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Abstract

A software watermarking scheme enables users to embed a message or mark within a pro-
gram while preserving its functionality. Moreover, it is difficult for an adversary to remove a
watermark from a marked program without corrupting its behavior. Existing constructions of
software watermarking from standard assumptions have focused exclusively on watermarking
pseudorandom functions (PRFs).

In this work, we study watermarking public-key primitives such as the signing key of a digital
signature scheme or the decryption key of a public-key (predicate) encryption scheme. While
watermarking public-key primitives might seem more challenging than watermarking PRFs, we
show how to construct watermarkable variants of these notions while only relying on standard,
and oftentimes, minimal, assumptions. Our watermarkable signature scheme relies only on the
minimal assumption that one-way functions exist and satisfies ideal properties such as public
marking, public mark-extraction, and full collusion resistance. Our watermarkable public-key
encryption schemes are built using techniques developed for the closely-related problem of traitor
tracing. Notably, we obtain fully collusion resistant watermarkable attribute-based encryption
in the private-key setting from the standard learning with errors assumption and a bounded
collusion resistant watermarkable predicate encryption scheme with public mark-extraction and
public marking from the minimal assumption that public-key encryption exists.

1 Introduction

Watermarking is a way to embed special information called a “mark” into digital objects such as
images, videos, audio, or software so that the marked object has the same appearance or behavior
as the original object. Moreover, it should be difficult for an adversary to remove the mark without
damaging the object itself. Watermarking is a useful tool both for protecting ownership and for
preventing unauthorized distribution of digital media.

Software watermarking. In this work, we focus on software watermarking for cryptographic
functionalities. Barak et al. [BGI+01, BGI+12] and Hopper et al. [HMW07] provided the first
rigorous mathematical framework for software watermarking. Very briefly, a software watermarking
scheme consists of two main algorithms. First, there is a marking algorithm that takes as input a
program, modeled as a Boolean circuit C, and outputs a new marked circuit C ′ with the property
that C and C ′ agree almost everywhere. Second, there is an extraction algorithm that takes as
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input a circuit C and outputs a bit indicating whether the program is marked or not. In the case of
message-embedding watermarking, the marking algorithm additionally takes a message τ as input,
and the extraction algorithm will either output the mark τ or a special symbol ⊥ to indicate an
unmarked program. The primary security requirement is unremovability, which says that given a
marked circuit C ′ with an embedded message τ , no efficient adversary can construct a new circuit
C̃ ′ that has roughly the same behavior as C ′, and yet, the extraction algorithm on C̃ ′ fails to
output τ . Notably, there are no restrictions on the circuit the adversary can output (other than the
requirement that the adversary be efficient). This notion of security is often referred to as security
against arbitrary removal strategies and captures the intuitive notion of watermarking where an
adversary cannot replicate a program’s functionality without also preserving the watermark.

Realizing the strong security requirements put forth in the early works on cryptographic wa-
termarking [BGI+01, HMW07, BGI+12] has proven challenging. In fact, Barak et al. showed
an impossibility result (under indistinguishability obfuscation) on the existence of watermarking
schemes that are perfectly functionality-preserving (i.e., schemes where the input/output behavior
of the marked function is identical to that of the original function). In light of this lower bound,
early works [NSS99, YF11, Nis13] provided partial results for watermarking specific classes of cryp-
tographic functionalities by imposing limitations on the adversary’s ability to modify the program
and remove the watermark.

The first positive result on constructing watermarking schemes with security against arbitrary
adversarial strategies was due to Cohen et al. [CHN+16] who showed that if we relax the perfect
functionality-preserving requirement to only require statistical functionality-preserving (i.e., the
marked function only has to implement the original function almost everywhere), then watermark-
ing is possible. Moreover, Cohen et al. showed how to watermark several classes of cryptographic
primitives, including pseudorandom functions (PRFs) and public-key encryption, with strong secu-
rity from indistinguishability obfuscation. Since the work of Cohen et al., a number of works have
studied how to build watermarkable families of PRFs from weaker assumptions such as lattice-based
assumptions [KW17, KW19] or CCA-secure encryption [QWZ18].

Watermarking public-key primitives. Existing constructions of software watermarking from
standard cryptographic assumptions all focus on watermarking symmetric-key primitives, notably,
PRFs [KW17, QWZ18, KW19]. The one exception is the work of Baldimtsi et al. [BKS17], who
showed how to watermark public-key cryptographic primitives, but in a stateful setting, and under
a modified security model where a trusted watermarking authority generates both unmarked and
marked keys.1 Our focus in this work is to study watermarking for two broad classes of public-key
cryptographic primitives: digital signatures and public-key encryption.

1.1 Our Results and Approach

In this work, we consider watermarking for public-key primitives such as digital signatures and
public-key encryption. We make contributions along two dimensions. On the definitional side, we
introduce a more refined set of definitions for watermarking public-key primitives that better cap-
ture our intuitive notions of functionality-preserving and watermarking security than the previous
definitions of Cohen et al. [CHN+16]. On the constructions side, we provide new watermarkable

1In the standard watermarking model, anyone can generate keys (without going through or trusting the watermarking
authority), and at a later time, decide if they want to mark the keys or not.
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signature and public-key encryption schemes that rely only on standard assumptions. We provide
an overview of each of our contributions below.

Limitations of the Cohen et al. framework. To motivate our new definitions for watermarking
public-key primitives, we begin by identifying several limitations in the existing definitions put
forth by Cohen et al. [CHN+16]. In existing definitions for watermarkable signatures, a central
watermarking authority runs a setup algorithm that takes as input a security parameter λ and
generates a pair of marking and extraction keys (mk, xk). The system has a key-generation algorithm
which uses the marking key mk in conjunction with a mark τ to sample a signing/verification key
pair (sk, vk). Here the signing key sk contains the embedded mark τ . The holder of the signing key
sk can sign any message m, and the corresponding signature σ can be verified using the verification
key vk. Finally, the watermarking scheme provides an extraction algorithm that takes a circuit
C and the extraction key xk as input and either outputs a mark τ or declares the circuit to be
“unmarked.” The main security requirement is unremovability which states that the extraction
algorithm outputs the correct mark τ as long as the circuit C and the marked signing circuit
Sign(sk, ·) behave identically on a sufficiently large fraction of input messages.

While this definition appears to capture our intuitive notion of a watermarkable signature
scheme, there are several definitional issues that allow intuitively insecure constructions to be
proven secure. We illustrate this with a simple example below.

A simple watermarkable signature scheme. Take any digital signature scheme, which consists
of three algorithms: Setup (for sampling signing/verification keys), Sign (for signing messages), and
Verify (for verifying signatures), and consider the following watermarkable signature scheme. An
unmarked signing/verification key pair (sk, vk) is sampled by running the Setup algorithm for the
underlying signature scheme. The signature on a message m consists of a signature σ on m under sk
and a special symbol ⊥. Concretely, we define Sign′(sk,m) := (Sign(sk,m),⊥). To verify a signature
σ′ = (σ, tag), the verification algorithm simply ignores the second element of the tuple (the tag)
and accepts the signature as long as σ is a valid signature on the message. To mark a signing key
with mark τ , one simply appends the mark to the unmarked key skτ = (sk, τ). A signature under
the marked key is computed identically as with the unmarked key except the symbol ⊥ is replaced
with the mark τ . Specifically, we define Sign′(skτ ,m) := (Sign(sk,m), τ). Note that such signatures
are still accepted by the verifier.

To extract a mark from a signing circuit C, the extraction algorithm simply runs the cir-
cuit C on a polynomial number of randomly-chosen messages to obtain a sequence of signatures
(σ1, tag1), . . . , (σT , tagT ) for some polynomial T . Then, if there exists a mark τ that appears in a
majority of these signatures, it outputs τ and otherwise, it declares the circuit unmarked.

Intuitively, this basic construction does not seem secure because an adversary can trivially re-
move the watermark from a marked key by just not outputting the tag with each signature. In fact,
the marked key even contains a description of the original unmarked key! However, this basic con-
struction does satisfy the unremovability definition described above. Namely, if the claimed circuit
C and the honestly-marked circuit Sign′(skτ , ·) behave identically on a sufficiently large fraction
of the input messages, then the extraction algorithm will always returns the correct mark τ . The
simple attack where the adversary simply strips out the tag from the output is not allowed by the
existing unremovability definition because it changes the input/output functionality of the marked
circuit nearly everywhere. At the same time, the “modified” circuit the adversary constructed is
still a perfectly valid signing circuit (and in fact, it is as good as the original signing key). Thus,
the existing definitions allow for constructions of watermarking schemes that, while provably secure
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under the current definitional framework, fall short of capturing our intuitive notion of a secure
watermarking scheme.

Towards a better definition. A similar issue arises in the existing definitions for watermarkable
public-key encryption. In both settings, the issues arise because the existing unremovability defini-
tions do not allow for adversaries that preserve the desired “functionality” of the underlying object
and, yet, change the exact input/output behavior of the circuit. This gap in existing watermarking
definitions for public-key primitives leads to simple but problematic constructions. We provide a
more detailed discussion of these definitional issues in Appendix B.

The simple strawman construction described above highlights the need for a much stronger
notion of unremovability in the setting of watermarking public-key primitives. From a conceptual
standpoint, unremovability should hold against any adversary that manages to output a “useful”
circuit, even if that circuit does not replicate the same input/output behavior as the marked circuit.
In the case of signatures, a “useful” circuit would be one that outputs valid signatures (with respect
to the verification key), while in the case of encryption, a “useful” circuit would be one that can
decrypt valid ciphertexts. In this work, we address the limitations in the existing definitional
framework for watermarking public-key primitives by introducing a more refined framework that
strengthens the existing notions in the following ways:

• Stronger unremovability property: As discussed previously, existing unremovability def-
initions in the public-key setting are too restrictive and preclude adversaries that would be
reasonable according to our conceptual notion of watermarking. In this work, we strengthen
the unremovability definition to better capture the full range of realistic adversarial strategies.

• Independent marking and key generation: As mentioned before, existing watermark-
ing definitions in the public-key setting also consider a joint key-generation and marking
algorithm. In this work, we decouple the two algorithms (similar to the setting in the case
of watermarking PRFs). This better models our conceptual view of watermarking where
(unmarked) keys can be independently generated and, subsequently, marked.

• Collusion resistance: Lastly, existing watermarking constructions from standard assump-
tions provide security only against adversaries that receive a single marked circuit. This limits
the applicability of such systems as the security of these system could be completely compro-
mised if the adversary gets to see multiple circuits marked with distinct tags/identities. In
this work, we consider watermarking schemes that remain secure even when the adversary
gets to see many marked keys.

Redefining watermarkable public-key primitives. First, we note that separating the marking
and key-generation algorithms, as well as strengthening the unremovability property to capture col-
lusion resistance, are natural extensions of the existing framework. Expanding the unremovability
definition to capture a broader range of adversarial strategies poses a more subtle challenge. At a
high level, the question is what qualifies as a “useful” circuit in the case of watermarking public-key
primitives. For secret-key primitives, such as PRFs, the notion of exact functionality preserving
seems to capture usefulness. Recall that for watermarkable PRFs, this is simply captured by re-
quiring that the adversarially-generated circuit and the honestly-marked PRF circuit compute the
same function on a sufficiently large fraction of inputs.
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With the goal of refining the notion of “useful” circuits in the public-key setting, we draw
inspiration from the closely-related primitive of traitor tracing [CFN94]. Very briefly, a traditional
traitor tracing scheme is an encryption system where there is a single master public key pk and
N decryption keys sk1, . . . , skN with the property that ciphertexts encrypted under pk can be
decrypted by any of the N decryption keys. Then, there is a special tracing algorithm, which given
oracle access to any “useful” decoding device D, outputs a set of users T ⊆ [N ], where T contains
the indices of the decryption keys used to build D. Here, we say a decoder D is “useful” if it can
decrypt an honestly-generated ciphertext with non-negligible probability. This is a more natural
definition of “usefulness” compared to the existing notions in watermarking, where usefulness is
measured by the fraction of inputs on which decoder D and the decryption algorithm (with the
decryption key ski hardwired) agree. Drawing inspiration from the traitor tracing definitions, we
propose the following definitions of what it means for a signing (or decryption) circuit to be “useful,”
and we require that mark-unremovability hold against any adversary that manages to produce a
“useful” circuit:

Signing. We say a signing circuit C is useful with respect to a verification key vk if, on a non-
negligible fraction of input messages, it outputs a signature σ that is accepted under key vk.
In particular, C is useful as long as it produces valid signatures, even if those signatures are
not exactly the same as the ones output by an unmarked signing circuit.

Decryption. We say a decryption circuit C is useful with respect to a public key pk if, on a
non-negligible fraction of honestly-sampled ciphertexts, it correctly decrypts the ciphertext.2

We do not enforce any requirements on the behavior of the circuit C on ciphertexts that may
not be well-formed (i.e., not in the support of the honest encryption algorithm). This seems
reasonable because the behavior of the honest decryption algorithm on malformed ciphertexts
is usually unspecified. It thus seems very restrictive to require that a useful decryption circuit
preserve the input/output behavior of the unmarked decryption circuit on such ciphertexts.

Our watermarking definitions. We now give an overview of our notion of a watermarkable sig-
nature scheme. In our framework, the watermarking authority is independent of the key-generator
for the signature scheme. The watermarking authority runs a setup algorithm to generate a tuple
(wpp,mk, xk) containing the watermarking public parameters wpp, the marking key mk, and the
extraction key xk. The scheme supports a set of standard signature algorithms Setup, Sign, and
Verify, where these algorithm are parameterized by the watermarking public parameters wpp. The
signature-setup algorithm is used to sample unmarked signing/verification key-pairs (sk, vk), and
the signing/verification algorithms are defined in the usual way. The marking algorithm takes the
marking key mk, an (unmarked) signing key sk, and a mark τ and outputs a marked key skτ . The
extraction algorithm takes a circuit C, the extraction key xk, and a verification key vk as inputs,
and it outputs an embedded mark τ or declares the circuit to be unmarked. Here, the key vk

represents the verification key associated with the claimed signing circuit C. Note that since the
verification key is public, providing it to the extraction algorithm seems reasonable.

For security of the system, we first require that the tuple (Setup,Sign,Verify) is itself a secure
digital signature scheme, and we require this to be the case even if the adversary gets to choose

2Looking ahead, we define an even weaker notion of usefulness for decryption circuits, where the circuit C might
only be useful for decrypting ciphertexts associated with two arbitrarily chosen (but fixed) messages m0,m1 instead
of requiring decryption capability over entire message space. This is also inspired by recent developments and
improvements in the traitor tracing literature [NWZ16, GKRW18, GKW18].
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the watermarking parameters. Next, for unremovability, we require that the extraction algorithm
succeeds in recovering the correct mark τ from any circuit C that is a “useful” signing circuit even
if the adversary is able to see the same circuit marked with different (and adversarially-chosen) tags
τ . The latter property models collusion resistance.

In addition to the above security requirements, the watermarking scheme must also satisfy an
additional functionality-preserving guarantee. In previous watermarking works, this was defined in
an exact sense where the marked circuit C ′ was required to implement the same input/output be-
havior as the original unmarked circuit C almost everywhere. Although we can define an analogous
functionality-preserving property for public-key primitives, in this work, we consider a relaxation
inspired by our strengthened unremovability definition. Namely, we only require the marked circuit
to be a “useful” signing or decryption circuit. While it may be possible to achieve the stronger
notion of exact functionality preserving in conjunction with the stronger notions of unremovability
we introduce, we do not study this in our current work.

We define our notion of a watermarkable public-key encryption systems analogously, and we
refer the reader to Section 4 for the full description. Lastly, in this work, we study watermarking
schemes in both the public and private marking/extraction settings. Very briefly, in the public
marking or extraction setting, the unremovability property must hold even when the adversary is
given the marking or extraction keys, respectively.3

Our constructions. In addition to our new definitional framework for watermarking public-key
primitives, we provide a number of constructions that satisfy our strengthened security definitions.
All of our constructions rely only on standard assumptions and can be summarized as follows:

• Digital signatures: We build a fully-public and collusion resistant watermarkable signature
scheme that satisfies our definitions above. Our construction relies only on the minimal
assumption that digital signatures exist. We give this construction in Section 3.3.

• Attribute-based encryption: We construct a collusion resistant watermarkable attribute-
based encryption in the secret-key setting (namely, the scheme assumes a secret marking
key and a secret extraction key). Our construction relies on techniques from recent con-
structions of traitor tracing [GKW18, CVW+18]. Concretely, our construction relies on a
mixed functional encryption scheme [GKW18] and a delegatable attribute-based encryption
scheme [SW05, GPSW06]. Both these primitives [BGG+14, GKW18, CVW+18] can be in-
stantiated from the learning with errors (LWE) assumption [Reg05]. We give this construction
in Section 4.3.

• Predicate encryption: Finally, we construct a fully-public watermarkable public-key pred-
icate encryption scheme with security against bounded collusions. This construction can be
based on the existence of any standard public-key encryption scheme, which is again the
minimal assumption. We give this construction in Appendix C.2.

We note that all existing constructions of watermarking [KW17, QWZ18, KW19] from standard
assumptions are insecure in the collusion resistant setting, and an adversary that sees even two
marked keys can easily remove the embedded marks. Therefore, our constructions provide the first
constructions of watermarking that support either full or even bounded collusion resistance from
standard assumptions.

3In the fully-public setting, the unremovability property must hold even if both the marking and the extraction keys
are public.
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Our work additionally provides the first watermarking constructions that achieve both public
marking and security against the watermarking authority. A few recent works [QWZ18, KW19]
provided watermarking constructions that support public marking from standard assumptions; how-
ever, this was at the expense of giving the watermarking authority a trapdoor that allowed it to
break security of all of the keys in the system (including unmarked keys). In contrast, our schemes
support both public marking and public extraction while retaining security even against a malicious
watermarking authority. In fact, several of our constructions do not even require the existence of a
watermarking authority!

At a philosophical level, our work shows that watermarking public-key cryptographic primitives
is much less challenging than previously believed. It also highlights the need to further explore and
identify the “right” set of definitions for software watermarking. Crucially, we believe that looking
at watermarking through the lens of traitor tracing [CFN94] will yield many valuable insights.

Next, we describe our construction of a watermarkable signature scheme, and, subsequently, we
provide a high level overview of the techniques used in constructing watermarkable attribute-based
encryption.

Watermarking digital signatures. Our watermarkable digital signature scheme relies on con-
strained signatures (also known as policy-based signatures) [BF14, Tsa17]. In a constrained signa-
ture scheme over a message spaceM, the signing key sk can be used to derive a constrained signing
key skf for a particular predicate f :M → {0, 1} with the property that the constrained key skf
can be used to sign all messages m where f(m) = 1. The security property is that an adversary
who is given constrained keys sk1, . . . , skn for functions f1, . . . , fn cannot produce a valid signature
on any message m where fi(m) = 0 for all i ∈ [n]. It is straightforward to construct constrained
signatures from any standard signature scheme using certificates [BF14], and we briefly recall this
basic construction in Section 3.4.

A constrained signature scheme that supports the class of “prefix-based” constraints immedi-
ately yields a watermarkable signature scheme. In more detail, if we want to construct a water-
markable signature with message spaceM and mark space T , we use a prefix-constrained signature
scheme with message space T ×M. Signing and verification keys for the watermarkable signature
directly correspond to signing and verification keys for the underlying prefix-constrained signature
scheme. A signature on a message m consists of a tuple σm = (⊥, σ′) where σ′ is a signature
on (⊥,m). To verify a signature σ = (τ, σ′) on a message m, the verification algorithm checks
that σ′ is a valid signature on the pair (τ,m). Now, to mark a signing key with mark τ∗ ∈ T ,
the user constrains the signing key sk to the prefix-based constraint fτ∗ : T ×M → {0, 1} where
fτ∗(τ, x) = 1 if τ∗ = τ and 0 otherwise. The marked circuit Cτ∗ is a circuit that takes as input a
message m and outputs (τ∗, σ′), where σ′ is a signature on (τ∗,m) using the constrained key skτ∗ .
To extract a watermark from a candidate circuit C ′, simply sample a random message m ← M,4

compute (τ, σ′) ← C ′(m), and output τ if σ′ is a valid signature on (τ,m). Note that if C ′ only
succeeds in producing valid signatures with ε probability (for non-negligible ε), then this procedure
can be repeated λ/ε times. If no marks are extracted after λ/ε iterations, then declare the circuit
unmarked.

By correctness of the underlying constrained signature scheme, the marked circuit Cτ∗ outputs

4More generally, we can consider a stronger notion of unremovability where we replace the uniform distribution
over M with any (adversarially-chosen) efficiently-sampleable distribution over M where the circuit succeeds in
generating valid signatures with non-negligible probability. Notably, the support of this distribution may have
negligible density inM.
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valid signatures on all messages m ∈ M, so the marked circuit is functionality-preserving (even
though the signatures output by C are noticeably different than the signatures output by the
original signing algorithm). Unremovability follows from security of the underlying constrained
signature. Namely, an adversary who only has signing circuits marked with τ1, . . . , τn should only
be able to compute signatures on tuples of the form (τi,m) for i ∈ [n]. Thus, if the extraction
algorithm outputs some τ ′ 6= τi for all i ∈ [n], then the adversary’s circuit must have forged a valid
signature on (τ ′,m) for some message m ∈ M, which breaks security of the underlying constrained
signature scheme. In addition, if the underlying constrained signature scheme is collusion resistant
(i.e., security holds against adversaries that obtain an a priori unbounded polynomial number of
constrained keys), then the resulting watermarkable signature scheme is also collusion resistant.
We describe this construction and its security analysis in greater detail in Section 3.

Watermarking public-key encryption schemes. Our watermarkable public-key encryption
scheme is heavily inspired by the recent traitor tracing construction of Goyal et al. [GKW18].
An important component of their approach was the introduction of a special type of functional
encryption (FE) called mixed functional encryption (mixed FE). Goyal et al. showed that mixed
FE in conjunction with an attribute-based encryption (ABE) scheme for a sufficiently expressive
predicate class was sufficient for traitor tracing. In this work, we show that similar techniques are
also useful for watermarking various forms of public-key encryption schemes. We provide a brief
overview here and defer the full technical details to Section 4.

First, a mixed FE scheme is identical to a regular public-key FE scheme in that it consists of
setup, encryption, key-generation, and decryption algorithms. In addition, it also has a special
secret-key encryption algorithm. The setup algorithm samples the master public/secret key-pair
(mpk,msk). The normal (public-key) encryption algorithm only takes as input the public key mpk,
and outputs a normal (public-key) ciphertext ct. The secret-key encryption algorithm takes as input
the master secret key msk and the description of a binary-valued function f , and outputs a (secret-
key) ciphertext ctf . Given the master key msk, the key-generation algorithm allows one to generate
a key skm for any input message m. Now, a user can use a secret key skm to decrypt a ciphertext.
The correctness requirement says that decrypting a secret-key ciphertext ctf with the secret-key
skm should output f(m) ∈ {0, 1}, while decrypting a public-key ciphertext ct should always output
1, irrespective of the value of m. Security of a mixed FE scheme consists of two properties. The
first is the standard FE indistinguishability property which requires that secret-key encryptions
of two functions f0 and f1 are indistinguishable as long as f0(m) = f1(m) for every key skm the
adversary possesses. The second property states that it should be hard to distinguish between a
public-key ciphertext ct and a secret-key encryption ctf of a function f as long as f(m) = 1 for
every key skm the adversary possesses.

