
Non-zero Inner Product Encryptions: Strong
Security under Standard Assumptions

Tapas Pal and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur-721302, India

tapas.pal@iitkgp.ac.in, ratna@maths.iitkgp.ernet.in

Abstract. Non-zero inner product encryption (NIPE) allows a user to
encrypt a message with its attribute vector and decryption is possible
using a secret-key associated with a predicate vector if the inner product
of the vectors is non-zero. The concept of NIPE was put forth by Katz,
Sahai and Waters (EUROCRYPT 2008). Following that many NIPE
constructions were proposed along with interesting applications. The se-
curity of all these works is based on hardness assumptions in pairing-
friendly groups. Recently, Katsumata and Yamada (PKC 2019) built
a NIPE relying on the Learning-with-Errors (LWE) problems, however,
their system practically lags behind for providing only selective secu-
rity with significantly large sizes of master public-key, secret-keys and
ciphertexts. Despite its cryptographic importance, past history of NIPE
is not convincing in terms of both security and practical efficiency as the
schemes are either selectively secure or depend on bilinear maps.

In this paper, our goal is to construct adaptively secure efficient NIPEs.
Firstly, we provide adaptively secure public-key NIPE under the stan-
dard Decision Diffie-Hellman (DDH) assumption that enables one to en-
crypt messages of sufficiently small length. To overcome this limitation
we rely on the Decision Diffie-Hellman-f (DDH-f) and the Hard Sub-
group Membership (HSM) assumptions proposed by Castagnos et al. in
ASIACRYPT 2018. Consequently, we construct two pNIPEs, adaptively
secure under the DDH-f and HSM assumptions respectively, both are
capable of encrypting large messages with inner products over integers.
We upgrade these two pNIPEs so that it can encrypt messages with
unbounded inner products modulo an arbitrary large prime p. In addi-
tion, utilizing inner product functional encryptions we provide attribute-
hiding public-key NIPEs depending on the DDH, DDH-f, HSM, LWE,
Decision Composite Reciprocity assumptions and establish full-hiding
private-key NIPEs based on the Decision linear and Symmetric External
Diffie-Hellman assumptions.

Keywords: non-zero inner product encryptions, adaptive security, payload-
hiding, attribute-hiding, full-hiding.

1 Introduction

Using plain public-key encryption (PKE), a receiver learns the whole message if
he possesses the correct secret-key, otherwise gains nothing about the plaintext.
In many real-life applications, it may be necessary to reveal only a function of
the original message instead of the full plaintext. Suppose an encrypter (say the
CEO of a company) wants to disclose only a certain portion (say emails received
except from the domain @.ac.in) of his message (all the emails) to a particular
person or group, then he cannot give away the secret-key corresponding to the
public-key that was used to encrypt the message as that would unveil the whole
plaintext. In such a scenario, plain PKEs are unable to fulfil users’ requirement.
To remedy all-or-nothing type encryption, plain PKEs are refined over the years
into more advanced primitives like identity-based encryption (IBE) [36,8], broad-
cast encryption (BE) [18], attribute-based encryption (ABE) [35,24]. All these
primitives can be combined into a single class of encryptions called functional
encryption (FE) introduced much later by Boneh et al. [10]. Realizing FE for gen-
eral class of functions [21,19] employs heavy cryptographic tools like multi-linear
maps or obfuscation, and as a result these existing constructions are inefficient
for day-to-day use. However, there are FEs for certain type of functionalities such
as Boolean formulae, inner product predicate, keyword search [24,26,7] that are
accomplished from standard and well-understood assumptions, hence are eligible
for practical implementation.

In ABE, a secret-key sky is generated corresponding to a predicate y and a
ciphertext CTx for a message M is associated with an attribute x. The decryp-
tion successfully recovers the message M from sky and CTx if a relation R(x,y)
holds. This paper studies a particular type of ABE, called non-zero inner prod-
uct encryption (NIPE) [26] that considers the predicate and attribute space to
be Zl (resp. Zlp for some prime p) for a natural number l and the relation R is
defined as R(x,y) = 1 if and only if 〈x,y〉 6= 0 over Z (resp. over Zp). Specifi-
cally, a public-key NIPE (pNIPE) depends on a trusted authority that generates
a master secret-key MSK and a master public-key MPK. Corresponding to each
predicate vector y, the authority provides a predicate secret-key sky computed
using MSK. An encrypter uses MPK to produce a ciphertext CTx for a message
M (which is an integer) associated with an attribute x. Given a secret-key sky,
any user gets the message M from the ciphertext CTx if 〈x,y〉 6= 0, otherwise
learns nothing about the message. In private-key NIPE (sNIPE), the authority
publishes a public parameter instead of a master public-key and a message is
encrypted using the master secret-key.

1.1 Security of NIPE

In literature, there are three indistinguishability based security notions [4,34] for
a pNIPE: selectively, co-selectively and adaptively secure. In selective security
the adversary A has to commit on the challenge attribute before the setup phase,
but A can adaptively query for the secret-keys corresponding to a polynomial
number of predicate vectors. A dual of this model is called co-selective security

where A declares its secret-key queries before the setup phase, but A can se-
lect the challenge attribute based on the information gained from the secret-key
queries. In contrast, when the adversary has the freedom to choose the challenge
attribute as well as the predicate vectors (to be queried for the secret-keys) after
the setup phase, the model is referred to adaptive security. The strongest, at
the same time a practical model is adaptive security which is the main inter-
est of this paper. In payload-hiding pNIPE (PH-pNIPE), it is required that no
probabilistic polynomial time (PPT) adversary having (adaptively) chosen two
messages M0,M1 and a challenge attribute x∗ can distinguish encryption of one
of these messages with a probability significantly greater than 1/2. The adver-
sary may query for secret-keys sky for a polynomial number of predicate vectors
y satisfying 〈x∗,y〉 = 0. Sometimes, a user may want the ciphertext correspond-
ing to his message to not leak any information about the attribute x (except for
the fact that 〈x,y〉 is zero or non-zero) as x may contain sensitive information
about the user’s credentials. This additional security feature is guaranteed by
the attribute-hiding1 pNIPE (AH-pNIPE) where the adversary is asked to sub-
mit two attribute-message pairs (xb,Mb) for b ∈ {0, 1}. Given encryption for a
pair (xb,Mb), it is required that the probability of the distinguishing advantage
(or guessing b) of any PPT adversary is less than 1/2. The secret-key queries
for the predicate vectors y are restricted to satisfy that 〈x0,y〉 = 〈x1,y〉 = 0 if
M0 6= M1, else 〈x0 − x1,y〉 = 0.

We introduce the full-hiding security for a sNIPE (FH-sNIPE) which is very
similar to the predicate privacy notion of an inner product functional encryption
(IPFE) in private-key setting [37]. This is the strongest notion of security for a
NIPE one can think of as it possesses an additional power where the secret-keys
hide the predicate vectors. The challenge bit b is chosen before any query from
the adversary’s end. The adversary gets sk

y
(j)
b

during predicate key queries for

a pair of vectors (y
(j)
0 ,y

(j)
1) and receives CT

x
(ι)
b

during ciphertext queries for

two attribute-message pairs (x
(ι)
0 ,M0), (x

(ι)
1 ,M1) with a restriction that for all

(polynomially bounded integers) j, ι, it holds 〈x(j)
0 ,y

(ι)
0 〉 = 〈x(j)

1 ,y
(ι)
1 〉 = 0 if

M0 6= M1 or 〈x(j)
0 ,y

(ι)
0 〉 = 〈x(j)

1 ,y
(ι)
1 〉 if M0 = M1. Full-hiding security demands

that given all the queries, no PPT adversary can guess b with a probability
significantly greater than 1/2.

1.2 Motivation to our work

In recent years IPEs have emerged with a number of applications in identity-
based encryption, polynomial evaluation, disjunctions/conjunctions equality test,
proxy-re-encryption [26,11,27] etc. Since non-zero IPE is a negated subclass of
IPE, the above primitives with negation (such as identity-based revocation, poly-
nomial non-equality and so on) are captured in applications of pNIPEs [4,3]. The

1 This full attribute-hiding notion is adopted from [34] where they have also considered
a weak form of attribute-hiding called weak attribute-hiding. In weak attribute-hiding
the case M0 = M1 is excluded. However, the case 〈x0,y〉 6= 〈x1,y〉 is not considered
in this work.

non-zero inner product encryption (IPE) was introduced by Katz et al. [26], while
the first pNIPE construction was given by Attrapadung and Libert [4]. The secu-
rity of their pNIPE is based on Decision Linear (DLIN) and the Decision Bilinear
Diffie-Hellman (DBDH) assumptions. Despite its involvement in realizing many
useful primitives, the security of pNIPEs has not much improved in standard
models. Most of the prior works2[4,33,5,39,16,15] have focused in reducing the
size of ciphertexts or secret-keys (or both) of pNIPEs, but they end up with a
paring based system that is secure either in co-selective (not adaptive) or selec-
tive model. The only direct construction of pNIPE in [34] supporting adaptive
security is based on pairing, in particular dual pairing vector spaces (DPVS).
One may consider pNIPE as a particular case of the lattice-based ABE schemes
(for circuits or branching program) of [9,22,23], but the resulting constructions
would be inefficient as we need to rely on either sub-exponential learning with
errors (LWE) assumption or branching program. Recently, a direct lattice-based
pNIPE is proposed in [25] which is selectively secure and capable of one-bit
encryption. In the multi-bit variant of the scheme, sizes of the master public-
keys, ciphertexts and secret-keys increase at least linearly with the bit-length of
the message. Moreover, their scheme suffers from a complex parameter selection
where the noise to modulus ratio is exponentially large in the dimension of at-
tribute vectors and the ciphertext-size is significantly greater than the square of
this dimension. Consequently, their pNIPE is not ideal for encrypting a message
of large bit-length.

Although the generic construction of [25] delivers adaptively payload-hiding
secure pNIPEs via the public-key inner product encryptions (pIPFEs) of [2]
in standard models, they are restricted with an unwanted condition that an
attribute vector when multiplied by a message becomes an eligible candidate
for the attribute space of the underlying pIPFE. Due to this fact, the message
space and the attribute space cannot be independently chosen, and the message
space should be taken as polynomial-size (or logarithmic-size) except for their
DCR based scheme. Therefore, it is rear to find an efficient direct construction
of pNIPE having no such constraint (and without pairing or lattices) in the
literature that is capable of encrypting long messages along with adaptive secu-
rity under well-known assumptions. Moreover, recent developments in achieving
attribute-hiding or full-hiding functional encryptions [34,38,28] naturally draw
our interest to instantiate similar features also for NIPEs which has not been
discussed in previous works (according to the best of our knowledge).

1.3 Our contributions

In this paper, we describe several efficient and practical constructions of NIPE
over Z and Zp that are adaptively secure under various assumptions. We pro-
pose a payload-hiding pNIPE system adaptively secure under the standard De-
cisional Diffie-Hellman (DDH) assumption in a cyclic group of prime order. This
DDH based pNIPE is based on a pairing free group where the message is inde-
pendently encrypted rather than embedding it into the attribute vector (of an

2 We provide detail literature review in the supplementary material SM-1.

pIPFE scheme) as in [25]. As this construction is inspired by the DDH based
pIPFE of [2], we require an inherent restriction for the message space to be
polynomially bounded so that the original message can be efficiently recovered
while decryption.

To overcome this limitation, we utilize a DDH group with an easy DL subgroup
[13]. In such a group, the DDH assumption is modified to a weaker assumption
called the DDH-f assumption [14]. We build an adaptively secure PH-pNIPE
scheme with inner products over Z based on the DDH-f assumption. Modi-
fying the key generation and decryption of this construction, we get another
PH-pNIPE which is adaptively secure and computes inner products modulo a
prime p. Furthermore, we propose more efficient PH-pNIPEs one evaluating
inner products over Z and another over Zp, both providing adaptive security
under the Hard Subgroup Membership (HSM) assumption [14] in a DDH group
with an easy DL subgroup. We note that the DDH-f is weaker than the both
DDH and HSM assumptions [14]. Therefore, our DDH-f based pNIPEs enjoy
the most desirable adaptive security under the weakest assumption (known till
date). To instantiate a DDH group with an easy DL subgroup one can use class
groups of imaginary quadratic fields as shown in [13]. As pNIPEs are known to
imply identity-based revocation (IBR) system, our pNIPEs (over Zp) describe
IBR mechanisms without pairing and lattices, that are adaptively secure un-
der standard assumptions like DDH-f and HSM. One noteworthy advantage of
our pNIPEs (except the DDH based pNIPE) over the existing schemes is that
they can efficiently recover a message irrespective of its size. In comparison with
the recent LWE based selectively secure scheme of [25], our pNIPEs are more
efficient concerning the sizes of master secret-key, master public-key, predicate
secret-keys, ciphertext and in addition, they are adaptively secure (see Table 1
for comparison).

Next, we discuss the attribute-hiding pNIPEs (AH-pNIPE) and full-hiding
sNIPEs (FH-sNIPE). We show that a simple modification to the generic con-
struction of [25] yields an AH-pNIPE from a pIPFE with indistinguishabil-
ity based security (IND-pIPFE) [2] and a FH-sNIPE from a private-key IPFE
(sIPFE) with full-hiding security [38]. Making use of IND-pIPFEs of [2,14], our
generic approach leads to first pNIPE schemes with attribute-hiding ability based
on various standard assumptions such as DDH,DDH-f,HSM, LWE and DCR. Sim-
ilarly, instantiating our generic construction with efficient FH-sIPFEs of [38,28],
we present first sNIPEs having full-hiding feature that are secure under DLIN
and Symmetric External Diffie-Hellman (SXDH) assumption. Here, we empha-
size that the generic construction of [25] can only provide payload-hiding security
whereas our approach has the flexibility to furnish attribute-hiding or full-hiding
security for a NIPE system.

1.4 Overview of techniques

We briefly present our techniques below.

PH-pNIPE from the DDH assumption. The idea behind our DDH-based
pNIPE and its security proof are taken from the DDH-based pIPFE of [2] which

indeed based on the hash proof systems [17]. A cyclic group G of prime order q
is employed to construct master public-keys as MPK = {g, h, {hi = guihvi}li=1}
where g, h are any arbitrary generators of G and the master secret-key is taken
as (u,v) ∈ Zlq×Zlq. For any predicate vector y ∈ Zlq, secret-keys are computed as
sky = (〈u,y〉, 〈v,y〉) ∈ Z2 and encryption of a messageM ∈ Zq with an attribute
x = (x1, · · · , xl) ∈ Zlq is given by CTx = {gr, hr, ct = gMhrt, cti = {hrtxihri }li=1}
where r, t are two arbitrary Zq-elements. If 〈x,y〉 6= 0, one can compute the
randomness t ∈ Zq from CTx using the secret-key sky. Recovery of t helps
the decrypter to extract gM form ct and finally the message M is obtained by
applying discrete logarithm with base g which is possible in polynomial time if
the message lies in a sufficiently bounded range. We note that our ciphertext
needs only one extra group element than in [2], which makes it as efficient as the
pIPFE of [2]. Encrypting the message follows the classical ElGamal technique
where the randomness t binds M with the attribute x so that one can get the
randomness via the secret-key only if the inner product of predicate and attribute
vectors is non-zero. To prove the pNIPE provides adaptively payload-hiding
security, we first show that the master public-key and queried secret-keys leave
no information about the binding randomness t and then use the distribution of
t (which is uniform over Zq) to conclude that the message is statistically hidden
from the adversary’s view.

While the above pNIPE encrypts a polynomially bounded message, we over-
come this constraint using a DDH group of composite order n having an easy DL
subgroup of prime order p. More precisely, we construct PH-pNIPEs for inner
products over Z based on each of DDH-f and HSM assumption [14]. Then modi-
fying the key-generation and decryption, these pNIPEs are converted to operate
for inner products over Zp.
PH-pNIPE from the DDH-f assumption. Our DDH-f based pNIPE is a care-
ful combination of linearly homomorphic encryption scheme of [13] and DDH-f
based pIPFE of [14]. As shown in [14], an algebraic structure of class groups of
imaginary quadratic fields can be used to generate a cyclic group G of unknown
order which contains an easy DL subgroup of known order. In particular, we
take a cyclic group G of order n = p · s with an unknown integer s such that
gcd(p, s) = 1 and a subgroup F of order p where DL problem can be solved in
polynomial time via an algorithm named as Solve [13]. The master public-key of
our pNIPE consists of {g, f, h, {hi = guihvi}li=1} where g, f are the generators
of G,F respectively, h ∈ G is chosen randomly and (u,v) ∈ Zl × Zl forms the
master secret-key. A predicate secret-key sky for a vector y ∈ Zl is computed
as (〈u,y〉, 〈v,y〉) ∈ Z2. The encryption of a message M ∈ Z with an attribute
x = (x1, . . . , xl) ∈ Zl is defined as {gr, hr, ct = fMhrt, {cti = f txihri }li=1} for
some integers r, t sampled from a uniform distribution over Zn and Zp respec-
tively. While decryption, we employ Solve to recover t using {cti}li=1 and the
secret-key sky. Again applying the Solve algorithm on fM which was extracted
from ct using the recovered randomness t, one gets the original message. We
note that t can be recovered only if 〈x,y〉 6= 0 over Z.

The DDH-f problem in G is described as: given gx, gy for some randomly
chosen x, y from Zn, it is hard to distinguish between the tuples {gx, gy, fagxy}
and {gx, gy, gxy} where a is uniform modulo p. Since the factor s is unknown,
one should wonder how to sample elements from G. It can be realized by a dis-
tribution statistically close to the uniform distribution over G if an upper bound
for s is known. We show that the pNIPE provides adaptively payload-hiding
security if the DDH-f problem is hard in G. The security proof starts with the
same strategy what we have followed in our DDH based construction, i.e., if
the randomness t is information theoretically hidden knowing master public-key
and queried secret-keys then the adversary cannot learn anything about M . We
follow the proof technique of [14] (which indeed takes inspiration from [2]) for
analysing the entropy loss occurred due to secret-key queries and show that it is
still not enough for the adversary to determine t from the challenge ciphertext.

PH-pNIPE from the HSM assumption. We propose another pNIPE adap-
tively payload-hiding secure under HSM assumption. This also depends on sim-
ilar kind of DDH group G with an easy DL subgroup F as in our DDH-f based
pNIPE. We use the fact that G can be written as the direct product of two
subgroups Gp and F where Gp = {hp : h ∈ G} is a cyclic group of order s. The
HSM problem states that it is hard to distinguish an element of Gp in the parent
group G. We blend the HSM-CL encryption of [14] with the HSM based pIPFE
of the same paper to achieve our HSM based pNIPE. The building techniques
and the security proof are analogous to that of our DDH-f based system.

