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Abstract. We introduce the notion of non-uniformly sound certificates:
succinct single-message (unidirectional) argument systems that satisfy a
“best-possible security” against non-uniform polynomial-time attackers.
In particular, no polynomial-time attacker with s bits of non-uniform
advice can find significantly more than s accepting proofs for false state-
ments. Our first result is a construction of non-uniformly sound certifi-
cates for all NP in the random oracle model, where the attacker’s advice
can depend arbitrarily on the random oracle.
We next show that the existence of non-uniformly sound certificates for P
(and collision resistant hash functions) yields a public-coin constant-
round fully concurrent zero-knowledge argument for NP.

1 Introduction

We consider the following compression task for a language L in NP. An efficient
prover holds an input x and a witness w to the fact that x ∈ L and wishes
to send to a verifier a “short” certificate π testifying to the validity of x. The
length of the certificate should be independent of the length of the statement x,
the witness w, and the time needed to verify that w is a witness for x. In other
words, the same proof length n can be used for every NP language L and all
statements x with arbitrary polynomial length in n. The verifier should be able
to determine whether π is a valid certificate for a statement x in time polynomial
in |x|, |π|. We refer to this “witness compression” task as a succinct certificate
system, or simply a certificate system.

By the result of Goldreich and H̊astad [29], certificate systems for NP with
statistical soundness (i.e., soundness against unbounded provers) imply that NP
can be decided in subexponential time, and thus are unlikely to exist. Even
for P, certificate systems imply that non-determinism can speed up arbitrary
polynomial-time computation, contradicting widely believed derandomization
assumptions (e.g., Barak et al. [4,5]). Thus, we are interested in certificate sys-
tems with computational soundness, where soundness holds against efficient at-
tackers. Note that the notion of SNARGs (succinct non-interactive arguments)
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[45,26] satisfies our efficiency and soundness requirements, but are actually not
“unidirectionally” non-interactive: rather, the verifier (or some other trusted en-
tity) must first generate and send a public parameter (which can be reused over
multiple proofs) to the prover which the prover can use to produce its proof.
Rather, in a certificate system, there is no a priori agreed-upon public parame-
ters and no communication from the verifier to the prover.

The problem in such a fully non-interactive setting is that the standard no-
tion of computational soundness (against non-uniform polynomial-time attack-
ers) trivially collapses down to the notion of statistical soundness: if a cheating
certificate π exists for some statement x (violating statistical soundness), then
an efficient non-uniform attacker can simply get the pair (x, π) as non-uniform
advice and consequently break computational soundness. Note that this attack
is no longer possible for SNARGs when the non-uniform advice cannot be chosen
as a function of the public parameters.

On best-possible security. One approach to overcome the above problem is to
settle for soundness against only uniform polynomial-time attackers. Certificate
systems satisfying such a uniform notion of soundness were considered for P un-
der the name P-certificates by Chung, Lin, and Pass [14]. They also observed that
Micali’s CS-proofs [45] satisfy uniform soundness in the random oracle model.
But, there is a reason security against non-uniform attackers has become the
standard notion of security in the cryptographic literature: it captures the nat-
ural idea that an adversary may have been designed to attack specific instances,
guaranteeing security against an expensive preprocessing stage or any unknown
future attacks.

Of course, s bits of non-uniform advice can be used to encode roughly s ac-
cepting proofs for false statements. But can they be used to encode much more?
This motivates the following definition of best-possible soundness in the language
of computational Kolmogorov complexity: the computational Kolmogorov com-
plexity of K accepting proofs of different false statements cannot be significantly
smaller than K. In other words, false certificates are “incompressible.”

Equivalently, in a more complexity-theoretic language, we consider a notion
of “multi-statement” soundness which requires that no non-uniform polynomial-
time adversary having non-uniform advice of length s can produce accepting
certificates for significantly more than s false statement. For a class of problems
C, we call argument systems that satisfy such a notion as non-uniformly sound
certificates for C, or nuCerts for C in short.

On the existence of nuCerts. We initiate the study of nuCerts. We first note
that whereas [14] observed that Micali’s CS-proofs are uniformly sound in the
random-oracle model, they do not satisfy multi-statement soundness. In fact, an
efficient cheating prover with just polynomially-many bits of advice about the
random oracle can produce proofs for exponentially many false statements! The
same happens for other SNARG constructions which use only a random string as
a public parameter (and for SNARGs that use a non-random public parameter,
it is not clear how to turn them into certificates).
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Our first main result is a construction of nuCerts in the random oracle model.
Formally, we prove that our construction satisfies multi-statement soundness in
the auxiliary-input random oracle model. The auxiliary-input random oracle
model (AI-ROM), introduced by Unruh [55], captures preprocessing attacks,
where the non-uniform advice string given to the attacker can depend arbitrarily
on the random oracle.

Theorem 1 (Informal). There exist nuCerts for NP in the auxiliary-input
random oracle model.

At a very high level, we present a construction which mimics Micali’s construc-
tion of CS-proofs. Micali’s construction works as follows: (1) start off with an
efficient multi-round argument systems for NP and next (2) collapse the rounds
to make it non-interactive using the Fiat-Shamir heuristic [22] (i.e., use the ran-
dom oracle to generate verifier messages for the interactive protocol). Whereas
the Fiat-Shamir heuristic indeed leads to a sound round reduction for uniform
attackers in the random oracle model, in general it does not for non-uniform
ones (where a non-uniform attacker can perform unbounded preprocessing on
the random oracle). Indeed, as mentioned above, Micali’s CS-proofs do not sat-
isfy multi-statement soundness w.r.t. non-uniform attackers. As a warm-up, we
show that if the underlying interactive proofs system has 3 rounds and has sta-
tistical soundness, then Fiat-Shamir with a minor modification in fact works.
Unfortunately, this modification of Fiat-Shamir does not suffice for making any
argument non-interactive. Rather, we present a different variant of Kilian’s ef-
ficient arguments for NP and prove that for this particular argument system,
the Fiat-Shamir paradigm does lead to a multi-statement sound non-interactive
proof (although it does not work for Kilian’s original argument). Our proof re-
lies on a quite interesting compression argument which we believe may be of
independent interest.

Application: public-coin constant-round concurrent zero-knowledge.
Given a language L ∈ NP and an instance x, zero-knowledge (ZK) proofs [30]
allow (paradoxically) for a prover to convince a verifier of the validity of a math-
ematical statement x ∈ L, while providing zero additional knowledge to the
verifier. This is formalized by requiring that the view of every efficient adversar-
ial verifier interacting with the honest prover be simulated by an efficient ma-
chine called the simulator. Concurrent ZK models the (realistic) asynchronous
and concurrent setting, where a single adversary can “attack” the prover by
acting as a verifier in many concurrent executions. Starting with the original
work of Dwork, Naor, and Sahai [19], there has been a long line of constructions
of concurrent ZK protocols. These include constructions with black-box simula-
tion (e.g., [54,40,53]) nearly matching the almost logarithmic-round lower bound
of [11] (by [51], these protocols are inherently private-coin), constructions based
on different setup assumptions (e.g., [20,17,10,28,50,32]) and constructions in
alternative less standard models (e.g., super-polynomial-time simulation [48,52]
or based on knowledge assumptions [33]).
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Using nuCerts for P, we give a public-coin, constant-round, (fully) concurrent
ZK argument for NP. Public-coin protocols are ones where the verifier’s mes-
sages are simply random coin tosses. This is a natural and appealing property
of a protocol, which is useful in various applications such as public verifiability,
leakage resilience [24], constructing resettably-sound protocols [3,51], and many
more. The security of our construction relies on the following assumptions: the
existence of a nuCert for P and a family of collision resistant hash functions
(both with slightly super-polynomial security).

Theorem 2 (Informal). Assume the existence of families of collision-resistant
hash functions, and the existence of a nuCert for P (both with slightly super-
polynomial security). Then, there exists a public-coin constant-round concurrent
ZK argument for NP.

Barak’s breakthrough work [1] gives a public-coin constant-round protocol
but with bounded concurrency. Canetti, Lin, and Paneth [12] achieve full con-
currency but require O(log1+ε n) rounds in the global hash model, and similarly
Goyal [31] requires O(nε) rounds based on more standard assumptions (where
in both n is the security parameter and ε > 0 is an arbitrary small constant).
Chung, Lin, and Pass [14] achieve constant rounds assuming P-certificates but
only with a less standard notion of soundness (uniform soundness).

We stress that the construction from Theorem 2 is in the standard model
assuming the existence of collision resistant hash functions and nuCerts for P.
Using Theorem 1, we can instantiate nuCerts for P using a (non-programmable)
random oracle and get a public-coin constant-round concurrent ZK argument
for NP.

Corollary 1. In the auxiliary-input random oracle model, there exists a public-
coin constant-round concurrent zero-knowledge argument for NP.

Note that our protocol comes with an explicit ZK simulator. For the instan-
tiation in the random oracle model, only soundness relies on the random oracle
while ZK holds with any concrete function. Prior to this work, there were no
public-coin constant-round constructions that provably satisfy concurrent ZK
and even heuristically satisfy non-uniform soundness.

