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Abstract. Achieving security in the Internet of Things (IoT) is chal-
lenging. The need for lightweight yet robust cryptographic solutions
suitable for the IoT calls for improved design and implementation of con-
structs such as authenticated encryption with associated data (AEAD)
which can ensure confidentiality, integrity, and authenticity of data in
one algorithm. The U.S. National Institute of Standards and Technology
(NIST) has embarked on a multi-year effort called the lightweight cryp-
tography (LWC) standardization process to evaluate lightweight AEAD
and optional hash algorithms for inclusion in U.S. federal standards. As
candidates are evaluated for many characteristics including hardware re-
sources and performance, obtaining results of hardware implementations
as early as possible is preferable. In this work, we implement six NIST
LWC Round 2 candidate ciphers, SpoC, GIFT-COFB, COMET-AES,
COMET-CHAM, Ascon, and Schwaemm and Esch, in the Artix-7,
Spartan-6, and Cyclone-V FPGAs. Implementations are compliant with
the newly-released hardware (HW) applications programming interface
(API) for lightweight cryptography and are tested in actual hardware. We
also provide the average power and energy per bit of our implementations
at 40 MHz. Results indicate that SpoC has the smallest area and power,
while Ascon has the highest throughput-to-area (TPA) ratio.

Keywords: NIST · Lightweight cryptography · FPGA · Implementation
· Authenticated encryption

1 Introduction

Increasing the use of very lightweight devices that form the basis of the Internet
of Things (IoT) necessitates the development and adaptation of lightweight cryp-
tographic algorithms. IoT devices, like all other means of information technology,
are vulnerable to theft of privacy information, and are subject to potentially more
destructive attacks such as replay or man-in-the-middle attacks. To protect IoT
devices against the range of such attacks, cryptographic solutions should ensure
confidentiality (i.e., where an adversary cannot read private communications),
integrity (i.e., where any change in transmitted data can be detected), and authen-
ticity (i.e., where a receiver can verify the identity of the sender). Authenticated
encryption with associated data (AEAD) can ensure all of the above services
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using a single algorithm, while realizing savings in cost and performance, and
by avoiding security pitfalls of interactions with separately-designed ciphers and
hashes.

In August 2018, the U.S. National Institute of Standards and Technology
(NIST) issued a call for specifications of lightweight AEAD and optional hashes,
to be subjected to several rounds of evaluations as part of the lightweight cryp-
tography (LWC) standardization process, and eventually incorporated into U.S.
federal information processing standards (FIPS) [35]. Submissions of specifica-
tions were permitted until February 2019, and 56 qualified Round 1 candidates
were publicized in April 2019. In August 2019, 32 candidates were selected for
Round 2, which is expected to last a year.

NIST LWC candidates are evaluated based on several criteria, including
cost (e.g., area, memory, energy consumption) and performance (e.g., latency,
throughput (TP), power consumption) in resource-constrained environments
representative of emerging IoT devices. All submissions were required to include
software reference implementations. While several submissions included synthesis
or implementation results from the authors’ own hardware submissions in ASIC
or FPGA, the NIST LWC evaluation process specifically assigns higher weights
to the 3rd-party implementations, i.e., those that have been provided by parties
other than the ciphers’ authors.

In this paper, we provide the first medium-scale comparion of hardware
implementations of selected NIST LWC candidate submissions. We select six
ciphers from the Round 2 selections for evaluation: SpoC [3], GIFT-COFB [8],
COMET-AES [27], COMET-CHAM [27], Ascon [20], and Schwaemm and Esch
[10] (Schwaemm is the name for the AEAD process and Esch is the name for
the hash function). The rationale for selection of these ciphers can be summarized
as follows:

1. At least 29 NIST LWC Round 2 submissions are composed of block cipher or
block cipher-like primitives, out of which at least 15 are sponge-based. SpoC,
Ascon, and Schwaemm and Esch are sponge-based, while GIFT-COFB,
COMET-AES, and COMET-CHAM are based on block ciphers.

2. Considering all 32 candidates and their members, 13 ciphers use 4-bit S-boxes,
7 ciphers use 8-bit S-boxes, 3 ciphers use 5-bit S-boxes, 3 ciphers use addition,
rotation, and XOR (ARX) operations, and at least 9 ciphers use a logical
AND or multiplication for non-linear transformations. GIFT-COFB uses
4-bit S-boxes, COMET-AES uses 8-bit S-boxes, Ascon uses 5-bit S-boxes,
COMET-CHAM and Schwaemm and Esch use ARX, and SpoC uses a
Simeck box for non-linear transformations.

3. AES and GIFT are frequently encountered, as 5 candidates use GIFT and 4
candidates use AES as their underlying ciphers.

4. COMET is a block cipher that used Beetle mode of operation but replaces the
sponge permutation with a block cipher. The mode of operation of COMET
is a mixture of Beetle and counter modes.

5. There are 3 ARX algorithms in Round 2: COMET-SPECK, COMET-CHAM,
and Schwaemm and Esch. We choose CHAM instead of SPECK since CHAM
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is a new lightweight block cipher that shows slightly better performance
than SPECK in software, and better results than SIMON in hardware [30].
Schwaemm and Esch is the only sponge-based ARX design in Round 2.

6. Two of the selected ciphers have hashes: Ascon and Schwaemm and Esch
and we provide a subcomparison between them. We choose Ascon since it
is the winner of the CAESAR lightweight use-case, while Esch is the only
hash function that uses ARX operations as its non-linear function.

7. No weaknesses or errors in specification have been publicly identified in the
selected ciphers.

Except for COMET-CHAM, we implement the authors’ primary recommen-
dations for selected ciphers and use register transfer level (RTL) methodology in
Verilog or VHDL with basic-iterative (i.e., round-based) architecture. Since each
round of the ciphers is executed in one clock cycle, this implementation offers a
reasonable latency and throughput with a medium area. Although latency and
energy consumption are also important considerations in the LWC [5], there are
certain trade-offs between them. As discussed in [5, 11], basic-iterative implemen-
tation is an efficient architecture and a good candidate for applications with low
energy consumption.

All implementations are fully compliant with the newly-released LWC hard-
ware applications programming interface (LWC HW API) [29], and use the
LWC hardware development package (LWC HW DP) at [41]. Implementations
are functionally verified in Xilinx Vivado simulator, and results are generated
for Xilinx Artix-7 and Spartan-6, and Intel Cyclone-V FPGAs. Our choice of
FPGAs is motivated by popular target platforms, specifically, the NewAE CW305
Artix-7 target board, the Digilent Nexys 3 (Spartan-6), and the Terasic DE1-SoC
(Cyclone-V). Post place-and-route results for the Artix-7 are further optimized
using the Minerva automatic hardware optimization tool [22].

