
EasyUC: Using EasyCrypt to Mechanize Proofs of

Universally Composable Security∗

Ran Canetti† Alley Stoughton‡ Mayank Varia§

May 29, 2019

Abstract

We present a methodology for using the EasyCrypt proof assistant (originally designed
for mechanizing the generation of proofs of game-based security of cryptographic schemes and
protocols) to mechanize proofs of security of cryptographic protocols within the universally
composable (UC) security framework. This allows, for the first time, the mechanization and
formal verification of the entire sequence of steps needed for proving simulation-based security
in a modular way:

• Specifying a protocol and the desired ideal functionality.

• Constructing a simulator and demonstrating its validity, via reduction to hard computa-
tional problems.

• Invoking the universal composition operation and demonstrating that it indeed preserves
security.

We demonstrate our methodology on a simple example: stating and proving the security of
secure message communication via a one-time pad, where the key comes from a Diffie-Hellman
key-exchange, assuming ideally authenticated communication. We first put together Easy-

Crypt-verified proofs that: (a) the Diffie-Hellman protocol UC-realizes an ideal key-exchange
functionality, assuming hardness of the Decisional Diffie-Hellman problem, and (b) one-time-
pad encryption, with a key obtained using ideal key-exchange, UC-realizes an ideal secure-
communication functionality. We then mechanically combine the two proofs into an Easy-

Crypt-verified proof that the composed protocol realizes the same ideal secure-communication
functionality.

Although formulating a methodology that is both sound and workable has proven to be a
complex task, we are hopeful that it will prove to be the basis for mechanized UC security
analyses for significantly more complex protocols.

∗This is an extended version of the paper appearing in the Proceedings of the 32nd IEEE Computer Security
Foundations Symposium (CSF 2019). This research was supported by the National Science Foundation under Grants
No. 1414119 and No. 1801564.

†Boston University and Tel Aviv University. Member of the Check Point Institute for Information Security. Email:
canetti@bu.edu

‡Boston University. Email: stough@bu.edu
§Boston University. Email: varia@bu.edu

1

Contents

1 Introduction 3

1.1 This Work . 5
1.2 Case Study . 6
1.3 Reflections . 7

2 Related Work 7

2.1 Approaches to Composable Security . 7
2.2 Formal Methods Tools for Cryptography . 8

3 Background 8

3.1 EasyCrypt . 8
3.2 Universally Composable Security . 9

4 Our Modeling of UC within EasyCrypt 10

4.1 Our Variant of UC . 10
4.2 Formalization in EasyCrypt . 12

5 Case Study: Secure Message Communication 15

5.1 SMC Protocol . 16
5.2 Functionalities . 17
5.3 Road-map for Proof of SMC Security . 21
5.4 Proof of Security of Key-Exchange . 21
5.5 Proof of Security of SMC . 25

6 Lessons Learned and Future Work 28

6.1 Domain Specific Language for Defining Functionalities 28
6.2 Support for Symbolic Evaluation . 29
6.3 Proving or Mechanizing the UC Composition Theorem 29
6.4 The Dummy Adversary Model . 30

A EasyCrypt Module for Making Interfaces 35

B EasyCrypt Composed Environment Module 36

C Symbolic Evaluation in EasyCrypt 37

2

1 Introduction

Cryptographic protocols are magical: they allow us to conjure alternative realities where infor-
mation is created, shared, evolved, analyzed, combined, separated, seemingly destroyed, and then
reconstructed elsewhere in idealized and abstract ways that defy physical common sense—and then,
amazingly enough, they show us how to actually realize these alternative realities on our laptops.

This magic comes at a price: to make it work, we must resign to the fact that guarantees might
be imperfect and allow for small probability of error. Furthermore, the guarantees might only hold
against resource bounded adversaries; consequently, proofs may need to rely on reductions to the
intractability of some underlying computational problems.

Additionally, one has to know how to align one’s spells: verifying seemingly natural proper-
ties like correctness, secrecy, information flow, knowledge, influence, or bias becomes delicate and
error-prone. Indeed, even formalizing such concepts requires arguing about the capabilities and
knowledge of computationally bounded adversarial entities that interact with multiple algorithms
in a distributed, multi-component system.

Then, proofs (or reductions) that a protocol possesses a property must show how to translate
the capabilities and knowledge of a computationally bounded adversary in one distributed, multi-
component system to adversarial capabilities and knowledge in another system, which might also
be distributed and multi-component. Indeed, cryptographic modeling and analysis has time and
again succumbed to subtle but devastating mistakes (see e.g., [1–3]).

Cryptographic approaches to defining security. Several methodologies for “magic control”—
i.e., specifying and analyzing security properties of cryptographic protocols—have been developed
over the years.

One such methodology is the game-based security approach in which a hypothetical adversary
interacts with a “tester” or a “game master” who mediates the adversary’s access to components of
the scheme and who also determines at the end of the interaction whether the adversary succeeded
in its goal. A cryptographic scheme is deemed to satisfy game-based security if no sufficiently
bounded adversary succeeds with probability more than allowed by the game. This is a relatively
simple formalism that involves only a single universal quantifier (asymptotics aside).

However, plain game-based security definitions often have limited expressive power. Specifically,
in situations where the security requirements combine both secrecy and correctness in non-trivial
ways (such as zero-knowledge proofs, secure computation, garbling, functional encryption and oth-
ers) plain game-based definitions do not seem to suffice. In such situations the more expressive
formalism of simulation-based security (often called the real/ideal paradigm) turns out to be more
useful. Simulation-based security can be thought of as an interaction between a game-master and
three entities: an adversary, a simulator, and a distinguisher. The game master chooses at random
to play either the real game with the distinguisher and the adversary, or else to play the ideal
game with the distinguisher and the simulator. The definition of security requires that for any
(bounded) adversary there exists a computationally bounded simulator such that no computation-
ally bounded distinguisher will be able to tell the real game from the ideal one with significant
advantage. Here the ideal game typically represents the desired behavior of the system, whereas
the real game represents the actual execution environment under consideration.

Even simulation-based notions of security can fall short of capturing security properties nimbly
enough. Indeed, time and again such notions have failed to preserve security when schemes and
protocols are composed with one another in adversarially coordinated ways (see e.g., [4–6]). Still, a
special class of simulation-based notions of security, namely notions of universally composable (UC)

3

security, do allow capturing security properties of protocols so that these properties are preserved
even when the analyzed protocols are composed with arbitrary other protocols [7, 8].

UC security can be thought of as a variant of simulation-based security, where the interaction
among the distinguisher, the adversary (or simulator), and the game master is stylized in a spe-
cific way that allows the distinguisher “maximum interaction” with the adversary (or simulator).
Furthermore, UC security has an alternative (and mathematically equivalent) formulation which
considers only a single, simple adversary. We are thus left with the structurally simple requirement
that there exists a simulator such that no distinguisher can tell the real interaction from the ideal
interaction with the simulator.

More specifically, the ideal game represents an interaction of the distinguisher (who is now called
the environment) with the simulator and an entity, called an ideal functionality, that represents
the desiderata from the task at hand by way of an idealized mechanism. The real game represents
an execution of the analyzed protocol within the model of computation under consideration. This
means that, to demonstrate that a protocol complies with the specification, the analyst should
exhibit a simulator, and then demonstrate that no environment can tell whether it is interacting
with the protocol in the real game, or else with the ideal functionality and the simulator in the
ideal game. In that case we say that the protocol UC-realizes the ideal functionality.

Beyond providing an expressive way of formulating security and functionality specifications for
protocols, universally composable (UC) security is attractive in that it allows for security-preserving
modular design of protocols, or more generally complex systems—thus significantly simplifying the
overall design and analysis process. Indeed, UC security has become the method of choice for
formulating and proving security of cryptographic protocols, whenever possible.

There are a number of frameworks that allow representing protocols and formulating UC security
properties with varying levels of expressivity and generality, e.g., [3, 7–11].

Formal and mechanized analysis. Although formulating adequate notions of security for sim-
ple tasks and proving the security of simple protocols based on simple-to-state computational
intractability assumptions can be a fun challenge for a creative mind, doing so for even moderately
complex protocols (let alone at the scale of real-world systems) is a daunting task. Formalisms
such as the UC framework or the sequence-of-games formalism [12–14] make proofs more modular
and structured; still, even with these mechanisms in place, the complexity of manual proofs is far
beyond the reach of human capabilities.

Several approaches to mechanizing the verification of cryptographic security properties have
been proposed. The works of Abadi-Rogaway and Micciancio-Warinschi [15, 16] demonstrate that
game-based cryptographic properties in the symbolic model can be formulated in a logic that can
be mechanically verified. Indeed, the ProVerif Tool [17] of Blanchet was able to verify these
(and other) properties mechanically. Backes and Pfitzmann [18], and later Canetti and Herzog
[19], demonstrate that a similar translation can be done for universally composable notions of
security. However this approach turned out to be limited in scope, since it required separating
the analysis into two disjoint parts: an “abstract” part where the analysis is purely combinatorial
(and typically deterministic) without computational hardness considerations, and the remaining
“computational” part that translates algorithmic constructs that rely on computational hardness
to abstract constructs with idealized security. Furthermore, only the “abstract” part is mechanized.

An alternative approach, taken in CryptoVerif [20], and later by other proof assistants such
as EasyCrypt [21, 22], FCF [23], and CryptHOL [24, 25], applies to cryptographic proofs that
are based in the sequence-of-games formalism. These tools provide probabilistic programming lan-
guages to formalize the games in the sequence, and support the automatic or machine-assisted

4

generation and verification of the transitions between games, as well as the overall proof. This ap-
proach proved very successful and allowed formally and mechanically verifying game-based security
notions of many primitives, schemes and protocols. Some simulation-based security analyses have
been carried out as well, with a variety of challenges being reported [26–28]. However, to the best
of our knowledge, none of these tools have been used so far to mechanize UC-style security analyses
(with the potential exception of the concurrent work of [29]).

1.1 This Work

We report on an ongoing effort to show how EasyCrypt can be used to formally specify and
mechanically verify security properties of protocols, expressed within the UC framework. The
overarching goal is to be able to specify protocols, ideal functionalities, and simulators within the
EasyCrypt language and mechanize proofs of UC security. In more detail, we seek to:

• Represent cryptographic protocols within the UC framework, or rather a variant of UC that
replaces interactive Turing machines with EasyCrypt modules.

• Specify security requirements for cryptographic tasks, by way of formulating appropriate ideal
functionalities within the same variant of the UC framework.

• Formally verify that a protocol UC-realizes an ideal functionality under appropriate in-
tractability assumptions. This requires defining an appropriate simulator and then proving a
concrete upper bound ǫ on the ability of the environment to distinguish an interaction with
the protocol from an interaction with the ideal functionality and the simulator. The bound
ǫ can either be stated in absolute terms or relative to the concrete ability of breaking the
underlying computational assumption.

• Apply the universal composition operation to protocols and formally prove using the Easy-

Crypt tool that the operation preserves security, as predicted by the universal composition
theorem.

In this work, we make significant steps towards this overarching goal. Specifically, we formulate
a somewhat restricted variant of the UC framework (essentially, we assume static and known
subroutine structure and hierarchical addressing). Still, this variant allows expressing a rich class
of cryptographic protocols and ideal functionalities. Next we provide a library of EasyCrypt

modules that allows expressing executions, within the UC model, of (1) a given protocol with
an arbitrary environment and adversary, and (2) a given ideal functionality, with an arbitrary
environment, and a given simulator that interfaces with an arbitrary adversary. Furthermore, the
library allows expressing as an EasyCrypt goal the statement that, given a protocol, an ideal
functionality, and a simulator, no environment and adversary can distinguish between an execution
of the protocol, and an execution of the ideal functionality alongside the simulator. Finally, we
give a generic way to express the universal composition (UC) operation, and we provide a general
methodology for proving its validity.

Remarks. Four comments are in order at this point.
First, this work inherits EasyCrypt’s informal treatment of runtimes. That is, we do not

provide any formal mechanism for verifying the runtimes of components, most prominently of the
simulator; this analysis is left to be done manually. While for our restricted case this does not
appear to be a severe limitation, adding an EasyCrypt mechanism for formally asserting runtime
bounds would be useful.

5

Second, recall that the UC operation takes descriptions of three protocols—ρ, φ and π—and
returns the protocol ρφ→π where each instance of φ, when called as subroutine of ρ, is replaced
by an instance of π. For simplicity, in this work we only treat the case where a single instance
of φ is replaced by an instance of π. We note that no generality is lost since the general case
can be obtained by iterated applications of this single-instance case. Crucially, this holds since
the complexity of the simulator in the UC framework is always bounded by the complexity of the
adversary plus a fixed polynomial overhead.

Third, while our case study does not use subroutines that are globally accessible or share state
with other protocols, we are not aware of any limitation that would prevent our framework from
being adapted to handle such cases as well.

Fourth, we note that, throughout this work, we stick with the formulation of UC security that
directly models an arbitrary adversary, rather than restricting attention to the dummy adversary
model. This is done for convenience: With an arbitrary adversary, UC security is trivially transitive,
which is very useful as exemplified in the case study (see below and and in Section 5). Furthermore,
since UC simulation is black-box and in-line, the added complexity incurred by the analyst due to
working with an arbitrary adversary is minimal; see Section 6 for discussion.

