
Attribute Based Encryption (and more) for
Nondeterministic Finite Automata from LWE

Shweta Agrawal ∗ Monosij Maitra † Shota Yamada ‡

Abstract

Constructing Attribute Based Encryption (ABE) [SW05] for uniform models of computation
from standard assumptions, is an important problem, about which very little is known. The only
known ABE schemes in this setting that i) avoid reliance on multilinear maps or indistinguishability
obfuscation, ii) support unbounded length inputs and iii) permit unbounded key requests to the
adversary in the security game, are by Waters from Crypto, 2012 [Wat12] and its variants. Waters
provided the first ABE for Deterministic Finite Automata (DFA) satisfying the above properties,
from a parametrized or “q-type” assumption over bilinear maps. Generalizing this construction to
Nondeterministic Finite Automata (NFA) was left as an explicit open problem in the same work, and
has seen no progress to date. Constructions from other assumptions such as more standard pairing
based assumptions, or lattice based assumptions has also proved elusive.

In this work, we construct the first symmetric key attribute based encryption scheme for
nondeterministic finite automata (NFA) from the learning with errors (LWE) assumption. Our
scheme supports unbounded length inputs as well as unbounded length machines. In more detail,
secret keys in our construction are associated with an NFA M of unbounded length, ciphertexts are
associated with a tuple (x,m) where x is a public attribute of unbounded length and m is a secret
message bit, and decryption recovers m if and only if M(x) = 1.

Further, we leverage our ABE to achieve (restricted notions of) attribute hiding analogous to
the circuit setting, obtaining the first predicate encryption and bounded key functional encryption
schemes for NFA from LWE. We achieve machine hiding in the single/bounded key setting to obtain
the first reusable garbled NFA from standard assumptions. In terms of lower bounds, we show that
secret key functional encryption even for DFAs, with security against unbounded key requests implies
indistinguishability obfuscation (iO) for circuits; this suggests a barrier in achieving full fledged
functional encryption for NFA.

∗IIT Madras, Chennai, India. Email: shweta.a@cse.iitm.ac.in
†IIT Madras, Chennai, India. Email: monosij@cse.iitm.ac.in
‡National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan. Email: yamada-shota@aist.go.jp

1

Contents

1 Introduction 3
1.1 Our Techniques . 4

2 Preliminaries 8
2.1 Definitions: Non Deterministic Finite Automata . 9
2.2 Definitions: Secret-key Attribute Based Encryption for NFA 9
2.3 Definitions: Attribute Based Encryption and Functional Encryption for circuits 10

3 Attribute-based Encryption for NFA 14
3.1 NFA as NC circuit . 14
3.2 Construction: SKABE for Bounded Size NFA . 16
3.3 Correctness of NfaABE . 18
3.4 Proof of Security for NfaABE . 20
3.5 Extensions . 24

4 Attribute based Encryption for NFA with Unbounded Size Machines and Inputs 24
4.1 Correctness of uNfaABE . 26
4.2 Proof of Security for uNfaABE . 27

5 FE for DFA implies iO 32
5.1 Preliminaries on DFA and Branching Programs . 32
5.2 SKFE for DFA implies iO . 32

6 Conclusions 34

A Definitions: Predicate and Functional Encryption 39
A.1 Predicate and Bounded Key Functional Encryption for Circuits 39
A.2 Predicate Encryption and Bounded Key Functional Encryption for NFA 41
A.3 Symmetric Key Functional Encryption . 42

B Construction: Predicate and Bounded Key Functional Encryption for NFA 43

C Reusable Garbled Nondeterministic Finite Automata 47
C.1 Reusable Garbled NFA . 48

D Construction: Reusable Garbled NFA 49

2

1 Introduction

Attribute based encryption (ABE) [SW05] is an emerging paradigm of encryption that enables fine grained
access control on encrypted data. In attribute based encryption, a ciphertext of a message m is labelled
with a public attribute x and secret keys are labelled with a Boolean function f . Decryption succeeds to
yield the hidden message m if and only if the attribute satisfies the function, namely f(x) = 1. Starting
with the seminal work of Sahai and Waters [SW05], ABE schemes have received a lot of attention in
recent years [GPSW06, BW07, BSW07, KSW08, LOS+10, AFV11, Wat12, GVW13, BGG+14, GVW15,
GV15, BV16, AF18], yielding constructions for various classes of functions under diverse assumptions.

In most constructions, the function f embedded in the key is represented as a circuit. While powerful,
circuits are a non-uniform model of computation which necessitates different representations for different
input lengths, forcing the scheme to provide multiple function keys for the same functionality as the
input length varies. This drawback poses a significant deployment barrier in many practical application
scenarios, since data sizes in the real world are rarely of fixed length1. Attribute based encryption for
uniform models of computation has also been studied, but so far, we have very few constructions from
standard assumptions. Waters [Wat12] provided a construction of ABE for Deterministic Finite Automata
(DFA) from parametrized or “q-type” assumptions over bilinear maps. Generalizing this construction
to Nondeterministic Finite Automata (NFA) was left as an explicit open problem2 in [Wat12], and has
remained open to date. Constructions from other assumptions such as more standard pairing based
assumptions, or lattice based assumptions has also proved elusive. Boyen and Li [BL15] provided a
construction of ABE for DFA from the Learning With Errors (LWE) assumption but this was restricted to
DFAs with bounded length inputs, rendering moot the primary advantage of a DFA over circuits. Agrawal
and Singh [AS17a] constructed a primitive closely related to ABE for DFA, namely reusable garbled
DFA from LWE, but their construction is limited to a security game where the adversary may only request
a single function key.

From strong assumptions such as the the existence of multilinear maps [GGH13a], witness encryption
[GTKP+13] or indistinguishability obfuscation [BGI+01, GGH+13b], attribute based encryption (indeed,
even its more powerful generalization – functional encryption) has been constructed even for Turing
machines [AS17b, AM18, KNTY18], but these are not considered standard assumptions; indeed many
candidate constructions have been broken [CHL+15, CGH+15, HJ15, CJL, CFL+, MSZ16, CLLT16,
ADGM16]. Very recently, Ananth and Fan [AF18] constructed ABE for RAM programs from LWE
achieving decryption complexity that is sublinear in the database length. However, the key sizes in
their construction are massive and grow with the size of the entire database as well as with worst case
running time of the program on any input. In particular, restricting the construction to any model of
computation that reads the entire input string (e.g. DFA, TM) yields a bounded input solution, since the
key size depends on the input length. Similarly, [BV16, GKW16] construct attribute based encryption for
“bundling functionalities” where the size of the public parameters does not depend on the size of the input
chosen by the encryptor, say `. However, the key generator must generate a key for a circuit with a fixed
input length, say `′, and decryption only succeeds if ` = `′. Thus, bundling functionalities do not capture
the essential challenge of supporting dynamic data sizes; this was noted explicitly in [GKW16].

Our Results. In this work, we construct the first symmetric key attribute based encryption scheme for
nondeterministic finite automata (NFA) from the learning with errors (LWE) assumption. Our scheme
supports unbounded length inputs as well as unbounded length machines. In more detail, secret keys in
our construction are associated with an NFA M of unbounded length, ciphertexts are associated with
a tuple (x,m) where x is a public attribute of unbounded length and m is a secret message bit, and

1A trivial workaround would be to fix the input length to some fixed upper bound and pad all data to this bound; but this
solution incurs substantial overhead (besides being inelegant).

2Note that an NFA can be converted to an equivalent DFA but this transformation incurs exponential blowup in machine size.

3

Construction Model Input Length Number of
Keys

Attribute
and Function

Hiding

Assumption

Waters
[Wat12]

DFA unbounded unbounded (no, no) q-type
assumption on
bilinear maps

Boyen-Li
[BL15]

DFA bounded unbounded (no, no) LWE

Agrawal-
Singh

[AS17a]

DFA unbounded single (yes, yes) LWE

Ananth-Fan
[AF18]

RAM bounded unbounded (no, no) LWE

Section 4 NFA unbounded unbounded (no, no) LWE
Appendix B NFA unbounded unbounded (yes∗, no) LWE
Appendix C NFA unbounded bounded (yes, yes) LWE

Table 1 Prior work and our results. Above, we say that input length supported by a construction is
bounded if the parameters and key lengths depend on the input size. For attribute hiding, yes∗ indicates
hiding in the restricted security games of predicate or bounded key functional encryption.

decryption recovers m if and only if M(x) = 1. Moreover our construction achieves succinct parameters,
namely, the length of the function key and ciphertext grow only with the machine size and input length
respectively (and do not depend on the input length and machine size respectively).

Further, we leverage our ABE to achieve (restricted notions of) attribute hiding analogous to the
circuit setting, obtaining the first predicate encryption and bounded key functional encryption schemes
for NFA. We achieve machine hiding in the single key3 setting to obtain the first reusable garbled NFA
from standard assumptions. This improves upon the result of [AS17a], which can only support a single
key request (as against bounded), and only DFAs (as against NFAs).

The above results raise the question of whether full fledged functional encryption (please see Appendix
A.3 for the formal definition), which achieves full attribute hiding for NFAs is possible under standard
assumptions. However, we show that secret key functional encryption even for DFA with security against
unbounded key requests implies indistinguishability obfuscation (iO) for circuits. Since constructing iO
for circuits from standard assumptions is a central challenge in cryptography, this suggests that there is a
barrier in further generalizing our result to achieve full attribute hiding.

We summarize our results in Table 1.

1.1 Our Techniques

In this section, we provide an overview of our techniques. Before we proceed, we discuss the technical
barriers that arise in following the approaches taken by prior work. Since the construction by Waters
[Wat12] is the only one that supports unbounded attribute lengths and unbounded key requests by the
adversary, 4 it is the most promising candidate for generalization to NFA. However, the challenges in
generalizing this construction to support NFAs were explicitly discussed in the same work, and this has
seen no progress in the last seven years to the best of our knowledge, despite the significant research

3This may be generalized to bounded key, for any a-priori fixed (polynomial) bound.
4The construction is later extended to be adaptively secure rather than selectively secure (e.g., [Att14]), but the basic structure

of the construction is unchanged.

4

attention ABE schemes have received. Moreover, even the solution for DFAs is not fully satisfactory
since it relies on a non-standard parametrized or “q-type” assumption.

Boyen and Li [BL15] attempt to construct ABE for DFAs from the LWE assumption, but their
construction crucially requires the key generator to know the length of the attribute chosen by the
encryptor, since it must provide a fresh “trapdoor” for each row of the DFA transition table and each
input position. Indeed, reusing the same trapdoor for multiple positions in the input leads to trivial “mix
and match” attacks against their scheme. Thus, it is not even clear how to obtain ABE for DFA with
support for unbounded lengths by following this route. The work of Agrawal and Singh [AS17a] gives
a construction of functional encryption for DFA from LWE that does handle unbounded length inputs,
but only in the limited single key setting. Their construction crucially relies on reusable garbled circuits
[GKP+13] which is a single key primitive, and natural attempts to generalize their construction to support
even two keys fails5. Similarly, the very recent construction of Ananth and Fan [AF18] is also inherently
bounded length, for reasons similar as those discussed above for [BL15].

Thus, the handful of existing results in this domain all appear to pose fundamental barriers to
generalization. To overcome this hurdle, we design completely new techniques to handle the challenge
of unbounded length; these may be applicable elsewhere. We focus on the symmetric key setting, and
proceed in two steps: i) we provide a secret key ABE scheme for NFA that supports unbounded length
inputs but only supports bounded size NFA machines, and ii) we “bootstrap” the construction of step
(i) to handle unbounded length machines. We additionally achieve various notions of attribute hiding as
discussed above, but will focus on the ABE construction for the remainder of this overview. We proceed
to describe each of these steps in detail.

Constructing NfaABE for Bounded Size NFA. Our first goal is to construct a secret key ABE scheme
for NFA that supports unbounded length inputs but only supports bounded size NFA machines from
the LWE assumption. Since ABE for circuits has received much success from the LWE assumption
[GVW13, BGG+14], our first idea is to see if we can run many circuit ABE schemes “in parallel”, one for
each input length. We refer to our resulting ABE scheme for NFAs as NfaABE and the ABE for circuits
scheme simply as ABE, in order to differentiate them.

Naı̈ve Approach: We start with the following naı̈ve construction that uses a (public key) ABE
for circuits as an ingredient. The master secret key of the NfaABE scheme is a PRF key K. This
PRF key defines a set of key pairs {(ABE.mpkj ,ABE.mskj)}j∈[2λ] of the ABE scheme, where each
(ABE.mpkj ,ABE.mskj) is sampled using randomness derived from the PRF key K and supports circuits
with inputs of length j. When one encrypts a message for a ciphertext attribute x, one chooses the master
public key ABE.mpk|x| and encrypts the message using the key, where |x| is the length of x. We can
encrypt for x with length at most 2λ and therefore can deal with essentially unbounded length strings
as ciphertext attributes. In order to generate a secret key for a machine M , one has to convert it into a
circuit since our underlying ingredient is an ABE for circuits. The difference between an NFA machine
M and a circuit is that while the former takes a string with arbitrary length as an input, the input length
for the latter is fixed. To fill the gap, we prepare a circuit version of NFA M for all possible input lengths.
Namely, we convert the machine M into an equivalent circuit M̂j with input length j for all j ∈ [2λ].
Then, we generate ABE secret key associated with M̂j by running the key generation algorithm of the
ABE for all j to obtain the NfaABE secret key {ABE.skj}j∈[2λ]. When decrypting a ciphertext associated
with x, the decryptor chooses ABE.sk|x| and runs the decryption algorithm of the underlying ABE to
retrieve the message.

Reducing the Number of Keys: Obviously, there are multiple problems with this approach. The first
problem is that there are 2λ instances of ABE and thus the secret key of NfaABE is exponentially large.

5For the knowledgeable reader, bounded key variants of reusable garbled circuits exist, for instance by applying the compiler
of [GVW12], but using this in the aforementioned construction does not work due to the structure of their construction.

5

To handle this, we thin out most of the instances and change the secret key to be {ABE.sk2j}j∈[0,λ]. In
order to make sure that the decryption is still possible even with this change, we modify the encryption
algorithm. To encrypt a message for an attribute x, one chooses i ∈ [0, λ] such that 2i−1 < |x| ≤ 2i and
uses the i-th instance to encrypt the message, where if the length of x is not exactly 2i, it is padded with
blank symbols to adjust the length. This change reduces the number of instances down to be polynomial.

Reducing the Size of Keys: However, a bigger problem is that even though we reduced the number of
secret keys, we did not reduce their size, which is still not polynomial. In particular, there is no guarantee
on the size of ABE.sk2λ since the associated circuit M̂2λ is of exponential size. Here, we leverage a
crucial efficiency property that is enjoyed by the ABE for circuits constructed by Boneh et al. [BGG+14],
namely, that the secret keys in this scheme are very short. The size of secret keys in their scheme is
dependent only on the depth of the circuits being supported and independent of the input length and
size. Thus, if we can ensure that the depth of M̂2λ is polynomially bounded (even though the input is
exponentially long), we are back in business.

However, converting the NFA to a circuit requires care. We note that implementing the trivial approach
of converting an NFA to a circuit by keeping track of all possible states while reading input symbols
results in circuit whose depth is linear in input length, which is exponential. To avoid this, we make use
of a divide and conquer approach to evaluate the NFA, which makes the circuit depth poly-logarithmic in
the input length. As a result, the size of the secret keys can be bounded by a polynomial as desired.

Efficiency of Key Generation: The final and the most difficult problem to be addressed is that even
though we managed to make the size of {ABE.sk2j}j∈[0,λ] polynomially bounded, computational time
for generating it is still exponentially large, since so is the size of the associated circuits {M̂2j}j∈[0,λ].
To resolve the problem, we note that the only algorithm which has the “space” to handle the unbounded
input length is the encryption algorithm. Hence, we carefully divide the computation of generating
{ABE.sk2j}j∈[0,λ] into pieces so that the key generator only needs to do work proportional to the size of
the machine, the encryptor does work proportional to the size of the input and the decryptor computes the
requisite key on the fly.

To implement this idea, we use succinct single-key functional encryption (FE), which can be realized
from the LWE assumption [GKP+13, Agr17]. To support unbounded input length, we generate λ +
1 instances of the FE scheme to obtain {FE.mpkj ,FE.mskj}j∈[0,λ]. The secret key of NfaABE is
{FE.ctj}j∈[0,λ], where FE.ctj = FE.Enc(FE.mpkj , (M,K)) is an encryption of a description of the
associated NFA M and the PRF key K under the j-th instance of the FE scheme. To provide the matching
secret key, the encryptor appends FE.ski = FE.KeyGen(FE.mski, Ci) to the ciphertext. Here, x is the
attribute vector of unbounded length, i is an integer s.t. 2i−1 < |x| ≤ 2i and Ci is a circuit that takes as
inputs the machine M and PRF key K and outputs an ABE secret key ABE.sk2i associated with M .

We are almost done – the decryptor chooses FE.cti with appropriate i from the received set
{FE.ctj}j∈[0,λ] and decrypts it using FE.ski that is appended to the ciphertext to obtain an ABE secret key
ABE.sk2i . Then, it decrypts the ABE ciphertext also provided in the ciphertext to retrieve the message.
Note that our construction is carefully designed so that we only require a single key of the succinct FE
scheme.

Arguing the efficiency of the scheme requires care. In order to make the key generation algorithm
run in polynomial time, we rely on the succinctness of the underlying FE. Recall that the succinctness
property says that the running time of the encryption algorithm is independent of the size of the circuits
being supported and only dependent on the depth and input and output length. In our construction,
the computation of {FE.ctj = FE.Enc(FE.mpkj , (M,K))}j∈[0,λ] can be performed in polynomial time,
since the input length |M |+ |K| is bounded by a fixed polynomial6 and so is the output length |ABE.sk2j |.
Note that we crucially use the succinctness of the FE here, since the size of the circuit C2j , which is
supported by the j-th instance of FE, is polynomial in 2j and thus exponential for j = λ.

6Recall that we are only dealing with bounded size NFAs.

6

Security: Our construction of NfaABE satisfies standard (selective) indistinguishability based security.
The high level idea of the proof is outlined next. Intuitively, security follows from the security of the
single key FE scheme and the underlying circuit ABE scheme. In the first step, we show that even though
an adversary can obtain multiple FE ciphertexts and secret keys, it cannot obtain anything beyond their
decryption results {FE.Dec(FE.ski,FE.cti) = ABE.ski} by the security of the FE. Then, we leverage the
security of the ABE to conclude that the message is indeed hidden. We note that in order to invoke the
FE security, we need to ensure that only single secret key is revealed to the adversary for each instance
of FE. This property is guaranteed, since the circuit for which a secret key of the j-th instance of FE is
generated is fixed (i.e., C2j). Please see Section 3 for details.

Removing the Size Constraint on NFAs. So far, we have constructed NfaABE for NFA that can
deal with unbounded input length and bounded size NFAs. Let us call such a scheme (u, b)-NfaABE,
where “u” and “b” stand for “unbounded” and “bounded”. We define (b, u)-NfaABE and (u, u)-NfaABE
analogously, where the first parameter refers to input length and the second to machine size. Our
goal is to obtain (u, u)-NfaABE. At a high level, we compile (u, u)-NfaABE using two pieces, namely
(u, b)-NfaABE which we have already constructed, and (b, u)-NfaABE, which we will instantiate next.

To construct (b, u)-NfaABE, our basic idea is to simply convert an NFA into an equivalent circuit and
then use existing ABE for circuits schemes [GVW13, BGG+14]. This approach almost works, but we
need to exercise care to ensure that the depth of these circuits can be bounded since we hope to support
NFAs of unbounded size. To fill this gap, we show that an NFA can be converted into an equivalent circuit
whose depth is poly-logarithmic in the size of the NFA by again using the divide and conquer approach
we discussed previously. This enables us to bound the depth of the circuits by a fixed polynomial, even if
the size of corresponding NFA is unbounded and allows us to use existing ABE schemes for circuits to
construct (b, u)-NfaABE.