Lastly, even ignoring the public-coin aspect of our protocol, our result is
meaningful: The only previously known (private-coin) constant-round fully con-
current ZK protocols rely on obfuscation-type assumptions (Chung, Lin, and
Pass [15] rely on indistinguishability obfuscation and Pandey, Prabhakaran and
Sahai [47] rely on differing-input obfuscation). Based on the protocol of Chung
et al. [15], Chongchitmate, Ostrovsky, and Visconti [13] show a transformation
to achieve simultaneously resettable ZK [3,10] in constant rounds based on the
same assumptions (including indistinguishability obfuscation). Since our proto-
col is public-coin, we immediately get a constant-round simultaneously-resettable
ZK protocol using known transformations [3,51,18] based on nuCerts for P (and
hence also in the auxiliary-input random oracle model).
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Paper organization. In Section 2, we give an overview of our main techniques.
In Section 3, we provide preliminary definitions and standard notation. In Sec-
tion 4, we formally define nuCerts, and in Section 5, we present our candidate
nuCert construction. Lastly, in Section 6, we show how to use nuCerts for P to
get a public-coin constant-round concurrent zero-knowledge protocol.

1.1 Related Work

The idea to define the best-possible security for setup-free non-interactive prim-
itives is inspired by the work of Bitansky, Kalai, and Paneth [7] that considered
keyless multi-collision resistant hash functions. These are compressing functions
where it is assumed that no efficient adversary with s bits of non-uniform ad-
vice can find significantly more than s values all of which collide relative to a
fixed hash function. They used such functions to shave off one round of com-
munication in various zero-knowledge protocols. Multi-collision resistant hash-
ing [41,6,7,42,43] was also studied in the keyed setting as a relaxation of plain
collision resistance.

In a recent work, Bitansky and Lin [8] considered one-message zero-knowledge
arguments, where the soundness guarantee is that the number of false statements
that an efficient non-uniform adversary can convince the verifier to accept is not
much larger than the size of its non-uniform advice. They constructed such zero-
knowledge arguments based on keyless collision resistant hash functions. Note
that their construction is not succinct and thus cannot be used in place of our
non-uniform certificates.

2 Technical Overview

In this section we provide a high-level overview of our constructions. We start
with the non-uniformly sound certificates and then present our concurrent zero-
knowledge protocol.

2.1 Non-uniformly Sound Certificates

Let us start with a more elaborate description of Micali’s CS-proofs [45] and why
they give only uniformly sound certificates [14]. Micali’s protocol is obtained by
applying the Fiat-Shamir heuristic [22] to Kilian’s 4-round argument system [38].
In Kilian’s protocol, the verifier sends a description of a collision resistant hash
function to the prover. Using this hash function, the prover computes a Merkle
hash a of a PCP proof for the statement q and sends it back to the verifier. The
verifier then sends b, defining a set of PCP challenge queries, and the prover
replies with the authentication paths c in the Merkle tree for all openings in the
PCP proof specified by b. Micali’s protocol collapses Kilian’s protocol to one
message by using a random oracle to compute the Merkle tree with root a, then
uses the random oracle on a to derive the challenge b specifying openings with
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authentication paths c. The final proof π = (a, b, c) is sent to the verifier to be
checked.

One way to argue uniform soundness of Micali’s non-interactive protocol is
to reduce the security to Kilian’s interactive protocol (using the same random
oracle for the Merkle tree). Basically, we receive a random challenge b from
the interactive protocol and then simulate the non-interactive cheating prover.
When the cheating prover queries the random oracle for the value b′, we respond
instead with the challenge b. (We identify the query for b′ by just guessing,
which is okay since there are polynomially-many queries.) Since the adversary
is uniform, it cannot distinguish b from b′, so with noticeable probability, it
will output accepting authentication paths, which we forward to the interactive
verifier.

The above proof fails to go through when the adversary has non-uniform ad-
vice depending on the random oracle. The query for b′ is not necessarily random,
so the adversary may be able to distinguish b from b′ and as a result will fail to
output accepting authentication paths. Concretely, a non-uniform attacker for
the non-interactive protocol can have hardwired a triple (a, b, c) which causes
the verifier to accept for a fixed random oracle. In this case, we cannot change
the value of b to make the above reduction go through. But, could it be the
case that if the adversary needs to come up with many accepting proofs for false
statements, at least one will have a random b value? The answer is “no.” When
the adversary has unbounded preprocessing time, there are many more cheating
strategies. For example, the adversary may have hardcoded collisions relative to
the random oracle that allow him to explain the root value of the Merkle tree of
the statement in exponentially many ways.

Multi-statement sound Fiat-Shamir. A natural first question is to under-
stand how to modify the Fiat-Shamir heuristic to get multi-statement soundness.
As a warm-up, let us start with a 3-message, public-coin, succinct proof system.
Can we make it non-interactive and multi-statement sound? The security guar-
antee of this protocol is that for any false instance and every message a from
the prover, there is a small set of b values that will allow the prover to come up
with a c message which causes the verifier to accept. A first attempt to make
it non-interactive is to use the random oracle to derive the b value given the a
value, b = O(a). This is completely insecure as it could be the case that there is
a b message which always causes the verifier to accept, so all the cheating prover
has to do is to find one a that is mapped to b (which it can do in the preprocess-
ing stage). The natural fix is to index the random oracle O with the statement
q, O(q, ·). Then, intuitively, if he wishes to cheat on many statements by sending
the bad b message, it needs to find many statements q′ with corresponding a′

values such that for all pairs, it holds that O(q′, a′) = b.

Regarding security, we need to prove that our construction has defended
against all possible attacks in the auxiliary-input random oracle model. The first
proof approach to consider in this model is using the bit-fixing random oracle
model of Unruh [55] (see also Coretti et al. [16]). At a high level, this approach
says that any result in the “uniform” random oracle model can be translated
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into a hybrid model where some of the locations of the random oracle have been
fixed but the rest are lazily sampled. Then, as long as we can show the adversary
will likely query outside the set of fixed points, we can argue soundness just as
in the uniform setting. This elegant model unfortunately does not work in the
fully non-interactive setting where there is no high entropy setup independent
of the adversary’s advice. Thus, the adversary may only query fixed points for
which it has encoded information.

Our proof of security is done via a compression argument, à la Gennaro and
Trevisan [25]. We show that if an adversary with only s bits of non-uniform
advice can come up with significantly more than s accepting proofs for false
statements, then we can use the adversary to compress the random oracle. The
idea in the proof, at a very high level, is to carefully map all possible ways the
adversary can cheat to first encode the random oracle O in a way that we can
still answer all of the adversary’s queries. Then, we can run the adversary to
uniquely reconstruct O. If the encoding has been compressed more than the
adversary’s advice, then the adversary can succeed only on a small fraction of
random oracles. In the compression argument, we crucially use the fact that the
protocol is statistically sound and that we can uniquely extract the statement
corresponding to each query in order to enumerate the small set of accepting b
values (which is limited by soundness).

Caveat 1: While it may seem like we are done, there is a significant caveat
in the above scheme. The issue is that we cannot use the statement q itself to
index the random oracle O since q has no a priori size bound. The most we
could hope for is to use a short commitment to the statement as an index to the
random oracle. One could try to use a Merkle tree to implement this approach,
i.e., index O with q̃ = MerHashO(·)(q), but it is again completely insecure – a
cheating prover can simply encode collisions and use a mix-and-match attack to
find exponentially different statements with the same hash value.

Solution 1: A similar issue came up in recent works on domain extension
of multi-collision resistant hash functions [42,7]. In both works, they propose
to encode the input using a specific code before hashing via a Merkle tree.
Following [42], we use list-recoverable codes (LRC) to encode each statement
before applying a Merkle tree to hash the statement to a short value. That is,
for a statement q, we compute q̃ = MerHashO(·)(LRC(q)). The LRC guarantees
that if the adversary can open each leaf in the Merkle tree to only a polynomial
number of values, then there are only a polynomial (rather than exponential)
number of possible statements with valid codewords. It follows that the prover
can cheat on only a bounded number of hash values and can find only a bounded
number of statements per hash value.

Caveat 2: Recall that our compression argument requires us to know how
to map each oracle query for b back to the statement q. However, the solution to
the previous problem, was to index the queries only with a short commitment
to the statement b = O(q̃, a). So, we need a way to map this commitment q̃ to
a unique statement q (in the proof).
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Solution 2: We append to the proof a Merkle hash of the statement using
the random oracle O(q̃, ·) indexed by q̃: q̂ = MerHashO(q̃,·)(q). Additionally, we
derive b by indexingO with both q̃ and q̂: b = O(q̃, q̂, a). Then, in our compression
argument, we try to use the adversary’s queries to O(q̃, ·) (which it must make to
compute q̂) to reconstruct the statement q and be able to compress the possible b
values by statistical soundness. In doing so, we will compress the random oracle
in one of three ways. Either:

1. there is a unique way to reconstruct q, so we can use statistical soundness
to compress the oracle query for b = O(q̃, q̂, a);

2. there is more than one way to reconstruct q, so the adversary must have
found a collision in O(q̃, ·); or

3. there is no way to reconstruct q, so the adversary must “know” the preimage
of some point in O(q̃, ·).