1.2 Case Study

We demonstrate the validity of our methodology on an example which, while relatively simple,
contains all the components mentioned above. Specifically, we give an EasyCrypt-aided formal
analysis of UC-security of a Diffie-Hellman key-exchange protocol, followed by the one-time-pad
encryption of a message with the resulting key—assuming ideally authenticated communication.
That is:

• We give EasyCrypt formulations of an ideal secure message communication (SMC) func-
tionality SMCIdeal, an ideal key-exchange functionality KEIdeal, and an ideal message authen-
tication functionality Forw.

• We give EasyCrypt formulations of two different 2-party protocols: Diffie-Hellman key
exchange, KEReal, and a secure message communication protocol, SMCReal(KE), in which the
parties use as a one-time pad the shared key produced by an abstract module KE. Both
protocols use Forw to transmit all messages.

• We formally verify that KEReal UC-realizes KEIdeal under the Decisional Diffie-Hellman (DDH)
assumption. This requires construction of a simulator KESim, construction of a DDH-breaking
adversary from the environment and adversary, and proving that the ability of the environ-
ment to distinguish KEReal and the adversary from KEIdeal and the application of KESim to
the adversary is upper-bounded by the ability of the DDH-breaking adversary to distinguish
the DDH games.

• We formally verify that SMCReal(KEIdeal)—that is, SMCReal where the abstract module KE is
instantiated with ideal key exchange KEIdeal—UC-realizes SMCIdeal. That is, we construct a
simulator SMCSim and formally verify that no environment can distinguish between the two
interactions. (Here there is no reduction.)

• We formally verify that SMCReal(KEReal) UC-emulates SMCReal(KEIdeal). This amounts to
verifying an instance of the universal composition theorem. (UC-emulation is a generalization
of UC-realization to the case where the emulated protocol is not an ideal functionality.)

6

• Using transitivity, we deduce that SMCReal(KEReal) UC-realizes SMCIdeal.

The EasyCrypt code for the case study can be downloaded from the EasyUC project’s GitHub
repository:

https://github.com/easyuc/EasyUC

1.3 Reflections

Building a framework that is EasyCrypt-compatible, a faithful representation of (a subset of) the
UC framework, and at the same time also workable, turned out to be a highly non-trivial challenge.
We view our work so far as a first step towards the general goal, outlined above, of being able to
generate tool-assisted, formally verified proofs of UC security with relative ease.

Immediate goals include further extending our library of EasyCrypt modules, formalizing and
verifying the UC composition theorem more generally, and providing additional support to facilitate
the expression of UC protocols, ideal functionalities, and simulators as well as the generation of
EasyCrypt proofs. Here developing a domain-specific dialect of the EasyCrypt programming
language will prove useful.

In Section 6, we describe some of the main difficulties we faced in our work, and point the way
toward future work.

2 Related Work

2.1 Approaches to Composable Security

There are a number of analytical frameworks that allow representing protocols and formulating UC
security properties with varying levels of expressivity and generality, e.g., [3, 7–11]. While these
definitions differ in many details (mainly in their execution models for distributed protocols, and
in the details of the respective notions of resource-boundedness), their high-level structures are
very similar. In fact, for the restricted case of protocols that can be expressed within the current
formalism, all these definitions boil down to almost identical formal requirements. In other words,
the formalism and tools presented in this work can be viewed as providing a way to mechanize
security proofs in any one of these models.

Böhl and Unruh [30] introduce a variant of UC Security for the symbolic model, working within
an applied π-calculus. This work makes modular analysis available in the symbolic setting, allowing
analysis of more complex protocols.

Interactive Lambda Calculus (ILC) [31] is a process calculus formulation of UC, consisting of
the π-calculus with an affine typing system enforcing that only one process is active at a time. In
the metatheory, they introduce randomness by supplying processes with bit sequences, and then
define UC-realizability, the UC composition operation, and prove the UC composition theorem.
They leave as future work interfacing their framework with a mechanized proof system.

Blanchet [32] has proved composition theorems that may be stated and used in CryptoVerif,
allowing one to give modular security analyses of the composition of key-exchange protocols with
symmetric-key protocols that use the exchanged keys. These composition theorems work with a
game-based notion of security that is weaker than UC-realizability. Still they have useful applica-
tions, e.g., to the TLS 1.3 draft standard.

Constructive cryptography [33] is a paradigm for defining the security of cryptographic schemes
and protocols that focuses on constructing resources with stronger security properties from ones
with weaker security properties. E.g., one-time-pad encryption is viewed as constructing a message

7

https://github.com/easyuc/EasyUC

length-leaking channel from an authenticated channel and a shared secret key. Security in con-
structive cryptography is defined via simulation, and constructive cryptography has a composition
theorem.

2.2 Formal Methods Tools for Cryptography

There exists substantial prior research on cryptographically sound formal analysis [15, 16, 34–36].
This work has led to the development of several general frameworks for mechanizing security proofs
in the computational model, including CryptoVerif, EasyCrypt, CryptHOL and FCF.

CryptoVerif [20] is an automatic protocol prover sound in the computational model that
can prove secrecy and correspondences, including authentication. It has a generic mechanism
for specifying the security assumptions on cryptographic primitives. It generates proofs using the
sequence of games approach, where games are formalized in a probabilistic polynomial-time process
calculus. These proofs are valid for a number of sessions polynomial in the security parameter, in
the presence of an active adversary. CryptoVerif can be run automatically, using a repertoire
of games transformations, but can also be guided by the user. It has been applied to an aspect of
SSH’s Transport Layer Protocol [37], the Kerberos network authentication system [38], the TLS 1.3
draft [39], avionic protocols [40], and the Signal Protocol [41].

EasyCrypt [21, 22] is a mechanized framework for interactively finding security proofs for
cryptographic constructions and protocols using the sequence of games approach. Numerous
cryptographic constructions and protocols have been proved secure using EasyCrypt, including
OAEP [42], Merkle-Damg̊ard [43], a core part of the TLS Handshake Protocol [44], RSA-PSS [45],
one-round key exchange protocols [46] and padding-based encryption [47]. EasyCrypt was used to
prove the security of a protected database search system involving three parties and multiple rounds
of interaction [26]. There are two recent papers using EasyCrypt to prove the security of MPC
protocols [27, 28]. Although most existing EasyCrypt proofs are game- rather than simulation-
based, [26] and [27] show that it is possible to do simulation-based proofs in EasyCrypt.

CryptHOL [24, 25] is embedded in the Isabelle/HOL theorem prover, and tailors Isabelle’s
existing proof automation to game-based proofs. A CryptHOL formalization of elements of con-
structive cryptography can be found in [29]. As a case study, this work (which is concurrent with
our work) securely composes one-time pad encryption with message authentication.

Foundational Cryptography Framework (FCF) [23] is shallowly embedded in the Coq proof
assistant [48]. As a case study, Petcher and Morrisett reported in [49] on using FCF to prove the
security of a two-party, interactive protected database search protocol from [50] in the real/ideal
paradigm. FCF was also used as part of the proofs in Coq of the security of implementations of
OpenSSL HMAC [51] and mbedTLS HMAC-DRBG [52].

3 Background

3.1 EasyCrypt

EasyCrypt’s programming language has modules, which consist of procedures and global vari-
ables. Procedures are written in a simple imperative language featuring while loops and random
assignments.

EasyCrypt has four logics: a probabilistic, relational Hoare logic, relating pairs of procedures;
a probabilistic Hoare logic allowing one to prove facts about the probability of a procedure’s execu-
tion resulting in a postcondition holding; an ordinary Hoare logic; and an ambient higher-order logic
for proving general mathematical facts, as well as for connecting judgments from the other logics.

8

For instance, one may use the probabilistic, relational Hoare logic to prove an equivalence between
the boolean-returning main procedures of two modules whose postcondition says the procedures’
results are equal, and then use the ambient logic to prove that the two procedures are equally likely
to return true. One may prove facts involving abstract modules, e.g., ones representing adversaries
or environments.

Proofs are carried out using tactics, which transform the current proof goal into zero or more
subgoals. Simple ambient logic goals may be automatically proved using SMT solvers. Once found,
an EasyCrypt proof script can be replayed step-by-step, or checked in batch-mode. Proofs may
be structured as sequences of lemmas, and EasyCrypt’s theories may be used to group definitions,
modules and lemmas together. Theories may be specialized using a process called cloning.

EasyCrypt supports structuring security proofs using the sequence-of-games approach [12–14],
in which one connects source and target games via a sequence of intermediate games. Each step
of the sequence establishes an upper bound on the ability of the adversary (or environment) to
discriminate between the games of the step. The sum of these upper bounds is an upper bound on
the ability of the adversary to distinguish the source and target games. Individual steps may be
proved via reductions, up-to bad reasoning, eager/lazy random sampling, code motion, and other
techniques.

EasyCrypt has a fairly small trusted computing base (TCB). Its core proof engine consists
of about 5,000 lines of OCaml code, implementing well-studied logics proven correct [53] using the
Coq proof assistant [48]. Almost all of EasyCrypt’s library of mathematical and cryptographic
theories is outside the TCB. When solving goals using SMT solvers, one may specify the list of
previously proven EasyCrypt lemmas the solvers may use.

3.2 Universally Composable Security

Universally Composable (UC) security is a framework that formulates security properties of cryp-
tographic protocols by way of “emulating” an idealized process where the desired behavior of the
protocol is guaranteed by fiat. A main ingredient in the idealized process is the ideal functionality,
where the desired behavior is specified by way of a program. One salient property of UC definitions
of security is their robustness to the execution environment: If a protocol π emulates some ideal
functionality F , then π continues to realize F in any context.

There are a number of definitional frameworks that proceed along the same lines and provide a
similar flavor of security and robustness, e.g. [3, 7–11, 54]. These frameworks vary in their expres-
sivity and complexity, as well as in some other definitional nuances. For the rest of this section,
we use the terminology of the simplified model in [8, 2018 version, §2]; nevertheless, we stress that
the formalism considered in this work is compatible with all of the other frameworks as well.

The framework consists of the following components: (1) a model for executing a protocol,
(2) an idealized model for running an ideal functionality, (3) a definition of UC-realizability that
requires that interactions with the protocol and ideal functionality are indistinguishable, and (4) a
security-preserving composition operation. We briefly describe these four components.

Model of protocol execution. The model for executing protocol π consists of a set of computa-
tional entities (called machines) that run π, together with two adversarial entities: an environment
and an adversary. An execution is a sequence of activations, where the environment is activated
first, and during each activation the activated machine sends a message to one other machine,
which is activated next. There are three types of messages: input messages, output messages, and
adversarial messages. The environment provides input messages to the protocol machines and to
the adversary. The adversary can send output messages to the environment or adversarial messages

9

to the protocol machines. The protocol machines can send inputs to other machines, outputs to
other machines or to the environment, and adversarial messages to the adversary. While the gen-
eral UC framework permits creation of new protocol machines on the fly, in this work we restrict
ourselves to systems with a fixed number of machines. The execution terminates when the environ-
ment generates a single-bit output. The adversarial messages capture both adversarially controlled
communication and also corruption of machines.

Ideal model. An ideal functionality is a machine F that captures the desired behavior of the
protocol. The ideal model is the same model for protocol execution, where the protocol is now an
“ideal protocol” that consists of F plus a number of “dummy parties” that transfer inputs (coming
from the environment) to F and outputs (coming from F) to the environment. All adversarial
messages from the adversary are directed to F .

UC-emulation and UC-realization. A protocol π UC-realizes an ideal functionality F if for
any environment and adversary there exists a simulator such that the environment cannot guess
(with probability significantly more than ½) whether it is interacting with the adversary and π (the
“real” game), or with the simulator and the ideal protocol for F (the “ideal game”). More formally,
we want that the absolute value of the difference between the probabilities that the environment
returns true in the real and ideal games is not significantly more than 0. The definition naturally
generalizes to the case where the latter protocol, φ, is a general protocol rather than an ideal
protocol for F ; in this case we say that π UC-emulates φ. From its definition, we can see that
UC-emulation is transitive.

We note that this definition of security is equivalent to the seemingly more relaxed variant (the
“dummy adversary model”) where the adversary is restricted to only forwarding messages between
the environment and the parties (on their adversarial links). It is also equivalent to the seemingly
more restrictive variant where the simulator has to work by way of a certain restricted form of
black-box simulation of the adversary. The variant that we formalize within EasyCrypt is the
latter one, namely black-box simulation.

Universal composition. The universal composition operation considers three protocols: proto-
col ρ that includes calls to a “subroutine protocol” φ, and another protocol π. (Saying that ρ has
subroutine calls for φ means that the machines running ρ send inputs to machines running φ and
receive outputs back from these machines.) The composed protocol, denoted ρφ→π, is the protocol
where subroutine calls to φ are replaced with subroutine calls to π. The universal composition
theorem states that, if π UC-emulates φ, then ρφ→π UC-emulates ρ. That is, for any protocol ρ,
making subroutine calls to protocol π (instead of the potentially idealized φ) does not change the
overall behavior. This is indeed a strong guarantee with far-reaching consequences.

4 Our Modeling of UC within EasyCrypt

4.1 Our Variant of UC

Our UC model makes four changes from prior works for ease of instantiation within EasyCrypt:
moving from interactive Turing machines to EasyCrypt modules, restricting to statically created
functionalities, formalizing the UC message routing system, and designing an interface module to
firewall the environment, a functionality, and the adversary from each other.