At a high level, our watermarkable public-key encryption scheme is very similar to the traitor
tracing scheme by Goyal et al. In particular, the public watermarking parameters are set to be a
mixed FE public key. The underlying (watermarkable) public-key encryption system is instantiated
using an ABE scheme. An encryption of a message is then an ABE encryption of the corresponding
message with the attribute set to a freshly sampled mixed FE public-key ciphertext. Given the
master secret key of the ABE scheme, a decryptor can always recover the encrypted message. To
mark the decryption key, the marking algorithm first generates a mixed FE secret key for the
corresponding mark. The marked key is then an ABE decryption key, where the function is mixed
FE decryption (with the mixed FE secret key hardwired within). The intuition is that when the
attribute is a normal mixed FE ciphertext (i.e., when the ciphertexts are honestly-generated), then
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all of the mixed FE keys decrypt to 1, in which case, ABE decryption successfully recovers the
encrypted message. However, if the attribute is set to be a mixed FE secret-key ciphertext, then
we can control the marked keys for which decryption still works. This can be leveraged to obtain a
mark-extraction algorithm using classic techniques for traitor tracing [BSW06, NWZ16, GKW18]
(via private linear broadcast encryption). We provide the full description in Section 4.

Watermarking advanced public-key functionalities. Next, we show that if the underlying
ABE scheme supports “key-delegation”, the above template naturally extends to give a fully col-
lusion resistant watermarkable ABE scheme. In this case, the watermarking scheme supports
marking ABE decryption keys skf (for a specific predicate f). Using constructions of mixed
FE [GKW18, CVW+18] and delegatable ABE [BGG+14] from the standard LWE assumption,
we obtain a watermarkable ABE scheme from LWE.

Then, in Appendix C, we show how to adapt similar traitor tracing techniques to build a
watermarkable predicate encryption scheme. This scheme supports both public marking and public
mark-extraction and can be based on the minimal assumption that public-key encryption exists.
However, it is only collusion resistant against an a priori bounded number of users.

1.2 Additional Related Work

In this section, we survey some additional related work and compare our new watermarking notions
to related notions studied in prior work.

Constrained signatures. Numerous works [MPR11, BGI14, BF14, Tsa17] have studied construct-
ing constrained signatures (and variants thereof) together with properties like privacy, anonymity,
succinct keys, or succinct signatures.

Traitor tracing. Since the work of Chor et al. [CFN94], there have been a vast number of con-
structions of fully collusion resistant traitor tracing from combinatorial constructions [BN08, Sir06],
pairing-based assumptions [BSW06, BW06, GKSW10, Fre10, LCW13, LW15, GKW19], lattice-
based assumptions [GKW18, CVW+18, GKW19], and indistinguishability obfuscation [BZ14, NWZ16].
With the exception of [NWZ16, GKW19], the existing constructions only support efficient tracing
over a polynomial-size identity space. There are also numerous constructions that provide security
in the bounded collusion setting [CFN94, SW98, KD98, BF99, CFNP00, SSW01, PST06, ADM+07,
FNP07, BP08, LPSS14, ABP+17].

Attribute-based traitor tracing. Directly relevant to our notion of watermarkable predicate
encryption is the notion of attribute-based traitor tracing [ADM+07, LCW13, LW15, CVW+18],
which is a hybrid of attribute-based encryption and traitor tracing. The main difference between
these two notions is that in the traitor-tracing setting, the marking and key-generation algorithms
are combined (namely, the key-generation algorithm takes as input the function together with the
mark). In watermarking, we have the additional flexibility that we can embed the watermark after
issuing the key as well as support watermarking adversarially-chosen keys. When considering the
simpler notion of watermarkable public-key encryption and traitor tracing, we can equate these
two notions with a suitable redefinition of the traitor tracing schema (assuming that the traitor
tracing scheme supports a public tracing algorithm). However, this equivalence does not seem to
extend to the setting of attribute-based encryption or predicate encryption. Another key difference
is that existing constructions of attribute-based traitor tracing from standard assumptions only
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support tracing over a polynomial-size identity space, while in the standard notions of message-
embedding watermarking, the identity space is exponential. Thus, our results give a collusion
resistant attribute-based traitor tracing scheme that supports an exponential number of possible
identities.

2 Preliminaries

Notation. For an integer n, we write [n] := {1, . . . , n} to denote the set of all positive integers up
to n. For integers n ≥ m ≥ 1, we write [m,n] to denote the set of integers {m,m+ 1, . . . , n}, and
[m,n]R to denote the closed interval between m and n (inclusive) over the real numbers. Unless
specified otherwise, all polynomials that we consider in the paper are positive polynomials. Also, we
represent each finite set of integers S ⊂ N as an ordered set S = {i1, i2, . . . , in}; namely, ij < ik for
every 1 ≤ j < k ≤ n. For sets X and Y, we write Funs[X ,Y] to denote the set of all functions from
X to Y. For any finite set S, we write x← S to denote a uniformly random element x drawn from
the set S. Similarly, for any distribution D, x← D denotes an element x drawn from distribution
D. The distribution Dn is used to represent a distribution over vectors of n components, where
each component is drawn independently from the distribution D.

We use λ (often implicitly) to denote the security parameter. We write poly(λ) to denote a
quantity that is bounded by a fixed polynomial in λ and negl(λ) to denote a function that is o(1/λc)
for all c ∈ N. We say that an event occurs with overwhelming probability if its complement occurs
with negligible probability. We say an algorithm is efficient if it runs in probabilistic polynomial
time (PPT) in the length of its input.

Statistical distance and tail bounds. For two families of distributions D1 = {D1,λ}λ∈N and

D2 = {D2,λ}λ∈N, we write D1
c
≈ D2 if the two distributions are computationally indistinguishable

(i.e., no efficient algorithm can distinguish distribution D1 from D2 except with negligible proba-

bility), and D1
s
≈ D2 if the two distributions are statistically indistinguishable (i.e., the statistical

distance between D1 and D2 is negl(λ)). We recall the Hoeffding’s inequality that we use in our
analysis:

Fact 2.1 (Hoeffding’s Inequality [Hoe63]). Let X1, . . . ,Xn be independent random variables where
0 ≤ Xi ≤ 1 for all i ∈ [n]. Let S =

∑
i∈[n]Xi and let E[S] denote the expected value of S. Then,

for any t ≥ 0,
Pr

[
|S − E[S]| ≥ nt

]
≤ 2−Ω(nt2).

Randomized circuits. A randomized circuit with domain X , randomness space R, and range
Y is a circuit C : X × R → Y. The evaluation of a randomized circuit C on an input x ∈ X is
defined to be y = C(x; r) for r← R. For all randomized circuits that we consider in this work, the
number of random coins that they require will always be polynomially related to the input size of
the circuit (i.e., log |R| = poly(log |X |)). To simplify the notation, we will omit specifying the exact
randomness space of a randomized circuit C and simply identify it with respect to its domain and
range C : X → Y (as opposed to C : X ×R → Y).

Basic cryptographic primitives. We recall the definitions of several basic cryptographic primi-
tives (e.g., public-key encryption, digital signatures, etc.) in Appendix A.
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3 Watermarkable Signature Schemes

In this section, we show how to watermark a digital signature scheme. We begin by defining our
notion of a watermarkable signature scheme. Our definition extends the existing definitions of
Cohen et al. [CHN+16] for watermarking signatures, and it also incorporates different aspects of
the definitions of watermarkable PRFs [CHN+16, BLW17, KW17, YAL+17, QWZ18, KW19] and
traitor tracing [NWZ16, GKRW18]. We present our construction in the fully public-key setting
(namely, both marking and extraction are public operations, and there is no watermarking secret
key).

3.1 Defining Watermarkable Signatures

Cohen et al. [CHN+16] provided the first formal definition of a watermarkable signature scheme.
Although their definition captures the main intuition for a watermarkable digital signature scheme,
it is limited in that the signature key generation algorithm and the watermarking key generation
algorithm are combined into a single algorithm, and moreover, their unremovability definition
falls short of capturing the full range of reasonable adversarial strategies. These issues limit the
usefulness of the resulting watermarking scheme. We provide a more detailed comparison of our
definitions with the previous one by Cohen et al. in Appendix B.

In this work, we modify the watermarking definition so that the signature keys and the marked
keys are generated by two independent algorithms (as well as consider a stronger notion of unre-
movability). Having independent key-generation and marking algorithms is the standard syntax
in the case of watermarking symmetric primitives like PRFs [CHN+16, BLW17, KW17, YAL+17,
QWZ18, KW19]; namely, the marking algorithm is independent of the key-generation algorithm.
By introducing a stronger and more refined definition, we are additionally able to model security
against a malicious watermarking authority that attempts to forge signatures for honest users in the
system. Furthermore, as the signature scheme and the watermarking scheme are decoupled, we can
also model security against a colluding set of malicious users that hold copies of the same signing
key, each marked with a different message. Existing watermarking schemes for PRFs from standard
assumptions are not collusion resistant. In fact, in all of the current constructions from standard
assumptions, an adversary that sees even two marked keys can easily remove the watermark.

Syntax. A watermarkable signature scheme with mark space T is a tuple of algorithms ΠWM =
(WMSetup,SigSetup,Sign,Verify,Mark,Extract) with the following syntax:

WMSetup(1λ)→ (wpp,mk, xk). On input the security parameter λ, the watermarking setup algo-
rithm outputs a set of public parameters wpp, a marking key mk, and an extraction key xk.

SigSetup(1λ,wpp)→ (vk, sk). On input the security parameter λ and the watermarking public pa-
rameters wpp, the signature scheme setup algorithm outputs an (unmarked) signing-verification
key pair (vk, sk).

The message spaceM, verification key space VK, signing key space SK, and signature space
SIG associated with the signature scheme are parameterized by the watermarking public
parameters wpp. When the public parameters wpp are empty, then these components are
functions of only the security parameter.

Mark(mk, sk, τ)→ C. On input the marking key mk, a signing key sk ∈ SK, and a mark τ ∈ T , the
marking algorithm outputs a marked circuit C :M→ SIG.
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Sign(sk,m)→ σ. On input an (unmarked) signing key sk and a message m ∈ M, the signing
algorithm outputs a signature σ.

Verify(vk,m, σ)→ 0/1. On input a verification key vk, a message m ∈ M, and a signature σ, the
verification algorithm outputs a bit to signify whether the signature is valid or not.

Extract(xk, vk, C)→ τ/⊥. On input the extraction key xk, a verification key vk, and a circuit
C :M→ SIG, the extraction algorithm either outputs a mark τ ∈ T or a special symbol ⊥.

Remark 3.1 (Public vs. Private Marking/Extraction). We say that a watermarkable signature
scheme is “publicly markable” if mk = wpp (i.e., the marking key is just the public parameters).
Otherwise, we say that it is “privately markable”. Similarly, say that a watermarkable signature
scheme is “publicly extractable” if xk = wpp. If a watermarkable signature scheme is both publicly
markable and extractable, then we say it is a fully public scheme.

Remark 3.2 (Extraction Semantics). In our watermarking abstraction, the extraction algorithm
Extract takes the verification key vk associated with the signing circuit C as an additional input.
Since the verification key associated with a signature scheme is assumed to always be publicly
available, this does not seem like a substantial limitation.

Correctness. A watermarkable signature scheme is said to be correct if there exists a negligible
function negl(·) such that for all λ ∈ N, (wpp,mk, xk) ← WMSetup(1λ), m ∈ M, τ ∈ T , the
following holds

Pr


 Verify(vk,m, σ) 6= 1 ∨

Extract(xk, vk, C) 6= τ
:

(vk, sk)← SigSetup(1λ,wpp),
σ ← Sign(sk,m),

C ← Mark(mk, sk, τ)


 ≤ negl(λ).

Meaningfulness. Intuitively, the meaningfulness property captures the following two properties:
(1) for any fixed circuit C, the probability that C is considered to be marked (with respect to
honestly-generated watermarking and signature parameters) is negligible; and (2) the extraction
algorithm outputs ⊥ (with all but negligible probability) when given as input an unmarked signing
circuit Sign(sk, ·), where sk is sampled from SigSetup. Formally, a watermarkable signature scheme
satisfies the meaningfulness property if there exists a negligible function negl(·) such that for all
λ ∈ N, C :M→ SIG,

Pr

[
Extract(xk, vk, C) 6= ⊥ :

(wpp,mk, xk)←WMSetup(1λ),
(vk, sk)← SigSetup(1λ,wpp)

]
≤ negl(λ),

and for all λ ∈ N, (wpp,mk, xk)← WMSetup(1λ),

Pr
[
Extract(xk, vk,Sign(sk, ·)) 6= ⊥ : (vk, sk)← SigSetup(1λ,wpp)

]
≤ negl(λ).

Functionality-preserving. The final property we define is functionality-preserving, which re-
quires that a marked signing key still produces valid signatures (that verify with respect to the
original verification key). However, we do not require that the marked signing key produces signa-
tures from the same distribution as the unmarked key. A watermarkable signature scheme satisfies
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the functionality-preserving property if there exists a negligible function negl(·) such that for all
λ ∈ N, (wpp,mk, xk)←WMSetup(1λ), m ∈M, τ ∈ T , the following holds

Pr

[
Verify(vk,m,C(m)) 6= 1 :

(vk, sk)← SigSetup(1λ,wpp),
C ← Mark(mk, sk, τ)

]
≤ negl(λ).

Remark 3.3 (Exact Functionality-Preserving). In the context of watermarking PRFs [CHN+16,
BLW17, KW17, YAL+17, QWZ18, KW19], functionality-preserving states that the marked PRF
key preserves the exact input/output behavior as that of the unmarked key on nearly all elements in
the domain. While this notion makes sense for deterministic functions like PRFs, when considering
possibly-randomized algorithms like the signing algorithm for a digital signature scheme, preserving
the functionality is not tantamount to preserving the exact input/output behavior. This added
flexibility enables new and simple constructions of watermarkable signatures and, at the same time,
remains sufficient for realizing the existing applications of watermarking.

Remark 3.4 (Unique Signature Schemes and Functionality-Preserving). We note that if we have
a unique signature scheme (i.e., a signature scheme where for every message m ∈ M, there is a
unique signature σ that verifies with respect to the verification key), then our notion of functionality-
preserving precisely requires that the marked circuit preserves the exact input/output behavior of
the original signing circuit. We do not know how to watermark a unique signature scheme and
leave this as an intriguing open problem.

Security. For security, we consider the standard notions of unforgeability and unremovability.
However, our formulation of these notions are stronger than those of previous works. For unforge-
ability, we require that the signature scheme remains unforgeable even when the watermarking
public parameters wpp are chosen in a malicious manner. This means that if the watermarkable
signature scheme supports both public marking and public verification (as our construction in 3.3),
then this stronger notion of unforgeability completely removes trust in any authority. This is an
appealing property that is not satisfied by any existing watermarking scheme.5

For unremovability, we define a collusion resistant variant of the original definition where we say
that the scheme is secure as long as an adversary that obtains polynomially-many marked keys (for
a fixed initial signing key) cannot produce a new key that preserves the signing functionality and,
yet, either does not contain the watermark or contains a totally different watermark. Our definition
is a direct generalization of the unremovability notions considered in the setting of watermarking
PRFs [CHN+16, BLW17], with the following differences:

• First, we use the same relaxation of functionality-preserving discussed above: namely, the
adversary is allowed to construct any circuit that outputs valid signatures with noticeable
probability (that verify under the signature scheme’s verification key); it does not have to
preserve the input/output behavior of the marked circuits it is given. This gives the adversary
more power and is important for ruling out potential attacks on the scheme (see the discussion
in Appendix B.1 and Remark B.3).

5Recent constructions of watermarking for PRFs [QWZ18, KW19] have the drawback that even a semi-honest wa-
termarking authority is able to break security of the unmarked keys in the system. Previous constructions from
standard assumptions [KW17] become insecure if the watermarking authority generates the parameters maliciously.
Our unforgeability notion ensures that a malicious party cannot generate the parameters in such a way as to embed
a “trapdoor” into the signature scheme.
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• Second, we allow the adversary to make multiple marking queries; namely, the adversary can
see the same signing key marked with different and adversarially-chosen identities, and, even
then, we require that the adversary cannot produce a new circuit whose watermark is not one
of those corresponding to a signing circuit already given to the adversary. In particular, if
an adversary sees a signing key marked with multiple identities {τi}i, it cannot create a new
signing circuit where the watermark is not one of {τi}i. We discuss this notion of collusion
resistance in greater detail in Remark 3.5.

• Finally, because of our relaxed notion of functionality-preserving, signatures output by the
unmarked key can look different from signatures output by the marked key, so we additionally
give the adversary access to the signing oracle with the unmarked key.6

Formally, we say that a watermarkable signature scheme ΠWM = (WMSetup,SigSetup,Sign,Verify,
Mark,Extract) is secure if it satisfies the following properties:

Unforgeability with malicious authority. For every stateful PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, the following holds

Pr


Verify(vk,m∗, σ∗) = 1 ∧m /∈ Q :

wpp← A(1λ),
(vk, sk)← SigSetup(1λ,wpp),

(m∗, σ∗)← ASign(sk,·)(vk)


 ≤ negl(λ),

where Q ⊆M is the set of messages A submitted to the Sign oracle.

ε-Unremovability. For every stateful ε-unremovable admissible PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, the following holds:

Pr


Extract(xk, vk, C∗) /∈ Q :

(wpp,mk, xk)←WMSetup(1λ),
(vk, sk)← SigSetup(1λ,wpp),

C∗ ← ASign(sk,·),Mark(mk,sk,·)(1λ,wpp, vk)


 ≤ negl(λ),

where Q ⊆ T denotes the set of marks queried by A to the marking oracle,7 and A is said to
be ε-unremovable admissible if the circuit C∗ it outputs is an ε-good signer for key vk. Here
we say that C∗ is an ε-good signer circuit for key vk if:

Pr[Verify(vk,m,C∗(m)) = 1 : m←M] ≥ ε.

Remark 3.5 (Bounded Collusion Resistance). In our unremovability definition we allow the adver-
sary to make an a priori unbounded polynomial number of marking queries. One could also consider

6We would like to point out that disallowing signing queries answered using the unmarked key does not lead to a
weaker definition. This is due to the fact there is a simple transformation that could be used to handle such queries.
Briefly, the idea is to first watermark an unmarked signing key using a default (fixed) mark, and then use the marked
key to sign the message. This way, a reduction algorithm could query the watermarking challenger (corresponding
to the underlying scheme that does not permit signing queries under unmarked key) to obtain a marked key for the
default mark, and then use that particular marked key to answer the adversary’s signing queries. However, for ease
of exposition, in our definition, we allow the adversary to make signing queries under the unmarked key.

7Here we only allow the adversary to make marking queries. A stronger definition would allow the adversary to make
extraction queries as well. However, note that if the scheme has public marking and extraction procedures (which
is what we build here), then all such oracle queries are already redundant.

14



bounded collusion variants, where we say a watermarkable signature scheme is q-bounded collusion
secure if the unremovability property holds only against admissible adversaries that make at most
q marking queries. Existing schemes for cryptographic functionalities from standard assumptions
are only 1-bounded collusion secure [KW17, QWZ18, KW19].

Remark 3.6 (Small Unremovability Thresholds). Previously, Cohen et al. [CHN+16] showed that
message-embedding watermarking schemes satisfying ε-unremovability are possible only when ε ≥
1/2 + 1/poly(λ). This lower bound does not apply to our notion of ε-unremovability. In fact, our
constructions satisfy ε-unremovability for any inverse polynomial ε = 1/poly(λ). The reason is
that our mark-extraction algorithm takes in the verification key as input, while the Cohen et al.
definition does not (i.e., their extraction algorithm only takes the circuit as input).

To provide some additional detail, we first recall the attack from Cohen et al. when ε = 1/2.
Let C be the challenge circuit marked with a message m in the unremovability security game, and
let C ′ be an arbitrary circuit (for a different function) marked with a message m′ 6= m. In both
the secret and public marking setting, the adversary can generate C ′ by either using the marking
oracle (secret-marking setting) or using the public marking algorithm (public-marking setting). To
carry out the attack, the adversary constructs a challenge circuit C∗ that agrees with C on half of
the points (chosen randomly) and agrees with C ′ on the other half. By symmetry, the extraction
algorithm on C∗ outputs m and m′ with equal probability, where the probability is taken over the
coins of the Extract algorithm and the adversary’s randomness used to determine m, m′, and C∗.
This means that the probability that the extraction algorithm outputs m is at most 1/2, and so
the adversary succeeds with probability at least 1/2.

The above attack critically relies on the fact that the adversary is able to obtain a marked circuit
C ′ where the extraction algorithm on C ′ outputs m′ 6= m. In order to mount the same attack in
our setting, the adversary needs to be able to obtain a circuit C ′ such that Extract(xk, vk, C ′) = m′,
where vk is the verification key chosen by the challenger. In the security game, there is no mechanism
for the adversary to obtain a marked circuit with respect to vk other than by making a marking
query on m′. If the adversary makes a marking query on m′, then as long as the extraction
algorithm recovers either m or m′, the adversary does not break unremovability. Observe that if,
on the contrary, vk is not provided as input to Extract, then the adversary can easily construct
a circuit with an embedded mark m′ (by marking an arbitrary key of its choosing) and mount
the Cohen et al. attack. This distinction, where the extraction algorithm is defined with respect
to a specific verification key, enables us to circumvent the lower bound for ε-unremovability when
ε ≤ 1/2.

3.2 Building Blocks: Constrained Signatures

In this section, we review the main building block of constrained signatures that we use to construct
our scheme.

Constrained signatures. A constrained signature scheme [BF14] with message space M and
constraint family F ⊆ Funs[M, {0, 1}] is a tuple of algorithm ΠCSig = (Setup,Sign,Verify,Constrain,
ConstrainSign) with the following syntax:

Setup(1λ)→ (vk,msk). On input the security parameter λ, the setup algorithm outputs the verifi-
cation key and the master secret key msk.
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Sign(msk,m)→ σ. On input the master signing key msk and a message m ∈ M, the signing
algorithm outputs a signature σ.

Verify(vk,m, σ)→ b. On input the verification key vk, a message m ∈ M, and a signature σ, the
verification algorithm outputs a bit b ∈ {0, 1}.

Constrain(msk, f)→ skf . On input the master signing key msk and a function f ∈ F , the constrain
algorithm outputs a constrained key skf .

ConstrainSign(skf ,m)→ σ. On input a constrained key skf and a message m ∈ M, the signing
algorithm outputs a signature σ.

Correctness. A constrained signature scheme is correct if for all messages m ∈ M and key pair
(vk,msk)← Setup(1λ),

Pr[Verify(vk,m,Sign(msk,m)) = 1] = 1.

In addition, for all constraints f ∈ F where f(m) = 1, if we compute skf ← Constrain(msk, f),

Pr[Verify(vk,m,ConstrainSign(skf ,m)) = 1] = 1.

Definition 3.7 (Constrained Unforgeability). A constrained signature scheme is secure if for every
stateful admissible PPT adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N, the following holds

Pr

[
Verify(vk,m∗, σ∗) = 1 :

(vk,msk)← Setup(1λ)

(m∗, σ∗)← ASign(msk,·),Constrain(msk,·)(1λ, vk)

]
≤ negl(λ),

where A is an admissible adversary if (1) it does not make a signing query on message m∗; and (2)
it does not make a constrained key query for any function f ∈ F such that f(m∗) = 1.

3.3 Watermarking Signatures from Constrained Signatures

In this section, we show how to construct a fully collusion resistant watermarking scheme for digital
signatures from prefix-constrained signatures.

Construction 3.8 (Watermarkable Signatures from Prefix-Constrained Signatures). Fix a message
spaceM and a mark space T . Let ε = 1/poly(λ) be an unremovability parameter. We define the
following primitives:

• Let T ′ = T ∪ {⊥}. For a mark τ∗ ∈ T , let fτ∗ : T
′ ×M → {0, 1} be the function where

fτ∗(τ,m) = 1 if τ = τ∗ and 0 otherwise.

