
WI Is Not Enough: Zero-Knowledge

Contingent (Service) Payments Revisited

Georg Fuchsbauer1

Abstract

While fair exchange of goods is known to be impossible without assuming a trusted party,
smart contracts in cryptocurrencies forgo such parties by assuming trust in the currency system.
They allow a seller to sell a digital good, which the buyer will obtain if and only if she pays.
Zero-knowledge contingent payments (zkCP) show that, despite the limited expressiveness of its
scripting language, this is even possible in Bitcoin by using zero-knowledge proofs.

At CCS’17, Campanelli, Gennaro, Goldfeder and Nizzardo showed that the zkCP protocol
was flawed, in that the buyer could obtain information about the good without paying. They
proposed countermeasures to repair zkCP and moreover observed that zkCP cannot be used
when a service is sold. They introduce the notion of ZK contingent payments for services and
give an instantiation based on a witness-indistinguishable (WI) proof system.

We show that the main countermeasures they proposed are not sufficient and present an
attack against their fixed zkCP scheme. We also show that their realization of zkCP for services
is insecure, as the buyer could learn the desired information (i.e., whether the service was
provided) without paying; in particular, we show that WI of the used proof system is not enough.

Keywords: ZK contingent payments, Bitcoin, zkSNARKs, subversion zero knowledge.

c© Georg Fuchsbauer 2019. This is the author’s version of the work, posted here for your personal use. The definitive

version was published in ACM CCS 2019, https://doi.org/10.1145/3319535.3354234

1 Introduction

Fair exchange in cryptocurrencies. Contingent payments are best explained via an exam-
ple. Consider Bob, a Sudoku buff, who, after failing to find a solution to a particularly hard Sudoku
puzzle, is willing to pay anyone providing him with a solution and announces this on the Internet.
Alice solves the Sudoku and would like to claim the promised reward. While she wants to be paid
before sending the solution, Bob wants to see the solution before paying. Alice and Bob thus face
the problem of fair exchange, which cannot be solved without relying on a third party that they
both trust [Cle86].

Smart contracts [Sza97] in cryptocurrencies provide a way around this impossibility by placing
the trust in the currency system. They promise to forgo the need for trusted third parties, such as
judges, who can enforce classical contracts. Ethereum [But13, Woo14] is a cryptocurrency which
supports such smart contracts: it lets a user make a payment and encode, in a Turing-complete
language, any conditions that must be met in order for the payment to be executed. Bob could
thus write a smart contract that pays anyone who presents a value s, such that V (s) holds, where
V is the predicate that verifies a solution to his Sudoku puzzle.

1 Inria, École normale supérieure, CNRS, PSL, France. georg.fuchsbauer@ens.fr, www.di.ens.fr/~fuchsbau.
The author is supported by ANR project EfTrEC (ANR-16-CE39-0002) and by the MSR-Inria Joint Centre.

1

https://doi.org/10.1145/3319535.3354234

In contrast, Bitcoin [Nak09], the first and by far most important cryptocurrency, has only
restricted means of expressing payment conditions via its scripting language. One simple condition
that is supported is expressed by a hash-locked transaction [Wik19] bound to a hash value y: such a
payment can be redeemed by anyone who presents a SHA256 preimage of y, that is, a value x such
that SHA(x) = y. It turns out that this elementary functionality (basically) suffices to solve Alice
and Bob’s dilemma of who goes first within the Bitcoin system, as it enables contingent payments
(CP), a simple protocol first suggested by Maxwell [Max11].

In a CP, Alice, the seller, first chooses a key k for a symmetric-encryption scheme and encrypts
the solution s as ciphertext c under k; she sends c together with y := SHA(k) to Bob, the buyer.
Bob makes a hash-locked transaction to y. In order to redeem the payment, Alice must post
the preimage k to the blockchain; but this allows Bob to decrypt c and obtain the purchased
information.1 To prevent Alice from cheating, Bob requires her to prove that c really encrypts the
desired information under a preimage of y, for which she can use a cryptographic proof system.
To prevent Bob from learning anything before he pays, Alice uses a zero-knowledge (ZK) proof
[GMR89], which guarantees that her proof does not leak anything about the values s and k she
used.

While the Sudoku example is instructive, zero-knowledge contingent payments (zkCP) can be
used to sell any information that can be verified by an efficiently computable predicate V for a
payment in Bitcoin; and this in a way so that neither the seller nor the buyer can cheat the other
party. Someone could for example offer to pay for the secret key related to a public encryption key
or a signature verification key, or to a Bitcoin address.

Security of the zkCP protocol relies on the soundness and zero-knowledge of the used proof
system: the former requires that only true statements can be proved (and thus Alice must really send
an encryption of a solution that can be decrypted using a preimage of y), whereas ZK guarantees
that Bob does not obtain any information before Alice has actually revealed the decryption key,
which at the same time executes the payment to her. Thus, either Alice gets paid and Bob receives
the digital good, or both do not obtain anything. This is precisely the definition of fairness.

zkSNARKs. While ZK proofs have been studied for a long time, until recently there were no
practical schemes which could be used for zkCPs related to arbitrary predicates V . The development
of succinct non-interactive arguments (SNARGs) and SNARGs of knowledge (SNARKs) [GGPR13,
PHGR13, BCTV14, DFGK14, Gro16] has changed this. SNARKs are a very efficient form of non-
interactive proof systems. Non-interactive ZK proofs [BFM88] require trusted parameters in the
form of a so-called common reference string (CRS), to which the prover and the verifier have access
[GO94]. Both soundness and ZK of the proof system rely on the fact that the CRS was computed
by a trusted party, thus neither Alice nor Bob. It seems thus that for the practical realization of
zkCP, we are back to square one, as the initial goal was to avoid trusted third parties.