We are ready to construct (u, u)-NfaABE by combining (u, b)-NfaABE and (b, u)-NfaABE. The
master secret key of the (u, u)-NfaABE is a PRF key K. This PRF key defines a set of keys
{(u, b)-NfaABE.mskj}j∈[2λ] of the (u, b)-NfaABE scheme, where each (u, b)-NfaABE.mskj supports
NFAs with size j. Similarly, the PRF key also defines keys {(b, u)-NfaABE.mskj}j∈[2λ] of the
(b, u)-NfaABE scheme, where each (b, u)-NfaABE.mskj supports input strings with length j. To encrypt
a message with respect to a ciphertext attribute x, it encrypts the message for x using (u, b)-NfaABE.mskj
to obtain (u, b)-NfaABE.ctj for all j ∈ [x]. Furthermore, it also encrypts the message for x using
(b, u)-NfaABE.msk|x| to obtain (b, u)-NfaABE.ct|x|. The final ciphertext is(

{(u, b)-NfaABE.ctj}j∈[|x|], (b, u)-NfaABE.ct|x|
)
.

To generate a secret key for a machine M , we essentially swap the roles of (u, b)-NfaABE and
(b, u)-NfaABE. Namely, we generate a secret key (b, u)-NfaABE.skj for M using (b, u)-NfaABE.mskj
for all j ∈ [|M |], where |M | is the size of the machine M . We also generate (u, b)-NfaABE.sk|M | for M
using (u, b)-NfaABE.msk|M |. The final secret key is(

(u, b)-NfaABE.sk|M |, {(b, u)-NfaABE.skj}j∈[|M |]
)
.

To decrypt a ciphertext for attribute x using a secret key for an NFA machine M , we first compare |x| and
|M |. If |x| > |M |, it decrypts (u, b)-NfaABE.ct|M | using (u, b)-NfaABE.sk|M |. Otherwise, it decrypts
(b, u)-NfaABE.ct|x| using (u, b)-NfaABE.sk|x|. It is not hard to see that the correctness of the resulting
scheme follows from those of the ingredients. Furthermore, the security of the scheme is easily reduced
to those of the ingredients, as the construction simply runs them in parallel with different parameters.
The proof is by a hybrid argument, where we change the encrypted messages in a instance-wise manner.
In Sec. 4, we streamline the construction and directly construct (u, u)-NfaABE from (u, b)-NfaABE and
ABE for circuits instead of going through (b, u)-NfaABE.

7

Generalizations and Lower Bounds. We further generalize our ABE construction to obtain predicate
encryption and bounded key functional encryption for NFAs along with the first construction of resuable
garbled NFA. These constructions are obtained by carefully replacing the underlying ABE for circuits
with predicate encryption, bounded key functional encryption for circuits or reusable garbled circuits.
This compiler requires some care as we need to argue that the delicate balance of efficiency properties
that enable our NfaABE construction are not violated, as well as ensure that the constructions and security
proofs translate. In Appendix B and Appendix C, we show that we can indeed ensure this, sometimes (see
for instance, the construction in Appendix C) by employing additional tricks as required. In Section 5 we
show that secret key functional encryption (SKFE) for DFA with security against unbounded collusion
implies indistinguishability obfuscation for circuits. There, we essentially show that we can convert an
SKFE for DFA into an SKFE for NC1 circuit, which implies indistinguishability obfuscation for circuits
by previous results [ABSV15, KNT18]. The conversion is by encoding and purely combinatorial – we
first convert an NC1 circuit into an equivalent branching program and then leverage the similarity between
the branching program and DFA to obtain the result.

Organization of the paper. In Section 2, we provide the definitions and preliminaries we require.
In Section 3, we provide our ABE for NFA supporting unbounded input but bounded machine length.
In Section 4, we enhance the construction to support both unbounded input and unbounded machine
length. In Appendix B we leverage our ABE to construct the first predicate and bounded key functional
encryption schemes for NFA. In Appendix C, we provide the first construction of reusable garbled NFA.
In Section 5 we show that secret key functional encryption for DFA with security against unbounded
collusion implies indistinguishability obfuscation for circuits. We conclude in Section 6.

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We begin by defining the notation that we will use throughout the paper. We use bold letters
to denote vectors and the notation [a, b] to denote the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to
denote the set [1, n]. Concatenation is denoted by the symbol ‖.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote
a negligible function of n. We say f(n) is polynomial if it is O(nc) for some constant c > 0, and
we use poly(n) to denote a polynomial function of n. We use the abbreviation PPT for probabilistic
polynomial-time. We say an event occurs with overwhelming probability if its probability is 1− negl(n).
The function log x is the base 2 logarithm of x. For any finite set S we denote P(S) to be the power set
of S. For a circuit C : {0, 1}`1+`2 → {0, 1} and a string x ∈ {0, 1}`1 , C[x] : {0, 1}`2 → {0, 1} denotes
a circuit that takes y and outputs C(x,y). We construct C[x] in the following specified way. Namely,
C[x] is the circuit that takes as input y and sets

zi =

{
y1 ∧ ¬y1 if xi = 0

y1 ∨ ¬y1 if xi = 1

and then computes C(z,y), where xi, yi, and zi are the i-th bit of x, y, and z, respectively. In the
above, it is clear that zi = xi and we have C(z,y) = C(x,y). Furthermore, it is also easy to see that
depth(C[x]) ≤ depth(C) +O(1) holds.

8

2.1 Definitions: Non Deterministic Finite Automata

A Non-Deterministic Finite Automaton (NFA) M is represented by the tuple (Q,Σ, T, qst, F) where
Q is a finite set of states, Σ is a finite alphabet, T : Σ × Q → P(Q) is the transition function (stored
as a table), qst is the start state, F ⊆ Q is the set of accepting states. For states q, q′ ∈ Q and a string
x = (x1, . . . , xk) ∈ Σk, we say that q′ is reachable from q by reading x if there exists a sequence of
states q1, . . . , qk+1 such that q1 = q, qi+1 ∈ T (xi, qi) for i ∈ [k] and qk+1 = q′. We say M(x) = 1 iff
there is a state in F that is reachable from qst by reading x.
Remark 2.1. As it is known, we can transform an NFA with ε-transitions into a one without them by a
simple and efficient conversion. The conversion preserves the size of the NFA. For simplicity and without
loss of generality, we do not deal with an NFA with ε-transitions in this paper.

2.2 Definitions: Secret-key Attribute Based Encryption for NFA

A secret-key attribute-based encryption (SKABE) scheme NfaABE for a message spaceM = {Mλ}λ∈N
consists of four algorithms. In the following, we fix some alphabet Σ = Σλ of size 2 ≤ |Σ| ≤ poly(λ).

• NfaABE.Setup(1λ) is a PPT algorithm takes as input the unary representation of the security
parameter and outputs the master secret key NfaABE.msk.

• NfaABE.Enc(NfaABE.msk,x,m) is a PPT algorithm that takes as input the master secret key
NfaABE.msk, a string x ∈ Σ∗ of arbitrary length and a message m ∈M. It outputs a ciphertext
NfaABE.ct.

• NfaABE.KeyGen(NfaABE.msk,M) is a PPT algorithm that takes as input the master secret key
NfaABE.msk and a description of an NFA machine M . It outputs a corresponding secret key
NfaABE.skM .

• NfaABE.Dec(NfaABE.skM ,M,NfaABE.ct,x) is a deterministic polynomial time algorithm that
takes as input the secret key NfaABE.skM , its associated NFA M , a ciphertext NfaABE.ct, and its
associated string x and outputs either a message m′ or ⊥.

Remark 2.2. In our construction in Sec. 3.2, we will pass an additional parameter s = s(λ) to the
NfaABE.Setup,NfaABE.Enc,NfaABE.KeyGen algorithms denoting the description size of NFAs that
the scheme can deal with. Later we give a construction in Sec. 4 which can support NFAs with arbitrary
size.

Definition 2.3 (Correctness). An SKABE scheme NfaABE is correct if for all NFAs M , all x ∈ Σ∗ such
that M(x) = 1 and for all messages m ∈M,

Pr


NfaABE.msk← NfaABE.Setup(1λ) ,
NfaABE.skM ← NfaABE.KeyGen(NfaABE.msk,M) ,
NfaABE.ct← NfaABE.Enc(NfaABE.msk,x,m) :
NfaABE.Dec

(
NfaABE.skM ,M,NfaABE.ct,x

)
6= m

 = negl(λ)

where the probability is taken over the coins of NfaABE.Setup, NfaABE.KeyGen, and NfaABE.Enc.

Definition 2.4 (Security for NfaABE). The SKABE scheme NfaABE for a message spaceM is said to
satisfy selective security if for any stateful PPT adversary A, there exists a negligible function negl(·)
such that

AdvNfaABE,A(1λ,Σ)→
∣∣∣Pr[Exp

(0)
NfaABE,A(1λ)→ 1]− Pr[Exp

(1)
NfaABE,A(1λ) = 1]

∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment Exp(b)
NfaABE,A, modeled as a game between the

adversary A and a challenger, is defined as follows:

9

1. Setup phase: At the beginning of the game, A takes as input 1λ and declares its target X ⊂
Σ∗, which is a set of strings of arbitrary size. Then the challenger samples NfaABE.msk ←
NfaABE.Setup(1λ).

2. Query phase: During the game, A adaptively makes the following queries, in an arbitrary order
and unbounded many times.

(a) Encryption queries: A submits to the challenger an attribute x ∈ X and a pair
of messages (m(0),m(1)) ∈ (Mλ)2. Then, the challenger replies with NfaABE.ct ←
NfaABE.Enc(NfaABE.msk,x,m(b)) in order.

(b) Key queries: A submits to the challenger an NFA M such that M(x) = 0 for all x ∈ X .
Then, the challenger replies with NfaABE.skM ← NfaABE.KeyGen(NfaABE.msk,M) in
order.

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 2.5. As noted in Remark 2.2, our construction in Sec. 3.2 is indexed with an additional parameter
s that specifies the size of NFAs being dealt with. In that case, the above security definitions are modified
so that A chooses 1s in addition to X (or X and S, in the case of very selective security) at the beginning
of the game and key generation queries are made only for machines with size s.

2.3 Definitions: Attribute Based Encryption and Functional Encryption for circuits

2.3.1 Attribute based Encryption for Circuits

For λ ∈ N, let Cinp,d denote a family of circuits with inp bit inputs, an a-priori bounded depth d, and
binary output and C = {Cinp(λ),d(λ)}λ∈N. An attribute-based encryption (ABE) scheme ABE for C over a
message spaceM = {Mλ}λ∈N consists of four algorithms:

• ABE.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary representation of the security
parameter, the length inp = inp(λ) of the input and the depth d = d(λ) of the circuit
family Cinp(λ),d(λ) to be supported. It outputs the master public key and the master secret key
(ABE.mpk,ABE.msk).

• ABE.Enc(ABE.mpk,x,m) is a PPT algorithm that takes as input the master public key ABE.mpk,
a string x ∈ {0, 1}inp and a message m ∈M. It outputs a ciphertext ABE.ct.

• ABE.KeyGen(ABE.mpk,ABE.msk, C) is a PPT algorithm that takes as input the master secret key
ABE.msk and a circuit C ∈ Cinp(λ),d(λ) and outputs a corresponding secret key ABE.skC .

• ABE.Dec(ABE.mpk,ABE.skC , C,ABE.ct,x) is a deterministic algorithm that takes as input the
secret key ABE.skC , its associated circuit C, a ciphertext ABE.ct, and its associated string x and
outputs either a message m′ or ⊥.

Definition 2.6 (Correctness). An ABE scheme for circuits ABE is correct if for all λ ∈ N, polynomially
bounded inp and d, all circuits C ∈ Cinp(λ),d(λ), all x ∈ {0, 1}inp such that C(x) = 1 and for all messages
m ∈M,

Pr


(ABE.mpk,ABE.msk)← ABE.Setup(1λ, 1inp, 1d),
ABE.skC ← ABE.KeyGen(ABE.mpk,ABE.msk, C),
ABE.ct← ABE.Enc(ABE.mpk,x,m) :

ABE.Dec
(
ABE.mpk,ABE.skC , C,ABE.ct,x

)
6= m

 = negl(λ)

where the probability is taken over the coins of ABE.Setup, ABE.KeyGen, and ABE.Enc.

10

Definition 2.7 (Selective Security for ABE). The ABE scheme ABE for a circuit family C =
{Cinp(λ),d(λ)}λ∈N and a message space {Mλ}λ∈N is said to satisfy selective security if for any stateful
PPT adversary A, there exists a negligible function negl(·) such that

AdvABE,A(1λ) =
∣∣∣Pr[Exp

(0)
ABE,A(1λ) = 1]− Pr[Exp

(1)
ABE,A(1λ) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N, the experiment Exp(b)
ABE,A, modeled

as a game between adversary A and a challenger, is defined as follows:

1. Setup phase: On input 1λ,A submits (1inp, 1d) and the target X ⊂ {0, 1}inp, which is a set of
binary strings of length inp, to the challenger. The challenger samples (ABE.mpk,ABE.msk)←
ABE.Setup(1λ, 1inp, 1d) and replies to A with ABE.mpk.

2. Query phase: During the game, A adaptively makes the following queries, in an arbitrary order
and unbounded many times.

(a) Key Queries: A chooses a circuit C ∈ Cinp,d that satisfies C(x) = 0 for all x ∈ X . For each
such query, the challenger replies with ABE.skC ← ABE.KeyGen(ABE.mpk,ABE.msk, C).

(b) Encryption Queries: A submits a string x ∈ X and a pair of equal length messages
(m0,m1) ∈ (M)2 to the challenger. The challenger replies to A with ABE.ct ←
ABE.Enc(ABE.mpk,x,mb).

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 2.8. The above definition allows an adversary to make encryption queries multiple times. More
standard notion of the security for an ABE restricts the adversary to make only a single encryption query.
It is well-known that they are actually equivalent, which is shown by a simple hybrid argument. We adopt
the above definition since it is convenient for our purpose.

In our construction of SKABE for NFA in Sec. 3.2, we will use the ABE scheme by Boneh
et al. [BGG+14] as a building block. The following theorem summarizes the efficiency properties
of their construction.

Theorem 2.9 (Adapted from [BGG+14]). There exists a selectively secure ABE scheme ABE =
(ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) with the following properties under the LWE assump-
tion.

1. The circuit ABE.Setup(·, ·, ·; ·), which takes as input 1λ, 1inp, 1d, and a randomness r and outputs
ABE.msk = ABE.Setup(1λ, 1inp, 1d; r), can be implemented with depth poly(λ, d). In particular,
the depth of the circuit is independent of inp and the length of the randomness r.

2. We have |ABE.skC | ≤ poly(λ, d) for any C ∈ Cinp,d, where (ABE.mpk,ABE.msk) ←
ABE.Setup(1λ, 1inp, 1d) and ABE.skC ← ABE.KeyGen(ABE.mpk,ABE.msk, C). In particular,
the length of the secret key is independent of the input length inp and the size of the circuit C.

3. Let C : {0, 1}inp+` → {0, 1} be a circuit such that we have C[v] ∈ Cinp,d for any v ∈ {0, 1}`.
Then, the circuit ABE.KeyGen(·, ·, C[·]; ·), that takes as input ABE.mpk, ABE.msk, v, and
randomness R̂ and outputs ABE.KeyGen(ABE.mpk,ABE.msk, C[v]; R̂), can be implemented with
depth depth(C) · poly(λ, d).

Proof. We show that the construction proposed by Boneh et al. [BGG+14] satisfies the properties. We
only focus on the third item of the theorem, as the first one is easy to observe and the second one is
explicitly mentioned in the paper.

11

To give the proof, we briefly recall the setup and key generation algorithms of their scheme. The
setup algorithm prepares a set of matrices (A,A1, . . . ,Ainp) and a vector u, whose sizes only depend
on λ and d. To generate a secret key for a circuit C (without a hardwired value), the key generation
algorithm homomorphically evaluates the circuit on matrices (A1, . . . ,Ainp) in a gate by gate manner. In
more details, it assigns Ai to the wire corresponding to the i-th bit of the input and computes a matrix for
each internal wire of the circuit. The size of the matrices will be the same for all wires. In more details,
let g be a gate with incoming wires w1 and w2 and output wire w3. Then, the matrix corresponding to
w3 is computed from the matrices corresponding to w1 and w2, where the computation applied to the
matrices depends on the type of the gate g. In the end, it obtains the matrix AC corresponding to the
output wire. Then, it generates a short vector e such that [A‖AC]e = u using the trapdoor for A and
outputs e as a secret key.

We first show that in the case of ` = 0, or equivalently in the case where a circuit C : {0, 1}inp →
{0, 1} is not hardwired any value, the statement holds. To see this, we first observe that the last
operation in which short vector e is sampled can be implemented by a circuit with size poly(λ, d),
since the sizes of A, AC , and u are bounded by poly(λ, d). We then focus on the computational cost
of homomorphic operation on matrices. We can implement the circuit that performs this step with
depth depth(C) · poly(λ, d) by just replacing each gate of the circuit C with a circuit that performs the
homomorphic matrix operation corresponding to this gate.

We then consider the general case where ` 6= 0. In this case, we first construct a circuit that performs
homomorphic operations given matrices B1, . . . ,B`,A1, . . . ,Ainp and C(·, ·), where B1, . . . ,B` will
correspond to the hardwired value. By the above discussion, such a circuit can be implemented with
depth depth(C) · poly(λ, d). It remains to show that it is possible to construct a circuit that takes as
input A1, . . . ,Ainp and the hardwired value v and outputs matrices B1, . . . ,B`. Such a circuit can be
implemented with depth poly(λ, d) by computing B(0) and B(1) that correspond to 0 = x1 ∧ (¬x1)
and 1 = x1 ∨ (¬x1) from A1 and then outputting B(v1), · · · ,B(v`), where vi is the i-th bit of v. This
completes the proof of the theorem.

Remark 2.10. As we mentioned, we use ABE for circuits with the above efficiency properties to construct
ABE for NFA in Sec. 3.2. Since we only have selectively secure ABE scheme satisfying the above
properties, the resulting construction of ABE for NFA will only have selective security. One could
consider that by applying the standard complexity leveraging argument to the selectively secure ABE
scheme by Boneh et al. [BGG+14] to obtain an adaptively secure scheme and then using the resultant
scheme in the construction in Sec. 3.2, we can obtain adaptively secure ABE scheme for NFA. This is not
true because the resulting ABE scheme obtained by the complexity leveraging have secret keys whose
size is polynomially dependent on the input length inp(λ) of the circuits and does not satisfy the second
efficiency property in Theorem 2.9, which is crucial for the construction in Sec. 3.2 to work.

2.3.2 Functional Encryption for Circuits

For λ ∈ N, let Cinp,d,out denote a family of circuits with inp bit inputs, depth d, and out-
put length out and C = {Cinp(λ),d(λ),out(λ)}λ∈N. A functional encryption (FE) scheme FE =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for C consists of four algorithms:

• FE.Setup(1λ, 1inp, 1d, 1out) is a PPT algorithm takes as input the unary representation of the
security parameter, the length inp = inp(λ) of the input, depth d = d(λ), and the length of the
output out = out(λ) of the circuit family Cinp(λ),d(λ),out(λ) to be supported. It outputs the master
public key FE.mpk and the master secret key FE.msk.

• FE.KeyGen(FE.mpk,FE.msk, C) is a PPT algorithm that takes as input the master public key
FE.mpk, master secret key FE.msk, and a circuitC ∈ Cinp(λ),d(λ),out(λ) and outputs a corresponding

12

secret key FE.skC .

• FE.Enc(FE.mpk,x) is a PPT algorithm that takes as input the master public key FE.mpk and an
input message x ∈ {0, 1}inp(λ) and outputs a ciphertext FE.ct.

• FE.Dec(FE.mpk,FE.skC , C,FE.ct) is a deterministic algorithm that takes as input the master
public key FE.mpk, a secret key FE.skC , corresponding circuit C, and a ciphertext FE.ct and
outputs C(x).