PH-pNIPE for inner products modulo a prime. By construction, our
DDH based pNIPE computes inner products modulo a prime and the decryption
gets succeeded as long as the message is polynomially bounded. For our DDH-f
and HSM based pNIPEs, it is necessary to revise the key-generation phase as in
[2,14] so that the schemes remain secure while computing inner products modulo
a prime p. We note that secret-keys are computed over Z whereas the predicate
vectors belong to Zlp. Suppose a set of l vectors from Zlp is linearly dependent,
hence the adversary can get secret-keys for each of these vectors (when we are
in the original schemes). But, it may happen that the set forms a basis for Zl.
In such a scenario, the master secret-key is vulnerable to the adversary know-
ing all secret-key queries. If the scheme discloses secret-keys corresponding to
only (l − 1) independent vectors over Zlp, then the master secrete-key appears
uniform in adversary’s view. Therefore, the key-generation center is required to
maintain a list of predicate vectors so that not more than (l − 1) independent
predicate vectors are allowed to be queried for secret-keys. In particular, the
key-generation is now stateful. This modification upgrades our original schemes
into PH-pNIPEs for inner products modulo a prime. The pNIPEs are adaptively
secure under each of DDH-f and HSM assumptions.

As mentioned in [14], the attack from [12] leaves no effect to our constructions
based on class groups of imaginary quadratic fields as the attack is possible for
the cryptosystems whose security is based on the factorization of a discriminant,
whereas this factorization is public in our schemes. The complexity of best-known
algorithms for DL problem in an imaginary class group run in subexponential

time3 of O(L1/2) [6] while the factorization or DL problem in a finite field can
be solved in O(L1/3) [1]. Therefore our master secret-keys can be chosen shorter
without the security breach of the schemes.

Technical difference with the generic construction of [25]. We note that
our technique of encrypting a message along with an attribute is different from
the generic construction of [25]. For a message M ∈ Zq and an attribute x ∈ Zlq,
the pNIPE of [25] directly encrypts the attribute vector M ·x using any pIPFE to
produce the ciphertext. Therefore, M · x should be an eligible attribute vector
for the underlying pIPFE. As a result, the message space and the attribute
space of pNIPE cannot be independently chosen and it is necessary to have the
message space contained in the domain of the inner product space for successful
decryption. To instantiate the generic pNIPE of [25] using any pIPFE, one can
note that this unwanted constraint may shorten the message and attribute space
of the pNIPE to balance the attribute space of the pIPFE and we may need to
apply encryption algorithm for many times to encrypt a long message with large
attribute vector by dividing the message into smaller parts. On the other hand,
our technique surpasses this limitation by providing a new approach with a cost
of one extra group element compared to [25]. The message and the attribute are
independently embedded into different group elements which are combined via
common randomness.

AH-pNIPEs and FH-sNIPEs from generic construction. We propose
a generic construction for NIPEs from IPFEs which provides attribute-hiding
security in public-key setting (AH-pNIPE) and full-hiding security in private-
key setting (FH-sNIPE). Specifically, we start with the generic construction of
[25] which provides only payload-hiding security for pNIPEs. The setup and key
generation of our NIPE resemble the underlying IPFE. Apart from computing
one IPFE-ciphertext ctM ·x corresponding to a vector M · x = (Mx1, . . . ,Mxl)
as in [25], our scheme adds another IPFE-ciphertext ctx for the attribute vector
x itself. To recover the message M , one divides the value obtained from the
decryption of IPFE for the ciphertext ctM ·x by the decryption of IPFE for the
ciphertext ctx using a secret-key sky. We note that the decrypter computes 〈x,y〉
without knowing the attribute x in case of AH-pNIPE. Moreover, if the sIPFE
is full-hiding then it can evaluate the inner product unaware of the attribute x
and the predicate y. The decrypter successfully recovers the message only if the
inner product is non-zero. We note that the same unwanted constraint is used
in our AH-pNPEs and FH-pNIPEs. But, it can be observed that one can utilize
our techniques employed in PH-pNIPEs to avoid such limitation in our generic
constructions but with a similar cost of increasing the ciphertext size.

1.5 Comparing our PH-pNIPEs with existing schemes

In Table 1 we compare our PH-pNIPEs with the existing schemes (excluding the
generic constructions of [25] as they obtain PH-pNIPEs from existing pIPFEs
by a natural embedding of messages into attribute vectors) in terms of security,

3 Lα is the abbreviation of Lα,c(x) = exp((c+ o(1)) log(x)α log(log(x))1−α)

Table 1. Comparison with various PH-pNIPEs where |S| denotes the size of an element
from the set S, and |MPK|, |sky| and |CT| indicate the sizes of master public-key,
secret-key and ciphertext respectively. Here, Cm denotes a cyclic group of order m, λ
is a security parameter, l is the length of predicate/attribute vectors and lM denotes
the bit-length of a message M . Note that p, q are prime numbers and n = p · s with
gcd(p, s) = 1. We denote P by a pairing operation and E by a scalar multiplication(resp.
exponentiation) in an additive group(resp. multiplicative group).

Reference Security Assump. |MPK| |sky| |CT| Decryption cost

[4]
co-
selective

DLIN
+DBDH

(l + 1)|G|+ |GT | (l + 6)|G| 9|G|+6|GT | 9P+lE

[34]with
short CT

adaptive DLIN (8l + 23)|G|+ |GT | (4l + 5)|G| 13|G|+ |GT | 13P+4(l-1)E

[34]with
short sky

adaptive DLIN (8l + 23)|G|+ |GT | 13|G| (4l+5)|G|+
|GT |

13P+4(l− 1)E

[16] selective DBDH (l2 + l+1)|G|+ |GT | (l + 1)|G| (l + 1)|G| +
|GT |

2P+E

[15] selective l-DBDHE (2l + 1)|G|+ 2l|Ĝ| |Ĝ| 2|G| +|GT | 2P + (l2 + l + 1)E

[25] selective LWE Õ((λ2l+ λlM) log q) Õ(λ2 log q)
Õ((λ + l +
lM) log q)

λdlog qe(l+ 2lM)E

This work
Sec. 3

adaptive DDH (l + 2)|Cq| Õ(l(q − 1)2) (l + 3)|Cq| (l + 3)E

This work
Sec. 4.1

adaptive DDH-f (l + 2)|Cn|+ |Cp| Õ(np
√
λl) (l + 3)|Cn| (l + 3)E

This work
Sec. 5.1

adaptive HSM (l + 1)|Cs|+ |Cp| Õ(np
√
λl)

(l+2)|Cn|+
|Cs|

(l + 2)E

hardness assumption, decryption cost and sizes of master public-key (MPK),
secret-key(sky), ciphertext(CT). To distinguish a pairing based construction with
prime order groups, we denote the group by G for symmetric pairing and repre-
sent the pair of groups by G, Ĝ for asymmetric pairing, while GT remains as the
target group. The cyclic group Cn is a DDH group with an easy DL subgroup
Cp and Cn can be written as the direct product of Cp and Cs. As a pairing com-
putation is more expensive than modular exponentiation, our pNIPEs perform
faster than the existing pairing based constructions. In case of the LWE based
construction of [25], the sizes of MPK and CT significantly increases whenever
the bit-length lM of the message surpasses Õ(λ), whereas these sizes are inde-
pendent of lM in our pNIPEs. It can be observed that our pNIPEs not only
provide the strongest form of security, the sizes of MPK, sky and CT are well
comparable with the existing schemes. Moreover, in light of the practical imple-
mentation presented in [14] (which uses PARI/GP), we may conclude that our
HSM based PH-pNIPE provides better results than the DCR based PH-pNIPE
of [25] with respect to secret-key size, encryption time and decryption time.

2 Preliminaries

Notation. For an integer n ∈ N, the notation [n] represents the set {1, . . . , n}.
We denote by x ←↩ D the process of sampling a value x according to the dis-
tribution of D. We consider x ←↩ S as the process of random sampling a value
x according to the uniform distribution over a finite set S. We assume that the

predicate and attribute vectors are of same length l. The inner product between
two vectors x,y ∈ Zl is written as 〈x,y〉 =

∑l
i=1 xiyi = xTy. For a vector

x = (x1, . . . , xl) ∈ Zl, the l2 norm and the infinity norm of x is defined as
‖x‖2 =

√
x21 + · · ·+ x2l and ‖x‖∞ = max{|xi| : i ∈ [l]} respectively. For any

λ > λ0, if a non-negative function f satisfies f(λ) < 1/λc, c is a constant, then f
is called a negligible function over the positive integers. We denote λ as a security
parameter and negl as a negligible function in λ. The definitions related to IPFE
and NIPE are shifted to SM-2.

2.1 Lattices

We recall basic definitions on lattices and collect few results from the previous
works that are important for our security proof.

Let B = {b1, . . . , bn} be a set of n linearly independent vectors from Rn. An
n-dimensional lattice Λ generated by B is defined as

Λ = L(B) = {
n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n}.

In fact, this is the definition of full-rank lattice used in this paper. The set
B is called a basis for the lattice. The determinant of a lattice Λ = L(B) is
defined as det(Λ) =

√
det(BTB). The dual lattice of Λ is defined as Λ∗ =

{x ∈ Rn : 〈x, z〉 ∈ Z,∀z ∈ Λ}. The minimum distance of a lattice Λ is defined
(in the Euclidean l2 norm) as λ1(Λ) = min{‖x‖2 : x ∈ Λ \ {0}}. More gen-
erally, the i-th successive minimum for a lattice Λ can be defined as λi(Λ) =
min{r : dim(span(Λ ∩ B(0, r))) ≥ i} where B(0, r) = {x ∈ Rn : ‖x‖2 ≤ r}.
Gaussian measures. Let c ∈ Rn and σ > 0 be any real number. Then
the Gaussian function over Rn with center at c and parameter σ is defined
as ρσ,c(x) = exp(−π‖x − c‖22/σ2), ∀x ∈ Rn. If c = 0, then we simply write
it as ρσ(x) = exp(−π‖x‖22/σ2). For any n-dimensional lattice Λ, the discrete
Gaussian distribution over Λ with center c ∈ Rn and parameter σ > 0 is defined
as DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ), ∀x ∈ Rn where ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). For

ε > 0 the smoothing parameter ηε(Λ) of an n-dimensional lattice Λ is defined to
be the smallest positive real σ such that ρ1/σ(Λ∗ \ {0}) ≤ ε.

Lemma 1 (Hadamard inequality). Let Λ be a lattice in Rn and let B =
{b1, . . . , bn} be a basis of Λ. Then we have the inequality det(Λ) ≤

∏n
i=1 ‖bi‖2.

Lemma 2. [14] Let Λ be an n-dimensional lattice and x(6= 0) ∈ Λ. Let V be
a random variable distributed according to DxZ,σ,c for some c ∈ Rn and a real
number σ > 0. Then the random variable S defined as S = 〈x, V 〉 is distributed
according to D‖x‖22Z,σ·‖x‖2,〈c,x〉.

Lemma 3. [20] Let Λ,Λ′ be two n-dimensional lattices with Λ′ ⊂ Λ. Then for
any ε ∈ (0, 12), any σ > ηε(Λ

′) and any c ∈ Rn, the distribution DΛ,σ,c mod Λ′

is within a statistical distance of at most 2ε from the uniform distribution over
Λ mod Λ′.

Lemma 4. [31] Let Λ be an n-dimensional lattice and ε be a positive real num-

ber. Then ηε(Λ) ≤
√

ln(2n(1+1/ε))
π · λn(Λ).

2.2 Cryptographic Assumptions

Definition 1 (DDH assumption) Let G be a cyclic group with order q which
is a λ-bit prime. The decisional Diffie-Hellman (DDH) problem is to distinguish
the distributions {(gx, gy, gxy) : x, y ←↩ Zq} and {(gx, gy, gz) : x, y, z ←↩ Zq}
where g is an arbitrary element of G. The DDH-assumption is that the DDH
problem is hard in G. For any prime λ ∈ N, g ←↩ G and Z0 = gxy, Z1 = gz

where x, y, z ←↩ Zq, the advantage of a DDH adversary A is defined as:

AdvDDH
A (λ) =

∣∣2 · Pr
[
b = A(G, g, gx, gy, Zb) : b←↩ {0, 1}

]
− 1
∣∣

The DDH problem is said to be hard if for any probabilistic polynomial time
adversary A, AdvDDH

A (λ) is negligible.

Definition 2 (Generator of a DDH group with an easy DL subgroup[14])
Let GenGroup = (Gen,Solve) be a pair of algorithms working as follows:
– (p, s̃, g, f, gp, G, F,G

p)← Gen(1λ, 1µ): On input two security parameters λ, µ,
the algorithm Gen outputs a cyclic group (G, .) of order n = ps with two
subgroups Gp = {xp : x ∈ G} of order4 s and F of order p satisfying
G = F × Gp where p is a µ-bit prime, s is an integer such that gcd(p, s) =
1. The algorithm also outputs the prime p, an upper bound s̃ of s (instead
of s) and generators g, f, gp of the groups G,F,Gp respectively.

– x′ ← Solve(p, s̃, g, f, gp, G, F,G
p, X): The deterministic polynomial time al-

gorithm Solve takes as input (p, s̃, g, f, gp, G, F,G
p) and an element X ∈ F ,

and outputs the discrete logarithm (DL) of X, i.e., an element x ∈ Zp such
that X = fx. In other words, for any λ, µ ∈ N, (p, s̃, g, f, gp, G, F,Gp) ←
Gen(1λ, 1µ) and x←↩ Zp we have Pr

[
x = Solve(p, s̃, g, f,G, F, fx)

]
= 1.

Indicating param as (p, s̃, g, f,G, F), we use the notation Solve(param, X)
(instead of writing all the parameters) in our constructions.

Definition 3 (DDH-f assumption[14]) Let GenGroup = (Gen,Solve) be a gen-
erator of a DDH group with an easy DL subgroup as defined in Def. 2. The
DDH-f problem is to distinguish the distributions {(gx, gy, gxy) : x, y ←↩ D}
and {(gx, gy, gxyfu) : x, y ←↩ D, u ←↩ Zp} where D is a distribution over the
integers such that the distribution {gx : x ←↩ D} is at a distance less than
2−λ from the uniform distribution over G. The DDH-f assumption is that the
DDH-f problem is hard in G even with access to Solve algorithm. For any
λ, µ ∈ N, (p, s̃, g, f, gp, G, F,Gp)← Gen(1λ, 1µ) and Z0 = gxy, Z1 = gxyfu where
x, y ←↩ D, u←↩ Zp, the advantage of an DDH-f adversary A is defined as:

AdvDDH-f
A (λ, µ) =

∣∣2 · Pr
[
b = A(param, gx, gy, Zb,Solve(.)) : b←↩ {0, 1}

]
− 1
∣∣

4 The order is chosen such that the DL problem in Gp takes exponential time.

The DDH-f problem is said to be hard if for any probabilistic polynomial time
adversary A, AdvDDH-f

A (λ, µ) is negligible.

Definition 4 (HSM assumption[14]) Let GenGroup = (Gen,Solve) be a gen-
erator of a DDH group with an easy DL subgroup as defined in Def. 2. The
hard subgroup membership (HSM) problem is to distinguish the elements of Gp

in G. The HSM assumption is that the HSM problem is hard in G even with
the access to Solve algorithm. Let D (resp. Dp) be a distribution over the set of
integers such that the distribution {gx : x ←↩ D} (resp. {gxp : x ←↩ Dp}) is at a

distance less than 2−λ from the uniform distribution over G (resp. Gp). For any
λ, µ ∈ N, (p, s̃, g, f, gp, G, F,Gp) ← Gen(1λ, 1µ) and X0 = gx, X1 = gx

′

p where
x←↩ D, x′ ←↩ Dp, the advantage of an HSM adversary A is defined as:

AdvHSMA (λ, µ) =
∣∣2 · Pr

[
b = A(param, Xb,Solve(.)) : b←↩ {0, 1}

]
− 1
∣∣

The HSM problem is said to be hard if for any probabilistic polynomial time
adversary A, AdvHSMA (λ, µ) is negligible.

Theorem 1 (Relation among the above assumptions[14]) The DDH-f as-
sumption is weaker than the DDH and HSM assumptions, i.e., the DDH assump-
tion implies the DDH-f assumption and the HSM assumption implies the DDH-f
assumption.

Sampling from G and Gp. To apply GenGroup in our constructions it is
mandatory to explicitly define the distribution D and Dp. One natural way to
sample an element from a cyclic group G of order n with a known generator
g is to first pick an integer x uniform modulo n and then return gx. But, this
method cannot be used to implement D and Dp, since the orders of G and Gp

are not revealed by GenGroup. However, an upper bound s̃ (resp. p · s̃) for the
order of Gp (resp. G) is known. We can utilize folded uniform or folded gaussian
(for batter efficiency) distributions using those bounds.

Lemma 5. [14] Consider the output of Gen(1λ, 1µ) as described in the Def. 2.
The distributions D and Dp (used in Def. 3,4) that are at a statistical distance
less than 2−λ from the uniform distributions over G and Gp respectively, can be
implemented as follows:

1. One can obtain D as the uniform distribution on {0, 1, . . . , 2λ−2 · p · s̃}.
2. More efficiently for smaller sampling value, D can be taken as the Gaussian

distribution DZ,σ with σ = p · s̃ ·
√
λ.

3. Similarly, one can choose Dp = DZ,σ′ with σ′ = s̃ ·
√
λ.

4. Less efficiently, one can define Dp = D.
5. Since G = F ×Gp, one can consider D as {fa · gxp : a←↩ Zp, x←↩ Dp} using

the uniform distribution over Zp and the distribution Dp.

3 Payload-hiding stateless pNIPE based on DDH
assumption

In this section, we describe a stateless pNIPE scheme by modifying the DDH-
based pIPFE of [2]. Under the DDH assumption, our pNIPE provides adaptively
payload-hiding security. The encryption algorithm of our pNIPE adds one extra
group element in the ciphertext of [2]. For decryption, we need to solve a DL
problem in polynomial time similar to the case of the DDH-based pIPFE where
the inner product was taken within a polynomial boundary. This requires our
construction to consider a polynomial size message space.

Let λ be the security parameter. We use a cyclic group G with order q which
is a µ-bit prime and µ ≥ λ. The domains of the pNIPE are: predicate space
P = Zlq, attribute space Q = Zlq, inner product space I = Zq and a polynomially
bounded message space M ⊂ Zq. Additionally, we assume that |〈x,y〉| < q for
any x ∈ Q and y ∈ P.

Construction. Our pNIPE = (Setup,KeyGen,Enc,Dec) works as follows:

– (MPK,MSK)← pNIPE.Setup(1λ, 1l): A trusted authority computes a master
public-key MPK, a master secret-key MSK using the below steps.