Soundness of all zkSNARK systems from the literature relies on strong cryptographic assump-
tions (so-called knowledge assumptions), for which there is evidence that they might be unavoidable
[GW11, BCCT12]. Moreover, soundness of these schemes completely breaks down when the CRS is
not trusted, as the creator of the CRS can prove arbitrary false statements. Zero knowledge, on the
other hand, is perfect, meaning that proofs do not reveal any information, even to an unbounded
adversary.

1To simplify our exposition, we ignore the fact that in the actual implementation Bob’s transaction is slightly
more complex: it also contains Alice’s address (so no-one—in particular the miner that adds the transaction to the
blockchain—can claim the reward by using Alice’s hash preimage); and it lets Bob claim back his money if the
transaction was not redeemed after some predetermined time.

2

As in zkCP the buyer is the party that values soundness of the proof, the zkCP protocol [Max11]
specifies that the CRS for the zkSNARK is created by the buyer. (Presumably, this was considered
OK, since the proofs satisfy perfect ZK.) The zkCP protocol was implemented [Bow16] using the
libsnark [BCG+14b] implementation of the optimized version [BCTV14] of the Pinocchio SNARK
[PHGR13], which is derived from the original SNARK [GGPR13].

The CGGN Attack and Subversion Resistance. At CCS 2017 Campanelli, Gennaro, Gold-
feder and Nizzardo (CGGN) [CGGN17] showed that the implementation of zkCP [Bow16] is in-
secure. They show that the buyer, by sending a maliciously formed CRS, can learn one bit of
information about the offered Sudoku solution without paying, which clearly violates the fairness
of the protocol. In particular, they show how to set up the CRS in a way that leads to proofs that
are still valid, but which reveal whether cell (x, y) of the Sudoku solution contains value z, where
x, y and z can be chosen by the malicious buyer when setting up the CRS.

The reason this attack does not violate perfect ZK is that this notion assumes proofs are
computed using an honestly generated CRS, which in the zkCP protocol is not necessarily the case.
The security notion that the used SNARK must satisfy for the zkCP protocol to be secure is in
some sense stronger than perfect ZK, and is called subversion zero knowledge [BFS16]. It requires
that proofs do not reveal any information even when they were computed under a CRS that was
maliciously set up in any arbitrary way.

Fuchsbauer [Fuc18] investigated the subversion resistance of the most important SNARK sys-
tems in the literature, including the SNARK [BCTV14] used for the zkCP implementation [Bow16].2

He shows that these schemes satisfy the notion of subversion ZK if before using a CRS, the prover
checks that all its elements are well-formed. Subversion ZK can then be proved under a knowledge
assumption, the type of assumption that already underlies the soundness of SNARKs (knowledge
soundness).

He also shows that, when provers check CRS well-formedness, subversion witness indistinguisha-
bility holds unconditionally. Witness indistinguishability (WI) is a weaker notion than ZK: whereas
ZK guarantees that nothing is revealed about the witness used in a proof (in the Sudoku exam-
ple, the witness consists of the solution s and the secret key k), WI guarantees that proofs using
different witnesses are indistinguishable.

In the SNARK systems analyzed in [Fuc18] the CRS consists of elements from a bilinear group
and the available bilinear map (pairing) can be used to perform these consistency checks (see
Figure 3 for such checks). The authors [CGGN17] of the attack against zkCP have implemented
these consistency checks and performing them for the Sudoku example implementation would take
the prover one hour, which reduces the practicality of the zkCP protocol.

The CGGN Countermeasures. While using a SNARK system that satisfies subversion ZK
eliminates the security issues of zkCP, this fix is not cheap. The authors [CGGN17] thus propose
alternative countermeasures which only rely on subversion witness indistinguishability. They ob-
serve that WI is not sufficient for the Sudoku example, since a solution s is unique and even a proof
that reveals s would satisfy WI; however, there could be contexts for which WI is sufficient. In
particular, they argue that this is the case for their protocol for ZK contingent service payments
(see below), which they then adapt to give a new implementation of zkCP. Consequently, the used
SNARK system would only have to be subversion-witness-indistinguishable (and would thus also
not rely on strong computational hardness assumptions [Fuc18]).

2Abdolmaleki, Baghery, Lipmaa and Zajac [ABLZ17] also presented a subversion-ZK SNARK scheme by modifying
Groth’s scheme [Gro16].

3

To make a SNARK scheme subversion-WI, Campanelli et al. [CGGN17] propose to have the
prover perform some “minimal checks” on the CRS, an idea that goes back to the first SNARK
scheme [GGPR13]. These checks are much less costly than the checks required for subversion ZK
[Fuc18]. Implementing the latter without any optimizations would require the prover to evaluate
18m−2n+2d+76 pairings, where the values m, n and d come from the representation of the proved
statement as an arithmetic circuit: m is the total number of wires, n is the number of input wires
and d is the number of multiplication gates. (See Section 3.1 for details on arithmetic circuits.)

In stark contrast, the proposed minimal checks consist in verifying that d + 8 group elements
from the CRS are different from the neutral element of the bilinear group. For their Sudoku zkCP
implementation, the prover’s running time is less than a minute even after adding these minimal
checks.

Our first finding in revisiting [CGGN17] is that the proposed checks do not prevent all attacks;
in particular (Section 4.2):

I We present a CRS-subversion attack against witness indistinguishability of the SNARK
scheme implementing the minimal checks from [CGGN17]. The attack extends to any
variant that does not perform (most of) the consistency checks from [Fuc18].