Definition 2.11 (Correctness). A functional encryption scheme FE is correct if for all C ∈
Cinp(λ),d(λ),out(λ) and all x ∈ {0, 1}inp(λ),

Pr

[
(FE.mpk,FE.msk)← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ));

FE.Dec
(
FE.mpk,FE.KeyGen(FE.mpk,FE.msk, C), C,FE.Enc(FE.mpk,x)

)
6= C(x)

]
= negl(λ)

where the probability is taken over the coins of FE.Setup, FE.KeyGen, FE.Enc and, FE.Dec).

We then define full simulation based security for single key FE as in [GKP+13, Defn 2.13].

Definition 2.12 (FULL-SIM Security). Let FE be a functional encryption scheme for a circuits. For a
stateful PPT adversary A and a stateless PPT simulator Sim, consider the following two experiments:

ExprealFE,A(1λ): ExpidealFE,Sim(1λ):

1: (1inp, 1d, 1out)← A(1λ)
2: (FE.mpk,FE.msk)← FE.Setup(1λ, 1inp, 1d, 1out)
3: C ← A(FE.mpk)
4: FE.skC ← FE.KeyGen(FE.mpk,FE.msk, C)
5: α← AFE.Enc(FE.mpk,·)(FE.mpk,FE.skC)

1: (1inp, 1d, 1out)← A(1λ)
2: (FE.mpk,FE.msk)← FE.Setup(1λ, 1inp, 1d, 1out)
3: C ← A(FE.mpk)
4: FE.skC ← FE.KeyGen(FE.mpk,FE.msk, C)
5: α← AO(·)(FE.mpk,FE.skC)

Here, O(·) is an oracle that on input x from A, runs Sim with inputs (FE.mpk, skC , C, C(x), 1inp) to
obtain a ciphertext FE.ct and returns it to the adversary A.

The functional encryption scheme FE is then said to be single query FULL-SIM secure if there
exists a PPT simulator Sim such that for every PPT adversary A, the following two distributions are
computationally indistinguishable:{

ExprealFE,A(1λ)

}
λ∈N

c
≈
{
ExpidealFE,Sim(1λ)

}
λ∈N

Remark 2.13. The above definition allows an adversary to make encryption queries multiple times. In
the security notion defined in [GKP+13], the adversary is allowed to make only a single encryption
query. Similarly to the case of ABE, it is easy to see that these definitions are actually equivalent (See
Remark 2.8). We adopt the above definition since it is convenient for our purpose.

Remark 2.14 (Selective Simulation Security.). We can consider a weaker version of the above security
notion where A outputs a set X = {x1, . . . ,x|X|} ⊂ Σ∗ along with (1inp, 1d, 1out) at the beginning of
the game and A is only allowed to query x ∈ X to FE.Enc(FE.mpk, ·) and O(·). We call this security
notion selective simulation security.

13

In our construction of SKABE for NFA in Sec. 3.2, we will use the FE scheme by Goldwasser
et al. [GKP+13] as a building block. The following theorem summarizes the efficiency properties of their
construction.

Theorem 2.15 ([GKP+13]). There exists an FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
with the following properties.

1. For any polynomially bounded inp(λ), d(λ), out(λ), all the algorithms in FE run in polynomial
time. Namely, the running time of FE.Setup and FE.Enc do not depend on the size of circuit
description to be supported by the scheme.

2. Assuming the subexponential hardness of the LWE problem, the scheme satisfies full-simulation-
based security.

We note that the first property above is called succinctness or semi-compactness of FE. A stronger
version of the efficiency property called compactness requires the running time of the encryption algorithm
to be dependent only on the length of input message x. An FE with compactness is known to imply
indistinguishability obfuscation [AJ15, BV15].

3 Attribute-based Encryption for NFA

3.1 NFA as NC circuit

Here, we introduce a theorem that provides an efficient algorithm that converts an NFA into an equivalent
circuit with shallow depth. The shallowness of the circuit will play a crucial role in our construction of
SKABE for NFA. In the following, for ease of notation, we often input a string in Σ∗ to a circuit with
the understanding that the input is actually a binary string encoding a string in Σ∗. To do so, we set
η := dlog(|Σ| + 1)e and regard a symbol in Σ as a binary string in {0, 1}η by a natural injection map
from Σ to {0, 1}η. Furthermore, we also introduce a special symbol ⊥ that is not in Σ and assign an
unused symbol in {0, 1}η to it. Intuitively, ⊥ represents a blank symbol that will be used to adjust the
length of a string. We will use alphabets {0, 1}η and Σ ∪ {⊥} interchangeably.

Theorem 3.1. Let Σ be an alphabet for NFAs. Then we have the following:

1. There exists a family of circuits {To-Circuits,`}s,`∈N where the circuit To-Circuits,` takes as input
an NFA M with size s and outputs a circuit M̂` : (Σ ∪ {⊥})` → {0, 1}. Furthermore, for all
`, s ∈ N, all string x ∈ Σ≤`, and all NFA M with size s, we have

M̂`(x̂) = M(x),

where M̂` = To-Circuits,`(M) and x̂ = x‖⊥`−|x|.

2. The depths of the circuits To-Circuits,` and M̂` = To-Circuits,`(M) for an NFA M of size s are
bounded by poly(log s, log `). Furthermore, the sizes of these circuits are bounded by poly(s, `).

Proof. We define the circuit To-Circuits,` as in Figure 1. There, we introduce a circuit M2j that takes as
input x ∈ (Σ ∪ {⊥})2j and outputs {bq,q′,x}(q,q′)∈Q×Q, where the boolean value bq,q′,x ∈ {0, 1} is set
to 1 if the state q′ is reachable from q by reading x and 0 otherwise. Here, we augment the transition
function T so that it works on the extended alphabet Σ ∪ {⊥}, where we define T (⊥, q) = {q} for all
q ∈ Q. It is easily seen that the padding with ⊥ and the augmentation of the transition function T we
introduce here do not change the value ofM(x). We refer to Figure 2 for the concrete way of constructing
M2j . It is not hard to see that To-Circuits,` defined as in Figure 1 satisfies Item 1 of the theorem.

14

Circuit To-Circuits,`(M)

1. Compute bq,q′,x for all (q, q′, x) ∈ Q×Q× (Σ ∪ {⊥}) in parallel from M .

2. Then, construct the circuit M1 from {bq,q′,x}(q,q′,x)∈Q×Q×(Σ∪{⊥}), which takes y ∈ (Σ ∪ {⊥}) as
input, checks whether y=x for all x ∈ (Σ ∪ {⊥}) in parallel, and outputs {bq,q′,x}(q,q′)∈Q×Q such
that x = y.

3. Compute M2j for j ∈ [i] in the ascending order, where M2j is constructed from M2j−1 as in
Figure 2 and i = dlog `e.

4. Compute M̂` defined as in Figure 3 from M2i and output M̂`.

Figure 1 : The Circuit To-Circuit.

Circuit M2j (x)

1. Parse the input x = x0‖x1, where x0,x1 ∈ (Σ ∪ {⊥})2j−1
.

2. Compute M2j−1(x0) = {bq,q′,x0}(q,q′)∈Q×Q and M2j−1(x1) = {bq,q′,x1}(q,q′)∈Q×Q in parallel.

3. Compute bq,q′,x for all (q, q′) ∈ Q×Q in parallel by executing the following:

(a) Compute (bq,q′′,x0 ∧ bq′′,q′,x1) for all q′′ ∈ Q in parallel.

(b) Compute bq,q′,x := ∨q′′∈Q(bq,q′′,x0 ∧ bq′′,q′,x1).

4. Output {bq,q′,x}(q,q′)∈Q×Q.

Figure 2 : The Circuit M2j (x).

Circuit M̂`(x̂)

1. Pad the input x̂ ∈ (Σ ∪ {⊥})` to obtain x̃ := x̂‖⊥2i−` ∈ (Σ ∪ {⊥})2i .

2. Compute M2i(x̃) = {bq,q′,x̃}(q,q′)∈Q×Q.

3. Compute b = ∨q∈F bqst,q,x̃ and output b.

Figure 3 : The Circuit M̂`(x̂).

To finish the proof, we have to show Item 2 of the theorem. We first bound the size of M̂`. To do this,
we first observe that size(M1) ≤ poly(|Σ|, |Q|) holds. Furthermore, we have

size(M2j) ≤ 2 · size(M2j−1) + poly(|Σ|, |Q|) and depth(M̂`) ≤ depth(M2i) + poly(|Σ|, |Q|).

From the above, we have

size(M̂`) ≤ 2i poly(|Σ|, |Q|) ≤ poly(s, `) (3.1)

15

as desired. We then bound the depth of M̂`. We first observe depth(M1) = poly(log |Σ|, log |Q|).
Furthermore, we have

depth(M2j) ≤ depth(M2j−1) + poly(log |Σ|, log |Q|)

and
depth(M̂`) ≤ depth(M2i) + poly(log |Σ|, log |Q|).

From the above, we have

depth(M̂`) ≤ i · poly(log |Σ|, log |Q|) ≤ poly(log s, log `)

as desired.
We next bound the size of the circuit To-Circuits,`(·). It is easy to see that Step 1 and 2 of

To-Circuits,`(·) can be implemented by circuits of size poly(|Σ|, |Q|). We also observe that j-th repetition
in Step 3 can be implemented by a circuit of size poly(size(M2j−1), |Σ|, |Q|) ≤ poly(size(M̂`), |Σ|, |Q|).
We can also see that Step 4 can be implemented by a circuit of size poly(size(M̂`), |Σ|, |Q|). Therefore,
we have

size(To-Circuits,`) ≤ i · poly(size(M̂`), |Σ|, |Q|) ≤ poly(s, `)

as desired, where the second inequality follows from Eq. (3.1).
We finally bound the depth of the circuit To-Circuits,`(·). It is easy to see that Step 1, 2, and 4 of

To-Circuits,`(·) can be implemented by circuits of depth poly(log |Σ|, log |Q|). We also observe that
each repetition in Step 3 can be implemented with depth poly(log |Σ|, log |Q|), since it just copies M2j−1

and adds a fixed circuit to it that performs Item 3 and 4 of M2j . Therefore, Step 3 of To-Circuits,`(·) can
be implemented by a circuit of depth i · poly(log |Σ|, log |Q|). To sum up, we have

depth(To-Circuits,`) ≤ i · poly(log |Σ|, log |Q|) ≤ poly(log s, log `)

as desired. This completes the proof of the theorem.

3.2 Construction: SKABE for Bounded Size NFA

We construct an SKABE scheme for NFA denoted by NfaABE = (NfaABE.Setup,NfaABE.KeyGen,
NfaABE.Enc,NfaABE.Dec) from the following ingredients:

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key K← PRF.Setup(1λ)
defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We denote the length of K by |K|.

2. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme for circuit with
the efficiency property described in Item 1 of Theorem 2.15. We can instantiate FE with the scheme
proposed by Goldwasser et al. [GKP+13].

3. ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec): An ABE scheme that satisfies the
efficiency properties described in Theorem 2.9. We can instantiate ABE with the scheme proposed
by Boneh et al. [BGG+14].

4. U(·, ·): a universal circuit that takes as input a circuit C of fixed depth and size and an input x to
the circuit and outputs C(x). We often denote by U [C](·) = U(C, ·) a universal circuit U with the
first input C being hardwired. We need to have depth(U) ≤ O(depth(C)). For construction of
such a universal circuit, we refer to [CH85].

16

Below we provide our construction for SKABE for NFA. In the description below, we abuse notation
and denote as if the randomness used in a PPT algorithm was a key K of the pseudorandom function
PRF. Namely, for a PPT algorithm (or circuit) A that takes as input x and a randomness r ∈ {0, 1}` and
outputs y, A(x;K) denotes an algorithm that computes r := PRF(K, 1)‖PRF(K, 2)‖ · · · ‖PRF(K, `) and
runs A(x; r). Note that if A is a circuit, this transformation makes the size of the circuit polynomially
larger and adds a fixed polynomial overhead to its depth. In particular, even if we add this change to
ABE.Setup and ABE.KeyGen, the efficiency properties of ABE described in Theorem 2.9 is preserved.

NfaABE.Setup(1λ, 1s): On input the security parameter 1λ and a description size s of an NFA, do the
following:

1. For all j ∈ [0, λ], sample PRF keys K̂j ,Rj ← PRF.Setup(1λ).

2. For all j ∈ [0, λ], sample (FE.mpkj ,FE.mskj)← FE.Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)).

Here, we generate λ+ 1 instances of FE. Note that all instances support a circuit class with
input length inp(λ) = s+ 2|K|, output length out(λ), and depth d(λ), where out(λ) and d(λ)
are polynomials in the security parameter that will be specified later.

3. Output NfaABE.msk = ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).

NfaABE.Enc(NfaABE.msk,x, m, 1s): On input the master secret key NfaABE.msk, an attribute x ∈ Σ∗

of length at most 2λ, a message m and the description size s of NFA, do the following:

1. Parse the master secret key as NfaABE.msk→ ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).

2. Set x̂ = x‖⊥2i−`, where ` = |x| and i = dlog `e.

3. Compute an ABE key pair (ABE.mpki,ABE.mski) = ABE.Setup(1λ, 12iη, 1d̂; K̂i) with K̂i
as the randomness.

Here, we generate an instance of ABE that supports a circuit class with input domain
{0, 1}2iη ⊇ (Σ ∪ {⊥})2i and depth d̂.

4. Compute ABE.ct ← ABE.Enc(ABE.mpki, x̂,m) as an ABE ciphertext for the message m
under attribute x̂.

5. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Cs,2i ;Ri), whereCs,2i is a circuit described
in Figure 4.

6. Output NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct).

Function Cs,2i

1. Parse the input w = (M, K̂, R̂), where M is an NFA and K̂ and R̂ are PRF keys.

2. Compute (ABE.mpk,ABE.msk) = ABE.Setup(1λ, 12
iη, 1d̂; K̂).

3. Compute M̂2i = To-Circuits,2i(M). (See Theorem 3.1 for the definition of To-Circuit.)

4. Compute and output ABE.sk
U [M̂2i]

= ABE.KeyGen(ABE.mpk,ABE.msk, U [M̂2i]; R̂).

Figure 4

17

NfaABE.KeyGen(NfaABE.msk,M , 1s): On input the master secret key NfaABE.msk, the description
of an NFA M and a size s of the NFA, if |M | 6= s, output ⊥ and abort. Else, proceed as follows.

1. Parse the master secret key as NfaABE.msk→ ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).

2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, λ].

3. Compute FE.ctj = FE.Enc(FE.mpkj , (M, K̂j , R̂j)) for all j ∈ [0, λ].

4. Output NfaABE.skM = {FE.ctj}j∈[0,λ].

NfaABE.Dec(NfaABE.skM ,M,NfaABE.ct,x): On input a secret key for NFA M and a ciphertext
encoded under attribute x, proceed as follows:

1. Parse the secret key as NfaABE.skM → {FE.ctj}j∈[0,λ] and the ciphertext as NfaABE.ct→
(FE.ski,ABE.mpki,ABE.ct).

2. Set ` = |x| and choose FE.cti from NfaABE.skM = {FE.ctj}j∈[0,λ] such that i = dlog `e <
λ.

3. Compute y = FE.Dec(FE.mpki,FE.ski, Cs,2i ,FE.cti).

4. Compute and output z = ABE.Dec(ABE.mpki, y, U [M̂2i],ABE.cti, x̂), where we interpret
y as an ABE secret key and x̂ = x‖⊥2i−`.

3.3 Correctness of NfaABE

The following theorem asserts that our scheme is efficient.

Theorem 3.2. Let |Σ|, d(λ), d̂(λ), and out(λ), be polynomials in λ. Then, NfaABE = (NfaABE.Setup,
NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec) defined above runs in polynomial time.

Proof. It is easy to see that the NfaABE.Setup and NfaABE.KeyGen run in polynomial time.
We then show that NfaABE.Enc runs in polynomial time. By the efficiency of ABE, it suffices to

show that Cs,2i can be computed in polynomial time. To see this, we bound the time for constructing
each step of the circuit. Trivially, Step 1 can be implemented with no cost. We first observe that
Step 2 of the circuit can be implemented by a circuit with size poly(λ, 2iη, d̂) = poly(λ, |x|) by the
efficiency of ABE.KeyGen. We then observe that Step 3 of the circuit can be implemented with size
poly(s, 2i) ≤ poly(s, |x|) by Item 2 of Theorem 3.1. Finally, Step 4 of the circuit can be implemented
with size poly(λ, 2iη, d̂, s) ≤ poly(λ, s, |x|) by the efficiency of the universal circuit and ABE and Item 2
of Theorem 3.1.

We finally bound the running time of NfaABE.Dec. Trivially, Step 1 and 2 of NfaABE.Dec can
be implemented with no cost. By the efficiency of FE, the running time of Step 3 is also bounded by
poly(λ, s, |x|). Finally, to bound the running time of Step 4, it suffices to bound the time for constructing
U [M̂s,2i] by the efficiency of ABE. Since M̂s,2i can be constructed in time poly(s, 2i) ≤ poly(s, |x|) by
Item 2 of Theorem 3.1, so is U [M̂s,2i]. This completes the proof of the theorem.

The following theorem addresses the correctness of the scheme.

Theorem 3.3. For appropriately chosen d̂(λ), out(λ), and d(λ), our scheme NfaABE is correct for any
polynomially bounded s(λ).

18

Proof. We have to show that if we set d̂(λ), out(λ), and d(λ) appropriately, we have z = m when
M(x) = 1, where z is the value retrieved in Step 4 of the decryption algorithm. To show this, let us set
d̂(λ) = Ω(λ) and assume that

y = ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i) (3.2)

holds for the moment, where y is the value retrieved in Step 3 of the decryption algorithm. Then, we have
z = m by the correctness of ABE if U [M̂2i] is supported by the scheme, since we have

U [M̂2i](x̂) = M̂2i(x̂) = M(x) = 1

by Item 1 of Theorem 3.1. We claim that the depth of U [M̂2i] is at most d̂ and therefore U [M̂2i] is indeed
supported by the scheme. To see this, we observe that

depth(U [M̂2i]) ≤ depth(U(·, ·)) +O(1)

≤ O(1) · depth(M̂2i) +O(1)

≤ poly(log s, log 2i)

≤ poly(log λ)

≤ d̂ (3.3)

holds, where the second inequality follows from the property of the depth preserving universal circuit U
and the third from Item 2 of Theorem 3.1.

It remains to prove that Eq. (3.2) holds if we set d(λ) and out(λ) appropriately. To do so, we show
that the depth and the output length of Cs,2i are bounded by some fixed polynomials. By taking d(λ) and
out(λ) larger than these polynomials, we can ensure that the circuit Cs,2i is supported by the FE scheme
and thus Eq. (3.2) follows from the correctness of the FE, since we have

Cs,2i(M, K̂i, R̂i) = ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i),

where (ABE.mpki,ABE.mski) = ABE.Setup(1λ, 12iη, 1d̂; K̂i) by the definition of Cs,2i . We first bound
the depth of Cs,2i . To do so, we first observe that Step 2 of Cs,2i can be implemented by a circuit of
depth poly(λ, d̂) = poly(λ) by Item 1 of Theorem 2.9. We then observe that Step 3 of Cs,2i can be
implemented by a circuit of depth poly(log s, log 2i) = poly(log λ) by Item 2 of Theorem 3.1. We then
bound the depth of the circuit that implements Step 4 of Cs,2i . This step is implemented by the circuit
ABE.KeyGen(·, ·, U [·]; ·) that takes as input ABE.mpki, ABE.mski, U [M̂2i] constructed in the previous
step, and R̂ and returns ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂). We have

depth(ABE.KeyGen(·, ·, U [·]; ·)) ≤ poly(λ, d̂) · depth(U(·, ·))
≤ poly(λ, d̂) · d̂
≤ poly(λ),

where the first inequality follows from Item 3 of Theorem 2.9 and the second from Eq. (3.3). To sum up,
we have that the depth of the circuit Cs,2i is bounded by some fixed polynomial.

We next bound the output length of Cs,2i . Since the output of the circuit is ABE.sk
U [M̂2i]

=

ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂), we bound the length of the ABE secret key. We have

|ABE.sk
U [M̂2i]

| ≤ poly(λ, d̂) ≤ poly(λ,poly(λ)) ≤ poly(λ)

as desired, where the first inequality follows from the Item 2 of Theorem 2.9. This completes the proof of
the theorem.