– Generate a cyclic group G having order a µ-bit prime q with µ ≥ λ and
consider two generators g, h←↩ G

– Pick two vectors u,v ←↩ Zlq and write u = (u1, . . . , ul),v = (v1, . . . , vl)
– Compute hi = guihvi for 1 ≤ i ≤ l
– Return the keys MSK = (u,v) and MPK = (G, g, h, {hi}i∈[l])

– sky ← pNIPE.KeyGen(MPK,MSK,y): For a predicate vector y = (y1, . . . , yl)
∈ P, the authority uses MSK = (u,v) to compute the secret-key sky =
(u(y), v(y)) where u(y) = 〈u,y〉, v(y) = 〈v,y〉 ∈ Z.

– CTx ← pNIPE.Enc(MPK,x,M): A user encrypts his message M ∈ M with
an attribute vector x = (x1, . . . , xl) ∈ Q using the following steps.

– Pick two random numbers r, t←↩ Zq
– Set C = gr and D = hr

– Compute ct = gMDt and cti = Dtxihri for 1 ≤ i ≤ l
– Return the ciphertext CTx = (C,D, ct, {cti}i∈[l])

– ⊥ or ζ ← pNIPE.Dec(MPK, sky,CTx): A decrypter first computes %← 〈x,y〉
mod q. If % = 0, then it returns ⊥; otherwise it runs with the steps below.

– Parse sky = (u(y), v(y)) and CTx = (C,D, ct, {cti}i∈[l])
– Compute Rt = (

∏l
i=1 ct

yi
i)/Cu

(y) ·Dv(y)

– Set B← ct/(Rt)
1/%

– Return the message as loggB

Correctness. By construction, Rt can be expressed as

(
∏
i∈[l]

ctyii)/Cu
(y)

·Dv
(y)

= (
∏
i∈[l]

Dtxiyi · gruiyi ·hrviyi)/gru
(y)

·hrv
(y)

= Dt〈x,y〉· gr〈u,y〉·h〈v,y〉/gr〈u,y〉·h〈v,y〉 = Dt〈x,y〉

If 〈x,y〉 6= 0 mod q, then (Rt)
1/% = Dt and the value of B = ct/(Rt)

1/% becomes
gM where M is the original message. Since, the message space is of polynomial
size the last step of decryption computes M = loggB in polynomial time.

Theorem 2 Assuming the hardness of DDH problem in the group G, the above
pNIPE for inner products over Zq provides adaptively payload-hiding security.
(The proof is available in SM-3.)

4 Payload-hiding pNIPE based on DDH-f assumption

We build two NIPE schemes in public-key setting relying on DDH-f assumption.
The first one is for inner products over Z (Sec. 4.1) and the second one is for inner
products over a prime field Zp (Sec. 4.2). Our constructions can be treated as a
modification to the DDH-f-based pIPFE schemes of [14]. We use a DDH group
with an easy DL subgroup of prime order p (Def. 2) and encrypt a message into
this subgroup. The pNIPE over Z is stateless whereas we need to maintain a
state storing list of vectors in the key generation phase of the pNIPE over Zp to
prevent some basic attacks.

4.1 DDH-f based stateless pNIPE for Inner Products over Z

We discard the group Gp and its generator gp from the output of Gen(1λ, 1µ)
which is a part of the algorithm GenGroup = (Gen,Solve) in Def. 2. That is,
Gen(1λ, 1µ) now returns a tuple (p, s̃, g, f,G, F) where p is a µ-bit prime with
µ ≥ λ.

The domains associated to our pNIPE are: predicate space P = Zl, attribute
space Q = Zl, inner product space I = Z and message spaceM = Zp. Moreover,
for any y ∈ P and any x ∈ Q it holds that ‖y‖∞ < Y and ‖x‖∞ < X with
X,Y < (p/l)1/2.

Construction. Our pNIPE = (Setup,KeyGen,Enc,Dec) is working as follows:
– (MPK,MSK) ← pNIPE.Setup(1λ, 1µ, 1l): A trusted authority computes a

master public-key MPK and a master secret-key MSK using the below steps.
– Generate (p, s̃, g, f,G, F)← Gen(1λ, 1µ) where5 G = 〈g〉, F = 〈f〉, |G| =
n = ps, |F | = p such that gcd(p, s) = 1 and s̃ is an upper bound of s.

– Sample α ←↩ DZ,σ and compute h = gα where σ is a real number to be

set as σ > p3/2 · s̃ ·
√
λ (for the security proof of Th. 3)

– Pick two vectors u,v ←↩ DZl,σ and write u = (u1, . . . , ul),v = (v1, . . . , vl)
– Compute hi = guihvi for 1 ≤ i ≤ l
– Return the keys MSK = (u,v) and MPK = (param, h, {hi}i∈[l]) where
param = (p, s̃, g, f,G, F)

– sky ← pNIPE.KeyGen(MPK,MSK,y): For a predicate vector y = (y1, . . . , yl)
∈ P, the authority returns the secret-key sky = (u(y), v(y)) where u(y) =
〈u,y〉, v(y) = 〈v,y〉 are computed over Z.

5 We note that s is unknown and the algorithm only outputs an upper bound of s.

– CTx ← pNIPE.Enc(MPK,x,M): A user encrypts his message M ∈ M with
an attribute vector x = (x1, . . . , xl) ∈ Q utilizing the following steps.

– Pick two random numbers r ←↩ DZ,σ, t←↩ Zp
– Set C = gr and D = hr, both belong to G
– Compute ct = fMDt and cti = f txihri for i runs from 1 to l
– Return the ciphertext CTx = {C,D, ct, {cti}i∈[l]}

– ⊥ or ζ ← pNIPE.Dec(MPK, sky,CTx): A decrypter computes %← 〈x,y〉 and
returns ⊥ if % = 0; otherwise it executes the steps below.

– Parse sky = (u(y), v(y)) and CTx = {C,D, ct, {cti}i∈[l]}
– Compute Rt = (

∏l
i=1 ct

yi
i)/Cu

(y) ·Dv(y)

– Run the algorithm Solve to get an output η ← Solve(param,Rt)
– Compute t← η · %−1 over Zp and then ct′ ← ct/Dt

– Get an element ζ ← Solve(param, ct′) of Zp
– Return the message as ζ

Correctness. Suppose 〈x,y〉 6= 0. We show that pNIPE.Dec returns the original
message with all but a negligible probability. By the construction, Rt can be
written as

(
∏
i∈[l]

ctyii)/Cu
(y)

·Dv
(y)

= (
∏
i∈[l]

f txiyi · gruiyi ·hrviyi)/gru
(y)

·hrv
(y)

= f t〈x,y〉· gr〈u,y〉·h〈v,y〉/gr〈u,y〉·h〈v,y〉 = f t〈x,y〉

This means Solve(param,Rt) returns η = t〈x,y〉 modulo p. As ‖x‖∞ < X and
‖y‖∞ < Y withX,Y < (p/l)1/2 we have |〈x,y〉| < l·X ·Y < p. Thus, % (= 〈x,y〉)
is invertible modulo p. Since, t is uniformly chosen from Zp, η 6= 0 happens with
all but a negligible probability of 2−µ as p is a µ-bit prime with µ ≥ λ. Thus, t
is recovered by computing η · %−1 modulo p. Again by the construction, we get
ct′ = ct/Dt = fM . Finally, applying Solve algorithm to ct′ we obtain an integer
ζ = M modulo p. As M ∈ Zp, the value of ζ is in fact equals to M . This proves
correctness of the pNIPE described above.

Theorem 3 Assuming the hardness of DDH-f problem in the group G, the above
pNIPE for inner products over Z provides adaptively payload-hiding security.

Proof. We follow the proof technique of [14] adapted into our setting. It starts
with a sequence of games and the view of any PPT adversary A is shown to
be indistinguishable in any of the consecutive games. Finally, we end up in a
game that statistically hides the challenge bit as required. As usual, Game 0 is
the standard payload-hiding security experiment (Def. 10) for the above pNIPE
scheme and Game 1, 2 are formalized for our proof to work. All the games are
defined in Fig. 1. Since A is a legitimate adversary, it holds that 〈x∗,y〉 = 0 for
all y ∈ P queried by A where x∗ = (x1, . . . , xl) is the challenge attribute. Let
Ej be the event that b = b′ in Game j for j = 0, 1, 2.
Game 0 ⇒ Game 1: In Game 1, the challenger directly uses (u,v) to compute

the challenge ciphertext CT
(b)
x∗ (see Fig. 1, item 3.4 with j = 1) as

(C = gr,D = hr, ct = fMbDt, {cti = f txigruihrvi}li=1).

Game j, j ∈ {0, 1, 2}

1. The challenger gets (MPK,MSK) ← pNIPE.Setup(1λ, 1µ, 1l) where MSK = (u =
(u1, . . . , ul), v = (v1, . . . , vl)) and MPK = (p, s̃, g, f, h = gα, G, F, {hi =
guihvi}i∈[l])

2. The adversary choose (x∗,M0,M1)← ApNIPE.KeyGen(MPK,MSK,·)(MPK)
3. The challenger picks a random bit b and encrypts the message Mb with

the challenge attribute x∗ = (x1, . . . , xl) as:
3.1 If j = 0, 1, 2, pick r ←↩ DZ,σ and t←↩ Zp
3.2 If j = 0, 1, compute C = gr and D = hr

Else if j = 2, compute C = gr and D = fahr for a←↩ Zp
3.3 If j = 0, 1, 2, set ct = fMbDt

3.4 If j = 0, compute cti = ftxihri for 1 ≤ i ≤ l
Else if j = 1, 2, compute cti = ftxiCuiDvi for 1 ≤ i ≤ l

3.5 Return CT
(b)

x∗ = (G,H, ct, {cti}li=1)

4. Finally, the adversary outputs b′ ← ApNIPE.KeyGen(MPK,MSK,·)(CT
(b)

x∗)

Fig. 1: Sequence of Games used in the proof of Th. 3

So, both these games are identical and we have Pr[E0] = Pr[E1].
Game 1 ⇒ Game 2: The only change occurs in Game 2 is that the term D
which is now computed as fahr for some a uniformly picked from Zp (see Fig.

1, item 3.2 with j = 2). Since α, r ←↩ DZ,σ with σ > p3/2 · s̃ ·
√
λ > p · s̃ ·

√
λ, by

item 2 of Lem. 5 (in Sec 2.2), h = gα and C = gr are both distributed uniformly
over G with all but a negligible statistical distance of 2−λ. Therefore in Game
1, (h = gα,C = gr,D = gαr) forms a DH-tuple. Again in Game 2, the same
tuple changes to (h = gα,C = gr,D = fagαr) where a ←↩ Zp. The distribution
of (h,C,D) in both of these games are statistically indistinguishable under the
DDH-f assumption in G and we write |Pr[E1]−Pr[E2]| ≤ AdvDDH-f

B (λ, µ) for any
PPT adversary B.

Now, we prove that in Game 2, the ciphertext distribution statistically hides
the challenge bit b and |Pr[E2] − 1

2 | is negligible in λ. The ciphertext can be
expressed as

(C = gr,D = fahr, ct = fMb+athrt, {cti = f txi+avihri }li=1)

The terms C and cti information theoretically reveal r modulo n and zt,i =
t · xi + a · vi mod p for all i ∈ [l], as {hi}li=1 is a part of the master public-key. If
we show that zt = t · x∗ + a · v mod p statistically hides t mod p from the A’s
view (given all predicate key queries), then even if the unbounded adversary can
infer Mb + a · t mod p from the term ct, the challenge bit b remains statistically
hidden since a, t are both uniformly and independently sampled from Zp and
a, t 6= 0 mod p with all but a negligible probability as p is a µ-bit prime with
µ ≥ λ. In particular, we prove that 〈x∗, zt〉 = t·‖x∗‖22+a·〈x∗,v〉 mod p does not
leave sufficient information about t mod p to the adversary knowing all predicate
key queries made by him. Note that, if x∗ = 0 then zt is independent of t. We
assume that x∗ is a non-zero attribute vector.

The predicate vector yi = (y1, . . . , yl) on the i-th query of A must satisfy
〈x∗,yi〉 = 0 where x∗ = (x1, . . . , xl) is the challenge attribute. More generally,
all queries yi must belong to the (l − 1)-dimensional lattice x∗⊥ = {y ∈ Zl :

〈x∗,y〉 = 0}. Without loss of generality we assume that6 the first n0 co-ordinates
of x∗ are zero and gcd(xn0+1, . . . , xl) = 1. Consider the following matrix

Ytop =

In0
−xn0+2 xn0+1

−xn0+3 xn0+2

. . .
. . .

−xl xl−1

 ∈ Z(l−1)×l

and observe that rows of it form a basis for the lattice x∗⊥. Let Ybot = x∗T ∈
Z1×l and take the matrix Y =

[Ytop

Ybot

]
∈ Zl×l. It can be shown that Y is invertible

over Zp. In particular, we observe that

Y ·YT
=

In0

x2
n0+1 + x2

n0+2 −xn0+1 · xn0+3

−xn0+1 · xn0+3 x2
n0+2 + x2

n0+3

. . .

. . .
. . .

. . .

−xl−2 · xl x2
l−1 + x2

l

‖x∗‖22

and its determinant is given by

det(Y ·YT) = (

l−1∏
i=n0+2

x2i) · ‖x∗‖42.

By construction, for all i = n0 + 2, . . . , (l − 1) it holds that 0 < xi < p as

‖x∗‖∞ < X < (p/l)1/2 < p and hence
∏l−1
i=n0+2 x

2
i is non-zero modulo p. On

the other hand, 0 < ‖x∗‖2 < X ·
√
l < p and this implies ‖x∗‖42 6= 0 mod p.

Combining, we have det(Y)2 = det(Y ·YT) is non-zero modulo p. Therefore, Y
is invertible modulo p as det(Y) 6= 0 mod p.

Since Y is independent of t, it is sufficient to show that Y · zt mod p sta-
tistically hides t mod p. By construction, each row of Ytop belongs to x∗⊥ (i.e.
Ytop · x∗ = 0) which implies that Ytop · zt is independent of t. Therefore, our
concern is the last row of Y ·zt, given by 〈x∗, zt〉 = t · ‖x∗‖22 + a · 〈x∗,v〉 mod p.

Next, we show that from A’s view the distribution of 〈x∗,v〉 mod p is close
to the uniform distribution modulo p. Eventually, this will imply that the term
〈x∗, zt〉 mod p statistically hides t mod p since a ←↩ Zp and a 6= 0 mod p with
all but a negligible probability as p is a µ-bit prime with µ ≥ λ.

From the public-key hi = guihvi = gui+αvi , i ∈ [l], A information theo-
retically learns s = u + α · v mod n. Knowing s the adversary sees the join
distribution of (u,v) as (s−α ·v mod n,v mod n) where α←↩ DZ,σ,v ←↩ DZl,σ.

Since σ > p3/2 · s̃ ·
√
λ > p · s̃ ·

√
λ, by item 2 of Lem. 5, the distribution of v

mod n given s mod n remains statistically close to uniform distribution over Zl.
As the rows of Ytop form a basis of x∗⊥, any queried predicate vector yi

can be written as a linear combination of these rows, that is, yi =
∑l−1
j=1 ki,jRj

6 We can always divide x∗ by any common divisor of its co-ordinates as it will not
change the lattice x∗⊥.

where ki,j ∈ Z and Rj is the j-th row of Ytop. Hence, the secret-key skyi can be
expressed as

(〈u,yi〉, 〈u,yi〉) = (

l−1∑
j=1

ki,j ·Rj · u,
l−1∑
j=1

ki,j ·Rj · v).

This implies the information learned by A from the predicate key queries can
be completely determined by Ytop ·u, Ytop · v ∈ Zl−1. Again, knowing s mod n
the distribution of Ytop · u mod n can be seen as

Ytop · u = Ytop · (s− α · v) mod n

= Ytop · s− α ·Ytop · v mod n

We note that α is independent of v mod n and the vectors u,v are sampled
independently from Zl. Thus, the adversary A cannot achieve more information
about v mod n from Ytop ·u than what he obtains from Ytop · v. We can ignore
Ytop · u and analyze the distribution of v mod n knowing Ytop · v.

Let v0 ∈ Zl be an arbitrary vector such that Ytop ·v0 = Ytop ·v. Given Ytop ·v,
the distribution of v ∈ Zl is v0+DΛ,σ,−v0

where Λ = {v ∈ Zl : Ytop·v = 0}. More
precisely, form the adversary’s view the master secret-key component v appears
as v0 + V where Now observe that Λ is an 1-dimensional lattice as the rows of
Ytop are linearly independent over Z. Since x∗ ·Z ⊂ Λ and gcd(xn0+1, . . . , xl) =
1, it holds that Λ = x∗ ·Z. Thus x∗(6= 0) ∈ Λ = x∗ ·Z and V is a random variable
distributed according to DΛ,σ,−v0

. Applying Lem. 2 of Sec. 2.1, the distribution
of 〈x∗,v〉 knowing Ytop · v is given by 〈x∗,v0〉+D‖x∗‖22Z,σ·‖x∗‖2,−〈x∗,v0〉.

Let us consider the lattice Λ′0 = n ·Λ0 where Λ0 = ‖x‖22 ·Z. The distribution
DΛ0,σ·‖x∗‖2,−〈x∗,v0〉 mod Λ′0, by Lem. 3 of Sec. 2.1, is statistically 2ε-close to the
uniform distribution over Λ0/Λ

′
0 ' Zn if ηε(Λ

′
0) < σ · ‖x∗‖2. From Lem. 4 (of

Sec. 2.1) with ε = 2−λ−1 we have the following bound

ηε(Λ
′
0) ≤

√
ln(2n(1+1/ε))

π · λ1(Λ′0) ≤
√
λ · λ1(Λ′0) =

√
λ · n · ‖x∗‖22.

We set σ ·‖x∗‖2 >
√
λ·n·‖x∗‖22 which implies σ >

√
λ·n·‖x∗‖2. By construction

‖x∗‖2 < X ·
√
l <
√
p and it recommends to choose σ > p3/2 · s̃·

√
λ which ensures

that the distribution 〈x∗,v〉 mod n is within 2−λ distance from the uniform
distribution over Zn. Since n = p · s with p, s are co-primes, 〈x∗,v〉 mod p is
also distributed close to the uniform distribution over Zp. Hence, zt statistically
hides t mod p and it holds that |Pr[E2] − 1

2 | ≤ 2−λ. Finally, combining all the
indistinguishability gaps between the games and using triangular inequality we
have AdvPH−pNIPEA (λ) ≤ AdvDDH-f

B (λ, µ)+2−λ which is negligible in λ if the DDH-f
assumption holds in G.

4.2 DDH-f based stateful pNIPE for Inner Products over Zp

Similar to our construction in Sec. 4.1, here also we consider (p, s̃, g, f,G, F) as
the output of Gen(1λ, 1µ) which is a part of GenGroup algorithms from Def. 2.
The prime p is of µ-bit satisfying µ ≥ λ.