For candidates including both AEAD and hash, we follow recommendations
in [29] to produce two implementations: AEAD alone (AEAD), and AEAD and
hash (AEAD + Hash) incorporated together in one core. Implementations are
compared according to maximum frequency, area, TP, and throughput-to-area
(TPA) ratio. Furthermore, the average power and energy per bit (E/bit) of
ciphers, measured on the Artix-7 target board at 40 MHz, are also provided.

Our contributions in this work are summarized as follows:

1. We provide the first medium-scale comparison of hardware implementations
of selected and representative Round 2 NIST LWC candidates.

2. We offer the first intensive validation of the LWC HW API and DP on a
wide range of candidates, including AEAD and hash.

3. We compare our implementations with selected past and present authenticated
cipher implementations in order to bridge the gap between CAESAR and
NIST LWC processes, as well as LWC HW API-compliant and LWC HW
API-non-compliant implementations.

4. We show examples of features of cipher implementations which are resource-
intensive and reduce performance, in order to illustrate design pitfalls and
help guide later-round tweaks.
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The paper is organized as follows: We first provide background on previous
hardware implementations, authenticated ciphers, the LWC HW API and asso-
ciated developer’s package in Section 2. We then describe implementations of
our chosen cipher candidates in Section 3, and present implementation results
in Section 4. A fair comparison with previous results along with the important
takeaways are provided in Section 5. We finally conclude the paper in Section 6.

2 Background

2.1 Hardware implementations in cryptographic competitions

Public competitions for cipher standards began with the NIST call for AES
submissions in 1997 [33]. Large-scale comparisons of hardware performance did
not emerge until near the end of the selection process, e.g., [24, 21]. This means
that hardware implementations were emphasized only in the last third of the
competition. As stated in [34], there is typically less data on hardware performance
available to evaluators, even going into final deliberations, since the amount of
time required to explore each possible implementation is much greater.

Based on lessons-learned from the AES and subsequent SHA-3 competitions,
members of the cryptographic community sought to accelerate and standardize fair
and efficient benchmarking of hardware implementations of candidates submitted
to CAESAR [15]. A standard API for hardware implementations was validated by
the CAESAR committee, and CAESAR HW API was made available. Hardware
implementations were required from all submission teams beginning with Round
3, out of ultimately 4 rounds of selection [28].

However, the time-frame necessary to understand the design space of hard-
ware implementations was still relatively compressed. For example, Round 1
submissions were due in March 2014, announcement of Round 2 candidates
occurred in July 2015, and most hardware submissions appeared only slightly
before the announcement of Round 3 candidates in August 2016. As CAESAR
finally concluded in February 2019, nearly half of the competition had elapsed
before the accumulation of a critical mass of data on hardware implementations.

With each new cryptographic competition and standardization effort, there is
increasing interest on achieving early hardware benchmarks. However, the number
of submissions has increased, while early round evaluation periods are short.
For example, the NIST LWC standardization process was announced in August
2018, with submission deadlines (including software reference implementations)
in February 2019. The public announcement of Round 1 submissions was posted
in April 2019, and the Round 2 selections were announced on August 30, 2019.

The NIST call for submissions (like previous competitions) mandated inclusion
of software reference implementations, but left open the option to report hard-
ware implementations. Many NIST LWC submissions included author-reported
implementations in either ASIC or FPGAs, e.g., ESTATE, SAEAES, Oribatida,
etc. [36]. However, [35] specifically highlights the value of 3rd-party evaluations
of candidate submissions. This is the first comparison of hardware submissions
of its kind following the publication of official specifications in April 2019.
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2.2 Authenticated encryption with associated data

In both CAESAR and the NIST LWC standardization process, two operations
are defined on AEAD, authenticated encryption and authenticated decryption.
In encryption, inputs consist of a public message number Npub usually defined
as a “number used once” (nonce), a secret key K, plaintext PT, and associated
data AD (the secret message number Nsec is defined but not expected in NIST
LWC submissions). The outputs of authenticated encryption include Npub, AD,
ciphertext CT, and Tag, which provides for integrity and authenticity of all
transmitted data. In authenticated decryption, the inputs are Npub, AD, K,
CT, and Tag. CT is internally decrypted into PT, however, an internal Tag′ is
computed and checked against Tag prior to releasing PT, in a step called “tag
verification.”

Properly-defined and engineered authenticated encryption schemes are a way
to ensure provision of cryptographic services while avoiding pitfalls of attempting
to combine separate ciphers and hashes (e.g., [31]). However, they are much more
complex than individual block ciphers or secure hashes, and warrant the focus
of the cryptographic community on analysis of their strengths and weaknesses,
including physical hardware implementations.

2.3 Hardware applications programming interface

As in the case of CAESAR, no analogous hardware API was issued in the call
for NIST LWC specifications. In October 2019, the first version of NIST LWC
API was proposed and updated later in November. Described at [29], the LWC
HW API outlines interface standards and minimum compliance criteria to ensure
implementations compatibility of the same algorithms by different designers,
fairness, and ease of benchmarking and evaluation.

For example, external interfaces are aligned with the popular AMBA advanced
extensible interface 4 (AXI4) standard [6], and consists of three ports: public data
(pdi), secret data (sdi), and data output (do). Most data arrives and departs on
the public data interface, except for secret keys, which arrive on the secret data
interface.

Additionally, a protocol consisting of commands, headers, and data, as well
as a prescribed sequence of operations, is used to input and process types of data
required for authenticated encryption and decryption, including Npub, AD, PT,
CT, and Tag and for hashing, including message M and message digest or hash
H.

2.4 Hardware developer’s package

To facilitate the hardware designer’s task of meeting LWC HW API requirements,
a hardware developer’s package is provided at [41]. The package includes an
input processor (PreProcessor) and an output processor (PostProcessor), which
are encapsulated in a top-level module called LWC. A designer can place a
custom design in a subordinate module called CryptoCore, and use standardized
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interfaces to communicate with PreProcessor and PostProcessor. A Python
script called cryptotvgen is used to generate representative test vectors directly
from the software reference implementation, and an accompanying HDL test
bench (LWC TB) automatically verifies test vectors against expected results. An
implementer’s guide to assist in using the LWC HW DP is also available at [39].