19

3.4 Proof of Security for NfaABE

Here, we prove that NfaABE defined above is secure, if so are FE and ABE. Formally, we have the
following theorem.

Theorem 3.4. Assume that FE satisfies full simulation based security, ABE is selectively secure, and that
PRF is a secure pseudorandom function. Then, NfaABE satisfies selective security.

Proof. To prove the theorem, let us fix a PPT adversary A and introduce the following game Gamei
between the challenger and A for i ∈ [0, λ].

Gamei: The game proceeds as follows.

Setup phase. At the beginning of the game, A takes 1λ as input and submits 1s and the set
of its target X ⊂ Σ∗ to the challenger. Then, the challenger chooses NfaABE.msk ←
NfaABE.Setup(1λ, 1s)

The challenger answers the encryption and key queries made by A as follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, the challenger sets
` := |x| and computes

NfaABE.ct =

{
NfaABE.Enc(NfaABE.msk, x̂,m(0)) If dlog `e ≥ i
NfaABE.Enc(NfaABE.msk, x̂,m(1)) If dlog `e ≤ i− 1.

Then, it returns NfaABE.ct to A.

Key queries. Given an NFAM from A, the challenger runs NfaABE.skM ← NfaABE.KeyGen(NfaABE.msk,M)
and returns NfaABE.skM to A.

Finally, A outputs its guess b′.

In the following, let Exxx denote the probability that A outputs 1 in Gamexxx. It suffices to prove
|Pr[E0]− Pr[Eλ+1]| = negl(λ), since Game0 (resp., Gameλ+1) corresponds to the selective security
game with b = 0 (resp., b = 1). Since we have

|Pr[E0]− Pr[Eλ+1]| ≤
∑
i∈[0,λ]

|Pr[Ei]− Pr[Ei+1]|

by the triangle inequality, it suffices to show |Pr[Ei]− Pr[Ei+1]| = negl(λ) for i ∈ [0, λ]. Let us define
`max and imax as

`max := max{|x| : x ∈ X} and imax := dlog `maxe.

Note that `max is bounded by the running time of A and thus is polynomial in λ. We then observe that for
i > imax, we have Gamei = Gameλ+1 and thus Pr[Ei]− Pr[Ei+1] = 0. Therefore, in the following,
we will show that |Pr[Ei]− Pr[Ei+1]| = negl(λ) holds for i ≤ imax. To do so, we further introduce the
following sequence of games for i ∈ [0, imax]:

Gamei,0: The game is the same as Gamei.

Gamei,1: In this game, we change the setup phase and the way encryption queries are answered as
follows.

20

Setup phase. GivenX ⊂ Σ∗ from A, the challenger chooses NfaABE.msk← NfaABE.Setup(1λ, 1s)
as in the previous game. In addition, it computes

(ABE.mpki,ABE.mski)← ABE.Setup(1λ, 12iη, 1d̂; K̂i)

and
FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i ;Ri).

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, the challenger sets
` := |x| and computes NfaABE.ct as in the previous game if dlog `e 6= i. Otherwise, it
computes

ABE.ct← ABE.Enc(ABE.mpki, x̂,m
(0))

and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to A, where FE.ski and ABE.mpki
are the values that are computed in the setup phase.

Gamei,2: In this game, the challenger samples FE.ski as

FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i)

in the setup phase. Namely, it is sampled using true randomness instead of the pseudorandom bits
derived from the PRF key Ri.

Gamei,3: We change the way key queries are answered as follows:

Key queries. Given an NFA M of size s from A, the challenger answers the query as follows. It
first chooses R̂j ← PRF.Setup(1λ) for j ∈ [0, λ] and computes

ABE.sk
U [M̂2i]

= ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i),

where ABE.mpki and ABE.mski are the values that are computed in the setup phase. It then
computes

FE.ctj ←

{
FE.Enc(FE.mpkj , (M, K̂j , R̂j)) If j ∈ [0, λ]\{i}
Sim(FE.mpki,FE.ski, Cs,2i ,ABE.skU [M̂2i]

, 1inp(λ)) If j = i.
(3.4)

Then, it returns NfaABE.skM := {FE.ctj}j∈[0,λ] to A.

Gamei,4: In this game, the challenger samples (ABE.mpki,ABE.mski) in the setup phase as

(ABE.mpki,ABE.mski)← ABE.Setup(1λ, 12iη, 1d̂).

It also generates ABE.sk
U [M̂2i]

as

ABE.sk
U [M̂2i]

← ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]).

when answering a key query. Namely, they are sampled using true randomness instead of the
pseudorandom bits derived from the PRF keys K̂i and R̂i.

Gamei,5: In this game, we change the way the encryption queries are answered as follows.

21

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, the challenger sets
` := |x| and computes NfaABE.ct as in the previous game if dlog `e 6= i. Otherwise, it
computes

ABE.ct = ABE.Enc(ABE.mpki, x̂,m
(1))

and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to A, where FE.ski and ABE.mpki
are the values that are computed in the setup phase.

Gamei,6: The game is the same as Gamei+1.

Since we have
|Pr[Ei]− Pr[Ei+1]| ≤

∑
j∈[6]

|Pr[Ei,j−1]− Pr[Ei,j]|

by the triangle inequality, it suffices to show |Pr[Ei,j−1]− Pr[Ei,j]| = negl(λ) for j ∈ [6]. To complete
the proof of the theorem, it remains to prove the following lemmas.

Lemma 3.5. We have Pr[Ei,0] = Pr[Ei,1].

Proof. The change introduced here is only conceptual, where ABE.mpki and FE.ski are computed
beforehand. The lemma trivially follows.

Lemma 3.6. We have |Pr[Ei,1]− Pr[Ei,2]| = negl(λ).

Proof. We observe that Ri is used only when generating FE.ski in Gamei,1. Therefore, the lemma
follows by a straightforward reduction to the security of PRF.

Lemma 3.7. We have |Pr[Ei,2]− Pr[Ei,3]| = negl(λ).

Proof. To prove the lemma, let us assume that |Pr[Ei,2]− Pr[Ei,3]| is non-negligible and construct an
adversary B that breaks the full simulation security of FE using A. B proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains 1s and X ⊂ Σ∗ from A. Then
B submits its target (1λ, 1inp(λ), 1out(λ)). Then, the experiment samples

(FE.mpk,FE.msk)← FE.Setup(1λ, 1inp(λ), 1out(λ))

and returns FE.mpk to B. B then sets FE.mpki := FE.mpk. In the rest of the simulation, it implic-
itly sets FE.mski := FE.msk without knowing the value. B then chooses (FE.mpkj ,FE.mskj)←
FE.Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)) for j ∈ [0, λ]\{i}. It also chooses K̂j ,Rj ← PRF.Setup(1λ)

for j ∈ [0, λ] and (ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 12iη, 1d̂; K̂i). Finally, it declares
Cs,2i as a circuit for which it request a secret key. Then, the experiment runs

FE.sk← FE.KeyGen(FE.mpk,FE.msk, Cs,2i)

and returns FE.sk to B. B sets FE.ski := FE.sk.

B then handles the encryption and key queries as follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, B sets ` := |x|
and i′ = dlog `e. If i′ 6= i, B answers the query using (K̂i′ ,Ri′ ,FE.mpki′ ,FE.mski′).
Otherwise, it computes ABE.ct ← ABE.Enc(ABE.mpki, x̂,m

(0)) and returns NfaABE.ct =
(FE.ski,ABE.mpki,ABE.ct) to A, where ABE.mpki (resp., FE.ski) is the value sampled by itself
(resp., by the experiment) in the setup phase.

22

Key queries. Given an NFAM of size s from A, B first chooses R̂j ← PRF.Setup(1λ) for j ∈ [0, λ] and
computes FE.ctj = FE.Enc(FE.mpkj , (M, K̂j , R̂j)) for j ∈ [0, λ]\{i}. B then submits (M, K̂i, R̂i)
to its encryption oracle. Then, the experiment computes

FE.ct←

{
FE.Enc(FE.mpk, (M, K̂i, R̂i)) If B is in ExprealFE,B(1λ)

Sim(FE.mpk,FE.sk, Cs,2i , Cs,2i(M, K̂i, R̂i), 1
inp(λ)) If B is in ExpidealFE,Sim(1λ)

(3.5)

and returns FE.ct to B. B then sets FE.cti := FE.ct and returns NfaABE.skM := {FE.ctj}j∈[0,λ]

to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Gamei,2 if B is in the real game. We then claim that B simulates
Gamei,3 if B is in the simulated game. The only difference between these games is the way
FE.cti is computed. In Gamei,3, it is generated as Eq. (3.4) while in the simulation above, it is
generated as Eq. (3.5) (with B being in ExpidealFE,Sim). However, they are equivalent because B has set
(FE.mpki,FE.mski) := (FE.mpk,FE.msk) and FE.ski := FE.sk and we have

Cs,2i(M, K̂i, R̂i) = ABE.KeyGen(ABE.mpki,ABE.mski, U [M̂2i]; R̂i) = ABE.sk
U [M̂2i]

.

From the above observation, we can see that B breaks the security of FE if A distinguishes the two games.
This completes the proof of the lemma.

Lemma 3.8. We have |Pr[Ei,3]− Pr[Ei,4]| = negl(λ).

Proof. Due to the change we introduced, K̂i is not used to answer the encryption queries any more
and used only when generating (ABE.mpki,ABE.mski) in Gamei,3. We also observe that R̂i is used
only when generating ABE.sk

U [M̂2i]
. Therefore, the lemma follows by straightforward reductions to the

security of PRF.

Lemma 3.9. We have |Pr[Ei,4]− Pr[Ei,5]| = negl(λ).

Proof. To prove the lemma, let us assume that |Pr[Ei,4]− Pr[Ei,5]| is non-negligible and construct an
adversary B that breaks the selective security of ABE using A. B proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains 1s and X ⊂ Σ∗ from A.
Then, B sets Xi := {x̂ = x‖⊥2i−|x| : x ∈ X, 2i−1 < |x| ≤ 2i} and submits its target Xi and
(1λ, 12iη, 1d̂) to its challenger. Then, the challenger samples

(ABE.mpk,ABE.msk)← ABE.Setup(1λ, 12iη, 1d̂)

and returns ABE.mpk to B. B then sets ABE.mpki := ABE.mpk. In the rest of the simulation,
it implicitly sets ABE.mski := ABE.msk without knowing the value. It then chooses K̂j ,Rj ←
PRF.Setup(1λ) for j ∈ [0, λ]\{i} and (FE.mpkj ,FE.mskj) ← Setup(1λ, 1inp(λ), 1out(λ), 1d(λ))
for j ∈ [0, λ]. It also computes FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i).

B then handles the the encryption and key queries as follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, B sets ` := |x| and
i′ = dlog `e. If i′ 6= i, B answers the encryption query using (K̂i′ ,Ri′ ,FE.mpki′ ,FE.mski′).
Otherwise, B makes an encryption query for the attribute x̂ = x‖⊥2i−` and messages (m(0),m(1))
to its challenger. Then, the challenger runs

ABE.ct← ABE.Enc(ABE.mpk, x̂,m(b))

23

and returns a ciphertext ABE.ct to B. Then, it returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct)
to A. Here, B uses FE.ski that is sampled in the setup phase.

Key queries. Given an NFAM of size s from A, B first chooses R̂j ← PRF.Setup(1λ) for j ∈ [0, λ]\{i}.
It then queries a secret key for U [M̂2i] to its challenger. Then, the challenger runs

ABE.sk
U [M̂2i]

← ABE.KeyGen(ABE.mpk,ABE.msk, U [M̂2i])

and returns ABE.sk
U [M̂2i]

to B. It then computes FE.ctj for j ∈ [0, λ] as Eq. (3.4) and returns
NfaABE.skM := {FE.ctj}j∈[0,λ] to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Gamei,4 if b = 0 and Gamei,5 if b = 1. Therefore, B breaks the
security of ABE if A distinguishes the two games. It remains to prove that B is a legitimate adversary
(i.e., it does not make any prohibited key queries). For any attribute x̂ for which B makes an encryption
query and for any circuit U [M̂2i] for which B makes a key query, we have

U [M̂2i](x̂) = M̂2i(x̂) = M(x),

where the second equality above follows from Item 1 of Theorem 3.1. Therefore, B is a legitimate
adversary as long as so is A. This completes the proof of the lemma.

Lemma 3.10. We have |Pr[Ei,5]− Pr[Ei,6]| = negl(λ).

Proof. This follows as in the indistinguishability of Gamei,0 and Gamei,4, but in the reverse order.
That is, we first change the random bits used in ABE.KeyGen to a pseudorandom one by invoking the
security of PRF. We then generate FE.cti by using FE.Enc instead of Sim by invoking the full-simulation
security of FE. Finally, we change the random bits used in ABE.KeyGen to a pseudorandom one by
invoking the security of PRF again.

This concludes the proof of Theorem 3.4.

3.5 Extensions

In Appendix B, we adapt our ABE construction to achieve (restricted versions of) attribute privacy. In
more detail, we construct secret key predicate encryption and bounded key functional encryption for
nondeterministic finite automata. In Appendix D, we additionally achieve machine privacy, improving
the result of [AS17a]. Intuitively, these results proceed by replacing the “inner” circuit ABE scheme in
our compiler by predicate encryption or bounded key functional encryption scheme and arguing that the
requisite efficiency requirements (Theorem 2.9) are not violated. Please see appendices B,D for details.

4 Attribute based Encryption for NFA with Unbounded Size Machines
and Inputs

In this section we construct a secret-key attribute-based encryption scheme (SKABE) for nondeterministic
finite automata of arbitrary sizes supporting inputs of arbitrary length. We denote our scheme by
uNfaABE = (uNfaABE.Setup, uNfaABE.KeyGen, uNfaABE.Enc, uNfaABE.Dec) and its construction
uses the following two ingredients.

24

1. NfaABE = (NfaABE.Setup,NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec): An SKABE for
NFA supporting inputs of unbounded length but for bounded size machines. We instantiate
NfaABE from our construction in Section 3.2.

2. ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec): An ABE scheme for circuits that
satisfies the efficiency properties described in Theorem 2.9. We can instantiate ABE with the
scheme proposed by Boneh et al. [BGG+14].

3. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key K← PRF.Setup(1λ)
defines a function PRF.Eval(K, ·) : {0, 1}λ → R, where we assumeR to be the randomness space
of both NfaABE.Setup and ABE.Setup algorithms. Note that without loss of generality, we may
assumeR = {0, 1}p(λ) for some sufficiently large polynomial p(λ).

Below we provide our construction for SKABE for NFA.

uNfaABE.Setup(1λ): On input the security parameter 1λ, do the following:

1. Sample two PRF keys KNfaABE ← PRF.Setup(1λ),KABE ← PRF.Setup(1λ).

2. Output uNfaABE.msk = (KNfaABE,KABE).

uNfaABE.Enc(uNfaABE.msk,x, m): On input the master secret key uNfaABE.msk, an attribute as
x ∈ Σ∗ of length at most 2λ and a message m ∈M, do the following:

1. Parse the master secret key as uNfaABE.msk = (KNfaABE,KABE). Denote ` = |x|.

2. For all i ∈ [`], do the following:

(a) Sample NfaABE.mski ← NfaABE.Setup(1λ, 1i; ri) as an NfaABE master secret key,
where ri = PRF.Eval(KNfaABE, i).

Note that i denotes the size of the NFAs that are supported by NfaABE.mski.

(b) Compute NfaABE.cti = NfaABE.Enc(NfaABE.mski,x,m, 1
i).

3. Sample (ABE.mpk`,ABE.msk`) ← ABE.Setup(1λ, 1`, 1d̂; r`) as an ABE key pair, where
r` = PRF.Eval(KABE, `).

Note that ` and d̂ denotes the input length and the depth of the circuit respectively that
(ABE.mpk`,ABE.msk`) supports.

4. Compute ABE.ct` = ABE.Enc(ABE.mpk`,x,m).

5. Output uNfaABE.ct = ({NfaABE.cti}i∈[`],ABE.mpk`,ABE.ct`).

uNfaABE.KeyGen(uNfaABE.msk,M): On input the master secret key uNfaABE.msk and the
description of a NFA M = (Q,Σ, T, qst, F), proceed as follows.

1. Parse the master secret key as uNfaABE.msk = (KNfaABE,KABE). Denote s= |M |.

2. For all i ∈ [s], do the following:

(a) Let M̂i = To-Circuits,i(M). (See Theorem 3.1 for the definition of To-Circuit.)

(b) Sample (ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 1i, 1d̂; ri) as an ABE key pair,
where ri = PRF.Eval(KABE, i).

25

(c) Compute ABE.ski = ABE.KeyGen(ABE.mpki,ABE.mski, M̂i).

Note that ∀i ∈ [s], i and d̂ denotes the input length and the depth of the circuit respectively
that (ABE.mpki,ABE.mski) supports.

3. Sample NfaABE.msks←NfaABE.Setup(1λ, 1s; rs) as an NfaABE master secret key, where
rs = PRF.Eval(KNfaABE, s).

4. Compute NfaABE.sks = NfaABE.KeyGen(NfaABE.msks,M).

5. Output uNfaABE.skM = (NfaABE.sks, {ABE.mpki,ABE.ski}i∈[s]).

uNfaABE.Dec(uNfaABE.skM ,M, uNfaABE.ct,x): On input a secret key for NFA M and a ciphertext
encoded under some attribute x, proceed as follows:

1. Parse the secret key as uNfaABE.skM = (NfaABE.sk|M |, {ABE.mpki,ABE.ski}i∈[|M |]) and
the ciphertext as uNfaABE.ct = ({NfaABE.cti}i∈[|x|],ABE.mpk|x|,ABE.ct|x|).

2. If |x| ≥ |M |, compute and output NfaABE.Dec(NfaABE.sk|M |,M,NfaABE.ct|M |,x).

3. Otherwise, compute and output ABE.Dec(ABE.mpk|x|,ABE.sk|x|, M̂|x|,ABE.ct|x|,x), where

M̂|x| = To-Circuit|M |,|x|(M).

4.1 Correctness of uNfaABE

The following theorem asserts that our scheme is efficient.

Theorem 4.1. The scheme uNfaABE = (uNfaABE.Setup, uNfaABE.KeyGen, uNfaABE.Enc, uNfaABE.Dec)
defined above runs in polynomial time, as long as d̂ and |Σ| are polynomials in λ. .

Proof. It is easy to see that the uNfaABE.Setup runs in polynomial time.
We start with showing that uNfaABE.KeyGen runs in polynomial time. Note that for any NFA

M with size s = |M | and any input length i < [s], Item 2 of Theorem 3.1 asserts that the sizes and
depths of To-Circuits,i and M̂i = To-Circuits,i(M) are both bounded by poly(s, i) and poly(log s, log i)
respectively. Hence, the efficiency requirements met by [BGG+14] discussed in Theorem 2.9 which is
used to instantiate ABE implies that ABE.Setup and ABE.KeyGen always runs in time polynomial in λ, s
and d̂. Further, the efficiency of NfaABE discussed in Theorem 3.2 which is used to instantiate NfaABE
implies that NfaABE.Setup and NfaABE.KeyGen runs in polynomial time.

Next, we show that uNfaABE.Enc runs in polynomial time. We have a similar reasoning as above
to argue the following: for any input x with length ` = |x| and any NFA size i ∈ [`], the efficiency of
NfaABE discussed in Theorem 3.2 implies that NfaABE.Setup and NfaABE.Enc run in polynomial time.

We finally bound the running time of uNfaABE.Dec. It is easy to see that the efficiency guarantees
given by the underlying schemes NfaABE and ABE along with Theorem 3.1 implies that uNfaABE.Dec
runs in polynomial time.

The following theorem addresses the correctness of the scheme.

Theorem 4.2. For appropriately chosen d̂ = d̂(λ), our scheme uNfaABE is correct for any NFA.