10

Environment

Interface

Functionality Adversary

Figure 1: Overall Architecture

First, because EasyCrypt’s programming language is based around a module system, it is
natural to represent the environment, protocol instances, ideal functionalities, and adversaries as
EasyCryptmodules, which have local, private state. Although the usage is non-standard, we refer
to (real) protocol instances as “real functionalities”, so that both real and ideal functionalities are
functionalities. All of the parties of a real functionality live within the same EasyCrypt module,
and functionalities can have sub-functionalities. Because EasyCrypt has parameterized modules,
functionalities can be parameterized by other functionalities, and we can realize UC’s composition
operator as module application.

Second, modules in EasyCrypt are statically deployed, before proofs are developed (or, in
the semantics, code is run). Consequently, we work with a restricted version of UC in which
the environment and functionalities cannot dynamically create new functionality instances. We
can, however, statically create (using EasyCrypt’s cloning mechanism) as many instances of each
functionality as are needed.

Third, we designed a formal addressing system for message routing between the environment,
functionalities and the adversary. In this system:

• functionalities have addresses, which are hierarchical (like postal addresses);

• the addresses of sub-functionalities are sub-addresses of their parent functionalities.

We give messages destination and source addresses, and the environment, functionalities and the
adversary must route messages to their destinations. We have two kinds of messages:

• direct messages, which are used when supplying inputs to functionalities, and when returning
results from functionalities; and

• adversarial messages, which are used for communication between functionalities and the
adversary, and between the adversary and the environment.

We employ a hierarchical addressing system in order to simplify message routing. E.g., when a
functionality receives a message from the environment (or a parent functionality) that’s addressed
to one of its sub-functionalities, it routes the message to that sub-functionality. Although this
addressing system is sufficient for this paper, we may explore alternatives in future work. On top
of our addressing system, we have built a simple naming scheme; see the discussion of ports in
Subsection 4.2. We use this naming scheme to differentiate simulators from adversaries.

Fourth, the environment doesn’t directly communicate with a functionality and adversary;
instead it communicates with a special routing device we call an interface, as illustrated in Figure 1.
An interface contains a functionality and an adversary. Direct messages from the environment that
come to the interface must be destined for its functionality part; adversarial messages must be
destined for its adversary part. The interface allows its functionality to send direct message to the

11

Ideal Functionality

Simulator

Adversary

Environment

real
functionality
spoofing

Figure 2: Simulator Architecture

environment, and adversarial messages to the adversary. It allows its adversary to send adversarial
messages to both its functionality and the environment.

A simulator is a parameterized adversary: it may be applied to (wrapped around) an adversary,
with the result being an adversary. As illustrated in Figure 2, a simulator passes messages from
the environment that are destined for the adversary on to the adversary (its parameter). Upon
receiving the first message from the corresponding ideal functionality, it learns the address, α, of the
ideal—and thus real—functionality, and is thus able to simulate the real functionality’s interactions
with the adversary. In particular, it catches messages from the adversary destined for sub-addresses
of α, and responds to them as the real functionality would. But it passes messages that are not
destined to sub-addresses of α on to the environment.1

Interfaces must be configured—via what we call input guards—to restrict which adversarial
messages can flow from the environment to their adversary parts. Their role is (1) to stop the
environment from being able to communicate with simulators, as only ideal functionalities should
be able to do this, while (2) allowing messages through that are needed to support modular proof.
As explained in Subsection 4.2, inputs guards employ our port-based naming scheme.

Functionalities can also employ input guards, controlling which messages they are willing to
accept. Normally, a functionality will only allow direct messages at the top-level, not allowing the
environment to send direct messages to the functionality’s sub-functionalities. But it will allow
adversarial messages to flow back and forth between the adversary and sub-functionalities.

The parties of a real functionality only communicate via sub-functionalities. E.g., they may
employ forwarding sub-functionalities, allowing their communications to be observed and controlled
by the adversary. Or they might employ key-exchange sub-functionalities, in order to agree on keys
with each other.

Even though EasyCrypt’s module language has a stack-based procedure call semantics, we can
easily program real and ideal functionalities, simulators, adversaries, interfaces and environments,
using message routing. In this way, we naturally realize UC’s coroutine communication style within
EasyCrypt’s procedural language. In Figures 1 and 2, when messages travel down, this is realized
via procedure calls; when messages travel up, it’s via procedure returns.

4.2 Formalization in EasyCrypt

Now we consider the formalization of our UC variant in EasyCrypt.2

1Before receiving an initial message from the ideal functionality, messages from the adversary to the ideal (and thus
real) functionality will be returned out of the simulator to the interface, and then passed to the ideal functionality.
Thus the ideal functionality must be programmed to respond appropriately to such messages—typically by signaling
an error.

2The following definitions can be found in the file UCCore.eca of the EasyUC distribution, which can be found at
https://github.com/easyuc/EasyUC.

12

https://github.com/easyuc/EasyUC

Addresses are simply lists of integers:

type addr = int list.

If α and β are addresses, we define α ≤ β iff α is a prefix of β, and we read β ≥ α as β is a
sub-address of α. The destinations and sources of messages are actually ports, which consist of
pairs of addresses and port indices:

type port = addr ∗ int.

A message with destination port (α, i) is to be delivered to the functionality with address α, and
the functionality is free to interpret the port index i however it wishes. Typically, each party of a
real functionality has one or more port indices associated with it.

The values included in messages are elements of a recursive universal datatype

type univ = [
UnivUnit | UnivBase of base | UnivBool of bool | UnivInt of int
| UnivReal of real | UnivAddr of addr | UnivPort of port
| UnivPair of (univ ∗ univ)].

where the type base can be instantiated with whatever basic type is needed in a given application.
Here UnivBase, UnivInt, etc., are the constructors of the datatype. E.g.

UnivPair (UnivInt 4, UnivPair (UnivBool true, UnivInt 2))

is a value of type univ, which we can think of as representing (4, (true, 2)).
Message modes are either direct or adversarial:

type mode = [Dir | Adv].

And messages themselves are four-tuples:

type msg =
(mode ∗ (∗ mode ∗)
port ∗ (∗ destination port ∗)
port ∗ (∗ source port ∗)
univ). (∗ value being communicated ∗)

Source ports are informational; depending upon where the message has come from, they can’t
necessarily be trusted. The root address [] (the empty list) is reserved for the environment.

For what follows, we need the notion of an option type. Given a type t, the type t option consists
of None plus all values of the form Somex, where x is an element of t. We have a polymorphic
operator oget : 'a option → 'a so that oget (Somex) = x, and oget None is some unknown but fixed
value.

The following module type will be used for ideal functionalities, real functionalities, and adver-
saries:

module type FUNC = {
proc init(self adv : addr) : unit
proc invoke(m : msg) : msg option
}.

13

A module with this module type implements at least the procedures init and invoke with the
indicated types. It will have global variables (local to the module, but global to its procedures),
which hold its private, persistent state. unit is a placeholder type, with a single element, so init

doesn’t return anything of interest. It is called—at initialization time—with its own address (self)
and the address of the adversary (adv). It will store those addresses in global variables, initialize
whatever other global variables the functionality uses to maintain its state, and initialize all of its
sub-functionalities. The procedure invoke, on the other hand, is called at runtime with a message
m addressed to the functionality or one of its sub-functionalities. Eventually, it will return either
None to indicate it has failed, or Somem′, where the message m′ is what the functionality (or
one of its sub-functionalities) wants to send to some other functionality, the adversary, or the
environment (depending upon its destination address). A real functionality will have an internal
distribution loop that routes messages within the functionality, letting the functionality’s parties
and sub-functionalities communicate with each other.

An adversary is just a module with module type FUNC. (I.e., from the point of view of the module
system, adversaries and functionalities are interchangeable.) When an adversary’s init procedure
is called, its second parameter (the adversary’s address) is normally set to the root address of the
environment, []. A simulator is an adversary that’s parameterized by an adversary. I.e., it’s a
parameterized module whose parameter has module type FUNC; once we apply a simulator to an
adversary, the result also has module type FUNC. When a simulator’s init procedure is called with
its address and the root address of the environment, it initializes the adversary it’s been applied to,
using the same addresses. There is no address hierarchy within adversaries/simulators, but there
is a port index hierarchy. A simulator handles messages destined for its port index, passing other
messages on to the adversary—or to a nested simulator. Multiple port indices are associated with
nested simulators—one for each level of simulation.

An interface, which we should think of as containing within itself a functionality and an ad-
versary (or simulator wrapped around an adversary, . . .), is a module with the following module
type:

module type INTER = {
proc init(func adv : addr, in guard : int fset) : unit
proc invoke(m : msg) : msg option
}.

As with functionalities, init is called at initialization time, telling the interface the addresses of
its functionality and adversary, and allowing it to initialize its global variables and initialize its
functionality and adversary. But what of the third argument to init, which consists of a finite
set of port indices? Well, it’s an input guard detailing the port indices of the adversary that
the environment can communicate with. The standard interface only allows messages addressed to
those indices of the adversary’s address to go through, plus the special port index 0, which is always
accessible to the environment. Indeed, communications between the environment and adversary
often go between ports ([], 0) and (adv , 0), where adv is the adversary’s address.

The procedure invoke is called at runtime with a message destined for either the functionality
or the adversary, and it eventually returns either None or Some of a message destined for the
environment. The standard interface enforces these message communication rules:

• the environment can send direct messages to the functionality, and adversarial messages to
the adversary at port index 0 plus the input guard port indices;

• the functionality can send direct messages to the environment, as well as adversarial messages
to any port index of the adversary other than 0;

14

• the adversary can send adversarial messages to both the functionality and the environment.

When communication rules are violated; the standard interface returns None, indicating failure.
An interface’s input guard is used to stop the environment from being able to send messages to

the port index of a simulator—messages that should only come from an ideal functionality (or, in
the case of nested simulators, from an outer simulator). Otherwise, the environment would be able
to trivially distinguish the real and ideal games. On the other hand, to support modular proof,
some messages from the environment destined to port indices other than 0 must be allowed to flow
to the adversary. See the discussion of the composed environment in Subsection 5.5.

The parameterized module MI (for make interface) builds a standard interface from a function-
ality and adversary

module MI (Func : FUNC, Adv : FUNC) : INTER = { . . . }.

The interested reader can find its full definition in Appendix A.
An environment implements the following module type,

module type ENV (Inter : INTER) = {
proc main(func adv : addr, in guard : int fset) : bool {Inter.invoke}
}.

which means it is parameterized by an interface, and it implements a main function with the
indicated type that is only allowed to call the invoke procedure of the interface (i.e., the environment
may not initialize the interface). main should be called with the same arguments that are passed to
the interface’s init function, and main returns the environment’s boolean judgment.

Finally, the Exper module (for “experiment”) is defined as follows:

module Exper (Inter : INTER, Env : ENV) = {
module E = Env(Inter) (∗ connect Env and Inter ∗)
proc main(func adv : addr, in guard : int fset) : bool = {
var b : bool;
Inter.init(func, adv, in guard);
b <@ E.main(func, adv, in guard);
return b;
}
}.

(EasyCrypt uses <@ for the assignment to a variable of the result of a procedure call.) It is
parameterized by an interface and an environment. Its main function should be called with the
addresses of the interface’s functionality and adversary (which should be incomparable) as well as
the interface’s input guard. It then initializes the interface (which will initialize the functionality
and adversary), before calling the main function of the environment (which has been given access
to the interface). The environment may call the invoke procedure of the interface as many times
as it likes, before eventually returning a boolean judgment, which is returned as the result of the
experiment.

5 Case Study: Secure Message Communication

To see how we could carry out modular proofs of security using our UC in EasyCrypt architecture,
we formulated what we hoped was the simplest interesting case study that would let us prove a
UC security theorem and then apply it in a larger system. We wanted the proof of the security

15

theorem to employ a cryptographic reduction. We settled on the application being secure message
communication (SMC) using a one-time pad that was agreed using Diffie-Hellman key-exchange.

5.1 SMC Protocol

The SMC protocol uses the following types and operations:3

type key. (∗ group of keys ∗)
op (ˆˆ) : key → key → key. (∗ binary operation on keys ∗)
op kid : key. (∗ identity key ∗)
op kinv : key → key. (∗ key inverse ∗)
type exp. (∗ commutative semigroup of exponents ∗)
op (∗) : exp → exp → exp. (∗ multiplication of exponents ∗)
op dexp : exp distr. (∗ full, uniform, lossless distribution ∗)
op g : key. (∗ generator key ∗)
op (ˆ) : key → exp → key. (∗ key exponentiation ∗)
type text. (∗ plain texts ∗)
op inj : text → key. (∗ injection ∗)
op proj : key → text option. (∗ partial projection ∗)

First of all we have a type key, together with a binary operation ˆˆ, a constant kid (key identity),
and a unary operation kinv (key inverse), satisfying the group axioms. Then we have a type
exp (exponent), together with a commutative and associative binary operation ∗. Next, we have
a probability distribution dexp on exponents in which every exponent has a non-zero and equal
weight in the distribution—i.e., equal chance of being chosen in a random assignment from dexp—
and where the sum of those weights is 1. Next, we have a generator key g plus a key exponentiation
operation ˆ together with axioms saying that every key is determined in a unique way via raising g

to an exponent, and that for all exponents q1 and q2, (g ˆ q1) ˆ q2 = g ˆ (q1 ∗ q2). It follows there is
an operation log : key → exp (the discrete logarithm) such that log and the result of raising g to an
exponent are mutual inverses. EasyCrypt has no cost model, i.e., no notion of how expensive it
might be to compute the discrete log. We can show that (k ˆq1)ˆ q2 = k ˆ (q1 ∗q2) for all keys k (not
just for g). Finally, we have a type text of plain texts, together with an injection inj from text into
key, and a partial projection back the other way—partial because some keys (group elements) will
be mapped to None, i.e., won’t correspond to plain texts. This means that the cardinality of text
will be strictly less than that of key. In practice, we can instantiate the injection/partial projection
pair with text as a set of fixed-length bitstrings and key as either a multiplicative group of integers
modulo a prime or one of a number of elliptic curve groups [55–57].