Despite their simplicity, the minimal checks provide a strong guarantee: even under an arbi-
trarily subverted CRS, proofs computed using different witnesses are indistinguishable as long as
they are valid (in that they pass verification). But this still leaves room for attacks.

The CGGN attack against a non-verified CRS modifies the CRS elements in a clever way so
that proofs computed under it are valid, but they reveal one bit sj of the witness. In contrast, our
attack also works against provers performing the minimal checks on the CRS. It only changes one
CRS element, which then leads to proofs that are valid if sj = 0 and invalid if sj = 1. From the
validity of the proof, the subverter thus learns the value of sj .

Subversion WI restricted to valid proofs does not yield a secure (fair) zkCP protocol: even if
the seller does not send the proof if it detects that it is invalid (which is actually the case in the
zkCP implementation [Bow16]), the buyer can from this behavior deduce the value of the bit sj .

As we show that the modification of any (of the majority) of CRS elements enables this attack,
verification of the CRS is necessary to defend against it; the expensive checks for subversion ZK
[Fuc18] are thus even required for subversion WI.

Another countermeasure proposed in [CGGN17] is to create the CRS using secure two-party
computation between the seller (prover) and the buyer (verifier). The SNARK parameters used
in the cryptocurrency Zcash [BCG+14a, Zca] have been computed using secure multi-party com-
putation [BCG+15, BGG18]; but the main motivation for this was to defend against the known
vulnerability of soundness under CRS subversion. (The Zcash parameters guarantee soundness as
long as there was at least one honest participant in the generation protocol.) In zkCP, soundness
is only of concern to the buyer and it is him that computes the CRS.

Our subversion attacks against WI show that in any joint computation of the CRS, the prover
must be convinced of the well-formedness of the CRS elements, so the efficiency gains might be
small compared to the prover simply checking well-formedness on her own, as for subversion ZK.3

Campanelli et al.’s preferred countermeasure against their attack is to use ZK contingent pay-
ments for services, a notion they introduce and which is the basis for their new implementation of
zkCP [CGGN17]. Before discussing this notion, let us mention that there is an alternative realiza-
tion of zkCP over Bitcoin by Banasik et al. [BDM16], which uses an interactive protocol between

3A way to avoid computation of pairings in the consistency checks would be to have the CRS generator additionally
provide Schnorr-type proofs [Sch91, FS87] of CRS consistency in the random-oracle model [BR93]. While this might
speed up CRS verification, it would result in a blow-up of the CRS length.

4

the seller and the buyer (the protocol is claimed to be “vulnerable to the so-called mauling problem”
in [CGGN17]). In Ethereum, a zkCP implementation was given by Tramèr et al. [TZL+17] and a
fair exchange protocol avoiding zero-knowledge proofs was presented by Dziembowski, Eckey and
Faust [DEF18].

ZK Contingent Service Payments. Campanelli et al. [CGGN17] observe that when the seller
offers a service rather than information, then the zkCP protocol cannot be used for fair payments;
even if the fact that the service has been provided can be expressed as the seller knowing some proof
s that satisfies a predicate V . The authors illustrate this by considering a cloud-storage company
that offers proofs of retrievability as an extra service. These proofs allow the company to convince
the customers that their complete data is currently stored. Sticking to our running example, we
could also imagine that Bob creates his own Sudoku puzzles and just wants to find out whether
they are solvable.

The problem with using zkCP in such scenarios is that the buyer is not really interested in
the value s (a proof or a solution); he only cares about the fact that the seller knows that value:
if the company knows a proof, it must be that it still stores the data; if Alice knows a Sudoku
solution then the Sudoku is solvable. Now if in the first step of the zkCP protocol the seller proves
knowledge of s, then the buyer can abort without paying, since he now has the desired information.
The problem is that (in the cloud-storage example) a proof of knowledge of a proof is a proof; and
a proof of knowledge of a Sudoku solution proves that a solution exists.

To remedy this, the authors [CGGN17] suggest ZK contingent service payments, a protocol
derived from the ideas of zkCP. In zkCSP, the seller sends a hash value y and makes a proof of the
following statement:

Either I know a value s that satisfies V and I know a SHA256 preimage of y; or I don’t know a
satisfying value and (with overwhelming probability) I do not know a SHA256 preimage of y either.

Thus, either the seller knows a “proof” s and a preimage, which it can then use to redeem the
hash-locked transaction the buyer will make; or the seller cannot redeem the payment. If the proof
does not reveal which of the two is the case, the buyer will only find out if the seller knew s once
the payment is redeemed, which yields fairness.

The concept of zkCSP lets a seller sell some assurance to the buyer and it applies to many
settings, in particular when these are decentralized. For example [CGGN17], a cryptocurrency
exchange could offer, for a fee, to prove its solvency using the Provisions protocol [DBB+15], and
payment for this service could be fairly implemented using zkCSP.

In addition to the protocol, the authors also introduce a security model for zkCSP [CGGN17],
which consists of two notions: Extraction means that if the seller claims the money, she must know
a value s satisfying V . Zero-knowledge for zkCSP is defined as follows: for any malicious buyer,
his view of the interaction with an honest seller can be simulated without knowledge of the seller’s
input (be it a valid s or not). While (as for the original zkCP) the zkCSP protocol achieves this
notion if the used proof system is subversion-ZK, the authors claim that subversion WI is enough.4

Our second result is that a subversion-WI proof does not protect the seller in the zkCSP scheme
[CGGN17]; in particular (Theorem 5.1):

I We present a proof system satisfying subversion WI, which, when used in the zkCSP
protocol, lets the buyer learn whether the seller knows s without paying.