In summary, the variant of Fiat-Shamir we introduce is to first encode the
statement q with a good list-recoverable code LRC(q) and hash it down to get

q̃ = MerHashO(·)(LRC(q)). Then, hash down the statement using a random oracle

that is indexed by q̃ to get q̂ = MerHashO(q̃,·)(q). Then, compute b = O(q̃, q̂, a)
with a random oracle indexed by q̃ and q̂.

Multi-statement soundness for arguments. While the above approach
works for proof systems, it does not hold generically for arguments (by the same
reason that the original Fiat-Shamir heuristic fails on Barak’s protocol [1]). How-
ever, we show that it does work for Kilian’s protocol [38] relying on some specific
properties of this protocol.

Our main idea is to leverage the soundness of the underlying PCP proof
system. By PCP soundness, for any statement q and any fixed PCP proof string
Π = PCP(q), the number of accepting b values must be small. The main technical
difficulty is that to use PCP soundness, we need to make sure the adversary
is bound to a single PCP proof Π, which we need to know to determine the
accepting b values. We use the same compression idea as before in order to
extract the statement. Namely, we compute a = MerHashO(q̃,·)(Π). Then, in the
compression argument, either (1) we can uniquely extract a PCP proof string Π
from the prover’s queries and can compress the query for b = O(q̃, q̂, a) by PCP
soundness; (2) we reconstruct more than one PCP proof string, so the adversary
must know a collision in O(q̃, ·); or (3) we cannot reconstruct a valid PCP proof,
so the adversary must know some preimage for O(q̃, ·). We show that this covers
all possibilities, and for each commitment value q̃ that the adversary cheats on,
we will compress the random oracle at a new point.

In summary, our construction consists of a prover and verifier with the fol-
lowing strategies. The prover’s strategy given a statement q is:

– Encode the statement with a good list-recoverable code LRC(q) and hash it

down to get q̃ = MerHashO(·)(LRC(q)).
– Hash down the statement using a random oracle that is indexed by q̃ to get
q̂ = MerHashO(q̃,·)(q).
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– Compute a commitment to a PCP of q using a random oracle indexed by q̃
and q̂: a = MerHashO(q̃,q̂,·)(PCP(q)).

– Compute b = O(q̃, q̂, a) with a random oracle indexed by q̃ and q̂.
– Let c be the authentication paths corresponding to the indices given by b.
– Output: The certificate is π = (a, b, c).

The verifier on input π = (a, b, c) and q first computes q̃ and q̂ in the same way
as the prover (this is allowed since the LRC is efficient and the verifier can run in
time polynomial in |q|). Then it checks that b = O(q̃, q̂, a) and checks the validity
of all authentications paths in c using the PCP verifier. We refer to Section 5
for the full details.

2.2 Concurrent Zero-Knowledge

Let us first explain at a very high-level the challenges that we are faced with. In
Barak’s protocol [1], if one tries to obtain unbounded concurrency, the simulation
overhead grows polynomially with every nested execution. The idea of Chung,
Lin, and Pass [14] was to leverage P-certificates, i.e., succinct non-interactive
proofs, to shortcut some of the nested computations. Particularly, P-certificates
allowed them to reuse proofs that some computation was done correctly without
the need to recompute it. This makes sense in the uniform setting where we
assume that no false P-certificates can be found. However, using nuCerts in
the non-uniform setting, it seems to be a problem because—intuitively—false
nuCerts can be combined to get many more false proofs: a false proof that A
implies B can be combined with a correct proof that B implies C to get a false
proof that A implies C. The way we overcome this is by combining the proofs
and the statements that we prove in a sequence such that if the adversary comes
up with a false proof for one statement, it changes the entire sequence and forces
the adversary to come up with many false proofs for new statements. In what
follows, we discuss in detail the shortcomings with the protocols of Barak [1]
and of Chung et al. [14], and then we explain how we avoid the aforementioned
mix-and-match attack using nuCerts.

Barak’s protocol. We recall Barak’s non-black-box constant-round zero-
knowledge protocol [1] that achieves bounded concurrency. On common input
1n and x ∈ {0, 1}poly(n), the Prover P and Verifier V , proceed in two phases. In
phase 1, P sends a commitment c ∈ {0, 1}n of 0n to V , and V replies with a
challenge r ∈ {0, 1}2n. In phase 2, P shows (using a witness indistinguishable
argument of knowledge) that either x is true, or there exists a “short” string
σ ∈ {0, 1}n such that c is a commitment to a program M such that M(σ) = r.
Soundness follows from the fact that even if a malicious prover P ∗ tries to com-
mit to some program M (instead of committing to 0n), with high probability,
the string r sent by V will be different from M(σ) for every string σ ∈ {0, 1}n.
This relies on the fact that r is longer than σ. To prove ZK, consider the non-
black-box simulator S that commits to the code of the malicious verifier V ∗;
note that by definition it thus holds that M(c) = r, and the simulator can use
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σ = c as a “fake” witness in the final proof. To formalize this approach, the wit-
ness indistinguishable argument in Stage 2 must be a witness indistinguishable
universal argument (WIUA) [45,2] since the statement “c is a commitment to
a program M of arbitrary polynomial size and M(c) = r within some arbitrary
polynomial time,” is not in NP.

To show (bounded) concurrency, we need to simulate the view of a verifier
that has m = poly(n) concurrent executions of the protocol. The above simulator
no longer works in this setting: the problem is that the verifier’s code is now a
function of all the prover messages sent in different executions. So one solution
is to increase the length of r in the above protocol to depend on the number
of concurrent sessions, then we would be done by a similar argument. However,
such an approach can handle only an a priori bounded number of sessions. A
natural idea is to let the simulator commit not only to the code of V ∗, but also to
a program M that generates all other prover messages. Implementing this idea
naively results with exponential blowup in the running time of the simulation
since the verifier may nest concurrent sessions [49].

Uniform soundness via P-certificates. The main idea of Chung, Lin, and
Pass [14] is to use P-certificates to overcome this blowup to achieve unbounded
concurrency. At a very high level, their idea is that once the simulator has
generated a P-certificate π to certify some partial computation performed by S
in one session i, then the same certificate may be reused (without any additional
cost) to certify the same computation also in other sessions i′ 6= i, providing
a “shortcut” for the simulator. It is crucial that the P-certificates are both
fully non-interactive and succinct. Without the former, the certificates cannot
be reused, and without the latter, we will not gain anything by reusing proofs.

Chung et al. [14] define a sequence of protocols Π1, Π2, . . ., where protocol
Πk satisfies zero-knowledge for nk concurrent sessions. The “trapdoor” for the
simulation in Π1, in contrast to Barak’s protocol, now only requires that the
a cheating prover can open the commitment to a machine M1 and provide a
P-certificate π1 certifying that M1 outputs the challenge r. However, we have
not really gained anything over Barak’s protocol yet since the challenge r can
depend on the P-certificates in all previous sessions. Protocol Πk uses k “lev-
els” of P-certificates in a tree structure, where each higher level P-certificate
certifies the correct generation of n lower level P-certificates. Then in protocol
Πk, the trapdoor requires that a cheating prover can open the commitment to a
sequence of M1, . . . ,Mk such that: (1) for i > 1, the cheating prover can provide
a P-certificate πi certifying that Mi (given all higher level P-certificates) out-
puts the certified level i− 1 P-certificates, and (2) π1 certifies that M1 outputs
r (again given all higher level P-certificates). The challenge r then only needs to
depend on the non-certified P-certificates, which, because of the tree structure,
is significantly smaller (and in particular apriori bounded) than the number of
concurrent session.

Achieving non-uniform soundness via nuCerts for P. For security, the
resulting concurrent zero-knowledge protocol shares the soundness guarantee
of the underlying P-certificates. As we previously discussed, P-certificates can
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only satisfy uniform soundness (under standard assumptions), so our approach
to overcome this is to replace P-certificates with nuCerts for P, which guaran-
tee non-uniform soundness at the cost of allowing the adversary to cheat on a
bounded number of statements. To argue soundness, we need to use a cheating
prover in the zero-knowledge protocol to extract many false nuCerts. We can
rewind the cheating prover many times until we extract a large collection of
accepting proofs for false statements. While seemingly simple, there are several
technicalities with this argument.

First, the adversary may be able to use different false proofs per statement
and mix-and-match statements to cheat in an exponential number of ways. In
general, this indeed seems like an unavoidable problem. Chung et al. [14] sug-
gested a way around it if one assumes a strong version of P-certificates, called
unique P-certificates, which guarantee that every statement has at most one
accepting proof. Using indistinguishablity obfuscation, Chung et al. [15] con-
structed a slightly weaker primitive, called delegatable unique P-certificates,
and modified the protocol of [14] to work with this object (at the cost of making
it private-coin).

