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Abstract

Fujioka, Takashima, Terada and Yoneyama, in their 2018 work on an authenticated key exchange
protocol using supersingular isogenies, use new assumptions in their security proof of the scheme. In
particular, they define the degree-sensitive and degree-insensitive SI-GDH assumptions and problems.
These assumptions include a decision oracle that is used in the security proofs. We give evidence that
those assumptions are not well defined. Hence, the security proofs in their paper do not seem to be
correct.

1 Introduction

Consider an isogeny between two supersingular curves φ : E(Fp2) → E′(Fp2), where p = `eAA · `
eB
B · f ± 1

is prime. In SIDH [JDF11, DFJP14] and similar schemes, the public key of a participant in the scheme
consists of both the target curve E′, as well as the image of two specific points P ′, Q′ under φ. The secret
isogeny of participant A and B in the key exchange will have degree `eAA or `eBB respectively, and the points
PA, QA, PB , QB are some publicly defined bases for the E[`eAA ] and E[`eBB ] torsion subgroups of E (respec-
tively). That is, E[`eAA ] = 〈PA, QA〉 and likewise for B.

In this work, we are interested in the commutative diagram Figure 1.

E EA

EB EAB

φA

φB

φBA

φAB

Figure 1: Commutative diagram of SIDH, where ker(φBA) = φB(ker(φA)) and ker(φAB) = φA(ker(φB)).
Figure 3 of [FTTY19]

Figure 1 depicts the two public key curves E′
A and E′

B of participants A and B, along with the fourth
curve E′

AB . In SIDH, the isomorphism class of this fourth curve is uniquely determined by the choice of
secret kernels by participants A and B. In fact, an important characteristic of the isogenies used in SIDH is
that the degrees of these isogenies φA, φB is much less than the number of isomorphism classes of supersin-
gular elliptic curves (roughly p/12). This means that the public curves (E,EA, EB) uniquely determine the
shared curve EAB (of course, this is hard to compute without secret information). Thus, the j-invariant of
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the final curve produced by both parties will function as a shared secret. Throughout the remainder of this
paper, we shall define i ∈ {A,B} to represent one participant in the protocol, and i ∈ {B,A} to represent
the other (i = A iff i = B). The participants provide images of basis points so that their counterpart can
efficiently compute the curve EAB - the public key points P ′

i = φ(Pi) and Q′
i = φ(Qi) allow the isogenies to

be “composed”, giving φ′AB from φ′B and similarly for A.

If isogenies of larger degree are allowed to be used, then eventually (the isomorphism class of) EAB is
no longer uniquely determined by EA and EB . The natural question we will be investigating in this short
note, directly related to the degree-insensitive oracle of [FTTY19], is whether the additional provision of
torsion generator images provide enough additional restriction to uniquely define EAB .
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2 Definitions and conjectures

In the ensuing discussion, we shall work with the finite field Fp2 for a fixed prime p. We shall begin by
defining various sets which will be used in the subsequent discussion. The first, is the set of triples

PKi = {(E′, P ′, Q′) |E′ supersingular, P ′, Q′ ∈ E′(Fp2), 〈P ′, Q′〉 = E′[`
ei
i

]} (1)

Note that this definition is completely independent of any isogeny from E to E′.

We then define the sets of valid SIDH public keys. There are two important cases which correspond
respectively to the degree-sensitive and degree-insensitive SI-GDH problems [FTTY19]. The first is the
exact case described above:

PKds
i = {(E′, P ′, Q′) | ∃φ : E → E′, P ′ = φ(Pi), Q

′ = φ(Qi),deg φ = `eii } (2)

The second case is similar, but the restriction on the degree of φ is loosened:

PKdi
i = {(E′, P ′, Q′) | ∃φ : E → E′, P ′ = φ(Pi), Q

′ = φ(Qi),deg φ = `mi ,m ∈ Z+} (3)

As we shall soon discuss, in the first of these two sets, the degree uniquely determines the φ for each tuple.
In the second case, however, it is one of our main conjectures that the φ are not uniquely determined by the
triples in PKdi

i .