4The intuitive argument is that a simulator (which does not have a satisfying s) can compute an honest proof
by using the second clause of the either/or statement. WI should then imply that this looks like a proof using a
satisfying witness s. However, in their proof sketch the authors do not show how to simulate a redemption payment
made by a seller that uses a satisfying s.

5

Moreover, even if in the protocol the CRS is created by a trusted party, (regular) WI is not sufficient,
as the above result can be easily adapted. The attack against zkCSP is in some sense worse than
the one against zkCP. Whereas in the latter the attacker only learns one bit of the sold information,
in a flawed zkCSP protocol, the buyer learns the full information (which only consists of one bit).

Zk Contingent Payments from zkCSP. The suggested fix for the attacked zkCP protocol is
to base zkCP on the ideas of their zkCSP protocol [CGGN17]. The seller sends a hash value y and
a ciphertext c and makes a proof of the following statement:

Either I know a SHA256 preimage k of y which decrypts c to a satisfying value s; or I do not
know a SHA256 preimage of y.

We extend our result from above and show that subversion witness indistinguishability of the
used proof system does not suffice in the zkCP-from-zkCSP protocol for predicates V with unique
solutions, and thus for the Sudoku example; in particular (Theorem 5.4):

I We present a subversion-WI proof system, which, when used in zkCP-from-zkCSP for
unique solutions, lets the buyer learn the value s (entirely) without paying.

Relevance. We believe that it is crucial that cryptographic schemes undergo a thorough security
analysis, and the best methodology available are rigorous proofs in the provable-security framework.
This is particularly important in a decentralized context where there might be no possibility of
recourse to courts of justice if something goes wrong (recall the “The DAO” incident that led to a
fork of the Ethereum blockchain), which is an inherent feature of the “code is law” [Les00] approach
of decentralized applications.

Another striking example of the consequences of a missing security proof for a scheme described
in a research paper is the SNARK system underlying Zcash. The parameter-generation protocol
[BGG18] for Zcash was implemented based on the description in [BCTV14, eprint May 2015],
against which Gabizon [Gab19] later found an attack. He discovered that the public transcript
of the generation protocol revealed values that can be used to create proofs of false statements,
which in turn enables unlimited creation of Zcash. Since Zcash is an anonymous cryptocurrency
that hides the payment details, it is not even clear whether such an attack was mounted before the
parameters were updated prior to the disclosure of the bug.

The blockchain/cryptocurrency space today sees a dizzyingly fast transfer of cutting-edge re-
search results to deployed technology, which can rapidly find itself safeguarding millions of dollars.
This makes rigorous analysis of the protocols that potentially underly tomorrow’s technology all
the more indispensable.

2 Definitions

We use the notation from [BFS16, Fuc18] and start with recalling their formal definitions for
subversion-secure proof systems.

2.1 Notation

We denote by λ ∈ N the security parameter and by 1λ its unary representation. Algorithms are ran-
domized unless otherwise indicated. “PT” stands for “polynomial time”, whether for randomized
or deterministic algorithms. By y ← A(x1, . . . , xn; r) we denote the operation of running algorithm
A on inputs x1, . . . , xn and coins r and letting y denote the output. By y←$A(x1, . . . , xn), we
denote letting y ← A(x1, . . . , xn; r) for random r. If S is a finite set then s←$ S denotes picking

6

an element uniformly from S and assigning it to s. We denote by [A(x1, . . . , xn)] the set of points
that have positive probability of being output by A on inputs x1, . . . , xn.

For our security definitions we use the code-based game playing framework [BR06]. A game G
(e.g. in Figure 1) depends on a scheme and executes one or more adversaries. It defines oracles for
the adversaries as procedures. The game eventually returns true or false. We let Pr[G] denote the
probability that G returns true.

2.2 NP Relations and NI Systems

NP Relations. Consider R : {0, 1}∗ × {0, 1}∗ → {true, false}. For x ∈ {0, 1}∗, the witness set
of x is R(x) := {w |R(x,w) = true }. The language associated to R is L(R) := {x |R(x) 6= ∅ }.
Relation R is an NP relation if it is PT and there is a polynomial PR s.t. for all x and all w ∈ R(x)
we have |w| ≤ PR(|x|), where |w| denotes the length of w. As customary for SNARKs we will
consider relations output by a PT relation generator Rg.5

NI Systems. A non-interactive (NI) system Π for relation generator Rg consists of PT algorithms
Π.Pg, Π.P and Π.V. A common reference string crs for relation R is generated via crs←$ Π.Pg(R).
Given x and w ∈ R(x), the prover generates π←$ Π.P(R, crs, x, w), where π proves that x ∈ L(R).
The verifier runs Π.V(R, crs, x, π), which yields an output in {true, false} indicating whether π is a
valid proof that x ∈ L(R). We require perfect completeness, that is, for all λ ∈ N, all R ∈ [Rg(1λ)],
all crs ∈ [Π.Pg(R)], all x ∈ L(R), all w ∈ R(x) and all π ∈ [Π.P(R, crs, x, w)] we have that
Π.V(R, crs, x, π) returns true. We assume that Π.V returns false if any of its arguments is ⊥.

2.3 Security Notions

Soundness. The most fundamental notion for a proof system is soundness, which in its compu-
tational variant requires that it is hard to create a valid proof for any x 6∈ L(R).