In this work, we use the LWC HW DP (v1.0.1), and develop RTL implemen-
tations inside CryptoCore. A representation of CryptoCore, instantiated in LWC
with accompanying I/O modules, is shown in Fig. 1. External signals defined
in the LWC HW API are the AXI-4 compatible signals associated with pdi

(public data), sdi (secret data), and do (data output). Internal input signals to
CryptoCore, defined only in the developer’s package, include bdi (block data
input), key (key input), bdi size, and bdi valid bytes. Output signals to the
PostProcessor, defined only in the developer’s package, include bdo (block data
output), in which CT and Tag depart CryptoCore, and msg auth (message
authentication), which is used to signal results of tag verification in authenticated
decryption. Other signals are defined in [39].

pdi_valid

pdi_data

pdi_ready

sdi_data

sdi_valid

sdi_ready

PW=32

SW=32

bdi_ready CryptoCore

bdi W=32

bdi_valid

bdi_valid_bytes
4

key

key_ready
key_valid

msg_auth

msg_auth_valid

msg_auth_ready

bdo
bdo_ready

bdo_valid

do_valid

do_ready

do_data

Pre

LWC

pdi

sdi

do

bdi_size 3

W=32

Processor
Post

Processor

W=32

PW=32

Fig. 1: Instantiation of CryptoCore inside LWC, together with modules and
signals from LWC HW DP.

In the LWC HW API and the LWC HW DP, decrypted PT is released during
authenticated decryption, regardless of whether or not tag verification succeeds.
While this represents a potential analytic vulnerability, it is necessitated by the
impracticality of internally buffering potentially long messages and concurrent
evaluation by automated test benches.

3 Ciphers implemented in this paper

3.1 SpoC

Description. SpoC, described in [3], refers to “sponge with a masked capacity.”
It is a sponge-based cipher based on the Beetle mode, where ciphertext is not
directed into the permutation, and where combined feedback in the first r-bits of
rate increases protections against forgery with smaller state size, thus leading to
more efficient implementations [18, 12, 13]. In SpoC, capacity is masked with data
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blocks instead of rate which improves the security and allows larger rate value per
permutation call. We implement one of the authors’ primary recommendations,
SpoC-64, with capacity c = 128 bits, state size b = 192 bits, nonce size |N | = 128
bits, and tag size τ = 64 bits. In a sponge-based cipher, the rate refers to the
number of keystream bits generated per permutation call, and the capacity
c = b− r.

This cipher is based around the sLiSCP-light[192] permutation; the ACE
(with 320 bits of state) and SPIX (with 256 bits of state) NIST LWC candidates
also use the sLiSCP permutation [2, 4]. The sLiSCP-light uses a combination of a
Type II Generalized Feistel Structure (GFS) and Simeck box (SB), and consists
of 18 steps of 6 rounds each. Each step consists of three transformations, namely,
SubstituteSubblocks (SSb), AddStepconstants (ASc), and MixSubblocks (MSb).
The non-linear operations are applied in the SSb, or SB. SBs consist of XORs,
bitwise rotations, and a 48-bit logical and.

In order to follow the basic-iterative construction, we construct two SBs (SB1
and SB3) on 48-bits each, which operate on a total of 96 bits out of 192 bits of
state. Round constants are supplied to SB1 and SB3 (corresponding to 48-bit
state words S1 and S3, respectively) at the start of each SSb transformation.
An SSb transformation requires 6 rounds, each of which executes in one clock
cycle. Local state variables, as well as updated round constants, are stored
during SSb transformations. The two round constants (rc0 and rc1) and two step
constants (sc0 and sc1), each 6 bits, are implemented using look-up tables. The
other two state words, S0 and S2, are XORed with step constants in the ASc
transformation. Finally, S0 is mixed with S1, and S2 with S3, using XOR in the
MSb transformation. One sLiSCP permutation is executed in 18× 6 = 108 clock
cycles. The sLiSCP-light[192] permutation is shown in Fig. 2.

Simeck 

Box 1
rc0 rc1

sc0

Simeck 

Box 3

sc1

S0' S1' S2' S3'

S0 S1 S2 S3

SSb

ASc

MSb

Fig. 2: sLiSCP permutation. Bus widths are 48 bits.

The duplex sponge construction of SpoC is shown in Fig. 3. At each point in
time, the state can be divided into a c-bit Y and r-bit Z, and represented as Y ‖ Z.
The initial state Y0 ‖ Z0 is formed by interleaving Nonce and Key (f(N0,K)),
and performing a permutation. The Tag is generated using an interleaved set of
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bytes extracted from across the entire 192-bit state. Control bits ctrl are 4-bit
constants used for domain separation (i.e., to distinguish between authenticated
encryption or decryption phases), such as AD, PT, and Tag, and to differentiate
between full and partial blocks.

b=192

c=128

r=64

f(N0,K)

N1 Aa-1 Mm-1

ctrlAD ctrlPT ctrlTAG
Mm-1

Cm-1

Perm Perm Perm Perm
64

tag

Fig. 3: SpoC duplex sponge construction.

Implementation. We implement a basic-iterative architecture based on the
sLiSCP permutation, where one round of the SSb transformation executes in a
single clock cycle. This requires 108 clock cycles for the permutation. The SpoC
authors, who describe an ASIC implementation in [3], likewise use a basic-iterative
architecture requiring 108 clock cycles per permutation.

The SpoC algorithm requires one-zero padding (10∗ padding) for AD, PT,
and CT. 10∗ padding is not provided as a service in the LWC HW DP, so it
is implemented in our CryptoCore based on the number of valid input bytes
provided by bdi valid bytes. Additionally, the CT size must be equal to the
PT size during output, so we are required to mask non-output bytes. A mask
consisting of FF ∗ is left-shifted once per clock cycle to truncate output to the
desired length. Mask adjustment is overlapped with permutation, so there is no
effect on latency or throughput. Our implementation of SpoC-64 is shown in Fig.
4.

3.2 GIFT-COFB

Description. GIFT-COFB is based on the combined feedback (COFB) mode of
operation with GIFT-128 as the underlying block cipher, which is described in [8].
COFB mode is single-pass (one block cipher call per data block) and inverse-free
(no need for block cipher decryption). The GIFT-COFB recommendations are
data block size n = 128 bits, nonce size n = 128 bits, and tag size τ = 128 bits.