26

Proof. As long as d̂ is chosen appropriately, we can argue the correctness of uNfaABE as follows. The
uNfaABE.Dec algorithm takes as input

uNfaABE.skM =
(
NfaABE.sk|M |, {ABE.mpki,ABE.ski}i∈[|M |]

)
and

uNfaABE.ct = ({NfaABE.cti}i∈[|x|],ABE.mpk|x|,ABE.ct|x|)

as a secret key for an NFA M and a ciphertext under an attribute x respectively.
By our definition, for any i ∈ N,NfaABE.mski supports NFA machines of size bounded above by

i with unbounded input length. Thus, in the case when |x| ≥ |M |, the correctness of NfaABE scheme
implies the correctness of the uNfaABE scheme.

Alternatively, we have by Theorem 2.9 that for any i ∈ N, (ABE.mpki,ABE.mski) supports a circuit
class of input length i and depth d̂ = d̂(λ) while Theorem 3.1 implies that depth(M̂i) is always bounded
above by poly(log i, log s) = poly(log λ) < λ. In particular, we have that depth(M̂i) < d̂, where we set
d̂ = λ and thus the circuit M̂i is supported by the ABE scheme. Therefore, in the case when |x| < |M |,
the correctness of ABE scheme implies the correctness of the uNfaABE scheme.

4.2 Proof of Security for uNfaABE

Next, we prove that the above uNfaABE scheme is secure, as long as the underlying NfaABE and ABE
schemes are secure.

Theorem 4.3. Assume that NfaABE and ABE both satisfy selective indistinguishability based security
and PRF is a secure pseudorandom function. Then, uNfaABE satisfies selective security.

Proof. To show that any PPT adversary A succeeds with only negligible probability in the selective
security game of uNfaABE as stated in Definition 2.4, let us introduce the following sequence of games
{Gamek}k∈[0,6] between the uNfaABE challenger and A.

Game0: For any challenge message query (m(0),m(1)) with respect to any attribute x, this
game corresponds to the real experiment where the uNfaABE challenger encrypts messages
corresponding to challenge bit b = 0.

Game1: In this game, we change the setup phase as follows.

Setup phase. GivenX ⊂ Σ∗ from A, the challenger chooses uNfaABE.msk← NfaABE.Setup(1λ)
as in the previous game. In addition, it precomputes all relevant master keys as follows which
are later used to answer encryption as well as key queries.

NfaABE.mski ← NfaABE.Setup(1λ, 1i; ri), where ri = PRF.Eval(KNfaABE, i)

(ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 1i, 1d̂; r′i), where r′i = PRF.Eval(KABE, i)

for all i ∈ [T], T = max(`max, smax), where we define `max := max{|x| : x ∈ X} as per
Definition 2.4 and smax as the maximum size of any NFA queried by A. Note that both `max

and smax and hence T are bounded by the running time of A and thus are polynomial in λ.

Game2: This game is exactly the same as Game1 except that now the challenger samples the master
keys in setup phase for both the underlying schemes NfaABE and ABE using true randomness
instead of using PRF randomness as

{NfaABE.mski ← NfaABE.Setup(1λ, 1i)}i∈[T],

{(ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 1i, 1d̂)}i∈[T]

27

Game3: In this game, for any challenge message query (m(0),m(1)) with respect to any attribute x,
the challenger generates NfaABE ciphertexts corresponding to challenge bit b = 1 while the ABE
ciphertexts are generated corresponding to challenge bit b = 0.

Game4: In this game, for any challenge message query (m(0),m(1)) with respect to any attribute x,
the challenger generates both NfaABE and ABE ciphertexts corresponding to challenge bit b = 1.

Game5: This game is exactly the same as Game4 except that now the challenger samples the master
keys in the setup phase for both the underlying schemes NfaABE and ABE using PRF randomness
again instead of using true randomness.

Game6: For any challenge message query (m(0),m(1)) with respect to any attribute x, this
game corresponds to the real experiment where the uNfaABE challenger encrypts messages
corresponding to challenge bit b = 1.

In the following, let Ek denote the event that A outputs 1 in Gamek. To prove the theorem, we
will show that |Pr[E0]− Pr[E6]| = negl(λ), since Game0 (resp., Game6) corresponds to the selective
security game with b = 0 (resp., b = 1). Since we have

|Pr[E0]− Pr[E6]| ≤
∑
k∈[0,5]

|Pr[Ek]− Pr[Ek+1]|

by the triangle inequality, it suffices to show |Pr[Ek] − Pr[Ek+1]| = negl(λ) for all k ∈ [0, 5]. In
order to prove indistinguishability between Game2 and Game3 (resp., Game3 and Game4), we
further introduce a sequence of games {Game2,i}i∈[0,`max] (resp., {Game3,i}i∈[0,`max]), where `max

was defined in Game1. We then describe the two games Game2,i and Game3,i for any i ∈ [0, `max]
as follows.

Game2,i: The game proceeds as follows.

Setup phase. At the beginning of the game, A takes 1λ as input and submits the set of its target
X ⊂ Σ∗ to the uNfaABE challenger. The challenger then generates the master keys as before.

The challenger answers the encryption and key queries made by A as follows.

Encryption queries. For any message pair (m(0),m(1)) and x ∈ X from A, the challenger sets
` = |x|, chooses the appropriate NfaABE and ABE keys from the set of precomputed keys
and computes

NfaABE.ctj ←

{
NfaABE.Enc(NfaABE.mskj ,x,m

(0), 1j) If j > i

NfaABE.Enc(NfaABE.mskj ,x,m
(1), 1j) If j ≤ i

for j ∈ [`]. It also computes ABE.ct` ← ABE.Enc(ABE.mpk`,x,m
(0)) and returns

uNfaABE.ct← ({NfaABE.ctj}j∈[`],ABE.mpk`,ABE.ct`) to A.

Key queries. Given an NFAM from A, the challenger sets s = |M | and then uses the precomputed
master keys to compute and returns uNfaABE.skM = (NfaABE.sks, {ABE.mpkj ,ABE.skj}j∈[s])
to A.

Finally, A outputs its guess b′.

Game3,i: The game proceeds as follows.

28

Setup phase. At the beginning of the game, A takes 1λ as input and submits the set of its target
X ⊂ Σ∗ to the uNfaABE challenger. The challenger then generates the master keys as before.

The challenger answers the encryption and key queries made by A as follows.

Encryption queries. For any message pair (m(0),m(1)) and x ∈ X from A, the challenger sets
` = |x|, chooses the appropriate NfaABE and ABE from the set of precomputed keys and
computes

ABE.ct` ←

{
ABE.Enc(ABE.mpk`,x,m

(0)) If ` > i

ABE.Enc(ABE.mpk`,x,m
(1)) If ` ≤ i.

It also computes {NfaABE.ctj←NfaABE.Enc(NfaABE.mskj ,x,m
(1), 1j)}j∈[`] and returns

uNfaABE.ct = ({NfaABE.ctj}j∈[`],ABE.mpk`,ABE.ct`) to A.

Key queries. Given an NFAM from A, the challenger sets s = |M | and then uses the precomputed
master keys to compute and returns uNfaABE.skM = (NfaABE.sks, {ABE.mpkj ,ABE.skj}j∈[s])
to A.

Finally, A outputs its guess b′.

We first note that ∀k ∈ [2, 3],Gamek = Gamek,0 and Gamek,`max = Gamek+1. Since we have

|Pr[Ek]− Pr[Ek+1]| = |Pr[Ek,0]− Pr[Ek,`max]| ≤
(`max−1)∑
i=0

|Pr[Ek,i]− Pr[Ek,i+1]|

by the triangle inequality, it suffices to show |Pr[Ek,i]− Pr[Ek,i+1]| = negl(λ), for all k ∈ [2, 3] and for
all i ∈ [0, `max − 1]. To complete the proof of the theorem, it remains to prove the following lemmas.

Lemma 4.4. We have Pr[E0] = Pr[E1].

Proof. The change introduced here is only conceptual, where all the master keys {NfaABE.mski}i∈[T]

and {(ABE.mpki,ABE.mski)}i∈[T] are computed a-priori. The lemma trivially follows.

Lemma 4.5. We have |Pr[E1]− Pr[E2]| = negl(λ).

Proof. Note that the PRF keys KNfaABE and KABE are only used for generating randomness in order to
precompute the NfaABE and ABE master keys and are not used anywhere else in Game1. Further, note
that since the two PRF keys KNfaABE and KABE are independent of each other we can replace them at
once with true randomness in Game2. Therefore, the lemma follows by a straightforward reduction to
the security of PRF with respect to the two independently drawn keys KNfaABE and KABE.

Lemma 4.6. We have |Pr[E2,i]− Pr[E2,i+1]| = negl(λ),∀i ∈ [0, `max − 1].

Proof. To prove the lemma, let us assume that |Pr[E2,i]− Pr[E2,i+1]| is non-negligible and construct an
adversary B that breaks the selective security of NfaABE using A. B proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains X ⊂ Σ∗ from A. Then, B
submits (1λ, 1i) and Xi to the NfaABE challenger where Xi := {x | x ∈ X and |x| = i} and
precomputes {(ABE.mpkj ,ABE.mskj)}j∈[T] and {NfaABE.mskj}j∈[T]\{i}. It then implicitly sets
NfaABE.mski := NfaABE.msk without knowing its value, where NfaABE.msk is chosen by the
NfaABE challenger and further handles the encryption and key queries as follows.

29

Encryption queries. Given a message pair (m(0),m(1)) and x ∈ X from A, B sets ` = |x|, chooses
(ABE.mpk`,ABE.msk`) and {NfaABE.mskj}j∈[`]\{i} from the set of precomputed ABE and
NfaABE keys to answer any encryption query as follows.

1. B computes {NfaABE.ctj ← NfaABE.Enc(NfaABE.mskj ,x,m
(0), 1j)}j∈[i+1,`].

2. B makes an encryption query
(
(m(0),m(1)),x

)
to the NfaABE challenger. The challenger

computes

NfaABE.ct←

{
NfaABE.Enc(NfaABE.msk,x,m(0), 1i) If b = 0

NfaABE.Enc(NfaABE.msk,x,m(1), 1i) If b = 1

and returns NfaABE.ct to B. B then sets NfaABE.cti := NfaABE.ct.

3. B computes {NfaABE.ctj ← NfaABE.Enc(NfaABE.mskj ,x,m
(1), 1j)}j∈[1,i−1].

B also computes by itself ABE.ct` ← ABE.Enc(ABE.mpk`,x,m
(0)) and returns uNfaABE.ct =

({NfaABE.ctj}j∈[`],ABE.mpk`,ABE.ct`) to A.

Key queries. Given an NFA M from A, B first sets s = |M |, computes {M̂j = To-Circuits,j(M)}j∈[s]

and then chooses {(ABE.mpkj ,ABE.mskj)}j∈[s] from the set of precomputed ABE keys. It then
proceeds as follows.

1. If s 6= i, B chooses NfaABE.msks from the set of precomputed NfaABE keys to compute
NfaABE.sks ← NfaABE.KeyGen(NfaABE.msks,M).

2. If s = i, B submits M to the NfaABE challenger upon which the challenger computes and
returns NfaABE.sk ← NfaABE.KeyGen(NfaABE.msk,M). B then sets NfaABE.sks :=
NfaABE.sk.

B also computes by itself {ABE.skj ← ABE.KeyGen(ABE.mpkj ,ABE.mskj , M̂j)}j∈[s] and
returns uNfaABE.skM =

(
NfaABE.sks, {ABE.mpkj ,ABE.skj}j∈[s]

)
to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Game2,i if b = 0 and Game2,i+1 if b = 1. Therefore, B breaks the
security of NfaABE if A distinguishes the two games. It remains to prove that B is a legitimate adversary
(i.e., it does not make any prohibited key queries). For any attribute x for which B makes an encryption
query and for any key query for an NFA M , we have that M(x) = 0, by the legitimacy of adversary A.

From the above observation, we can see that B breaks the security of NfaABE if A distinguishes the
two games. This completes the proof of the lemma.

Lemma 4.7. We have |Pr[E3,i]− Pr[E3,i+1]| = negl(λ),∀i ∈ [0, `max − 1].

Proof. To prove the lemma, let us assume that |Pr[E3,i]− Pr[E3,i+1]| is non-negligible and construct an
adversary B that breaks the selective security of ABE using A. B proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains X ⊂ Σ∗. Then, B submits
(1λ, 1i, 1d̂) and Xi to the ABE challenger, where Xi := {x | x ∈ X and |x| = i}. The
ABE challenger chooses (ABE.mpk,ABE.msk) and replies to B with ABE.mpk upon which
B precomputes {(ABE.mpkj ,ABE.mskj)}j∈[T]\{i} and {NfaABE.mskj}j∈[T] and then implicitly
sets (ABE.mpki,ABE.mski) := (ABE.mpk,ABE.msk) without knowing the value of ABE.msk.
It then handles the encryption and key queries as follows.

30

Encryption queries. Given a message pair (m(0),m(1)) and x ∈ X from A, B sets ` = |x|, chooses
{NfaABE.mskj}j∈[`] and ABE.mpk` from the set of precomputed NfaABE and ABE keys to
answer any encryption query as follows.

1. If ` > i, B computes ABE.ct` ← ABE.Enc(ABE.mpk`,x,m
(0)).

2. If ` = i, B makes a challenge ciphertext query
(
(m(0),m(1)),x

)
to the ABE challenger. The

challenger computes

ABE.ct←

{
ABE.Enc(ABE.mpk`,x,m

(0)) If b = 0

ABE.Enc(ABE.mpk`,x,m
(1)) If b = 1

and returns ABE.ct to B. B then sets ABE.ct` := ABE.ct.

3. If ` < i, B computes ABE.ct` ← ABE.Enc(ABE.mpk`,x,m
(1)).

B also computes {NfaABE.ctj←NfaABE.Enc(NfaABE.mskj ,x,m
(1), 1j)}j∈[`] and returns to A

uNfaABE.ct = ({NfaABE.ctj}j∈[`],ABE.mpk`,ABE.ct`).

Key queries. Given an NFA M from A, B first sets s = |M |, computes {M̂j = To-Circuits,j(M)}j∈[s]

and then chooses NfaABE.msks from the set of precomputed NfaABE keys. It then proceeds as
follows.

1. B chooses {(ABE.mpkj ,ABE.mskj)}j∈[s]\{i} from the set of precomputed ABE keys to
compute {ABE.skj ← ABE.KeyGen(ABE.mpkj ,ABE.mskj , M̂j)}j∈[s]\{i}.

2. B submits M̂i to the ABE challenger upon which the challenger computes and returns
ABE.sk← ABE.KeyGen(ABE.mpk,ABE.msk, M̂i). B then sets ABE.ski := ABE.sk.

B also computes by itself NfaABE.sks ← NfaABE.KeyGen(NfaABE.msks,M) and returns to A
uNfaABE.skM =

(
NfaABE.sks, {ABE.mpkj ,ABE.skj}j∈[s]

)
.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Game3,i if b = 0 and Game3,i+1 if b = 1. Therefore, B breaks the
security of ABE if A distinguishes the two games. It remains to prove that B is a legitimate adversary
(i.e., it does not make any prohibited key queries). Note that any key query issued by B is a circuit
M̂i against a key query for an NFA M issued by A. Further, Theorem 3.1 implies that for any NFA
M,M(x) = M̂i(x),∀x ∈ Σ≤i. Thus, for any attribute x of length i for which B makes an encryption
query and for any NFA key query M issued by A, we have M̂i(x) = M(x) = 0, by the legitimacy of A.

From the above observation, we can see that B breaks the security of ABE if A distinguishes the two
games. This completes the proof of the lemma.

Lemma 4.8. We have |Pr[E4]− Pr[E5]| = negl(λ).

Proof. The proof follows similarly to Lemma 4.5.

Lemma 4.9. We have Pr[E5] = Pr[E6].

Proof. The proof follows similarly to Lemma 4.4.

This concludes the proof of Theorem 4.3.

31

5 FE for DFA implies iO

Here, we show that secret key functional encryption (SKFE) for DFA with security against unbounded
collusion implies indistinguishability obfuscation (iO). This result illuminates the difficulty of constructing
such SKFE from a standard assumption, since no construction of iO from standard assumption is known
despite the significant research effort in recent years [GVW13, GGH+13c, GGH+13b, GVW15, GVW12,
AR17, GKP+13, GVW15, Agr17, ABCP15, ALS16, Lin17, BCFG17, AJ15, BV15, AJS15, Lin16, LV16,
Lin17, AS17a, LT17, AJS18, LM18, Agr18].

5.1 Preliminaries on DFA and Branching Programs

Here, we first recall that a deterministic finite automaton (DFA) is a special case of NFA where for the
transition function T , T (σ, q) consists of a single element in Q for any σ ∈ Σ and q ∈ Q. We then define
branching program similarly to [BV14].

Definition 5.1 (Branching Programs.). A width-5 permutation branching program BP of length L with
input space {0, 1}` is a sequence of L tuples of the form (var(t), σt,0, σt,1) where

• var : [L]→ [`] is a function that associates the t-th tuple with an input bit xvar(t).

• σj,0 and σj,1 are permutations on 5 elements. We will think of σj,0 and σj,1 as bijective functions
from the set {1, 2, 3, 4, 5} to itself.

The computation of the program BP on input x = (x1, . . . , x`) proceeds as follows. The state of the
computation at any point in time t is a number ζt ∈ {1, 2, 3, 4, 5}. Computation starts with the initial
state ζ0 = 1. The state ζt is computed recursively as

ζt = σt,xvar(t) (ζt−1) . (5.1)

Finally, after L steps, our state is ζL. The output of the computation BP(x) is 1 if ζL = 1 and 0 otherwise.

We will use the following theorem, which essentially says that an NC1 circuit can be converted into
an equivalent branching program.

Theorem 5.2 (Barrington’s Theorem [Bar89]). Every Boolean NAND circuit C that acts on ` inputs
and has depth d can be computed by a width-5 permutation branching program BP of length 4d. Given
the description of the circuit BP, the description of the branching program BP can be computed in
poly(`, 4d) time. In particular, if C is a polynomial-sized circuit with logarithmic depth (i.e., if the circuit
is in NC1), BP can be computed in polynomial time.

5.2 SKFE for DFA implies iO

We first state and prove the following theorem.

Theorem 5.3. Let d = d(λ) and ` = `(λ) be integers. There exist deterministic algorithms Encode and
ToDFA with the following properties.

- Encode(x)→ y ∈ {0, 1}n, where x ∈ {0, 1}` and n is a parameter determined by d and `.

- ToDFA(C) → M , where C : {0, 1}` → {0, 1} is a circuit with depth bounded by d and M is a
DFA over alphabet Σ = {0, 1}.

We have that M(y) = 1 if and only if C(x) = 1. We also have that the running time of Encode and
ToDFA is poly(`, 2d). In particular, if C is a polynomial-sized circuit with logarithmic depth (i.e., if the
circuit is in NC1), Encode and ToDFA(C) run in polynomial time.

32

Proof. We define Encode and ToDFA as follows:

• Encode(x) outputs y := (x‖0)L, where (x‖0)L denotes the L-times repetition of the same string
x‖0 and L = 4d.

• ToDFA(C) first converts C into a branching program BP = {(var(t), σt,0, σt,1)}t∈[L] of length
L = 4d by using the algorithm in Theorem 5.2. It then outputs DFA M = (Q,Σ, T, qst, F), where

Q = {q(k)
i,j }i∈[L],j∈[0,`],k∈[5] ∪ {q

(k)
ed }k∈[5], Σ = {0, 1}, qst = q

(1)
1,0, F = {q(1)

ed },

and

T (b, q
(k)
i,j) =


q
σi,b(k)

i,var(i) if j = var(i)− 1

q
(k)
i+1,0 if j = ` ∧ i 6= L

q
(k)
ed if j = ` ∧ i = L

q
(k)
i,j+1 if j 6= var(i)− 1, j 6= `,

T (b, q
(k)
ed) = q

(k)
ed .

In the following, we often denote q(k)
L+1,0 := q

(k)
ed for notational convenience.

It is easy to see that the running time of the algorithms is bounded by poly(`, 2d). We then prove
M(y) = C(x). Since we have C(x) = BP(x) by Theorem 5.2, it suffices to show BP(x) = M(y). To
show this, we prove the following claim.