To be able to send messages involving exponents, keys and plain texts, we instantiate (via
theory cloning) the type base of our universe type univ with this datatype:

type base = [BaseExp of exp | BaseKey of key | BaseText of text].

The secure message communication (SMC) protocol has two parties. Party 1 has a plain text t
it wants to communicate with Party 2. We are assuming an adversary who can observe and delay
communication, but cannot corrupt communication. The two parties first agree on a key k using
Diffie-Hellman key-exchange (see below). Party 1 then sends e = inj t ˆˆ k to Party 2 (recall that ˆˆ

is the group operation), which computes oget(proj(e ˆˆ inv k)) to recover t. Here, proj will produce a
non-None optional value, and oget will just strip off the Some.

In Diffie-Hellman key-exchange, Party 1 generates a random exponent q1, and sends g ˆ q1 to

3See the files DDH.ec and UCCoreDiffieHellman.ec of the EasyUC repository.

16

β

1 32

SMCIdeal

Party 1 Party 2 Sim

α

α and β are the addresses of the functionality and adversary, respectively. 1–3 are port indices.
The thicker circles around 1 and 2 indicate that direct messages are received from, and/or sent
to, the environment on these port indices. See the text for more details about how the three port
indices are used.

Figure 3: SMC Ideal Functionality

Party 2. Party 2 then generates a random exponent q2, and obtains the shared key by computing
(g ˆ q1) ˆ q2 = g ˆ (q1 ∗ q2). It then sends g ˆ q2 to to Party 1, which obtains the shared key by
computing (g ˆ q2) ˆ q1 = g ˆ (q2 ∗ q1) = g ˆ (q1 ∗ q2).

5.2 Functionalities

We now describe the UC functionalities for SMC, starting with the ideal functionality for SMC,
and then working up to the SMC real functionality. The SMC ideal functionality, SMCIdeal,4 can
be visualized as in Figure 3. In the figure, α and β are the addresses of the functionality and the
adversary, respectively (they were passed to the functionality’s init procedure). SMCIdeal has no sub-
functionalities, and it employs three port indices, numbered 1, 2 and 3. Port index 1 corresponds
to Party 1, port index 2 corresponds to Party 2, and port index 3 is used for communication with
the ideal functionality’s simulator. The input guard for the functionality allows direct messages to
port index 1 (port (α, 1)), and adversarial messages to port index 3; all other messages are rejected
(meaning None is returned).

SMCIdeal has three states:

(1) In State 1, it is waiting for a direct message to port index 1 from a port pt1, asking to com-
municate a plain text t to a port pt2, where pt1 and pt2 may not be ≥ either α or β.5 It
then sends an adversarial message containing (pt1, pt2) (but not t!) from port index 3 to port
(β, 3), and switches to State 2. The SMC simulator expects to receive messages from the ideal
functionality on port index 3.6

(2) In State 2, it is waiting for an adversarial message from port (β, 3) to port index 3. It responds
by sending a direct message containing (pt1, t) to pt2 from port index 2, and switching to
State 3.

(3) In State 3, it rejects all messages.

Here is the sequence of message transmissions of a successful execution of SMCIdeal:

pt1
(pt2, t)−−−−→ (α, 1)/(α, 3)

(pt1, pt2)=====⇒ (β, 3) =⇒ (α, 3)/(α, 2)
(pt1, t)−−−−→ pt2,

where single arrows are direct messages, and double arrows are adversarial messages.
Next we consider an ideal forwarding functionality, Forw,7 as illustrated in Figure 4. In the

4See the module of the same name in the file SMC.ec of the repository.
5The values of all messages must be encoded as elements of our universal type, but we omit the details. When

unexpected messages are received, failure results (None is returned).
6The index 3 isn’t hard coded in the EasyCrypt code, but for simplicity we’ll use actual numbers in the paper.
7See the module of the same name in the file Forward.ec of the repository.

17

1

α
Forw

β

Figure 4: Forwarding Functionality

Party 2

31 2

α β

KEIdeal

Party 1 Sim

Figure 5: Key-Exchange Ideal Functionality

literature, this is a version of Fauth in which the adversary can observe and delay, but not corrupt,
message forwarding. Its input guard allows both direct and adversarial messages on its single port
index, 1. Forw has three states:

(1) In State 1, it is waiting for a direct message to port index 1 from a port pt1, asking to com-
municate a universe value u to a port pt2, where pt1 and pt2 may not be ≥ either α or β. It
then sends an adversarial message containing (pt1, pt2, u) from port index 1 to port (β, 1), and
switches to State 2. Port index 1 is the port index of the adversary that handles forwarding
requests.

(2) In State 2, it is waiting for an adversarial message from port (β, 1) to port index 1 approving
the forwarding request. It responds by sending a direct message containing (pt1, u) to pt2 from
port index 1, and switching to State 3.

(3) In State 3, it rejects all messages.

Here is the sequence of message transmissions of a successful execution of Forw:

pt1
(pt2, u)−−−−→ (α, 1)

(pt1, pt2, u)======⇒ (β, 1) =⇒ (α, 1)
(pt1, u)−−−−→ pt2.

The ideal key-exchange functionality, KEIdeal,8 is illustrated in Figure 5. Its input guard allows
direct messages to port indices 1 and 2, and adversarial messages to port index 3. It has five states.

(1) In State 1, it is waiting for a direct message to port index 1 from a port pt1, asking to agree on a
key with a port pt2, where pt1 and pt2 may not be ≥ either α or β. It then sends an adversarial
message containing (pt1, pt2) from port index 3 to port (β, 2), and switches to State 2. Port
index 2 will be the port index of the key-exchange simulator that expects communications from
the ideal functionality.

(2) In State 2, it is waiting for an adversarial message from port (β, 2) to port index 3. It responds
by generating an exponent q, sending a direct message containing (pt1, g ˆ q) to port pt2 from
port index 2, and switching to State 3. (g ˆ q is the key exchanged in the ideal functionality.)

(3) In State 3, it is waiting for a direct message to port index 2 from port pt2 initiating the second
phase of key-exchange. It then sends an adversarial message containing no data from port
index 3 to port (β, 2), and switches to State 4.

8See the module of the same name of the file KeyExchange.ec of the repository.

18

Party 2

Forw1 Forw2

βα2α1 β

1 2 3 4

KEReal
α β

Party 1

Figure 6: Key-Exchange Real Functionality

(4) In State 4, it is waiting for an adversarial message from port (β, 2) to port index 3. It responds
by sending a direct message containing g ˆ q to port pt1 from port index 1, and switching to
State 5.

(5) In State 5, it rejects all messages.

Here is the sequence of message transmissions of a successful execution of KEIdeal:

pt1
pt2−−→ (α, 1)/(α, 3)

(pt1, pt2)=====⇒ (β, 2) =⇒ (α, 3)/(α, 2)
(pt1, gˆq)−−−−−−→ pt2 −→ (α, 2)/(α, 3) =⇒ (β, 2)

=⇒ (α, 3)/(α, 1)
gˆq
−−→ pt1.

The real key-exchange functionality, KEReal,9 is illustrated in Figure 6. It has two forwarding
sub-functionalities, with the indicated sub-addresses (α1 means to add 1 at the end of the list α).
Its input guard allows direct messages to port indices 1 and 2, and adversarial messages to α1 and
α2. Port indices 1 and 3 correspond to Party 1 of the functionality, whereas port indices 2 and
4 correspond to Party 2. The functionality has an internal distribution loop that routes messages
from the outside to the parties and sub-functionalities (if allowed by the input guard), and allows
the two parties and the sub-functionalities to communicate. Both parties have three states.

Party 1 behaves as follows:

(1) In State 1, Party 1 is waiting for a direct message to port index 1 from a port pt1, asking to
agree on a key with a port pt2, where pt1 and pt2 may not be ≥ either α or β. It then generates
a random exponent q1, sends a message from port index 3 (its internal port index) to Forw1

at port (α1, 1), asking it to forward (pt1, pt2, g ˆ q1) to port index 4 (Party 2’s internal port
index), and switches to State 2.

(2) In State 2, Party 1 is waiting for a direct message to port index 3 from (α2, 1) (Forw2) containing
the data ((α, 4), k2). (k2 will be g ˆ q2, where q2 is Party 2’s private exponent.) It responds by
sending a direct message containing the key k2 ˆ q1 ((g ˆ q2) ˆ q1 = g ˆ (q1 ∗ q2)) to port pt1 from
port index 1, and switching to State 3.

(3) In State 3, it rejects all messages.

Party 2 behaves as follows:

(1) In State 1, Party 2 is waiting for a direct message to port index 4 from port (α1, 1) (Forw1),
containing the data ((α, 3), (pt1, pt2, k1)). (k1 will be g ˆ q1, where q1 is Party 1’s private
exponent.) It then generates a random exponent q2, sends a direct message containing (pt1, k1 ˆ
q2) to port pt2 from port index 2, and switches to State 2. (k1 ˆ q2 is the key (g ˆ q1) ˆ q2 =
g ˆ (q1 ∗ q2).)

9See the module of the same name of the file KeyExchange.ec of the repository.

19

Party 2

Forw KE

βα2α1 β

1 2 3 4

SMCReal(KE)
α β

Party 1

Figure 7: SMC Real Functionality

(2) In State 2, Party 2 is waiting for a direct message to port index 2 from port pt2 initiating the
second phase of key-exchange. It responds by sending a message from port index 4 to Forw2

at port (α2, 1), asking it to forward g ˆ q2 to port index 3, and switches to State 3.

(3) In State 3, it rejects all messages.

Here is the sequence of message transmissions of a successful execution of KEReal:

pt1
pt2−−→ (α, 1)/(α, 3)

((α, 4), (pt1, pt2,gˆq1))−−−−−−−−−−−−−−→ (α1, 1) · · · (α1, 1)
((α, 3), (pt1, pt2,gˆq1))−−−−−−−−−−−−−−→ (α, 4)/(α, 2)

(pt1,gˆ(q1∗q2))−−−−−−−−−→ pt2 −→ (α, 2)/(α, 4)
((α, 3), gˆq2)
−−−−−−−−→ (α2, 1) · · · (α2, 1)

((α, 4), gˆq2)
−−−−−−−−→ (α, 3)/(α, 1)

gˆ(q1∗q2)
−−−−−−→ pt1,

where the elided steps involve the forwarders’ interactions with the adversary.
Finally, the SMC key-exchange functionality, SMCReal,10 is illustrated in Figure 7. It has two

sub-functionalities, with the indicated sub-addresses: a forwarder and a key-exchange functionality
KE, which is a parameter to SMCReal. Technically, SMCReal is a parameterized functionality, not
a functionality: we have to apply it to KEReal or KEIdeal or some other functionality, in order to
obtain a functionality. Its input guard allows direct messages to port index 1, and adversarial
messages to α1 and α2 (and their sub-addresses). Port indices 1 and 3 correspond to Party 1 of the
functionality, whereas port indices 2 and 4 correspond to Party 2. As with KEReal, the functionality
has an internal distribution loop. Both parties have three states.

Party 1 behaves as follows:

(1) In State 1, Party 1 is waiting for a direct message to port index 1 from a port pt1, asking to
securely communicate a plain text t to a port pt2, where pt1 and pt2 may not be ≥ either α or
β. It responds by sending a direct message to Party 1 of the key-exchange sub-functionality at
port (α2, 1) from port index 3 asking to agree on a key with port index 4, and then switching
to State 2.

(2) In State 2, Party 1 is waiting for a direct message to port index 3 from (α2, 1) (Party 1 of the key-
exchange sub-functionality) containing the data k (the agreed upon key). It responds by sending
a message from port index 3 to Forw at port (α1, 1), asking it to forward (pt1, pt2, inj t ˆˆ k) to
port index 4, and switches to State 3.

(3) In State 3, it rejects all messages.

Party 2 behaves as follows:

10See the module of the same name of the file SMC.ec of the repository.

20

(1) In State 1, Party 2 is waiting for a direct message to port index 4 from port (α2, 2) (Party 2 of
the key-exchange sub-functionality), containing the data ((α, 3), k) (k is the agreed upon key).
It responds by sending a direct message from port index 4 back to (α2, 2), initiating the second
phase of key-exchange.

(2) In State 2, Party 2 is waiting for a direct message to port index 4 from port (α1, 1) (Forw)
containing ((α, 3), (pt1, pt2, e)) (where e will be inj t ˆˆk). It responds by sending to pt2 a direct
message from port index 2 containing (pt1, oget(proj(e ˆˆ kinv k))) (whose plain text is equal to
t), and switching to State 3.

(3) In State 3, it rejects all messages.

Here is the sequence of message transmissions of a successful execution of SMCReal:

pt1
(pt2, t)−−−−→ (α, 1)/(α, 3)

(α, 4)
−−−→ (α2, 1) · · · (α2, 2)

((α, 3), k)
−−−−−−→ (α, 4) −→ (α2, 2) · · · (α2, 1)

k
−→ (α, 3)

((α, 4), (pt1, pt2, inj tˆˆk))−−−−−−−−−−−−−−−−→ (α1, 1) · · · (α1, 1)
((α, 3), (pt1, pt2, inj tˆˆk))−−−−−−−−−−−−−−−−→ (α, 4)/(α, 2)

(pt1, t)−−−−→ pt2,

where the elided steps involve (1) the key-exchange functionality’s (either real or ideal) interaction
with the adversary/simulator, and (2) the forwarder’s interaction with the adversary.