The domains of our pNIPE scheme are taken as predicate space P = Zlp, at-

tribute space Q = Zlp, inner product space I = Zp and message space M = Zp.
This pNIPE is stateful where the authority is required to maintain a state. The
proof of correctness is similar to the previous DDH-f construction.

Construction. We describe the pNIPE = (Setup,KeyGen,Enc,Dec) where
pNIPE.Setup and pNIPE.Enc are exactly the same as in the construction of Sec.
4.1 except the parameter σ (used in the distribution DZ,σ or DZl,σ) is taken to be

greater than s̃ ·
√
λ ·pl ·(

√
l)l−1. Initially the state st in the output of pNIPE.Setup

(for this construction) is empty. The algorithms pNIPE.KeyGen and pNIPE.Dec
are as follows:
– sky ← pNIPE.KeyGen(MPK,MSK, st,y): Let y ∈ P be the j-th query to this

algorithm. At any stage the internal state st contains at most l tuples of the
form (yi, skyi) where skyi is the predicate secret-key corresponding to the
predicate vector yi. W.l.o.g. we assume that j ≤ l and the state st contains
j − 1 predicate vectors {yi}j−1i=1 . The authority computes the secret-key sky
utilizing the below steps.

– If y is linearly independent of all predicate vectors {yi}j−1i=1 mod p (present
in st) then
1. Set y = y mod p so that y ∈ {0, 1, . . . , p− 1}l
2. Compute sy = (u(y), v(y)) ∈ Z2 where u(y) = 〈u,y〉 and v(y) =
〈v,y〉.

3. Update the state st← (st, (y, sky = (y, sy)))

– If there exist integers k1, . . . , kj−1 such that y =
∑j−1
i=1 kiyi ∈ Zlp then

1. Set y =
∑j−1
i=1 kiyi ∈ Zl

2. Compute sy = (u(y), v(y)) ∈ Z2 where u(y) =
∑j−1
i=1 kiu

(yi) and

v(y) =
∑j−1
i=1 kiv

(yi)

– Return the secret-key as sky = (y, sy)
– ⊥ or ζ ← pNIPE.Dec(MPK, sky,CTx): A decrypter first sets % ← 〈x,y〉. If
% ≡ 0 (mod p), then it returns ⊥; otherwise it executes the steps below.

– Parse the secret-key sky = (y = (y1, . . . , yl), sy = (u(y), v(y))) and the
ciphertext CTx = {C,D, ct, {cti}i∈[l]}

– Compute Rt = (
∏l
i=1 ct

yi
i)/Cu

(y) ·Dv(y)

– Run the algorithm Solve to obtain η ← Solve(param,Rt)
– Compute t← η · %−1 mod p and then ct′ ← ct/Dt

– Get an element ζ ← Solve(param, ct′) of Zp
– Return the message as ζ

Theorem 4 Assuming the hardness of DDH-f problem in the group G, the above
pNIPE for inner products over Zp provides adaptively payload-hiding security.

Proof. The main structural difference between the pNIPE in the previous subsec-
tion and the pNIPE described above is that the key extraction process becomes
stateful. Since the encryption technique remains unchanged, one starts with the
same sequence of games as explained in Fig. 1, but the key generation oracle is
converted into a stateful one which is now denoted as pNIPE.KeyGen(MPK,MSK,

st, ·). For any predicate vector y queried by A, it holds that 〈x∗,y〉 = 0 mod
p where x∗ = (x1, . . . , xl) ∈ Zlp is the challenge attribute. We rename Game
j and event Ej of Th. 3 into Game j′ and event E′j respectively in this proof.
Consequently, one can adopt similar explanations from Th. 3 and claim that

Pr[E′0] = Pr[E′1] and |Pr[E′1]− Pr[E′2]| ≤ AdvDDH-f
B (λ, µ)

To complete the proof, we need to show that the challenge bit is statistically
hidden in the ciphertext distribution of Game 2′. According to the discussion in
Game 2 of Th. 3, the challenge ciphertext information theoretically reveals

Mb + a · t mod p and zt = t · x∗ + a · v mod p

and the challenge bit b is unpredictable if zt statistically hides t mod p from
the adversary’s view as a, t are uniformly sampled from Zp where p is a µ-bit
prime with µ ≥ λ. One of the vital parts in the proof of previous theorem is
to construct an invertible matrix Y mod p using the information available to A
and then prove Y · zt mod p does not leak sufficient information about t mod p.
But, in this case we cannot construct the matrix Y in the same way that was
considered in Game 2, since det(YYT) could be a multiple of p.

According to the construction, the adversary gets secret-keys corresponding
to at most (l − 1) linearly independent predicate vectors {yj}l−1j=1 mod p. Any
other queried secret-key is associated with a predicate vector that can be ex-
pressed as a linear combination of yj ’s, hence delivers redundant information
to the adversary. We will determine the view of A after it makes j predicate
key queries for 0 ≤ j ≤ (l − 1) and without loss of generality we assume that
j predicate vectors are linearly independent modulo p. Our aim is to show that
t mod p is statistically hidden from the view of A, for any j ≤ (l − 1). We
prove this by induction on j. Note that if j = 0, Game 2′ is, in fact, same as
Game 2 where the adversary has not queried any predicate key. Therefore, the
induction hypothesis is true for j = 0 from the proof of Th. 3. Next, we take
j ∈ {0, 1, . . . , l− 1} and assume that the state st = {(yi, skyi = (yi, syi))}i∈[j] is
independent of t mod p.

All the predicate vectors queried by A must belong to the (l−1)-dimensional
subspace x∗⊥p = {y ∈ Zlp : 〈x∗,y〉 = 0 mod p}. In particular, the predicate

vectors {yi}i∈[j] is a linearly independent subset of x∗⊥p and it can be extended

into a set {yi}i∈[l−1] which becomes a basis of x∗⊥p. One can imagine this as the

key generation of dummy predicate vectors {yi}l−1i=j+1 made by the challenger

to get a smallest spanning set for x∗⊥p. We define Ytop = [y1y2 · · ·yl−1]T ∈
Z(l−1)×l. Let y′ ∈ Zlp \ x∗⊥p be such that it is deterministically computable

by the adversary. We define Ybot = y′ to be the canonical lift of y′T over the
integers and consider the matrix Y =

[Ytop

Ybot

]
∈ Zl×l. By construction, Y is

invertible modulo p and independent of t. We show that Y ·zt statistically hides
t mod p.

Recall that zt = t · x∗ + a · v mod p and every rows of Ytop lies in x∗⊥p.
Therefore, Ytop · zt is independent of t and, hence it is sufficient to prove that

Ybot · zt = t · 〈y′,x∗〉+ a · 〈y′,v〉 mod p

statistically hides t mod p from the adversary’s view. Our goal will be fulfilled
if we can demonstrate that the distribution of 〈y′,v〉 mod p is statistically close
to the uniform distribution modulo p as a is uniformly sampled from Zp where
p is a µ-bit prime with µ ≥ λ. Equivalently, if v mod p is statistically close to
uniform over x∗ · Zp from the adversary’s view, that is, v = β · x∗ for β ←↩ Zp,
then 〈y′,v〉 = β · 〈y′,x∗〉 mod p would be uniformly distributed modulo p as
〈y′,x∗〉 6= 0 mod p.

From the public-key component hi = guihvi , i ∈ [l], the adversary informa-
tion theoretically learns s = u+α ·v mod n. Consequently, the joint distribution
of (u mod n,v mod n) given s mod n becomes (s−α ·v mod n,v mod n) where
α←↩ DZ,σ and v ←↩ DZl,σ. Since σ > s̃ ·

√
λ · pl · (

√
l)l−1 > p · s̃ ·

√
λ (for l ≥ 2),

item 2 of Lem. 5 (in Sec. 2.2) implies that s does not leak much information
about v mod n.

As discussed in the proof of Th. 3, the information learned by A from the
predicate key queries can be completely determined by Ytop · u and Ytop · v ∈
Zl−1, and Ytop · u does not give the adversary more information on v mod n
than what he can gain from Ytop · v. Therefore, it is sufficient to analyze the
distribution of v mod n knowing Ytop · v.

We define 1-dimensional lattice Λ = {y ∈ Z : Ytop · y = 0 ∈ Zl−1}. Since
x∗ ∈ Λ, we can write Λ = x′ · Z where x′ = γ · x∗ mod p for some γ ∈ Z∗p.
Since x′/gcd(x′1, . . . , x

′
l) ∈ Λ, one can assume that all the co-ordinates of x′ are

co-prime to each other.
Let v0 be an arbitrary vector satisfying Ytop · v0 = Ytop · v. Then, in adver-

sary’s view the distribution of v becomes v0 + V where V is a random variable
following the distribution DΛ,σ,−v0

. Next, consider the distribution of DΛ,σ,−v0

modulo the sublattice Λ′ = n · Λ. From Lem 3 of Sec. 2.1, the reduced distri-
bution is 2ε-close to the uniform distribution over Λ/Λ′ if σ > ηε(Λ

′) for some
positive constant ε.

Taking ε = 2−λ−1 in Lem. 4 of Sec. 2.1, we get an upper bound

ηε(Λ
′) ≤

√
ln(2n(1+1/ε))

π · λ1(Λ′) ≤
√
λ · λ1(Λ′) =

√
λ · n · ‖x′‖2,

since λ1(Λ′) = n · ‖x′‖2 as we have Λ′ = n ·x′ ·Z. Let Λtop be the lattice spanned
by the rows of Ytop ∈ Z(l−1)×l. By construction, Λ = Λ⊥top is the orthogonal
lattice of Λtop and we have det(Λ) ≤ det(Λtop) [32]. As the rows of Ytop are
linearly independent vectors over Z, Lem. 1 of Sec. 2.1 implies

det(Λtop) ≤
l−1∏
i=1

‖yi‖2 ≤ (
√
l · p)l−1

Again ‖x′‖ = det(Λ) ≤ (
√
l ·p)l−1 implies ηε(Λ

′) ≤
√
λ · s̃ ·pl ·(

√
l)l−1 as n ≤ p · s̃.

Thus, the distribution DΛ,σ,−v0 mod Λ′ is 2−λ-close to the uniform distribution

over Λ/Λ′ ' x′Zn if we set σ > s̃ ·
√
λ · pl · (

√
l)l−1. This ensures that v mod

n is within a distance less than 2−λ from the uniform distribution over x′ · Zn.
Moreover, the fact p < n directly implies that v mod p is statistically 2−λ-close
to the uniform distribution over x′ · Zp ' γ · x∗Zp ' x∗ · Zp as γ ∈ Z∗p.

Therefore, the challenge bit b is statistically hidden in Mb + a · t mod p and
it holds that |Pr[E2]− 1

2 | ≤ 2−λ. By combining all the probabilities one has

AdvPH−pNIPEA (λ) ≤ AdvDDH-f
B (λ, µ) + 2−λ

which is negligible in λ by our assumption.

5 Payload-hiding pNIPE based on HSM assumption

In this section, we describe two pNIPE schemes using a cyclic group with an
easy DL subgroup. These constructions are inspired by the HSM-based pIPFE
schemes of [14]. The first construction is for inner products over Z and is stateless
whereas the second scheme is for inner products over Zp and is stateful.

5.1 HSM based stateless pNIPE for Inner Products over Z

Here, we employ the GenGroup algorithms (Def. 2) with the output of Gen(1λ, 1µ)
as a tuple of the form (p, s̃, f, gp, G, F,G

p) where the generator g is ignored. We
need p to be a µ-bit prime with µ ≥ λ.

The domains related to this pNIPE are the same as they were in the DDH-f
based pNIPE of Sec. 4.1. The infinity norm-bounds X and Y for the attribute,
predicate vectors respectively should satisfy the condition X,Y < (p/l)1/2, so
that 〈x,y〉 < p for any x ∈ Q and y ∈ P.

Construction. The stateless pNIPE = (Setup,KeyGen,Enc,Dec) is described
below where the correctness follows from the DDH-f based pNIPE of Sec. 4.1.
– (MPK,MSK) ← pNIPE.Setup(1λ, 1µ, 1l): A trusted authority generates a

master public-key MPK and a master secret-key MSK using the steps be-
low.

– Generate (p, s̃, f, gp, G, F,G
p) ← Gen(1λ, 1µ), notations are consistent

with Def. 2
– Pick a vector v ←↩ DZl,σ where we set σ > p3/2· s̃·

√
λ (for the security

proof of Th. 5) and write v = (v1, . . . , vl)
– Compute hi = gvip for 1 ≤ i ≤ l
– Return the keys MSK = v and MPK = (p, s̃, f, gp, G, F,G

p, {hi}i∈[l])
– sky ← pNIPE.KeyGen(MPK,MSK,y): For a predicate vector y = (y1, . . . , yl)
∈ P, the authority returns the secret-key as sky = 〈v,y〉 which is computed
over Z.

– CTx ← pNIPE.Enc(MPK,x,M): A user encrypts his message M ∈ M with
an attribute vector x = (x1, . . . , xl) ∈ Q utilizing the following steps.

– Pick two random numbers r ←↩ DZ,σ′ , t←↩ Zp where σ′ > s̃·
√
λ (for the

security proof of Th. 5)
– Set an element of Gp as D = grp
– Compute ct = fMDt and cti = f txihri for i runs from 1 to l
– Return the ciphertext CTx = {D, ct, {cti}i∈[l]}

– ⊥ or ζ ← pNIPE.Dec(MPK, sky,CTx): A decrypter first computes %← 〈x,y〉.
If % = 0, then it returns ⊥; otherwise it applies the steps below.

– Parse CTx = {D, ct, {cti}i∈[l]}
– Compute Rt = (

∏l
i=1 ct

yi
i)/Dsky

– Run the algorithm Solve to get an element η ← Solve(param,Rt) of Zp
– Compute t← η · %−1 mod p and then ct′ ← ct/Dt

– Apply Solve to obtain ζ ← Solve(param, ct′) where ζ ∈ Zp
– Return the message as ζ

Theorem 5 Assuming the hardness of HSM problem in the group G, the above
pNIPE for inner products over Z provides adaptively payload-hiding security.
(The proof is available in SM-4)

5.2 HSM based stateful pNIPE for Inner Products over Zp

We present a stateful pNIPE for inner products over Zp which is similar to our
DDH-f based construction. As previously discussed, the authority requires to
maintain a state in the key generation of predicate vectors for security reasons.

Following the construction in Sec. 5.1, here also we take (p, s̃, f, gp, G, F,G
p)

as an output of Gen(1λ, 1µ) where p is a µ-bit prime such that µ ≥ λ. The
domains of this pNIPE are exactly the same as in the DDH-f-based pNIPE for
inner products over Zp (Sec. 4.2).

Construction. We describe the pNIPE = (Setup,KeyGen,Enc,Dec) where
pNIPE.Setup and pNIPE.Enc are exactly the same as in the construction of Sec.
5.1 except the parameter σ (used in the distribution DZl,σ) is now set greater

than s̃ ·
√
λ · pl · (

√
l)l−1 for the security to hold. The initial state st in the out-

put of pNIPE.Setup is considered to be empty for this scheme. The algorithms
pNIPE.KeyGen and pNIPE.Dec are working as follows:
– sky ← pNIPE.KeyGen(MPK,MSK, st,y): Let y be the j-th predicate vector

for which a secret-key will be derived through this algorithm. At any stage
the internal state st contains at most l tuples of the form (yi, skyi) where skyi
is the predicate secret-key corresponding to the predicate vector yi. W.l.o.g
we assume that j ≤ l and the state st contains j−1 predicate vectors {yi}j−1i=1 .
The secret-key sky is computed by utilizing the below steps.

– If y is linearly independent of all predicate vectors {yi}j−1i=1 modulo p
(present in the state) then
1. Set y = y mod p where y ∈ {0, 1, . . . , p− 1}l
2. Compute sy = 〈v,y〉 ∈ Z
3. Update the state st← (st, (y, sky = (y, sy)))

– If there exist integers k1, . . . , kj−1 such that y =
∑j−1
i=1 kiyi ∈ Zlp then

1. Set y =
∑j−1
i=1 kiyi ∈ Zl

2. Compute sy =
∑j−1
i=1 kisyi ∈ Z

– Return the secret-key as sky = (y, sy)
– ⊥ or ζ ← pNIPE.Dec(MPK, sky,CTx): A decrypter first sets %← 〈x,y〉 and

returns ⊥ If % ≡ 0 (mod p); otherwise it executes the following steps.
– Parse sky = (y = (y1, . . . , yl), sy) and CTx = {D, ct, {cti}i∈[l]}
– Compute Rt = (

∏l
i=1 ct

yi
i)/Dsy

– Run the algorithm Solve to get η ← Solve(param,Rt)
– Compute t← η · %−1 mod p and then ct′ ← ct/Dt

– Get an element ζ ← Solve(param, ct′) of Zp
– Return the message as ζ

Theorem 6 Assuming the hardness of HSM problem in the group G, the above
pNIPE for inner products over Zp provides adaptively payload-hiding security.
(The proof is available in SM-5)

6 Generic Construction of NIPE from IPFE

In this section, we give a generic construction of a NIPE from IPFE and prove
that the NIPE is attribute-hiding in public-key setting and full-hiding in private-
key setting.

6.1 Generic Transformation of pIPFE to Attribute-hiding pNIPE

We describe how to use the indistinguishability-based security of a pIPFE to
achieve the attribute-hiding security for a pNIPE through a generic construction.
Let us consider a stateful pIPFE = (Setup,Keygen,Enc,Dec) with a predicate
space P, an attribute space Q′ and an inner product space I. We construct a
stateful pNIPE = (Setup,Keygen,Enc,Dec) with the same predicate space P, the
attribute space Q, the inner product space I and a message space M such that
P,Q,Q′ ⊆ Il, M ⊂ I and for any x = (x1, . . . , xl) ∈ Q, M ∈ M it holds that
M · x ∈ Q′ where M · x = (Mx1, . . . ,Mxl). It is also required that the division
operation can be efficiently executed in I, that is for any product value α ·β ∈ I,
one can easily compute β if α is known.
Construction. Now, we formally describe our generic transformation below.

– (MPK,MSK, st)← pNIPE.Setup(1λ, 1l): A trusted authority computes (MPK,
MSK, st) ← pIPFE.Setup(1λ, 1l) and outputs MPK as the master public-key
and MSK, st as the master secret-key, state of the pNIPE respectively.

– sky ← pNIPE.KeyGen(MPK,MSK, st,y): A predicate holder gets the secret-
key sky corresponding to a predicate vector y ∈ P from the trusted authority
which computes sky as the output of pIPFE.KeyGen(MPK,MSK, st,y). The
authority updates the state st if required.

– CTx ← pNIPE.Enc(MPK,x,M): A user encrypts a message M ∈ M with
its attribute x ∈ Q by computing ctx ← pIPFE.Enc(MPK,x) and ctM ·x ←
pIPFE.Enc(MPK,M · x). It publishes the ciphertext as CTx = (ctx, ctM ·x).