We get around this by noticing that this is not a problem for us! In short, the
thing that saves us is that we require the entire sequence of proofs to be certified
(not just individually, thus the order matters). If the adversary tries to use a
different false proof at any level, it yields an entirely new sequence that it must
cheat on. In more detail, recall that the construction consists of a tree of nuCerts
that certify the whole computation. At level 1 (the leaves), we have a sequence
of nk “certified” nuCerts λ1. At level 2, we have a sequence of nk−1 nuCerts λ2,
and so on until level k when we don’t have any certified nuCerts. As the name
suggests, the role of each level i is to certify the total computation that happens
below level i, and level 1 certifies the randomness r. So, π1 is a nuCert certifying
that there is a (deterministic) machine M1 such that M1 on input λ≥1 outputs
r, where λ≥1 consists of all certificates at or above level 1. π2 certifies that M2

on input λ≥2 outputs λ1. π3 certifies that M3 on input λ≥3 outputs λ2, and so
on until πk, which certifies that Mk on a short input outputs λk−1.

The machines M1, . . . ,Mk are deterministic and are committed to by the
adversary before seeing r. So, even though there could be a single certificate
that explains multiple values of r, when we fix the machines ahead of time it
can only output one of them. Namely, the adversary can come up with many
inputs for M1 that output any value of r just by having many “options” for the
sequence λ1. Since there are many choices for λ1 and M2 is deterministic, either
the adversary has many accepting proofs π2 for false statements that look like
“M2 on input λ≥2 outputs λ1” with a small set of λ≥2, or the statements are
in fact true and there are many different sequences λ≥2 explaining them. In the
former case, we are done as we can extract these proofs from the adversary. In the
latter case, we must have many different sequences λ≥2. We can continue with
the same argument in level 3 that should output and explain all options for λ2,
and so on until the root of the tree at level k. At this point, we have that a short
input is used to explain many possible random outputs, which is information
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theoretically impossible unless the adversary knows many accepting proofs for
false statements. We formalize this intuition by a compression argument, and we
refer to Section 6 for the full details of the argument.

3 Preliminaries

For a distribution X we denote by x ← X the process of sampling a value x
from the distribution X. We use N to denote the set of positive integers and [n]
to denote the set {1, 2, . . . , n}.

We consider interactive Turing machines, denoted ITM, and interactive pro-
tocols. Given a pair of ITMs, A and B, we denote by (A(x), B(y))(z) the ran-
dom variable representing the (local) output of B on common input z and
private input y, when interacting with A on private input x, when the ran-
dom tape of each machine is uniformly and independently chosen. We also let
ViewB(A(x), B(y))(z) be the random variable representing B’s view in such an
interaction.

The term negligible is used for denoting functions that are asymptotically
smaller than any inverse polynomial. We say that an event happens with notice-
able probability if it happens with non-negligible probability, i.e. greater than
1/p(·) probability for polynomial p. We say that an event happens with over-
whelming probability if it occurs with all but negligible probability, i.e. at least
1− ν(·) probability for negligible ν.

(Non)-uniformity. We use the acronym PPT for probabilistic polynomial-time.
A uniform PPT machine can be thought of as a fixed Turing machine that has
access to an input tape and performs some computation on the given input. If
the computation is randomized, the machine has access to a random tape as
well. A non-uniform machine can be thought of as a family of machines, one for
each input length. Equivalently, one can think of a non-uniform machine as a
single machine for all input lengths that has access to an advice string which
might be different for every input length.

Witness relations for NP. We recall the definition of a witness relation for
an NP language [27]. A witness relation for a language L ∈ NP is a binary
relation RL that is polynomially bounded, polynomial time recognizable, and
characterizes L by L = {x : ∃w s.t. (x,w) ∈ RL}. We say that w is a witness
for the membership x ∈ L if (x,w) ∈ RL. We also let RL(x) denote the set of
witnesses for the membership x ∈ L, i.e. RL(x) = {w : (x,w) ∈ RL}.

Commitments and collision resistant hashing. Commitment protocols al-
low a sender to commit itself to a value while keeping it secret from the receiver;
this property is called hiding. At a later time, the commitment can only be
opened to a single value as determined during the commitment protocol; this
property is called binding. We consider non-interactive, computationally-hiding,
statistically-binding commitment schemes. Such commitment schemes can be
based on one-way functions [46,37] in the common random string (CRS) model,
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but we ignore this for simplicity as the CRS can be generated honestly by the
receiver.

We also consider families of collision resistant hash functions. A family of
functions F = {Fn : {0, 1}2n → {0, 1}n} is collision resistant if for any non-
uniform PPT adversary, the probability (over a random function in the family)
that it can output a collision is negligible. It is known that a secure fixed-length
hash function family can be used to obtain a secure variable-input-length hash
function family, i.e., we can hash arbitrarily long inputs while guaranteeing col-
lision resistance.

We say that a commitment scheme or a collision resistant hash function
family is T -secure if every non-uniform poly(T )-time attacker can break the
corresponding security property with at most negligible in T probability.

3.1 Interactive Protocols

We define interactive proofs [30] and arguments systems (a.k.a. computationally
sound proofs) [9]. In our definition of arguments, we distinguish between uniform
soundness, where soundness only needs to hold against a uniform PPT adversary,
and non-uniform soundness, where it holds against non-uniform polynomial-
time algorithms. Typically, in the literature on zero-knowledge arguments, non-
uniform soundness is more commonly used.

Definition 1 (Interactive proof system). A pair of interactive machines
(P, V ) is called an interactive proof system for a language L if there is a negligible
function ν(·) such that the following two conditions hold:

– Completeness: For every n ∈ N, x ∈ L and every w ∈ RL(x),

Pr[(P (w), V )(1n, x) = 1] = 1.

– Soundness: For every machine P ∗ and every n ∈ N,

Pr[(x, z)← P ∗(1n) : x 6∈ L ∧ (P ∗(z), V )(1n, x) = 1] ≤ ν(n).

If the soundness condition only holds against all non-uniform PPT (resp. uni-
form PPT) machines P ∗, the pair (P, V ) is called a non-uniformly sound (resp.
uniformly sound) interactive argument system.

Witness indistinguishability. An interactive protocol is witness indistinguish-
able (WI) [21] if the verifier’s view is “independent” of the witness used by the
prover for proving the statement.

Definition 2 (Witness indistinguishability). An interactive protocol (P, V )
for L ∈ NP is witness indistinguishable for RL if for every PPT adver-
sarial verifier V ∗, and for every two sequences {w1

n,x}n∈N,x∈L∩{0,1}poly(n) and

{w2
n,x}n∈N,x∈L∩{0,1}poly(n) such that w1

n,x, w
2
n,x ∈ RL(x) for every n ∈ N and

x ∈ L ∩ {0, 1}poly(n), the following ensembles are computationally indistinguish-
able over N:
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– {ViewV ∗(P (w1
n,x), V ∗(z))(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

– {ViewV ∗(P (w2
n,x), V ∗(z))(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

Universal arguments. Universal arguments, introduced by Barak and Gol-
dreich [2], are used in order to provide “efficient” proofs to statements of the
universal language LU with witness relation RU defined in [2]. This notion is
closely related to the notion of CS-proofs [45]. A triplet q = (M,x, t) is in LU if
the non-deterministic machine M accepts input x within t < T (|x|) steps, for a
slightly super-polynomial function T (n) = nlog logn. We denote by TM (x,w) the
running time of M on input q using the witness w. Notice that every language
in NP is linear time reducible to LU . Thus, a proof system for LU allows us to
handle all NP-statements.

Definition 3 (Universal argument [2]). A pair of interactive Turing ma-
chines (P, V ) is called a universal argument system if it satisfies the following
properties:

– Efficient verification: There exists a polynomial pV such that for any q =
(M,x, t), the total time spent by the (probabilistic) verifier strategy V , on
common input 1n, q, is at most pV (n + |q|). In particular, all messages
exchanged in the protocol have length smaller than pV (n+ |q|).

– Completeness by a relatively efficient prover: For every n ∈ N, q =
(M,x, t) ∈ LU , and w ∈ RU (q),

Pr[(P (w), V )(1n, q) = 1] = 1.

Furthermore, there exists a polynomial pP such that the total time spent by
P (w), on common inputs 1n and (M,x, t), is at most pP (n+ |q|+ t).

– Computational soundness: For every non-uniform PPT algorithm P ∗ =
{P ∗n}n∈N, there is a negligible function negl, such that, for every n ∈ N
and every triplet (M,x, t) ∈ {0, 1}poly(n) \ LU ,

Pr[(P ∗n , V )(1n, q) = 1)] ≤ negl(n).

– Global proof of knowledge: For every polynomial p1 there exists a polynomial
p2 and a probabilistic oracle machine E(·) such that the following holds:
for every non-uniform PPT algorithm P ∗ = {P ∗n}n∈N, every sufficiently large
n ∈ N, and every q = (M,x, t) ∈ {0, 1}poly(n), if Pr[(P ∗n , V )(1n, q) = 1] ≥
1/p1(n), then

Pr
r

[∃w ∈ RU (q), Er
P∗
n (1n, q) = w] ≥ 1/p2(n),

where Er
P∗
n runs in time poly(n, t), uses randomness fixed to r, and has

oracle access to P ∗n .