• Let ΠCSig = (CSig.Setup,CSig.Sign,CSig.Verify,CSig.Constrain,CSig.ConstrainSign) be a con-
strained signature scheme with message space M′ = T ′ × M and function class F =
{τ∗ ∈ T : fτ∗}. Let SIG

′ be the signature space of ΠCSig.

We construct a watermarkable signature scheme ΠWM = (Setup,KeyGen,Sign,Verify,Mark,Extract)
with signature space SIG = T ′ × SIG′ as follows:

WMSetup(1λ)→ (wpp,mk, xk). On input the security parameter λ, the setup algorithm outputs
wpp,mk, xk = ⊥. Namely, the scheme does not require any watermarking parameters.
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SigSetup(1λ,wpp)→ (vk, sk). On input the security parameter λ and public parameters wpp = ⊥,
the key-generation algorithm outputs a signing/verification key-pair (vk, sk)← CSig.Setup(1λ).

Sign(sk,m)→ σ. On input a signing key sk, and a message m ∈ M, the signing algorithm signs
σ′ ← CSig.Sign(sk, (⊥,m)), and outputs the signature σ = (⊥, σ′).

Verify(vk,m, σ)→ b. On input a verification key vk, a message m ∈ M, and a signature σ = (τ ′, σ′),
the verification algorithm outputs b← CSig.Verify(vk, (τ ′,m), σ′).

Mark(mk, sk, τ)→ C. On input a marking key mk = ⊥, a signing key sk, and a mark τ ∈ T , the
marking algorithm computes skτ ← CSig.Constrain(sk, fτ ) and outputs a circuit Cτ : M →
SIG where Cτ (·) := (τ,CSig.ConstrainSign(skτ , (τ, ·))).

Extract(xk, vk, C)→ τ/⊥. On input an extraction key xk = ⊥, a verification key vk, and a circuit
C :M→ SIG, the extraction algorithm performs the following procedure T = λ/ε = poly(λ)
times:

• For i ∈ [T ], samplemi ←M and compute (τ ′i , σ
′
i)← C(m). If CSig.Verify(vk, (τ ′i ,mi), σ

′
i) =

1, abort and output τ ′i .

If the above procedure does not abort with some output τ , then output ⊥.

Correctness and security analysis. We now state our correctness and security theorems, but
defer their formal analysis to Section 3.3.1.

Theorem 3.9 (Correctness). Suppose ΠCSig is correct and satisfies constrained unforgeability.
Then, the watermarkable signature scheme ΠWM from Construction 3.8 satisfies correctness, mean-
ingfulness, and functionality-preserving.

Theorem 3.10 (Signature Unforgeability). If ΠCSig satisfies constrained unforgeability, then the
watermarkable signature scheme ΠWM from Construction 3.8 satisfies signature unforgeability in
the presence of a malicious watermarking authority.

Theorem 3.11 (Unremovability). Take any ε = 1/poly(λ). If 1/ |M| = negl(λ) and ΠCSig satisfies
constrained unforgeability, then the watermarkable signature scheme ΠWM from Construction 3.8 is
ε-unremovable.

3.3.1 Analysis of Watermarkable Signatures (Construction 3.8)

In this section, we give the correctness and security analysis of the watermarkable digital signature
scheme from Section 3.3 (Construction 3.8).

Proof of Theorem 3.9 (Correctness). We check each of the properties below:

• Correctness: Take any messagem ∈ M and tag τ ∈ T and let (wpp,mk, xk)←WMSetup(1λ).
Take (vk, sk) ← SigSetup(1λ,wpp), σ ← Sign(sk,m), and C ← Mark(mk, sk, τ). We show the
two requirements separately.

– Correctness of decryption: By construction, σ is a signature on the pair (⊥,m) under
sk, so by correctness of ΠCSig, Pr[CSig.Verify(vk, (⊥,m), σ) = 1] = 1, and correspondingly,
Pr[Verify(vk,m, σ) = 1] = 1.
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– Correctness of extraction: By construction, C(·) := (τ,CSig.ConstrainSign(skτ , (τ, ·)))
where skτ ← CSig.Constrain(sk, fτ ). By definition, fτ (τ,m) = 1 for all m ∈ M, so by
correctness of ΠCSig, for all m ∈ M, if we define (τ ′, σ′) ← C(m), we have that τ ′ = τ ,
and

Pr[CSig.Verify(vk, (τ ′,m), σ′) = 1] = 1.

Correspondingly, Pr[Extract(xk, vk, C) = τ ] = 1.

• Meaningfulness: We show the two requirements separately:

– Most circuits unmarked. Take any circuit C :M→ SIG. Let (wpp,mk, xk)←WMSetup(1λ)
and (vk, sk)← SigSetup(1λ,wpp). By construction, (vk, sk) are sampled from CSig.Setup(1λ),
independently of the circuit C. By constrained unforgeability of ΠCSig, if we sample
m←M, and compute (τ, σ)← C(m)

Pr[CSig.Verify(vk, (τ,m), σ) = 1] = negl(λ).

Otherwise, an adversary with a hardwired circuit C can be used to forge signatures with
respect to a freshly-sampled verification key vk, which breaks unforgeability of ΠCSig.
Since T = poly(λ) in the Extract algorithm, the claim now follows by a union bound.

– Extraction fails on unmarked keys. By construction, Sign(sk, ·) always outputs tuples of
the form (⊥, σ), and by the construction of Extract, the output will be ⊥ with probability
1.

• Functionality-preserving: Follows by the same argument as that used to show correctness
of extraction.

Proof of Theorem 3.10 (Signature Unforgeability). Unforgeability follows directly from
constrained unforgeability of ΠCSig. Namely, suppose there is an adversary A that breaks signature
unforgeability of ΠWM in the presence of a malicious watermarking authority. We useA to construct
an adversary B for the constrained unforgeability game for ΠCSig:

1. Algorithm B receives a verification key vk from the challenger for ΠCSig and gives vk to A.
Note that since there are no public parameters in Construction 3.8, the adversary A does not
get to choose the public parameters.

2. When A makes a signing query on a message m ∈ M, algorithm B forwards the message
(⊥,m) to its challenger and receives back a signature σ which it forwards to A.

3. At the end, A outputs a message m∗ ∈ M and a signature σ∗. Algorithm B outputs (⊥,m∗)
as its message and σ∗ as its signature.

By construction, algorithm B perfectly simulates the constrained unforgeability game for A, and so
with non-negligible probability, A will output a valid signature σ∗ on a message m∗ (that did not
appear in any signing query). Also by construction, σ∗ is a valid signature on the tuple (⊥,m∗),
and since B does not make any constrain queries and only makes signing queries on (⊥,m) where
m 6= m∗, B succeeds in constructing a forgery with the same advantage as A.

Proof of Theorem 3.11 (Unremovability). Suppose there exists an efficient and admissible
adversary A that breaks ε-unremovability of ΠWM with probability ε = 1/poly(λ). We use A to
construct an adversary B that breaks security of the constrained signature scheme ΠCSig:

18



1. At the beginning of the constrained signature security game, algorithm B receives a verifica-
tion key vk from the constrained signature challenger. It gives vk to A (the other components
wpp, mk, xk are all empty).

2. Whenever A makes a marking query on a mark τ ∈ T , algorithm B issues a constrain
query on the function fτ and receives a constrained key skτ . Algorithm B defines the circuit
Cτ (·) := (τ,CSig.ConstrainSign(skτ , (τ, ·))), and gives Cτ to A. Let Qmark ⊆ T be the set of
marks A submitted to the marking oracle.

3. Whenever A makes a signing query on a message m ∈M, algorithm B makes a signing query
on (⊥,m) and receives a signature σ′. It gives σ = (⊥, σ′) to A. Let Qsign ⊆M be the set of
messages A submitted to the signing oracle.

4. At the end of the game, algorithm A outputs a circuit C∗ :M→ SIG. Algorithm B repeats
the following procedure λ/ε = poly(λ) times:

• Sample a random message m∗ ←M and compute (τ∗, σ∗)← C∗(m∗). If τ∗ /∈ Qmark and
CSig.Verify(vk, (τ∗,m∗), σ∗) = 1, then algorithm B completes the simulation and outputs
(τ∗,m∗), σ∗ as its forgery.

If B did not abort, then it outputs ⊥.

By construction, B perfectly simulates the ε-unremovability game for A. This means with non-
negligible probability ε, Extract(xk, vk, C∗) outputs some τ̂ /∈ Qmark. We argue that with probability
at least ε− negl(λ), algorithm B breaks constrained unforgeability of ΠCSig. Consider the behavior
of Extract(xk, vk, C∗). Let mi be the ith message sampled by the Extract algorithm for i ∈ [T ].
Similarly, let σi = (τ ′i , σ

′
i)← C(mi). We consider two possibilities:

• Suppose τ̂ = τ ′i for some i ∈ [T ]. This means that CSig.Verify(vk, (τ ′i ,mi), σ
′
i) = 1. Moreover,

in this case, since τ ′i = τ̂ /∈ Qmark, algorithm B will set (τ∗,m∗) = (τ ′i ,mi) and σ∗ = σ′
i.

• Suppose τ̂ = ⊥ and that CSig.Verify(vk, (τ ′i ,mi), σ
′
i) = 0 for all i ∈ [T ]. In this case, B

fails to produce a forgery and outputs ⊥. First, if CSig.Verify(vk, (τ ′i ,mi), σ
′
i) = 0, then

Verify(vk,mi, σi) = 0. Moreover, since A is ε-admissible, we conclude that for mi ←M,

Pr[CSig.Verify(vk, (τ ′i ,mi), σ
′
i) = 0] ≤ Pr[Verify(vk,mi, σi) = 0] ≤ 1− ε.

Thus,

Pr[∀i ∈ [T ] : CSig.Verify(vk, (τ ′i ,mi), σ
′
i) = 0] ≤ (1− ε)T = (1− ε)λ/ε ≤ e−λ = negl(λ).

Thus, if Extract(xk, vk, C∗) outputs τ̂ /∈ Qmark with probability ε, algorithm B outputs a valid
signature σ∗ on the message (τ∗,m∗) where τ∗ = τ̂ . We now check the remaining properties:

• Since B samples the messages m∗ ←M, Pr[m∗ ∈ Qsign] ≤ Qsign/ |M| = negl(λ). Thus, with
overwhelming probability, algorithm B never made a signing query on the message (τ∗,m∗).

• By assumption, τ∗ = τ̂ /∈ Qmark and correspondingly, fτ (τ
∗,m∗) = 0 for all functions fτ that

B submitted to the constrain oracle.

We conclude that B succeeds in breaking constrained unforgeability of ΠCSig with probability ε −
negl(λ).
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3.4 Instantiations and Extensions

As noted by Bellare and Fuchsbauer [BF14], fully collusion resistant constrained signatures (for
arbitrary circuit constraints) satisfying unforgeability follow immediately from any standard sig-
nature scheme (which can in turn be based on one-way functions [Gol04]). We briefly recall the
“certificate-based” construction here. The public parameters for the constrained signature scheme
is a verification key vk for a standard signature scheme, and the master secret key is the associated
signing key sk. To issue a constrained key for a function f , the authority generates a fresh pair of
signing and verification keys (vk′, sk′), and constructs a signature (“certificate”) σ on (vk′, f) with
the master signing key sk. The constrained key is the tuple (vk′, sk′, f, σ). A signature on m using
the constrained key consists of a signature σ′ on m using sk′ together with the tuple (vk′, f, σ). To
verify, one checks that σ is a valid signature on (vk′, f) with respect to the master verification key
vk, that f(m) = 1, and that σ′ is a valid signature on m with respect to vk′. From this construction,
we obtain the following corollary:

Corollary 3.12 (Watermarkable Signatures from One-Way Functions). Take any ε = 1/poly(λ)
and mark space T = {0, 1}ℓ, where ℓ = poly(λ). Assuming one-way functions exist, there exists
a fully collusion resistant watermarkable family of signatures with mark space T that satisfies ε-
unremovability and where the underlying signature scheme is unforgeable even against a malicious
watermarking authority.

Watermarking unforgeability in the secret-key setting. A dual property that is often stud-
ied in the context of watermarking is unforgeability [CHN+16, BLW17, KW17, KW19], which
intuitively says that no efficient adversary should be able to construct a new circuit (i.e., a circuit
that is sufficiently different from marked circuits it received from the watermarking authority) and
yet, is still consider to be marked. Like other watermarking schemes that support public mark-
ing [QWZ18, KW19], unforgeability is an incompatible property since the adversary can simply
run the marking algorithm on its own to produce new marked circuits. However, we can consider
a variant of our scheme in the secret marking setting.

It is straightforward to modify our construction to obtain a watermarking scheme satisfying
mark unforgeability in the secret-key setting. The (secret) marking key would consist of a signing
key sk for a standard signature scheme and its associated verification key vk would be included
as part of the watermarking public parameters wpp. To embed a mark τ ∈ T in a signing key
sk′ (with associated verification key vk′), the marking authority would instead embed the mark
(τ, στ ) where στ is a signature under the authority’s signing key on the pair (vk′, τ). Extraction
of the watermark operates exactly as before, except the Extract algorithm additionally checks that
στ is a valid signature on (vk′, τ). To forge a new program that is considered to be marked (and
which is noticeably different in behavior from one of the marked programs that the adversary
already received), the adversary needs to produce a signature on a new (vk′, τ) pair under the
watermarking authority’s secret signing key.

Remark 3.13 (Watermarking Constrained Signature Schemes). We note that the watermarkable
signature scheme in Construction 3.8 generalizes naturally to yield a watermarking scheme for
constrained signatures, where we can watermark not only the master signing key, but also a con-
strained signing key. To do so, we require that the underlying constrained signature scheme ΠCSig

in Construction 3.8 support key delegation. Very briefly, a constrained signature scheme supports
key delegation if a constrained key for a policy f :M→ {0, 1} can be further constrained to obtain
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a key for a policy g ∧ f , where (g ∧ f)(m) = 1 if and only if f(m) = 1 = g(m). Marking the master
secret key can be handled in the same manner as in Construction 3.8, while marking a constrained
key can be handled using key delegation and giving out a delegated prefix-constrained key (where
the prefix is again the mark). The certificate-based constrained signature construction of [BF14]
naturally supports key delegation, and thus, can be used to obtain a watermarkable constrained
signature scheme.

4 Watermarkable Encryption Schemes

In this section, we show how to watermark a public-key attribute-based encryption scheme. As
in Section 3, we start by introducing a stronger definition for a watermarkable public-key encryp-
tion scheme. Then, in Section 4.2, we recall the notions of mixed functional encryption (mixed
FE) [GKW18] and delegatable attribute-based encryption [GPSW06], which we use to construct
our fully collusion resistant watermarkable encryption scheme. We then provide our main construc-
tion in Section 4.3. In Appendix C, we provide an alternate construction that relies on hierarchical
FE [ABG+13, BCG+17] and achieves bounded collusion in the fully public setting.

4.1 Defining Watermarkable Encryption

As in Section 3, our definition of a watermarkable public-key encryption scheme is an extension
of the framework introduced by Cohen et al. [CHN+16]. We refer to Appendix B.2 for a more
detailed comparison of our definitions with those of Cohen et al. In addition, we extend the notion
of watermarking to the decryption circuits of public-key predicate encryption schemes [BW07,
SBC+07, KSW08]. Our definition captures watermarking for simpler classes of public-key primitives
like public-key encryption, identity-based encryption, and attribute-based encryption as a special
case. Later in this section, we show how to watermark a public-key attribute-based encryption
scheme (with full collusion resistance), and in Appendix C, we show how to watermark a predicate
encryption scheme (but only providing bounded collusion resistance in exchange).

Syntax. A watermarkable public-key predicate encryption scheme with message space M, at-
tribute space X , function space F ⊆ Funs[X , {0, 1}], and mark space T is a tuple of algorithms
(WMSetup,PESetup,KeyGen,Enc,Dec,Mark,Extract) with the following syntax:

WMSetup(1λ)→ (wpp,mk, xk). On input the security parameter λ, the watermarking setup algo-
rithm outputs a set of public parameters wpp, a marking key mk, and an extraction key xk.

PESetup(1λ,wpp)→ (mpk,msk). On input the security parameter λ and watermarking public pa-
rameters wpp, the key-generation algorithm outputs an (unmarked) predicate encryption
master public-secret key pair (mpk,msk).

Here the message space M, attribute space X , master public key space MPK, secret key
space SK, and ciphertext space CT are parameterized by the watermarking public parameters
wpp.

KeyGen(msk, f)→ skf . On input the master secret key msk, a predicate f ∈ F , the key-generation
algorithm outputs a predicate key skf .

Enc(mpk, x,m)→ ct. On input a master public key mpk, an attribute x ∈ X , a message m ∈ M,
the encryption algorithm outputs a ciphertext ct.
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Dec(skf , ct)→ m/⊥. On input a secret key skf and a ciphertext ct, the decryption algorithm
outputs either a message m ∈ M or a special symbol ⊥.

Mark(mk, skf , τ)→ C. On input a marking key mk, a secret key skf ∈ SK, and a mark τ ∈ T , the
marking algorithm outputs a marked circuit C : CT →M∪ {⊥}.

Extract(xk,mpk, x, (m0,m1), C)→ τ/⊥. On input the extraction key xk, a master public key mpk,
an attribute x, a pair of messages (m0,m1), and a circuit C : CT →M∪{⊥}, the extraction
algorithm either outputs a mark τ ∈ T or a special symbol ⊥.

Remark 4.1 (Public vs. Private Marking/Extraction). As in the case of a watermarkable signature
scheme, we say that a watermarkable PE scheme is “publicly markable” if mk = wpp (i.e., the
marking key is simply the public watermarking parameters). Otherwise, we say that it is “privately
markable”. Similarly, say that a watermarkable PE scheme is “publicly extractable” if xk = wpp.
If a watermarkable PE scheme is both publicly markable and extractable, then we say it is a fully
public scheme.

Remark 4.2 (Extraction Semantics). Note that in our watermarking abstraction, the extraction
algorithm Extract takes the master public key mpk, an attribute x, and a pair of messages (m0,m1)
as an additional inputs. Taking the public key mpk as an additional input does not seem like
a substantial limitation since mpk is always public. The intuition behind giving the attribute
x and message pair (m0,m1) as inputs is to make the extraction procedure more general while
disallowing a much wider range of watermarking attack strategies. Looking ahead, the intuition is
that for security of watermarkable PE schemes, we would require that an adversary cannot even
create an unmarked (or differently-marked) decryption circuit which can only decrypt a very small
fraction of the ciphertext space, notably, ciphertexts encrypting either m0 or m1 under attribute x.
Our notion of such strong extraction is inspired by the recent developments in the area of traitor
tracing [GKRW18, GKW18], and it provides much more functionality than previously-studied
extraction notions in the setting of watermarkable public-key encryption.

Correctness. A watermarkable predicate encryption scheme is said to be correct if there exists a
negligible function negl(·) such that for all λ ∈ N, (wpp,mk, xk) ← WMSetup(1λ), m∗,m0 6= m1 ∈
M, τ ∈ T , x ∈ X , f ∈ F , the following holds

Pr




(f(x) = 0 ∧ Dec(skf , ct) 6= ⊥) ∨
(f(x) = 1 ∧ Dec(skf , ct) 6= m∗) ∨(

f(x) = 1 ∧
Extract(xk,mpk, x, (m0,m1), C) 6= τ

) :

(mpk,msk)← PESetup(1λ,wpp),
skf ← KeyGen(msk, f),
ct← Enc(mpk, x,m∗),
C ← Mark(mk, skf , τ)


 ≤ negl(λ).

Next, we define the notion of meaningfulness and functionality-preserving similar to that in the
case of watermarkable signatures. (Recall, we need these extra properties due to our independent
setup abstraction.) Here for functionality-preserving, we again consider a relaxed notion, where we
only require that a marked decryption key can decrypt honestly encrypted ciphertexts. That is, we
allow the output of decryption to differ on ciphertexts that do not lie in the set of valid ciphertexts.

Meaningfulness. A watermarkable predicate encryption scheme satisfies the meaningfulness prop-
erty if there exists a negligible function negl(·) such that for all λ ∈ N, C : CT →M∪{⊥} , x ∈ X ,
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m0,m1 ∈ M,

Pr

[
Extract(xk,mpk, x, (m0,m1), C) 6= ⊥ :

(wpp,mk, xk)← Setup(1λ),
(mpk,msk)← PESetup(1λ,wpp)

]
≤ negl(λ),

and for all λ ∈ N, (wpp,mk, xk)← Setup(1λ), x ∈ X , m0,m1 ∈ M, f ∈ F ,

Pr

[
f(x) = 1 ∧

Extract(xk,mpk, x, (m0,m1),Dec(skf , ·)) 6= ⊥
:

(mpk,msk)← PESetup(1λ,wpp),
skf ← KeyGen(msk, f)

]
≤ negl(λ).

Functionality-preserving. A watermarkable predicate encryption scheme is functionality-preserving
if there exists a negligible function negl(·) such that for all λ ∈ N, (wpp,mk, xk)← Setup(1λ), x ∈ X ,
m ∈ M, f ∈ F , τ ∈ T , the following holds

Pr


f(x) = 1 ∧ C(ct) 6= m :

(mpk,msk)← PESetup(1λ,wpp),
skf ← KeyGen(msk, f),
ct← Enc(mpk, x,m),
C ← Mark(mk, skf , τ)


 ≤ negl(λ).

Security. For security, we consider the notions of semantic security and unremovability. As in
the case of signatures, we strengthen the traditional variants of these notions that were considered
in previous works. For semantic security, we strengthen the property by requiring that IND-CPA
(and 2-sided attribute hiding) must hold even if the watermarking parameters wpp are chosen in
a malicious manner. For unremovability, we define a collusion resistant variant as in the case of
watermarkable signatures, where we say that even given polynomially-many marked versions of a
fixed secret key skf , the adversary cannot generate a circuit C∗ such that it contains a different
(or no) watermark, and C∗ preserves functionality as per our above definition. We give the formal
requirements below:

Encryption security with malicious authority. For every stateful PPT attacker A, there ex-
ists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr


AKeyGen(msk,·)(ct) = b :

wpp← A(1λ), (mpk,msk)← PESetup(1λ,wpp),

((m0,m1), (x0, x1))← A
KeyGen(msk,·)(mpk),

b← {0, 1}, ct← Enc(pp, xb,mb)


 ≤ 1

2
+ negl(λ),

where every predicate query f made by adversary A must satisfy one of the following condi-
tions:

• f(x0) = f(x1) = 0 for all queried predicates f ; or

• m0 = m1 and f(x0) = f(x1) = 1 for all queried predicates f .8

ε-Unremovability. For every stateful ε-unremovable admissible PPT attacker A, there exists a
negligible function negl(·) such that for all λ ∈ N, the following holds

Pr



Extract(xk,mpk, x, (m0,m1), C

∗) /∈ Q :

(wpp,mk, xk)←WMSetup(1λ),
(mpk,msk)← PESetup(1λ,wpp),

f ← A(1λ,wpp,mpk),
skf ← KeyGen(msk, f),

(x, (m0,m1), C
∗)← AMark(mk,skf ,·)



≤ negl(λ),

8For watermarkable ABE schemes, the adversary is restricted to output a single challenge attribute (i.e., it must be
that x0 = x1).
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where Q ⊆ T denotes the set of marks queried by A to the marking oracle9, and A is said to
be ε-unremovable admissible if the circuit C∗ it outputs is an ε-good decoder with respect to
key mpk, attribute x, and message pair (m0,m1). Here we say that C∗ is an ε-good decoder
circuit with respect to key mpk, attribute x, and message pair (m0,m1) if:

Pr [C∗(ct) = mb : b← {0, 1}, ct ← Enc(mpk, x,mb)] ≥
1

2
+ ε.