– ⊥ or ζ ← pNIPE.Dec(MPK, sky,CTx): A decrypter who has a secret-key sky
and a ciphertext CTx = (ctx, ctM ·x), first sets η ← pIPFE.Dec(MPK, sky, ctx).
If η = 0, then it outputs ⊥; otherwise it computes η′ ← pIPFE.Dec(MPK, sky,
ctM ·x) and returns η′/η.

Correctness. Suppose y ∈ P and x ∈ Q be such that their inner prod-
uct is non-zero. Hence, by the correctness of IPFE we have η = 〈x,y〉 6= 0.
By the assumptions on domains of IPFE, M · x ∈ Q′ which ensures that

IPFE.Dec(MPK, sky, ctM ·x) returns M · 〈x,y〉 with overwhelming probability.
Therefore, η′ = M ·〈x,y〉 which implies η′/η = M . On the other hand, 〈x,y〉 = 0
implies η = 0, hence the decryption fails to recover M .

Theorem 7 Assuming the underlying pIPFE is indistinguishability-based secure
under chosen plaintext attacks, the above pNIPE provides adaptively attribute-
hiding security.

Proof. To prove this theorem, we consider the following games. We start with
Game 0 which is the standard security AH-pNIPE experiment (Def. 11) where
the challenger chooses the random bit as b = 0. Then we modify this game in
Game 1 and finally end up in Game 2 where the random bit (chosen by the
challenger) is changed to b = 1. We establish indistinguishability between these
games using the security of pIPFE. Let Ei denotes the event b = b′ in Game
i where b′ is the bit output by the adversary A in Guessing phase. Now, we
formally describe the games:

Game 0: This is the original security experiment as described in Def. 11.
The challenge attribute-message pairs are (x0,M0), (x1,M1) satisfying 〈x0,y〉 =
〈x1,y〉 = 0 if M0 6= M1 or 〈x0−x1,y〉 = 0 if M0 = M1, for all predicate vectors
y queried by the adversary A in Query phase 1 and Query phase 2. The chal-
lenger fixes b = 0 and sends the challenge ciphertext as CT(0,0)

x = (ctx0 , ctM0·x0)
where ctx0 ← IPFE.Enc(MPK,x0), ctM0·x0 ← IPFE.Enc(MPK,M0 · x0). There-

fore, Game 0 is identical to ExptAH-pNIPE
A (1λ, 0).

Game 1: In this game the first component ctx0
of challenge ciphertext is

replaced by ctx1
← pIPFE.Enc(MPK,x1). Therefore, the challenge ciphertext

becomes CT(1,0)
x = (ctx1

, ctM0·x0
). Let K be a set of all such y ∈ P for which A

asked sky from the challenger in query phase. Since A is an admissible adversary,
〈x0,y〉 = 〈x1,y〉 holds for all y ∈ K. Therefore, the distinguishing advantage
of A between Game 0 and Game 1 is exactly the same as that in distinguishing
between the experiments ExptIND-pIPFE

B (1λ, 0) and ExptIND-pIPFE
B (1λ, 0) (Def. 6), B

is an adversary appointed for the IPFE security experiment. This ensures that
|Pr[E0]− Pr[E1]| = AdvIND-pIPFE

B (λ).

Game 2: This game is the same as Game 1 except the second component ctM0x0

of the challenge ciphertext is now computed as ctM1·x1
← pIPFE.Enc(MPK,M1 ·

x1). Suppose, A has a non-negligible advantage in distinguishing between Game
1 and Game 2. We construct an adversary B against the indistinguishability
based security of the underlying pIPFE scheme as follows:
1. Setup: The pIPFE challenger gets (MPK,MSK, st) ← pIPFE.Setup(1λ, 1l)

and gives MPK to B. Then B passes MPK as the pNIPE master public-key
to A.

2. Query phase 1: The adversary Amakes secret-key queries for any arbitrary
predicate vectors y ∈ P which B forwards to the pIPFE challenger and the
challenger returns sky ← pIPFE.KeyGen(MPK,MSK, st,y). Then, B sends
sky to A.

3. Challenge phase: The adversary A adaptively outputs attribute-message
pairs (x0,M0), (x1,M1). Then, B sets X0 = M0 · x0, X1 = M1 · x1 and

sends (X0,X1) to its challenger. We note that X0,X1 ∈ Q′ by construc-
tion and hence are eligible for challenge attributes. The challenger picks a
random bit b and returns ctXb

← pIPFE.Enc(MPK,Xb) to B. Next, B com-

putes ctx1
← pIPFE.Enc(MPK,x1) and sends CT(1,b)

x = (ctx1
, ctXb

) as the
challenge ciphertext to A.

4. Query phase 2: This is the same as Query phase 1.
5. Guessing phase: Finally, A outputs a bit b′ which B returns.

Since A is a legitimate adversary, it holds that 〈x0,y〉 = 〈x1,y〉 = 0 if M0 6= M1,
otherwise 〈x0 − x1,y〉 = 0 for all predicate vectors y queried by A. Thus, one
can observe that

M0〈x0,y〉 =

{
M1〈x0,y〉 = M1〈x1,y〉 if M0 = M1

M0 · 0 = M1 · 0 = M1〈x1,y〉 if M0 6= M1

Therefore, 〈X0,y〉 = M0 · 〈x0,y〉 = M1 · 〈x1,y〉 = 〈X1,y〉 for all y queried by B
to its challenger. If the pIPFE challenger chooses the bit b = 0, then the challenge
ciphertext becomes CT(1,0)

x = (ctx1
, ctM0·x0

) and B simulates Game 1. If the bit

b = 1, then the challenge ciphertext is computed as CT(1,1)
x = (ctx1

, ctM1·x1
) and

B simulates Game 2. Thus, the advantage of A in distinguishing between Game
1 and Game 2 is exactly same for B in the IND-pIPFE game described above and
we conclude that |Pr[E1]− Pr[E2]| = AdvIND-pIPFE

B (λ).
It can be observed that Game 2 is the original AH-pNIPE experiment where

the challenge bit is chosen as 1. By triangular inequality we have AdvAH-pNIPE
A (λ) ≤

2 · AdvIND-pIPFE
B (λ) which is negligible in λ by our assumption.

Instantiations for pNIPE Here we utilize the existing indistinguishability-
based secure pIPFE schemes of [2,14] in the above generic construction and
fabricate adaptively secure pNIPE under desirable assumptions like the DDH,
DDH-f,HSM, LWE and DCR. In fact, these pNIPEs would be the first of their
kind to provide adaptive security with attribute hiding feature. Since the idea of
our generic transformation is similar to that of [25], some of our instantiations
are also analogous to their adaptively secure pNIPE schemes. However, pNIPEs
of [25] are not attribute-hiding. We need to restrict the size of message space to
logarithmic when the space of inner products is of polynomial size.

DDH based construction. Agrawal et al. [2] proposed a DDH-based stateless
pIPFE with the inner products lying in Zq where q is a prime number indicat-
ing order of the underlying cyclic group G. It is required to bound 〈x,y〉 into
polynomial range so that one can efficiently compute logg(g

〈x,y〉) at the end of
the decryption. To apply the pIPFE of [2] in our generic construction, we ignore
the step of computing discrete logarithm, i.e. the output of pIPFE-decryption is
g〈x,y〉. The domains of our pNIPE are taken as P = Q = Q′ = Zlq, I = Zq and
a polynomial size message space M ⊂ Zq. We cannot ensure that the product
M · 〈x,y〉 always lies in a polynomially range for any M ∈ M, x ∈ Q and
y ∈ P, hence one may not be able to perform a discrete logarithm on gM ·〈x,y〉

in polynomial time. On receiving a ciphertext CTx = (ctx, ctM ·x), the decrypter

outputs a message M ∈ M such that ηM = η′ over Zq where η = g〈x,y〉 ←
pIPFE.Dec(MPK, sky, ctx) and η′ = gM ·〈x,y〉 ← pIPFE.Dec(MPK, sky, ctM ·x).

Now, we compare the efficiency of our DDH-based pNIPE in Sec. 3 with our
generic construction instantiated with [2] as described above. To encrypt a short
message M ∈ Zq, the former technique computes only (l + 3) elements of G
whereas the latter needs (2l+ 4) elements. Also, by construction, the decryption
requires less computation in the first method (roughly, the time is doubled in the
second method). Therefore, in terms of computational efficiency, the first method
is more preferable. However, it only provides adaptively payload-hiding security
in contrast to the second method which exhibits an adaptively attribute-hiding
pNIPE. Both of these methods can encrypt a polynomial size small message and
in order to deal with long messages, one can either break the message into smaller
parts and then apply encryption for each of these parts or one can use a key en-
capsulation mechanism (KEM). In KEM, a small key K ∈ Zq is encrypted using
the pNIPE and then use a suitable symmetric-key encryption (SKE) technique
to encrypt the long message M using K. Accordingly, the decryption procedure
first computes the key K using pNIPE.Dec and then use it to obtain M by run-
ning decryption of the SKE system.

DDH-f based constructions. Castagnos et al. [14] gave two indistinguishability-
based secure pIPFE schemes using a DDH group G with an easy DL subgroup F
(Def. 2), secure under the DDH-f assumption. One of their constructions is state-
less pIPFE with inner products over Z and the other is stateful pIPFE with inner
products over Zp. Instantiating our generic construction in Sec. 6.1 with these
pIPFEs of [14], we obtain two adaptively attribute-hiding pNIPE schemes under
the DDH-f assumption. The domains for the stateless pNIPE over Z can be taken
as I = Z, P = Q′ = {y ∈ Zl : ‖y‖∞ < (p/2l)1/2}, M = {M ∈ Z : |M | < B},
Q = {x ∈ Zl : ‖x‖∞ < (p/2lB2)1/2} where the prime p is the order of the cyclic
group F and B is a polynomially bounded (sufficiently small) integer. For the
second stateful pNIPE over Zp, the domains are I = Zp, P = Q = Q′ = Zlp
and M = Zp. We note that the randomness t can be chosen from a sufficiently
small interval to ensure the correctness of the scheme. These establish the first
attribute-hiding pNIPE schemes that are secure under an assumption weaker
than the DDH assumption.

To compare our DDH-f based pNIPEs in Sec. 4 with the above pNIPEs built
through a generic transformation from pIPFEs of [14], we note that encryption
of our first technique requires (l+ 3) elements of G whereas our second method
needs (2l + 4) elements. Also, the decryption time in the second approach is
roughly doubled that of in the first method. Therefore, the former construc-
tions are more efficient than the latter schemes. However, we emphasize that for
the adaptively attribute-hiding security one has to consider the latter pNIPE
schemes as the former pNIPEs provide only adaptively payload-hiding security.

HSM based constructions. We use the HSM based pIPFE schemes of [14]
in our generic transformation to achieve two adaptively attribute-hiding pNIPE
schemes under the same assumption: one is stateless with inner products over Z

and the other is stateful with inner products over Zp. The domains associated
with these pNIPEs are exactly the same as in the above DDH-f based construc-
tions. The HSM based pNIPEs in Sec. 5 provide better efficiency than the above
conversion as a ciphertext contains (l + 2) elements of G in the former method
whereas it is (2l + 2) in the latter technique. However, in terms of security the
former pNIPEs are only adaptively payload-hiding secure and the latter schemes
are adaptively attribute-hiding secure. One can observe that the ciphertext of
our HSM based pNIPEs (from Sec. 5 and this section) require less elements of
G than our DDH-f based pNIPEs (from Sec. 4 and this section respectively).
Therefore, our HSM based pNIPEs run computationally faster than our DDH-f
based pNIPEs, although the DDH-f is weaker than the HSM assumption.

We describe LWE and DCR based AH-pNIPEs in SM-6 due to the page limit.

6.2 Generic Transformation of sIPFE to Full-hiding sNIPE

Public-key NIPE allows anyone to encrypt a message with an arbitrarily chosen
attribute x. Knowing a secret-key sky one can easily disclose the predicate vector
y by setting x suitably and computing the inner product of x and y using
ciphertexts corresponding to the attributes. Thus, the full-hiding security may
not be feasible for public-key NIPEs. We consider our generic construction of
Sec. 6.1 in private-key setting where encryption and key generation are both
executed by the central authority in the presence of master secret-key MSK.
Instead of a master public-key MPK, we use a public parameter pp which is
available to all the users. The domains of the sIPFE and sNIPE satisfy the same
conditions described in Sec. 6.1.

Theorem 8 Assuming the underlying sIPFE is full-hiding, our construction of
the sNIPE provides full-hiding security. (The proof is available in SM-7)

Instantiations for sNIPE We use existing sIPFE schemes [38,28] in our
generic construction to achieve full-hiding sNIPE (FH-sNIPE). Almost all full-
hiding sIPFE (FH-sIPFE) constructions are proven secure under the SXDH and
DLIN assumptions (in a pairing group). We utilize DLIN based scheme of [38]
and SXDH based scheme of [28] as these are more efficient among the existing
sIPFEs in terms of ciphertext and secret-key sizes. In [38], Tomida et al. provided
FH-sIPFE with a secret-key or ciphertext size of (2l+5) group elements whereas
the master secret-key size was (4l2 + 18l + 20). The master secret-key size was
O(l2) in all previous constructions, until Kim et al. [28] achieved a FH-sIPFE
where the master secret-key contains only (6l + 4) field elements (integers) and
each of secret-key or ciphertext requires (2l + 8) group elements. We note that
l denotes the dimension of the attribute or predicate space. The FH-sNIPEs
constructed below is restricted with a logarithmic size message space as the un-
derlying sIPFE computes inner products in a polynomially bounded range.

DLIN based construction. Tomida et al. [38] built a DLIN based FH-sIPFE uti-
lizing dual pairing vector spaces (introduced by Lewko et al. [29]). Their scheme
can be used in any type of pairing group of prime order q. The inner products
belong to a polynomially bounded subset of Zq and the attribute or predicate

space is Zlq. At the end of decryption algorithm of sIPFE a discrete logarithm is

performed on g
〈x,y〉
T in the target group GT to recover the inner product. But,

this step is not required for the application to our generic construction. So, we

slightly modify the sIPFE to output only g
〈x,y〉
T while decryption. The domains

associated to our sNIPE are P = Q = Q′ = Zlq, I = Zq with a polynomial size
message space M ⊂ Zq. On receiving a ciphertext CTx = (ctx, ctM ·x) corre-
sponding to a message M ∈ M, a predicate y ∈ Zlq, an attribute x ∈ Zlq, the

decryption of our sNIPE first computes η = g
〈x,y〉
T ← sIPFE.Dec(pp, sky, ctx) and

recovers the message M by checking the equality ηM = η′ (over Zq) for M ∈M
where η′ = g

M ·〈x,y〉
T ← sIPFE.Dec(pp, sky, ctM ·x). This results in a DLIN based

FH-sNIPE where secret-keys and ciphertexts consist of (2l + 5) and (4l + 10)
group elements respectively.

SXDH based construction. Kim et al. [28] defined a new approach (avoiding
DPVS) to provide a FH-sIPFE under the SXDH assumption in an asymmetric
bilinear pairing group of prime order q. Their scheme computes inner products
over Zq and the predicate or attribute vectors are in Zlq. A discrete logarithm

of g
〈x,y〉
T is determined at the final step of the decryption. We ignore this step

of the decryption so that it outputs g
〈x,y〉
T . Employing this sIPFE we achieve a

FH-sNIPE based on SXDH assumption via our generic transformation where the
domains are taken as P = Q = Q′ = Zlq, I = Zq with a polynomial size message
space M ⊂ Zq. We follow similar approach for the decryption of our sNIPE as
in the above construction. Consequently, if 〈x,y〉 6= 0 mod q then the decryp-
tion requires to search in the set M to find a message M satisfying ηM = η′ in
Zq. The secret-keys and ciphertexts of the resulting sNIPE contain (2l+ 8) and
(4l+ 16) group elements respectively. We note that the master secret-key of this
sNIPE has O(l) elements whereas it is O(l2) in the previous construction.

References

1. L. M. Adleman. The function field sieve. In International Algorithmic Number
Theory Symposium, pages 108–121. Springer, 1994.

2. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner
products, from standard assumptions. In Annual International Cryptology Con-
ference, pages 333–362. Springer, 2016.

3. M. Ambrona, G. Barthe, and B. Schmidt. Generic transformations of predicate
encodings: Constructions and applications. In Annual International Cryptology
Conference, pages 36–66. Springer, 2017.

4. N. Attrapadung and B. Libert. Functional encryption for inner product: Achieving
constant-size ciphertexts with adaptive security or support for negation. In Inter-
national Workshop on Public Key Cryptography, pages 384–402. Springer, 2010.

5. N. Attrapadung, B. Libert, and E. De Panafieu. Expressive key-policy attribute-
based encryption with constant-size ciphertexts. In International Workshop on
Public Key Cryptography, pages 90–108. Springer, 2011.

6. J.-F. Biasse, M. J. Jacobson, and A. K. Silvester. Security estimates for quadratic
field based cryptosystems. In Australasian Conference on Information Security
and Privacy, pages 233–247. Springer, 2010.

7. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In International conference on the theory and applications
of cryptographic techniques, pages 506–522. Springer, 2004.

8. D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In
Annual international cryptology conference, pages 213–229. Springer, 2001.

9. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikun-
tanathan, and D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit abe and compact garbled circuits. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 533–556. Springer,
2014.

10. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In Theory of Cryptography Conference, pages 253–273. Springer, 2011.

11. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In Theory of Cryptography Conference, pages 535–554. Springer, 2007.

12. G. Castagnos and F. Laguillaumie. On the security of cryptosystems with quadratic
decryption: the nicest cryptanalysis. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 260–277. Springer,
2009.

13. G. Castagnos and F. Laguillaumie. Linearly homomorphic encryption from DDH.
In Cryptographers Track at the RSA Conference, pages 487–505. Springer, 2015.

14. G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted
inner product functional encryption modulo p. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 733–764.
Springer, 2018.

15. J. Chen, B. Libert, and S. C. Ramanna. Non-zero inner product encryption with
short ciphertexts and private keys. In International Conference on Security and
Cryptography for Networks, pages 23–41. Springer, 2016.

16. J. Chen and H. Wee. Doubly spatial encryption from dbdh. Theoretical Computer
Science, 543:79–89, 2014.

17. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In International Conference on
the Theory and Applications of Cryptographic Techniques, pages 45–64. Springer,
2002.

18. A. Fiat and M. Naor. Broadcast encryption. In Annual International Cryptology
Conference, pages 480–491. Springer, 1993.

19. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016.

20. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the fortieth annual ACM symposium
on Theory of computing, pages 197–206. ACM, 2008.

21. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with
bounded collusions via multi-party computation. In Annual Cryptology Confer-
ence, pages 162–179. Springer, 2012.

22. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. Journal of the ACM (JACM), 62(6):45, 2015.