5.3 Road-map for Proof of SMC Security

In the rest of this section, we describe our tool-assisted formal proofs of the following statements:

(1) SMCReal(KEReal) UC-realizes SMCIdeal;

(2) KEReal UC-realizes KEIdeal;

(3) SMCReal(KEIdeal) UC-realizes SMCIdeal;

(4) SMCReal(KEReal) UC-emulates SMCReal(KEIdeal).

(1) is our overall goal. In Subsection 5.4, we describe the proof of (2). At the beginning of
Subsection 5.5, we describe the proof of (3). Then we describe how (2) is lifted to a proof of (4),
instantiating the UC composition theorem. Finally, we show how (4) and (3) combine to give us
(1), instantiating transitivity of UC emulation.

5.4 Proof of Security of Key-Exchange

In our proof of the security of key-exchange, we need to define a key-exchange simulator, KESim,11

and give an upper bound (hopefully a small one!) for the absolute value of the difference between
the probabilities that the real and ideal experiments return true:

`|Pr[Exper(MI(KEReal, Adv), Env).main(func', adv', in guard') @ &m : res] −
Pr[Exper(MI(KEIdeal, KESim(Adv)), Env).main(func', adv', in guard') @ &m : res]|

11See the module of the same name in the file KeyExchange.ec of the repository.

21

In the above, res stands for “result”—the boolean result of the experiment. Env and Adv will
be restricted to adversaries that don’t read or write the variables of each other or MI, KEReal,
KEIdeal, KESim and another module to be introduced shortly. The addresses of the functionality
and adversary, func' and adv', will be assumed to be incomparable. The restriction on the input
guard in guard' will be described in the next paragraph. &m is the initial memory. KEReal, KEIdeal
and KESim initialize their own global variables, and so their operation is independent from &m.
But Env and Adv may fail to initialize their own global variables, and so their operation may be
dependent upon &m.

KESim is parameterized by an adversary; we have to apply it to an adversary Adv in order
to get an adversary KESim(Adv). Its job is to let the environment and adversary communicate
normally, and to fool them into thinking they are interacting with KEReal and not KEIdeal. The
input guard in guard' must not include port index 2, because the ideal functionality communicates
with the simulator on that port index. When the simulator gets its first message from the ideal
functionality, it learns the address of the ideal (and also real) functionality, and so learns which
messages from the adversary it should intercept. It will play the role of the two forwarding sub-
functionalities of KEReal, and will generate the needed random exponents, q1 and q2, itself. The
problem to overcome in the proof is that the key g ˆ q sent by KEIdeal to the environment will
necessarily have no connection to the key agreed by the parties of KEReal.

This is where the Decisional Diffie-Hellman assumption comes in:

module type DDH ADV = {
proc main(k1 k2 k3 : key) : bool
}.
module DDH1 (Adv : DDH ADV) = {
proc main() : bool = {
var b : bool; var q1, q2 : exp;
q1 <$ dexp; q2 <$ dexp;
b <@ Adv.main(g ˆ q1, g ˆ q2, g ˆ (q1 ∗ q2));
return b;
}
}.
module DDH2 (Adv : DDH ADV) = {
proc main() : bool = {
var b : bool; var q1, q2, q3 : exp;
q1 <$ dexp; q2 <$ dexp; q3 <$ dexp;
b <@ Adv.main(g ˆ q1, g ˆ q2 , g ˆ q3);
return b;
}
}.

(EasyCrypt uses <$ for random assignments from distributions.) A DDH adversary is given three
keys, and must return a boolean judgment. The two DDH games are parameterized by a DDH
adversary, and their main procedures return its boolean judgment. The first two keys passed to the
adversary’s main procedure in the two games are the same: g ˆ q1 and g ˆ q2, where q1 and q2 are
randomly chosen exponents. But the third arguments are different: g ˆ (q1 ∗ q2) versus g ˆ q3, with
a random q3.

The idea for applying the Decisional Diffie-Hellman assumption is to start from the real ex-
periment, and move in a sequence of games to a game G1 in which q1 and q2 are chosen at the
game’s beginning, and there are precisely three places where they are used, as g ˆ q1, g ˆ q2 and
g ˆ (q1 ∗ q2). We can then build a DDH adversary DDH ADV as a function of Env and Adv, in such
a way that G1 can be shown to be equivalent to DDH1(DDH Adv(Env, Adv)). Then we can switch to

22

DDH2(DDH Adv(Env, Adv)), adding

`|Pr[DDH1(DDH Adv(Env, Adv)).main() @ &m : res] −
Pr[DDH2(DDH Adv(Env, Adv)).main() @ &m : res]|

(the probability the constructed DDH adversary wins the DDH game) to the cumulative upper
bound of our sequence of games, and then move from DDH2(DDH Adv(Env, Adv)) to a G2 that’s just
like G1 but where g ˆ (q1 ∗ q2) has been replaced by g ˆ q3, where q3 is also randomly chosen at the
game’s beginning and only used once. Because the random exponents used by KEReal, KEIdeal and
KESim are not chosen at the games’ beginnings, we must use EasyCrypt’s eager/lazy sampling
facilities to accomplish the above. But thankfully, there is an existing library and methodology for
doing this.12

Consequently, our key-exchange security theorem (KEReal UC-realizes KEIdeal) will be the fol-
lowing:

lemma ke security
(Adv <: FUNC{MI, KEReal, KEIdeal, KESim, DDH Adv})
(Env <: ENV{Adv, MI, KEReal, KEIdeal, KESim, DDH Adv})
(func' adv' : addr, in guard' : int fset) &m :

exper pre func' adv' ⇒ ! (2 \in in guard') ⇒
(∗ parameters for modules in upper bound: ∗)
DDH Adv.func{m} = func' ⇒ DDH Adv.adv{m} = adv' ⇒ DDH Adv.in guard{m} = in guard' ⇒
(∗ end of parameters for modules in upper bound ∗)
`|Pr[Exper(MI(KEReal, Adv), Env).main(func', adv', in guard') @ &m : res] −
Pr[Exper(MI(KEIdeal, KESim(Adv)), Env).main(func', adv', in guard') @ &m : res]| ≤

`|Pr[DDH1(DDH Adv(Env, Adv)).main() @ &m : res] −
Pr[DDH2(DDH Adv(Env, Adv)).main() @ &m : res]|.

The lists of modules inside the assumptions

(Adv <: FUNC{MI, KEReal, KEIdeal, KESim, DDH Adv})
(Env <: ENV{Adv, MI, KEReal, KEIdeal, KESim, DDH Adv})

detail the restrictions on what modules Adv and Env may read or write the global variables of. Note
that DDH Adv has been added to the lists of module restrictions. The assumption exper pre func' adv'

says that func' and adv' are incomparable. Finally, the assumption

DDH Adv.func{m} = func' ⇒ DDH Adv.adv{m} = adv' ⇒ DDH Adv.in guard{m} = in guard' ⇒

says the initial values of the global variables func, adv and in guard of DDH Adv are func', adv' and
in guard'. Because EasyCrypt modules may not be parameterized by ordinary values (as opposed
to modules), there is currently no other way to give our constructed DDH adversary access to these
values.

When assessing whether the upper bound

`|Pr[DDH1(DDH Adv(Env, Adv)).main() @ &m : res] −
Pr[DDH2(DDH Adv(Env, Adv)).main() @ &m : res]|.

is small enough, one must consult the actual code for DDH Adv and make additional assumptions
about Env and Adv. For instance, one might assume that Env and Adv run in probabilistic polynomial
time, and then give a paper-and-pencil proof that so does DDH Adv(Env, Adv). EasyCrypt doesn’t

12See the file RedundantHashing.eca of the repository.

23

help us in this analysis.
Here is what our overall sequence of games for the key-exchange security proof looks like: Be-

cause KEReal has sub-functionalities, it is convenient to begin our sequence of games by formulating
a version of the real functionality, KERealSimp, that has no sub-functionalities. The difficulty of
proving such a step is that the source and target experiments are structurally dissimilar. This
involves working with a relational invariant tracking how the source and target experiments evolve.
At the top-level of the proof, we can reduce the equivalence of the experiments to an equivalence
between their interfaces—and so no longer have to consider the environment at all. Then we can
do the same thing with the interfaces, no longer having to consider the adversary.

When the source and target functionalities are in a relational state, we need to show that in all
the ways they can evolve, we will return to both sides being in a relational state, and that eventually
we’ll return from the functionality. The way that we do such a proof is via symbolic evaluation—
essentially running the code via proof tactics. We can push assignments into the precondition, and
we can inline calls of concrete procedures. If the next statement to run is a conditional or while
loop where we know enough to prove that its boolean expression is true or false, we can reduce the
conditional to its then or else part, or reduce the while loop to either nothing (the false case) or
the body of the while loop followed by the while loop itself. When we don’t know enough to say
whether a boolean expression is true or false, we have to resort to case analysis. There is more
discussion of the challenges of symbolic evaluation in Section 6.

This gets us to the point where we can deploy the Decisional Diffie-Hellman assumption, starting
from an experiment involving KERealSimp. The proof of the final step of the sequence of games
involves moving from an experiment involving a version of KERealSimp—KEHybrid—in which the
agreed upon key is generated from a random exponent (like in KEIdeal) to the experiment involving
KEIdeal and KESim(Adv):

Pr[Exper(MI(KEHybrid, Adv), Env).main(func', adv', in guard') @ &m : res] =
Pr[Exper(MI(KEIdeal, KESim(Adv)), Env).main(func', adv', in guard') @ &m : res].

As usual, this step involves working with a relational invariant and symbolic evaluation guided by
case analysis, but there is a twist. Because we are working with adversaries that may or may not
return to the environment after being invoked, we have a phenomenon in which—after a call to the
adversary—the same relational state may hold in two distinct situations:

• when the call to the adversary was after the relational state was first established by execution
of the real functionality or ideal functionality/simulator; or

• when the call to the adversary was initiated by a call to the interface (by the environment)
when the relational state already held.

We must unify these two cases, as otherwise the proof effort would double at each relational proof
step, and so would increase exponentially over the entire sequence of relational state changes. We
accomplish this by proving a single lemma that’s applicable to both of these situations. The lemma
for the last relational state is first proved, the lemma for the penultimate relational state uses the
lemma for the final one, and so on. We would have to do all of this using induction, if we didn’t
have a finite sequence of relational states. See Section 6 for more discussion.

24

Forw

SMCReal(KE)
Adv

X

Interface

Environment

βα

KEα2α1

Figure 8: SMCReal in Relation to Environment and Adversary

5.5 Proof of Security of SMC

The design of the SMC simulator—SMCSim13—and the proof of the following lemma, which states
that SMCReal(KEIdeal) UC-realizes SMCIdeal,

lemma smc security2
(Adv <: FUNC{MI, SMCReal, SMCIdeal, SMCSim, KEIdeal})
(Env <: ENV{Adv, MI, SMCReal, SMCIdeal, SMCSim, KEIdeal})
(func' adv' : addr, in guard' : int fset) &m :

exper pre func' adv' ⇒ ! (3 \in in guard') ⇒
Pr[Exper(MI(SMCReal(KEIdeal), Adv), Env).main(func', adv', in guard') @ &m : res] =
Pr[Exper(MI(SMCIdeal, SMCSim(Adv)), Env).main(func', adv', in guard') @ &m : res].

is similar to the final step of the key-exchange security proof. Messages to SMCSim from the ideal
functionality come on port index 3, and thus we must assume that 3 is not an element of the
input guard, in guard'. In the proof’s sequence of games, we start out by moving to a version of
SMCReal(KEIdeal)—SMCRealKEIdealSimp—that has no sub-functionalities. The other and final step of
the sequence of games—the one that involves SMCSim—is similar in structure to the last-step of the
key-exchange security proof. To handle the use of one-time-pad encryption, we use EasyCrypt’s
tactic for handling random assignments with an isomorphism on the dexp distribution involving the
plain text chosen by the environment. This is a familiar EasyCrypt technique.

What remains is to lift our proof that KEReal UC-realizes KEIdeal to a proof that SMCReal(KEReal)

UC-emulates SMCReal(KEIdeal). This is an instance of the UC composition theorem. In pictorial
terms, we need to relate two instantiations of the diagram in Figure 8, where the port index 2 of
KESim is not an element of the input guard X. In the first instantiation, KE is KEReal and Adv is
Adv; and in the second one, KE is KEIdeal, and Adv is KESim(Adv). We accomplish this by proving
a “bridging” lemma showing the equivalence between this diagram and the one in Figure 9. This
second diagram involves a composed environment, which is parameterized by an environment and
interface:

module CompEnv (Env : ENV, Inter : INTER) = { · · · }.

Given an environment Env, CompEnv(Env) is itself an environment—it’s waiting for the interface
Inter. Its definition can be found in Appendix B.

In the diagram of Figure 9, the real environment is inside the composed environment (it’s the
argument to CompEnv). The experiment of the composed environment makes use of two “stubs”,
one for the key-exchange functionality, and one for the adversary. In normal operation, the stubs
pass messages through, calling the invoke procedure of the interface for KE/Adv, or returning a
message returned from that invoke procedure to their caller. We need that the “lower” input

13See the module of the same name in the file SMC.ec of the repository.