We can also consider a selective variant of the unremovability game, where the adversary
is required to commit to its challenge attribute x before seeing the public parameters of
the scheme. We note that selective security implies adaptive security if we use complexity
leveraging [BB04] and rely on a sub-exponential hardness assumption.

Remark 4.3 (Bounded Collusion Resistance). We say that a watermarkable predicate encryption
scheme ΠWM is (qkey, qmark)-bounded collusion secure if the induced predicate encryption scheme
is qkey-bounded collusion secure and the watermarking adversary in the unremovability game can
make at most qmark marking queries

Remark 4.4 (Stronger Notions of Unremovability). In our unremovability definition, the adversary
is allowed to request (multiple) marked versions of a single predicate encryption key skf . A stronger
notion would be to allow the adversary to specify both a decryption function f as well as a mark
τ on each marking oracle query. Such a scheme would then be secure even if an adversary could
obtain marked versions of different decryption keys. Our construction does not achieve this stronger
notion and we leave this as an open problem.

Remark 4.5 (Watermarking Functional Encryption). A further generalization of watermarking
predicate encryption is to watermark the decryption keys in a functional encryption scheme. One
challenge here is characterizing the set of decryption keys that can be marked. For example, it
is not possible to watermark a decryption key for a constant-valued function, since the adversary
can implement the decryption functionality with a circuit that just computes the constant function
(which, of course, removes the watermark). It seems plausible that we can watermark decryption
keys corresponding to functions with “high min-entropy:” namely, functions f : X → Y where for
any y ∈ Y, Pr[x ← X : f(x) = y] = negl(λ). While it is straightforward to modify our construc-
tion of watermarkable predicate encryption to support marking function keys of this form, in the
resulting construction, we would additionally have to provide the Extract algorithm a description of
the function f associated with a particular decryption circuit. Whether this a reasonable modeling
assumption will depend on the particular application. It is an interesting question to both develop
a better understanding of the types of function families that can be watermarked as well as identify
a suitable schema for watermarking general functional encryption schemes.

4.2 Building Blocks: Mixed FE, Delegatable ABE, and Jump Finding

In this section, we review the main building blocks and techniques used in our construction of a
watermarkable ABE scheme.

9Here, we only allow the adversary to make marking queries. A stronger definition would also allow extraction queries.
However, note that if the scheme has public marking and extraction procedures, then all such oracle queries are
already redundant. In this work, we study watermarking encryption schemes both in the public as well as private
marking/extraction setting.
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4.2.1 Mixed Functional Encryption

Here we recall the notion of mixed functional encryption as introduced by Goyal, Koppula, and
Waters [GKW18]. A mixed functional encryption (mixed FE) scheme with message spaceM and
function class F ⊆ Funs[M, {0, 1}], consists of five PPT algorithms ΠMFE = (Setup,KeyGen,Enc,
SK-Enc,Dec) with the following syntax:

Setup(1λ)→ (pp,msk). On input the security parameter λ, the setup algorithm outputs the public
parameters pp and the master secret key msk.

Enc(pp)→ ct. On input the public parameters pp, the normal encryption algorithm outputs a
ciphertext ct.

SK-Enc(msk, f)→ ct. On input the master secret key msk and a function f ∈ F , the The secret-key
encryption algorithm outputs a ciphertext ct.

KeyGen(msk,m)→ skm. On input the master secret key msk and a message/input m ∈ M, the
The key-generation algorithm outputs a secret key skm.

Dec(skm, ct)→ {0, 1}. On input a secret key skm and a ciphertext ct, the decryption algorithm
outputs a single bit.

Correctness. A mixed functional encryption scheme is said to be correct if there exists a negligible
function negl(·) such that for all λ ∈ N, for every f ∈ F , m ∈ M, the following holds:

Pr

[
Dec(skm, ct) = 1 :

(pp,msk)← Setup(1λ),
skm ← KeyGen(msk,m), ct← Enc(pp)

]
≥ 1− negl(λ),

Pr

[
Dec(skm, ct) = f(m) :

(pp,msk)← Setup(1λ),
skm ← KeyGen(msk,m), ct← SK-Enc(msk, f)

]
≥ 1− negl(λ).

Security. For security, we require that a mixed functional encryption scheme to satisfy function
indistinguishability and accept indistinguishability. Formally, they are defined as follows:

q-Bounded function indistinguishability. Let q = q(λ) be any fixed polynomial. A mixed
functional encryption scheme ΠMFE = (Setup,KeyGen,Enc,SK-Enc,Dec) is said to satisfy q-
bounded function indistinguishability security if for every stateful PPT adversary A, there
exists a negligible function negl(·), such that for every λ ∈ N the following holds:

Pr

[
AKeyGen(msk,·),SK-Enc(msk,·)(ct) = b :

(pp,msk)← Setup(1λ)

(f (0), f (1))← AKeyGen(msk,·),SK-Enc(msk,·)(1λ, pp)

b← {0, 1}, ct← SK-Enc(msk, f (b))

]
≤

1

2
+ negl(λ),

where

• A can make at most q(λ) queries to SK-Enc(msk, ·) oracle, and

• Every secret key query m made by adversary A to the KeyGen(msk, ·) oracle must satisfy
the condition that f (0)(m) = f (1)(m).
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q-Bounded accept indistinguishability. Let q(·) be any fixed polynomial. A mixed functional
encryption scheme ΠMFE = (Setup,KeyGen,Enc,SK-Enc,Dec) is said to satisfy q-bounded
accept indistinguishability security if for every stateful PPT adversary A, there exists a
negligible function negl(·), such that for every λ ∈ N the following holds:

Pr


A

KeyGen(msk,·),SK-Enc(msk,·)(ctb) = b :

(pp,msk)← Setup(1λ)

f∗ ← AKeyGen(msk,·),SK-Enc(msk,·)(1λ, pp)
b← {0, 1}, ct1 ← SK-Enc(msk, f∗)

ct0 ← Enc(pp)


 ≤

1

2
+ negl(λ),

where

• A can make at most q(λ) queries to SK-Enc(msk, ·) oracle, and

• Every secret key query m made by adversary A to the KeyGen(msk, ·) oracle must satisfy
the condition that f∗(m) = 1.

4.2.2 Delegatable Attribute-Based and Predicate Encryption

Here, we recall the notion of attribute-based encryption [SW05, GPSW06] and describe its exten-
sions to the notion of delegatable attribute-based encryption and predicate encryption.

Attribute-based encryption. A key-policy attribute-based encryption (KP-ABE) scheme for
attribute space X , predicate class F ⊆ Funs[X , {0, 1}], and message space M, is a tuple of PPT
algorithms ΠABE = (Setup,KeyGen,Enc,Dec) with the following syntax:

Setup(1λ)→ (mpk,msk). On input the security parameter λ, the setup algorithm and outputs a
master public/secret key pair mpk,msk.

Enc(pp, x,m)→ ct. On input the master public key mpk, an attribute x ∈ X and a messagem ∈ M,
the encryption algorithm outputs a ciphertext ct.

KeyGen(msk, f)→ skf . On input the master secret key msk and a predicate f ∈ F , the key-
generation algorithm outputs a secret key skf .

Dec(skf , ct)→ m/⊥. On input a secret key skf and a ciphertext ct, the decryption algorithm
outputs either a message m ∈ M or a special symbol ⊥.

Correctness. A key-policy attribute-based encryption scheme is said to be correct if there exists
a negligible function negl(·) such that for all λ ∈ N, for all x ∈ X , f ∈ F , m ∈ M, the following
holds

Pr

[
(f(x) = 0 ∧ Dec(skf , ct) 6= ⊥) ∨
(f(x) = 1 ∧ Dec(skf , ct) 6= m)

:
(mpk,msk)← Setup(1λ),

skf ← KeyGen(msk, f), ct← Enc(mpk, x,m)

]
≤ negl(λ).

ABE security. The standard notion of security for a KP-ABE scheme is that of full or adaptive
security. Specifically, a key-policy attribute-based encryption scheme ΠABE = (Setup,KeyGen,Enc,
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Dec) is said to be fully secure if for every stateful PPT adversary A, there exists a negligible function
negl(·), such that for every λ ∈ N the following holds:

Pr


AKeyGen(msk,·)(ct) = b :

(mpk,msk)← Setup(1λ)

((m0,m1), x)← A
KeyGen(msk,·)(1λ,mpk)

b← {0, 1}, ct← Enc(mpk, x,mb)


 ≤ 1

2
+ negl(λ),

where every predicate query f ∈ F that A makes to the KeyGen(msk, ·) oracle must satisfy the
condition that f(x) = 0.

Predicate encryption. A predicate encryption (PE) scheme ΠPE with attribute space X , predi-
cate class F ⊆ Funs[X , {0, 1}], and message spaceM, is syntactically identical to an ABE scheme,
except we additionally require that the ciphertexts also hide the associated attribute.

Predicate encryption security. A predicate encryption scheme ΠPE = (Setup,Enc,KeyGen,Dec)
is said to be fully secure if for every stateful PPT adversary A, there exists a negligible function
negl(·), such that for every λ ∈ N the following holds:

Pr


AKeyGen(msk,·)(ct) = b :

(mpk,msk)← Setup(1λ)

((m0,m1), (x0, x1))← A
KeyGen(msk,·)(1λ,mpk)

b← {0, 1}, ct← Enc(mpk, xb,mb)


 ≤ 1

2
+ negl(λ),

where the adversary’s key-generation queries f must satisfy one of the following conditions:

• f(x0) = f(x1) = 0 for all queried predicates f , or

• m0 = m1 and f(x0) = f(x1) = 1 for all queried predicates f .

Delegatable ABE. A delegatable ABE (DABE) scheme ΠDABE with attribute space X , predicate
class F ⊆ Funs[X , {0, 1}], and message space M, is syntactically identical to an ABE scheme,
except it also has a special key-delegation algorithm defined as follows:

Delegate(skf , g)→ skf,g. The key-delegation algorithm takes as input a predicate key skf and a
predicate g ∈ F . It outputs a delegated predicate key skf,g.

10

Correctness of delegation. For correctness, a delegatable ABE scheme must also satisfy the
following condition: there exists a negligible function negl(·) such that for all λ ∈ N, for all x ∈ X ,
f, g ∈ F , m ∈ M, whenever f(x) = g(x) = 1, the following holds

Pr


Dec(skf,g, ct) = m :

(mpk,msk)← Setup(1λ), skf ← KeyGen(msk, f),
skf,g ← Delegate(skf , g),
ct← Enc(mpk, x,m)


 ≥ 1− negl(λ).

Delegatable ABE security. The standard notion of security for a DABE scheme is that of
full or adaptive security. A delegatable key-policy ABE scheme ΠDABE = (Setup,KeyGen,Enc,Dec,

10Here, we only consider single-hop delegation since it is already sufficient for our construction; however, it can be
extended to multi-hop delegation as well.
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Delegate) is said to be secure if for every stateful PPT adversary A, there exists a negligible function
negl(·), such that for every λ ∈ N the following holds:

Pr


AO(msk,·)(ct) = b :

(mpk,msk)← Setup(1λ)

((m0,m1), x)← A
O(msk,·)(1λ,mpk)

b← {0, 1}, ct← Enc(mpk, x,mb)


 ≤ 1

2
+ negl(λ),

where the oracle O(msk, ·) is a stateful oracle initialized with parameter n := 1 that takes as input
a tuple (f, ind,mode) ∈ F × N × {StoreKey,OutputKey,DelegateKey} and answers each query as
follows:

• If mode = StoreKey, then the challenger generates skf ← KeyGen(msk, f), stores (n, f, skf ),
and replies with (n,⊥). It also updates n := n+ 1.

• If mode = OutputKey, then the challenger first checks if there exists a key tuple of the form
(ind, g, skg). If no such tuple exists or if g(x) = 1, it outputs ⊥. Otherwise, it replies with
(ind, skg).

• If mode = DelegateKey, then the challenger first checks if there exists a key tuple of the form
(ind, g, skg). If no such tuple exists or if g(x) = f(x) = 1, it outputs ⊥. Otherwise, it generates
skg,f ← Delegate(skg, f) and replies with (ind, skg,f ).

Remark 4.6 (Collusion Resistance). For any fixed polynomial q = q(λ), we say that an ABE, PE,
or DABE scheme is q-bounded collusion secure if the security property holds against all efficient
adversaries that make at most q(λ) predicate key queries.

Remark 4.7 (Selective/Adaptive Security). We say that an ABE, PE, or DABE scheme is se-
lectively secure if the security property holds against all efficient adversaries that commits to the
challenge attribute x (or challenge attributes x0, x1 in the case of predicate encryption) before it sees
the master public key mpk and makes key-generation queries. The scheme is said to be adaptively
(or fully) secure if no such restriction is applied.

4.2.3 Jump-Finding Problem

We recall the jump-finding problem introduced in the work of Nishimaki et al. [NWZ16] for con-
structing flexible traitor tracing schemes (i.e., traitor tracing schemes where the space of identities
that can be traced is exponential). We rely on similar techniques in our proof later.

Definition 4.8 (Noisy Jump Finding Problem [NWZ16, Definition 3.6]). The (N, q, δ, ε)-jump-
finding problem is defined as follows. An adversary chooses a set C ⊆ [N ] of q unknown points.
Then, the adversary provides an oracle P : [0, N ]→ [0, 1]R with the following properties:

• |P (N)− P (0)| ≥ ε.

• For any x, y ∈ [0, N ] where x < y and [x+ 1, y] ∩ C = ∅, then |P (y)− P (x)| < δ.

The (N, q, δ, ε)-jump finding problem is to interact with the oracle P and output an element in C.
In the (N, q, δ, ε)-noisy jump finding problem, the oracle P is replaced with a randomized oracle
Q : [0, N ] → {0, 1} where on input x ∈ [0, N ], Q(x) outputs 1 with probability P (x). A fresh
independent draw is chosen for each query to Q(x).

28



Theorem 4.9 (Noisy Jump Finding Algorithm [NWZ16, Theorem 3.7]). There is an efficient algo-
rithm QTraceQ(λ,N, q, δ, ε) that runs in time t = poly(λ, logN, q, 1/δ) and makes at most t queries
to Q that solves the (N, q, δ, ε)-noisy-jump-finding problem whenever ε > δ(5+2(⌈logN − 1⌉)q). In
particular, QTraceQ(λ,N, q, δ, ε) will output at least one element in C with probability 1−negl(λ) and
will never output an element outside C. Moreover, any element x output by QTraceQ(λ,N, q, δ, ε)
has the property that P (x)− P (x− 1) > δ, where P (x) = Pr[Q(x) = 1].

Remark 4.10 (Relaxed Non-Intersection Property [NWZ16, Remark 3.8]). The algorithm QTraceQ

in Theorem 4.9 succeeds in solving the (N, q, δ, ε)-noisy-jump-finding problem even if the associated
oracle P does not satisfy the second property in Definition 4.8: namely, there may exist x, y where
[x + 1, y] ∩ C = ∅ and |P (y)− P (x)| ≥ δ. As long as the property holds for all pairs x, y queried
by QTraceQ, Theorem 4.9 applies.

4.3 Watermarkable ABE from Mixed FE and Delegatable ABE

Here, we show how to construct a fully collusion resistant watermarkable ABE scheme for general
predicates from any fully collusion resistant delegatable ABE scheme for general circuits and a
bounded collusion secure mixed FE scheme. Then, in Appendix C, we show how to leverage traitor
tracing techniques to watermark a predicate encryption scheme (with security against bounded
collusions).

Construction 4.11 (Watermarkable ABE fromMixed FE and Delegatable ABE). Let T = {0, 1}ℓ1

be the mark space, X = {0, 1}ℓ2 be the attribute space, and C ⊆ Funs[X , {0, 1}] be the predicate
class for our watermarkable ABE scheme for some parameters ℓ1, ℓ2. Our construction relies on the
following primitives:

• Let ΠMFE = (MFE.Setup,MFE.KeyGen,MFE.Enc,MFE.SK-Enc,MFE.Dec) be a mixed func-
tional encryption scheme for the class of comparison functions over message space {0, 1}ℓ1

with ciphertexts of length κ(λ, ℓ1).

• Let Y = {0, 1}ℓ2+κ and D = C ∪ {MFE.Dec} ∪ {MFE.Dec ∧ C}C∈C
.

• Let ΠDABE = (DABE.Setup,DABE.KeyGen,DABE.Enc,DABE.Dec,DABE.Delegate) be a key-
policy delegatable attribute-based encryption scheme for attribute space Y, predicate class
D, and message space M. In particular, elements in Y encode an attribute x ∈ X together
with a mixed FE ciphertext, and the predicate class D contains all circuits in class C, the
MFE.Dec circuit, and the conjunction of every circuit in C with the MFE.Dec circuit.

• Let ε be the unremovability parameter.

We give our construction ΠWM = (WMSetup,PESetup,KeyGen,Enc,Dec,Mark,Extract) below:

WMSetup(1λ)→ (wpp,mk, xk). The watermarking setup algorithm runs MFE.Setup to generate the
mixed FE public parameters and master secret key as (mfe.mpk,mfe.msk)← MFE.Setup(1λ).
It sets the watermarking parameters as wpp = mfe.mpk and mk = xk = (wpp,mfe.msk).

ABESetup(1λ,wpp)→ (mpk,msk). The ABE setup algorithm runs DABE.Setup to generate the dele-
gatable ABE public parameters and master secret key as (dabe.mpk, dabe.msk)← DABE.Setup(1λ).
It sets the ABE master key pair as mpk = (dabe.mpk,wpp) and msk = dabe.msk.
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KeyGen(msk, f)→ skf . Let f̃ : {0, 1}ℓ2+κ → {0, 1} denote the predicate f̃(x, c) = f(x) for every
x ∈ {0, 1}ℓ2 and c ∈ {0, 1}κ. The key-generation algorithm runs the DABE key generation
algorithm to generate the secret key skf as skf ← DABE.KeyGen(msk, f̃).

Enc(mpk, x,m)→ ct. Let mpk = (dabe.mpk,mfe.mpk). The encryption algorithm first computes
ctattr ← MFE.Enc(mfe.mpk). Next, it encrypts message m under attribute y = (x, ctattr) as
ct← DABE.Enc(dabe.mpk, y,m) and outputs ciphertext ct.

Dec(sk, ct)→ m/⊥. The decryption algorithm computes and outputs m← DABE.Dec(sk, ct).

Mark(mk, skf , τ)→ C. Let mk = (wpp,mfe.msk). The marking algorithm first computes mfe.skτ ←
MFE.KeyGen(mfe.msk, τ). Let gmfe.skτ denote the mixed FE decryption circuit with key
mfe.skτ hardwired; that is, gmfe.skτ := MFE.Dec(mfe.skτ , ·). Next, it computes a delegated
key skf,τ ← DABE.Delegate(skf , g̃mfe.skτ ), where g̃mfe.skτ denotes the following predicate: for
every x ∈ {0, 1}ℓ2 and c ∈ {0, 1}κ, g̃mfe.skτ (x, c) = gmfe.skτ (c). It outputs the marked circuit
C ← DABE.Dec(skf,τ , ·).

Extract(xk,mpk, x, (m0,m1), C, q)→ τ/⊥.11 Let xk = (wpp,mfe.msk) and mpk = (dabe.mpk,wpp).
The extraction algorithm runs the QTrace algorithm as τ ← QTraceQC (λ, 2ℓ1 , q, δ, ε), where
δ = ε/(5 + 2ℓ1q) and oracle QC is simulated as follows:

On input τ ∈ [0, 2ℓ1 ]:

• Compute a mixed FE ciphertext as ctattr ← MFE.SK-Enc(mfe.msk, compτ ), where
compτ is the comparison function that on input z, outputs 1 if and only if z ≥ τ .

• Sample a random bit b ← {0, 1} and compute a DABE ciphertext ct as ct ←
DABE.Enc(dabe.mpk, y,mb), where y = (x, ctattr).

• Compute m′ ← C(ct) and output 1 if m′ = mb and 0 otherwise.

Figure 1: The extraction oracle QC

If τ = ∅, then it outputs ⊥. Otherwise, it outputs the mark as τ .

Remark 4.12 (Removing the Dependence on the Parameter q). In our construction above, the
extraction algorithm takes an additional parameter q. This is meant to represent the number of
marked keys provided to the adversary. However, our extraction definition does not allow such an
explicit parameter, and it should work for all polynomially-bounded values of q. In particular, we
want to support an extraction capability even if the number of marked keys queried exceeds any
specific (a priori fixed) bound q. This could be generically achieved as follows: the (unbounded)
extraction algorithm simply runs the bounded version of extraction with parameter q as increasing
powers of two until the extraction algorithm outputs at least one mark value.

Correctness and security analysis. We now state our correctness and security theorems, but
defer their formal analysis to Section 4.3.1.

11For simplicity of exposition, we describe the Extract algorithm as taking an additional parameter q. We describe
how to remove the dependence on q in Remark 4.12.
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Theorem 4.13 (Correctness). If ΠMFE and ΠDABE are correct and ΠDABE is secure, then the wa-
termarkable predicate encryption scheme ΠWM from Construction 4.11 satisfies correctness, mean-
ingfulness, and functionality-preserving.

Theorem 4.14 (Predicate Encryption Security). If ΠDABE is a selectively-secure attribute-based
encryption, then ΠWM from Construction 4.11 is selectively secure in the presence of a malicious
watermarking authority.

Theorem 4.15 (ε-Unremovability). For any unremovability parameter ε = ε(λ) = 1/poly(λ). If
ΠDABE is selectively-secure and ΠMFE is secure, then ΠWM from Construction 4.11 is selectively
ε-unremovability.

4.3.1 Analysis of Watermarkable ABE (Construction 4.11)

In this section, we analyze the correctness and other security properties of the watermarkable ABE
scheme described above.

Proof of Theorem 4.13 (Correctness). Fix any λ ∈ N, message m ∈ M, attribute x ∈ X ,
mark τ ∈ T , predicate f ∈ C, mixed FE parameters (mfe.mpk,mfe.msk) ← MFE.Setup(1λ), and
DABE parameters (dabe.mpk, dabe.msk)← DABE.Setup(1λ). The unmarked predicate key skf for

predicate f is simply the DABE predicate key skf ← DABE.KeyGen(dabe.msk, f̃), and a marked
predicate key skf,τ with mark τ is a delegated key skf,τ ← DABE.Delegate(skf , g̃mfe.skτ ), where
mfe.skτ is a mixed FE secret key computed as mfe.skτ ← MFE.KeyGen(mfe.msk, τ). We show each
of the properties below:

• Correctness of decryption: For any ciphertext ct computed as ct← DABE.Enc(dabe.mpk,
(x, ctattr),m), where ctattr ← MFE.Enc(mfe.mpk), we know that f̃(x, ctattr) = f(x) by the defi-
nition of f̃ . Therefore, by correctness of ΠDABE, we have that with overwhelming probability
DABE.Dec(skf , ct) = m if f(x) = 1; otherwise DABE.Dec(skf , ct) = ⊥.

• Correctness of extraction: Fix any two messages m0,m1 ∈ M, and let q be some poly-
nomial in λ. Here we argue that the probability the extraction algorithm does not output
τ on input (wpp = mfe.mpk, xk = mfe.msk, mpk = (dabe.mpk,wpp), x, m0,m1, C) is a
negligible function in λ, where C is the marked circuit as described above. Note that the
extraction procedure simply runs the QTrace procedure with circuit C dependent oracle QC

as described in Fig. 1. Below, we argue that, on every input τ∗ ∈ T , the oracle QC outputs
1 with overwhelming probability if τ∗ ≥ τ and 0 otherwise.