23. S. Gorbunov and D. Vinayagamurthy. Riding on asymmetry: Efficient abe for
branching programs. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 550–574. Springer, 2015.

24. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 89–98. Acm, 2006.

25. S. Katsumata and S. Yamada. Non-zero inner product encryption schemes from
various assumptions: Lwe, ddh and dcr. PKC, 2019.

26. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In annual international conference on
the theory and applications of cryptographic techniques, pages 146–162. Springer,
2008.

27. Y. Kawai and K. Takashima. Fully-anonymous functional proxy-re-encryption.
Cryptology ePrint Archive, Report 2013/318, 2013. https://eprint.iacr.org/

2013/318.
28. S. Kim, J. Kim, and J. H. Seo. A new approach to practical function-private inner

product encryption. Theoretical Computer Science, 2019.
29. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure

functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 62–91. Springer, 2010.

30. A. Lewko, A. Sahai, and B. Waters. Revocation systems with very small private
keys. In 2010 IEEE Symposium on Security and Privacy, pages 273–285. IEEE,
2010.

31. D. Micciancio and O. Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM Journal on Computing, 37(1):267–302, 2007.

32. P. Nguyen and J. Stern. Merkle-hellman revisited: a cryptanalysis of the qu-
vanstone cryptosystem based on group factorizations. In Annual International
Cryptology Conference, pages 198–212. Springer, 1997.

33. T. Okamoto and K. Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In Annual cryptology conference,
pages 191–208. Springer, 2010.

34. T. Okamoto and K. Takashima. Achieving short ciphertexts or short secret-keys
for adaptively secure general inner-product encryption. Designs, Codes and Cryp-
tography, 77(2-3):725–771, 2015.

35. A. Sahai and B. Waters. Fuzzy identity-based encryption. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
457–473. Springer, 2005.

36. A. Shamir. Identity-based cryptosystems and signature schemes. In Workshop
on the theory and application of cryptographic techniques, pages 47–53. Springer,
1984.

37. E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In Theory
of Cryptography Conference, pages 457–473. Springer, 2009.

38. J. Tomida, M. Abe, and T. Okamoto. Efficient functional encryption for inner-
product values with full-hiding security. In International Conference on Informa-
tion Security, pages 408–425. Springer, 2016.

39. S. Yamada, N. Attrapadung, G. Hanaoka, and N. Kunihiro. A framework and com-
pact constructions for non-monotonic attribute-based encryption. In International
Workshop on Public Key Cryptography, pages 275–292. Springer, 2014.

https://eprint.iacr.org/2013/318
https://eprint.iacr.org/2013/318

Supplementary Material

SM-1 History of NIPE

The journey of pNIPE began with its introduction in [26] by Katz et al., although the
first concrete pNIPE construction came into light in [4] by Attrapadung and Libert.
In [4], two co-selectively secure PH-pNIPE schemes were proposed: one is secure un-
der the q-Decision Multi-Exponent Bilinear Diffie-Hellman (q-DMEBDH) assumption
whereas the other is secure under the Decision Linear (DLIN) assumption and De-
cision Bilinear Diffie-Hellman (DBDH) assumption. Additionally, these pNIPEs yield
identity-based revocation (IBR) systems [30] with O(1)-size ciphertext. Even though the
size of ciphertexts is constant and independent of the dimension of attribute or pred-
icate space (as long as the attribute vector is not considered as a part of ciphertext),
the security model of their NIPE is based on the unrealistic co-selective model. Soon
after, Okamoto and Takashima proposed adaptively secure pNIPEs that are weakly
attribute-hiding [33] and payload-hiding [34] under the DLIN assumption. They uti-
lize the dual-pairing vector space (DPVS) technique of [29] to obtain constant-size
ciphertexts or constant-size secret-keys for the pNIPE [34]. Consequently, this implies
an IBR with constant-size ciphertexts or constant-size secret-keys that is adaptively
secure in standard model. In [16], a pNIPE was established via doubly-spatial encryp-
tion technique which is selectively secure under the DBDH alone. More efficient pNIPE
realizations (through non-monotonic ABE) were provided in [5,39] that are selectively
secure under the n-Decision Bilinear Diffie-Hellman Exponent (n-DBDHE) assumption
where n denotes the dimension of vectors used in the system. The first pNIPE simul-
taneously achieving O(1)-size ciphertexts and O(1)-size secret-keys was proposed in
[15]. The pNIPE is selectively secure under the n-DBDHE. The second pNIPE of [15]
with constant size secret-key is selectively secure under non-interactive and falsifiable
assumptions in composite order groups. Both these pNIPEs require O(n) exponentia-
tions in a bilinear group along with pairing computations which make it inefficient for
practical implementations. The main building block of all these constructions is bilinear
maps and the systems are proven secure under certain number theoretic assumptions
in a pairing group.

Therefore, constructing pNIPE under standard assumption without pairing was
still open, until Katsumata and Yamada [25] came up with a direct approach to build
pNIPE (over Z and Zp) that is selectively secure under standard LWE assumption. They
also gave a generic construction of NIPE from existing IPFEs. Utilizing the public-key
IPFEs (pIPFE) of [2], this yields adaptively secure pNIPEs under various assumptions
such as DDH, LWE and decision composite reciprocity (DCR).

SM-2 Useful Definitions

SM-2.1 Inner Product Functional Encryption

The functional encryption scheme which deals with a particular type of functions that
takes input two vectors and produces inner product of the vectors is called inner product
functional encryption (IPFE).

Definition 5 (Stateful public-key inner product functional encryption) A st-

ateful public-key inner product functional encryption (pIPFE) scheme for a predi-
cate space P, an attribute space Q and an inner product space I consists of four PPT
algorithms pIPFE = (Setup,Keygen,Enc,Dec) satisfying the following requirement:

– (MPK,MSK, st) ← pIPFE.Setup(1λ, 1l): A trusted authority runs the setup algo-
rithm taking inputs a security parameter λ, a vector length parameter l (a natural
number that is a polynomial in λ) and outputs a master public-key MPK, a master
secret-key MSK and an initial state st. The authority publishes MPK and keeps
MSK, st as secret.

– sky ← pIPFE.KeyGen(MPK,MSK, st,y): A predicate holder submits a vector y ∈ P
to an authority that runs the key generation algorithm providing inputs as a master
public-key MPK, a master secret-key MSK, a vector y and outputs a secret key
sky corresponding to the predicate vector y and update the state st if required.
The predicate holder gets its secret key sky from the authority through a secure
channel.

– ctx ← pIPFE.Enc(MPK,x): An encrypter runs the encryption algorithm that takes
as input a master public-key MPK, an attribute vector x ∈ Q and publishes the
ciphertext ctx corresponding to the attribute x.

– ⊥ or ζ ← pIPFE.Dec(MPK, sky, ctx): A decrypter runs the decryption algorithm
taking as input a master public-key MPK, a secret-key sky, a ciphertext ctx and
outputs either a message ζ ∈ I or a symbol ⊥ indicating failure.

Correctness: For any security parameter λ, l(λ) ∈ N, y ∈ P, x ∈ Q, (MPK,MSK, st)←
pIPFE.Setup(1λ, 1l), sky ← pIPFE.KeyGen(MPK,MSK, st,y) we have

Pr
[
〈x,y〉 = pIPFE.Dec(MPK, sky, pIPFE.Enc(MPK,x))

]
= 1− negl(λ)

Definition 6 (Indistinguishability-based security for pIPFE) An inner product
functional encryption scheme pIPFE = (Setup,Keygen,Enc,Dec) for a predicate space
P, an attribute space Q and an inner product space I is said to be adaptively se-
cure under chosen-plaintext attacks (IND-pIPFE) if, for any PPT adversary A, for any
λ ∈ N, the advantage

AdvIND-pIPFE
A (λ) =

∣∣∣∣Pr[ExptIND-pIPFE
A (1λ, 0) = 1]− Pr[ExptIND-pIPFE

A (1λ, 1) = 1]

∣∣∣∣
is negligible in λ where ExptIND-pIPFE

A (1λ, b) is defined as follows:
1. Setup phase: The challenger generates (MPK,MSK, st) ← pIPFESetup(1λ, 1l),

keeps MSK, st as secret and sends MPK to A.
2. Query phase 1: The adversary makes secret-key queries corresponding to predi-

cate vectors y ∈ P. For each y, the challenger computes sky ← pIPFEKeyGen(MPK,
MSK, st,y) and returns the secret-key sky to A.

3. Challenge phase: The adversary submits two distinct attribute vectors x0,x1 ∈
Q with the restriction that 〈x0,y〉 = 〈x1,y〉 holds for all predicate vectors y
queried in step 2. The challenger then picks a random bit b and computes ctxb ←
pIPFEEnc(MPK,xb) which is sent as a challenge ciphertext to A.

4. Query phase 2: The adversary may want to repeat Query phase 1 for arbitrary
predicate vectors y ∈ P with the same constraint that 〈x0,y〉 = 〈x1,y〉 for all y.

5. Guessing phase: Finally, the adversary A outputs a guess bit b′ which is the
output of the experiment.

Remark 1 One can similarly define a stateless pIPFE scheme where the key gener-
ation algorithm is independent of state st. We note that most of the existing pIPFE

schemes over Zp are stateful [2,14]. Inner product functional encryption can be defined
in private-key setting where encryption of an attribute is done using the master secret-
key. The syntax is almost same as described in definition 2 except the master public-key
is replaced by a public parameter pp and the encrypter uses the master secret-key MSK
along with pp to produce ciphertext for an attribute.

Definition 7 (Stateless private-key inner product functional encryption) A
stateless private-key inner product functional encryption (sIPFE) scheme for a pred-
icate space P, an attribute space Q and an inner product space I consists of PPT
algorithms sIPFE = (Setup,Keygen,Enc,Dec) described below:

– (pp,MSK) ← sIPFE.Setup(1λ, 1l): A trusted authority runs the setup algorithm
which takes as input a security parameter λ, a vector length parameter l (a natural
number that is a polynomial in λ) and outputs a public parameter pp and a master
secret-key MSK. The authority publishes pp and keeps MSK as secret.

– sky ← sIPFE.KeyGen(pp,MSK,y): A predicate holder submits a vector y ∈ P to
an authority that runs the key generation algorithm providing inputs as a public
parameter pp, a master secret-key MSK, a vector y and output a secret key sky
corresponding to the predicate vector y. The predicate holder gets its secret key
sky from the authority through a secure channel.

– ctx ← sIPFE.Enc(pp,MSK,x): An encrypter runs the encryption algorithm that
takes as input a public parameter pp, an attribute vector x ∈ Q and publishes the
ciphertext ctx corresponding to the attribute x.

– ⊥ or ζ ← sIPFE.Dec(pp, sky, ctx): A decrypter runs the decryption algorithm takes
as input a public parameter pp, a secret-key sky, a ciphertext ctx and outputs
either a message ζ ∈ I or a symbol ⊥.

Correctness: For any security parameter λ, l(λ) ∈ N, y ∈ P, x ∈ Q, (pp,MSK) ←
sIPFE.Setup
(1λ, 1l), sky ← sIPFE.KeyGen(pp,MSK,y) we have

Pr
[
〈x,y〉 = sIPFE.Dec(pp, sky, sIPFE.Enc(pp,MSK,x))

]
= 1− negl(λ)

Remark 2 One can similarly define indistinguishability-based security for the IPFE
in private-key setting (IND-sIPFE) where the only requirement is that the challenge
ciphertext information theoretically hides the attributes. However, in many real-world
applications it may happen that a decrypter only gets sky from a predicate holder
instead of (y, sky) and the predicate holder wants the decrypter to learn only 〈x,y〉
as the predicate y may contain some sensitive information. So, the IND-sIPFE security
model cannot fulfil such requirement of the predicate holder. The predicate hiding
feature of an sIPFE was proposed by [37] and the notion is termed as full-hiding
security. We adopt the definition of full-hiding security from [38].

Definition 8 (Full-hiding security for sIPFE) A private-key IPFE scheme is said
to satisfy full-hiding security (FH-sIPFE) if, for any PPT adversary A, for any λ ∈ N
the advantage

AdvFH-sIPFE
A (λ) =

∣∣∣∣Pr[ExptFH-sIPFEA (1λ, 0) = 1]− Pr[ExptFH-sIPFEA (1λ, 1) = 1]

∣∣∣∣
is negligible in λ where ExptFH-sIPFE

A (1λ, b) is defined as follows:
1. Setup phase: The challenger computes (pp,MSK) ← sIPFE.Setup(1λ, 1l), sends

pp to A and keeps MSK as secret. It also chooses a random bit b.

2. Query phase: The adversary A may adaptively make polynomial number of
queries that are of two types:

– Secret-key query: For the j-th key query, A submits a pair of predicate vec-
tors (y

(j)
0 ,y

(j)
1) and the challenger responses with sk

y
(j)
b

← sIPFE.KeyGen(pp,

MSK,y
(j)
b).

– Ciphertext query: For the ι-th ciphertext query, A transmits pair of at-
tribute vectors (x

(ι)
0 ,x

(ι)
1) to which the challenger responses with ct

x
(ι)
b

←

sIPFE.Enc(pp,MSK,x
(ι)
b).

The queries made by A should satisfy 〈x(j)
0 ,y

(ι)
0 〉 = 〈x(j)

1 ,y
(ι)
1 〉 for all j and ι.

3. Guessing phase: Finally, the adversary A outputs a guess bit b′ which is the
output of the experiment.

SM-2.2 Non-zero Inner Product Encryption

Non-zero inner product encryption (NIPE) is another type of functional encryption
that encrypts a message M with an attribute x. The ciphertext is decrypted to the
message using a secret-key sky corresponding to a predicate y if the inner product of
x and y is non-zero.

Definition 9 (Stateful public-key non-zero inner product encryption) A st-
ateful public-key non-zero inner product functional encryption(pNIPE) scheme for a
predicate space P, an attribute space Q, an inner product space I and a message
spaceM consists of four PPT algorithms pNIPE = (Setup,Keygen,Enc,Dec) operating
as follows:

– (MPK,MSK, st) ← pNIPE.Setup(1λ, 1l): A trusted authority runs the setup algo-
rithm which takes as input a security parameter λ, a vector length parameter l (a
natural number that is a polynomial in λ) and outputs a master public-key MPK,
a master secret-key MSK and an initial state st. The authority makes MPK public
and keeps MSK, st as secret.

– sky ← pNIPE.KeyGen(MPK,MSK, st,y): A predicate holder submits a vector y ∈ P
to an authority that runs the key generation algorithm providing inputs as a master
public-key MPK, a master secret-key MSK, a vector y and outputs a secret key
sky corresponding to the predicate vector y and update the state st if required.
The predicate holder gets its secret key sky from the authority through a secure
channel.

– CTx ← pNIPE.Enc(MPK,x,M): An encrypter runs the encryption algorithm that
takes as input a master public-key MPK, an attribute vector x ∈ Q, a message
M ∈M and publishes the ciphertext CTx corresponding to the attribute x.

– ⊥ or ζ ← pNIPE.Dec(MPK, sky,CTx): A user runs the decryption algorithm that
takes as input a master public-key MPK, a secret-key sky, a ciphertext CTx, and
outputs either a message ζ ∈M or a symbol ⊥.

Correctness: For any security parameter λ, l(λ) ∈ N, y ∈ P, x ∈ Q, (MPK,MSK, st)←
pNIPE.Setup(1λ, 1l), sky ← pNIPE.KeyGen(MPK,MSK, st,y) we have:

1. Pr
[
M = pNIPE.Dec(MPK, sky, pNIPE.Enc(MPK,x,M)) : 〈x,y〉 6= 0

]
= 1− negl(λ)

2. Pr
[
⊥= pNIPE.Dec(MPK, sky, pNIPE.Enc(MPK,x,M)) : 〈x,y〉 = 0

]
= 1− negl(λ)

We define two adaptive security models for the pNIPE adopted from [34]. The first
one establishes the indistinguishability of the encrypted messages under a challenge
attribute (payload-hiding) and the second model describes the indistinguishability of
the encrypted messages with different attributes (attribute-hiding) from the adversary’s
point of view.

Definition 10 (Adaptively payload-hiding security for pNIPE) A stateful non-
zero inner product encryption scheme pNIPE = (Setup,Keygen,Enc,Dec) for a pred-
icate space P, an attribute space Q, an inner product space I and a message space
M is said to follow adaptively payload-hiding security under chosen-plaintext attacks
(PH-pNIPE) if, for any PPT adversary A, for any λ ∈ N, the advantage

AdvPH-pNIPE
A (λ) =

∣∣∣∣Pr[ExptPH-pNIPE
A (1λ, 0) = 1]− Pr[ExptPH-pNIPE

A (1λ, 1) = 1]

∣∣∣∣
is negligible in λ, where ExptPH-pNIPE

A (1λ, b) is defined as follows:
1. Setup phase: The challenger generates (MPK,MSK, st) ← pNIPE.Setup(1λ, 1l),

makes MSK, st as secret and sends MPK to A.
2. Query phase 1: The adversary asks secret-key queries corresponding to predicate

vectors y ∈ P. For each y, the challenger returns sky ← pNIPE.KeyGen(MPK,MSK,
st,y) to A.

3. Challenge phase: The adversary submits two distinct messages M0,M1 ∈ M
and a challenge attribute vectors x∗ ∈ Q with the restriction that 〈x∗,y〉 = 0 in

I for all predicate vectors y queried in step 2. The challenger computes CT
(b)
x∗ ←

pNIPE.Enc(MPK,x∗,Mb) for a random bit b. The adversary receives CT
(b)
x∗ as a

challenge ciphertext.
4. Query phase 2: The adversary can further query (as in Query phase 1) for

secret-keys sky corresponding to any arbitrary predicate vector y ∈ P with the
same constraint that 〈x∗,y〉 = 0 in I.

5. Guessing phase: Finally, the adversary A outputs a guess bit b′ which is the
output of the experiment.

Definition 11 (Adaptively attribute-hiding security for pNIPE) A stateful
non-zero inner product encryption scheme pNIPE = (Setup,Keygen,Enc,Dec) for a
predicate space P, an attribute space Q, an inner product space I and a message
space M is said to follow adaptively attribute-hiding security under chosen-plaintext
attacks (AH-pNIPE) if, for any PPT adversary A, for any λ ∈ N, the advantage

AdvAH-pNIPE
A (λ) =

∣∣∣∣Pr[ExptAH-pNIPE
A (1λ, 0) = 1]− Pr[ExptAH-pNIPE

A (1λ, 1) = 1]

∣∣∣∣
is negligible in λ where ExptAH-pNIPE

A (1λ, b) is the same experiment as in Def. 10 with
the only difference in the Challenge phase and Query Phase 2 as stated below:

– Challenge phase: The adversary submits two attribute-message pairs (x0,M0),
(x1,M1) ∈ Q ×M with the restriction that 〈x0,y〉 = 〈x1,y〉 = 0 if M0 6= M1 or
〈x0 − x1,y〉 = 0 if M0 = M1, for all predicate vectors y queried in Query phase
1. The challenger computes CTb ← pNIPE.Enc(MPK,xb,Mb) for a random bit b
and returns CTb to A as a challenge ciphertext.