GIFT-128 is a substitution-permutation network (SPN) with a 128-bit key
length and a 128-bit cipher state length. Several NIST LWC candidates such
as SUNDAE-GIFT [7] also use GIFT-128 as their block cipher. This iterative
block cipher has 40 rounds and each round consists of 3 transformations, namely,
SubCells, PermBits, and AddRoundKey. The cipher state divides into four 32-bit
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bdo
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Y Z
128 64
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SW

S63..0

S63..48 S15..0

S41..16

bdipad

bdipad

S191

S190..64

ctrl

192

192

128 128

S191..188

S187..144

bdipad63..32
S143..112

S111..64

192

PW

1

tag

bdi 

128

Fig. 4: Block diagram for SpoC-64.

words and the key state divides into eight 16-bit segments. In SubCells, 32 4-bit
bitslice S-boxes are applied to every nibble of the state. Then, a 32-bit permutation
is applied to every word of the state, which in an iterative implementation, is
only bit wiring. In AddRoundKey, the round key is XORed to the second and
third words of the state, and a round constant is added to the last word of the
state. The addition of the round key is done over only half of the state and the
key scheduling is merely a bit permutation. The round constants are generated
by a 6-bit LFSR. Based on the above features and as mentioned in [9], GIFT-128
has a low footprint which makes it a good choice for lightweight applications [8].

In Fig. 5, a simplified version of the encryption construction of GIFT-COFB
is depicted. At the beginning of the encryption, the state is loaded by a nonce
N , and then the upper 64 bits of the first EK output are considered as the delta
state that is denoted by L in Fig. 5. Except for the last block of AD and PT,
the delta state is multiplied by 2 in GF(264) for every block of AD and PT. For
the last block of AD or PT, the delta state is multiplied by 3i or 3j−i, where
i, j − i ≤ 4. The G function is defined as G(Y ) = (Y [2], Y [1] <<< 1) [8], which
Y [1] and Y [2] are the upper and lower 64-bit of the Y signal, respectively.

Implementation. A basic-iterative architecture is used here, i.e., every round
of the GIFT round function is executed in one clock cycle. The GIFT-COFB
authors also used a round-based design which is implemented in ASIC. GIFT has
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EkN G

Trunc

L

A1 2L||0n/2

...Ek G

Aa 2a-13iL||0n/2

Y[a]

Y[a]
G

M1 2
a3iL||0n/2

... Ek

2a+m-23jL||0n/2

TagEk

Ek

CT1

G

Mm

CTm

Fig. 5: GIFT-COFB encryption construction [8].

40 rounds, thus it requires 40 clock cycles to process a block of the input data.
However, for processing AD and PT, we need additional clock cycles due to the
delta state requirements. As presented in [8], 4 clock cycles are required for the
delta state. In this work, we use 4 clock cycles for processing an AD block, but 2
clock cycles in our finite state machine for processing the plaintext blocks. The
reason that we reduce the clock cycles for PT is that the exponent in 3j−i does
not exceed 2 for an PT block. As a result, we have 40, 44, and 42 clock cycles
for processing nonce, an AD block, and a block of message, respectively. Note
that these are the number of clock cycles that GIFT needs to process one block
of data.

Similar to SpoC, the 10∗ padding is applied to the partial last block of AD and
PT. During the decryption, we need additional padding for the plaintext before
applying it to the feedback. We use the bdi size to accomplish the padding
function. Since modules in the LWC HW DP use 32 bits of bdi and bdo, we use
a counter to track the number of valid bytes that the last block of PT contains.
The truncating module is only used for the last 32 bits of a 128-bit CT, and
masks the CT with the required amount of zeros by utilizing this counter. Our
GIFT-COFB implementation is shown in Fig. 6.

3.3 COMET

Description. COunter Mode Encryption with authentication Tag (COMET)
is a block cipher that can be viewed as a mixture of CTR and Beetle modes of
operations [27]. Similar to GIFT-COFB, COMET is inverse-free and single-pass.
The authors presented three different block ciphers as the COMET underlying
cipher, of which we considered AES-128/128 and CHAM-128/128. The primary
member of COMET is COMET-128 AES-128/128. The COMET recommenda-
tions are key size k = 128 bits, data block size n = 128 bits, nonce size n = 128
bits, and tag size τ = 128 bits.

The COMET encryption process is shown in Fig. 7. The state consists of an
n-bit state Y and a k-bit state Z that can be concatenated to form a b-bit state
(Y ||Z), similar to a sponge-based permutation. The ϕ block in Fig. 7 refers to a
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bdi

GIFT128

key

SW PW

bdi'
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Pad

key'
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64

64
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00...0}

64

= = Trunc
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bdo
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1
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Fig. 6: Block diagram of GIFT-COFB implementation. Bus widths are 128 bits
unless indicated.

permutation over {0, 1}k and defined as ϕ(Z) = (Z1, 2× Z0), where Z1 and Z0

are upper and lower 64 bits of the Z-state, respectively, and the multiplication is
defined over GF(264). Inside the % block, during the AD process, the Y -state is
XORed with the AD, but in the encryption process, the Y -state words are shuffled
first and then XORed with the PT to produce the CT. The encryption process
starts by using the nonce N and secret key K to create the initial state (Y0, Z0),
where Y0 = K and Z0 = Ek(N). In Fig. 7, the control bit Ctrlad indicates the
start of the non-empty AD and in case of the partial last block of AD, the control
bit Ctrlp−ad is used. The PT process is similar to the AD process, but using
different domain separation signals. Moreover, we extract out a block of CT for
each block of message. At the end of the encryption process, the control signal
Ctrltg indicates the tag generation call.

AES Description. AES-128/128 is an SPN with 128-bit key and 128-bit cipher
state [38]. The algorithm is made up of 10 rounds and each round consists of 4
transformations, namely, SubBytes, ShiftRows, MixColumns, and AddRoundKey.
Note that the final round skips the MixColumns step. The initial state is divided
into a 4×4 matrix with 8-bit elements. In SubBytes, the 8-bit S-boxes are applied
over each byte of the state matrix. During the ShiftRows, the i-th row is rotated i
bytes to the left. In the MixColumns step, the state is multiplied by an invertible
MDS matrix. Finally, the 128-bit round key is XORed with the state. In this
paper, we use the AES code (v1.3) available at [25].
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Fig. 7: COMET encryption construction [27].

CHAM Description. CHAM is a 4-branch generalized Feistel structure with
modulo addition, rotation, and XOR (ARX) operations [30]. The key state does
not need an update since CHAM exploits the stateless-on-the-fly key schedule,
which makes it a lightweight cipher. In this paper, we considered CHAM-128/128
with 128-bit key, 128-bit block size, and 80 rounds. The key schedule and two
consecutive round functions of CHAM are depicted in Fig. 8 and Fig. 9, respec-
tively. The secret key K is divided into four 32-bit words (w = 32) and the eight
round keys are generated as in Fig. 8. The initial state is also divided into 32-bit
words and updated as in Fig. 9. Note that the number of rotations to the left for
both key scheduling and round function are different for even and odd rounds.