Claim 5.4. Let t be an integer t ∈ [0, L]. Then, state qst goes to state qζtt+1,0 on input (x‖0)t, where ζt is
defined as Eq. (5.1).

Proof. The proof is by induction on t. For the base case of t = 0, the statement holds because qst = q
(1)
1,0

and ζ0 = 1. Next, we prove the statement for t = t∗ assuming that the statement for t = t∗ − 1. By the
assumption, state qst goes to state qζt∗−1

t∗,0 on input (x‖0)t
∗−1. It suffices to prove that state qζt∗−1

t∗,0 goes

to state qζt∗t∗+1,0 on input x‖0. By inspection, it can be seen that state qζt∗−1

t∗,0 goes to state qζt∗−1

t∗,var(t∗)−1 on

input x1, . . . , xvar(t∗)−1. We also observe that state qζt∗−1

t∗,var(t∗)−1 goes to state

q
σt∗,var(t∗)(ζt∗−1)

t∗,var(t∗) = q
ζt∗
t∗,var(t∗)

on xvar(t∗), where the above equality follows from the definition of ζt∗ . Again by inspection, it can be
seen that state qζt∗t∗,var(t∗) goes to state qζt∗t∗,` on xvar(t∗)+1, . . . , x` and qζt∗t∗,` goes state qζt∗t∗+1,0 on input 0.
This completes the proof of the claim.

By setting t = L, the claim implies that state qst goes to state qζLed on input y. Thus, we have
M(y) = 1 iff ζ1 = 1, which implies M(y) = 1 iff BP(x) = 1. This completes the proof of the
theorem.

We then discuss that if there exists subexponentially secure SKFE (please see Appendix A.3 for a
formal definition) for DFA that is very selectively secure against unbounded collusion, it can be converted
into a secure indistinguishability obfuscation.

To do so, we first convert an SKFE for DFA into an SKFE for NC1 circuits. The latter SKFE has the
same setup algorithm as the former, but when generating a secret key for a circuit C, it first converts C
into a DFA M using the algorithm in Theorem 5.3 and then invoke the key generation algorithm of the
SKFE for DFA on input M . Similarly, when encrypting a message x, it computes y as in Theorem 5.3
and then invoke the encryption algorithm of the SKFE for DFA on input y. The decryption algorithm is

33

defined naturally. It is easy to see that this conversion preserves the correctness and the security since we
have M(y) = C(x) by Theorem 5.3.

Then, we apply the conversion given by [AJ15, BV15] to the SKFE for NC1 to obtain SKFE for all
circuits. We then further apply the conversion by Kitagawa et al. [KNT17, KNT18] to the SKFE for
all circuits to obtain iO. Note that while the former conversion incurs only polynomial loss, the latter
conversion incurs sub-exponential security loss.

In summary, we obtain the following theorem.

Theorem 5.5. If there exists a subexponentially secure SKFE scheme for DFA that is very selectively
secure against unbounded collusion, then there exists an indistinguishability obfuscation.

6 Conclusions

Several interesting questions arise from our work. The first is whether we may generalize our techniques
to support more advanced models of computation. For the moment, we are restricted to NFAs, since we
must bound the depth of the equivalent circuits by a fixed polynomial and this step fails for more general
models such as Turing machines. Second, it would be interesting to design a public key variant of our
scheme. Improving the security proof to satisfy adaptive rather than selective security is also a useful
direction. Finally, it would be nice to find other applications for our techniques.

Acknowledgement. We thank anonymous reviewers of Crypto 2019 for their helpful comments. The
third author is supported by JST CREST Grant Number JPMJCR19F6 and JSPS KAKENHI Grant
Number 16K16068.

References

[ABCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional
encryption schemes for inner products. Cryptology ePrint Archive, Report 2015/017, 2015.
http://eprint.iacr.org/ To appear in PKC’15.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective
to adaptive security in functional encryption. In CRYPTO, 2015.

[ADGM16] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of
indistinguishability obfuscations of circuits over ggh13. eprint 2016, 2016.

[AF18] Prabhanjan Ananth and Xiong Fan. Attribute based encryption with sublinear decryption
from lwe. Cryptology ePrint Archive, Report 2018/273, 2018. https://eprint.iacr.
org/2018/273.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Asiacrypt, 2011.

[Agr17] Shweta Agrawal. Stronger security for reusable garbled circuits, new definitions and attacks.
In Crypto, 2017.

[Agr18] Shweta Agrawal. Indistinguishability obfuscation minus multilinear maps: New methods
for bootstrapping and instantiation, 2018.

[AGVW13] Shweta Agrawal, Sergey Gurbanov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption: New perspectives and lower bounds. In Crypto, 2013.

34

http://eprint.iacr.org/
https://eprint.iacr.org/2018/273
https://eprint.iacr.org/2018/273

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages
308–326, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness generically:
Indistinguishability obfuscation from non-compact functional encryption. IACR Cryptology
ePrint Archive, 2015:730, 2015.

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation without
multilinear maps: io from lwe, bilinear maps, and weak pseudorandomness. Cryptology
ePrint Archive, Report 2018/615, 2018.

[ALS16] Shweta Agrawal, Benoit Libert, and Damien Stehle. Fully secure functional encryption for
linear functions from standard assumptions, and applications. In Crypto, 2016.

[AM18] Shweta Agrawal and Monosij Maitra. Fe and io for turing machines from minimal
assumptions. In TCC, 2018.

[AR17] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, revisited.
In TCC, 2017.

[AS17a] Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite automata
from learning with errors. In ICALP, volume 80. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[AS17b] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In EUROCRYPT, 2017.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In Eurocrypt, 2014.

[Bar89] David A Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc1. Journal of Computer and System Sciences, 38(1):150–164, 1989.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical
functional encryption for quadratic functions with applications to predicate encryption. In
Crypto, 2017.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil
Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic
encryption, arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT, pages
533–556, 2014.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On
the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325, 2012.

[BL15] Xavier Boyen and Qinyi Li. Attribute-based encryption for finite automata from lwe. In
ProvSec, 2015.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

35

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, pages 253–273, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. In
Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, ITCS
’14, 2014.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. FOCS, 2015:163, 2015.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from lwe: Unbounded attributes
and semi-adaptive security. In Crypto, 2016.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
TCC, pages 535–554, 2007.

[CFL+] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu.
Cryptanalysis of the new clt multilinear map over the integers. Eprint 2016/135.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K Maji, Eric
Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level
zeroes: New mmap attacks and their limitations. In Advances in Cryptology–CRYPTO
2015, pages 247–266. Springer, 2015.

[CH85] Stephen A. Cook and H. James Hoover. A depth-universal circuit. SIAM J. Comput.,
14(4):833–839, 1985.

[CHL+15] J.-H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear map
over the integers. In Proc. of EUROCRYPT, volume 9056 of LNCS, pages 3–12. Springer,
2015.

[CJL] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for ntru problems
and cryptanalysis of the ggh multilinear map without a low level encoding of zero. Eprint
2016/139.

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Zeroizing
attacks on indistinguishability obfuscation over clt13. Eprint 2016, 2016.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
FOCS, 2013. http://eprint.iacr.org/.

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based
encryption for circuits from multilinear maps. In CRYPTO, 2013.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In STOC, pages
555–564, 2013.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and bundling
functionalities made generic and easy. In TCC, 2016.

36

http://eprint.iacr.org/

[Gol08] Oded Goldreich. Computational complexity: a conceptual perspective. ACM Sigact News,
39(3):35–39, 2008.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In ACM Conference on Computer and
Communications Security, pages 89–98, 2006.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[GTKP+13] S. Goldwasser, Y. Tauman Kalai, R. Popa, V. Vaikuntanathan, and N. Zeldovich. How to
run turing machines on encrypted data. In CRYPTO (2), pages 536–553, 2013.

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient abe
for branching programs. In Proceedings, Part I, of the 21st International Conference on
Advances in Cryptology – ASIACRYPT 2015 - Volume 9452, 2015.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions from multiparty computation. In CRYPTO, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute based encryption for
circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from lwe. In Crypto, 2015.

[HJ15] Y. Hu and H. Jia. Cryptanalysis of GGH map. Cryptology ePrint Archive: Report 2015/301,
2015.

[KNT17] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Indistinguishability obfuscation
for all circuits from secret-key functional encryption. IACR Cryptology ePrint Archive,
2017:361, 2017.

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-key
functional encryption. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 603–648, 2018.

[KNTY18] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adaptively
secure and succinct functional encryption: Improving security and efficiency,
simultaneously. Cryptology ePrint Archive, Report 2018/974, 2018. https://eprint.
iacr.org/2018/974.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT, pages 146–162, 2008.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes.
In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I, pages 28–57, 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs.
In Crypto, 2017.

37

https://eprint.iacr.org/2018/974
https://eprint.iacr.org/2018/974

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. Cryptology ePrint Archive, Report 2018/646, 2018.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner
product encryption. In EUROCRYPT, pages 62–91, 2010.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and
block-wise local prgs. In Crypto, 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. In FOCS, 2016.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over ggh13. In Crypto, 2016.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[Wat12] Brent Waters. Functional encryption for regular languages. In Crypto, 2012.

38

APPENDICES

A Definitions: Predicate and Functional Encryption

A.1 Predicate and Bounded Key Functional Encryption for Circuits

We present the definition of predicate and bounded key functional encryption for general circuits similarly
to [GVW15, GKP+13, Agr17]. We follow the notation of [Agr17] which provides a single definition for
predicate encryption and succinct bounded key functional encryption. Since this primitive interpolates
predicate and functional encryption, we denote it by PE+. We note that this definition achieves input
privacy but not machine privacy. Machine privacy is considered in the notion of reusable garbled circuits,
defined in Section ??.

For λ ∈ N, let Cinp,d denote a family of circuits with inp bit inputs, an a-priori bounded depth d, and
binary output and C = {Cinp(λ),d(λ)}λ∈N. A predicate encryption scheme PE+ for C over a message space
M = {Mλ}λ∈N consists of four algorithms:

• PE+.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary representation of the security
parameter, the length inp = inp(λ) of the input and the depth d = d(λ) of the circuit
family Cinp(λ),d(λ) to be supported. It outputs the master public key and the master secret key
(PE+.mpk,PE+.msk).

• PE+.Enc(PE+.mpk,x,m) is a PPT algorithm that takes as input the master public key PE+.mpk,
a string x ∈ {0, 1}inp and a message m ∈M. It outputs a ciphertext PE+.ct.

• PE+.KeyGen(PE+.mpk,PE+.msk, C) is a PPT algorithm that takes as input the master public key
PE+.mpk, master secret key PE+.msk, and a circuit C ∈ Cinp(λ),d(λ) and outputs a corresponding
secret key PE+.skC .

• PE+.Dec(PE+.mpk,PE+.skC , C,PE
+.ct) is a deterministic algorithm that takes as input the

master public key PE+.mpk, the secret key PE+.skC , its associated circuit C, and a ciphertext
PE+.ct and outputs either a message m′ or ⊥.

Definition A.1 (Correctness). A predicate encryption scheme for circuits PE+ is correct if for all λ ∈ N,
polynomially bounded inp and d, all circuits C ∈ Cinp(λ),d(λ), all x ∈ {0, 1}inp such that C(x) = 1 and
for all messages m ∈M,

Pr


(PE+.mpk,PE+.msk)← PE+.Setup(1λ, 1inp, 1d),
PE+.ct← PE+.Enc(PE+.mpk,x,m),
PE+.skC ← PE+.KeyGen(PE+.mpk,PE+.msk, C) :

PE+.Dec
(
PE+.mpk,PE+.skC , C,PE

+.ct
)
6= m

 = negl(λ)

where the probability is taken over the coins of PE+.Setup, PE+.KeyGen, and PE+.Enc.

Security. Next, we define simulation based security for PE+. Note that simulation based security is
impossible for functional encryption against an adversary that requests even a single key after seeing the
challenge ciphertext [BSW11], or an unbounded number of keys before seeing the challenge ciphertext
[AGVW13]. However, against an adversary who only requests an a-priori bounded number of keys before
seeing the challenge ciphertext, simulation based security is possible but causes the ciphertext size to
grow with the number of requested keys [AGVW13].

Following [Agr17], we provide a definition that subsumes single (or bounded) key functional
encryption as well as predicate encryption; namely where an attacker can make an unbounded number

39

of function queries Ci so long as it holds that the function keys do not decrypt the challenge ciphertext
PE+.Enc(PE+.mpk,x,m) to recover m. Thus, it holds that Ci(x) = 0 for all requested Ci. We shall
refer to such Ci as 0-keys, and any C such that C(x) = 1 as a 1-key. In our definition, the adversary can
request a single arbitrary (i.e. 0 or 1) key followed by an unbounded polynomial number of 0-keys. As in
[Agr17], we refer to this security notion as (1,poly) simulation security.

Definition A.2 ((1, poly)-Sel-SIM Security). Let PE+ be a predicate encryption scheme for a Boolean
circuit family C. For a stateful PPT adversary A and a stateful PPT simulator Sim, consider the following
two experiments:

Expreal
PE+,A

(1λ): Expideal
PE+,Sim

(1λ):

1: (X,Msg, C∗)← A(1λ)
2: (PE+.mpk,PE+.msk)← PE+.Setup(1λ, 1inp, 1d)
3: For xi ∈ X , let bi = mi.

4: let CTX :=
{PE+.ctxi ← PE+.Enc

(
PE+.mpk,xi, bi

)
}i∈[|X|]

5: PE+.skC∗ ← PE+.KeyGen(PE+.mpk,PE+.msk, C∗)

6: α←APE+.KeyGen(PE+.mpk,PE+.msk,·)(CTX ,PE
+.skC∗)

7: Output (X,Msg, α)

1: (X,Msg, C∗)← A(1λ)
2: PE+.mpk← Sim(1λ, 1inp, 1d, C∗)
3: For xi ∈ X , let bi = mi if C∗(xi) = 1,
⊥ otherwise.

4: Let CTX :=
{PE+.ctxi ← Sim(1|xi|, C∗, bi)}i∈[|X|]

5: PE+.skC∗ ← Sim(C∗)
6: α←ASim(CTX ,PE

+.skC∗)
7: Output (X,Msg, α)

Here, X = {x1, . . . ,x|X|} is the target set of attributes of length inp, and let Msg = {m1, . . . ,m|X|} be
the corresponding set of messages inM. We say an adversary A is admissible if:

1. For a single query C∗, it may hold that C∗(x) = 1 or C∗(x) = 0 for any x ∈ X .

2. For all other queries Ci 6= C∗, it holds that Ci(x) = 0 for any x ∈ X .

The functional encryption scheme FE is then said to be (1, poly)-Sel-SIM-secure if there is an admissible
stateful PPT simulator Sim such that for every admissible PPT adversary A, the following two distributions
are computationally indistinguishable.{

Expreal
PE+,A

(1λ)

}
λ∈N

c
≈
{
Expideal

PE+,Sim
(1λ)

}
λ∈N

For the (Q,poly) version of the above game, we replace each occurrence of C∗ with a tuple
C∗1 , . . . , C

∗
Q and set bi = mi if there is j ∈ [Q] such that C∗j (xi) = 1 and otherwise bi = ⊥.

Remark A.3. Note that the above definition is a multi-challenge one, where the adversary can obtain
multiple challenge ciphertexts. While this security notion implies more standard notion of single-challenge
security, the latter may not imply the former since the simulator is stateful and may use some secret
information to simulate the game. Because of the reason, it is impossible to perform the hybrid argument
to prove the implication. However, in the special case of Agrawal’s PE+ scheme [Agr17], which is
only proven secure in the single-challenge setting, actually satisfies the above stronger notion, since
the simulator for the ciphertext does not use any secret information not known to the adversary in her
construction.

In our construction of PE+ for NFA in Appendix B, we will use the scheme by Agrawal [Agr17] as a
building block. The following theorem summarizes the efficiency properties of her construction.

40

Theorem A.4 (Adapted from [Agr17]). There exists a selectively secure FE scheme PE+ = (PE+.Setup,
PE+.KeyGen,PE+.Enc,PE+.Dec) with the following properties under the LWE assumption.

1. The circuit PE+.Setup(·, ·, ·; ·), which takes as input 1λ, 1inp, 1d, and a randomness r and outputs
PE+.msk = PE+.Setup(1λ, 1inp, 1d; r), can be implemented with depth poly(λ, d). In particular,
the depth of the circuit is independent of inp and the length of the randomness r.

2. We have |PE+.skC | ≤ poly(λ, d) for any C ∈ Cinp,d, where (PE+.mpk,PE+.msk) ←
PE+.Setup(1λ, 1inp, 1d) and PE+.skC ← PE+.KeyGen(PE+.mpk,PE+.msk, C). In particular,
the length of the secret key is independent of the input length inp and the size of the circuit C.

3. Let C : {0, 1}inp+` → {0, 1} be a circuit such that we have C[v] ∈ Cinp,d for any v ∈ {0, 1}`.
Then, the circuit PE+.KeyGen(·, ·, C[·]; ·), that takes as input PE+.mpk, PE+.msk, v, and
randomness r and outputs PE+.KeyGen(PE+.mpk,PE+.msk, C[v]; r), can be implemented with
depth depth(C) · poly(λ, d).

Proof. The proof follows from the proof of Theorem 2.9 and the structure of the PE+ scheme of [Agr17].
We note that the PE+ scheme of [Agr17] uses fully homomorphic encryption (as in [GVW15]), to hide
the attributes in the ABE scheme of [BGG+14], and reverses the FHE encryption by augmenting the
circuit in the function key with an FHE decryption circuit. Thus, if a key is requested for a circuit C, then
the PE+ scheme must construct a function key for a circuit Ĉ ◦ IP where Ĉ is the FHE evaluation circuit
corresponding to circuit C, and IP is the FHE decryption procedure, which in turn, involves computing
an inner product followed by a modular reduction [BGV12, GSW13]. Since the FHE evaluation circuit
corresponding to some circuit C only causes constant polynomial blowup in depth [BGV12, GSW13]
and the FHE decryption circuit is in NC1, we have that the depth of the augmented circuit Ĉ ◦ IP is
poly(λ) · depth(C). The setup and encryption algorithms of the PE+ scheme of [Agr17] are the same as
that of [BGG+14]. Hence, the theorem follows from the proof of Theorem 2.9.

A.2 Predicate Encryption and Bounded Key Functional Encryption for NFA

A secret-key functional encryption scheme NfaPE+ for a message spaceM = {Mλ}λ∈N consists of
four algorithms. In the following, we fix some alphabet Σ = Σλ of size 2 ≤ |Σ| ≤ poly(λ).

• NfaPE+.Setup(1λ) is a PPT algorithm takes as input the unary representation of the security
parameter and outputs the master secret key NfaPE+.msk.

• NfaPE+.Enc(NfaPE+.msk,x,m) is a PPT algorithm that takes as input the master secret key
NfaPE+.msk, a string x ∈ Σ∗ of arbitrary length and a message m ∈M. It outputs a ciphertext
NfaPE+.ct.

• NfaPE+.KeyGen(NfaPE+.msk,M) is a PPT algorithm that takes as input the master secret key
NfaPE+.msk and a description of an NFA machine M . It outputs a corresponding secret key
NfaPE+.skM .

• NfaPE+.Dec(NfaPE+.skM ,M,NfaPE+.ct) is a deterministic polynomial time algorithm that
takes as input the secret key NfaPE+.skM , its associated NFA M , and a ciphertext NfaPE+.ct and
outputs either a message m′ or ⊥.

Remark A.5. As in the construction in Sec. 3.2, we will pass an additional parameter s = s(λ) to the
NfaPE+.Setup,NfaPE+.Enc,NfaPE+.KeyGen algorithms denoting the description size of NFAs that
the scheme can deal with. The construction in Sec. 4 can be adapted in a straightforward way to support
NFAs with arbitrary size.