For any message m ∈ M and mark τ∗ ∈ T , consider a ciphertext ct computed as ct ←
DABE.Enc(dabe.mpk, (x, ctattr),m), where ctattr is computed as ctattr ← MFE.SK-Enc(mfe.msk,
compτ∗). Now observe that for the marked circuit C = DABE.Dec(skf,τ , ·), we have that for
every ciphertext ct computed as described above, C(ct) = m with overwhelming probability
whenever f(x) = 1 and τ ≥ τ∗. Otherwise, C(ct) = ⊥ with overwhelming probability. This
is because (with overwhelming probability) MFE.Dec(mfe.skτ , ctattr) = compτ (τ

∗) = (τ∗ ≥ τ)
by correctness of ΠMFE, which implies that g̃mfe.skτ (x, ctattr) = compτ (τ

∗). Therefore, by
correctness of ΠDABE, C(ct) = m whenever f(x) = 1 and τ ≥ τ∗, and otherwise, C(ct) = ⊥.
Thus, whenever f(x) = 1, we have that QC outputs 1 with overwhelming probability if τ∗ ≥ τ ,
and otherwise, it outputs 0. Appealing to Theorem 4.9 and Remark 4.10, we conclude that
the extraction algorithm outputs τ with overwhelming probability whenever f(x) = 1.
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• Meaningfulness: We show each of the two properties:

– Most circuits unmarked. Take any circuit C and any pair of messages m0,m1 ∈ M.
Let q be some polynomial in λ. Let (mfe.mpk,mfe.msk) ← MFE.Setup(1λ) be the
mixed FE keys sampled during the watermarking setup. Let δ be the probability the
extraction algorithm does not output ⊥ on inputs (wpp = mfe.mpk, xk = mfe.msk,
mpk = (dabe.mpk,wpp), x, m0,m1, C), where the probability is taken over the choice
of the DABE public key dabe.mpk and the coins used by the extraction algorithm. Sup-
pose δ is a non-negligible function in λ. Note that the extraction procedure simply runs
the QTrace procedure with the circuit C dependent oracle as described in Fig. 1. Now,
by Theorem 4.9 and Remark 4.10, we know that if the extraction algorithm outputs a
mark τ 6= ⊥, then the (probabilistic) oracle QC on inputs τ and τ − 1 outputs 1 with
probability ητ and ητ−1, respectively, such that |ητ − ητ−1| > δ, where the probability is
taken over the randomness of the mixed FE and DABE encryption algorithms.

Since δ is non-negligible, we have that at least one of (ητ − 1/2) and (ητ−1 − 1/2) is
non-negligible as well. Suppose ητ − 1/2 > ε for some non-negligible function ε. From
this, we can conclude that QC breaks semantic security of the underlying DABE scheme
with at least ε advantage, where the challenge attribute vector is computed as in Fig. 1
with input τ and challenge messages (m0,m1). This contradicts the assumption that
ΠDABE is a secure DABE scheme.

– Extraction fails on unmarked keys. Fix any λ ∈ N, a predicate f ∈ C, attribute
x ∈ X , and messages m0,m1 ∈ M. Also, let q be some polynomial in λ. Let
(mfe.mpk,mfe.msk) ← MFE.Setup(1λ) be the mixed FE keys sampled during the wa-
termarking setup. Here, we argue that the probability the extraction algorithm does not
output ⊥ on inputs (wpp = mfe.mpk, xk = mfe.msk, mpk = (dabe.mpk,wpp), x, m0,m1,
DABE.Dec(skf , ·)) is a negligible function in λ. Here, skf ← DABE.KeyGen(msk, f̃) and
the probability is taken over the choice of DABE public key dabe.mpk and the extraction
randomness. Note that the extraction procedure simply runs the QTrace procedure with
the circuit C = DABE.Dec(skf , ·) dependent oracle QC as described in Fig. 1. We now
argue that on every input τ ∈ T , the oracle QC outputs 1 with overwhelming probability.

On input τ ∈ T , the oracle QC begins by sampling a mixed FE ciphertext ctattr ←
MFE.SK-Enc(mfe.msk, compτ ). Next, it computes ct← DABE.Enc(dabe.mpk, (x, ctattr),mb),
where b← {0, 1}. It runs the decryption circuit C = DABE.Dec(skf , ·) on the ciphertext

ct. We know that f̃(x, ctattr) = f(x) by the definition of f̃ , and so by the correctness of
ΠDABE, we have that with overwhelming probability C(ct) = DABE.Dec(skf , ct) = mb if
f(x) = 1. Therefore, the oracle QC outputs 1 with overwhelming probability whenever
f(x) = 1. In other words, the oracle QC on every input τ ∈ T outputs 1 with over-
whelming probability. Hence, combining this with Theorem 4.9 and Remark 4.10, we
get that the extraction algorithm outputs ⊥ whenever f(x) = 1.

• Functionality-preserving: For any ciphertext ct ← DABE.Enc(dabe.mpk, (x, ctattr),m),
where ctattr ← MFE.Enc(mfe.mpk), we know that f̃(x, ctattr) = f(x) by the definition of
f̃ . We also have that g̃mfe.skτ (x, ctattr) = 1 with overwhelming probability. This is because
g̃mfe.skτ (x, ctattr) = gmfe.skτ (ctattr) = MFE.Dec(mfe.skτ , ctattr) = 1, where the last equality holds
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with overwhelming probability by the correctness of ΠMFE. By the correctness of ΠDABE,
C(ct) = m whenever f(x) = 1.

Proof of Theorem 4.14 (ABE Security). Suppose there exists a PPT adversary A that has
non-negligible advantage in the ABE security game for ΠWM. We construct an algorithm B that
breaks semantic security of the DABE scheme:

1. The reduction algorithm B receives the watermarking parameter wpp and challenge attribute
x∗ from A. It then computes ct∗attr ← MFE.Enc(wpp) and sends (x∗, ct∗attr) to the DABE chal-
lenger as its challenge attribute. The DABE challenger generates a key pair (dabe.mpk, dabe.sk)
and sends dabe.mpk to B.

2. On each predicate key query f made by A, the reduction algorithm B queries the DABE
challenger for a secret key for predicate f̃ , where f̃ is as defined in the construction. Algorithm
B forwards the challenger’s response skf to A.

3. Adversary A then sends two challenge messages (m∗
0,m

∗
1) to B, and B forwards (m∗

0,m
∗
1) as

its challenge messages to DABE challenger. Next, B forwards the challenge ciphertext ct∗ it
receives from the DABE challenger to A.

4. Algorithm B answers the post-challenge key queries made by A as in the pre-challenge phase.

5. At the end of the game, A outputs a bit b, which B echoes as its own guess.

First, note that if A is an admissible adversary (i.e., the attribute x∗ satisfies f(x∗) = 0 for every
queried predicate f), then the challenge attribute (x∗, ct∗attr) on each predicate f̃ queried by B also
evaluates to 0. This follows from the definition of the predicate f̃ as f̃(x∗, ct∗attr) = f(x∗) = 0. Thus,
the reduction algorithm B is also an admissible adversary in the DABE security game. Thus, B
perfectly simulates the selective encryption security game for A. As a result, if A’s advantage is
non-negligible, then B breaks DABE security with the same non-negligible advantage.

Proof of Theorem 4.15 (Unremovability). We begin by introducing some notation for our
security proof. Consider a pair of mixed FE and DABE system parameters (mfe.msk,mfe.mpk),
(dabe.mpk, dabe.msk). For any decryption circuit C, attribute x ∈ X , messages m0,m1, and mark
τ ∈ [0, 2ℓ1 ], let

pτ,Cm0,m1,x = Pr

[
C(ct) = mb :

b← {0, 1}, ctattr ← MFE.SK-Enc(mfe.msk, compτ ),
ct← DABE.Enc(dabe.mpk, (x, ctattr),mb)

]
,

where the probability is taken over the random coins of the (possibly randomized) circuit C as well
as the randomness used during encryption. Similarly, let

pnrml,C
m0,m1,x = Pr

[
C(ct) = mb :

b← {0, 1}, ctattr ← MFE.Enc(mfe.mpk),
ct← DABE.Enc(dabe.mpk, (x, ctattr),mb)

]
.

The above probabilities are also parameterized by the mixed FE and DABE keys, but for simplicity
of notation, we do not include them as they are clear from context.

For any adversary A, we define the experiment GetCircuitA (see Fig. 2). The experiment is
identical to the selective unremovability game, except that the challenger does not run the extraction
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Experiment GetCircuitA(λ)

1. On input the security parameter 1λ, the adversaryA chooses a challenge attribute x and sends
it to the challenger.

2. The challenger samples a mixed FE key pair (mfe.mpk,mfe.msk) ← MFE.Setup(1λ) and a
DABE key pair (dabe.mpk, dabe.msk)← DABE.Setup(1λ). It sends the watermarking param-
eters and ABE public key as wpp = mfe.mpk, mpk = (dabe.mpk,mfe.mpk) to A.

3. A then sends the challenge predicate f , and the challenger samples and stores a predicate key
skf ← DABE.KeyGen(dabe.msk, f̃). (Here f̃ is as defined previously.)

4. Next, A makes polynomially many marking queries. For every marking query τ ∈ T , the
challenger computes the delegated key skf,τ as described in the construction and sends the
circuit DABE.Dec(skf,τ , ·) as its response.

5. Finally, A outputs a pair of messages (m0,m1) and a circuit C∗. The output of the experiment
is set as (C∗,m0,m1, x).

Figure 2: Experiment GetCircuitA(λ)

algorithm at the end, and the output of the experiment is set to be the decryption circuit C∗, two
messages m0,m1, and the attribute x that A chooses.

Using the GetCircuit experiment, for any mark τ ∈ [0, 2ℓ1 ], we define the following probabilities,
parameterized by γ ∈ [0, 1/2], as a function of λ:

Pr -Good-Dec
(τ)
A,γ(λ) = Pr

[
pτ,C

∗

m0,m1,x ≥
1

2
+ γ : (C∗,m0,m1, x)← GetCircuitA(λ)

]

Similarly, we also define

Pr -Good-Dec
(nrml)
A,γ (λ) = Pr

[
pnrml,C∗

m0,m1,x ≥
1

2
+ γ : (C∗,m0,m1, x)← GetCircuitA(λ)

]
.

All the above probabilities are defined over all the random coins chosen by the challenger and
adversary A during the GetCircuitA(λ) experiment.

Now, the proof idea at a high level is as follows. Suppose there exists a successful ε-unremovable
attacker A. That is, A produces a circuit C∗ along with attribute x and message pair (m0,m1),

after making polynomially many queries to a marking oracle, such that pnrml,C∗

m0,m1,x ≥ 1/2+ ε, and the
extraction algorithm outputs a mark τ∗ outside the set of marks queried by A. Let δ = ε/(5+2ℓ1q)

as used in the construction. We first argue that it must also be the case that p0,C
∗

m0,m1,x > 1/2+ε− δ,
as otherwise we could use A to break the mixed FE accept indistinguishability property. Next,

we argue that p2
ℓ1 ,C∗

m0,m1,x < 1/2 + δ, as otherwise, we could break the security of the DABE scheme.

Lastly, we also show that for any two marks τ1 < τ2, p
τ1,C∗

m0,m1,x− pτ2,C
∗

m0,m1,x < δ as long as A does not
make any marking query for a mark in the range [τ1, τ2]. This argument relies on the mixed FE
function indistinguishability property. Combining these statements with the guarantees provided
by the noisy jump finding algorithm (Theorem 4.9), we conclude that the extraction algorithm does
not output an incorrect mark. We give the full proof below.

Lemma 4.16. Let δ = ε/(5 + 2ℓ1q). If ΠMFE is a mixed functional encryption scheme satisfy-
ing 1-bounded accept indistinguishability property, then for every ε-unremovable admissible PPT
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adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr -Good-Dec
(nrml)
A,ε (λ) ≤ Pr -Good-Dec

(0)
A,ε−δ(λ) + negl(λ).

Proof. Suppose there exists an ε-unremovable admissible adversaryA playing the selective unremov-

ability game such that Pr -Good-Dec
(nrml)
A,ε (λ) ≥ Pr -Good-Dec

(0)
A,ε−δ(λ)+γ(λ) for some non-negligible

function γ(·). We use A to construct an algorithm B that can distinguish normal encryptions from
secret key encryptions, which breaks the 1-bounded accept indistinguishability security of the mixed
FE scheme:

1. Adversary A begins by choosing a challenge attribute x and sends it over to B.

2. The mixed FE challenger samples a mixed FE key pair (mfe.mpk,mfe.msk)← MFE.Setup(1λ),
and sends mfe.mpk to B. Algorithm B samples a DABE key pair (dabe.mpk, dabe.msk) ←
DABE.Setup(1λ), and sends the watermarking parameters wpp = mfe.mpk and ABE public
key mpk = (dabe.mpk,mfe.mpk) to A.

3. AdversaryA chooses a challenge predicate f and sends f to B. Algorithm B samples and stores
a predicate key skf ← DABE.KeyGen(dabe.msk, f̃). (Here f̃ is as defined in Construction 4.11.)

4. Adversary A can then make (polynomially-many) marking queries. For each marking query
τi ∈ T , B forwards τi as its secret key query to the mixed FE challenger and receives a
mixed FE secret key mfe.skτi ← MFE.KeyGen(mfe.msk, τi) from the mixed FE challenger.
Algorithm B then computes the delegated key as skf,τi ← DABE.Delegate(skf , ˜gmfe.skτi

), where

the predicate ˜gmfe.skτi
has the mixed FE secret key mfe.skτi hardwired inside as defined in

Construction 4.11. Algorithm B replies to A with the circuit DABE.Dec(skf,τi , ·).

5. At the end of the game, A outputs a pair of messages (m0,m1) and a circuit C∗.

6. Algorithm B samples two random bits α, β ← {0, 1} and sends comp0 (i.e., comparison with
0) as its challenge function to the mixed FE challenger. It also makes a secret-key encryption

query on the function comp0 to the challenger. Let ct∗attr and ct
(1)
attr denote the challenge cipher-

text and the queried ciphertext B receives from the mixed FE challenger, respectively. Then,

B computes a fresh mixed FE public-key ciphertext ct
(0)
attr ← MFE.Enc(mfe.mpk) as well as two

DABE ciphertexts ct∗ ← DABE.Enc(dabe.mpk, (x, ct∗attr),mα) and ct← DABE.Enc(dabe.mpk, (x, ct
(β)
attr),mα).

Finally, B runs the adversary’s decryption circuit C∗ on ct∗ and ct. If C(ct∗) = C(ct), it out-
puts b′ = β. Otherwise, it outputs b′ = 1− β.

First, note that B is an admissible adversary in the 1-bounded accept indistinguishability game
as the challenge function comp0 that B chooses always accepts on all key queries B makes. Also,
note that if the mixed FE challenger computed ct∗attr as a normal FE ciphertext, then B computes
ct∗ as a standard watermarkable ABE ciphertext. Otherwise it computes ct∗ as a special water-
markable ABE ciphertext (as defined in the description of p0,C

∗

m0,m1,x). Thus, B perfectly simulates

the GetCircuit experiment for A. As a result, if Pr -Good-Dec
(nrml)
A,ε (λ) ≥ Pr -Good-Dec

(0)
A,ε−δ(λ) + γ

where δ and γ are non-negligible functions, then B wins in the 1-bounded accept indistinguishability
security with advantage ≥ 1

2 + γ
2 · δ

2. (Here, the analysis of B’s advantage is almost identical to
that provided in the proof of [GKRW18, Claim 5.2].) This completes the proof.
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Lemma 4.17. Let δ = ε/(5+2ℓ1q). If ΠMFE satisfies 1-bounded function indistinguishability, then
for every ε-unremovable admissible PPT adversary A, there exists a negligible function negl(·) such
that for all λ ∈ N and all marks τ1 < τ2 ∈ [0, 2ℓ1 ],

Pr
[
pτ1,C

∗

m0,m1,x − pτ2,C
∗

m0,m1,x ≥ δ : (C∗,m0,m1, x)← GetCircuitA(λ)
]
≤ negl(λ)

provided that A did not query for a marked key for a mark τ ∈ [τ1, τ2 − 1] in the GetCircuit

experiment.

Proof. Suppose there exist marks τ∗1 < τ∗2 and an ε-unremovable admissible adversary A playing

the selective unremovability game such that the event p
τ∗1 ,C

∗

m0,m1,x − p
τ∗2 ,C

∗

m0,m1,x ≥ δ occurs with some
non-negligible probability γ(λ). We construct an algorithm B that can distinguish between two
different secret key encryptions and, therefore, break the 1-bounded function indistinguishability
security of the mixed FE scheme:

1. Adversary A begins by choosing a challenge attribute x and sends it over to B.

2. The mixed FE challenger samples a mixed FE key pair (mfe.mpk,mfe.msk)← MFE.Setup(1λ),
and sends mfe.mpk to B. Algorithm B samples a DABE key pair (dabe.mpk, dabe.msk) ←
DABE.Setup(1λ), and sends the watermarking parameters wpp = mfe.mpk and ABE public
key mpk = (dabe.mpk,mfe.mpk) to A.

3. Adversary A chooses a challenge predicate f and sends f to B. Algorithm B samples and
stores a predicate key skf ← DABE.KeyGen(dabe.msk, f̃). (Here f̃ is as defined previously.)

4. Adversary A can then make (polynomially-many) marking queries. For every marking query
τi ∈ T , the reduction B aborts (and outputs a random bit) if τi ∈ [τ1, τ2 − 1]. Other-
wise, it forwards τi as its secret key query to the mixed FE challenger to receive a key
mfe.skτi ← MFE.KeyGen(mfe.msk, τi). Algorithm B then computes the delegated key skf,τi ←
DABE.Delegate(skf , ˜gmfe.skτi

), where the predicate ˜gmfe.skτi
has the mixed FE secret keymfe.skτi

hardwired as defined in Construction 4.11. Algorithm B sends DABE.Dec(skf,τi , ·) as the
marked circuit.

5. At the end of the game, A outputs a pair of messages (m0,m1) and a circuit C∗.

6. Algorithm B samples two random bits α, β ← {0, 1} and sends (compτ∗0
, compτ∗1

) (i.e., compar-
ison with τ∗0 and τ∗1 ) as its two challenge functions to the mixed FE challenger. In addition,
it also makes a secret-key encryption query for function compτ∗

β
. Let ct∗attr and ctattr denote

the challenge ciphertext and queried ciphertext sent by mixed FE challenger, respectively.
Then, B computes two DABE ciphertexts ct∗ ← DABE.Enc(dabe.mpk, (x, ct∗attr),mα) and
ct ← DABE.Enc(dabe.mpk, (x, ctattr),mα). Finally, B runs the decryption circuit C∗ on ct∗

and ct, and if C(ct∗) = C(ct), it outputs b′ = β. Otherwise, it outputs b′ = 1− β.

First, note that as long as B does not abort, then it is an admissible adversary in the 1-bounded func-
tion indistinguishability game as the challenge functions (compτ∗0

, compτ∗1
) B chooses are functionally-

identical on all the key queries made by B. Also, note that if ct∗attr was a secret-key FE encryption
of compτ∗

b
, then B computes ct∗ as a special watermarkable ABE ciphertext (as defined in the

description of p
τ∗
b
,C∗

m0,m1,x). Thus, B perfectly simulates the GetCircuit experiment for A. As a result,
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if A outputs a marked circuit C∗ such that p
τ∗1 ,C

∗

m0,m1,x− p
τ∗2 ,C

∗

m0,m1,x ≥ δ with probability γ, where δ and
γ are non-negligible functions, then B wins in the 1-bounded function indistinguishability security
with advantage ≥ 1

2 + γ
2 · δ

2. (Here, also, the analysis of B’s advantage is almost identical to that
provided in the proof of [GKRW18, Claim 5.2].)

Lemma 4.18. Let δ = ε/(5 + 2ℓ1q). If ΠDABE is selectively-secure, then for every ε-unremovable
admissible PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr -Good-Dec
(2ℓ1 )
A,δ (λ) ≤ negl(λ).

Proof. Suppose there exists an ε-unremovable admissible adversary A playing the selective unre-

movability game such that Pr -Good-Dec
(2ℓ1 )
A,δ (λ) ≥ γ(λ) for some non-negligible function γ(·). We

use A to construct an algorithm B that can break semantic security of ΠDABE:

1. The adversary A begins by choosing its challenge attribute x and sends it to B.

2. Algorithm B samples a mixed FE key pair (mfe.mpk,mfe.msk) ← MFE.Setup(1λ) and com-
putes a mixed FE ciphertext ct∗attr ← MFE.SK-Enc(mfe.msk, comp2ℓ1 ). Next, B sends (x, ct∗attr)
as its challenge attribute to the DABE challenger.

3. The DABE challenger samples a key pair (dabe.mpk, dabe.sk) ← DABE.Setup(1λ) and sends
dabe.mpk to B. Algorithm B then sends the watermarking parameters wpp = mfe.mpk and
ABE public key mpk = (dabe.mpk,mfe.mpk) to A.

4. Adversary A then chooses a challenge predicate f , and the reduction B sends (f̃ ,⊥,StoreKey)
as its query to the DABE challenger. (Here f̃ is as defined in Construction 4.11.) The DABE
challenger samples the secret key skf ← DABE.KeyGen(dabe.sk, f̃) but does not send skf to
B since B queries the secret key for storing.

5. Adversary A can then make (polynomially-many) marking queries. For every marking query
τi ∈ T , the reduction B computes a mixed FE secret key mfe.skτi ← MFE.KeyGen(mfe.msk, τi),
and sends ( ˜gmfe.skτi

, 1,DelegateKey) to the DABE challenger as its key query. Here, the pred-

icate ˜gmfe.skτi
has the mixed FE secret key mfe.skτi hardwired inside as defined in Construc-

tion 4.11. The challenger replies with a secret key skf,τi . Algorithm B replies to the marking
query with the marked circuit DABE.Dec(skf,τi , ·).

6. At the end of the game, A outputs a pair of messages (m0,m1) and a circuit C∗.

7. Algorithm B forwards (m0,m1) as its challenge messages to the DABE challenger to re-
ceive a challenge ciphertext ct∗. Algorithm B then samples a random bit β ← {0, 1}
and computes a fresh ciphertext ct ← DABE.Enc(dabe.mpk, (x, ctattr),mβ), where ctattr ←
MFE.SK-Enc(mfe.msk, comp2ℓ1 ). Finally, B runs the decryption circuit C∗ on ct∗ and ct, and
if C(ct∗) = C(ct), it outputs b′ = β. Otherwise, it outputs b′ = 1− β.

First, note that the challenge attribute (x, ct∗attr) on each predicate query ˜gmfe.skτi
made by B

evaluates to 0, with overwhelming probability. This follows by correctness of ΠMFE since ct∗attr
encrypts the function comp2ℓ1 and for all i, comp2ℓ1 (τi) = 0. Thus, decrypting ct∗attr using mfe.skτi
outputs 0. Then, with overwhelming probability, algorithm B is an admissible adversary for the
DABE security game. Moreover, B perfectly simulates the GetCircuit experiment for A. As a
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result, if A outputs a marked circuit C∗ such that Pr -Good-Dec
(2ℓ1 )
A,δ (λ) ≥ γ(λ), where δ and γ are

non-negligible functions, then B breaks semantic security of ΠDABE with advantage that is at least
1
2 + γ

2 · δ
2. (Here, the analysis of B’s advantage is almost identical to that provided in the proof

of [GKRW18, Lemma 5.6].)