ROL1 ROL8 ROL11ROL1

32

K[i]

RK[i] RK[(i+k/w)    1]

32 32

Fig. 8: Key schedule of CHAM [30].

Implementation. The COMET authors used little-endian format of indexing
and assumed all binary strings are byte-oriented [27]. As we mentioned before,
our implementations are based on basic-iterative architecture. Therefore, each
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Xi[3]
Xi[2]
Xi[1]

ROL1

RK[i mod 2k/w]

ROL8Xi[0] 32

i

32
32

32 Xi+1[3]
Xi+1[2]
Xi+1[1]

ROL8

RK[i+1 mod 2k/w]

ROL1Xi+1[0] 32

i+1

32
32

32 Xi+2[3]
Xi+2[2]
Xi+2[1]

Xi+2[0]

Fig. 9: Two consecutive round functions of CHAM [30].

round of AES and CHAM are executed in one clock cycle and each of them
require 10 and 80 clock cycles, respectively, to complete the process of one input
block. We use the same datapath and controller for both COMET-AES and
COMET-CHAM, where the implementation is shown in Fig. 10. COMET has
two states, Y and Z that are updated for each block of input. Similar to SpoC
and GIFT-COFB, the 10∗ padding is applied to partial last block of AD and PT.
Moreover, the truncation (chop module in Fig. 10) is also applied on the partial
last block of CT to have the same size as its PT. Both the padding and truncation
modules exploit the bdi size signal as the selector of their multiplexers.

AES128/
CHAM128

key
32

Pad

Kreg

Y

= =

bdo

msg auth1

Zreg

φ

ctrl

bdi
32

Dreg

N

Yreg

Z

Chop CT

Computed tag

AD/PT

Expected tag

32

ϱ

Fig. 10: Block diagram of COMET implementation. Bus widths are 128 bits
unless indicated.
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3.4 Ascon

AEAD Description. Ascon, chosen as the primary recommendation for
lightweight authenticated encryption in the final portfolio of the CAESAR compe-
tition, is a permutation-based cipher with sponge and duplex modes of operation
[20]. The authors primary member is Ascon-128 with key size k = 128 bits,
nonce size |N | = 128 bits, tag size τ = 128 bits, state size b = 320 bits, rate size
r = 64 bits, and capacity size c = b− r = 256 bits.

Fig. 11 shows the encryption structure of Ascon with the duplex mode of
operation. The permutation p is made up of 12 or 6 rounds, where each round
consists of three steps, namely: Addition of constants, substitution layer, and
linear diffusion layer. The 320-bit state is divided into five 64-bit words. In addition
of constants, the third word is XORed with the appropriate round constant. Then,
5-bit S-boxes are applied over the state in the substitution layer step. Finally, each
word of the state in the linear diffusion layer is differently permuted with XOR
and rotation functions. The round number is 12 for initialization and finalization
and is 6 for processing AD and PT.

pa pb
IV

K||N 0*||K

A1

pb

Aa

r

c

pb

0*||1

CT1

K||0*

CTm

pa

K

TM1 Mm

Fig. 11: Ascon encryption construction [20].

The encryption starts with the initialization step. The initial state is formed
by the initialization vector (IV) and concatenation of the secret key K and the
nonce N, followed by a permutation over the state. At the end of the initialization,
K is XORed with the lower 128-bit of capacity. In the finalization, K is first
XORed with the upper 128 bits of capacity and then a permutation is executed
over the state. After the permutation, the tag is extracted from XORing the
lower 128 bits of capacity with K.

Hash Function Description. Fig. 12 shows the construction of the Ascon
hash algorithm. The sizes of rate, capacity, and state are the same as in the
Ascon AEAD, however, the IV value is different. The message digest or hash
H size is h = 256 bits. After the initialization, each block of the message M is
absorbed and a permutation is applied over the state. After finishing the message
absorption, each block of message digest is extracted from the first 64 bits of the
state and after each block extraction, a permutation is applied until the whole
256 bits of hash is obtained. Note that the number of permutation rounds during
the hashing is always 12.
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pa
IV

0*

M1 Mm

r

c

H1

pa pa pa

H[h/r]

pa

Fig. 12: Ascon hash function construction [20].

Implementation. Like the other ciphers, Ascon is implemented based on the
basic-iterative architecture. Thus, the initialization and finalization are executed
in 12 clock cycles and the processing of AD and PT are executed in 6 clock
cycles. We use the same controller and datapath to support both AEAD and
hash function, in which the implementation block diagram is shown in Fig. 13.
In Ascon, a single one and multiple zeros are added at the end of the AD
and message strings before parsing them into r-bit blocks. That is, even if their
lengths are multiples of r = 64 bits, we still have to add a 10∗ block as the last
block of AD or M. Moreover, even if the message is empty, we should still add
the 10∗ block. In Ascon, there is a permutation after the last block of AD or M
in hash, however, there is no permutation for the last block of message in AEAD
(it can be a padded partial block or just a 10∗ block). The datapath handles
these situations by using multiplexers to select the appropriate values in each
condition. The truncation is similar to the other ciphers, i.e., we use zero masking
for invalid bytes of CT. The padding and truncating functions are applied during
loading data, thus they do not affect the latency or throughput.

3.5 Schwaemm and Esch

Description Schwaemm256-128 and Esch256 are the primary recommended
AEAD and hash candidates suggested by Beierle et al. [10]. Schwaemm256-128
processes input data in 256-bit blocks using a key size of 128 bits, a nonce size of
256 bits, and it provides a 128-bit output tag. Esch256 processes input data in
128-bit blocks and provides a 256-bit hash output.

The permutation used by both of the candidates is Sparkle384 which is SPN-
based with an internal state size of 384 bits. The internal state is processed as 6
branches with each branch consisting of 2 consecutive words. The permutations
run for 7 (STEPS SLIM) or 11 (STEPS BIG) steps depending on which block
of the input is being processed. Each step of the permutation uses four rounds
of an ARX box called Alzette and then applies a linear layer. Each of the six
branches of the state are processed by Alzette using a specific round constant.
The rotation amounts used in Alzette vary based on the current round. The use
of this ARX box effectively achieves the substitution needed for the network.
After the completion of four rounds of Alzette, the linear layer is used to provide
diffusion. The linear layer employs a Feistel function, a rotation to the 3 branches
on the rightmost side of the state, and finally, a swap between the leftmost 3
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32 32
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= =
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CTHT
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32
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msg auth

1

Sc1 Sc0
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Fig. 13: Block diagram of Ascon implementation. Bus widths are 128 bits unless
indicated. The dash-dotted lines are exploited in both AEAD and hash, the
dotted lines are only used in AEAD, and the dashed lines are only used in the
hash function.

branches and the rightmost 3 branches. The design of this linear layer allows for
long trails by leaving half of the words in the state unmodified.