41

Definition A.6 (Correctness). A scheme NfaPE+ is correct if for all NFAs M , all x ∈ Σ∗ such that
M(x) = 1 and for all messages m ∈M,

Pr


NfaPE+.msk← NfaPE+.Setup(1λ) ,
NfaPE+.skM ← NfaPE+.KeyGen(NfaPE+.msk,M) ,
NfaPE+.ct← NfaPE+.Enc(NfaPE+.msk,x,m) :
NfaPE+.Dec

(
NfaPE+.skM ,M,NfaPE+.ct

)
6= m

 = negl(λ)

where the probability is taken over the coins of NfaPE+.Setup, NfaPE+.KeyGen, and NfaPE+.Enc.

Definition A.7 ((1,poly)-Sel-SIM Security). The definition is adapted from Defn A.2 in the symmetric
key setting. For a stateful PPT adversary A and a stateful PPT simulator Sim, consider the following two
experiments:

Expreal
NfaPE+,A

(1λ): Expideal
NfaPE+,Sim

(1λ):

1: (X,Msg,M∗)← A(1λ)
2: For xi ∈ X , let bi = mi.

Let NfaPE+.msk← NfaPE+.Setup(1λ).
3: Let CTX :=
{PE+.ctxi ← NfaPE+.Enc

(
NfaPE+.msk,xi, bi

)
}i∈[|X|]

4: PE+.skM∗ ← NfaPE+.KeyGen(NfaPE+.msk,M∗)

5: α←ANfaPE+.KeyGen(NfaPE+.msk,·)(CTX ,PE
+.skM∗)

6: Output (X,Msg, α)

1: (X,Msg,M∗)← A(1λ)
2: For xi ∈ X , let bi = mi if M∗(xi) = 1,
⊥ otherwise.

3: let CTX :=
{PE+.ctxi ← Sim(1|xi|,M∗, bi)}i∈[|X|]

4: PE+.skM∗ ← Sim(M∗)
5: α←ASim(CTX ,PE

+.skM∗)
6: Output (X,Msg, α)

Here, X = {x1, . . . ,x|X|} is the target set of attributes over Σ∗, and let Msg = {m1, . . . ,m|X|} be
the corresponding set of messages inM. We say an adversary A is admissible if:

1. For a single query M∗, it may hold that M∗(xi) = 1 or M∗(xi) = 0 for any xi ∈ X .

2. For all other queries Mj 6= M∗, it holds that Mj(xi) = 0 for any xi ∈ X .

The PE+ scheme NfaPE+ is then said to be (1, poly)-Sel-SIM-secure if there is an admissible stateful
PPT simulator Sim such that for every admissible PPT adversary A, the following two distributions are
computationally indistinguishable.{

Expreal
NfaPE+,A

(1λ)

}
λ∈N

c
≈
{
Expideal

NfaPE+,Sim
(1λ)

}
λ∈N

For the (Q,poly) version of the above game, we replace each occurrence of M∗ with a tuple
M∗1 , . . . ,M

∗
Q and set bi = mi if there is j ∈ [Q] such that M∗j (xi) = 1 and otherwise bi = ⊥.

A.3 Symmetric Key Functional Encryption

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set. Let
F =

{
Fλ
}
λ∈N denote an ensemble where each Fλ is a finite collection of circuits, and each circuit

g ∈ Fλ takes as input a string x ∈ Xλ and outputs g(x) ∈ Yλ.
A symmetric key functional encryption scheme SKFE for F consists of four algorithms SKFE =

(SKFE.Setup, SKFE.KeyGen, SKFE.Enc,SKFE.Dec) defined as follows.

• SKFE.Setup(1λ) is a PPT algorithm takes as input the unary representation of the security
parameter and outputs the master secret key msk.

42

• SKFE.KeyGen(msk, g) is a PPT algorithm that takes as input the master secret key msk and a
circuit g ∈ Fλ and outputs a corresponding secret key skg.

• SKFE.Enc(msk, x) is a PPT algorithm that takes as input the master secret key msk and an input
message x ∈ Xλ and outputs a ciphertext ct.

• SKFE.Dec(skg, ctx) is a deterministic algorithm that takes as input the secret key skg and a
ciphertext ctx and outputs g(x).

Definition A.8 (Correctness). A symmetric key functional encryption scheme SKFE is correct if for all
g ∈ Fλ and all x ∈ Xλ,

Pr

[
msk← SKFE.Setup(1λ);

SKFE.Dec
(
SKFE.KeyGen(msk, g), SKFE.Enc(msk, x)

)
6= g(x)

]
= negl(λ)

where the probability is taken over the coins of SKFE.Setup, SKFE.KeyGen, and SKFE.Enc.

Security. In this paper we will consider the standard indistinguishability based definition.

Definition A.9. A symmetric key functional encryption scheme SKFE for a function family F is very
selectively secure under the unbounded collusion, if for all PPT adversaries A, the advantage of A in the
following experiment is negligible in the security parameter λ:

1. Key Queries and Challenge Queries. Given the security parameter 1λ, A submits key queries
g1, . . . , gq ∈ Fλ and ciphertext queries (x

(0)
1 , . . . , x

(0)
q′), (x

(1)
1 , . . . , x

(1)
q′) to the challenger. Here,

the number of key queries and the challenge queries can be arbitrarily large polynomial. These
queries should satisfy gi(x

(0)
j) = gi(x

(1)
j) for all i ∈ [q] and j ∈ [q′].

2. Challenge. Then, the challenger runs msk← SKFE.Setup(1λ) and chooses random bit b. Then it
computes ski ← SKFE.KeyGen(msk, gi) for i ∈ [q] and ctj ← SKFE.Enc(msk, x

(b)
j) for j ∈ [q′]

and gives {ski}i∈[q] and {ctj}j∈[q′] to the adversary.

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is |Pr[b = b′]− 1/2| in the above game.

Function Class. In this paper, we consider two function classes for SKFE. The first one is circuits,
namely we set Xλ = {0, 1}inp(λ) and Yλ is the circuits of input length inp(λ) and fixed depth depth(λ)
and output length out(λ). The second class is DFAs, namely we set Xλ = Σ∗ and Yλ is DFA with
alphabet Σ.

B Construction: Predicate and Bounded Key Functional Encryption for
NFA

We construct a secret key predicate and bounded key FE scheme for NFA denoted by NfaPE+ =
(NfaPE+.Setup,NfaPE+.KeyGen,NfaPE+.Enc,NfaPE+.Dec) from the following ingredients:

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key K← PRF.Setup(1λ)
defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We denote the length of K by |K|.

43

2. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme for circuit with
the efficiency property described in Item 1 of Theorem 2.15. We can instantiate FE with the scheme
proposed by Goldwasser et al. [GKP+13].

3. PE+ = (PE+.Setup,PE+.KeyGen,PE+.Enc,PE+.Dec): A PE+ scheme for circuits that satisfies
the efficiency properties described in Theorem A.4. We can instantiate PE+ with the scheme
proposed by Agrawal [Agr17].

4. U(·, ·): a universal circuit that takes as input a circuit C of fixed depth and size and an input x to
the circuit and outputs C(x). We often denote by U [C](·) = U(C, ·) a universal circuit U with the
first input C being hardwired. We need to have depth(U) ≤ O(depth(C)). For construction of
such a universal circuit, we refer to [CH85].

Below we provide our construction for secret key PE+ for NFA, where size of machines is s. This
restriction can be removed by the same trick as in Sec. 4. In the description below, we abuse notation
and denote as if the randomness used in a PPT algorithm was a key K of the pseudorandom function
PRF. Namely, for a PPT algorithm (or circuit) A that takes as input x and a randomness r ∈ {0, 1}` and
outputs y, A(x;K) denotes an algorithm that computes r := PRF(K, 1)‖PRF(K, 2)‖ · · · ‖PRF(K, `) and
runs A(x; r). Note that if A is a circuit, this transformation makes the size of the circuit polynomially
larger and adds a fixed polynomial overhead to its depth. In particular, even if we add this change to
PE+.Setup and PE+.KeyGen, the efficiency properties of PE+ described in Theorem A.4 is preserved.

NfaPE+.Setup(1λ, 1s): On input the security parameter 1λ and a description size s of an NFA, do the
following:

1. For all j ∈ [0, λ], sample PRF keys K̂j ,Rj ← PRF.Setup(1λ).

2. For all j ∈ [0, λ], sample (FE.mpkj ,FE.mskj)← Setup(1λ, 1inp(λ), 1d(λ), 1out(λ)).

Here, we generate λ+ 1 instances of FE. Note that all instances support a circuit class with
input length inp(λ) = s+ 2|K|, output length out(λ), and depth d(λ), where out(λ) and d(λ)
are polynomials in the security parameter that will be specified later.

3. Output NfaPE+.msk = ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).

NfaPE+.Enc(NfaPE+.msk,x, m, 1s): On input the master secret key NfaPE+.msk, an attribute x ∈ Σ∗

of length at most 2λ, a message m and the bound s on NFA size, do the following:

1. Parse the master secret key as NfaPE+.msk→ ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).

2. Set x̂ = x‖⊥2i−`, where ` = |x| and i = dlog `e.

3. Compute a PE+ key pair (PE+.mpki,PE
+.mski) = PE+.Setup(1λ, 12iη, 1d̂; K̂i) with K̂i as

the randomness.

Here, we generate an instance of PE+ that supports a circuit class with input domain
{0, 1}2iη ⊇ (Σ ∪ {⊥})2i and depth d̂.

4. Compute PE+.ct ← PE+.Enc(PE+.mpki, x̂,m) as an PE+ ciphertext for the message m
under attribute x̂.

5. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Cs,2i ;Ri), whereCs,2i is a circuit described
in Figure 5.

6. Output NfaPE+.ct = (FE.ski,PE
+.mpki,PE

+.ct).

Without loss of generality, we assume that i is revealed from PE+.ct.

44

Function Cs,2i

(a) Parse the input w = (M, K̂, R̂), where M is an NFA and K̂ and R̂ are PRF keys.

(b) Compute (PE+.mpk,PE+.msk) = PE+.Setup(1λ, 12
iη, 1d̂; K̂).

(c) Compute M̂2i = To-Circuits,2i(M). (See Theorem 3.1 for the definition of To-Circuit.)

(d) Compute and output PE+.sk
U [M̂2i]

= PE+.KeyGen(PE+.mpk,PE+.msk, U [M̂2i]; R̂).

Figure 5

NfaPE+.KeyGen(NfaPE+.msk,M , 1s): On input the master secret key NfaPE+.msk, the description
of an NFA M and a size s of the NFA, if |M | 6= s, output ⊥ and abort. Else, proceed as follows.

1. Parse the master secret key as NfaPE+.msk→ ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).

2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, λ].

3. Compute FE.ctj ← FE.Enc(FE.mpkj , (M, K̂j , R̂j)) for all j ∈ [0, λ].

4. Output NfaPE+.skM = {FE.ctj}j∈[0,λ].

NfaPE+.Dec(NfaPE+.skM ,M,NfaPE+.ct): On input a secret key for NFA M and a ciphertext,
proceed as follows:

1. Parse the secret key as NfaPE+.skM → {FE.ctj}j∈[0,λ] and the ciphertext as NfaPE+.ct→
(FE.ski,PE

+.mpki,PE
+.ct).

2. Learn i from PE+.ct and choose FE.cti from NfaPE+.skM = {FE.ctj}j∈[0,λ].

3. Compute y = FE.Dec(FE.mpki,FE.ski,FE.cti).

4. Compute and output z = PE+.Dec(PE+.mpki, y, U [M̂2i],PE
+.cti), where we interpret y

as a secret key.

Correctness follows as in Section 3.3 by appropriately setting out(λ) and d(λ). For security, we
prove the following theorem.

Theorem B.1. Assume that FE satisfies full simulation based security, PE+ is Sel-SIM secure, and that
PRF is a secure pseudorandom function. Then, NfaPE+ satisfies selective simulation based security.

We note that the structure of hybrids is almost the same as in the proof of Theorem 3.4. The difference
is that instead of changing ciphertexts corresponding to each instance of PE+ from an encryption of m0

to m1, we change honest setup, key generation, and encryption of each instance of PE+ to the simulated
ones. To do so, we must replace the reliance on ABE for circuits with PE+ for circuits. In more detail, we
consider Gamei for i ∈ [0, imax + 1] as follows, where imax is defined as in the proof of Theorem 3.4.

Gamei: The game proceeds as follows. In the following FE.Sim and PE+.Sim are the simulators for
FE and PE+, respectively.

Setup phase. At the beginning of the game, A takes 1λ as input and submits 1s and (X,Msg,M∗)
to the challenger. Then, the challenger chooses {K̂j ,Rj}j∈[0,λ] and {FE.mpkj ,FE.mskj}j∈[0,λ].

It further samples PE+.mpkj ← PE+.Sim(1λ, 12jη, 1d̂, U [M̂∗
2j

]) and FE.skj ← FE.KeyGen(
FE.mpkj ,FE.mskj , Cs,2j) for j ≤ i− 1.

45

The challenger answers the encryption and key queries made by A as follows.

Simulating Keys. During the game, secret key for M (which is possibly M∗) is answered as
follows. For j ∈ [0, λ], the challenger computes

FE.ctj ←

{
FE.Enc(FE.mpkj , (M, K̂j , R̂j)) If λ ≥ j ≥ i
FE.Sim(FE.mpkj ,FE.skj , Cs,2j ,PE

+.sk
U [M̂

2j
]
, 1inp(λ)) If j ≤ i− 1,

(B.1)

where PE+.sk
U [M̂

2j
]
← PE+.KeyGen(PE+.mpkj ,PE

+.mskj , U [M̂2j]) and returns {FE.ctj}
to A.

Simulating Ciphertexts. To generate a ciphertext for m ∈ Msg associated with x ∈ X , the
challenger sets j := dlog |x|e and computes

PE+.ct←

{
PE+.Enc(PE+.mpkj , x̂,m) If imax ≥ j ≥ i
PE+.Sim(12jη, M̂∗

2j
, b) If j ≤ i− 1,

where b = m ifM∗(x) = 1 and⊥ otherwise. It also computes FE.skj = FE.KeyGen(FE.mpkj ,
FE.mskj , Cs,2j ;Rj) if j ≥ i. The ciphertext is NfaPE+.ct = (FE.skj ,PE

+.mpkj ,PE
+.ct).

Finally, A outputs its guess b′.

It is easy to see that Game0 is the same as Expreal
NfaPE+,A

(1λ). Furthermore, we can construct
a simulator for NfaPE+ from the challenger in Gameimax+1 appropriately, since the challenger
in Gameimax+1 only uses b and |x| to simulate the ciphertext. Therefore, it suffices to show the
indistinguishability between Gamei and Gamei+1. To do so, we further consider following sequence
of games, which closely follows the proof of Theorem 3.4 except that we do not need counterpart of
Gamei,6, where we undo changes we made from Gamei,1 to Gamei,5. We directly go to Gamei+1,0

from Gamei,5.

Gamei,0: The game is the same as Gamei.

Gamei,1: The game is the same as the previous game except that (PE+.mpki,PE
+.mski) and FE.ski

are computed at the setup phase using K̂i and Ri.

Gamei,2: The game is the same as the previous game except that FE.ski is generated using true
randomness instead of using the PRF keys.

Gamei,3: In this game, to answer a key query, FE.cti is computed using FE.Sim on input
PE+.sk

U [M̂2i]
= PE+.KeyGen(PE+.mpki,PE

+.mski, U [M̂2i]; R̂i).

Gamei,4: In this game, to answer a key query, PE+.sk
U [M̂2i]

is generated using true randomness
instead of using the PRF key.

Gamei,5: In this game, we generate PE+.mpki using PE+.Sim. We also generate PE+.ct using
PE+.Sim when dlog |x|e = i.

Note that we have Gamei,5 = Gamei+1,0. Furthermore, indistinguishability between Gamei,j−1 and
Gamei,j for j ∈ [4] can be established in exactly the same manners as in Theorem 3.4. For Gamei,4
and Gamei,5, we give the proof in the following.

Lemma B.2. We have |Pr[Ei,4]− Pr[Ei,5]| = negl(λ).

46

Proof. To prove the lemma, let us assume that |Pr[Ei,4]− Pr[Ei,5]| is non-negligible and construct an
adversary B that breaks the selective simulation security of PE+ using A. B proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and gets (X,Msg,M∗) and 1s

from A. Then PE+ challenger chooses PE+.mpk and sends it to B, where PE+.mpk is
honestly chosen or simulated, depending on whether B is playing the real game or simulated
game. B then sets PE+.mpki := PE+.mpk and chooses K̂j ,Rj ← PRF.Setup(1λ) and
(FE.mpkj ,FE.mskj) ← Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)) for j ∈ [0, λ]. It also computes
FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i). Finally, B sets

Xi := {x̂ = x‖⊥2i−|x| : x ∈ X, 2i−1 < |x| ≤ 2i}

and
Msgi := {mj ∈ Msg : 2i−1 < |xj | ≤ 2i}

and submits its target as (Xi,Msgi, M̂
∗
2i

) and (12iη, 1d̂, 1s) to the PE+ challenger, where M̂∗
2i

=
To-Circuit|M∗|,2i(M∗).

After B specifies its target, it is given a secret key PE+.sk
U [M̂∗

2i
]

and ciphertexts {PE+.ctx̂}x̂∈Xi . They

are honestly generated or simulated depending on whether B is playing the real game or simulated game.
B then simulates the ciphertexts {NfaPE+.ctx}x∈X as follows.

Simulating Ciphertexts. To generate a ciphertext for x ∈ X associated with m ∈ Msg, B computes
the ciphertext NfaPE+.ctx as follows. For the case of dlog |x|e 6= i, it proceeds as in the previous
game. Otherwise, it retrieves corresponding component PE+.ctx̂ to x̂ from {PE+.ctx̂}x̂∈Xi and
sets NfaPE+.ctx = (FE.ski,PE

+.mpki,PE
+.ctx̂), where B uses PE+.mpki and FE.ski that are

sampled in the setup phase.

B also simulates the 1-key NfaPE+.skM∗ := {FE.ctj}j∈[0,λ] from PE+.sk
U [M̂∗

2i
]

as in Eq. (B.1). B then

gives NfaPE+.skM∗ and {NfaPE+.ctx}x∈X to A and answers the key queries as follows.

Key queries. Given an NFA M of size s from A, B first chooses R̂j ← PRF.Setup(1λ) for j ∈ [0, λ]. It
then queries a secret key for U [M̂2i] to its challenger. Then, the challenger returns PE+.sk

U [M̂2i]

to B. The key is honestly generated or simulated depending on whether B is playing the real
game or simulated game. It then computes FE.ctj for j ∈ [0, λ] as in Eq. (B.1) and returns
NfaPE+.skM := {FE.ctj}j∈[0,λ] to A.

It is easy to see that B simulates Gamei,4 if it is in the real game and Gamei,5 if it is in the simulated
game. Therefore, B breaks the security of PE+ if A distinguishes the two games. It remains to prove
that B is a legitimate adversary (i.e., it does not make any prohibited key queries). For any attribute x̂ for
which B makes an encryption query and for any circuit U [M̂2i] for which B makes a key query, we have

U [M̂2i](x̂) = M̂2i(x̂) = M(x),

where the second equality above follows from Item 1 of Theorem 3.1. Therefore, B is a legitimate
adversary as long as so is A. This completes the proof of the lemma.

C Reusable Garbled Nondeterministic Finite Automata

In this section, we provide the definition of reusable garbled NFAs.

47

C.1 Reusable Garbled NFA

In this section, we will define garbled NFAs and notions of input and function privacy, adapting
corresponding definitions from [AS17a]. We further show how to construct garbled NFAs (with
unbounded inputs) that can be used to evaluate multiple inputs (of possibly varying size).

Definition C.1. (Garbled NFA scheme) A garbling scheme for a family of NFAs M = {Mλ}λ∈N
with Mλ a family of NFAs Σλ ×Qλ → Qλ, is a tuple of PPT algorithms RGbNFA = (RGNfa.Garble,
RGNfa.Encode,RGNfa.Eval) such that

• RGbNFA.Setup(1λ) takes as input the security parameter λ and outputs a secret key gsk.

• RGNfa.Garble(gsk,M) takes as input a secret key gsk and an NFA M ∈ Mλ and outputs the
garbled NFA MG.