Knowledge soundness [BG93] is stronger than soundness and means that a prover that outputs a
valid proof must know the witness. Formally, there exists an extractor that can extract the witness
from the prover. (This implies soundness, since for a wrong statement there are no witnesses.)
This is the notion satisfied by SNARK (as opposed to SNARG) systems and for the applications
considered in this paper standard soundness is not sufficient.

Definition 2.1 (KSND) An NI system Π for relation generator Rg is knowledge-sound if for
all PT adversaries A there exists a PT extractor E such that Advksnd

Π,Rg,A,E(·) is negligible, where

Advksnd
Π,Rg,A,E(λ) = Pr[KSNDΠ,Rg,A,E(λ)] and game KSND is specified in Figure 1.

WI. Witness indistinguishability [FLS90] requires that proofs for the same statement using differ-
ent witnesses are indistinguishable. This definition [BFS16] lets the adversary adaptively request
multiple proofs for statements x under one of two witnesses w0, w1.

Definition 2.2 (WI) An NI system Π for Rg is witness-indistinguishable if Advwi
Π,Rg,A(·) is neg-

ligible for all PT adversaries A, where Advwi
Π,Rg,A(λ) = 2 Pr[WIΠ,Rg,A(λ)] − 1 and game WI is

specified in Figure 1.

5in contrast to generic proof systems, the language proved by SNARKs is not independent of the system setup
when it is expressed as an arithmetic circuit, as arithmetic is done modulo the group order of the bilinear group over
which the SNARK is defined.

7

Game KSNDΠ,Rg,A,E(λ)

R←$ Rg(1λ)

crs←$ Π.Pg(R) ; r←$ {0, 1}A.rl(λ)

(x, π)← A(R, crs; r)

w←$ E(R, crs, r)

Return
(
¬R(x,w) and Π.V(R, crs, x, π)

)

Game WIΠ,Rg,A(λ) S-WIΠ,Rg,A(λ)

b←$ {0, 1} ; R←$ Rg(1λ)

crs←$ Π.Pg(R) ; st← ⊥
(crs, st)←$ A(R)

b′←$ AProve(R, crs, st)

Return (b = b′)

Prove(x,w0, w1)

If ¬R(x,w0) or ¬R(x,w1)

then return ⊥
π←$ Π.P(R, crs, x, wb)

Return π

Game ZKΠ,Rg,A(λ)

b←$ {0, 1} ; R←$ Rg(1λ)

crs1←$ Π.Pg(R)

(crs0, td)←$ Π.Sim.crs(R)

b′←$ AProve(R, crsb)

Return (b = b′)

Prove(x,w)

If ¬R(x,w) then return ⊥
If b = 1 then π←$ Π.P(R, crs1, x, w)

Else π←$ Π.Sim.pf(R, crs0, td, x)

Return π

Game S-ZKΠ,Rg,X,S,A(λ)

b←$ {0, 1} ; R←$ Rg(1λ)

r1←$ {0, 1}X.rl(λ) ; crs1 ← X(R; r1)

(crs0, r0, td)←$ S.crs(R)

b′←$ AProve(R, crsb, rb)

Return (b = b′)

Prove(x,w)

If ¬R(x,w) then return ⊥
If b = 1 then π←$ Π.P(R, crs1, x, w)

Else π←$ S.pf(R, crs0, td, x)

Return π

Figure 1: Games defining knowledge-soundness, witness-indistinguishability (ignoring the boxes),
subversion-WI (including the boxes), zero knowledge (ZK) and subversion-ZK for an NI system Π.

Subversion WI [BFS16] demands that even when the adversary creates a CRS in any way, it
can still not decide which of two witnesses of its choice were used to create a proof. The adversary
first outputs a CRS crs and some state information. Its second stage receives this state and is
otherwise defined like for the standard WI game.

Definition 2.3 (S-WI) An NI system Π for generator Rg is subversion-witness-indistinguishable
if Advs-wi

Π,Rg,A(·) is negligible for all PT adversaries A, where Advs-wi
Π,Rg,A(λ) = 2 Pr[S-WIΠ,Rg,A(λ)]−1

and game S-WI is specified in Figure 1.

An NI system Π is perfect S-WI if Advs-wi
Π,Rg,A(·) ≡ 0 for all A.

Zero Knowledge. This notion [GMR89] means that no information about the witness is leaked
by the proof. Formally, there must exist a simulator, which can create a CRS for which it can then
compute proofs without using a witness. This CRS and proofs are indistinguishable from real ones.
In the security game, the distinguisher A can adaptively request proofs by submitting an instance
and a witness for it. It receives a proof that is produced either by the honest prover using the
witness or by the simulator.

8

Definition 2.4 (ZK) An NI system Π for Rg is zero-knowledge if Π specifies additional PT algo-
rithms Π.Sim.crs and Π.Sim.pf such that Advzk

Π,Rg,A(·) is negligible for all PT adversaries A, where

Advzk
Π,Rg,A(λ) = 2 Pr[ZKΠ,Rg,A(λ)]− 1 and game ZK is specified in Figure 1.

An NI system Π satisfies statistical zero knowledge if the above holds for all (not necessarily PT)
adversaries A. It is perfect zero-knowledge if Advzk

Π,Rg,A(·) ≡ 0 for all A.

Subversion ZK [BFS16] considers a CRS subvertor X that returns an arbitrarily formed CRS.
It requires that for any such X there exists a simulator that is able to simulate (1) the full view
of the CRS subvertor, including its coins, and (2) proofs for adaptively chosen instances without
knowing the witnesses. The simulator consists of two parts: S.crs returns a CRS, coins for X and
a simulation trapdoor; and S.pf simulates proofs using this trapdoor. The adversary’s task is to
decide whether it is given a real CRS and the coins used to produce it, as well as real proofs (case
b = 1); or whether everything has been simulated (case b = 0).