– Query phase 2: The adversary may repeat Query phase 1 for secret-keys sky
corresponding to any arbitrary predicate vectors y that should satisfy the same
constraint stated in the Challenge phase above.

As in the case of IPFE, we define full-hiding security model for NIPEs in private-
key setting. A message is now encrypted using the master secret key and the master
public-key is treated as a public parameter. Full-hiding security implies that knowing
sky, CTx one can only infer 〈x,y〉 and recover the message if the inner product is
non-zero. Specifically, no sensitive information about the predicate y and attribute x
(other than 〈x,y〉) can be derived from the predicate secret-key and ciphertext.

Definition 12 (Stateless private-key non-zero inner product encryption)
A stateless private-key non-zero inner product encryption (sNIPE) for a predicate
space P, an attribute space Q and an inner product space I consists of four proba-
bilistic polynomial time (PPT) algorithms sNIPE = (Setup,Keygen,Enc,Dec) described
below:

– (pp,MSK) ← sNIPE.Setup(1λ, 1l): A trusted authority runs the setup algorithm
which takes as input a security parameter λ, a vector length parameter l (a natural
number that is a polynomial in λ) and outputs a public parameter pp and a master
secret-key MSK. The authority publishes pp and keeps MSK as secret.

– sky ← sNIPE.KeyGen(pp,MSK,y): A user submits a predicate vector y ∈ P to an
authority that runs the key generation algorithm with inputs a public parameter
pp, a master secret-key MSK, a vector y and outputs a secret key sky corresponding
to the predicate vector y. The predicate holder gets its secret key sky from the
authority through a secure channel.

– CTx ← sNIPE.Enc(pp,MSK,x,M): An encrypter runs the encryption algorithm
that takes as input a public parameter pp, an attribute vector x ∈ Q, a message
M ∈M and outputs a ciphertext CTx corresponding to the attribute x.

– ⊥ or ζ ← sNIPE.Dec(pp, sky,CTx): A decrypter runs the decryption algorithm
that takes as input a public parameter pp, a secret-key sky, a ciphertext CTx and
outputs either a message ζ ∈ I or a symbol ⊥.

Correctness: For any security parameter λ, l(λ) ∈ N, y ∈ P, x ∈ Q, (pp,MSK) ←
sNIPE.Setup
(1λ, 1l), sky ← sNIPE.KeyGen(pp,MSK,y) the following conditions hold:

1. Pr
[
M = sNIPE.Dec(pp, sky, sNIPE.Enc(pp,MSK,x,M)) : 〈x,y〉 6= 0

]
= 1− negl(λ)

2. Pr
[
⊥= sNIPE.Dec(pp, sky, sNIPE.Enc(pp,MSK,x,M)) : 〈x,y〉 = 0

]
= 1− negl(λ)

Definition 13 (Full-hiding security for sNIPE) A private-key NIPE scheme is
said to satisfy full-hiding security (FH-sNIPE) if, for any PPT adversary A, for any
λ ∈ N the advantage

AdvFH-sNIPE
A (λ) =

∣∣∣∣Pr[ExptFH-sNIPE
A (1λ, 0) = 1]− Pr[ExptFH-sNIPE

A (1λ, 1) = 1]

∣∣∣∣
is negligible in λ, where ExptFH-sNIPEA (1λ, b) is defined as follows:
1. Setup phase: The challenger computes (pp,MSK) ← sNIPE.Setup(1λ, 1l), gives

pp to A and keeps MSK as secret. It also chooses a random bit b.
2. Query phase: The adversary A may adaptively make polynomial number of

queries that are of two types:
– Secret-key query: For the j-th key query, A submits a pair of predicate vec-

tors (y
(j)
0 ,y

(j)
1) and the challenger responses with sk

y
(j)
b

← sNIPE.KeyGen(pp,

MSK,y
(j)
b).

Game j, j ∈ {0, 1, 2}

1. The challenger gets (MPK,MSK) ← pNIPE.Setup(1λ, 1l) where MSK = (u =
(u1, . . . , ul), v = (v1, . . . , vl)) and MPK = (G, g, h, {hi = guihvi}i∈[l])

2. The adversary selects (x∗,M0,M1)← ApNIPE.KeyGen(MPK,MSK,·)(MPK)
3. The challenger picks a random bit b and encrypts the message Mb with

the challenge attribute x∗ = (x1, . . . , xl) as:
3.1 If j = 0, 1, 2, pick r, t←↩ Zq
3.2 If j = 0, 1, compute C = gr and D = hr

Else if j = 2, compute C = gr and D = hr+r
′
for r′ ←↩ Zq

3.3 If j = 0, 1, 2, set ct = gMbDt

3.4 If j = 0, compute cti = Dtxihri for 1 ≤ i ≤ l
Else if j = 1, 2, compute cti = DtxiCuiDvi for 1 ≤ i ≤ l

3.5 Return CT
(b)

x∗ = (G,H, ct, {cti}i∈[l])
4. Finally, the adversary outputs b′ ← ApNIPE.KeyGen(MPK,MSK,·)(CT

(b)

x∗)

Fig. S-2: Sequence of Games used in the proof of Th. 2

– Ciphertext query: For the ι-th ciphertext query, A transmits two attribute-
message pairs (x

(ι)
0 ,M0), (x

(ι)
1 ,M1) ∈ Q×M to the challenger which responses

with CT
x
(ι)
b

← sNIPE.Enc(pp,MSK,x
(ι)
b ,Mb).

The queries made by A should satisfy 〈x(ι)
0 ,y

(j)
0 〉 = 〈x(ι)

1 ,y
(j)
1 〉 = 0 for all j, ι if

M0 6= M1 or 〈x(ι)
0 ,y

(j)
0 〉 = 〈x(ι)

1 ,y
(j)
1 〉 for all j, ι if M0 = M1.

3. Guessing phase: Finally, the adversary A outputs a guess bit b′ which is the
output of the experiment.

SM-3 Proof of Theorem 2

Proof. We follow the same approach from the security proof of DDH based pIPFE
scheme in [2]. We consider two sequence of games after the standard security exper-
iment (Def. 10) named as Game 0. The above pNIPE is adaptively payload-hiding
secure if the distinguishable gaps between the successive games are all negligible and
the final game (Game 2) statistically hides challenge bit b into the ciphertext. We de-
fine Game j, j ∈ {0, 1, 2}, in Fig. S-2 and assume that all predicate key vectors y ∈ P
queried by A should satisfy 〈x∗,y〉 = 0 where x∗ is the challenge attribute. Let Ej be
the event b = b′ in Game j for j = 0, 1, 2.

Game 0 ⇒ Game 1: In Game 1, the challenger directly uses MSK = (u,v) to

compute the ciphertext CT
(b)
x∗ as shown in Fig. S-2, item 3.4 when j = 1. Therefore,

the ciphertext distributions in Game 0 and Game 1 are identical and it holds that
Pr[E0] = Pr[E1].

Game 1 ⇒ Game 2: In Game 2, the challenger picks an extra randomness r′ ←↩
Zq and sets D = hr+r

′
(see Fig. S-2, item 3.2 when j = 2). Other components

(G, ct, {cti}i∈[l]) are computed in the same way as in Game 1. Since h ∈ G and g
is a generator of G, we write ω = loggh. Consider the tuple (h = gω,C = gr,D) where

the component D becomes: gωr in Game 1 and gω(r+r
′) in Game 2. The product ωr′

is uniformly distributed modulo q as ω ∈ Z∗q and r′ ←↩ Zq. By DDH assumption, the
tuple (h,G,H) is indistinguishable in transition from Game 1 to Game 2 and we have
|Pr[E1]− Pr[E2]| ≤ AdvDDH

B (λ) for any PPT adversary B.

Now in Game 2, the ciphertext CT
(b)
x∗ becomes

(C = gr,D = hr+r
′
, ct = gMbht(r+r

′), {cti = ht(r+r
′)xi+r

′vihri }i∈[l])

Therefore, an unbounded adversary information theoretically infer

Mb + ω · t · (r + r′) mod q and zt = t · (r + r′) · x∗ + r′ · v mod q

from ct and {cti}i∈[l], as {hi}i∈[l] is part of MPK. The randomness r, r′ are sampled
uniformly and independently from Zq. So, (r + r′) = 0 mod q happens with all but a
negligible probability as q is a µ-bit prime and µ ≥ λ. If zt statistically hides t mod q,
then Mb + ω · t · (r + r′) mod q information theoretically hides b from A’s view as t is
distributed uniform modulo q.

We construct a matrix Ytop ∈ Z(l−1)×l
q using x∗ ∈ Zlq (as in Th. 3) such that the

rows of it form a basis of the (l − 1)-dimensional subspace

x∗⊥ = {y ∈ Zlq : 〈x∗,y〉 = 0 mod q}

Let y′ ∈ Zlq\x∗⊥ be any arbitrary vector easily computable toA. The matrix defined by

Y =
[Ytop

y′

]
∈ Zl×lq is invertible modulo q as the rows form a basis of Zlq. It is sufficient

to prove that Y · zt ∈ Zlq statistically hides t mod q from A’s view. As Ytop · x∗ = 0
mod q, the first (l−1) elements of Y ·zt is independent of t. We analyse the adversary’s
view on the last row of Y · zt which is given by

〈y′,zt〉 = t · (r + r′) · 〈x∗,y′〉+ r′ · 〈v,y′〉 mod q.

From the public-key hi = guihvi = gui+ωvi , i ∈ [l], the adversary information
theoretically gains u + ωv mod q. The adversary can query keys corresponding to at
most (l−1) linearly independent vectors {yi}l−1

i=1 contained in the subspace x∗⊥ (other
queries only supply redundant information). The predicate secret-key for a vector yi is
computed as skyi = (〈u,yi〉, 〈v,yi〉). Suppose from the A’s view, the joint distribution
of the secret vectors (u,v) ∈ Zlq × Zlq be (uA,vA), then it must satisfy uA + ω · vA =
u0 + ω · v0 mod q where u0 = (u0,1, . . . , u0,l),v0 = (v0,1, . . . , v0,l) ∈ Zlq are arbitrary
vectors such that hi = gu0,ihv0,i for all i ∈ [l] and skyi = (〈u0,yi〉, 〈v0,yi〉) for all
i ∈ [l − 1]. Since the predicate queries must satisfy 〈x∗,yi〉 = 0, the joint distribution
of (uA,vA) can be expressed as

{(uA = u0 − ω · γ · x∗ mod q,vA = v0 + γ · x∗ mod q) : γ ∈ Zq}

Therefore, from A’s view the distribution of r′ · 〈v,y′〉 mod q is

{r′ · (〈v0,y′〉+ γ · 〈x∗,y′〉) mod q : γ ∈ Zq}

As y′ lies outside of x∗⊥ we have 〈x∗,y′〉 6= 0 mod q and r′ ←↩ Zq implies r′ 6= 0
mod q with all but a negligible probability of 2−µ, µ ≥ λ. Thus, r′ · 〈v,y′〉 mod q is
uniformly distributed knowing public-keys and predicate key queries. Consequently,
from adversary’s view t mod q is statistically hidden in 〈y′,zt〉 mod q with all but a
negligible probability of 2−λ.

Therefore, Mb + ω · t · (r + r′) mod q information theoretically hides the challenge
bit b and it holds that |Pr[E2]− 1

2
| ≤ 2−λ. Adding all the indistinguishability gaps and

using triangular inequality we have

AdvPH−pNIPE
A (λ) ≤ AdvDDH

B (λ) + 2−λ.

Game j, j ∈ {0, 1, 2}

1. The challenger gets (MPK,MSK)← pNIPE.Setup(1λ, 1µ, 1l) where
MSK = v = (v1, . . . , vl) and MPK = (p, s̃, f, gp, G, F, {hi = g

vi
p }i∈[l])

2. The adversary selects (x∗,M0,M1)← ApNIPE.KeyGen(MPK,MSK,·)(MPK)
3. The challenger picks a random bit b and encrypts the message Mb with

the challenge attribute x∗ = (x1, . . . , xl) as:
3.1 If j = 0, 1, 2, pick r ←↩ DZ,σ′ and t←↩ Zp
3.2 If j = 0, 1, compute D = grp

Else if j = 2, compute D = fagrp for a←↩ Zp
3.3 If j = 0, 1, 2, set ct = fMbDt

3.4 If j = 0, compute cti = ftxihri for 1 ≤ i ≤ l
Else if j = 1, 2, compute cti = ftxiDvi for 1 ≤ i ≤ l

3.5 Return CT
(b)

x∗ = (D, ct, {cti}li=1)

4. Finally, the adversary outputs b′ ← ApNIPE.KeyGen(MPK,MSK,·)(CT
(b)

x∗)

Fig. S-3: Sequence of Games used in the proof of Th. 5

SM-4 Proof of Theorem 5

Proof. We consider the sequence games defined in Fig. S-3 to prove the payload-hiding
security of the pNIPE. The standard payload-hiding security (Def. 10) for the above
pNIPE is defined in Game 0. We end up with Game 2 where the challenge bit b
remains statistically hidden from the adversary’s point of view. The proof technique
is borrowed from [14] and modified to make it work into our setting. In all the games,
we assume that 〈x∗,y〉 = 0 for all predicate vectors y queried by the adversary A and
x∗ = (x1, . . . , xl) is the challenge attribute. We define Ej to be the event b = b′ in the
Game j, for j = 0, 1, 2.
Game 0 ⇒ Game 1: In Game 1, the challenger directly computes the ciphertexts
using MSK = v (see Fig. S-3, item 3.4 with j = 1). As a result, the distribution of
ciphertexts are identical in both these games and we have Pr[E0] = Pr[E1].
Game 1 ⇒ Game 2: The ciphertext component D is computed as fagrp for a ←↩
Zp, r ←↩ DZ,σ′ in Game 2 (see Fig. S-3, item 3.2 with j = 2) and the value of σ′ is
greater than s̃ ·

√
λ. Thus, according to item 5 of Lem. 5 in Sec. 2.2, the distribution of

D is within a statistical distance less than 2−λ from the uniform distribution over G.
Again in Game 1, item 3 of Lem. 5 implies that the distribution D = grp, r ←↩ DZ,σ′ is
statistically close to uniform over Gp. Since the HSM assumption tells that it is hard to
distinguish an element of Gp in the group G, we have |Pr[E1]−Pr[E2]| ≤ AdvHSMB (λ, µ)
for some PPT adversary B.

Next, we show that the ciphertext of Game 2 statistically hides the challenge bit
b, that is |Pr[E2]− 1

2
| ≤ 2−λ. The distribution of CT

(b)
x∗ can be expressed as

(D = fagrp, ct = fMb+atgrtp , {cti = f txi+avigrvip }li=1)

The part of the ciphertext D = fagrp information theoretically reveals a mod p and r
mod s, since G = F ×Gp and the orders of the cyclic groups F,Gp are p, s respectively.
An unbounded adversary may infer Mb+a · t mod p and rt mod s from the component
ct = fMb+atgrtp of the ciphertext. The remaining part cti = f txi+avigrvip information
theoretically discloses zt,i = t · xi + a · vi mod p as the term grvip is fixed by D and

the public-key hi = gvip , for all i ∈ [l]. Since r ←↩ DZ,σ′ with σ′ > s̃ ·
√
λ and t ←↩ Zp,

the distribution of r mod s is statistically close to uniform modulo s and the product
rt is distributed statistically close to uniform modulo n (using Lem. 5). Again n = ps

and gcd(p, s) = 1 implies that the distributions of r, rt modulo s are independent from
the distributions of r, rt modulo p. Thus, the adversary cannot get much information
about t modulo p even if he knows r, rt modulo s. Therefore, given all the predicate
key queries, if zt = t ·x∗+a ·v mod p statistically hides t mod p, then Mb+at modulo
p hides the challenge bit b as a, t are both uniformly and independently sampled from
Zp, and at 6= 0 mod p with all but a negligible probability since p is a µ-bit prime with
µ ≥ λ.

We show that t mod p is statistically hidden within zt = t · x∗ + a · v mod p given
all the information leaked to A via predicate key queries. All the predicate vectors {yi}
for which a predicate secret-key is given to the admissible adversary A must satisfy
〈x∗,yi〉 = 0 for all i, where x∗ is the challenge attribute. In other words, all queried
predicate vectors belong to the lattice x∗⊥ = {y ∈ Zl : 〈x∗,y〉 = 0}. Let us assume
that the first n0 elements of x∗ are zero and gcd(xn0+1, . . . , xl) = 1.

Now, we borrow exactly the same matrix Y =
[Ytop

Ybot

]
∈ Zl×l used in the proof of

Th. 3 (in Sec. 4.1), that is

Ytop =

In0
−xn0+2 xn0+1

−xn0+3 xn0+2

. . .
. . .

−xl xl−1

 ∈ Z(l−1)×l

and Ybot = x∗T ∈ Z1×l. The matrix Y is invertible modulo p (by the arguments in Th.
3). Since Y is easily computable to A, the information gained from zt and Y ·zt mod p
are equivalent from the adversary’s perspective. Therefore, it is sufficient to analyze the
information leaked from Y ·zt knowing all key queries made by A. The structure of Y
indicates Ytop ·x∗ = 0 as the rows of Ytop belong to x∗⊥ and form a basis of the lattice
x∗⊥. Consequently, Ytop · zt is independent of t. Thus we only need to concentrate on
the last row of Y · zt mod p, given by 〈x∗,zt〉 = t · ‖x∗‖22 + a · 〈x∗,v〉 mod p. If we can
show from the A’s view that the distribution of 〈x∗,v〉 mod p (knowing the master
public-key and the queried predicate secret-keys) is statistically close to the uniform
distribution modulo p, then 〈x∗,zt〉 mod p hides t with all but a negligible probability
of 2−λ as a is uniformly sampled from Zp as p is a µ-bit prime with µ ≥ λ.

One can observe that all queried predicate vectors yi can be expressed as the
linear combination of the rows of Ytop, that is, yi =

∑l−1
j=1 ki,jR

T
j where ki,j ∈ Z and

Rj is the jth row of Ytop. For Ytop · v = [r1 · · · rl−1]T ∈ Zl−1 with rj = 〈v,RT
j 〉,

the secret-key corresponding to yi is described as skyi = 〈v,yi〉 =
∑l−1
j=1 ki,jrj ∈ Z.

Thus, the information obtained from predicate key queries is completely determined
by Y · v. Moreover, the master public-key component hi = gvip , 1 ≤ i ≤ l, information
theoretically unveils vi mod s. To examine the adversary’s view on master secret-key,
we consider an arbitrary vector v0 = (v0,1, . . . , v0,l) ∈ Zl such that

Ytop · v0 = Ytop · v and g
v0,i
p = gvip , ∀i ∈ [l].