Both the AEAD and the hash recommendations rely upon a sponge-based
mode of operation. For AEAD, a slight variation of Beetle is used. The 384-
bit state has a rate of 256 bits and a capacity of 128 bits. Prior to executing
the permutation, the rate portion of the state is updated by a FeistelSwap
function, and a combined feedback function, rho. A constant is injected for
domain separation and then finally a rate whitening layer is applied to prevent
attackers from gaining partial information from the permutation. For hashing, a
more standard sponge mode of operation is used. The 384-bit state has a rate
of 128 bits and a capacity of 256 bits. Before the start of each permutation, the
Feistel function mentioned in the preceding paragraph is applied to the rate
portion of the state.

Implementation This implementation of Schwaemm and Esch also uses a
basic-iterative architecture. Each of the 4 rounds of the substitution layer requires
one clock cycle and this implementation allocates one additional clock cycle for
the linear layer. Based on the number of steps, the total clock cycles for the
permutation will vary, with 35 cycles needed for STEPS SLIM and 55 cycles
needed for STEPS BIG. To perform the SPARKLE384 permutation, 6 separate
instances of the ARX box Alzette are used. The structure of the permutation
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Fig. 14: The Sparkle384 permutation. Bus widths are 32 bits unless otherwise
indicated.

can be seen in Figure 14. For both AEAD and hashing, 10* padding is used to
complete partial input blocks. The overall structure of the datapath used for the
combined implementation of Schwaemm256-128 and Esch256 can be seen in
Figure 15.

Fig. 15: Block diagram of the combined datapath for Schwaemm256-128 and
Esch256. Bus widths are 384 bits unless otherwise indicated. The same dash-
dotted, dotted, and dashed line scheme used previously applies here.
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3.6 Summary

Characteristics of implemented ciphers are summarized in Table 1. All imple-
mented ciphers have nonce and key size of 128 bits, except for Schwaemm that
has a 256-bit nonce.

Table 1: Characteristics of implemented ciphers.

Cipher
block

(bits)
steps rounds

state

(bits)

rate

(bits)

tag

(bits)

hash

(bits)

SpoC-64 64 18 6 192 64 64 -

GIFT-COFB 128 - 40 128 - 128 -

COMET-AES 128 - 10 128 - 128 -

COMET-CHAM 128 - 80 128 - 128 -

Ascon 64 - 6/12 320 64 128 256

Schwaemm 256 7/11 4 384 256 128 -

Esch 128 7/11 4 384 128 - 256

Latency and throughput formulas for the implemented ciphers are shown
in Table 2. Clock cycles for AEAD encryption operation are shown as α+ β ×
AD + γ × PT , where α represents the sum of any initiation and tag generation
cycles, and β and γ are the number of cycles to process one block of AD and
PT, respectively. For the hash function, the number of clock cycles are shown
as δ + ε×M , where δ is the sum of cycles of all initialization, finalization, and
extraction of the 256-bit H and ε is the number of cycles to absorb one block
of message. Latency for both AEAD and hash is defined as the number of clock
cycles required to process one block of message from start to end. For long
messages, throughput is computed as TP = fclk × (bits/block)/(cycles/block),
where fclk is the maximum achieved clock frequency and cycles/block refers to γ
and ε for AEAD process and hashing, respectively.

4 Results

FPGA implementations in this paper are developed in Verilog or VHDL using
RTL design methodology and based on a basic-iterative architecture. Our im-
plementations are compliant with the LWC HW API, and include modules in
the LWC HW DP (v1.0.1). Results are implemented in Xilinx Vivado 2018.3
for the Xilinx Artix-7 FPGA (xc7a100tcsg324-3), and optimized for throughput-
to-area (TPA) ratio using the Minerva automated hardware optimization tool,
introduced in [22] and available for download at [1]. TPA ratio is a useful metric
for comparing cipher hardware implementations, since it captures any attempt
by the implementer to significantly optimize one characteristic (e.g., area or
throughput) at the expense of another. Our implementations are also verified in
actual hardware (xc7a100tftg256-3) using the FOBOS [16] and representative
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Table 2: Latency and throughput formulas for selected ciphers.
Encrypt Latency TP

SpoC 219 + 109×AD + 111× PT 330 fclk× 64/111

GIFT-COFB 102 + 50×AD + 53× PT 155 fclk× 128/53

COMET-AES 37 + 16×AD + 20× PT 57 fclk× 128/20

COMET-CHAM 179 + 87×AD + 91× PT 270 fclk× 128/91

Ascon-AEAD 42 + 9×AD + 10× PT 52 fclk× 64/10

Schwaemm 114 + 43×AD + 52× PT 166 fclk× 256/52

Hash Latency TP

Ascon-Hash 60 + 15×M 75 fclk× 64/15

Esch 63 + 39×M 102 fclk× 128/39

test vectors generated by cryptotvgen in the LWC HW DP. As discussed in [40],
verification in actual hardware is important, since unverified implementations
might contain conditions (such as combinational loops or latches) which render
them ineffective on actual platforms. Moreover, we implement the ciphers in
Xilinx ISE for the Xilinx Spartan-6 FPGA and in Quartus Prime Lite for the
Intel Cyclone-V FPGA.

In this work, the power of the selected Round 2 candidates is measured
during operation on the NewAE CW305 Artix-7 target board at three different
frequencies, i.e., 10, 25, and 40 MHz. The results at 40 MHz are shown in Table
3 and the capturing system architecture is depicted in Fig. 16. In Table 3, Pmean

represents the average power over the entire traces, Pmax is the highest captured
power during any trace, ∆P is obtained as ∆P = (|Pmax − Pmean|/Pmean)× 100,
energy per bit is derived as E/bit = Pmean/TP, and we obtain the power gradient
(dPmean/dFreq) using the power results at 10, 25, and 40 MHz frequencies. From
this table, we observe that SpoC and Ascon-AEAD have the lowest (30.8 mW)
and the highest (46.2 mW) powers at 40 MHz, respectively. COMET-AES has
the smallest E/bit, 0.16 nJ/bit and the next lowest is Ascon-AEAD with 0.18
nJ/bit. The maximum E/bit belongs to SpoC with 1.34 nJ/bit. In the case of
the AEAD-Hash implementations, we measured power by considering hash test
vectors that contain only message and hash values.