Finally, combining Lemmas 4.16 to 4.18 with Theorem 4.9 and Remark 4.10, we see that the
extraction algorithm outputs an element in Q whenever C∗ is a ε-good decoder circuit as per the
unremovability definition. This is because the oracle QC∗ satisfies the following properties:

• Pr[Pr[QC∗(0) = 1]−QC∗(2ℓ1) = 1] ≥ ε− negl(λ) (by Lemmas 4.16 and 4.18 and the fact that
A is an ε-unremovable admissible adversary).

• For any τ1 < τ2 ∈ [0, 2ℓ1 ] queried by the adversary where [τ1, τ2−1]∩Q = ∅, |QC∗(τ1)−QC∗(τ2)| ≤
δ (Lemma 4.17).

The theorem follows.

Remark 4.19 (Handling Extraction Queries). Note that the construction described above is a
watermarkable ABE scheme with private-marking and private-extraction procedures. Also, recall
that in our unremovability definition, the adversary can make (a priori unbounded) polynomially
many marking queries, but we do not provide an extraction oracle to the adversary. A stronger
notion of security in the private-extraction setting would be to also allow the adversary to make
(a priori unbounded) polynomially many extraction queries. We currently do not know how to
achieve such a notion of security. However, our existing construction can be proven secure under
an intermediate notion, where the adversary is instead allowed to make an a priori polynomially
bounded number of extraction queries instead. This follows from the observation that to answer
one extraction query, the reduction algorithm would need to make a fixed (polynomially bounded)
number of mixed FE secret key encryption queries. Let T = poly(λ, ℓ1, q, 1/ε)) denote the number of
mixed FE encryption queries required for answering one extraction query. Thus, if the underlying
mixed FE is (N · T + 1)-bounded secure, then the resulting watermarkable ABE scheme is also
secure even when the adversary is allowed to make N extraction queries.

4.4 Instantiations

Both mixed functional encryption [GKW18, CVW+18] and (fully collusion resistant) delegatable
attribute-based encryption [BGG+14] can be built from the LWE assumption. Together with
Construction 4.11, we obtain the following corollary:

Corollary 4.20 (Watermarkable ABE from LWE). Take any ε = 1/poly(λ) and mark space
T = {0, 1}ℓ, where ℓ = poly(λ). Under the polynomial hardness of the LWE assumption (with
a super-polynomial modulus-to-noise ratio), there exists a selectively secure, fully collusion re-
sistant watermarkable ABE scheme in the secret-key setting with mark space T that satisfies ε-
unremovability and security against a malicious watermarking authority. If we instead assume
sub-exponential hardness of the LWE assumption (with a super-polynomial modulus-to-noise ra-
tio), then the watermarkable ABE scheme is adaptively secure in the secret-key setting.
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A Additional Preliminaries

In this section, we recall the definitions of several cryptographic primitives.

A.1 Public-Key Encryption

A public-key encryption (PKE) scheme ΠPKE with message spaceM is a tuple of PPT algorithms
(Setup,Enc,Dec) with the following syntax:

Setup(1λ)→ (pk, sk). On input the security parameter λ, the setup algorithm outputs a pub-
lic/secret key-pair (pk, sk).

Enc(pk,m)→ ct. On input a public key pk and a message m ∈ M, the encryption algorithm
outputs a ciphertext ct.

Dec(sk, ct)→ m/⊥. On input a secret key sk and a ciphertext ct, the decryption algorithm either
outputs a message m ∈ M or a special symbol ⊥.

Correctness. A PKE scheme is said to be correct if for all λ ∈ N, m ∈ M, every key-pair
(pk, sk)← Setup(1λ), every ciphertext ct← Enc(pk,m), we have that Dec(sk, ct) = m.

Security. For security, we require that it satisfies IND-CPA security. A PKE scheme ΠPKE =
(Setup,Enc,Dec) is IND-CPA secure if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr

[
A(ct) = b :

(pk, sk)← Setup(1λ), b← {0, 1},
(m0,m1)← A(1

λ, pk), ct← Enc(pk,mb)

]
≤

1

2
+ negl(λ).

A.2 Digital Signatures

A digital signature scheme ΠSig = (Setup,Sign,Verify) with message spaceM consists of three PPT
algorithms with the following syntax:

Setup(1λ)→ (sk, vk). On input the security parameter λ, the setup algorithm outputs a pair of
keys (sk, vk), where sk is the signing key and vk is the verification key.

Sign(sk,m)→ σ. On input a signing key sk and a message m, the signing algorithm outputs a
signature σ.

Verify(vk,m, σ)→ 0/1. On input a verification key vk, a message m, and a signature σ, the verifi-
cation algorithm outputs 1 (accepts) if verification succeeds, and 0 (rejects) otherwise.

Correctness. A signature scheme ΠSig must satisfy the following correctness requirement: for
all λ ∈ N, m ∈ M, signing/verification key-pairs (sk, vk) ← Setup(1λ), and every signature σ ←
Sign(sk,m), we have that Verify(vk,m, σ) = 1.

Unforgeability. The security requirement on a digital signature scheme is unforgeability. Namely,
a signature scheme ΠSig = (Setup,Sign,Verify) satisfies unforgeability if for every stateful PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr

[
Verify(vk,m∗, σ∗) = 1 ∧m∗ /∈ Q :

(sk, vk)← Setup(1λ)

(m∗, σ∗)← ASign(sk,·)(1λ, vk)

]
≤ negl(λ),

where Q ⊆M is the set of messages A submitted to the Sign oracle.
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A.3 Traitor Tracing with Embedded Identities

We will now recall the syntax and definitions for general traitor tracing with embedded identi-
ties [GKW19]. An embedded-identity traitor tracing system for message space M and identity
space ID = {{0, 1}κ}κ∈N consists of five efficient algorithms ΠTT = (Setup,KeyGen,Enc,Dec,Trace)
with the following syntax:

Setup(1λ, 1κ)→ (msk, pk, tk) . On input the security parameter λ and an identity space index κ,
the setup algorithm outputs a master secret key msk, a public key pk, and a tracing key tk.

KeyGen(msk, id)→ skid. On input the master secret key msk and an identity id ∈ {0, 1}κ, the key-
generation algorithm outputs a secret key skid.

Enc(pk,m)→ ct. On input a public key pk and a message m ∈ M, the encryption algorithm
outputs a ciphertext ct.

Dec(sk, ct)→ z/⊥. On input a secret key sk and a ciphertext ct, the decryption algorithm either
outputs a message z ∈ M or a special symbol ⊥.

TraceD(tk, 1y ,m0,m1)→ T. On input a tracing key tk, a parameter y, and two messages m0,m1,
and given oracle access to a decoder D, the tracing algorithm outputs a set T ⊆ {0, 1}κ of
identities.

Correctness. A traitor tracing scheme is correct if there exists a negligible function negl(·) such
that for all λ, κ ∈ N, m ∈M and identity id ∈ {0, 1}κ, the following holds

Pr

[
Dec(sk, ct) = m :

(msk, pk, tk)← Setup(1λ, 1κ)
sk← KeyGen(msk, id), ct← Enc(pk,m)

]
≥ 1− negl(λ).

Security. There are two security requirements for a traitor tracing scheme. First, it should satisfy
IND-CPA security. Second, the tracing algorithm must (almost always) correctly trace at least
one key used to create a pirate decoding box (whenever the pirate box successfully decrypts with
noticeable probability), and moreover, it should not falsely accuse any user of cheating. We provide
the formal definitions below:

IND-CPA security. A embedded-identity traitor tracing scheme ΠTT = (Setup,KeyGen,Enc,Dec,
Trace) is IND-CPA secure if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr

[
A(ct) = b :

1κ ← A(1λ), (msk, pk, tk)← Setup(1λ, 1κ),
b← {0, 1}, (m0,m1)← A(pk), ct← Enc(pk,mb)

]
≤

1

2
+ negl(λ).

Secure tracing. Let ΠTT = (Setup,KeyGen,Enc,Dec,Trace) be an embedded-identity traitor trac-
ing scheme. For any non-negligible function ε = ε(λ), polynomial p = p(λ) and PPT adversary
A, consider the experiment Expt-TTΠTT

A,ε (λ) defined in Fig. 3 below:

Based on the above experiment, we now define the following (probabilistic) events and the
corresponding probabilities (which are functions of λ and parameterized by A, ε):
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Experiment Expt-TTΠTT

A,ε,p(λ)

For a security parameter λ, Expt-TTΠTT

A,ε,p(λ) is defined as follows:

• 1κ ← A(1λ).

• (msk, pk, tk)← Setup(1λ, 1κ).

• (D,m0,m1)← A
O(·)(pk).

• T ← TraceD(tk, 11/ε(λ),m0,m1).

Let SID be the set of identities queried by A. Here, O(·) is an oracle that has msk hardwired, takes
as input an identity id ∈ {0, 1}κ and outputs KeyGen(msk, id).

Figure 3: Experiment Expt-TT

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct ← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,ε,p(λ) = Pr[Good-Decoder].

• Cor-Tr : T 6= ∅ ∧ T ⊆ SID

Pr -Cor-TrA,ε,p(λ) = Pr[Cor-Tr].

• Fal-Tr : T 6⊆ SID

Pr -Fal-TrA,ε,p(λ) = Pr[Fal-Tr].

A traitor tracing scheme ΠTT is said to be secure if for every PPT adversary A, polynomial
q(·) and non-negligible function ε(·), there exists a negligible functions negl(·) such that for
all λ ∈ N satisfying ε(λ) > 1/q(λ), the following holds

Pr -Fal-TrA,ε(λ) ≤ negl(λ), Pr -Cor-TrA,ε,p(λ) ≥ Pr -G-DA,ε,p(λ)− negl(λ).

B Definitions: Watermarkable Public-Key Primitives

In this section, we recall the notions of watermarkable public-key encryption and watermarkable
signature schemes as introduced and formalized in the work of Cohen et al. [CHN+16]. We then
discuss some of the limitations of these definitions and describe simple constructions that satisfy
the existing security notions and, yet, are vulnerable to simple unremovability attacks (which are
not captured by the Cohen et al. unremovability definitions).

B.1 Watermarkable Signature Schemes

We start by recalling the notion of watermarkable signatures as introduced in [CHN+16]. After
that, we describe a simple generic construction that satisfies the existing definition. We then discuss
the limitations of the existing definition.

B.1.1 The [CHN+16] Definition for Watermarkable Signatures

Cohen et al. [CHN+16] formalize watermarkable signature as follows. A watermarkable signature
scheme with message space M, mark space T , and signature space SIG is a tuple of algorithms
(WM.Setup,Sig.Setup,Sign,Verify,Extract) with the following syntax:
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WM.Setup(1λ)→ (mk, xk). On input the security parameter λ, the watermarking setup algorithm
outputs a marking key mk and an extraction key xk.

Sig.Setup(1λ,mk, τ)→ (sk, vk). On input the security parameter λ, marking key mk and a mark
τ ∈ T , the signature scheme setup algorithm outputs a signing-verification key pair (sk, vk).

Sign(sk,m)→ σ. On input the signing key sk and a message m ∈ M, the signing algorithm outputs
a signature σ.

Verify(vk,m, σ)→ 0/1. On input a verification key vk, a message m ∈ M, and a signature σ, the
verification algorithm outputs a bit to signify whether the signature is valid or not.

Extract(xk, C)→ τ/⊥. On input the watermarking extraction key xk and a circuit C :M→ SIG,
the extraction algorithm either outputs a mark τ ∈ T or a special symbol ⊥.

Correctness. A watermarkable signature scheme is correct if there exists a negligible function
negl(·) such that for all λ ∈ N, m ∈ M, τ ∈ T , the following holds

Pr


 Verify(vk,m, σ) 6= 1∨

Extract(xk,Sign(sk, ·)) 6= τ
:

(mk, xk)←WM.Setup(1λ),
(sk, vk)← Sig.Setup(1λ,mk, τ),

σ ← Sign(sk,m)


 ≤ negl(λ).

Security. For security, Cohen et al. defined two requirements which were unforgeability and
unremovability. Intuitively, unforgeability says that the signature scheme is unforgeable as long
as the adversary does not get to see the marking key mk. Additionally, unremovability requires
that given a marked signing key sk, an adversary can not produce a circuit C∗ such that C∗ has
a different mark embedded but is still functionally close to the original signing circuit Signsk. We
describe the properties below:

Existential unforgeability. For every stateful PPT attacker A, mark τ ∈ T , there exists a
negligible function negl(·) such that for all λ ∈ N, the following holds

Pr


Verify(vk,m∗, σ∗) = 1 :

(mk, xk)←WM.Setup(1λ),
(sk, vk)← Sig.Setup(1λ,mk, τ),

(m∗, σ∗)← ASign(sk,·)(1λ, vk, xk)


 ≤ negl(λ),

where A should never have queried m∗ to Sign oracle.

ε-Unremovability. For every stateful PPT attacker A, mark τ ∈ T , there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr


 C∗ ∼=ε Sign(sk, ·)∧

Extract(xk, C∗) 6= τ
:

(mk, xk)←WM.Setup(1λ),
(sk, vk)← Sig.Setup(1λ,mk, τ),

C∗ ← A(1λ, sk, vk, xk)


 ≤ negl(λ),

where C∗ ∼=ε Sign(sk, ·) denotes that circuits C
∗ and Sign(sk, ·) agree on an ε fraction of their

inputs.
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B.1.2 Simple Construction for Achieving the [CHN+16] Definition

If we allow the verification key to depend on the mark (i.e., as in the Cohen et al. abstraction),
then there is a simple way to satisfy the definition. In this setting, one could take any signature
scheme and make it watermarkable by directly including the mark τ as part of the signing key and
verification key. A signature on a message m is just the pair (τ, σ), where σ is a vanilla signature on
m. Verification first affirms that the first component of the signature is the mark τ and then checks
σ as usual. If the adversary constructs a circuit that outputs valid signatures with probability
better than ε > 1/2 + 1/poly(λ), then the output of the circuit contains the mark τ on a majority
of inputs12. In this case, the extraction algorithm can evaluate the circuit on poly(λ) random inputs
and output the majority tag.

Another limitation of the Cohen et al. [CHN+16] definitions is that the unremovability security
definition only considers adversaries that mostly preserve the exact input/output behavior of the
marked circuit. While this seems like a natural notion of security, it can be too restrictive in many
settings. We show below (Remark B.3) that our basic construction satisfies the Cohen et al. security
definitions, and, yet, there is a simple adversary that can take a marked circuit and construct from
it a new circuit that outputs valid signatures but contains no information about the embedded
watermark. The circuit produced by this adversary does not match the exact input/output behavior
of the original marked circuit, and, thus, the existence of such an adversary does not violate the
unremovability security requirement. This demonstrates the need for more general definitions of
watermarking unremovability that better capture the full range of potential adversarial strategies.

Construction B.1 (Simple Watermarkable Signature Scheme). Let T be the mark space andM be
the message space for our watermarkable signature scheme. Let ΠSig = (S.Setup,S.Sign,S.Verify) be
a signature scheme for message spaceM. Below we describe our construction ΠWM = (WM.Setup,
Sig.Setup,Sign,Verify,Extract), where ε be the unremovability parameter.

WM.Setup(1λ)→ (mk, xk). The watermarking setup algorithm simply sets the watermarking pa-
rameters as mk = xk = ⊥. Namely, there are no watermarking parameters.

Sig.Setup(1λ,mk, τ)→ (sk, vk). The watermarkable signature setup algorithm runs the setup for the
underlying signature scheme S.Setup to generate secret-verification key pair as (sig.sk, sig.vk)←
S.Setup(1λ). It sets the watermarked key pair as sk = (sig.sk, τ) and vk = (sig.vk, τ).

Sign(sk,m)→ σ. Let sk = (sig.sk, τ). The signing algorithm first computes sig.σ ← Sign(sig.sk,m).
Next, it outputs the signature as σ = (sig.σ, τ).

Verify(vk,m, σ)→ 0/1. Let vk = (sig.vk, τ1) and σ = (sig.σ, τ2). The verification algorithm verifies
the underlying signature as z = S.Verify(sig.vk,m, sig.σ), and checks that marks are identical,
i.e. τ1 = τ2. It outputs 1 if both checks succeed. Otherwise, it outputs 0.

Extract(xk, C)→ τ/⊥. The extraction algorithm performs the following procedure T = λ/(ε− 1/2)
times:

— For i ∈ [T ], sample message mi ←M and compute (τi, σi)← C(m).

12The unremovability definition in Cohen et al. [CHN+16] (for message-embedding watermarking) is satisfiable only
when the adversary is restricted to constructing circuits that agree with the marked circuit on strictly more than
half of the inputs.
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Let S = (τ1, τ2, . . . , τT ) denote the sequence of marks as computed above. Next, let τ∗ ∈ T
be such that τ∗ = τi for at least T/2 marks τi ∈ S. The algorithm outputs τ∗ if such a mark
exists. Otherwise, it outputs ⊥.

The correctness of the scheme follows directly from the correctness of the underlying signature
scheme. For security, we can show the following.

Theorem B.2 (Watermarkable Signature Security ). Fix any unremovability parameter ε > 1/2 +
1/poly(λ). If ΠSig = (S.Setup,S.Sign,S.Verify) is a secure signature scheme, then ΠWM = (WM.Setup,
Sig.Setup,Sign,Verify,Extract) is a secure watermarkable signature scheme (under the Cohen et al. [CHN+16]
definition from Appendix B.1.1) with unremovability parameter ε.

Proof sketch. Here, we briefly sketch the proof of unforgeability and unremovability for the water-
markable signature scheme ΠWM described above. First, existential unforgeability follows directly
from the security of the underlying signature scheme ΠSig. This is because the watermarking mark-
ing and extraction keys are empty strings, and a marked secret-verification key pair simply consists
of a signing/verification key-pair for the underlying signature scheme together with the mark τ .
Thus, a valid forgery under a marked key directly gives a valid forgery under the unmarked key.

Next, we observe that ε-unforgeability follows in a straightforward manner by our construction.
Let ε = 1/2 + δ for some δ = 1/poly(λ). The main idea is as follows. Let C∗ be a (randomized)
circuit that is ε-close to the signing circuit Sign(sk, ·) where sk is marked with mark τ . We know
that the output of the signing circuit Sign(sk, ·) on every input is of the form (σ, τ) for some bit
string σ. Now since C∗ and Sign(sk, ·) agree on 1/2 + δ fraction of inputs, we can appeal to a
standard Chernoff bound and conclude that if we sample T = λ/(ε− 1/2) = λ/δ random messages
m, then with all but negl(λ) probability, the output on a majority of these messages will be identical
to the output of Sign(sk, ·). In this case, the extraction algorithm successfully recovers the mark τ
and unremovability follows.

Remark B.3 (Limitations of the Cohen et al. Definition). From a conceptual perspective, Con-
struction B.1 is unsatisfying since the scheme essentially concatenates the watermark to the sig-
nature, and moreover, the verification algorithm can ignore the mark altogether. Thus, given
a watermarked circuit C, an adversary can construct a circuit C ′ that, on input m, computes
(σ, τ)← C(m) and outputs σ. That is, the adversary’s circuit only outputs the signature and drops
the mark τ entirely. Of course, the extraction algorithm cannot extract a mark from C ′, and, yet,
C ′ still outputs signatures that would be accepted by the verification algorithm. While this may
appear to be a direct attack on the watermarking security game, the Cohen et al. model does
not allow for it: namely, the unremovability adversary is constrained to output a circuit whose
input/output behavior is identical to that of the marked circuit; this constraint effectively forces
the adversary to include the original mark in the outputs of its new circuit. In practice, this re-
quirement seems too restrictive, as any circuit that manages to produce valid signatures (and, yet,
does not contain the mark) should be considered a valid attack on the scheme.

The definitions we consider in this work (Section 3.1) capture these types of attacks. Specifically,
we require unremovability against any efficient adversary that produces a “useful” signing circuit
(i.e., a circuit that outputs valid signatures under the verification key), irrespective of whether
the outputs of the signing circuit are identical or not to those of the original circuit. We refer to
Section 3.1 for further discussion and comparison of our notions with those of Cohen et al.
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B.2 Watermarkable Public-Key Encryption

We start by recalling the notion of watermarkable encryption systems as introduced in [CHN+16].
We then provide some discussion of the definitions and then describe a simple generic construction
from any traitor tracing scheme that satisfies the existing definition.

B.2.1 Then [CHN+16] Definition for Watermarkable Public-Key Encryption

We recall the Cohen et al. [CHN+16] definition for watermarkable public-key encryption. A water-
markable public-key encryption scheme with message spaceM, mark space T , and ciphertext space
CT is a tuple of algorithms (WM.Setup,PKE.Setup,Enc,Dec,Extract) with the following syntax:

WM.Setup(1λ)→ (mk, xk). On input the security parameter λ, the watermarking setup algorithm
outputs a marking key mk and an extraction key xk.

PKE.Setup(1λ,mk, τ)→ (pk, sk). On input the security parameter λ, marking key mk and a mark
τ ∈ T , the PKE setup algorithm outputs a public-secret key pair (pk, sk).

Enc(pk,m)→ ct. On input a public key pk and a message m ∈ M, the encryption algorithm
outputs a ciphertext ct.

Dec(sk, ct)→ m. On input a secret key sk and a ciphertext ct ∈ CT , the decryption algorithm
outputs a message m.

Extract(xk, C)→ τ/⊥. On input the watermarking extraction key xk and a circuit C : CT → M,
the extraction algorithm either outputs a mark τ ∈ T or a special symbol ⊥.

Correctness. A watermarkable public-key encryption scheme is said to be correct if there exists
a negligible function negl(·) such that for all λ ∈ N, m ∈M, τ ∈ T , the following holds

Pr


 Dec(sk, ct) 6= m∨

Extract(xk,Decsk) 6= τ
:

(mk, xk)←WM.Setup(1λ),
(pk, sk)← PKE.Setup(1λ,mk, τ),

ct← Enc(pk,m)


 ≤ negl(λ).

Security. For security, they defined two requirements which were semantic security and unremov-
ability. Intuitively, for encryption security they required that IND-CPA should hold even when an
adversary gets to see the marking key mk and the extraction key xk. Unremovability requires that
given a marked decryption key sk, an adversary cannot produce a circuit C∗ such that it has a
different mark embedded but is still functionally close to the original decryption circuit Dec(sk, ·).
Formally we describe it below:

IND-CPA. For every stateful PPT attacker A, mark τ ∈ T , there exists a negligible function
negl(·) such that for all λ ∈ N, the following holds

Pr


A(ct) = b :

(mk, xk)←WM.Setup(1λ),
(pk, sk)← PKE.Setup(1λ,mk, τ),
(m0,m1)← A(1

λ,mk, xk, pk),
b← {0, 1}, ct ← Enc(pk,mb)


 ≤

1

2
+ negl(λ).
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ε-Unremovability. For every stateful PPT attacker A, mark τ ∈ T , there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr


 C∗ ∼=ε Dec(sk, ·)∧

Extract(xk, C∗) 6= τ
:

(mk, xk)←WM.Setup(1λ),
(pk, sk)← PKE.Setup(1λ,mk, τ),

C∗ ← A(1λ, sk, pk, xk)


 ≤ negl(λ),

where C∗ ∼=ε Dec(sk, ·) denotes that circuits C
∗ and Dec(sk, ·) agree on an ε fraction of their

inputs.