Let us consider the lattice Λ = {ν ∈ Zl : Ytop ·ν = 0 and ν ≡ 0(mod s)}. Therefore, in
the adversary’s eye, the master secret-key v which was sampled from DZl,σ, is identical
to v0 + V where V is a random variable distributed as DΛ,σ,−v0 . More precisely, form
the adversary’s view the master secret-key component v appears as v0 +V where V is

a random variable that takes values from Λ. The distribution of V is given by

Pr[V = v] = DZl,σ,−v0
(v)/DZl,σ,−v0

(Λ)

=
ρσ,−v0(v)

ρσ,−v0(Zl)
· ρσ,−v0(Zl)
ρσ,−v0(Λ)

= ρσ,−v0(v)/ρσ,−v0(Λ)

= DΛ,σ,−v0

We define the lattice Λ∗ = {ν ∈ Zl : Ytop · ν = 0}. This is a 1-dimension lattice as the
rows of Ytop are linearly independent over Z. Furthermore, x∗ ∈ Λ∗ and it implies that
Λ∗ = x∗ ·Z since the non-zero co-ordinates of x∗ are co-prime to each other. Therefore,
one can rewrite

Λ = Λ∗ ∩ s · Zl = (x∗ · Z) ∩ (s · Zl) = s · x∗ · Z

Applying Lem. 2 of Sec. 2.1 and denoting Λ0 = s · ‖x∗‖22 ·Z, the distribution of 〈x∗,v〉
is given by

〈x∗,v0〉+DΛ0,σ·‖x∗‖2,−〈x∗,v0〉

To show that the distribution of 〈x∗,v〉 mod p is statistically close to uniform distri-
bution over Zp, we consider the distribution DΛ0,σ·‖x∗‖2,−〈x∗,v0〉 over Λ0 modulo the
sublattice Λ′0 = pΛ0 as Λ0/Λ

′
0 = Zp. Now, from Lem. 3 of Sec. 2.1, with ε = 2−λ−1, the

reduced distribution DΛ0,σ·‖x∗‖2,−〈x∗,v0〉 mod Λ′0 is within a statistical distance 2−λ

from the uniform distribution over Λ0/Λ
′
0 ' Zp if σ · ‖x∗‖2 > ηε(Λ

′
0). The minimum

distance of the lattice Λ′0 is λ1(Λ′0) = p · s · ‖x∗‖22 < p · s̃ · ‖x∗‖22 which can be used in
Lem. 4 of Sec. 2.1 to get an upper bound as

ηε(Λ
′
0) ≤

√
ln(2n(1+1/ε))

π
· λ1(Λ′0) <

√
λ · λ1(Λ′0) =

√
λ · p · s̃ · ‖x∗‖22.

Choosing σ ·‖x∗‖2 >
√
λ ·p · s̃ ·‖x∗‖22 and using the fact ‖x∗‖2 <

√
l ·X <

√
p we finally

set σ > p3/2 · s̃ ·
√
λ to ensure that the distribution 〈x∗,v〉 mod p is within a distance

2−λ from the uniform distribution over Zp. As discussed earlier, this implies t mod p is
statistically hidden within zt = t ·x∗+a ·v mod p and it holds that |Pr[E2]− 1

2
| ≤ 2−λ.

Adding up all the probabilities obtained in the above sequence of games and using
triangular inequality, we have

AdvPH−pNIPE
A (λ) = |Pr[E0]− 1

2
|

≤ |Pr[E0]− Pr[E1]|+ |Pr[E1]− Pr[E2]|+ |Pr[E2]− 1

2
|

≤ AdvHSMB (λ, µ) + 2−λ

which is negligible in λ according to the hypothesis that HSM problem is hard in G.

SM-5 Proof of Theorem 6

Proof. The proof begins with the same sequence of games described in Fig. S-3 as the
encryption algorithm of the pNIPE is exactly the same as that of the pNIPE in Sec. 5.1
over Z. The key extraction oracle is now stateful and is taken as pNIPE.KeyGen(MPK,

MSK, st, ·). To maintain this difference we rename Game j and event Ej of Th. 5 by
Game j′ and E′j respectively. We note that for any predicate vector y queried by the
adversary A it holds that 〈x∗,y〉 = 0 mod p where x∗ = (x1, . . . , xl) is the challenge
attribute.

As explained in Th. 5, Game 0′ is identical to Game 1′ and Game 1′ is indistin-
guishable from Game 2′ under the HSM assumption. Formally it is expressed as

Pr[E′0] = Pr[E′1] and |Pr[E′1]− Pr[E′2]| ≤ AdvHSMB (λ, µ)

Recall that the ciphertext CT
(b)
x∗ in Game 2′ is given by

(D = fagrp, ct = fMb+atgrtp , {cti = f txi+avigrvip }li=1)

and our aim is to show that the challenge bit b is statistically hidden within it from
the adversary’s view, that is |Pr[E′2] − 1

2
| ≤ 2−λ. From the discussion in the original

Game 2, essentially the challenge ciphertext

Mb + a · t mod p and zt = t · x∗ + a · v mod p

in information theoretic sense and Mb + a · t mod p hides b if zt succeeds in hiding t
mod p given the master public-key and predicate key queries, as a, t are uniformly and
independently sampled from Zp.

We make use of the fact that if Y is an invertible matrix modulo p available to A,
then Y · zt and zt mod p leak similar information about t mod p. Here, one must not
borrow the same Y from Th. 5 as det(YYT) is not guaranteed to be non-zero modulo
p. Instead, we use the approach of Th. 4 to construct Y from a full fledge basis of Zlp.

Without loss of generality, we assume that the adversary queried for at most (l−1)
predicate keys corresponding to the vectors {yi}l−1

i=1 which is a linearly independent set
over Zp. Our aim is to show that t mod p remains statistically hidden from the view of
adversary after it makes j predicate key queries, for any j ∈ {0, 1, . . . , l− 1}. We apply
induction on the number of predicate key queries made by A. If no predicate key query
occurs, then the advantage of A in Game 2′ is the same as it was in the original Game
2 of Th. 5. Hence, the induction hypothesis is true for j = 0. Next, we show that for
any j ∈ {1, . . . , l − 1}, A’s view is statistically independent of t mod p.

Let us fix some j ∈ {1, . . . , l − 1} and assume that, at this point st = {(yi, skyi =
(yi, syi))}i∈[j], is independent of t mod p. If j < (l − 1) then the set {yi}i∈[j] can
be deterministically extended to a set {yi}i∈[l−1] so as to form a basis of the (l − 1)-
dimensional subspace

x∗⊥p = {y ∈ Zlp : 〈x∗,y〉 = 0 mod p}.

This can be thought of predicate keys queried by the challenger for dummy vectors
{yi}l−1

i=j+1 and then use the outputs {pNIPE.KeyGen(MPK,MSK, st,yi)}l−1
i=j+1 to get a

full basis. We construct a matrix Ytop ∈ Z(l−1)×l by setting its i-th row as yi for each
i ∈ [l − 1]. We find y′ ∈ Zlp \ x∗⊥p such that it is efficiently computable to A and
set Ybot = y′ to be the canonical lift of y′ over the integers. Therefore, the matrix
Y =

[Ytop

Ybot

]
∈ Zl×l is invertible modulo p.

One can observe that Ytop ·zt is independent of t as each row of Ytop is orthogonal to
x∗. Thus, only the last row of Y ·zt may contain some information about t mod p that
is useful to A. In continuation to the above discussion, it is sufficient to demonstrate
that

Ybot · zt = t · 〈y′,x∗〉+ a · 〈y′,v〉 mod p

statistically hides t mod p from A’s view. In particular, if the distribution of 〈y′,v〉
mod p is statically close to uniform distribution modulo p, then Ybot · zt statistically
hides t mod p since a←↩ Zp implying a 6= 0 with all but a negligible probability as p is
a µ-bit prime with µ ≥ λ.

As discussed in the proof of Th. 5, the information obtained via predicate key
queries can be completely redefined by Ytop · v. Also, from the master public-key com-
ponent hi = gvip , for 1 ≤ i ≤ l, the adversary information theoretically learns vi mod
s. Let us take an arbitrary vector v0 = (v0,1, . . . , v0,l) ∈ Zl such that

Ytop · v0 = Ytop · v and g
v0,i
p = gvip , ∀i ∈ [l].

Conditionally on A’s view, the distribution of v ∈ Zl is v0 +DΛ,σ,−v0 where

Λ = {ν ∈ Zl : Ytop · ν = 0 and ν ≡ 0 (mod s)}.

We also define an 1-dimensional lattice Λ∗ = {ν ∈ Zl : Ytop · ν = 0} in Zl. Since
x∗ ∈ Λ∗, the lattice can be expressed as Λ∗ = x′ · Z for some x′ = γ · x∗ mod p where
γ ∈ (Zp)∗ is chosen to make the co-ordinates of x′ co-prime to each other. One now
observes that Λ = Λ∗∩s ·Zl = s ·x′ ·Z. Let Λ∗top be the lattice generated by the rows of
Ytop. Note that Λ∗ is orthogonal to Λ∗top. Then by the property of orthogonal lattices
[32] and applying Lem. 1 of Sec. 2.1 we get

‖x′‖2 = det(Λ∗) ≤ det(Λ∗top) ≤
l−1∏
i=1

‖yi‖2 ≤ (
√
l · p)l−1.

Next, we take a sublattice Λ′ = pΛ. Utilizing Lem. 3 of Sec. 2.1, the reduced distribu-
tion DΛ,σ,−v0 mod Λ′ is within a statistical distance of at most 2ε from the uniform
distribution over Λ mod Λ′ if σ > ηε(Λ

′). With ε = 2−λ−1, we use Lem. 4 of Sec.
2.1 and the bound on ‖x′‖2 derived above to get another bound on the smoothing
parameter of Λ′ as

ηε(Λ
′) ≤

√
ln(2n(1 + 1/ε))

π
· λ1(Λ′)

≤
√
λ · λ1(Λ′) =

√
λ · p · s · ‖x′‖2

≤
√
λ · pl · s̃ · (

√
l)l−1

By setting σ > s̃ ·
√
λ · pl · (

√
l)l−1, the distribution DΛ,σ,−v0 mod Λ′ becomes 2−λ-

close to the uniform distribution over Λ/Λ′ ' x′ · Zp as gcd(s, p) = 1. Again x′ · Zp =
γ · x∗ · Zp ' x∗ · Zp as γ is a non-zero element of Zp. Consequently, in A’s view
the distribution of v mod p is within a statistical distance of 2−λ from the uniform
distribution over x∗ · Zp. So, A would write v = β · x∗ where β is uniformly chosen
from Zp and hence 〈y′,v〉 = β · 〈y′,x∗〉 mod p becomes uniformly distributed over Zp
in A’s view as 〈y′,x∗〉 mod p is non-zero.

Therefore, zt statistically hides t mod p from the adversary’s view. In other words,
the challenge bit b is statistically hidden in Mb + a · t mod p with all but a negligible
probability of 2−λ and it holds that |Pr[E2]− 1

2
| ≤ 2−λ.

Finally, adding up all the probability gaps using triangular inequality, one obtains

AdvPH−pNIPE
A (λ) ≤ AdvHSM

B (λ, µ) + 2−λ

which is negligible in λ if the HSM problem is hard in G.

SM-6 LWE and DCR based AH-pNIPE

LWE based constructions. Agrawal et al. [2] gave two pIPFE constructions from the
(multi-hint extended) LWE assumption. Their first pIPFE with inner products over Z
is stateless and the second pIPFE with inner products over Zp is stateful. Employing
these pIPFEs in our generic construction, we obtain two adaptively attribute-hiding
pNIPEs based on the LWE assumption: one is stateless with inner products over Z and
the other is stateful computing inner products over Zp. For our stateless pNIPE over Z
the domains are taken as I = Z, P = {0, 1, · · · ,By − 1}, M = {0, 1, · · · ,B− 1}, Q =
{0, 1, · · · ,Bx − 1}, Q′ = {0, 1, · · · ,B ·Bx − 1} where Bx,By, and B are polynomially
bounded integers. In case of our stateful pNIPE, we consider the domains as I = Zp,
P = Q = Q′ = Zlp and M = Zp. The choice of parameters required in the underlying
pIPFEs can be taken from [2] for the correctness and security of our schemes.

DCR based constructions. Agrawal et al. [2] constructed two pIPFEs from the DCR
assumption where the first one is stateless with inner products over Z and the second
is stateful with inner products over ZN . Here, N is a product of two exponentially
large safe primes. To apply the first pIPFE of [2] in our generic transformation, we
take the domains as I = Z, P = Q′ = {y ∈ Zl : ‖y‖∞ < (N/2l)1/2}, M = {M ∈
Z : |M | < B}, Q = {x ∈ Zl : ‖x‖∞ < (N/2lB2)1/2} where B is an integer (possibly
exponentially large). This results in an adaptively attribute-hiding stateless pNIPE
with inner products over Z under the DCR assumption. One may consider I = ZN ,
P = Q = Q′ = ZlN andM = ZN to get a stateful pNIPE from the second pIPFE. Note
that, this conversion works fine if we treat ZN as an integral domain which is sensible
as getting a zero divisor in the ring ZN leads to a factorization of N and hence breaks
the DCR problem.

SM-7 Proof of Theorem 8

Proof. We prove this by contradiction, that is, we assume that there exists a PPT
adversary A for the sNIPE such that the advantage in the security experiment in Def.
13 is non-negligible. We construct another PPT adversary B against the full-hiding
security of sIPFE (see Def. 8) using the sNIPE adversary as follows:
1. Setup: The sIPFE challenger generates (pp,MSK) ← sIPFE.Setup(1λ, 1l) and

sends pp to B that passes it to A. The challenger makes MSK secret and chooses
a random bit b.

2. Query phase: The adversary may ask the following two types of query:
– Secret-key query: On the j-th predicate key query, A submits a pair of

vectors (y
(j)
0 ,y

(j)
1) ∈ P × P which B forwards to its challenger to get the

secret-key corresponding to the challenge bit. The challenger returns sk
y
(j)
b

← sIPFE.KeyGen(pp,MSK,y
(j)
b). Then B passes sk

y
(j)
b

to A.

– Ciphertext query: The adversary A submits two pairs of attribute vector,
message (x

(ι)
0 ,M0), (x

(ι)
1 ,M1) ∈ Q ×M as its ι-th ciphertext query. Then, B

makes two pair of challenge attribute vectors (x
(ι)
0 ,x

(ι)
1), (M0 ·x(ι)

0 ,M1 ·x(ι)
1) ∈

Q′ and sends these (once at a time) to its challenger. The sIPFE challenger

returns ct
(b)
1,ι ← sIPFE.Enc(pp,MSK,x

(ι)
b) and ct

(b)
2,ι ← sIPFE.Enc(pp,MSK,Mb ·

x
(ι)
b) and B sends CT

(b)
ι = (ct

(b)
1,ι , ct

(b)
2,ι) as the ι-th challenge ciphertext to A.

3. Guessing phase: Finally, B returns a guess b′ which is the output of A.

We note that the total number of ciphertexts queried by B is twice the number of ci-
phertext queries made byA. So, B makes a polynomial number of queries to simulateA.
As in the proof of Th. 7, the predicates and attributes satisfy 〈x(ι)

0 ,y
(j)
0 〉 = 〈x(ι)

1 ,y
(j)
1 〉

and 〈M0 · x(ι)
0 ,y

(j)
0 〉 = 〈M1 · x(ι)

1 ,y
(j)
1 〉 for all j, ι. Thus, B is an admissible adversary

for FH-sIPFE security model.
If the sIPFE challenger chooses b = 0, then B simulates ExptFH-sNIPE

A (1λ, 0) and
if b = 1, then it simulates ExptFH-sNIPE

A (1λ, 1). Thus, the advantage of B in FH-sIPFE
experiment is the same as that of A in FH-sNIPE. Hence, the proof follows.

Remark 3 In our generic construction of NIPEs from IPFEs, one can observe that a
decrypter having a secret-key sky associated to a predicate vector y and a ciphertext
CTx = (ctx, ctM·x) corresponding to an attribute x learns η = 〈x,y〉 via IPFE decryp-
tion. If η 6= 0, then the message M can be recovered. When 〈x,y〉 contains sensitive
information, it becomes vulnerable to the decrypter. Therefore, it is necessary to hide
〈x,y〉 inside η so that the decrypter only learns whether the inner product is zero or
not. There are two simple ways to achieve this—one can either randomize the predicate
vector while creating the secret-key or randomize the attribute vector while encryp-
tion. In the first case, a secret-key associated to a predicate vector y is obtained as
sky ← IPFE.KeyGen(·,MSK, t ·y) where t is uniform over I \{0}. In the latter case, the
encrypter can select t uniformly at random from I\{0} and computes the components of
the ciphertext as ct′x ← IPFE.Enc(·, t·x), ct′M·x ← IPFE.Enc(·, tM ·x). So, the decrypter
gets η = t·〈x,y〉 ← IPFE.Dec(·, sky, ct′x) and η′ = tM ·〈x,y〉 ← IPFE.Dec(·, sky, ct′M·x).
Then, if 〈x,y〉 6= 0 it computes η′/η to recover the message M , otherwise it returns
⊥. In this scheme, the decrypter learns t · 〈x,y〉 instead of 〈x,y〉 where t ←↩ I \ {0}.
Note that, t can be chosen from a sufficiently small interval to utilize the instantiations
described in Sec. 6.

	Non-zero Inner Product Encryptions: Strong Security under Standard Assumptions
	Introduction
	Security of NIPE
	Motivation to our work
	Our contributions
	Overview of techniques
	Comparing our PH-pNIPEs with existing schemes

	Preliminaries
	Lattices
	Cryptographic Assumptions
	Payload-hiding stateless pNIPE based on DDH assumption
	Payload-hiding pNIPE based on DDH-f assumption
	DDH-f based stateless pNIPE for Inner Products over Z
	DDH-f based stateful pNIPE for Inner Products over Zp

	Payload-hiding pNIPE based on HSM assumption
	HSM based stateless pNIPE for Inner Products over Z
	HSM based stateful pNIPE for Inner Products over Zp

	Generic Construction of NIPE from IPFE
	Generic Transformation of pIPFE to Attribute-hiding pNIPE
	Instantiations for pNIPE

	Generic Transformation of sIPFE to Full-hiding sNIPE
	Instantiations for sNIPE

	History of NIPE
	Useful Definitions
	Inner Product Functional Encryption
	Non-zero Inner Product Encryption
	Proof of Theorem 2
	Proof of Theorem 5
	Proof of Theorem 6
	LWE and DCR based AH-pNIPE
	Proof of Theorem 8