25

Forw

X

Interface

Environment

Adv
Stub

CompEnv

Interface
Y

KE Adv

SMCReal(KEStub)
KE
Stub

α2α1

β

βα

α2

Figure 9: SMCReal in Relation to Composed Environment and Adversary

guard X is a subset of the “upper” input guard Y , so that messages to the adversary from the
real environment that are allowed by X can flow through AdvStub and make it to Adv. Because
SMCReal’s forwarder, Forw, needs to be able to exchange adversarial messages with the adversary,
we also need that Y includes port index 1, which is used for forwarding control. If SMCReal made
use of other sub-functionalities, the port indices by which those sub-functionalities communicated
with the adversary would also have to be included in Y .

There is a subtlety regarding the definitions of KEStub and AdvStub. Suppose that SMCReal

calls KEStub with a direct message destined for KE. KEStub passes this message to the interface for
KE/Adv, which routes it to KE. KE and Adv may then exchange adversarial messages, and it may
happen that, at some point, Adv returns an adversarial message that’s not destined for KE (it might
be destined for the real environment), and so is returned out of the interface for KE/Adv to KEStub.
KEStub is programmed to work specially when an adversarial message has been returned to it. It
stores the message in a mailbox it shares with AdvStub, and then returns an adversarial message
with address β back to SMCReal, which returns it to its interface, which routes it to AdvStub. AdvStub

is programmed to then recognize that the mailbox it shares with KEStub is full, and to return the
contents of the mailbox to the interface, as if the message had been returned to it in the first place.
Similarly, when a direct message is returned from KE to its interface, and then to AdvStub, AdvStub
uses the shared mailbox to arrange for the message to be returned from KEStub to SMCReal.

Because the internal distribution loop of SMCReal is written to be resilient to badly behaved
implementations of its parameter KE, we would ideally like to prove the equivalence between the
two diagrams for an arbitrary functionality, KE. Unfortunately that’s impossible with the current
version of EasyCrypt. The problem is that Adv and KE could exchange messages forever, so
that execution would never return back to the environment. In Section 6, we speculate on how
EasyCrypt might be improved so as to allow a single and simple proof of the bridging lemma. But
in our case study, we had to fall back on a more cumbersome approach. We proved two bridging
lemmas, one for KEReal and one for KEIdeal, and in the KEReal case, we did the core work using
KERealSimp. In both cases, we defined a termination metric on the key-exchange functionality’s
state, and we proved that its invoke procedure either decreases the metric by one, or preserves
the metric and returns None. And we did the same for the protocol parties and Forw. Then we
proved the bridging lemmas by a rather complex mathematical induction whose property, P (n), is
the conjunction of three probabilistic relational Hoare logic judgments, one for each of the three

26

repeating code configurations of the two experiments. The proofs involved a great deal of guided
symbolic evaluation (see Section 6 for discussion). The real and ideal proofs are identical up to
some textual substitutions, but there is no way at present of unifying them.

Our bridging lemmas are:

lemma smc sec1 ke real bridge
(Adv <: FUNC{MI, SMCReal, KEReal, CompEnv}
(Env <: ENV{Adv, MI, SMCReal, KEReal, CompEnv}
(func' adv' : addr, in guard low' in guard hi' : int fset) &m :

exper pre func' adv' ⇒
in guard low' \subset in guard hi' ⇒ 1 \in in guard hi' ⇒
CompEnv.in guard low{m} = in guard low' ⇒
Pr[Exper(MI(SMCReal(KEReal), Adv), Env).main(func', adv', in guard low') @ &m : res] =
Pr[Exper(MI(KEReal, Adv), CompEnv(Env)).main(func' ++ [2], adv', in guard hi') @ &m : res].

lemma smc sec1 ke ideal bridge
(Adv <: FUNC{MI, SMCReal, KEIdeal, CompEnv}
(Env <: ENV{Adv, MI, SMCReal, KEIdeal, CompEnv}
(func' adv' : addr, in guard low' in guard hi' : int fset) &m :

exper pre func' adv' ⇒
in guard low' \subset in guard hi' ⇒ 1 \in in guard hi' ⇒
CompEnv.in guard low{m} = in guard low' ⇒
Pr[Exper(MI(SMCReal(KEIdeal), Adv), Env).main(func', adv', in guard low') @ &m : res] =
Pr[Exper(MI(KEIdeal, Adv), CompEnv(Env)).main(func' ++ [2], adv', in guard hi') @ &m : res].

++ is list concatenation. From these lemmas, plus our security of key-exchange lemma (ke security),
we can immediately get that SMCReal(KEReal) UC-emulates SMCReal(KEIdeal):

lemma smc security1
(Adv <: FUNC{MI, SMCReal, KEReal, KEIdeal, KESim, DDH Adv, CompEnv})
(Env <: ENV{Adv, MI, SMCReal, KEReal, KEIdeal, KESim, DDH Adv, CompEnv})
(func' adv' : addr, in guard' : int fset) &m :

exper pre func' adv' ⇒ ! (2 \in in guard') ⇒
CompEnv.in guard low{m} = in guard' ⇒
KeyEx.DDH Adv.func{m} = func' ++ [2] ⇒ KeyEx.DDH Adv.adv{m} = adv' ⇒
KeyEx.DDH Adv.in guard{m} = in guard' `|` fset1 1 ⇒
`|Pr[Exper(MI(SMCReal(KEReal), Adv), Env).main(func', adv', in guard') @ &m : res] −
Pr[Exper(MI(SMCReal(KEIdeal), KESim(Adv)), Env).main(func', adv', in guard') @ &m : res]| ≤

`|Pr[DDH1(DDH Adv(CompEnv(Env), Adv)).main() @ &m : res] −
Pr[DDH2(DDH Adv(CompEnv(Env), Adv)).main() @ &m : res]|.

`|` is the union operation for finite sets, and fset1 1 is {1}. The statement of smc sec1 ke ideal bridge

doesn’t involve KESim; it’s expressed in terms of an arbitrary adversary Adv. But when we prove
smc security1, we simply apply smc sec1 ke ideal bridge to KESim(Adv). When applying the bridging
lemmas, we set in guard low' to in guard', and in guard high' to the union of in guard' and {1}. And this
union is also the input guard used with ke security. The functionality address used with ke security

is func' ++ [2]. Note that the security upper bound involves the application of the DDH adversary
to the composed environment.

Then we can combine smc security1 and the instantiation of smc security2 to KESim(Adv) to get
our overall security result that SMCReal(KEReal) UC-realizes SMCIdeal:

lemma smc security
(Adv <: FUNC{MI, SMCReal, SMCIdeal, SMCSim, KEReal, KEIdeal, KESim, DDH Adv, CompEnv})
(Env <: ENV{Adv, MI, SMCReal, SMCIdeal, SMCSim, KEReal, KEIdeal, KESim, DDH Adv, CompEnv})
(func' adv' : addr, in guard' : int fset) &m :

exper pre func' adv' ⇒

27

! (2 \in in guard') ⇒ ! (3 \in in guard') ⇒
(∗ parameters for modules in upper bound: ∗)
CompEnv.in guard low{m} = in guard' ⇒
KeyEx.DDH Adv.func{m} = func' ++ [2] ⇒ KeyEx.DDH Adv.adv{m} = adv' ⇒
KeyEx.DDH Adv.in guard{m} = in guard' `|` fset1 1 ⇒
(∗ end of parameters for modules in upper bound ∗)
`|Pr[Exper(MI(SMCReal(KEReal), Adv), Env).main(func', adv', in guard') @ &m : res] −
Pr[Exper(MI(SMCIdeal, SMCSimComp(Adv))), Env).main(func', adv', in guard') @ &m : res]| ≤

`|Pr[DDH1(DDH Adv(CompEnv(Env), Adv)).main() @ &m : res] −
Pr[DDH2(DDH Adv(CompEnv(Env), Adv)).main() @ &m : res]|.

where the composed simulator SMCSimComp is defined by

module SMCSimComp (Adv : FUNC) = SMCSim(KESim(Adv)).

This realizes an instance of the transitivity of UC-emulation. Because the universal quantification
of Adv of smc security2 includes SMCSim in its restriction, when we apply smc security2 to KESim(Adv),
this necessitates a check that KESim and SMCSim don’t read or write each other’s global variables.
The overall restriction on the input guard is that it not include either 2 or 3, as those are the port
indices excluded by smc security1 and smc security2, respectively. This is consistent with the fact that
these are the port indices of the two simulators that were composed.

6 Lessons Learned and Future Work

Through our case study, we have validated our EasyCrypt architecture and methodology for
stating and verifying statements within the universally composable security framework. We were
able to naturally define real functionalities (namely, protocols), ideal functionalities, and simulators.
We: mechanized proofs of UC-realizability, one of which employed a computational reduction;
applied the UC composition operation; proved an instance of the UC composition theorem; and
used an instance of the transitivity of UC-emulation.

Despite the relative simplicity of the protocols of our case study, pushing it to a successful
conclusion took an immense amount of work (nine months of effort resulting in some 18,000 lines of
definitions and proofs). Since this is clearly not a scalable amount of effort, we present a number of
lessons learned, as well as potential directions for tool development that will support more efficient
and streamlined proof generation.

6.1 Domain Specific Language for Defining Functionalities

Because EasyCrypt’s programming language is procedure-based, as opposed to directly support-
ing the coroutine-based communication of UC, defining functionalities and simulators involves a
large amount of “boilerplate”: they need internal distribution loops that route messages from the
outside to the parties and sub-functionalities, and allow the parties and sub-functionalities to com-
municate. Simulators have to manually route messages between the environment and adversary.

Writing this boilerplate code is tedious and error prone, and could be avoided given a domain
specific language (DSL) for writing functionalities and simulators. Then a functionality designer
could focus on the interesting parts of their design, relying on the DSL’s implementation to auto-
matically generate the boilerplate. We are in the early stages of designing and implementing such
a DSL.

The implementation of our DSL will automate the checking of various properties that must
currently be manually checked by the designer:

28

• ensuring that all messages sent by functionalities have accurate source addresses;

• ensuring that simulators do not observe or interfere with communication between the envi-
ronment and adversary;

• ensuring that the parties of a functionality only interact with each other via sub-functionalities
(not, e.g., by modifying each other’s states).

The DSL’s implementation will manage the process of assigning port indices to adversarial func-
tions (like forwarding control) and simulators (also used by the corresponding ideal functionalities).
Although symbolic names—adv fw pi for 1, ke sim adv pi for 2, and smc sim adv pi for 3—are used in
the existing EasyCrypt code, it would be better not to bother the functionality designer with the
assignment of numbers to symbolic names.

Our DSL will be usable by crypto theorists lacking a formal methods background, allowing
them to more easily express functionalities and simulators. In the short-to-medium-term, our plan
is to implement a tool that translates the DSL into actual EasyCrypt code. But in the longer
term, it may be possible to develop EasyCrypt tactics that work directly with the DSL programs.

6.2 Support for Symbolic Evaluation

Simulation-based arguments naturally involve working with structurally dissimilar programs. Such
proofs make use of relational invariants. When the real and ideal games are in program states
satisfying a relational invariant, one must employ symbolic evaluation—essentially running the
programs using proof tactics—to get both programs back to points where they again satisfy the
relational invariant. As explained in Subsection 5.4, we can push assignments into the precondition,
and we can inline calls of concrete procedures. If the next statement to run is a conditional or while
loop where we know enough to prove that its boolean expression is true or false, we can reduce
the conditional to its then or else part, or reduce the while loop to either nothing (the false case)
or the body of the while loop followed by the while loop itself. When we don’t know enough to
say whether a boolean expression evaluates to true or false, we have to resort to case analysis. See
Appendix C for an example of how symbolic evaluation can be carried out in EasyCrypt.

EasyCrypt currently lacks support for automating symbolic evaluation, and this will have to
be rectified for complex simulation-based proofs to be feasible. One possibility is to implement a
proof tactic that works as follows. The user will specify an upper bound on the number of steps of
program evaluation they would like to carry out. When confronted with a conditional or while loop,
the tactic will use SMT solvers (using user-specified lemmas) to establish the truth or falsity of the
boolean expression of the conditional/while loop. When this process fails, the tactic will terminate
early, giving the user an unsolved goal to peruse. But when it succeeds, the truth/falsity can
be recorded, enabling an optimized version of the tactic that makes use of the previously learned
sequence of truth/falsity observations. The tactic will also terminate early when confronted with
random assignments and calls to abstract procedures.

6.3 Proving or Mechanizing the UC Composition Theorem

In our case study, we didn’t prove the UC Composition Theorem, but simply proved the needed
instance of the theorem. This involved defining a composed environment and proving a “bridging”
lemma involving the composed environment. As explained in Subsection 5.5, this process is—we
believe—completely general. Proving the general composition theorem in EasyCrypt itself won’t
be possible, because it generalizes over all possible protocol contexts, and there’s no way to do a
structural induction over modules in EasyCrypt.

29

There are two possibilities for handling the composition theorem in EasyCrypt. One is to do a
proof in EasyCrypt’s metatheory, e.g., a proof in the existing Coq development of EasyCrypt’s
metatheory. Then the UC composition theorem could be safely added to EasyCrypt, as a tactic
or tactics. The other possibility is to automate the process of finding EasyCrypt proofs of the
needed bridging lemmas. Then support for the composition theorem could be added to EasyCrypt

without adding anything to its trusted computing base.
As explained in Subsection 5.5, were were unable to prove a single bridging lemma involving

an arbitrary black box (key-exchange) functionality, due to possibility that the functionality and
adversary could exchange messages forever. Instead, we had to prove a pair of lemmas, which
were identical up to textual substitutions—one for the real functionality and one for the ideal
functionality. This approach allowed us to define termination metrics on the functionalities’ states,
and to prove the bridging lemmas using a complex mathematical induction. We believe that
the unrestricted bridging lemma is true, however, and we intend to investigate improvements to
EasyCrypt’s logics allowing the unrestricted lemma to be proved.