Now that we have defined these three sets, we shall define corresponding “SIDH square” sets. The first
of these is the weakest case:

χ = {(pkA, pkB , j(E′)) | pkA ∈ PKA, pkB ∈ PKB , E
′(Fp2) supersingular} (4)

Then we have the degree-sensitive and degree-insensitive restricted versions of this set:

χds = {(pkA, pkB , j(EAB)) | pkA ∈ PKds
A , pkB ∈ PKds

B ,

there exists a supersingular elliptic curve EAB

and isogenies between pkA, pkB , EAB which

satisfy the conditions in Figure 1}

χdi = {(pkA, pkB , j(EAB)) | pkA ∈ PKdi
A , pkB ∈ PKdi

B ,

there exists a supersingular elliptic curve EAB

and isogenies between pkA, pkB , EAB which

satisfy the conditions in Figure 1}
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These two sets both correspond to valid SIDH squares in the two different settings, with the sec-
ond simply loosening the restriction on the degrees - deg φA = deg φBA = `mA for any integer m, and
deg φB = deg φAB = `nB for any integer n.

Fujioka et al. [FTTY19] use an oracle in their security proof which distinguishes between the set χ, and
the set of all valid public key tuples and final j-invariants χds or χdi which fit a commutative diagram as in
the scheme above. We conjecture, though, that in the degree-insensitive case, χ = χdi - that is, all possible
pairs of basis points on all possible supersingular elliptic curves, and all final shared j-invariants, can be
reached by a suitable choice of degree-insensitive φA and φB . The aim of this short note is to give some
evidence for this conjecture.

Fujioka et al. hints toward this problem, stating

Therefore, as an extreme possible case, any tuple of supersingular elliptic curves (EA, EB , EAB)
might form the commutative diagram in [Figure 1], that is, any tuple of such curves would be
true instances in the hypothetical case. We cannot exclude such possibility from our present
knowledge of the di-SI-GDH problem.

We conjecture a much stronger result, however. We proceed in two stages. In the first, we will give evidence
that all possible public key tuples PKi of such schemes can arise as valid public key tuples (when considering
all possible choices of φi). This is Conjecture 1.

Conjecture 1. PKi = PKdi
i

We then give evidence that, given any two such public key tuples pkA ∈ PKA, pkB ∈ PKB , and for any
choice of supersingular curve E′, (pkA, pkB , j(E

′)) ∈ χdi. In other words, any supersingular j-invariant is
a valid shared secret and may be produced in a degree-insensitive key exchange with those keys. This is
because the loosened restriction on the degree of the isogenies φi is not enough to uniquely determine the
isomorphism class of the fourth curves EAB , there exist many different isogenies with different kernels which
produce the same public key tuples. This is summarised in Conjecture 2.

Conjecture 2. χ = χdi

3 Uniqueness of isogenies from public keys

In the SIDH protocol, the public keys used by each participant uniquely determine the secret isogenies used
[MP19], and thus also the shared secret (although this is, of course, hard to compute without the secret
knowledge).

We now show that even in the degree-insensitive case, if one participant uses an isogeny of the correct
degree, the public keys uniquely determine the shared secret.

Lemma 1. In the degree-insensitive case, if participant i uses an isogeny of the correct (degree-sensitive)
degree, deg φi = `eii , then j(EAB) is uniquely determined regardless of deg φi.

Proof. Without loss of generality, assume that it is participant B who uses an isogeny φB of correct degree.
Refer to Figure 2. As usual, we have an elliptic curve E along with a chosen `eBB -torsion basis PB , QB . φB
thus has kernel 〈K = PB + αQB〉 for some α. Suppose that we have two isogenies φA, φ

′
A : E → EA such

that
P ′ = φA(PB) = φ′A(PB) Q′ = φA(QB) = φ′A(QB)

Denote the kernels of these maps by GA, G
′
A respectively (so clearly E/GA ∼= E/G′

A). Now irrespective of
which isogeny participant A used, B will compute the isogeny φAB with kernel

kerφAB = 〈P ′ + αQ′〉
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And thus EAB is uniquely determined (up to isomorphism)

E/〈kerφB , GA〉 ∼= E/〈kerφB , G
′
A〉 ∼= EAB

E EA

EB EAB

φA

φ′A

φB

φBA

φ′BA

φAB

Figure 2: Commutative diagram of Lemma 1, where ker(φBA) = φB(ker(φA)), ker(φ′BA) = φB(ker(φ′A)) and
ker(φAB) = φA(ker(φB)) = φ′A(ker(φB)).

We thus require, for Conjecture 2, that both isogenies be of arbitrary-power degree, it is not sufficient
for only one to be degree-insensitive.