• RGNfa.Encode(gsk,w) takes as input the vector w ∈ Σ∗, the secret key gsk and outputs an
encoding c.

• RGNfa.Eval(MG, c) takes as input a garbled NFA MG, an encoding c and outputs 1 iff M accepts
w, 0 otherwise.

Definition C.2. (Correctness). For all sufficiently large security parameters λ, for all NFAs M ∈ Mλ

and all w ∈ Σ∗, we have:

Pr

[
gsk← RGbNFA.Setup(1λ),MG ← RGNfa.Garble(gsk,M);
c← RGNfa.Encode(gsk,w); b← RGNfa.Eval(MG, c) : M(w) = b

]
= 1− negl(λ)

Definition C.3. (Efficiency) There exist universal polynomials p1 = p1(λ) and p2 = p2(λ, ·) such that
for all security parameters λ, for all NFAs M ∈Mλ, for all w ∈ Σ∗,

Pr

[
gsk← RGbNFA.Setup(1λ) :
|gsk| ≤ p1(λ) and runtime (RGNfa.Encode(gsk,w)) ≤ p2(λ, |w|)

]
= 1.

Definition C.4. (Input and machine privacy with reusability) Let RGbNFA be a garbling scheme for a
family of NFAsM = {Mλ}λ∈N. For a pair of stateful PPT algorithms A and a PPT simulator Sim,
consider the following two experiments:

ExprealRGbNFA,A(1λ): ExpidealRGbNFA,A,Sim(1λ):

1: M ← A(1λ)
2: gsk← RGbNFA.Setup(1λ)
MG ← RGNfa.Garble(gsk,M)

3: α← ARGNfa.Encode(gsk,·)(M,MG)
4: Output α

1: M ← A(1λ)
2: M̃G ← Sim(1λ, 1|M |)

3: α← AO(·,M)(M,M̃G)
4: Output α

Here, O(·,M) is an oracle that on input w from A, runs Sim with inputs M(w), 1|w|, and the latest state
of Sim; it returns the output of Sim (Note that Sim updates and maintains its internal states upon its
invocation, since it is a stateful algorithm.).

A garbling scheme RGbNFA is input and machine private with reusability if there exists a PPT
simulator Sim such that for all pairs of PPT adversaries A, the following two distributions are
computationally indistinguishable:{

ExprealRGbNFA,A(1λ)

}
λ∈N

c
≈
{
ExpidealRGbNFA,A,Sim(1λ)

}
λ∈N

48

Selective Simulation Security. We can consider a weaker version of the above security notion where
A outputs a set X = {x1, . . . ,x|X|} ⊂ Σ∗ along with M at the beginning of the game and A is only
allowed to query x ∈ X to RGNfa.Encode(gsk, ·) and O(·,M). We call this security notion selective
simulation security.

D Construction: Reusable Garbled NFA

We first note that one could consider replacing the underlying PE+ scheme in Section B with a Reusable
Garbled circuit scheme, RGC to obtain a construction of Reusable Garbled NFA. Following the previous
template of our constructions from Sec. 3.2 and Sec. B, this makes the circuit supported by the underlying
FE scheme to work as follows.

1. Convert the input NFA machine M to an equivalent circuit M̂2i that can handle inputs of length 2i.

2. Compute an RGC secret key to encode M̂2i and output this as its garbled version.

This intuitive conversion fails to work since the resulting encoding as the garbled machine cannot be
shorter than the circuit description length |M̂2i |, while we need it to be independent of equivalent circuit
size. At a high level, to avoid this problem and still ensure machine privacy, we will encrypt M under a
symmetric key encryption scheme, SKE. Further, we will use another FE scheme (detailed below) with
suitable efficiency guarantees to decrypt this SKE ciphertext encoding M and then run its equivalent
circuit description on the encoded input to obtain the desired output.

To this end, we use the following ingredients:

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key K← PRF.Setup(1λ)
defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We denote the length of K by |K|.

2. SKE = (SKE.Setup,SKE.Enc, SKE.Dec): a secret key encryption, where the length of a secret
key S← SKE.Setup(1λ) is denoted by |S|. For the sake of concreteness and simplicity, we assume
that the ciphertext length encrypting a message of length s is s+λ. Furthermore, we assume that the
depth of the decryption circuit is bounded by some fixed polynomial poly(λ) that is independent
of the length of the message. These properties can be easily achieved by using PRF for instance.

3. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme for circuit with
the efficiency property described in Item 1 of Theorem 2.15. We can instantiate FE by the scheme
proposed by Goldwasser et. al [GKP+13].

4. F̂E = (F̂E.Setup, F̂E.KeyGen, F̂E.Enc, F̂E.Dec): a functional encryption scheme for circuit with
the efficiency properties described in Theorem A.4. We can instantiate F̂E with the PE+ scheme
proposed by Agrawal [Agr17].7 Alternatively, we can instantiate F̂E by the scheme proposed by
Goldwasser et. al with the underlying ABE scheme used in their construction being instantiated
by the scheme by Boneh et. al [BGG+14]. In both cases, the scheme will only have selective
simulation security rather than full simulation security. See Remark 2.14 for the definition of
selective simulation security and Remark 2.10 for the reason why we only have selective simulation
secure FE scheme with the required efficiency properties.

The reusable garbled NFA scheme is defined as follows. The encode algorithm here needs the size s
of NFA. This requirement will be removed later using similar technique to Sec. 4.

7Though PE+ has different syntax from functional encryption, it is easy to convert the former into the latter. For example, we
encrypt a random message under an attribute x using PE+ and append the message to the PE+ ciphertext to form a functional
encryption of a message x. To decrypt the ciphertext, we use PE+ secret key to decrypt the PE+ ciphertext and output 1 if it
corresponds to the appended message and 0 otherwise.

49

RGbNFA.Setup(1λ) : Upon input the security parameter, sample PRF keys Kj , K̂j ,Rj ← PRF.Setup(1λ)

and SKE key Sj ← SKE.Setup(1λ) for all j ∈ [0, λ]. Then, output gsk = ({K̂j ,Kj ,Rj ,Sj}j∈[0,λ]).

RGNfa.Garble(gsk,M): Upon input a secret key gsk and an NFA machine M of size |M | = s, do the
following:

1. For all j ∈ [0, λ], sample (FE.mpkj ,FE.mskj)← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ);Kj).

Here, we generate λ+ 1 instances of FE. Note that all instances support a circuit class with
input length inp(λ) = s + λ+ 2|K|, output length out(λ), and depth d(λ), where out(λ) and
d(λ) are polynomials in the security parameter as in Section 3.

2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, λ].

3. Compute SKE.ctj ← SKE.Enc(Sj ,M) for all j ∈ [0, λ].

4. Compute FE.ctj ← FE.Enc(FE.mpkj , (SKE.ctj , K̂j , R̂j)) for all j ∈ [0, λ].

5. Output garbled NFA MG = ({SKE.ctj ,FE.mpkj ,FE.ctj}j∈[0,λ]).

RGNfa.Encode(gsk,x, 1s): Upon input a secret key gsk, a vector x, and the size of NFA 1s do the
following:

1. Parse gsk as gsk→ ({K̂j ,Kj ,Rj , Sj}j∈[0,λ]).

2. Set x̂ = x‖⊥2i−`, where ` = |x| and i = dlog `e.
3. Sample (FE.mpki,FE.mski)← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ);Ki).

4. Sample (F̂E.mpki, F̂E.mski) = F̂E.Setup(1λ, 12iη, 1d̂(λ), 11; K̂i). Note that this FE supports
a circuit class with input domain {0, 1}2iη ⊇ (Σ ∪ {⊥})2i , single bit output, and depth d̂.

5. Compute F̂E.ct← F̂E.Enc(F̂E.mpki, (Si, x̂)).

6. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Cs,2i ;Ri), whereCs,2i is a circuit described
in Figure 6.

Function Cs,2i

(a) Parse the input w = (SKE.ct, K̂, R̂), where SKE.ct is an SKE ciphertext and K̂ and R̂ are PRF keys.

(b) Compute (F̂E.mpk, F̂E.msk) = F̂E.Setup(1λ, 12
iη, 1d̂; K̂)

(c) Compute and output F̂E.sk = F̂E.KeyGen(F̂E.mpk, F̂E.msk, Ds,2i [SKE.ct]; R̂). (See Figure 7 for the
definition of Ds,2i [SKE.ct])

Figure 6

7. Output c = (F̂E.mpki,FE.ski, F̂E.ct).

RGNfa.Eval(MG, c): Upon input the reusable garbled NFA MG and the input encoding c, do the
following:

1. Parse the garbled machine as MG → ({SKE.ctj ,FE.mpkj ,FE.ctj}j∈[0,λ]) and the encoding
as c→ (F̂E.mpki,FE.ski, F̂E.ct).

2. Set ` = |x| and choose FE.cti such that i = dlog `e < λ.

3. Compute y = FE.Dec(FE.mpki,FE.ski, Cs,2i ,FE.cti).

50

Function Ds,2i [SKE.ct]

(a) Parse the input w = (S, x̂), where S is an SKE secret key.

(b) Compute M = SKE.Dec(S,SKE.ct).

(c) Compute M̂2i = To-Circuits,2i(M). (See Theorem 3.1 for the definition of To-Circuit.)

(d) Compute and output M̂2i(x̂). (This part of the computation is implemented by U [M̂2i] where the universal
circuit U is instantiated by [CH85].)

Figure 7

4. Construct Ds,2i [SKE.cti] from SKE.cti.

5. Compute and output z = FE.Dec(F̂E.mpki, y,Ds,2i [SKE.cti], F̂E.ct), where we interpret y
as a secret key of the underlying FE.

Correctness. Correctness of the scheme follows from the correctness of FE and F̂E as in Section 3.4 if
we appropriately set d̂, out, and d. Here, we give a brief explanation. We first observe that Ds,2i [SKE.cti]

can be implemented by combining the decryption circuit of SKE, To-Circuits,2i , and U [M̂2i]. The depth
of the first circuit (resp., the latter two circuits) can be bounded by some fixed polynomial, which is in
particular independent of 2i, by our assumption on SKE (resp., by Theorem 3.1). Therefore, the depth
of the overall circuit Ds,2i [SKE.cti] can be bounded by some fixed polynomial. We would set d̂(λ) to
be larger than this polynomial so that we can invoke the correctness of F̂E. By our assumption on the
secret key size of F̂E, we can bound the length of F̂E.sk that is output by Cs,2i by a polynomial in d̂ and
λ, which can be bounded by some fixed polynomial in λ. We would set out(λ) to be larger than this
polynomial. Furthermore, we can see that the depth of Cs,2i can be bounded by some fixed polynomial by
the assumptions we posed on the depth of the setup and key generation circuits of F̂E and by the fact that
the depth of Ds,2i [SKE.ct] can be bounded by some fixed polynomial. We would set d(λ) to be larger
than this polynomial. Since the depth and output length of Cs,2i are bounded by d and out respectively,
the circuit Cs,2i is supported by the scheme and thus we can invoke the correctness of FE. We therefore
have y = Cs,2i(SKE.cti,Ki,Ri) = F̂E.KeyGen(F̂E.mski, Ds,2i [SKE.cti]; R̂i) by the correctness of FE
and z = Ds,2i [SKE.cti](Si, x̂) = M̂2i(x̂) = M(x) by the correctness of F̂E and SKE.

Security. Here, we prove that RGbNFA defined above is secure, if so is FE. Formally, we have the
following theorem.

Theorem D.1. Assume that FE satisfies full simulation based security, F̂E satisfies selective simulation
security, and that PRF is a secure pseudorandom function. Then, NfaABE satisfies selective simulation
security.

Proof. Security follows analogously to that of Theorem B.1. The main difference is that the PE+

simulator is replaced by the FE simulator and we additionally invoke the security of SKE to achieve the
function privacy. Other differences are that we have to change (FE.mpkj ,FE.mskj) to be sampled using
true randomness instead of Kj using the security of the PRF and we introduce the step where we undo the
changes added during the hybrid games similarly to the proof of Theorem 3.4. Below, we give the hybrid
games to prove the security. In more detail, we consider Gamei for i ∈ [0, λ+ 1] as follows.

Gamei: The game proceeds as follows. In the following FE.Sim is the simulator for FE.

51

Setup. At the beginning of the game, the challenger takes 1λ as input and samples {Kj , K̂j ,Rj ,Sj}j∈[0,λ].
It also computes (FE.mpkj ,FE.mskj) ← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ);Kj) for j ∈
[0, λ].

The challenger answers the queries made by A as follows.

Garbling the NFA. A takes 1λ as input and submits an NFA machine M of size s and a set
X = {x1, . . . ,x|X|} ⊂ Σ∗ to the challenger. The challenger computes MG as follows. The
challenger computes SKE.ctj and FE.ctj for j ∈ [0, λ] as

FE.ctj ← FE.Enc(FE.mpkj , (SKE.ctj , K̂j , R̂j)), SKE.ctj ←

{
SKE.Enc(Sj ,M) If λ ≥ j ≥ i
SKE.Enc(Sj , 0

s) If j ≤ i− 1,

and returns MG = ({SKE.ctj ,FE.mpkj ,FE.ctj}j∈[0,λ]) to A.
Simulating Encodings. To generate an encoding for x ∈ X , the challenger sets j := dlog |x|e

and generates (F̂E.mpkj , F̂E.mskj) = F̂E.Setup(1λ, 12jη, 1d̂(λ), 11; K̂j). It then computes

F̂E.ct←

{
F̂E.Enc(F̂E.mpkj , (Sj , x̂)) If λ ≥ j ≥ i
F̂E.Sim(F̂E.mpkj , F̂E.skDs,2j [SKE.ctj], Ds,2j [SKE.ctj],M(x)) If j ≤ i− 1

, (D.1)

where F̂E.skDs,2j [SKE.ctj] ← F̂E.KeyGen(F̂E.mskj , Ds,2j [SKE.ctj]; R̂j). It also com-
putes FE.skj = FE.KeyGen(FE.mpkj ,FE.mskj , Cs,2j ;Rj). The encoding of x is c =

(F̂E.mpkj ,FE.skj , F̂E.ct).

Finally, A outputs its guess b′.

It is easy to see that Game0 is the same as ExprealRGbNFA,A(1λ). Furthermore, we can construct a
simulator for RGbNFA from the challenger in Gameλ+1 appropriately, since the challenger in Gameλ+1

only uses s and |x| to simulate a garbled NFA and an encoding, respectively. Therefore, it suffices to show
the indistinguishability between Gamei and Gamei+1. To do so, we consider two cases separately
depending on whether i ≤ imax or not, where imax is defined as in the proof of Theorem 3.4.

We first consider the case of i ≥ imax + 1. In this case, the only difference between Gamei and
Gamei+1 is the way SKE.cti is generated, since the upper branch of Equation (D.1) is never triggered
when answering the encoding query because of the definition of imax. The indistinguishability of the
two games immediately follows from the security of SKE since Si is never used except when generating
SKE.cti.

We then consider the case of i ≤ imax. The proof for this case closely follows the proof of
Theorem B.1 except for we some changes that we explained at the beginning of the proof.

Gamei,0: The game is the same as Gamei.

Gamei,1: The game is the same as the previous game except that FE.ski = FE.KeyGen(FE.mpki,

FE.mski, Cs,2i ;Ri) and (F̂E.mpki, F̂E.mski) = F̂E.Setup(1λ, 12iη, 1d̂(λ), 11; K̂i) are computed at
the setup phase.

Gamei,2: The game is the same as the previous game except that (FE.mpki,FE.mski) and FE.ski are
generated using true randomness instead of using the PRF keys.

Gamei,3: In this game, to answer a garbling query, FE.cti is computed as

FE.cti ← FE.Sim(FE.mpki,FE.ski, Cs,2i , F̂E.skDs,2i [SKE.cti]
, 1inp(λ))

where F̂E.skDs,2i [SKE.cti]
← F̂E.KeyGen(F̂E.mski, Ds,2i [SKE.cti]; R̂i).

52

Gamei,4: In this game, to answer a garbling query, (F̂E.mpki, F̂E.mski) and F̂E.skDs,2i [SKE.cti]
are

generated using true randomness instead of using the PRF keys K̂i and R̂i.

Gamei,5: In this game, to answer an encoding query, we generate

F̂E.ct← F̂E.Sim(F̂E.mpki, F̂E.skDs,2i [SKE.cti]
, Ds,2i [SKE.cti],M(x))

instead of honestly generating it.

Gamei,6: In this game, SKE.cti is changed to be SKE.Enc(Si, 0
|M |).

Gamei,7: In this game, we undo the changes we added from Gamei,0 to Gamei,4. Namely, we
generate (F̂E.mpki, F̂E.mski) by using K̂i, R̂i, FE.cti by honestly encrypting (SKE.cti, K̂i, R̂i)
(but SKE.cti is still an encryption of 0|M |), and (FE.mpki,FE.mski) by using Ki,Ri.

The indistinguishability between Gamei,j−1 and Gamei,j for j ∈ [5] follows similarly to the proof of
Theorem B.1, except that we use the security of F̂E rather than PE+ when moving from Gamei,4 to
Gamei,5. The indistinguishability between Gamei,5 and Gamei,6 follows from the security of SKE,
since Si is never used except when generating SKE.cti in these games even if the upper branch of Equation
(D.1) is triggered, due to the change we added in Gamei,5. The indistinguishability between Gamei,6

and Gamei,7 can be shown by repeating the same argument for showing Gamei,0
c
≈Gamei,4 in the

reverse order. Finally, we note that Gamei,7 is equivalent to Gamei+1. These imply that Gamei and
Gamei+1 are indistinguishable, which completes the proof of the theorem.

Efficiency. In the above construction, the efficiency requirement (Definition C.3) is not satisfied, since
the encoding algorithm constructs Cs,2i whose size is polynomially dependent on the size of NFA M .
This is problematic when |M | � |x|. To resolve the issue, we use the same idea as that we used in Sec. 4.
Namely, we combine our RGC construction above with the one that poses upper-bound on the input
length [GKP+13]. Namely, when we garble an NFA with size |M |, we convert M into an equivalent
circuit M̂|M |,j with input length j for all j ∈ [|M |] and then garble all of them using [GKP+13]. In
addition, we garble M with the above scheme with s = |M |, which supports unbounded length. We
do this by deriving randomness from a single PRF key and therefore gsk is compact. To encode x, we
encode it with the above scheme with different s in parallel. Namely, we encode x by the above scheme
with all of s ≤ [|x|]. Furthermore, we also choose |x|-th instance of the RGC of [GKP+13] and encodes
it. Similarly to the construction in Sec. 4, evaluation algorithm first sees if |x| > |M | and uses the above
scheme to decode if so. Otherwise, it uses the bounded input scheme [GKP+13]. It can be seen that the
encoding algorithm runs in polynomial time in |x| independent of |M |. Furthermore, the security of the
scheme is preserved, since the construction simply runs secure schemes in parallel.

Generalizing to Bounded Keys. We note that by replacing the inner scheme with a bounded key
FE scheme [GVW12, AR17], the construction immediately generalizes to support bounded number of
(reusable) garbled circuits.

53

	Introduction
	Our Techniques

	Preliminaries
	Definitions: Non Deterministic Finite Automata
	Definitions: Secret-key Attribute Based Encryption for NFA
	Definitions: Attribute Based Encryption and Functional Encryption for circuits

	Attribute-based Encryption for NFA
	NFA as NC circuit
	Construction: SKABE for Bounded Size NFA
	Correctness of NfaABE
	Proof of Security for NfaABE
	Extensions

	Attribute based Encryption for NFA with Unbounded Size Machines and Inputs
	Correctness of uNfaABE
	Proof of Security for uNfaABE

	FE for DFA implies iO
	Preliminaries on DFA and Branching Programs
	SKFE for DFA implies iO

	Conclusions
	Definitions: Predicate and Functional Encryption
	Predicate and Bounded Key Functional Encryption for Circuits
	Predicate Encryption and Bounded Key Functional Encryption for NFA
	Symmetric Key Functional Encryption

	Construction: Predicate and Bounded Key Functional Encryption for NFA
	Reusable Garbled Nondeterministic Finite Automata
	Reusable Garbled NFA

	Construction: Reusable Garbled NFA