6.4 The Dummy Adversary Model

The formalization of UC-emulation in terms of an environment and adversary, as opposed to a single
entity playing both roles, has the pleasing consequence that UC-emulation is obviously transitive—
a fact we used in our case study proof (see the end of Subsection 5.5). However, proofs of UC-
realizability are normally done in the so-called dummy adversary model (see Subsection 3.2), i.e.,
for an adversary that is controlled by the environment. The dummy adversary lemma says that
security with reference to the dummy adversary implies UC-realizability in general.

In our case study (see the discussion in Subsection 5.4), we carried out our proofs of UC-
realizability assuming an arbitrary adversary. This meant we had to deal with the fact that the
same relational state might hold in two distinct situations, after a call to the adversary:

(1) when the call to the adversary was after the relational state was first established by execution
of the real functionality or ideal functionality/simulator (in which case the dummy adversary
would return control to the environment, asking for instructions); or

(2) when the call to the adversary was initiated by the environment’s call to the interface when
the relational state already held.

We unified these goals into a single lemma, which was proved once but applied twice. As future
work, we have in mind a simplification of this approach in which such lemmas don’t have to be
explicitly stated or applied. In their proofs, users will only have to explicitly handle instances of
case (2), with the framework automatically recognizing and handling instances of case (1). In other
words, they will be able to work as if they were working in the dummy adversary model.

Acknowledgments

We thank the anonymous referees for the detailed and insightful feedback they provided on the
submitted version of our paper. It is a pleasure to acknowledge useful discussions with Manuel
Barbosa, Gilles Barthe, Joshua Gancher, Assaf Kfoury and Tomislav Petrovic.

30

References

[1] M. Bellare and P. Rogaway, “Entity authentication and key distribution,” in 13th Conference
on Advances in Cryptology (CRYPTO), 1993, pp. 232–249.

[2] V. Shoup, “OAEP reconsidered,” J. Cryptology, vol. 15, no. 4, pp. 223–249, 2002.

[3] D. Hofheinz and V. Shoup, “GNUC: A new universal composability framework,” J. Cryptology,
vol. 28, no. 3, pp. 423–508, 2015.

[4] O. Goldreich and H. Krawczyk, “On the composition of zero-knowledge proof systems,” SIAM
J. Comput., vol. 25, no. 1, pp. 169–192, 1996.

[5] D. Dolev, C. Dwork, and M. Naor, “Nonmalleable cryptography,” SIAM J. Comput., vol. 30,
no. 2, pp. 391–437, 2000.

[6] R. Canetti, “Security and composition of cryptographic protocols: A tutorial,” in Secure
Multi-Party Computation, 2013, pp. 61–119.

[7] B. Pfitzmann and M. Waidner, “A model for asynchronous reactive systems and its application
to secure message transmission,” in IEEE Symposium on Security and Privacy, 2001, pp. 184–
200.

[8] R. Canetti, “Universally composable security: A new paradigm for cryptographic protocols,”
in 42nd Annual Symposium on Foundations of Computer Science. Las Vegas, NV, USA: IEEE
Computer Society, 2001, pp. 136–145.

[9] M. Backes, B. Pfitzmann, and M. Waidner, “The reactive simulatability (RSIM) framework
for asynchronous systems,” Inf. Comput., vol. 205, no. 12, pp. 1685–1720, 2007.

[10] R. Küsters and M. Tuengerthal, “The IITM model: a simple and expressive model for universal
composability,” IACR Cryptology ePrint Archive, vol. 2013, p. 25, 2013.

[11] R. Canetti, A. Cohen, and Y. Lindell, “A simpler variant of universally composable security for
standard multiparty computation,” in 35th Conference on Advances in Cryptology (CRYPTO),
2015, pp. 3–22.

[12] M. Bellare and P. Rogaway, “Code-based game-playing proofs and the security of triple en-
cryption,” IACR Cryptology ePrint Archive, vol. 2004, no. 331, 2004.

[13] ——, “The security of triple encryption and a framework for code-based game-playing proofs,”
in 25th International Conference on The Theory and Applications of Cryptographic Techniques
(EUROCRYPT). Saint Petersburg, Russia: Springer-Verlag, 2006, pp. 409–426.

[14] V. Shoup, “Sequences of games: a tool for taming complexity in security proofs,” IACR
Cryptology ePrint Archive, 2004, http://eprint.iacr.org/2004/332.

[15] M. Abadi and P. Rogaway, “Reconciling two views of cryptography (the computational sound-
ness of formal encryption),” Journal of Cryptology, vol. 15, no. 2, pp. 103–127, Jan 2002.

[16] D. Micciancio and B. Warinschi, “Completeness theorems for the abadi-rogaway language of
encrypted expressions,” J. Comput. Secur., vol. 12, no. 1, pp. 99–129, Jan. 2004.

31

[17] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of selected equivalences for
security protocols,” in 20th IEEE Symposium on Logic in Computer Science, 2005, pp. 331–
340.

[18] M. Backes and B. Pfitzmann, “A cryptographically sound security proof of the needham-
schroeder-lowe public-key protocol,” in Foundations of Software Technology and Theoretical
Computer Science, 2003, pp. 1–12.

[19] R. Canetti and J. Herzog, “Universally composable symbolic security analysis,” J. Cryptology,
vol. 24, no. 1, pp. 83–147, 2011.

[20] B. Blanchet, “Computationally sound mechanized proofs of correspondence assertions,” in 25th
IEEE Computer Security Foundations Symposium. Venice, Italy: IEEE Computer Society,
2007, pp. 97–111.

[21] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P.-Y. Strub, “EasyCrypt: A
tutorial,” in Foundations of Security Analysis and Design VII, ser. Lecture Notes in Computer
Science. Springer International Publishing, 2014, vol. 8604, pp. 146–166.

[22] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin, “Computer-aided security proofs
for the working cryptographer,” in 31st Conference on Advances in Cryptology (CRYPTO).
Springer-Verlag, 2011, pp. 71–90.

[23] A. Petcher and G. Morrisett, “The foundational cryptography framework,” in 4th International
Conference on Principles of Security and Trust. London, UK: Springer-Verlag, 2015, pp. 53–
72.

[24] D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “CryptHOL: Game-based proofs in
higher-order logic,” IACR Cryptology ePrint Archive, vol. 2017, p. 753, 2017. [Online].
Available: http://eprint.iacr.org/2017/753

[25] A. Lochbihler and S. R. Sefidgar, “A tutorial introduction to CryptHOL,” IACR Cryptology
ePrint Archive, vol. 2018, p. 941, 2018. [Online]. Available: https://eprint.iacr.org/2018/941

[26] A. Stoughton and M. Varia, “Mechanizing the proof of adaptive, information-theoretic security
of cryptographic protocols in the random oracle model,” in 30th IEEE Computer Security
Foundations Symposium. Santa Barbara, CA, USA: IEEE Computer Society, 2017, pp. 83–
99, https://github.com/alleystoughton/PCR.

[27] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, B. Grégoire, V. Laporte, and V. Pereira,
“A fast and verified software stack for secure function evaluation,” in 24th ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 1989–2006.

[28] H. Haagh, A. Karbyshev, S. Oechsner, B. Spitters, and P. Strub, “Computer-aided proofs for
multiparty computation with active security,” in 31st IEEE Computer Security Foundations
Symposium, 2018, pp. 119–131.

[29] A. Lochbihler and S. R. Sefidgar, “Constructive cryptography in
HOL,” Archive of Formal Proofs, vol. 2018, 2018. [Online]. Available:
https://www.isa-afp.org/entries/Constructive Cryptography.html

[30] F. Böhl and D. Unruh, “Symbolic universal composability,” in 26th IEEE Computer Security
Foundations Symposium, 2013, pp. 257–271.

32

http://eprint.iacr.org/2017/753
https://eprint.iacr.org/2018/941
https://www.isa-afp.org/entries/Constructive_Cryptography.html

[31] K. Liao, M. Hammer, and A. Miller, “ILC: A calculus for composable, computational cryp-
tography,” in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, 2019.

[32] B. Blanchet, “Composition theorems for CryptoVerif and application to TLS 1.3,” in 31st
IEEE Computer Security Foundations Symposium, 2018, pp. 16–30.

[33] U. Maurer, “Constructive cryptography - A new paradigm for security definitions and proofs,”
in Joint Workshop on Theory of Security and Applications (TOSCA), 2011, pp. 33–56.

[34] P. Mateus, J. C. Mitchell, and A. Scedrov, “Composition of cryptographic protocols in a prob-
abilistic polynomial-time process calculus,” in 14th International Conference on Concurrency
Theory, 2003, pp. 323–345.

[35] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague, “A probabilistic polynomial-time
calculus for analysis of cryptographic protocols (preliminary report),” Electr. Notes Theor.
Comput. Sci., vol. 45, pp. 280–310, 2001.

[36] P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov, “A probabilistic poly-time framework
for protocol analysis,” in 5th ACM Conference on Computer and Communications Security,
1998, pp. 112–121.

[37] D. Cadé and B. Blanchet, “From computationally-proved protocol specifications to implemen-
tations and application to SSH,” JoWUA, vol. 4, no. 1, pp. 4–31, 2013.

[38] B. Blanchet, A. D. Jaggard, A. Scedrov, and J. Tsay, “Computationally sound mechanized
proofs for basic and public-key Kerberos,” in 3rd ACM Symposium on Information, Computer
and Communications Security (ASIACCS), Tokyo, Japan, 2008, pp. 87–99.

[39] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and reference implementations
for the TLS 1.3 standard candidate,” in IEEE Symposium on Security and Privacy, 2017, pp.
483–502.

[40] B. Blanchet, “Symbolic and computational mechanized verification of the ARINC823 avionic
protocols,” in 30th IEEE Computer Security Foundations Symposium, 2017, pp. 68–82.

[41] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification for secure messaging
protocols and their implementations: A symbolic and computational approach,” in IEEE
European Symposium on Security and Privacy, 2017, pp. 435–450.

[42] G. Barthe, B. Grégoire, Y. Lakhnech, and S. Zanella Béguelin, “Beyond provable security: ver-
ifiable IND-CCA security of OAEP,” in 11th International Conference on Topics in Cryptology
(CT-RSA). San Francisco, CA, USA: Springer-Verlag, 2011, pp. 180–196.

[43] M. Backes, G. Barthe, M. Berg, B. Grégoire, C. Kunz, M. Skoruppa, and S. Zanella Be-
guelin, “Verified security of Merkle-Damg̊ard,” in 25th IEEE Computer Security Foundations
Symposium. Washington, DC, USA: IEEE Computer Society, 2012, pp. 354–368.

[44] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub, and S. Z. Béguelin, “Proving the
TLS handshake secure (as it is),” in 34th Conference on Advances in Cryptology (CRYPTO),
2014, pp. 235–255.

33

[45] G. Barthe, F. Dupressoir, P. Fouque, B. Grégoire, M. Tibouchi, and J. Zapalowicz, “Making
RSA-PSS provably secure against non-random faults,” in 16th International Workshop on
Cryptographic Hardware and Embedded Systems. Busan, Korea: Springer-Verlag, 2014, pp.
206—-222.

[46] G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt, “Mind the gap: Modular machine-
checked proofs of one-round key exchange protocols,” in 34th International Conference on
The Theory and Applications of Cryptographic Techniques (EUROCRYPT). Sofia, Bulgaria:
Spring-Verlag, 2015, pp. 689–718.

[47] G. Barthe, J. M. Crespo, B. Grégoire, C. Kunz, Y. Lakhnech, B. Schmidt, and
S. Zanella Béguelin, “Fully automated analysis of padding-based encryption in the computa-
tional model,” in 20th ACM SIGSAC Conference on Computer and Communications Security.
Berlin, Germany: ACM, 2013, pp. 1247–1260.

[48] Coq Development Team, “The Coq proof assistant,” https://coq.inria.fr.

[49] A. Petcher and G. Morrisett, “A mechanized proof of security for searchable symmetric en-
cryption,” in 28th IEEE Computer Security Foundations Symposium. Verona, Italy: IEEE
Computer Society, 2015, pp. 481–494.

[50] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Highly-scalable
searchable symmetric encryption with support for boolean queries,” in 33rd Conference on
Advances in Cryptology (CRYPTO). Santa Barbara, CA, USA: Springer-Verlag, 2013, pp.
353–373.

[51] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified correctness and security of
OpenSSL HMAC,” in 24th USENIX Security Symposium, 2015, pp. 207–221.

[52] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W. Appel, “Verified
correctness and security of mbedTLS HMAC-DRBG,” CoRR, vol. abs/1708.08542, 2017.
[Online]. Available: http://arxiv.org/abs/1708.08542

[53] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Formal certification of code-based crypto-
graphic proofs,” in 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. Savannah, GA, USA: ACM, 2009, pp. 90–101.

[54] J. Camenisch, S. Krenn, R. Küsters, and D. Rausch, “iUC: Flexible Universal Composability
Made Simple,” 2019.

[55] P. Fouque, A. Joux, and M. Tibouchi, “Injective encodings to elliptic curves,” in 18th Aus-
tralasian Conference on Information Security and Privacy, 2013, pp. 203–218.