4 Weil pairing restriction

As discussed in [GV18], following from Proposition 8.2 of Silverman [Sil09], the Weil pairing invokes the
condition that, for an isogeny φ : E → E′,

eN (φ(P ), φ(Q)) = eN (P,Q)deg(φ) (5)

Where N = `eBB . This is a simple additional condition that can be applied to distinguish between χ and
the χds or χdi in some cases. In many cases, such as those we will see in Section 5, this in fact provides no
extra restriction on χ when deg(φ) can be arbitrary powers of 2. In some cases where it does, though, this
additional restriction can be incorporated easily into the definition of χ above, limiting the possible public
key tuples. Then, we consider a distinguisher between this new χ and the set of valid public keys/j-invariants
in exactly the same manner. We thus ignore it for the sake of simplicity, merely observing that the pairing
is easily computed.

5 Experimental evidence

5.1 All public key tuples are valid

In this section we exhibit the experimental evidence we have collected for Conjecture 1.

In the case that p = 2332 − 1 = 71, we have shown using MAGMA, that using arbitrary 2-isogenies, we
can reach any pair of points P,Q which generate E[32] on any elliptic curve in the isogeny graph (up to
isomorphism). There are exactly 3888 unique ordered tuples of points P,Q on each elliptic curve E(Fp2)
such that both P and Q have order 32, and 〈P,Q〉 = E[32]. In order to accomodate for isomorphism classes
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of the curves, one particular representative curve was (arbitrarily) chosen for each j-invariant. Then, for all
subsequent curves with the same j-invariant found by the algorithm, the isomorphism to the representative
curve was computed and used to translate the points to this original curve. This allowed for removal of
duplicates public key tuples. We found that all 3888 unique ordered pairs on all 7 isogenous supersingular
curves were reached from the starting P,Q on the curve with j-invariant 0.

We have also verified this result with high probability on a larger case, where p = 2233 − 1 = 107, in
which case there are exactly 648× 486 = 314, 928 possible ordered pairs P,Q on each supersingular elliptic
curve E, generating E[33]. We allowed our simulation to run until the points reached on the curve with j-
invariant 94 totalled 314, 673, which is approximately 99.92% of the expected total number of points. Due to
the probabilistic nature of the algorithm, the discovery of new pairs of points decreases rapidly as the number
of duplicates increases, so we decided to end the simulation early (after a total of 20 million 2-isogenies had
been traversed in the supersingular isogeny graph), deciding that this was overwhelming evidence that all
points were likely reachable as in the smaller case. We see no reason that these results would not extend to
supersingular curves over finite fields of any choice of p as required by the assumption.

In both of these cases, the Weil pairing imposes no extra restriction on the validity of a randomly cho-
sen pair of linearly independent points for each choice of isogeny. Observe that for N = 32, 2 has order 6
modulo 9, and for N = 33, 2 has order 18 = ϕ(33), so there is no apparent theoretical reason why not all
choices would be valid, and we observe this in practice.

5.2 All j-invariants are valid given any public keys

We now discuss Conjecture 2. Clearly Conjecture 2 relies on Conjecture 1, because if it were possible to dis-
tinguish PKi from PKdi

i , the same distinguisher could be applied just to the public keys in χ to distinguish
from χdi. But Conjecture 2 also requires that the j-invariant j(EAB) should not provide any advantage in
distinguishing between the two sets.

We make an important observation, in that because the degree of the isogeny is allowed to be an arbi-
trary power of `i, the image of points Pi, Qi no longer uniquely determines the isogeny used. That is, not
only does there exist a power-of-`i isogeny φi for any pair P ′, Q′ such that P ′ = φ(Pi), Q

′ = φ(Qi), but also
that there exist many such isogenies, each with different kernels.

In order to demonstrate this in practice using MAGMA, we used an extension field such as Fp6 (where p = 71
as above) so that we can find a point of order 27 to function as the kernel of φB . Let α ∈ Fp6 denote the
element which generates the extension Fp6 over the base field Fp. We begin with elliptic curve E : y2+y = x3

with j-invariant 0. In the simulation we selected at random the points

PB = (7α5 + 24α4 + 49α3 + 68α2 + 2α+ 5 : 46α5 + 36α4 + 38α3 + 31α2 + 3α+ 38 : 1)

QB = (41α5 + 29α4 + 3α3 + 23α2 + 32α+ 56 : 9α5 + 41α4 + 63α3 + 57α2 + 33α+ 1 : 1)

We also selected a point of order 27 to function as the kernel for the isogeny chosen by participant B (which
must be of higher degree than 9 by Lemma 1)

K = (3α5 + 41α4 + 18α3 + 4α2 + 13α+ 45 : 27α5 + 57α4 + 49α3 + 11α2 + 65α+ 64 : 1)

We then proceeded via breadth first search along non-backtracking 2-isogenies in the graph to find two
distinct isogenies φA, φ

′
A : E → E′, such that φA(PB) = φ′A(PB) and φA(QB) = φ′A(QB). We present here

an example where E′ : y2 +y = x3 +46x+60 (so j(E′) = 66), and deg φA = deg φ′A = 210. Non-backtracking
means that no isogeny returned along its dual in the next step, ensuring that distinct paths will compose to
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produce isogenies with different kernels.