Definition 2.5 (S-ZK) An NI system Π for generator Rg is subversion-zero-knowledge if for all
PT CRS subvertors X there exists a PT simulator S = (S.crs, S.pf) such that Advs-zk

Π,Rg,X,S,A(·) is

negligible for all PT adversaries A, where Advs-zk
Π,Rg,X,S,A(λ) = 2 Pr[S-ZKΠ,Rg,X,S,A(λ)]− 1 and game

S-ZK is specified in Figure 1.

2.4 Bilinear Groups

The SNARK scheme [BCTV14, Gab19] we consider is based on asymmetric bilinear groups.

Definition 2.6 A bilinear-group generator Gen is a PT algorithm that takes input a security pa-
rameter 1λ and outputs a description of a bilinear group (p,G1,G2,GT , e) with the following prop-
erties:

− p is a prime of length λ.

− (G1,+), (G2,+) and (GT , ·) are groups of order p.

− e : G1 × G2 → GT is a bilinear map, that is, for all a, b ∈ Zp and S ∈ G1, T ∈ G2 we have:
e(aS, bT) = e(S, T)ab.

− e is non-degenerate, that is, for P1 ∈ G∗1 and P2 ∈ G∗2 (i.e., P1 and P2 are generators),
e(P1, P2) generates GT .

Moreover, group operations and the bilinear map must be efficiently computable, membership of the
groups and equality of group elements must be efficiently decidable, and group generators efficiently
samplable. We denote the neutral element of Gi by 0Gi.

Fuchsbauer [Fuc18] proves subversion zero knowledge of the SNARK schemes he analyzed under
the “square knowledge of exponent” (SKE) assumption. It states that an adversary A which outputs
a triple (P, sP, s2P) ∈ G3

1 must know the values s. To make such triples verifiable via the pairing, the
adversary is required to also output an element Q ∈ G∗2 as well as sQ. (Elements (P, P ′, P ′′, Q,Q′)
are of the required form if and only if e(P ′, Q) = e(P,Q′) and e(P ′, Q′) = e(P ′′, Q).)6

6We refer to [Fuc18] for more on SKE and to [BFS16] for why subversion ZK plausibly requires strong assumptions
of this type.

9

2.5 Claw-Free Functions

The standard security notion for a cryptographic hash function H is collision-resistance, which
requires that it is hard to find two different values x0, x1 with H(x0) = H(x1). Claw-freeness is a
similar notion for pairs of functions, and is used in the instantiation of zkCSP [CGGN17] given in
Definition 5. Two functions H0 and H1 are claw-free if it is hard to find (not necessarily different)
values x0, x1 such that H0(x0) = H1(x1). A formal asymptotic definition is as follows:

Definition 2.7 A function generator FGen is a PT algorithm that on input a security parame-
ter 1λ returns two descriptions of functions H0,λ,H1,λ with image {0, 1}λ that can both be efficiently
computed.

Generator FGen is claw-free (in which case (H0,λ,H1,λ) is called a claw-free pair) if Advcf
FGen,A(·)

is negligible for all PT adversaries A, where Advcf
FGen,A(λ) = Pr[CFFGen,A(λ)] and game CF is

defined as follows:

Game CFFGen,A(λ)

(H0,λ,H1,λ)←$ FGen(1λ)

(x0, x1)←$ A(H0,λ,H1,λ)

Return
(
H0,λ(x1) = H1,λ(x1)

)
3 SNARKs

3.1 Definitions

We start with a formal definition of SNARKs.

Definition 3.1 (SNARK) An NI system Π = (Π.Pg,Π.P,Π.V) is a succinct non-interactive
argument of knowledge for relation generator Rg if it is complete (Section 2.2) and knowledge-
sound (Definition 2.1), and moreover succinct, meaning that for all λ ∈ N, all R ∈ [Rg(1λ)], all
crs ∈ [Π.Pg(R)], x ∈ L(R), w ∈ R(x) and all π ∈ [Π.P(1λ, crs, x, w)] we have |π| = poly(λ) and
Π.V(1λ, crs, x, π) runs in time poly(λ+ |x|).

Gennaro, Gentry, Parno and Raykova [GGPR13] introduce the notions of quadratic span pro-
grams and quadratic arithmetic programs (QAP), and show how to convert any arithmetic circuit
into a QAP (as we recall below).

Definition 3.2 (QAP) A quadratic arithmetic program over a field F is a tuple of the form(
F, n, {Ai(X), Bi(X), Ci(X)}mi=0, Z(X)

)
with Ai(X), Bi(X), Ci(X), Z(X) ∈ F[X], which define a language of statements (s1, . . . , sn) ∈ Fn
and witnesses (sn+1, . . . , sm) ∈ Fm−n such that

(
A0(X) +

m∑
i=1

siAi(X)
)
·
(
B0(X) +

m∑
i=1

siBi(X)
)

= C0(X) +
m∑
i=1

siCi(X) +H(X) · Z(X) , (1)

for some degree-(d− 2) quotient polynomial H(X), where d is the degree of Z(X) (we assume the
degrees of all Ai(X), Bi(X), Ci(X) are at most d− 1).