The notion of witness indistinguishability of universal argument for RU is
defined similarly as that for interactive proofs/argument for NP relations; we
refer the reader to [2] for a formal definition. [2] (based on [45,39]) presents a
witness indistinguishable universal argument based on the existence of families
of collision resistant hash functions.
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3.2 List-Recoverable Codes

List-recoverable codes were introduced Guruswami and Sudan [34] to handle
a setting where an adversary is allowed to submit a set S ⊆ F (where F is
the alphabet of the code) of possible symbols and then construct any codeword
using only those symbols. In this model, it is impossible to completely recover
a codeword given the lists, but these codes guarantee that there is only a small
list of codewords that are consistent with all the lists.

More precisely, a mapping LRC : Fv → Fm from length v messages to lengthm
codewords, is called (α, `, L)-list-recoverable if there is a procedure that is given
a set S of size `, is able to output all messages x ∈ Fv such that LRC(x)i /∈ S for
at most 1−α fraction of the coordinates i ∈ [n]. The code guarantees that there
are at most L such messages. For our purposes, we need a list-recoverable code
with α = 1, which we refer to as an (`, L)-list-recoverable code, defined formally
as follows.

Definition 4 (List-recoverable codes). We say that a tuple x ∈ ({0, 1}k)m

is consistent with sets S1, . . . , Sm ⊆ {0, 1}k if xi ∈ Si for all i ∈ [m].
A function LRC : {0, 1}v → ({0, 1}k)m is (`, L)-list-recoverable, if for any

sets S1, . . . , Sm ⊆ {0, 1}k each of size at most `, there are at most L strings
x ∈ {0, 1}v such that LRC(x) is consistent with S1, . . . , Sm. The strings in the
image of LRC are referred to as codewords.

It is well-known (see e.g., [36]) that the notion of list-recoverable codes is
equivalent to unbalanced expanders with a certain expansion property. The left
set of vertices in the graph is {0, 1}v, the right set of vertices is {0, 1}k and the left
degree is m. This graph naturally induces a mapping LRC : {0, 1}v → ({0, 1}k)m

which on input x ∈ {0, 1}v (left vertex) outputs n neighbors (right vertices). The
mapping LRC is (`, L)-list-recoverable if and only if for every set S ⊆ {0, 1}k of
size larger than L of nodes on the right, the set of left neighbors of S is of size
larger than `.

The following instantiation of locally-recoverable codes based on the explicit
construction of unbalanced expanders of [35] is taken (with minor modifications)
from [36].

Theorem 3 ([35,36]). For every k < v ∈ N, there exists a poly(v)-time

computable function LRCv : {0, 1}v →
(
{0, 1}k

)v2k3
that defines an (`, L)-list-

recoverable code for any L ≥ `2 such that L ≤ 2k/2. The list-recovery algorithm
runs in time poly(v, `).

3.3 Concurrent Zero-Knowledge

An interactive proof is said to be zero-knowledge, denoted as ZK, if it yields
nothing beyond the validity of the statement being proved [30].

Definition 5 (Zero-knowledge). An interactive protocol (P, V ) for language
L is zero-knowledge if for every PPT adversarial verifier V ∗, there exists a PPT
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simulator S such that the following ensembles are computationally indistinguish-
able over n ∈ N:

– {ViewV ∗(P (w), V ∗(z))(1n, x)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

– {S(1n, x, z)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

In this work, we consider the setting of concurrent composition. Given an
interactive protocol (P, V ) and a polynomial m, an m-session concurrent adver-
sarial verifier V ∗ is a PPT machine that, on common input x and auxiliary input
z, interacts with up to m(|x|) independent copies of P concurrently. The different
interactions are called sessions. There are no restrictions on how V ∗ schedules
the messages among the different sessions, and V ∗ may choose to abort some
sessions but not others. For convenience of notation, we overload the notation
ViewV ∗(P, V ∗(z))(1n, x) to represent the view of the cheating verifier V ∗ in the
above mentioned concurrent execution, where V ∗’s auxiliary input is z, both
parties are given common input 1n, x ∈ L, and the honest prover has a valid
witness w of x.

Definition 6 (Concurrent zero-knowledge [19]). An interactive protocol
(P, V ) for language L is concurrent zero-knowledge if for every concurrent ad-
versarial verifier V ∗ (i.e. any m-session concurrent adversarial verifier for any
polynomial m), there exists a PPT simulator S such that the following two en-
sembles are computationally indistinguishable over n ∈ N:

– {ViewV ∗(P (w), V ∗(z))(1n, x)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

– {S(1n, x, z)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

4 Non-Uniformly Sound Certificates

We give a definition of a certificate system that captures non-uniform attackers.
Roughly speaking, a certificate system, (P, V ), is a non-interactive (unidirec-
tional) argument system (i.e., the prover send a single message to the verifier,
who either accepts or rejects) such that (1) P can efficiently convince V the va-
lidity of some statement x ∈ L using a “certificate” π of fixed polynomial length
independent of the statement and (2) V can efficiently check the validity of π in
fixed polynomial time in the statement size yet independent of the language’s
verification time. To capture non-uniform attackers, we additionally require (3)
that no non-uniform cheating prover P ∗ should be able to falsely convince V of
the validity of substantially more statements than the size of P ∗’s non-uniform
advice. In what follows, we first formalize these requirements for P and later
discuss (in Remark 1) how to generalize them to NP.

Following Micali’s CS-proofs [45], we first define the efficiency properties
required for any certificate system for P. We consider a canonical language Lc
for TIME(nc): for every constant c ∈ N, let Lc be the language that consists of
triples (M,x, y) such that machine M on input x outputs y when executed for
|x|c steps. That is,

Lc = {(M,x, y) : M(x) = y within |x|c steps}.
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Let TM (x) denote the running time of M on input x.

Definition 7 (Certificates for P). Let (P, V ) be a pair of probabilistic in-
teractive Turing machines in a non-interactive protocol. We say that (P, V ) is a
certificate system for P if it satisfies the following two efficiency conditions:

– Completeness by a relatively-efficient prover: There exist polynomials gP , `
such that for every c, n ∈ N and every q = (M,x, y) ∈ Lc, it holds that

Pr[π ← P (c, 1n, q) : V (c, 1n, q, π) = 1] = 1.

Furthermore, P on input (c, 1n, q) outputs a certificate π of length `(n) in
time bounded by gP (n+ |q|+ TM (x)).

– Efficient verification: There exists a polynomial gV such that for every c, n ∈
N, q = (M,x, y) ∈ Lc and π ∈ {0, 1}∗, the running time of Vnu(c, 1

n, q, π) is
bounded by gV (n+ |q|).

Best-possible soundness. At a high level, we require non-uniformly sound
certificates to achieve the best-possible soundness against non-uniform attackers.
This means that our notion of soundness allows the adversary to come up with
some accepting certificates for false statements, but not too many more than the
size of its advice. We formalize this intuition with the notion of (K,T )-soundness,
which intuitively says that a non-uniform adversary running in time T cannot
output false proofs for more than K statements. We define this as follows.

Definition 8 ((K,T )-soundness). Let K,T : N → N be functions. We say
that a certificate system for P, (P, V ), is (K,T )-sound if there exists a function
B(n) ∈ ω(1) such that the following holds:
For every probabilistic algorithm P ∗ and any sequence of polynomial-size advice
{zn}n∈N where P ∗(1n, zn) runs in time at most T (n), there exists a negligible
function negl(·) such that for every n ∈ N, letting K = K(n),

Pr

{(ci, qi, πi)}i∈[K] ← P ∗(1n, zn) :

∀i 6= j : qi 6= qj ,
∀i ∈ [K] : ci ≤ B(n) ∧

qi 6∈ Lci∧
V (ci, 1

n, qi, πi) = 1

 ≤ negl(n).

We are now ready to define non-uniformly sound certificates (nuCerts) for
P. Intuitively, we require that no non-uniform cheating prover with polynomial-
size advice can output a super-polynomial number of accepting proofs for false
statements where we allow the cheating prover to run in super-polynomial time
per false proof it outputs.

Definition 9 (nuCerts for P). Let (P, V ) be a pair of probabilistic interactive
Turing machines in a non-interactive protocol. We say that (P, V ) is a non-
uniformly sound certificate system (nuCert) for P if it is a certificate system for
P and is (K,T )-sound for some K(n) ∈ nω(1) and T (n) ∈ K(n) · nω(1).

17



Some remarks are in order.

Remark 1. The above definition generalizes to NP by considering non-
deterministic languages Lc corresponding to NTIME(nc) where we provide the
prover with a witness w and let TM (x) be the time to verify that (x,w) ∈ RL.

Remark 2. The notion of (K,T )-sound certificate systems for P is a general-
ization of strong P-certificates (of Chung et al. [14]) as they coincide when the
number of false proofs is just one, i.e., K(n) = 1, and the running time of the
adversary is a (slightly) super-polynomial function, i.e., T (n) ∈ nω(1).

