
t

q
c1 · c′1 + e2

)
· s2

=
t

q
(c0 + c1 · s) · (c′0 + c′1 · s) + e0 + e1 · s+ e2 · s2.

Therefore, v̂ = vmult + e0 + e1 · s + e2 · s2, with ‖e0 + e1 · s + e2 · s2‖∞ 6

Be

(
1 + δRBkey + δ2RB

2
key

)
. We obtain (16) by summing the last two bounds.
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