10

Arithmetic circuits. An arithmetic circuit consists of wires, which can take values from a
field F, and addition and multiplication gates between several wires, as well as addition-with-
constant and multiplication-by-scalar gates. It is transformed into a QAP as follows. First the
circuit is transformed into an equivalent circuit with only one type of gate, namely weighted-
sum-multiplication gates: given left inputs v1, . . . , v` ∈ F and right inputs v′1, . . . , v

′
r, such a gate

computes (α0 +
∑`

i=1 αivi)(β0 +
∑r

i=1 βiv
′
i) ∈ F. A circuit with d multiplication gates and any

number of gates of other types can easily be transformed into a circuit with d + 1 weighted-sum-
multiplication gates.

Letting w1, . . . , wm denote all wires in the (transformed) circuit, we can define αi,j , βi,j and
γi,j , so that the j-th gate can be written as:(

α0,j +
∑m

i=1 αi,jwi
)(
β0,j +

∑m
i=1 βi,jwi

)
= γ0,j +

∑m
i=1 γi,jwi ,

where αi,j = 0 (βi,j = 0) if wi is not among the left (right) inputs of gate j and γi,j = 1 if wi is the
output wire of gate j and γi,j = 0 otherwise.

The polynomial Z of the QAP is defined by picking distinct values r1, . . . , rd ∈ F and setting
Z(X) =

∏d
j=1(X − rj). Value rj “represents” the j-th gate of the circuit and the remaining

polynomials represent the role of the i-th wire wi among the left (Ai) or right (Bi) inputs or output
wires (Ci) of every gate. In particular, the polynomials are computed by interpolation so they
satisfy the following: for every i = 0, . . . ,m and j = 1, . . . , d:

Ai(rj) = αi,j Bi(rj) = βi,j Ci(rj) = γi,j

An assignment (s1, . . . , sm) to the wires of the circuit is satisfying if for every gate j, we have:

0 =
(
α0,j +

∑m
i=1 siαi,j

)(
β0,j +

∑m
i=1 siβi,j

)
−
(
γ0,j +

∑m
i=1 siγi,j

)
=
(
A0(rj) +

∑m
i=1 siAi(rj)

)(
B0(rj) +

∑m
i=1 siBi(rj)

)
−
(
C0(rj) +

∑m
i=1 siCi(rj)

)
=: P (rj) ,

thus the polynomial P (X) must vanish at r1, . . . , rd, which is implied by the fact that it is divisible
by Z (which is precisely the condition that (s1, . . . , sm) satisfies the QAP).

To capture SNARK constructions for QAPs in the framework for non-interactive proof system from
Section 2.2, we consider relation generators Rg of the following form:

Definition 3.3 (QAP generator) A QAP relation generator Rg is a PT algorithm that on input
1λ returns a relation description of the following form:

R =
(
Gr, n, ~A, ~B, ~C,Z

)
where Gr is a bilinear group whose order p defines F := Zp and

~A, ~B, ~C ∈
(
F(d−1)[X]

)(m+1)
, Z ∈ F(d)[X], n ≤ m . (2)

For x ∈ Fn and w ∈ Fm−n we define R(x,w) = true iff there exists H(X) ∈ F[X] so that Eq. (1)
holds for s := x ‖w (where “ ‖” denotes concatenation).

3.2 Asymmetric Pinocchio

Pinocchio [PHGR13] is a more efficient variant of the original zkSNARK [GGPR13]. Ben-Sasson
et al. [BCG+13, BCTV14] further optimized Pinocchio by moving from symmetric to asymmetric
bilinear groups, shortening the verification key and reducing the verifier’s work.7 This is the
zkSNARK system that underlies the first version of Zcash.

7In [PHGR13], πB is of the form πB := (B0(τ) +
∑m

i=n+1 siBi(τ) + δBZ(τ))ρBP2 and analogously for πC , and
the verifier has to compute π̂B := (B0(τ) +

∑n
i=1 siBi(τ))ρBP2 from the instance (s1, . . . , sn). In [BCTV14] (see

Figure 2), πB is directly set as πB + π̂B (and similarly for πC).

11

The description in [BCTV14] has recently been showed not to be sound by Gabizon [Gab19], as
the CRS erroneously included elements pk′A,i := Ai(τ)αAρAP1 for i = 0, . . . , n. The error did not
affect the (subversion) zero-knowledge properties of the system or its variant in [Fuc18]. It does
also not affect the results in [CGGN17].

Campanelli et al. [CGGN17] show that the protocol from [BCTV14], which underlies the ZK
contingent payments implementation, is not subversion-zero-knowledge. Fuchsbauer [Fuc18] showed
that adding 4 group elements to the CRS (denoted by ck in Figure 2) and requiring the prover
to perform consistency checks on all CRS elements (vk,pk, ck) makes the scheme subversion-zero-
knowledge under SKE (see Section 2.4), a knowledge assumption (the type of assumption under
which soundness of the scheme was proved).

The protocol given in Figure 2 is from [Fuc18, full version], which includes the fixes required
for soundness from [Gab19].

Theorem 3.4 ([Fuc18]) The scheme in Figure 2 for a QAP generator Rg satisfies subversion zero
knowledge if SKE holds for the underlying bilinear-group generator Gen.

Corollary 3.5 ([Fuc18]) The scheme in Figure 2 for a QAP generator Rg satisfies perfect subver-
sion witness indistinguishability.

3.3 CGGN’s Subversion Attack

Campanelli et al. [CGGN17] show a CRS-subversion attack against the SNARK from [BCTV14]
(which is the scheme in Figure 2 except that the prover does not perform step 1). Under their
subverted CRS, honestly computed proofs verify, but for one particular j ∈ {1, . . . ,m}, the proof
reveals the value sj used by the prover (which corresponds to one of the wire assignments in the
arithmetic circuit expressing the statement).