Remark 3. The definition of (K,T )-soundness as defined can only be achieved
for super-polynomial K(n) ∈ nω(1). This notion is sufficient for our concurrent
zero-knowledge protocol given in Section 6. However, one can consider a more
fine-grained notion where we allow the number of false proofs to depend on the
size of the advice and accepting statements. We actually achieve this (stronger)
notion in our nuCerts construction in Section 5.

Remark 4. The size of accepting statements q = (M,x, y) for Lc must be
bounded by O(|x|c) without loss of generality since V would not accept q for
the language Lc if |y| > |x|c.

Remark 5. We could consider an alternative definition of (K,T )-soundness
where we remove the restriction that statements are unique and just require that
the proofs are. These notions are equivalent up to a factor that depends expo-
nentially on the certificate size for K.

In more detail, one trivial way to bound the number of false proofs in general
is to bound the number of false proofs for specific statements. In the worst case,
if you can find a false proof for an accepting statement, then all proofs for that
statement may be accepted. So, if a (K,T )-sound certificate system has proofs
π with length bounded by `π(n), this implies it is (K · 2`π(n), T )-sound when the
statements need not be unique.

Relation to Kolmogorov complexity. Our defintion has a natural interpre-
tation in the language of computational Kolmogorov complexity. Recall that the
Kolmogorov function C(x) is the length of the smallest program generating x.
Namely, C(x) = minp{|p| : U(p) = x}, where U is a universal machine. There are
many resource-bounded variants to Kolmogorov comlexity [23]. Our definition is
parametrized by an efficiently recognizable set X and a time bound t. We define
Ct(X) as the smallest machine that runs in time t and outputs an element in
X. Namely,

Ct(X) = min
p
{|p| : U(p) outputs x ∈ X in t(|x|) steps}.

Claim 1. Let (P, V ) be a certificate system, K ∈ nω(1), T ∈ K(n) · nω(1), and
let X be a set of sets such that every set is a collection of accepting proofs for
K false statements. (P, V ) is (K,T )-sound if and only if CT (X) ∈ nω(1).
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Proof. Assume for contradiction that CT (X) ∈ poly(n). This means there is a
polynomial size encoding that in time T can be used to generate K accepting
proofs for false statements, contradicting (K,T )-soundness of (P, V ). In the other
direction, assume that (P, V ) satisfies (K,T )-soundness. Then, there is a cheating
prover with polynomial-size advice running in time T that is able to find K
accepting proofs for false statements. This implies a machine of polynomial size
that encodes an element in X, contradicting CT (X) ∈ nω(1).

5 The Construction

In this section, we give a construction of a nuCert system for P as defined in Sec-
tion 4. Our construction is in the auxiliary input random oracle model, intro-
duced by Unruh [55]. In this model all parties have access to a public random
function. Additionally, the adversary has an unbounded preprocessing stage (the
offline phase) where he can compute arbitrarily an advice string for the online
phase where he attacks the system. The output of the offline phase can be
thought of as the process that generates the non-uniform advice. In the online
phase, the adversary can use the advice string and a bounded number of queries
(though his running time is unbounded).

Theorem 4. In the auxiliary-input random oracle model, there exists a certifi-
cate system for P that satisfies (K,T )-soundness for any K(n) ≥ (3s)25α and
T (n) ≤ 2n/6 against non-uniform adversaries with advice {zn}n of size s = s(n)
that output accepting statements of size at most nα.

The protocol we present is actually a nuCert for NP (with essentially the
same proof). In Section 6, we will use the result only for P so we focus on this
setting here.

We note that if the adversary outputs statements of super-polynomial size,
we may assume that they will not be accepted by a verifier for the universal
language for P. Still, the adversary may output accepting statements of arbitrary
polynomial size, so without assuming anything about the adversary, the theorem
holds for any slightly super-constant α ∈ ω(1). In this case, we guarantee that
no adversary can output a slightly super-polynomial number of accepting proofs
for unique false statements, e.g., K(n) = nlog logn. Additionally, we can set
T (n) = nlogn so that T (n) ∈ K(n) · nω(1). Thus, we get the following corollary
to Theorem 4 by Definition 9.

Theorem 5. [Restatement of Theorem 1] In the auxiliary-input random oracle
model, there exists a nuCert system for P.

We devote the rest of this section to the proof of Theorem 4 which is based
on a compression technique (à la Gennaro and Trevisan [25]). In Section 5.1 we
describe our nuCert construction and then prove security in the auxiliary-input
random oracle model in Section 5.2.
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5.1 Construction

Our nuCert system, denoted (Pnu, Vnu), builds off of Micali’s CS-proofs but makes
significant modifications. Recall that in Micali’s protocol, the prover uses a ran-
dom oracle to compute a Merkle hash a of a PCP proof for the statement q. The
prover then uses a random oracle to compute b, defining a set of PCP challenge
queries. Finally, it computes the authentication paths c in the Merkle tree for
all openings in the PCP proof specified by b. The final proof π = (a, b, c) is sent
to the verifier to be checked.

Merkle trees and PCPs. In the construction, we will use Merkle trees and
probabilistic checkable proofs (PCPs).

A Merkle tree [44] is a method to succinctly commit on a string while allowing
to open a specific location without revealing the whole input string. The latter
property is called local opening. The security of the commitment is based on the
existence of a collision resistant hash function family. More precisely, a Merkle
tree procedure MTf(·) has oracle access to a compressing function f : {0, 1}λ →
{0, 1}n, which it uses to hash a long string into a short one. This is done by
“breaking” the input into blocks of the right size and hasing each consecutive
pair using the hash function. We continue this recursively in a tree-like fashion
until we are left with a single string of size n.

A PCP system is a proof system that allows for local verification of a lan-
guage. It consists of two algorithms (PCP.Prove,PCP.Ver). PCP.Prove(x) is a
deterministic algorithm that takes as input a statement x from some language L
and computes a proof Π to the fact that x ∈ L. PCP.VerΠ(x, r) is a randomized
algorithm using r as its randomness source that takes as input a statement x
and has query access to a (possibly partial) PCP proof Π and outputs a bit b.

The construction. We split (Pnu, Vnu) into two different phases: a commitment
and a proof phase. The commitment phase forces Pnu to succinctly commit to
the statement it is proving. The proof phase is exaclty as Micali’s CS-proofs with
the modification that the random oracles used are indexed by the statement’s
commitment.

In more detail, the commitment consists of two parts. The first part, which
we denote by q̃, is a Merkle hash of a list-recoverable code encoding of q. The
list-recoverable code provides a weak binding property for any particular com-
mitment; no non-uniform adversary can find too many statements consistent
with q̃. In the second part of the commitment, which we denote by q̂, the prover
Merkle hashes q using a random oracle indexed by q̃. q̂ guarantees that a cheat-
ing prover that provides an accepting proof of a false statement q either uses
specific knowledge that depends on q̃ or can be used to extract q.

The proof phase computes π = (a, b, c) as in Micali’s CS-proofs except that
we index both the Merkle tree and FS-heuristic random oracles with the com-
mitment (q̃, q̂). This guarantees that each false proof with a unique commitment
requires the adversary to use fresh information about the random oracle. The
full description of the non-interactive protocol, (Pnu, Vnu), is given in Figure 1.
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A nuCert System (Pnu, Vnu)
Common Input: Security parameter 1n, time bound c, and a statement q =

(M,x, y) for the language Lc.

Common Oracles: O1 : {0, 1}n
2

→ {0, 1}n, O2 : {0, 1}n+n
2

→ {0, 1}n,

O3 : {0, 1}2n+n
2

→ {0, 1}n, O4 : {0, 1}3n → {0, 1}`b .
Subroutines: PCP system PCP = (Prove,Ver) with soundness error 2−n us-

ing `b ∈ O(n logn) bits of randomness, a Merkle tree algorithm MT(·), and

collection of codes LRCv : {0, 1}v → ({0, 1}n
2

)v
2n6

that satisfies (`, L)-list-

recoverability for any L ≤ 2n
2/2 such that L ≥ `2.

Prover Pnu(1
n, q): .

Commitment phase:

1. Compute q̃ ← MTO1(·)(LRC|q|(q)).

2. Compute q̂ ← MTO2(q̃,·)(q).

Proof phase:

3. Compute Π ← PCP.Prove(q). Compute a← MTO3(q̃,q̂,·)(Π).

4. Compute b← O4(q̃, q̂, a).

5. Let I be the set of indices queried by PCP.VerΠ(q; b). Let c be the au-
thentication paths for indices I in the Merkle tree of Π.

6. Send π = (a, b, c) to Vnu.
Verifier Vnu(1

n, q, π): .
Commitment verification:

1. Compute q̃ ← MTO1(·)(LRC|q|(q)).

2. Compute q̂ ← MTO2(q̃,·)(q).

Proof verification:

3. Parse π = (a, b, c). Verify b = O3(q̃, q̂, a).

4. Construct a partial PCP proof Π with openings from c.

5. Let I be the set of indices queried by PCP.VerΠ(q; b). Verify the authen-
tication paths c given the indices I and the Merkle hash root a.