The results of our implementations are shown in Table 4. Additionally, these
implementations are available for inspection at [37]. As a disclaimer, our imple-
mentations are baseline representations of selected ciphers using basic-iterative
architecture; further optimizations may be possible along one or several dimen-
sions, including but not limited to improved throughput or reduced area.

Based on the results of Table 4, SpoC has the highest maximum frequency of
268.0 and 224.4 MHz in Artix-7 and Cyclone-V, respectively, while Ascon-AEAD
has the highest frequency of 174.4 MHz in Spartan-6. The lowest frequency in
Artix-7 and Spartan-6 belongs to Schwaemm and Esch at 106.0 and 61.0 MHz,
respectively, and it belongs to Schwaemm at 72.0 MHz in Cyclone-V. In terms
of area in FPGA look-up tables (LUTs) or adaptive logic modules (ALMs) in
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Table 3: Power and energy characteristics of the selected ciphers at 40 MHz.

Pmean

mW
Pmax

mW
∆P
%

E/bit
nJ/bit

Gradient
dP/dFreq

SpoC 30.8 35.4 14.94 1.34 0.13

GIFT-COFB 32.1 36.7 14.33 0.33 0.17

COMET-AES 41.6 47.7 14.66 0.16 0.39

COMET-CHAM 32.1 36.3 13.08 0.57 0.19

Ascon-AEAD 46.2 53.2 15.15 0.18 0.47

Ascon-Hash 34.0 37.5 10.29 0.20 0.26

Schwaemm 39.1 43.7 11.76 0.20 0.43

Esch 39.3 44.7 13.74 0.30 0.43

+

-
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Fig. 16: Power Capturing system architecture.

Cyclone-V, SpoC is the smallest with 1172 LUTs, 1364 LUTs, and 678 ALMs in
Artix-7, Spartan-6, and Cyclone-V, respectively. Schwaemm and Esch has the
largest area with 5002 LUTs, 6279 LUTs, and 3548 ALMs in Artix-7, Spartan-6,
and Cyclone-V, respectively. Ascon-AEAD has the highest TP at 1683.2, 1116.4,
and 1295.6 Mbps in Artix-7, Spartan-6, and Cyclone-V, respectively. The lowest
TP is held by SpoC at 154.5, 75.6, and 129.4 Mbps in Artix-7, Spartan-6, and
Cyclone-V, respectively. In terms of TPA ratio, Ascon-AEAD is the highest at
0.887 Mbps/LUT, 0.584 Mbps/LUT, and 1.233 Mbps/ALM in Artix-7, Spartan-
6, and Cyclone-V, respectively. Schwaemm with 0.121 Mbps/LUT in Artix-7,
SpoC with 0.055 Mbps/LUT in Spartan-6, and COMET-CHAM with 0.069
Mbps/ALM in Cyclone-V have the smallest TPA ratios. Additionally, the latency
of our Ascon-AEAD and COMET-AES implementations, respectively, are only
16% and 17% of the latency of our SpoC implementation. This provides Ascon-
AEAD and COMET-AES the advantage of processing very short messages, which
is a desirable characteristic for LWC candidates identified in [35].

We do not compute TPA ratios for AEAD+Hash implementations; this is
not a relevant metric, since multiple components with different TP share the
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same area. However, in terms of comparison between hash implementations, we
note that Ascon-AEAD+Hash has 36% of the area, 3.3 × the TP, uses 87% of
the power and is 33% more energy efficient than Schwaemm+Esch, where TP,
power and energy are measured in terms of hash-only test vectors.

5 Analysis

5.1 Comparison with selected previous authenticated cipher
implementations

Previous hardware implementations during CAESAR and those provided as
part of the NIST LWC submissions establish a basis for comparison with cipher
implementations in this paper. Since LWC HW API is very similar to CAESAR
HW API, we bring some CAESAR API-compliant examples from [23, 19] in
Table 4 for comparison. Since these examples use the lightweight CAESAR
HW DP, which only appeared at the end of 2017, there are fewer available
examples. The earlier version of the CAESAR HW DP was designed for high
speed implementations and included functionality not used by many ciphers, and
exacted a larger toll on area overhead. The AES-GCM in Table 4 is compliant
with the George Mason University (GMU) HW API [26], which is close to the
CAESAR HW API. Moreover, it also uses basic-iterative architecture which
allows a better comparison with our implementations. The AES-GCM results are
obtained with the same optimization and simulation tools as our implementations.

A full-scale comparison with authors’ implementations of NIST LWC candi-
dates is premature, since authors reported results for implementations that are
not compliant with the LWC API. Some representative examples of block and
sponge cipher FPGA implementations, e.g., ESTATE (ESTATE-TweGIFT-128),
SAEAES, and Oribatida (Oribatida-256-64), are included in Table 4. All CAE-
SAR and NIST LWC implementations provided for comparison use a 128-bit
key; TP is computed based on the processing rate of a large number of blocks
of plaintext into ciphertext. The range of TPA ratios (0.043 to 0.073) for the
Round 3 CAESAR candidates, i.e., Ascon-small, CLOC-AES, and SILC-AES,
is analogous to the range of TPA ratios for some of our Spartan-6 implementa-
tions: SpoC (0.055), Schwaemm (0.065), and COMET-CHAM (0.088). However,
the Spartan-6 TPA ratios of GIFT-COFB (0.165), COMET-AES (0.269), and
Ascon-AEAD (0.584) are noticeably higher. Although the implementations of
sampled NIST LWC candidates are based on a different FPGA platform and the
range of TPA ratios (0.547 to 0.757) is greater than some of our ciphers, it is close
to some other implementations, such as Ascon-AEAD. Regarding AES-GCM,
its TPA ratio is higher than most of our implementations, but Ascon-AEAD is
yet higher in all three FPGAs. AES-GCM has a high throughput because of its
low latency. However, in terms of area, which is a more important feature than
throughput in lightweight designs, it is larger than most observed LWC ciphers.

A judgement as to whether or not these implementations are better than either
our implementations or previous CAESAR implementations would be premature,
since no uniform standard has been established for benchmarking hardware
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Table 4: Results of implementations in this work (TW), and comparison with
CAESAR lightweight and NIST LWC candidates. The units of Freq, Area,
TP, and TPA are MHz, LUTs (ALMs for Cyclone-V), Mbps, and Mbps/LUT
(Mbps/ALM), respectively.