[56] M. Tibouchi, “Elligator squared: Uniform points on elliptic curves of prime order as uni-
form random strings,” in 18th International Conference on Financial Cryptography and Data
Security, 2014, pp. 139–156.

[57] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator: elliptic-curve points in-
distinguishable from uniform random strings,” in 20th ACM SIGSAC Conference on Computer
and Communications Security, 2013, pp. 967–980.

34

http://arxiv.org/abs/1708.08542

A EasyCrypt Module for Making Interfaces

This appendix contains the EasyCrypt definition of the module for making an interface out of a
functionality and an adversary.14 (The .` syntax selects the nth component of a tuple.)

module MI (Func : FUNC, Adv : FUNC) : INTER = {
var func, adv : addr
var in guard : int fset

proc init(func adv : addr, in guard : int fset) : unit = {
func ← func ; adv ← adv ; in guard ← in guard ;
Func.init(func, adv);
Adv.init(adv, []);
}

proc loop(m : msg) : msg option = {
var mod : mode; var pt1, pt2 : port; var u : univ;
var addr1 : addr; var n1 : int;
var r : msg option ← None;
var not done : bool ← true;

(∗ loop invariant in terms of m:

not done ⇒
func ≤ m.`2.`1 ∨
m.`1 = Adv ∧ m.`2.`1 = adv ∗)

while (not done) {
(mod, pt1, pt2, u) ← m; (addr1, n1) ← pt1;
if (func ≤ addr1) {
r <@ Func.invoke(m);
if (r = None) {
not done ← false;
}
else {
m ← oget r; (∗ next iteration, if any, will use m ∗)
(mod, pt1, pt2, u) ← m; (addr1, n1) ← pt1;
if (func ≤ addr1) {
r ← None; not done ← false;
}
elif (mod = Dir) {
not done ← false;
if (adv ≤ addr1) {
r ← None;
}
}
elif (addr1 6= adv ∨ n1 = 0) {
r ← None; not done ← false;
}
}
}
else { (∗ addr1 = adv ∗)
r <@ Adv.invoke(m);
if (r = None) {
not done ← false;
}

14See the module of the same name in the file UCCore.eca of the repository.

35

else {
m ← oget r; (∗ next iteration, if any, will use m ∗)
(mod, pt1, pt2, u) ← m; (addr1, n1) ← pt1;
if (adv ≤ addr1 ∨ mod = Dir) {
r ← None; not done ← false;
}
elif (! func ≤ addr1) {
not done ← false;
}
}
}
}
return r;
}

proc invoke(m : msg) : msg option = {
var mod : mode; var pt1, pt2 : port; var u : univ;
var addr1, addr2 : addr; var n1 : int;
var r : msg option;
(mod, pt1, pt2, u) ← m; (addr1, n1) ← pt1;
if (func ≤ addr1 ∧ mod = Dir ∨

addr1 = adv ∧ mod = Adv ∧ (n1 = 0 ∨ n1 \in in guard)) {
r <@ loop(m);
}
else {
r ← None;
}
return r;
}
}.

B EasyCrypt Composed Environment Module

This appendix contains the EasyCrypt definition of the composed environment module used as
part of the lifting of key-exchange security to SMCReal.15

module CompEnv (Env : ENV, Inter : INTER) = {
var stub st : msg option
var func : addr
var adv : addr
var in guard low : int fset

module StubKE : FUNC = {
proc init(func adv : addr) : unit = { }

proc invoke(m : msg) : msg option = {
var mod : mode; var pt1, pt2 : port; var u : univ;
var addr1 : addr; var n1 : int;
var r : msg option;
if (stub st 6= None) {
r ← stub st; stub st ← None;
}
else {
r <@ Inter.invoke(m);

15See the module of the same name of the file SMC.ec of the repository.

36

if (r 6= None) {
m ← oget r; (mod, pt1, pt2, u) ← m; (addr1, n1) ← pt1;
if (mod = Adv) {
stub st ← Some m;
(∗ only mode and destination port matter (destination port id

must not be 0) ∗)
r ← Some (Adv, (adv, 1), (func ++ [2], 1), UnivUnit);
}
}
}
return r;
}
}

module StubAdv : FUNC = {
proc init(func adv : addr) : unit = { }

proc invoke(m : msg) : msg option = {
var mod : mode; var pt1, pt2 : port; var u : univ;
var addr1 : addr; var n1 : int;
var r : msg option;
if (stub st 6= None) {
r ← stub st; stub st ← None;
}
else {
r <@ Inter.invoke(m);
if (r 6= None) {
m ← oget r; (mod, pt1, pt2, u) ← m; (addr1, n1) ← pt1;
if (mod = Dir) {
stub st ← Some m;
(∗ only mode and destination address matter ∗)
r ← Some (Adv, (func ++ [2], 1), (adv, 1), UnivUnit);
}
}
}
return r;
}
}

(∗ func will end with 2 ∗)

proc main(func adv : addr, in guard : int fset) : bool = {
var b : bool;
stub st ← None;
func ← take (size func − 1) func ; adv ← adv ;
b <@ Exper(MI'(SMCReal(StubKE), StubAdv), Env).main(func, adv, in guard low);
return b;
}
}.

where MI' is a copy of MI created via cloning.

C Symbolic Evaluation in EasyCrypt

This appendix contains a simple example of how one can carry out symbolic evaluation in Easy-

Crypt. It involves communication of integers between two entities, A and B, plus an environment.
There is a type dest of destinations, whose elements are the addresses of the two entities plus

37

the environment:

type dest = [A | B | Env].

An entity is a module with a procedure f that transforms an integer into a new integer, along with
the destination to which it should be sent:

module type ENT = {
proc f(x : int) : dest ∗ int
}.

The routing loop module, Loop, is parameterized by two entities—one for A and one for B:

module Loop(EntA : ENT, EntB : ENT) = {
proc loop(d : dest, x : int) : int = {
while (d 6= Env) {
if (d = A) {
(d, x) <@ EntA.f(x);
}
else { (∗ d = B ∗)
(d, x) <@ EntB.f(x);
}
}
return x;
}
}.

Its loop procedure takes in an initial destination d and integer x. Its body is a while loop that lets
A and B communicate with each other, until the point where the currently invoked entity decides
to return to the environment.

A and B are implemented as follows:

module EntA : ENT = {
proc f(x : int) : dest ∗ int = {
x ← x + 1;
return (if 5 ≤ x then Env else B, x);
}
}.

module EntB : ENT = {
proc f(x : int) : dest ∗ int = {
x ← x ∗ 2;
return (if 5 ≤ x then Env else A, x);
}
}.

A increments its input by one, and asks to send the result to B. B doubles its input, and asks to
send the result to A. But both A and B have exceptions: they ask to send to the environment
results that are at least 5.

We can prove the following lemma using symbolic evaluation:

lemma l :
phoare[Loop(EntA, EntB).loop : d = A ∧ x = 1 =⇒ res = 5] = 1%r.

proof.
proc; simplify.
rcondt 1; first auto.
rcondt 1; first auto.
inline (1) EntA.f.
sp.

38

rcondt 1; first auto.
rcondf 1; first auto.
inline (1) EntB.f.
sp.
rcondt 1; first auto.
rcondt 1; first auto.
inline (1) EntA.f.
sp.
rcondf 1; first auto.
auto.
qed.

The lemma says that if we begin by giving A the input 1, then eventually the result 5 is returned
to the environment (this happens with probability 1).

In what follows, we’ll show the intermediate goals of the proof of this lemma. After applying
the proc (procedure) tactic and simplifying the precondition, we have:

pre = d = A ∧ x = 1

while (d 6= Env) {
if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
}

post = x = 5

Because EasyCrypt’s auto tactic will be able to prove that the while loop’s boolean expression
is true (follows from the precondition), we can use the rcondt (reduce conditional, when true) and
auto tactics

rcondt 1; first auto.

to reduce the previous goal to:

pre = d = A ∧ x = 1

if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
while (d 6= Env) {
if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
}

post = x = 5

39

(Here the argument 1 to rcondt refers to working on the first statement of the (one statement-long)
program, and auto is being applied to the first subgoal generated by running rcondt 1—the one that
pertains to the boolean expression. The remaining goal is the one we’re left to prove.)

Next, we apply

rcondt 1; first auto.

resulting in the goal

pre = d = A ∧ x = 1

(d, x) <@ EntA.f(x);
while (d 6= Env) {
if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
}

post = x = 5

We can then inline the first call of EntA.f

inline (1) EntA.f.

yielding

pre = d = A ∧ x = 1

x0 ← x;
x0 ← x0 + 1;
(d, x) ← (if 5 ≤ x0 then Env else B, x0);
while (d 6= Env) {
if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
}

post = x = 5

Next, we can use the strongest postcondition tactic

sp.

to push the initial assignments (the first three statements) into the precondition:

pre =
exists (d0 : dest) (x1 : int),
x0 = x1 + 1 ∧
x = x0 ∧ d = if 5 ≤ x0 then Env else B ∧ d0 = A ∧ x1 = 1

while (d 6= Env) {
if (d = A) {

40

(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
}

post = x = 5

Because the precondition now implies d = B, we can run

rcondt 1; first auto.

getting us to

pre =
exists (d0 : dest) (x1 : int),
x0 = x1 + 1 ∧
x = x0 ∧ d = if 5 ≤ x0 then Env else B ∧ d0 = A ∧ x1 = 1

if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
while (d 6= Env) {
if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
}

post = x = 5

We can then apply

rcondf 1; first auto.

(note the “f” for a false boolean expression), yielding

pre =
exists (d0 : dest) (x1 : int),
x0 = x1 + 1 ∧
x = x0 ∧ d = if 5 ≤ x0 then Env else B ∧ d0 = A ∧ x1 = 1

(d, x) <@ EntB.f(x);
while (d 6= Env) {
if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
}

post = x = 5

41

Running

inline (1) EntB.f.
sp.

will then take us to

pre =
exists (d0 : dest) (x2 : int),
x1 = x2 ∗ 2 ∧
x = x1 ∧
d = if 5 ≤ x1 then Env else A ∧
exists (d1 : dest) (x3 : int),
x0 = x3 + 1 ∧
x2 = x0 ∧ d0 = if 5 ≤ x0 then Env else B ∧ d1 = A ∧ x3 = 1

while (d 6= Env) {
if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
}

post = x = 5

Because the precondition now implies d = A, we can run

rcondt 1; first auto.
rcondt 1; first auto.
inline (1) EntA.f.
sp.

getting us to

pre =
exists (d0 : dest) (x3 : int),
x2 = x3 + 1 ∧
x = x2 ∧
d = if 5 ≤ x2 then Env else B ∧
exists (d1 : dest) (x4 : int),
x1 = x4 ∗ 2 ∧
x3 = x1 ∧
d0 = if 5 ≤ x1 then Env else A ∧
exists (d2 : dest) (x5 : int),
x0 = x5 + 1 ∧
x4 = x0 ∧ d1 = if 5 ≤ x0 then Env else B ∧ d2 = A ∧ x5 = 1

while (d 6= Env) {
if (d = A) {
(d, x) <@ EntA.f(x);
}
else {
(d, x) <@ EntB.f(x);
}
}

post = x = 5

42

Because the precondition now implies d = Env, so that the loop’s boolean expression is now false,
we can run

rcondf 1; first auto.

taking us to

pre =
exists (d0 : dest) (x3 : int),
x2 = x3 + 1 ∧
x = x2 ∧
d = if 5 ≤ x2 then Env else B ∧
exists (d1 : dest) (x4 : int),
x1 = x4 ∗ 2 ∧
x3 = x1 ∧
d0 = if 5 ≤ x1 then Env else A ∧
exists (d2 : dest) (x5 : int),
x0 = x5 + 1 ∧
x4 = x0 ∧ d1 = if 5 ≤ x0 then Env else B ∧ d2 = A ∧ x5 = 1

post = x = 5

Finally, running

auto.

will solve this goal, completing the proof.
As the above symbolic evaluation proceeded, the preconditions became more and more layered.

It’s worth pointing out that EasyCrypt’s simplify tactic isn’t capable of making them simpler. But
in order to support symbolic evaluation in EasyCrypt, it will be helpful to implement a tactic for
more aggressively simplifying preconditions.

It’s also important to note that, when attempting to prove the truth or falsity of the boolean
expressions of conditionals and while loops, it’s often useful to employ SMT solvers. And when
doing this, one can supply a list of previously proved lemmas that the solvers may employ.

As argued in Section 6, we believe it will be possible to automate symbolic evaluation in Easy-

Crypt, making it trivial to prove lemmas like the one of this section, and resulting in succinct
proofs of such lemmas.

43

	Introduction
	This Work
	Case Study
	Reflections

	Related Work
	Approaches to Composable Security
	Formal Methods Tools for Cryptography

	Background
	EasyCrypt
	Universally Composable Security

	Our Modeling of UC within EasyCrypt
	Our Variant of UC
	Formalization in EasyCrypt

	Case Study: Secure Message Communication
	SMC Protocol
	Functionalities
	Road-map for Proof of SMC Security
	Proof of Security of Key-Exchange
	Proof of Security of SMC

	Lessons Learned and Future Work
	Domain Specific Language for Defining Functionalities
	Support for Symbolic Evaluation
	Proving or Mechanizing the UC Composition Theorem
	The Dummy Adversary Model

	EasyCrypt Module for Making Interfaces
	EasyCrypt Composed Environment Module
	Symbolic Evaluation in EasyCrypt