6. Accept if and only if PCP.VerΠ(q; b) accepts.

Fig. 1. A nuCert for P defined in the auxiliary-input random oracle model.

Efficiency and completeness. We first argue that (Pnu, Vnu) is a valid certifi-
cate system for P by showing the completeness by a relatively efficient prover
and efficient verification properties.

Completeness follows from the completeness of the underlying PCP proof
system. For prover efficiency, note that computing q̃ and q̂ in the commitment
phase only takes time polynomial in the statement size. This uses the efficiency
of the list-recoverable code. Recall that a proof π = (a, b, c) consists of a n
bit Merkle tree root, the randomness for the PCP proof, and the authentication
paths for locations specified by the PCP proof. In order to compute a, the prover
computes the PCP proof for q, which takes time polynomial in the machine’s
running time. Since the protocol uses a PCP proof system with soundness error
2−n, the prover has to open and authenticate O(n) bits using O(log n) bits
of randomness per location, which takes polynomial time only in the security
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parameter n. Each authentication path in the Merkle tree has size O(n log n).
This implies a polynomial length bound of `π(n) ∈ O(n2 log n).

The verifier also needs to compute q̃ and q̂, but does not need to compute
the PCP proof for q. Thus, the verifier’s running time is independent of the
machine’s running time, and depends only polynomially on the statement size
|q| and the proof length `π(n).

5.2 Proof of Theorem 4

The proof of (K,T )-soundness proceeds in two steps. We first show that a non-
uniform adversary can only find a bounded number of statements per q̃ value in
the commitment. Then we show that a non-uniform adversary cannot come up
with a false proof for too many q̃ values.

Bounding statements per q̃. Recall that q̃ is a Merkle hash of a list-
recoverable code encoding of some statement q. We show that a non-uniform
cheating prover cannot find too many statements that yield the same q̃ value.

Lemma 1. Let O be a random function from n2 to n bits. For any functions
K, s : N → N and sequence of advice {zn}n∈N of size s = s(n) ≥ 4, let AO be
a non-uniform algorithm that on input (1n, zn) makes at most 2n/2 queries and
outputs K = K(n) unique statements q1, . . . , qK . Define N = (3s)24·α where α

satisfies |qi| ≤ nα for all i ∈ [K], and define q̃i = MTO(·)(LRC|qi|(qi)). Then, for
every n ∈ N, it holds that

Pr
O

[
(q1, . . . , qK)← AO(1n, zn) :

∀i 6= j ∈ [K] : qi 6= qj
|{q̃i : i ∈ [K]}| ≤ K/N

]
≤ 2−n.

The proof of this lemma appears in the full version.

Bounding false proofs per q̃. We show that if a cheating prover comes up
with a false proof for a statement with a new q̃ value, it must have used some
knowledge to either find (1) a new collision, (2) a new pre-image of a previously
queried point, or (3) a new challenge message b that comes from a small set. We
use each scenario to compress the random oracle’s description on some input,
which bounds the number of oracles a cheating prover can succeed on. We note
that we can use a single oracle O with large enough domain and range to repre-
sent all four oracles defined in Figure 1. We can simply modify each query to first
specify an index for which oracle it wants to query and then restrict the input
and output to the correctly defined length. We formalize this compression-style
argument in the following lemma.

Lemma 2. Let (Pnu, Vnu) be the nuCert system from Figure 1 with random oracle
O = (O1,O2,O3,O4). For any functions K, s : N → N and sequence of advice
{zn}n∈N of size s = s(n), let AO be a non-uniform algorithm that on input
(1n, zn) makes T oracle queries and outputs (C1, q1, π1), . . . , (CK , qK , πK) where
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K = K(n). Then, for every n ∈ N, it holds that

Pr
O

{(Ci, qi, πi)}i∈[K] ← AO(1n, zn) :

∀i 6= j ∈ [K] : q̃i 6= q̃j
∧ qi 6= qj ,

∀i ∈ [K] : qi 6∈ LCi
∧ Vnu(Ci, 1n, qi, πi) = 1

 ≤ 2−K(n−3 log T )+s.

Proof. For each proof that AO(1n, zn) outputs, parse πi = (ai, bi, ci). We assume
without loss of generality that AO(1n, zn) makes every query that Vnu checks
exactly once. Otherwise, we can modify AO to make all such queries at the end
and never make the same query twice, which uses at most K · poly(n) extra
queries by the efficiency of Vnu. Let Q1, . . . , QT be the unique random oracle
queries that AO(1n, zn) makes.

Before explicitly defining our representation of O, we introduce some nota-
tion. For every statement q and PCP proof Π, we define B(q,Π) to be the set
of all b values for which PCP.VerΠ(q, b) accepts, i.e.,

B(q,Π) = {b | PCP.VerΠ(q; b) = 1}.

By the 2−n soundness error of the underlying PCP proof system, |B(q,Π)| ≤
2`b−n for all statements q not in the specified language where recall `b is the
length of b. When we refer to the mth element of the set B(q,Π), we mean
the mth element in the lexicographic enumeration of the set, which is uniquely
defined.

We now define a procedure to generate a representation of a particular ran-
dom oracle O using AO(1n, zn). We assume for simplicity that zn starts with
the description of A.

1. Initialize lists Lcol, Lpre, Lpcp, Lquery, and Lother to be empty.
2. Run AO(1n, zn) to get false proofs πi = (ai, bi, ci) for statements qi with

unique q̃i values for i ∈ [K].
3. For each query Qj in order, do exactly one the following.

(a) If O(Qj) = O(Qm) for m < j, add (j,m) to Lcol.
(b) If O(Qj) = Qm[pos·n+1 : (pos+1)·n] (where Qm[i1 : i2] is the substring

from index i1 to i2 inclusive) for m < j and pos ∈ {0, . . . , n + 1}, add
(j,m, pos) to Lpre.

(c) If the following conditions hold, add (j,m) to Lpcp.
i. Qj = (q̃, q̂, ai) and O4(q̃, q̂, ai) = bi for some i ∈ [K].
ii. It is possible to uniquely extract a statement q that Merkle hashes

to q̂ using only previous O2(q̃, ·) queries.
iii. It is possible to uniquely extract a partial PCP proof Π that Merkle

hashes to ai using only previous O3(q̃, q̂, ·) queries.
iv. bi is the mth element of B(qi, Π).

(d) Otherwise, add O(Qj) to Lquery.
4. For all other inputs x, add O(x) to Lother in lexicographic order.
5. Output zn, Lcol, Lpre, Lpcp, Lquery, Lother as the representation.

Using only the representation, we define a procedure to compute all O queries.

23



1. Run A(·)(1n, zn) and simulate its queries to O.
2. On the jth query Qj , do the following.

(a) If (j,m) is in Lcol for m < j, output O(Qm).
(b) If (j,m, pos) is in Lpre for m < j and pos ∈ {0, . . . , n + 1}, output

Qm[pos · n+ 1 : (pos + 1) · n].
(c) If (j,m) is in Lpcp, do the following.

i. Parse Qj = (q̃, q̂, a).
ii. Extract a statement q that Merkle hashes to q̂ using only previous

queries to O2(q̃, ·).
iii. Extract a partial PCP proof Π that Merkle hashes to a using only

previous queries to O3(q̃, q̂, ·).
iv. Output the mth element of B(q,Π).

(d) Otherwise, output the next value in the list Lquery.
3. Compute all other outputs for O using Lother.

In the following claim, we prove that for any machine AO(1n, zn), the above
procedure defines a valid and unique representation for O.

Claim 2. For every machine AO(1n, zn), the representation of O defined above
is correct and unique.

The proof of this claim appears in the full version.
We next show that the representation of O is actually compressing when

AO(1n, zn) succeeds. Note that all random oracle outputs are added to exactly
one of the lists Lcol, Lpre, Lpcp, Lquery, or Lother. Any output that is added to
Lcol, Lpre, or Lpcp requires fewer bits to represent than the full output. At a high
level, we argue that at least K outputs will be added to these lists.

Claim 3. Suppose that AO(1n, zn) outputs a false proof π = (a, b, c) for a state-
ment q mapping to q̃. Then, there is some query unique to q̃ that was added to
either Lcol, Lpre, or Lpcp in the representation defined above.

Proof. Suppose there is no query of the form (q̃, ·) or (q̃, q̂, ·) added to Lcol or
Lpre. It suffices to prove there is some query Qj of the form (q̃, q̂, a) that is added
to Lpcp. Recall that we assume AO(1n, zn) queries everything checked by Vnu.
This implies that AO(1n, zn) queries Qj = (q̃, q̂, a) at some point. We show that
each of the conditions required for Qj to be added to Lpcp hold. Namely, it is
possible to uniquely extract q and Π such that b = O(q̃, q̂, a) is contained in
B(q,Π).