Cipher Type FPGA Freq Area TP TPA Ref

CAESAR and Reference Implementation

Ascon-small Sponge Spartan-6 146.1 1640 114.0 0.070 [19]

CLOC-AES Block Spartan-6 101.9 1604 68.7 0.043 [23]

SILC-AES Block Spartan-6 109.0 1052 76.6 0.073 [23]

AES-GCM Block

Artix-7 222.0 3268 2583.3 0.790

[26]Spartan-6 144.7 3350 1683.6 0.503

Cyclone-V 165.9 2651 1930.7 0.728

NIST LWC

SpoC Sponge

Artix-7 268.0 1172 154.5 0.132

TWSpartan-6 131.0 1364 75.6 0.055

Cyclone-V 224.4 678 129.4 0.191

GIFT-COFB Block

Artix-7 263.0 1932 635.2 0.329

TWSpartan-6 134.3 1960 324.3 0.165

Cyclone-V 198.2 1122 478.7 0.427

COMET-AES Block

Artix-7 251.0 2753 1606.4 0.584

TWSpartan-6 128.6 3058 822.9 0.269

Cyclone-V 118.0 3383 755.3 0.223

COMET-CHAM Block

Artix-7 201.0 2214 282.7 0.128

TWSpartan-6 145.5 2338 204.7 0.088

Cyclone-V 131.5 2696 184.9 0.069

Ascon-AEAD Sponge

Artix-7 263.0 1898 1683.2 0.887

TWSpartan-6 174.4 1913 1116.4 0.584

Cyclone-V 202.4 1051 1295.6 1.233

Ascon-AEAD+Hash Sponge

Artix-7 242.0 2181 1032.5 -

TWSpartan-6 158.9 2188 678.1 -

Cyclone-V 210.5 1064 898.0 -

Schwaemm Sponge

Artix-7 106.0 4313 521.8 0.121

TWSpartan-6 65.8 5005 323.9 0.065

Cyclone-V 72.0 2802 354.5 0.127

Schwaemm+Esch Sponge

Artix-7 106.0 5002 347.9 -

TWSpartan-6 61.0 6279 200.1 -

Cyclone-V 75.5 3548 247.8 -

ESTATE Block Virtex-7 580.1 1413 928.3 0.657 [17]

SAEAES Block Virtex-7 145.9 348 263.3 0.757 [32]

Oribatida Sponge Virtex-7 554.2 940 514 0.547 [14]



HW Implementations of NIST LWC Candidates 23

implementations in the NIST LWC standardization process. For instance, an
implementation “compliant with the LWC API” is required to include hardware
necessary for input and output LWC data in specified protocol, and must also
realize “corner cases” (e.g., null blocks, partial blocks, padding, and truncating)
which often involve significant resources.

5.2 Observations

COMET-CHAM and COMET-AES use the same mode of operation but with
different underlying ciphers, i.e., CHAM and AES, respectively. Considering the
area results of different FPGAs, we observe that COMET-CHAM is 20% smaller
than COMET-AES, which makes it a more lightweight cipher than AES. However,
COMET-CHAM needs 80 rounds due to the CHAM ARX round function, thus
leading to a smaller TP than COMET-AES.

Based on the results of Table 3 and Table 4, Ascon-AEAD and COMET-AES
have both the highest powers and throughput among the rest of the ciphers,
and because of high TP, they are the most energy efficient (i.e., smallest E/bit).
Although Ascon-AEAD has a smaller area, its power is higher than COMET-AES
due to its larger internal state size.

Power gradients are the best predictor of dynamic power consumption at
higher frequencies, since increasing power is highly linear with frequency. SpoC,
GIFT-COFB, and COMET-CHAM together have the lowest average powers and
gradients, which is a positive quality for lightweight ciphers.

Finally, implementations of [19, 23] have lightweight targets, while our im-
plementations use basic-iterative architecture. A full comparison of NIST LWC
candidates implemented with lightweight (e.g., reduced area, performance, and
power) targets is the scope of future work.

6 Conclusion

We provided a medium-scale comparison of 3rd-party FPGA implementations
of selected NIST LWC standardization process Round 2 candidates. Candidates
examined in this paper, SpoC, GIFT-COFB, COMET-AES, COMET-CHAM,
Ascon, and Schwaemm and Esch are representative of many of the 32 NIST
LWC submissions accepted to Round 2. Implementations are fully-compliant
with the newly-released LWC HW API for lightweight cryptography, use the
associated LWC HW developer’s package, and are verified to operate in actual
hardware using the FOBOS test bench. Furthermore, they are implemented in
different FPGAs (Artix-7, Spartan-6, and Cyclone-V), and power and energy per
bit of each cipher are measured at 40 MHz on a hardware instance of the Artix-7.

Our results show that SpoC and Ascon-AEAD have the highest maximum
frequencies (both 2.5× greater than Schwaemm). Moreover, SpoC has the lowest
area (26% of the LUTs or ALMs of Schwaemm) and the lowest power at 40 MHz
(33% smaller than Ascon-AEAD). Ascon-AEAD has the highest throughput
(TP) (12× greater than SpoC), and the highest throughput-to-area (TPA) ratio
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(8.6× more than Schwaemm). Meanwhile, COMET-AES and Ascon-AEAD are
the most energy efficient, and SpoC, GIFT-COFB, and COMET-CHAM have
the lowest increase in dynamic power with increasing frequency.

The magnitude of differences in maximum frequencies, area, power, TP,
and TPA ratios supports the rationale for gaining information on hardware
implementations as early as possible in any cryptographic contest. The TPA ratio
results of some of the implemented ciphers are similar to the results reported
for CAESAR HW API compliant late-round CAESAR candidates, but have
TPA ratios which are less than TPA ratios reported for a selected group of
NIST LWC submission author implementations of ciphers of similar construction.
On the other hand, some cipher implementations have TPA ratios better than
CAESAR candidates and close to the LWC authors’ reports. Thus, no conclusion
can be drawn regarding the relative hardware merits of candidates implemented
according to different compliance standards, which reinvigorates the need for a
standardized hardware API and minimum compliance criteria for the NIST LWC
standardization process.

References

1. Minerva: Automated Hardware Optimization Tool, https://cryptography.gmu.
edu/athena/index.php?id=Minerva

2. Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit, R.: ACE: An Authenti-
cated Encryption and Hash Algorithm Submission to the NIST LWC Competi-
tion (Mar 2019), https://csrc.nist.gov/Projects/Lightweight-Cryptography/
Round-2-Candidates

3. AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., Rohit, R.: SpoC: An
Authenticated Cipher Submission to the NIST LWC Competition (Feb 2019), https:
//csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates

4. AlTawy, R., Gong, G., He, M., Mandal, K., Rohit, R.: Spix: An Authenticated
Cipher Submission to the NIST LWC Competition (Mar 2019), https://csrc.

nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates
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