φA(PB) = (28α5 + 25α4 + 54α3 + 59α2 + 8α+ 66 : 66α5 + 64α4 + 36α3 + 63α2 + 29α+ 23 : 1)

φA(QB) = (21α5 + α4 + 5α3 + 62α2 + 6α+ 66 : 58α5 + 67α4 + 51α3 + 36α2 + 47α+ 48 : 1)

Simply showing that isogenies with different kernels exist which produce the same public keys is an interesting
observation. But to properly support Conjecture 2, we wish to demonstrate that these different kernels can
produce different curves EAB . The image of K under each of these isogenies is

φA(K) = (44α5 + 39α4 + 59α3 + 41α2 + 55α+ 64 : 7α5 + 39α4 + 61α3 + 64α2 + 14α+ 47 : 1)

φ′A(K) = (67α5 + 49α4 + 11α3 + 19α2 + 53α+ 49 : 40α5 + 65α4 + 13α3 + 24α2 + 12α+ 67 : 1)

Finally, each of these images of degree 27 are used to create an isogeny φAB , φ
′
AB to complete the SIDH

square. The first determines an isogeny to the isomorphism class of curves with j-invariant 17, while
the second gives j-invariant 48. Thus, despite both φA, φ

′
A giving the same public key triple, each gives a

different curve EAB in this degree-insensitive key exchange. This shows that EAB is not uniquely determined
and strongly supports Conjecture 2. To demonstrate that there exist such “collisions” which produce any
supersingular j-invariant would be computationally intensive in practice but the presence of at least one
such case is strong evidence for our conjecture.

6 The di-SI-GDH oracle

Above we have discussed a particular problem of distinguishing between the set of all valid SIDH commuta-
tive diagrams χds/χdi, and a set of all tuples of supersingular elliptic curves with all possible choices of points
(subject to the easy-to-compute restrictions above) on them and all possible shared-secret j-invariants, χ. In
this section we briefly relate this to the specific working of the di-SI-GDH oracle of Fujioka et al. [FTTY19].
The oracle recieves public SIDH parameters including the curve E, points PA, QA, PB , QB ∈ E, and (candi-
date) public key tuples of party A and B, along with a j-invariant representing the shared secret obtained
through the SIDH protocol with these keys. The oracle then returns true if isogenies exist between E, EA,
EB , and a curve EAB such that the public points are mapped in the correct way and the j-invariant of
EAB is equal to the one provided (see Figure 1). This oracle is used in the security proof to allow a correct
simulation in the random oracle model.

Consider, firstly, the public key triples (E′, P ′, Q′) provided. Assuming the points obey the subgroup gen-
eration and Weil pairing restrictions, Conjecture 1 claims that these provide no way to distinguish between
PKi and PKdi

i , which are equal sets. But in addition to this, we give evidence to support the claim (Conjec-
ture 2) that even by fixing a choice of two public keys, any choice of j-invariant j(E′) is still valid for some
degree-insensitive choice of isogenies. We have given experimental evidence that there exist many different
isogenies that produce any public key, each with a different kernel. We conjecture that because the kernels
of these isogenies uniquely determine the final elliptic curve EAB in the SIDH protocol, but because these
kernels are not determined by the public keys, that any j-invariant would be a valid shared secret for any
choice of public keys.

Thus we conjecture that the degree-insensitive SI-GDH oracle as a distinguisher between χ and χdi can-
not exist, because these sets are equal.

7 Conclusion

Our experiments give evidence to support our conjectures that all valid triples (E′, P ′
B , Q

′
B) can arise in

the degree-insensitive case (Conjecture 1), and that any j-invariant of the final shared curve isomorphism
class is valid (Conjecture 2). Hence it does not make sense to consider a distinguisher between this set and
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a set of all points on all curves (subject to the subgroup generation and Weil pairing restrictions). Such
a distinguisher - the di-SI-GDH oracle - is used in the security proof of the authenticated key exchange
protocol in [FTTY19]. Hence, we believe that the security proof of Fujioka et al. [FTTY19] is not correct.
We stress that this does not mean the protocol in [FTTY19] is broken, only that its security is not justified
by the computational assumptions in the paper.
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