B.2.2 Limitations of the [CHN+16] Definition

The Cohen et al. definitions for watermarkable public-key encryption are direct analogs of their
corresponding definitions for watermarkable signatures and, as such, have a similar set of limitations.
Namely, there is a single algorithm responsible for both key-generation and marking (as opposed
to separate algorithms), and, moreover, the unremovability guarantee does not fully capture the
full range of potential adversarial strategies on the scheme itself. Here, we describe a simple
construction of a watermarkable public-key encryption scheme that would be considered secure
under the previous security definitions, but admits a simple and direct way to remove the watermark
from marked keys. The construction is analogous to Construction B.1 for watermarkable signatures,
so we just give a high-level sketch here:

• The watermarking setup algorithm samples a signing key skSig and a verification key vkSig for
a digital signature scheme. The marking key is the signing key skSig and the extraction key
is the verification key vkSig.

• The (marked) key-generation algorithm samples a public key pk and a secret key sk for a
vanilla public-key encryption scheme. It also computes a signature στ ← Sign(skSig, τ) on the
tag τ . An encryption of a message m is the pair (0,Enc(pk,m)). The marked decryption
algorithm takes in a ciphertext (b, ct) and outputs Dec(sk, ct) if b = 0 and outputs (τ, στ ) if
b = 1.

• Given a circuit C, the mark-extraction algorithm simply samples λ tuples of the form (1, ct),
for an arbitrary ciphertext ct, and computes C(ct). If it ever obtain a tuple of the form
(τ ′, στ ′) where στ ′ is a valid signature on τ ′ under vkSig, it outputs τ

′.

Essentially, the mark τ is just “concatenated” to the decryption key itself and is output whenever
the decryption circuit is invoked on a pair of the form (1, ct). Since honestly-generated ciphertexts
only outputs pairs of the form (0, ct), this decryption procedure does not affect correctness or
security of the underlying encryption scheme. This scheme satisfies the Cohen et al. definition
of unremovability because any admissible adversary is required to preserve the exact input/output
behavior of the marked decryption circuit on a (1/2 + ε)-fraction of the domain. In particular,
this means that the adversary’s circuit must output (τ, στ ) on an ε-fraction of pairs of the form
(1, ct). The signature is used to ensure that the extraction algorithm recovers the “correct” mark
(specifically, signature unforgeability ensures that the adversary cannot produce a new pair (τ ′, στ ′),
where τ ′ 6= τ and στ ′ is a valid signature on τ ′). Thus, this construction satisfies the Cohen et al.
definition. However, this seems like an unsatisfying construction as an adversary can construct a
circuit that preserves the behavior on all inputs of the form (0, ct) and ignores all inputs of the form
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(1, ct). Such a circuit will still correctly decrypt all ciphertexts output by the encryption algorithm,
but contains no information about the mark. In other words, the adversary has constructed an
“equally-good” decryption circuit but has completely removed the watermark.

Relation to traitor tracing. The above construction motivates the need for a more flexible
unremovability definition: namely, the definition should rule out any adversarial strategy that
produces a “useful” decryption circuit (as opposed to a circuit that approximates the exact input-
output behavior). This is the approach we take in this work when defining mark-unremovability.
In this case, watermarking public-key encryption has a very similar flavor with traitor tracing. In
fact, in the particular case where we allow a single algorithm that both generates the public/secret
keys together with the watermark, the notion is entirely subsumed by traitor tracing (even if we
consider the stronger type of unremovability security that we do in this work). In some sense,
watermarking as a stand-alone primitive is only interesting to study in the setting where we have
independent key-generation and marking procedures; otherwise, it suffices to study traitor tracing.
Here, we describe the construction of watermarking from any (embedded-identity) traitor-tracing
scheme (Appendix A.3) in the Cohen et al. setting where there is a combined key-generation and
marking algorithm:

Construction B.4 (Simple Watermarkable Public-Key Encryption Scheme). Let T = {0, 1}κ be
the mark space andM be the message space for our watermarkable PKE scheme for any parameter
κ ∈ N. We will use the following primitives:

• Let ΠTT = (TT.Setup,TT.KeyGen,TT.Enc,TT.Dec,TT.Trace) be an embedded-identity traitor
tracing system for message spaceM.

• Let ΠPKE = (P.Setup,P.Enc,P.Dec) be a PKE scheme for message spaceM.

Below we describe our construction ΠWM = (WM.Setup,PKE.Setup,Enc,Dec,Extract), where ε is
the unremovability parameter.

WM.Setup(1λ)→ (mk, xk). The setup algorithm first samples (tt.msk, tt.pk, tt.tk)← TT.Setup(1λ, 1ℓ).
It sets the watermarking parameters as mk = (tt.pk, tt.msk) and xk = tt.tk.

PKE.Setup(1λ,mk, τ)→ (pk, sk). Let mk = (tt.pk, tt.msk). It samples a public/secret key-pair
as (pke.pk, pke.sk) ← P.Setup(1λ), and samples a traitor tracing private key as tt.skτ ←
TT.KeyGen(tt.msk, τ). Finally, it sets key pair as pk = (pke.pk, tt.pk) and sk = (pke.sk, tt.skτ ).

Enc(pk,m)→ ct. Let pk = (pke.sk, tt.pk). The encryption algorithm first samples a random mes-
sage r ←M, and encrypts messages m⊕ r and r under the PKE and traitor tracing schemes,
respectively, as ct1 ← P.Enc(pke.pk,m⊕ r) and ct2 ← TT.Enc(tt.pk, r). It outputs the cipher-
text as ct = (ct1, ct2).

Dec(sk, ct)→ m/⊥. Let sk = (pke.sk, tt.sk) and ct = (ct1, ct2). The decryption algorithm decrypts
ct1 and ct2 as z1 ← P.Dec(pke.sk, ct1) and z2 ← TT.Dec(tt.sk, ct2). It outputs ⊥ if either z1
or z2 are ⊥. Otherwise it outputs the decrypted message as z1 ⊕ z2.

Extract(xk, (m0,m1), C)→ τ/⊥.13 The extraction algorithm samples r ←M and runs the tracing
algorithm to obtain S ← TT.TraceDC (xk, 11/ε,m0⊕ r,m1⊕ r), where every query c̃t made by
the tracing algorithm to decoder DC is answered as follows:

13Here, we consider the stronger unremovability notion we consider in this work where we only require that the
adversary’s circuit C is able to distinguish between (honest) encryptions of messages m0 and m1.
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1. On each query c̃t, the extraction algorithm encrypts r as ct1 ← P.Enc(pke.pk, r).

2. Next, it runs the circuit C on ct = (ct1, c̃t) to obtain a bit b. It gives b to the tracing
algorithm.

Finally, if S = ⊥, then the extraction algorithm outputs ⊥. Otherwise, it outputs the mark
S as the output.14

Correctness and security. Correctness of the scheme follows directly from the correctness of
the underlying PKE and traitor tracing schemes. For IND-CPA security, we can simply rely on
IND-CPA security of the underlying PKE scheme. This is because the encryption procedure for
the watermarkable PKE scheme splits the message into two independent shares, and encrypts one
share under the PKE scheme and the other under the traitor tracing system. This means that
even if all the traitor tracing secret keys were leaked, we can still argue IND-CPA security for
the watermarkable PKE scheme by relying on IND-CPA security of the underlying PKE scheme.
For unforgeability, we only need to argue that if the adversarially created circuit C∗ is ε-close to
the decryption circuit, then the decoder algorithm DC∗ (as describe above) is a ε-good decoder
according to the traitor tracing definition. This follows directly by our construction, and thus by
security of tracing of the traitor tracing scheme, we obtain ε-unremovability.

Here we want to point out that for security, we do not require a fully collusion resistant secure
traitor tracing scheme. On the contrary, a 1-bounded collusion secure traitor tracing scheme already
suffices. Since a bounded collusion secure traitor tracing scheme can be built from any regular PKE
scheme, our construction above shows that any PKE scheme in fact implies a watermarkable PKE
scheme under the Cohen et al. [CHN+16] definition (even augmented with a stronger unremovability
definition).

C Watermarking Predicate Encryption from Hierarchical FE

In this section, we show how to construct a bounded collusion resistant watermarkable predicate en-
cryption scheme for general predicates from any bounded collusion resistant hierarchical functional
encryption scheme for general circuits.

C.1 Building Block: Hierarchical FE

We begin by reviewing the notion of a hierarchical FE scheme that we will use in our construction.
A hierarchical functional encryption (hierarchical FE) scheme [ABG+13, BCG+17] with domain X ,
range Y, and function space F is a tuple of algorithms ΠHFE = (Setup,KeyGen,Enc,Dec,Delegate)
with the following syntax:

Setup(1λ)→ (mpk,msk). On input the security parameter λ, the setup algorithm outputs the mas-
ter public key mpk and the master secret key msk.

KeyGen(msk, f)→ skf . On input the master secret key msk and a function f ∈ F , the key-
generation algorithm outputs a secret key skf .

14Note that our extraction algorithm could also perform a list decoding style extraction and output more than one
mark τ ∈ T if the unremovability parameter ε was lower than 1/2.

52



Enc(mpk, x)→ ctx. On input the master public key mpk and an input x ∈ X , the encryption
algorithm outputs a ciphertext ctx.

Dec(sk, ct)→ y/⊥. On input a secret key sk and a ciphertext ct, the decryption algorithm either
outputs a value y ∈ Y or a special symbol ⊥.

Delegate(skf , g)→ skg◦f . On input a secret key skf and a function g ∈ F , the delegate algorithm
outputs a secret key skg◦f .

Correctness. For all x ∈ X and functions f ∈ F , if we sample (mpk,msk) ← Setup(1λ), skf ←
KeyGen(msk, f), and ctx ← Enc(mpk, x), then

Pr[Dec(skf , ctx) = f(x)] = 1.

Correctness of delegation. For all x ∈ X and functions f, g ∈ F where g ◦ f ∈ F , if we sample
(mpk,msk) ← Setup(1λ), skf ← KeyGen(msk, f), skg◦f ← Delegate(skf , g), and ctx ← Enc(mpk, x),
then

Pr[Dec(skg◦f , ctx) = g(f(x))] = 1.

Note that this definition only considers correctness for single-hop delegation. We can define a
corresponding notion of multi-hop delegation correctness. However, single-hop delegation already
suffices for our construction.

Security. A hierarchical FE scheme ΠHFE = (Setup,KeyGen,Enc,Dec,Delegate) is said to be secure
if for every stateful PPT adversary A, there exists a negligible function negl(·), such that for every
λ ∈ N the following holds:

Pr


AO(msk,·)(ct) = b :

(mpk,msk)← Setup(1λ)

(x0, x1)← A
O(msk,·)(1λ,mpk)

b← {0, 1}, ct← Enc(mpk, xb)


 ≤ 1

2
+ negl(λ),

where the oracle O(msk, ·) is a stateful oracle initialized with parameter n := 1, and takes as input
a tuple (f, ind,mode) ∈ F × N × {StoreKey,OutputKey,DelegateKey}, and answers each query as
follows:

• If mode = StoreKey, then the challenger generates skf ← KeyGen(msk, f), stores (n, f, skf )
and replies with (n,⊥). It also updates n := n+ 1.

• If mode = OutputKey, then the challenger first checks if there exists a key tuple of the form
(ind, g, skg). If no such tuple exists or if g(x0) = g(x1), it outputs ⊥. Otherwise, it replies
with (ind, skg).

• If mode = DelegateKey, then the challenger first checks if there exists a key tuple of the form
(ind, g, skg). If no such tuple exists or if f(g(x0)) = f(g(x1)), it outputs ⊥. Otherwise, it
generates skg,f ← Delegate(skg, f) and replies with (ind, skg,f ).

Remark C.1 (Collusion Resistance). For any fixed polynomial q(·). Similar to Remark 4.6, we say
that a (hierarchical) functional encryption scheme ΠHFE is q-bounded collusion secure if the security
property holds against all efficient adversaries that make at most q(λ) key-generation queries.
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C.2 Watermarkable PE from Hierarchical FE

We now show how to construct a fully-public watermarkable PE scheme with bounded collusion
resistance from any hierarchical FE scheme (which can in turn be based on the existence of any
public-key encryption scheme [AV19]).

Construction C.2 (Watermarkable PE from Hierarchical FE). Let M = {0, 1}n be a message
space, X = {0, 1}ℓ \

{
1ℓ
}
be an attribute space, F ⊆ Funs[{0, 1}ℓ, {0, 1}] be a class of predicates,

and T ⊆ X = {0, 1}ℓ \
{
1ℓ
}
be a mark space. Let ε = 1/poly(λ) be an unremovability parameter.

We rely on the following ingredients:

• For a function f ∈ F , let gf : {0, 1}
ℓ+n+1 → {0, 1}ℓ+n be the function defined as follows:

gf (x,m, b) =





(x,m) b = 0

(0ℓ, 0n) b = 1 and f(x) = 0

(1ℓ,m) b = 1 and f(x) = 1,

(C.1)

where x ∈ {0, 1}ℓ, m ∈ {0, 1}n, and b ∈ {0, 1}. Define the function class G = {f ∈ F : gf}.

• For a mark τ ∈ {0, 1}ℓ, define the function hτ : {0, 1}
ℓ+n → {0, 1}ℓ+n as follows:

hτ (x,m) =

{
(0ℓ, 0n) x < τ

(1ℓ,m) x ≥ τ,
(C.2)

where x ∈ {0, 1}ℓ and m ∈ {0, 1}n and are interpreted as values in [0, 2ℓ − 1] and [0, 2n − 1],
respectively.

• Let ΠHFE = (HFE.Setup,HFE.KeyGen,HFE.Enc,HFE.Dec,HFE.Delegate) be a hierarchical FE
scheme with domain {0, 1}ℓ+n+1, range {0, 1}ℓ+n, and function class G. Let CT be the space
of ciphertexts for ΠHFE.

We construct a watermarkable predicate encryption scheme ΠWM = (WMSetup,PESetup,KeyGen,
Enc,Dec,Mark,Extract) as follows:

• WMSetup(1λ) → (wpp,mk, xk): On input the security parameter λ, the setup algorithm
outputs wpp,mk, xk = ⊥. Namely, the scheme does not require any watermarking parameters.

• PESetup(1λ,wpp) → (mpk,msk): On input the security parameter λ and the public parame-
ters wpp = ⊥, the key-generation algorithm outputs a key-pair (mpk,msk)← HFE.Setup(1λ).

• KeyGen(msk, f) → skf : On input the master secret key msk and a function f ∈ F , the key-
generation algorithm outputs a secret key skf ← HFE.KeyGen(msk, gf ), where gf is defined
in Eq. (C.1).

• Enc(mpk, x,m) → ctx,m: On input the master public key mpk, an attribute x ∈ {0, 1}ℓ, and
a message m ∈ {0, 1}n, the encryption algorithm outputs ctx,m ← HFE.Enc(mpk, (x,m, 1)) ∈
CT .

• Dec(sk, ct) → m/⊥: On input a secret key sk and a ciphertext ct, the decryption algorithm
computes y ← HFE.Dec(sk, ct). If y = ⊥, then output ⊥. Otherwise, it parses y = (x,m′)
where x ∈ {0, 1}ℓ and m′ ∈ {0, 1}n. It outputs m′ if x = 1ℓ and ⊥ otherwise.
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• Mark(mk, sk, τ) → Cτ : On input the marking key mk = ⊥, a secret key sk, and a mark
τ ∈ {0, 1}t, the marking algorithm constructs a new key skτ ← HFE.Delegate(sk, hτ ), where
hτ is defined in Eq. (C.2). Finally, it outputs the circuit C : CT → M∪ {⊥} that computes
the marked function P [z, skτ ] defined as follows:

On input a ciphertext ct ∈ CT :

1. Compute y ← HFE.Dec(skτ , ct). If y = ⊥, output ⊥.
2. Otherwise, parse y = (x,m′), where x ∈ {0, 1}ℓ and m′ ∈ {0, 1}n. Output m′ if

x = 1ℓ and ⊥ otherwise.

Figure 4: The marked function P [skτ ]

• Extract(xk,mpk, (m0,m1), C, q) → τ/⊥:15 On input the extraction key xk = ⊥, a master
public key mpk, two messages m0,m1 ∈ {0, 1}

n, and a circuit C : CT → M ∪ {⊥}, the
extraction algorithm constructs the following function QC : {0, 1}ℓ → {0, 1}:

On input x ∈ {0, 1}ℓ (interpreted as a value in [0, 2ℓ − 1]):

– Sample a random bit b ← {0, 1} and construct the ciphertext ct ←
HFE.Enc(mpk, (x,mb, 0)).

– Run the circuit C on ct to obtain a message m′ ← C(ct).

– Output 1 if m′ = mb and 0 otherwise.

Figure 5: The extraction test function QC

Let δ = ε/(5+2(ℓ− 1)q) and compute τ ← QTraceQC (λ, 2ℓ− 1, q, δ, ε). If τ = 1ℓ, then output
⊥. Otherwise, output τ .

Correctness and security analysis. We now state our correctness and security theorems, but
defer their formal analysis to Section C.3.

Theorem C.3 (Correctness). If ΠHFE is correct and secure, then the watermarkable predicate en-
cryption scheme ΠWM from Construction C.2 satisfies correctness, meaningfulness, and functionality-
preserving.

Theorem C.4 (Predicate Encryption Security). If ΠHFE is secure, then the watermarkable pred-
icate encryption scheme ΠWM Construction C.2 satisfies encryption security in the presence of a
malicious authority.

Theorem C.5 (Unremovability). Take any ε = 1/poly(λ). If ΠHFE is secure, then the watermark-
able predicate encryption scheme ΠWM from Construction C.2 is ε-unremovable.
15This particular Extract algorithm does not need to take in an attribute x ∈ X as input. Similar to our construction
from Section 4.3, we provide a bound q as an additional argument to the algorithm. We can use the same technique
from Remark 4.12 to obtain an algorithm that does not depend on q.
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C.3 Analysis of Watermarkable Predicate Encryption

In this section, we give the correctness and security analysis of the watermarkable predicate encryp-
tion scheme from Appendix C.2.

Proof of Theorem C.3 (Correctness). We check each of the properties below:

• Correctness of decryption: Take any message m∗ ∈ M, any tag τ ∈ T , any attribute
x ∈ X , and a function f ∈ F . Let (wpp,mk, xk) ← WMSetup(1λ). Take (mpk,msk) ←
PESetup(1λ,wpp), skf ← KeyGen(msk, f), and ct ← Enc(mpk, x,m∗). By construction ct ←
HFE.Enc(mpk, (x,m, 1)), and skf ← HFE.KeyGen(msk, gf ). By definition of gf (Eq. (C.1)),
we have that gf (x,m, 1) = (1ℓ,m) if f(x) = 1 and gf (x,m, 0) = (0ℓ, 0n) if f(x) = 0. Thus, by
correctness of of ΠHFE, HFE.Dec(skf , ctx,m) outputs (1ℓ,m) when f(x) = 1 and (0ℓ, 0n) when
f(x) = 0. In this case, Dec outputs m when f(x) = 1 and ⊥ when f(x) = 0.

• Correctness of extraction: Take any two messages m0,m1 ∈ M, any tag τ ∈ T , an
attribute x ∈ X , and a function f ∈ F . Let (wpp,mk, xk) ← WMSetup(1λ), (mpk,msk) ←
PESetup(1λ,wpp), skf ← KeyGen(msk, f), and C ← Mark(mk, skf , τ). Fix any polynomial
q in λ. Let QC be the extraction test function from Fig. 5. We claim that on every input
τ∗ ∈ T , the function QC outputs 1 if τ∗ ≥ τ and and 0 otherwise.

Take τ∗ ∈ T , and consider the value QC(τ
∗). Then, QC constructs a ciphertext ct ←

HFE.Enc(mpk, (τ∗,mb, 0)), and computes C(ct) = P [skτ ](ct). By definition, P [skτ ] starts by
computing HFE.Dec(skτ , ct). By correctness of ΠHFE, HFE.Dec(skτ , ct) outputs

hτ (gf (τ
∗,mb, 0)) = hτ (τ

∗,mb).

When τ∗ ≥ τ , decryption outputs (1ℓ,mb) and P [skτ ] outputs mb. Otherwise, if τ∗ < τ ,
decryption outputs (0ℓ, 0n) and P [skτ ] outputs ⊥. Thus, QC outputs 1 if τ∗ ≥ τ and 0
otherwise. The claim then follows from Theorem 4.9.

• Meaningfulness: We show the two conditions separately:

– Most circuits unmarked. Take any fixed circuit C : CT →M∪{⊥} and any pair of mes-
sagesm0,m1 ∈ M. Sample (wpp,mk, xk)← Setup(1λ) and (mpk,msk)← PESetup(1λ,wpp).
Consider Extract(xk,mpk, (m0,m1), C), and, correspondingly, the behavior of the extrac-
tion test algorithm QC . By semantic security of ΠHFE, the probability that the circuit
C (which is chosen independently of the parameters for the hierarchical FE scheme) is
able to distinguish between honestly-generated encryptions of (x,m0, 0) and (x,m1, 1)
for any x ∈ X is negligible. Thus, for all x ∈ {0, 1}ℓ, QC(x) outputs 1 with probability
that is negligibly close to 1/2. In this case, QTraceQC always outputs ⊥, and the claim
follows.

– Extraction fails on unmarked keys. Let (wpp,mk, sk) ← Setup(1λ) and take any two
messages m0,m1 ∈ M and a function f ∈ F . Let (mpk,msk) ← PESetup(1λ,wpp) and
skf ← KeyGen(msk, f). Consider the output of Extract(xk,mpk, (m0,m1),Dec(skf , ·)).
We consider the properties of QDec(skf ,·). By correctness of ΠHFE, for any x ∈ {0, 1}ℓ,
HFE.Dec(skf ,HFE.Enc(mpk, (x,mb, 0))) = (x,mb). This means that QDec(skf ,·)(x) = 0

for all x 6= 1ℓ, and QDec(skf ,·)(x) = 1 when x = 1ℓ. By Theorem 4.9, this means that
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QTrace
QDec(skf ,·) will always output 1ℓ and Extract(xk,mpk, (m0,m1),HFE.Dec(sk, ·), q)

outputs ⊥ for all q = q(λ).

• Functionality-preserving: Functionality-preserving follows from correctness of ΠHFE. Take
any attribute x ∈ X , messagem ∈ M, function f ∈ F , and tag τ ∈ T . Sample (wpp,mk, xk)←
Setup(1λ), skf ← KeyGen(msk, f), ct ← Enc(mpk, x,m), and C ← Mark(mk, skf , τ). In this
case, ct is an encryption of (x,m, 1) under ΠHFE. Suppose f(x) = 1, and consider the value
of C(ct). The circuit C first computes HFE.Dec(skτ , ct) which by correctness of ΠHFE outputs
hτ (gf (x,m, 1)) = hτ (1

ℓ,m) = (1ℓ,m). By definition, the output of C(ct) is then m, and the
claim follows.

Proof of Theorem C.4 (Predicate Encryption Security). Suppose there exists an (admissi-
ble) adversary A that breaks security of the underlying predicate encryption scheme in the presence
of a malicious adversary. We use A to construct an adversary B for security of ΠHFE:

1. Algorithm B receives the master public key mpk for the hierarchical FE scheme from the
ΠHFE challenger. It gives mpk to A. Note that since there are no public parameters in
Construction C.2, the adversary A does not get to choose any public parameters.

2. When A makes a key-generation query on a function f ∈ F , algorithm B makes a key-
generation query for the function gf to ΠHFE and obtains a key skf . Algorithm B sends skf
to A.

3. When Amakes a challenge query on a pair of attributes x0, x1 ∈ X and messages m0,m1 ∈ M,
algorithm B submits (x0,m0, 1) and (x1,m1, 1) as its challenge query to the ΠHFE challenger
and receives a ciphertext ct. Algorithm B replies to A with ct.