First suppose it is not possible to uniquely extract q using previous queries
to O2(q̃, ·). We have assumed the entire Merkle tree computing MTO2(q̃,·)(q) is
queried at some point. If we are not able to extract the correct statement q,
then some query in the Merkle tree must be made after query Qj . This would
require that some pre-image will be queried using O2(q̃, ·), which contradicts
the assumption that no query containing q̃ is added to Lpre. If it is possible to
extract the statement q but it is not unique, then there must be some collision
queried in the Merkle tree using O2(q̃), but this contradicts that no query of the
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form (q̃, ·) was added to Lcol. Thus, we must be able to uniquely extract q when
query Qj is made.

Similarly, we must be able to use previous queries to O3(q̃, q̂, ·) to uniquely
reconstruct a partial PCP proof Π. If it is not unique, there must be a collision
in O3(q̃, q̂, ·), which is a contradiction. If all authenticating paths are not queried
before Qj , there will be some pre-image queried with O3(q̃, q̂, ·), which again is
a contradiction.

Lastly, because (a, b, c) is an accepting proof for the statement q, b must be in
the set B(q,Π), which has bounded size since q is not in the specified language.
We conclude that Qj must be added to Lpcp.

By the above claim, we add at least one query to Lcol, Lpre, or Lpcp for each
unique q̃ value. Each query added to Lcol uses at most 2 log T bits to represent,
Lpre uses at most 2 log T+log(n+2) bits, and Lpcp uses at most log T+`b−n bits
to represent a value of size `b. Since AO queries everything that Vnu queries, T
is at least n+ 2, so log(n+ 2) ≤ log T . This implies that we compress by at least
n− 3 log T bits per query added to Lcol, Lpre, or Lpcp. The total representation
in bits in this case is at most

n · (22n + 23n + 24n) + `b · 23n + s−K(n− 3 log T ).

Because the representation is unique, this bounds the total number of oracles
that AO(1n, zn) succeeds by 2n·(2

2n+23n+24n)+`b·23n+s−K(n−3 log T ) but there are

2n·(2
2n+23n+24n)+`b·23n oracles in total. So the probability AO(1n, zn) succeeds

on a randomly chosen oracle is at most 2−K(n−3 log T )+s.

We finish the proof of Theorem 4 next.

Proof (of Theorem 4). Let P ∗O(1n, zn) be a non-uniform cheating prover that
makes T queries to the random oracle and outputs (C1, q1, π1), . . . , (CK , qK , πK)
for unique statements. We will show that

Pr
O

{(Ci, qi, πi)}i∈[K] ← P ∗O(1n, zn) :
∀i 6= j ∈ [K] : qi 6= qj ,
∀i ∈ [K] : qi 6∈ LCi

∧ Vnu(Ci, 1n, qi, πi) = 1

 ≤ 2−n+1.

Let SUCC be the event that P ∗O(1n, zn) succeeds, i.e., the condition above holds.
Consider an execution of P ∗O(1n, zn) for a random function O that outputs

(C1, q1, π1), . . . , (CK , qK , πK). Define α to be the smallest constant such that
such that |qi| ≤ nα for all i ∈ [K], and define N = (3s)24·α. Let BAD be the
event that |{q̃i = MTO(LRC|qi|(qi)) : i ∈ [K]}| ≤ K/N . Since Pr[SUCC] ≤
Pr[BAD] + Pr[SUCC | ¬BAD], it suffices to bound each term separately.

By Lemma 1, Pr[BAD] ≤ 2−n. Given that BAD does not occur, we can find a
set of statements X ⊆ {q1, . . . , qK} with false proofs and with a unique q̃ value
where |X| = K/N . By Lemma 2, this can succeed with probability at most
2−(K/N)·(n−3 log T )+s over the choice of O. When K/N = 3s and T ≤ 2n/6, this
is at most 2−n. In this case, K = (3s)24α+1 ≤ (3s)25·α, and Pr[SUCC] ≤ 2−n+1.
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Remark 6. As discussed in Remark 5, Theorem 4 immediately implies a corol-
lary for a definition of (K,T )-soundness where the statements do not need to
be unique. Specifically, we argued in Section 5.1 that (Pnu, Vnu) has a proof
length bound of `π = O(n2 log n). It follows that (Pnu, Vnu) is (K ′, T )-sound for

K ′ = (3s)25α · nn2

in the case where only the proofs need to be unique rather
than the statements.

6 Concurrent Zero-Knowledge Protocol

In this section, we present our concurrent zero-knowledge protocol and prove
that it satisfies non-uniform soundness when instantiated with our notion of
nuCerts for P.

Theorem 6 (Restatement of Theorem 2). Suppose there exist super-
polynomially-secure families of collision resistant hash functions and nuCerts for
P. Then, there exists a public-coin constant-round concurrent zero-knowledge
protocol for NP with non-uniform soundness and an explicit simulator.

We recall from Theorem 5 that we construct a nuCert for P in the auxiliary-
input random oracle model. By a similar compression argument as in Section 5,
it is easy to show that a compressing random oracle is a secure collision resistant
hash function even in the auxiliary-input random oracle model. Thus, we get the
following corollary to Theorems 5 and 6.

Corollary 2 (Restatement of Corollary 1). In the auxiliary-input random
oracle model, there exists a public-coin constant-round concurrent zero-knowledge
protocol for NP.

Our protocol is very similar to that of Chung et al. [14] which, in turn, is
a variant of Barak’s [1] constant-round (bounded concurrency) zero-knowledge
protocol. At a very high level, Barak’s simulator uses the verifier’s code as a
trapdoor to convince the verifier of the validity of the statement at hand. The
simulator of Chung et al. instead uses to a succinct proof to certify that it knows
a program that does the required task. To be able to provide such proofs for con-
current verifiers that may start nested sessions, rather than redoing computation
multiple times, they design a way to provide succinct proofs to “shortcut” some
of the computation. Specifically, they use k levels of uniformly sound certificates
for P (P-certificates). The first layer of P-certificates is used to certify the veri-
fier’s messages in its interaction with the prover, and all above layers certify the
correct generation of lower level P-certificates in a tree-like fashion.

In our construction, we use nuCerts for P in place of the P-certificates of [14].
We describe a sequence of protocols Π1, Π2, . . . , where protocol Πk uses k levels
of nuCerts and allows us to simulate nk concurrent sessions. Thus, to capture
full concurrency, our final instantiation is Πk for any k ∈ ω(1).

We proceed with the description of our protocol Πk = (Pk, Vk) for a language
L ∈ NP. We present the protocol assuming that Com is non-interactive, statis-
tically binding commitment scheme, but this can be naturally replaced by any
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constant-round commitment scheme (for example, the scheme of Naor [46,37]
which consists of two rounds and relies on the existence of one-way functions).
We further assume Hn = {h : {0, 1}poly(n) → {0, 1}n} is a family of collision re-
sistant hash functions mapping strings of arbitrary polynomial length to strings
of length n. We can instantiate this using a Merkle tree based on any family of
compressing collision resistant hash functions. Lastly, we assume nuCerts for P
with length bounded by `(n) ∈ poly(n).

Let 1n and x be common inputs to (Pk, Vk) and w be a private input to
Pk such that (x,w) ∈ RL. The protocol proceeds in two phases. In the first
phase, the prover commits to a message before receiving a “challenge” r from
the verifier. In the second phase, the prover provides a WIUA proving either that
x is in the NP language or that the message it committed to in phase 1 was
actually a sequence of machines that outputs r. We summarize this protocol Πk

as follows:

Phase 1: Pk and Vk exchange the following three messages.

1. Vk chooses a randomly sampled hash function h
$←− Hn and sends h to

Pk.

2. Pk sends a commitment to 0n using Com with randomness ρ.

3. Vk replies with a random “challenge” r
$←− {0, 1}6`nk.

Phase 2: Pk provides a WIUA of the statement that either x ∈ L OR there
exists 〈 ~M, j,~s, ~π, ~σ,~λ, ρ〉 such that:

1. Commitment Consistency: c is a commitment to h( ~M) using ran-
domness ρ,

2. Input Certification:

(a) |~σ| ≤ `nk.
(b) For 2 ≤ i ≤ k, πi certifies that Mi(1

n, ζ(j, i), si, ([λ≥i]≤ζ(j,i),
[σ≥i]≤ζ(j,i))) = λi−1.

3. Prediction Correctness: π1 certifies that M1(1n, j, s1, ([λ≥1]≤j ,
[σ≥1]≤j)) = r.

We define ζ(j, i) , j − (j mod ni−1), γ≥i = (γi, γi+1, . . .), and [γ]≤j ,
{(j′, ·, ·) ∈ γ : j′ ≤ j}. These are used to “filter out” all unnecessary messages
from future rounds.

There are two things we need to show: (1) there exists a simulator that can
communicate with a cheating verifier in arbitrarily (yet polynomial) number
of concurrent sessions and be able to convince it that the instance is in the
language, even without having the witness, and (2) any non-uniform efficient
cheating prover cannot convince the verifier the validity of a false statement. For
(1), the ZK simulator is identical to [14] as nuCerts for P and P-certificates have
the same completeness and efficiency guarantees. We refer to the full version of
the paper for the proof of (2) and hence Theorem 6.
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