4. At the end of the game, algorithm A outputs a bit b′ ∈ {0, 1}, which B outputs.

First, we argue that B is admissible. Since A is an admissible adversary for the predicate encryption
scheme, it holds that for all key-generation queries f ∈ F that A makes, one of the following
properties hold:

• f(x0) = 0 = f(x1). In this case, gf (x0,m0, 1) = (0ℓ, 0n) = gf (x1,m1, 1).

• f(x0) = 1 = f(x1) and m0 = m1. In this case,

gf (x0,m0, 1) = (1ℓ,m0) = (1ℓ,m1) = gf (x1,m1, 1).

Thus, B is admissible. Finally, if ct′ is an encryption of (x0,m0, 1), then B perfectly simulates the
experiment where b = 0 while if ct′ is an encryption of (x1,m1, 1), then B perfectly simulates the
experiment where b = 1. Thus, if A breaks security of the induced predicate encryption scheme
with non-negligible advantage, B breaks security of ΠHFE with the same advantage.

Proof of Theorem C.5 (Unremovability). Let A be an efficient ε-unremoving-admissible
adversary for ΠWM. Let C∗ be the circuit that A outputs at the end of the security game. First,
define PC∗(x) := Pr[QC∗(x) = 1]. We now show that the extraction test function QC∗ from Figure 5
used by the Extract function satisfies each of the conditions from Theorem 4.9.

Lemma C.6. If ΠHFE is secure, then PC∗(0) ≤ 1/2 + negl(λ).

57



Proof. Suppose that with non-negligible probability ε1, algorithm A outputs a circuit C∗ where
PC∗(0) ≥ ε2 = 1/2 + ε′2 for some ε′2 = 1/poly(λ). We use A to build an adversary B for ΠHFE:

• Simulating the unremovability game: At the beginning of the game, algorithm B re-
ceives the master public key mpk from the hierarchical FE challenger. It gives mpk to A.
Algorithm A then specifies a function f and B issues a key-generation query for the function
(gf , 0,StoreKey) to A, where gf is as defined in Eq. (C.1). Algorithm B receives a tuple
(1,⊥) from the challenger. Whenever A makes a marking oracle query on a mark τ ∈ {0, 1}ℓ,
the challenger makes a key-generation query (hτ , 1,OutputKey) where hτ is as defined in
Eq. (C.2), and obtains a tuple (i, skτ ) for some i ∈ N. Algorithm B replies to A with a circuit
C : CT → M ∪ {⊥} that computes the marked function P [skτ ] from Figure 4. At the end
of the simulation, A outputs an attribute x ∈ X , two messages m0,m1 ∈ M, and a circuit
C∗ : CT →M∪ {⊥}.

• Good decoder check: Let δ = ε′2/4, ε′ = ε′2/2, and ξ = λ/δ2. Algorithm B samples
bi ← {0, 1}, sets mi ← mbi , and computes cti ← HFE.Enc(mpk, (0ℓ,mi, 0)) for all i ∈ [ξ]. Let
N be the number of indices i ∈ [ξ] where C∗(cti) = mi. If N < (1/2 + ε′ + δ)ξ, then B sets
the Bad flag.

• Output computation: If algorithm B has not set the Bad flag, then it submits the pair
(0ℓ,m0, 0) and (0ℓ,m1, 0) as its challenge query and obtains a challenge ciphertext ct∗. It
computes m′ ← C∗(ct∗) and outputs 0 if m′ = m0 and 1 if m′ = m1. If m′ 6= m0 and
m′ 6= m1, or the Bad flag has been set, then B outputs a random bit.

First, we argue that B is admissible for the hierarchical FE security game. By definition, for all
τ ∈ {0, 1}ℓ and all m ∈ M, we have hτ (gf (0

ℓ,m, 0)) = hτ (0
ℓ,m) = (0ℓ, 0n). Next, by construction,

B perfectly simulates the unremovability security game for A so with probability ε1, A outputs a
circuit C∗ where PC∗(0) ≥ 1/2 + ε2. Let b ∈ {0, 1} be the bit sampled by the ΠHFE challenger.
We compute the probability that B outputs b. We now show that with noticeable probability, B
does not set the Bad flag, and moreover, when the Bad flag is not set, algorithm B achieves a
non-negligible distinguishing advantage.

• We show that with probability at least ε1 − negl(λ), algorithm B does not set the Bad flag
in the decoder-check step. By assumption, with probability ε1, the circuit C∗ output by A
satisfies PC∗(0) ≥ 1/2 + ε′2. This means that Pr[C∗(cti) = mi] ≥ 1/2 + ε′2. Suppose this is
the case. Then, appealing to Hoeffding’s inequality, we have that

Pr[N < (1/2 + ε′ + δ)ξ] = Pr[(1/2 + ε′2)ξ −N > δξ] ≤ 2−Ω(δ2ξ) = negl(λ).

Thus, if PC∗(0) ≥ 1/2 + ε′2, then B does not set the Bad flag with 1 − negl(λ) probability.
Correspondingly, this means that with probability at least ε1 − negl(λ), B does not set the
Bad flag.

• Next, we show that if B does not set Bad, then PC∗(0) ≥ 1/2 + ε′. To see this, suppose that
PC∗(0) < 1/2 + ε′. We show that B sets the Bad flag with overwhelming probability in this
case. By construction, Pr[C∗(cti) = mi] = PC∗(0). We appeal to Hoeffding’s inequality to
conclude that in this case,

Pr[N > (1/2 + ε′ + δ)ξ] = Pr[N − (1/2 + ε′)ξ > δξ] ≤ 2−Ω(δ2ξ) = negl(λ).
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Thus, in this case, B sets the Bad flag with overwhelming probability. Equivalently, if B
does not set the Bad flag, then with overwhelming probability, it must be the case that
PC∗(0) ≥ 1/2 + ε′.

• By construction, if B does not set the Bad flag, then it outputs b with probability PC∗(0).

Combining the above, we conclude that the distinguishing advantage of B is 1/2+ ε1ε
′
2/2− negl(λ),

and ε1ε
′
2/2 is non-negligible, which concludes the proof.

Lemma C.7. If ΠHFE is secure, then Pr[f(x∗) 6= 1] = negl(λ) where f is the function chosen by
A at the beginning of the unremovability game and x∗ is the attribute that A outputs at the end of
the unremovability game.

Proof. Suppose there exists an efficient and ε-admissible adversary A that commits to some function
f and outputs an attribute x∗ where f(x∗) 6= 1 with non-negligible probability ε1. We use A to
construct an algorithm B that breaks security of ΠHFE:

• Simulating the unremovability game: Algorithm B simulates the unremovability game
using the same procedure as in the proof of Lemma C.6. At the end of the simulation, A
outputs an attribute x∗, two messages m0,m1 ∈ M, and a circuit C∗ : CT →M∪ {⊥}.

• Good decoder check: Let δ = ε/4, ε′ = ε/2, and ξ = λ/δ2. Algorithm B samples
bi ← {0, 1}, sets mi ← mbi , and computes cti ← HFE.Enc(mpk, (x∗,mi, 1)) for all i ∈ [ξ]. Let
N be the number of indices i ∈ [ξ] where C∗(cti) = mi. If N < (1/2 + ε′ + δ)ξ, then B sets
the Bad1 flag.

• Output computation: If f(x∗) = 1, then algorithm B sets the Bad2 flag. Otherwise,
algorithm B samples two random messages m0,m1 ←M and submits the pair (x,m0, 1) and
(x,m1, 1) as its challenge query and obtains a ciphertext ct∗. It computes m′ ← C∗(ct∗) and
outputs 0 if m′ = m0 and 1 if m′ = m1. If m

′ 6= m0 and m′ 6= m1, or the Bad1 or Bad2 flags
have been set, then algorithm B outputs a random bit.

Algorithm B is admissible since it only makes a challenge query when f(x∗) 6= 1, in which case
we have that for all τ ∈ T and m ∈ M, hτ (gf (x,m, 1)) = hτ (0

ℓ, 0n). Since B perfectly simulates
the unremovability game for A, it follows that with probability ε1, A outputs a circuit C∗ and an
attribute x∗ where f(x∗) 6= 1. It suffices to only consider this case (since otherwise, B outputs ⊥).

• Since A is ε-admissible, Pr[C∗(cti) = mi] ≥ 1/2+ ε where ε = 1/poly(λ). Using an analogous
argument as that in the proof of Lemma C.6, algorithm B will set Bad1 with negligible
probability.

• Using a similar argument as in the proof of Lemma C.6, conditioned on the Bad1 flag not
being set, algorithm B will output the correct value of b (where b is the challenge bit sampled
by the ΠHFE challenger) with probability at least 1/2 + ε′ − negl(λ).

By assumption, f(x∗) 6= 1 with probability ε1. Thus, algorithm B outputs b with probability at
least 1/2 + ε1ε

′ − negl(λ), and ε1ε
′ = ε1ε/2 is non-negligible.

Lemma C.8. If ΠHFE is secure, then PC∗(1ℓ) ≥ 1/2 + ε− negl(λ).
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Proof. Suppose that with non-negligible probability ε1, algorithm A outputs a circuit C∗ where
PC∗(1ℓ) ≤ 1/2 + ε − ε2 for some ε2 = 1/poly(λ). We use A to build an adversary B that breaks
ΠHFE:

• Simulating the unremovability game: Algorithm B simulates the unremovability game
using the same procedure as the corresponding algorithm in the proof of Lemma C.6. Let
f be the function A chooses at the beginning of the unremovability game. At the end
of the simulation, A outputs an attribute x∗, two messages m0,m1 ∈ M, and a circuit
C∗ : CT →M∪ {⊥}.

• Good decoder check: If f(x∗) 6= 1, then B sets the Bad1 flag. Next, let δ = ε2/4, ε
′ =

ε − ε2/2, and ξ = λ/δ2. Algorithm B samples bi ← {0, 1}, sets mi = mbi , and computes
cti ← HFE.Enc(mpk, (1ℓ,mi, 0)) for all i ∈ [ξ]. Let N be the number of indices i ∈ [ξ] where
C∗(cti) = mi. If N > (1/2 + ε′)ξ, then B sets the Bad2 flag.

• Output computation: If both the Bad1 and Bad2 flag have not been set, then B chooses a
random bit b′ ← {0, 1}, and submits the pair (1ℓ,mb′ , 0) and (x∗,mb′ , 1) as its challenge query
and obtains a challenge ciphertext ct∗. It computes m′ ← C∗(ct∗) If m′ = mb′ , it outputs
1, and otherwise, it outputs 0. If either Bad1 or Bad2 flags have been set, then B outputs a
random bit.

First, we argue that B is admissible for the hierarchical FE security game. By construction, B only
makes a challenge query if f(x∗) = 1. In this case, for all τ ∈ {0, 1}ℓ and m ∈ {0, 1}n,

hτ (gf (1
ℓ,m, 0)) = hτ (1

ℓ,m) = hτ (gf (x
∗,m, 1)).

Now, let b be the challenge bit sampled by the ΠHFE challenger. We compute the probability that
B outputs b. We focus on the case where B does not set the Bad1 and Bad2 flags (since otherwise,
B outputs a random bit, which does not contribute to its distinguishing advantage). We first show
that with probability ε1 − negl(λ), algorithm B does not set Bad1 or Bad2.

• By Lemma C.7, then f(x∗) = 1 with overwhelming probability. Thus, with overwhelming
probability, the Bad1 flag is not set.

• We show that with probability at least ε1 − negl(λ), algorithm B does not set the Bad2 flag
in the decoder-check step. First, B perfectly simulates the unforgeability game for A, so by
assumption, with probability ε1, PC∗(1ℓ) ≤ 1/2 + ε− ε2, or equivalently,

Pr[C∗(cti) = mi] ≤ 1/2 + ε− ε2 = 1/2 + ε′ − 2δ

for all i ∈ [ξ]. Again appealing to Hoeffding’s inequality, we have that

Pr[N > (1/2 + ε′)ξ] = Pr[N − (1/2 + ε′ − 2δ)ξ > 2δξ] ≤ 2−Ω(δ2ξ) = 2−Ω(λ) = negl(λ).

Thus, when PC∗(1ℓ) ≤ 1/2 + ε − ε2, algorithm B sets Bad2 with negligible probability, or
equivalently, with probability at least ε1 − negl(λ), algorithm B does not set the Bad2 flag.

Now, we consider the distinguishing advantage of B conditioned on Bad1 and Bad2 being unset. We
consider the two possibilities for the challenger’s choice bit b:
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• Suppose b = 0. In this case, the challenge replies with HFE.Enc(1ℓ,mb′ , 0). In this case,
Pr[C∗(ct∗) = mb′ ] = PC∗(1ℓ). Conditioned on Bad2 not being set, PC∗(1ℓ) < 1/2+ ε′+ δ with
overwhelming probability. To see this, suppose otherwise. This means that for all i ∈ [ξ],
Pr[C∗(cti) = mi] ≥ 1/2 + ε′ + δ. By Hoeffding’s inequality,

Pr[N ≤ (1/2 + ε′)ξ] = Pr[(1/2 + ε′ + δ)ξ −N ≥ δξ] ≤ 2−Ω(δ2ξ) = 2−Ω(λ) = negl(λ).

Thus, with overwhelming probability, if Bad2 has not been set, then PC∗(1ℓ) < 1/2 + ε′ + δ,
and correspondingly, in this case, Pr[C∗(ct∗) = mb′ ] < 1/2 + ε′ + δ. Thus, in this case, B will
output 0 with probability at least

1− (1/2 + ε′ + δ) = 1/2− ε′ − δ = 1/2 − ε+ ε2/4.

• Suppose b = 1. In this case, the challenger replies with HFE.Enc(x∗,mb′ , 1). Since A is
ε-admissible, it follows that Pr[C∗(ct∗) = mb′ ] ≥ 1/2 + ε. In this case, B outputs 1 with
probability 1/2 + ε.

Since the challenger samples b uniformly at random, we have that conditioned on Bad1 and Bad2
not being set,

Pr[B outputs b] =
1

2

(
1

2
− ε+

ε2
4

)
+

1

2

(
1

2
+ ε

)
− negl(λ) =

1

2
+

ε2
8
− negl(λ).

The overall distinguishing advantage of B is then 1/2+ε1ε2/8−negl(λ), and ε1ε2/8 is non-negligible,
which concludes the proof.

Lemma C.9. Let Q be the set of identities the adversary A queries in the unremovability game.
If ΠHFE is secure, then for any x, y ∈ [0, 2ℓ − 1] where x < y and [x + 1, y] ∩ Q = ∅, then
|PC∗(x)− PC∗(y)| = negl(λ).

Proof. This proof follows a single structure as the proof of Lemma C.8. Namely, suppose with
non-negligible probability ε1, algorithm A outputs a circuit C∗ where |PC∗(x)− PC∗(y)| = ε2 =
1/poly(λ). Without loss of generality, suppose that PC∗(x) < PC∗(y), in which case our assumption
becomes PC∗(y) − PC∗(x) = ε2. The case where PC∗(x) > PC∗(y) is analogous. We use A to
construct an adversary B that breaks ΠHFE:

• Simulating the unremovability game: Algorithm B simulates the unremovability game
using the same procedure as the corresponding algorithm in the proof of Lemma C.6. Let f be
the function A chooses at the beginning of the unremovability game. Let f be the function
A chooses at the beginning of the unremovability game. At the end of the simulation, A
outputs an attribute x∗, two messages m0,m1 ∈ M, and a circuit C∗ : CT →M∪ {⊥}.

• Good decoder check: Let δ = ε2/8 and let ξ = λ/δ2. Algorithm B samples bi ← {0, 1},
sets mi = mbi , and computes cti ← HFE.Enc(mpk, (x,mi, 0)) for all i ∈ [ξ]. Let Nx be the
number of indices i ∈ [ξ] where C∗(cti) = mi. Algorithm B then repeats this procedure
by sampling a fresh set of b′i ← {0, 1}, sets m′

i = mb′i
, and computes ciphertexts ct′i ←

HFE.Enc(mpk, (y,m′
i, 0)), and sets Ny to be the number of indices i ∈ [ξ] where C∗(ct′i) = m′

i.
If Ny −Nx ≤ (ε2/2)ξ, algorithm B sets the Bad flag.
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• Output computation: If B has not set the Bad flag, then it samples a random bit b′ ← {0, 1}
and submits the pair (x,mb′ , 0) and (y,mb′ , 0) as its challenge query and obtains the challenge
ciphertext ct∗. It outputs 1 if C∗(ct∗) = mb′ and 0 otherwise.

First, we argue that B is admissible. Take any τ ∈ Q. Suppose x ≤ τ , which means by assumption,
y ≤ τ . Then, for all messages m ∈ {0, 1}n,

hτ (gf (x,m, 0)) = hτ (x,m) = (0ℓ, 0n) = hτ (y,m) = hτ (gf (y,m, 0)). (C.3)

Similarly, suppose y > x > τ . Then, for all messages m ∈ {0, 1}n,

hτ (gf (x,m, 0)) = hτ (x,m) = (1ℓ,m) = hτ (y,m) = hτ (gf (y,m, 0)). (C.4)

Let b ∈ {0, 1} be the challenge bit chosen by the ΠHFE challenger. We compute the probability that
B outputs b conditioned on the Bad flag not being set. We consider the two possibilities:

• Suppose b = 0. Then, ct∗ ← HFE.Enc(mpk, (x,mb′ , 0)). In this case, B outputs 0 with
probability 1− PC∗(x).

• Suppose b = 1. Then, ct∗ ← HFE.Enc(mpk, (y,mb′ , 0)). In this case, B outputs 1 with
probability PC∗(y).

The distinguishing advantage (conditioned on Bad not being set) is then given by

1

2
(1− PC∗(x)) +

1

2
PC∗(y) =

1

2
+

1

2
(PC∗(y)− PC∗(x)). (C.5)

Next, we note by Hoeffding’s inequality that the following two events occur with overwhelming
probability (over the choice of bi and b′i):

|Nx − PC∗(x)ξ| ≤ (ε2/8)ξ and |Ny − PC∗(y)ξ| ≤ (ε2/8)ξ.

Moreover, by the triangle inequality, this means that

(ε2/4)ξ ≥ |Nx − PC∗(x)ξ|+ |Ny − PC∗(y)ξ|

≥ |Nx −Ny − PC∗(x)ξ + PC∗(y)ξ|

≥
∣∣ |Nx −Ny| − |PC∗(x)ξ − PC∗(y)ξ|

∣∣ (C.6)

To conclude the proof, we need to show that with noticeable probability, B does not set the Bad flag,
and moreover, conditioned on B not setting the Bad flag, the distinguishing advantage in Eq. (C.5)
is non-negligible.

• First, B perfectly simulates the unremovability game for A, so with probability ε1, A outputs
a circuit C∗ such that PC∗(y) − PC∗(x) ≥ ε2. Applying Eq. (C.6), this means that with
overwhelming probability (over the choice of bi and b′i), (ε2/4)ξ ≥ |ε2ξ − |Nx −Ny||. Thus,
with overwhelming probability |Nx −Ny| ≥ (ε2/2)ξ, and algorithm B does not set the Bad

flag. Thus, with probability at least ε1 − negl(λ), algorithm B does not set the Bad flag.

• We show that if B does not set the Bad flag, then PC∗(y)−PC∗(x) is noticeable. Since B does
not set the Bad flag, we have that |Nx −Ny| ≥ (ε2/2)ξ. Again appealing to Eq. (C.6), this
means that with overwhelming probability, |PC∗(x)− PC∗(y)| ≥ ε2/4, which is noticeable.

62



Putting the pieces together, we have that the distinguishing advantage of B is 1/2+ε1ε2/8−negl(λ)
and the claim follows.

The claim now follows from Theorem 4.9: namely, the function QC∗ satisfies the following proper-
ties:

• Pr[QC∗(1ℓ) = 1]− Pr[QC∗(0ℓ) = 1] ≥ ε− negl(λ) (Lemmas C.6 and C.8).

• For any x, y ∈ [0, 2ℓ−1] where [x+1, y]∩Q = ∅ queried by the adversary, |PC∗(x)− PC∗(y)| =
negl(λ) (Lemma C.9).

Thus, by Theorem 4.9, QTraceQC∗ with output an element in Q (i.e., one of the marks queried by
the adversary) with overwhelming probability.

C.4 Instantiations and Extensions

In this section, we describe two possible instantiations of our watermarkable predicate encryption
scheme: one secure against bounded collusions based on the existence of public-key encryption,
and one secure against unbounded collusions based on indistinguishability obfuscation (and one-
way functions). The main ingredient we require to instantiate our construction from Appendix C.2
is a hierarchical functional encryption scheme for general circuits (that supports depth-2 delega-
tions). Brakerski et al. [BCG+17] previously showed that any bounded collusion secure functional
encryption scheme for general circuits implies a bounded collusion secure hierarchical FE scheme
for general circuits with constant-depth delegations. Such an FE scheme can be built generically
from public-key encryption [SS10, GVW12, AV19]. Moreover, Brakerski et al. also shows that any
fully collusion resistant FE scheme for general circuits implies a fully collusion resistant hierarchical
FE scheme. Such FE schemes can be built from indistinguishability obfuscation [GGH+13, Wat15]
or concrete assumptions on multilinear maps [GGHZ16]. We state two of these instantiations below
together with their implications on realizing watermarkable predicate encryption schemes:

Theorem C.10 (Bounded Collusion Resistant Hierarchical FE [BCG+17, AV19]). Take any poly-
nomial q = poly(λ). Assuming public-key encryption, there exists a q-bounded collusion resistant
hierarchical functional encryption scheme that supports constant-depth delegation for general circuit
families.

Corollary C.11 (Bounded Collusion Resistant Watermarkable Predicate Encryption). Take any
ε = 1/poly(λ), any fixed polynomials q, qkey, qmark = poly(λ), and mark space T = {0, 1}ℓ, where
ℓ = poly(λ). Assuming public-key encryption, there exists a (qkey, qmark)-bounded collusion resis-
tant watermarkable family of predicate encryption schemes with mark space T that satisfies ε-
unremovability. Moreover, the associated predicate encryption scheme is q-bounded collusion resis-
tant and remains secure even in the presence of a malicious watermarking authority.

Theorem C.12 (Fully Collusion Resistant Hierarchical FE [GGH+13, Wat15, BCG+17]). Assum-
ing indistinguishability obfuscation and one-way functions, there exists a fully collusion resistant
hierarchical functional encryption scheme that support any polynomial-depth delegation for general
circuit families.

Corollary C.13 (Fully Collusion Resistant Watermarkable Predicate Encryption). Take any ε =
1/poly(λ) and mark space T = {0, 1}ℓ. Assuming indistinguishability obfuscation and the exis-
tence of one-way functions, there exists a fully collusion resistant watermarkable family of predicate
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encryption schemes with mark space T that provides ε-unremovability and where the associated pred-
icate encryption scheme is fully collusion resistant and secure even in the presence of a malicious
watermarking authority.

Watermarking unforgeability in the secret-key setting. Just as we can consider a notion of
watermarking unforgeability for signatures (Section 3.4), we can consider a corresponding notion
for watermarkable predicate encryption schemes in the secret-marking setting. We can use an
analogous approach as the one we described for signatures. Namely, instead of embedding only the
mark τ ∈ T in the decryption circuit (associated with a public key mpk), the marking authority
marks the circuit with the string (τ, σmpk,τ ), where σmpk,τ is a signature on (mpk, τ) under the
watermarking authority’s secret signing key. With this modification, the extraction algorithm will
recover (τ, στ ) as the embedded data and can check that στ is indeed a valid signature on (mpk, τ).
Unforgeability of the resulting watermarking scheme then reduces to unforgeability of the signature
scheme.
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