In particular, Key generation in Figure 2 is subverted as follows: the values constituting vk
remain unchanged, except for

vkIC,i := 0G1 for i = 0, . . . , n.

All values in pk are set to the zero element of the respective group, except for the following:

pkB,j := ρBP2 pk′B,j := αBρBP1 pkK,j := βρBP1

An honestly computed proof for ~s ∈ Fm under this CRS is thus of the following form:

πA := 0G1 π′A := 0G1 πB := sj ρBP2 π′B := sj αBρBP1

πC := 0G1 π′C := 0G1 πK := sj βρBP1 πH := 0G1

This is easily seen to pass verification. The value of sj is obtained by checking whether πB = 0G2

or πB = pkB,j .
Since the zkCP instantiation uses this SNARK [BCTV14], the buyer, who creates the CRS,

can subvert it as described above and thus, without paying, learn one bit of information about the
solution used by the seller.

4 No Shortcuts to Subversion WI

4.1 Suggested Countermeasuers by CGGN

The CGGN attack [CGGN17] leverages the faulty assumption that the used proof system is
subversion-resistant, which has been implicitly made in the zkCP protocol. The authors [CGGN17,
Section 3.3] propose four possible countermeasures against their attack:

12

Key generation. On input R as in Eq. (2) representing a QAP for an asymmetric group Gr do the

following:

1. Sample P1←$ G∗1 and P2←$ G∗2 2. Set

Am+1 Bm+1 Cm+1

Am+2 Bm+2 Cm+2

Am+3 Bm+3 Cm+3

 :=

Z 0 0

0 Z 0

0 0 Z

3. Sample random ρA, ρB , β, γ←$ F∗ and τ, αA, αB , αC , ←$ F, conditioned on Z(τ) 6= 0.

4. Set vk = (P1, P2, vkA, vkB , vkC , vkγ , vkβγ , v̂kβγ , vkZ , vkIC), where

vkA := αAP2 vkB := αBP1 vkC := αCP2

vkγ := γP2 vkβγ := γβP1 v̂kβγ := γβP2 vkZ := Z(τ)ρAρBP2

for i = 0, . . . , n : vkIC,i := Ai(τ)ρAP1

5. Set pk = (pkA,pk
′
A,pkB ,pk

′
B ,pkC ,pk

′
C ,pkK ,pkH) where

for i = n+ 1, . . . ,m+ 3 : pkA,i := Ai(τ)ρAP1 pk′A,i := Ai(τ)αAρAP1

for i = 0, . . . ,m+ 3 : pkB,i := Bi(τ)ρBP2 pk′B,i := Bi(τ)αBρBP1

pkC,i := Ci(τ)ρAρBP1 pk′C,i := Ci(τ)αCρAρBP1

pkK,i := β(Ai(τ)ρA +Bi(τ)ρB + Ci(τ)ρAρB)P1

for i = 0, . . . , d : pkH,i := τ iP1

6. Set ck := (ckA, ckB , ckC , ckH) where ckA := ρAP2, ckB := ρBP2, ckC := ρAρBP2, ckH := τP2.

7. Return crs := (vk,pk, ck).

Prove. On input R, (vk,pk, ck) and ~s ∈ Fm s.t. Eq. (1) is satisfied for some H ′(X) ∈ F[X].

1. If (R, vk,pk, ck) does not pass CRS Verification as defined in Figure 3 then return ⊥.

2. Sample δA, δB , δC ←$ F and define A(X) := A0(X) +
∑m
i=1 siAi(X) + δAZ(X)

B(X) := B0(X) +
∑m
i=1 siBi(X) + δBZ(X)

C(X) := C0(X) +
∑m
i=1 siCi(X) + δCZ(X)

3. Compute H(X) such that A(X)B(X)−C(X) = H(X)Z(X); let (h0, . . . , hd) ∈ Fd+1 be its coefficients.

4. For i = 0, . . . , n let pkA,i := 0 and pk′A,i := 0

5. Let ~c := 1 ‖~s ‖ δA ‖ δB ‖ δC ∈ Fm+4 and compute (“〈 · , · 〉” denotes the scalar product)

πA :=
〈
~c,pkA

〉
π′A :=

〈
~c,pk′A

〉
πB :=

〈
~c,pkB

〉
π′B :=

〈
~c,pk′B

〉
πC :=

〈
~c,pkC

〉
π′C :=

〈
~c,pk′C

〉
πK :=

〈
~c,pkK

〉
πH :=

〈
~h,pkH

〉
6. Return π :=

(
πA, π

′
A, πB , π

′
B , πC , π

′
C , πK , πH

)
.

Verify. On input R, vk, ~x ∈ Fn and proof π ∈ G7
1 ×G2.

1. Compute vkx := vkIC,0 +
∑n
i=1 xivkIC,i.

2. Check validity of π′A, π′B , and π′C :

e(π′A, P2) = e(πA, vkA) e(π′B , P2) = e(vkB , πB) e(π′C , P2) = e(πC , vkC)

3. Check same coefficients were used via πK : e(πK , vkγ) = e(vkx + πA + πC , v̂kβγ) · e(vkβγ , πB)

4. Check QAP is satisfied via πH : e(vkx + πA, πB) = e(πH , vkZ) · e(πC , P2)

5. If all checks in 2.– 4. succeeded then return true and otherwise false.

Figure 2: Asymmetric Pinocchio from [BCTV14] with soundess fixes from [Gab19] and made sub-
version-zero-knowledge as per [Fuc18].

13

CRS Verification. On input (R, vk,pk, ck), let {ai,j}, {bi,j}, {ci,j}, {zk} denote the coefficients of Ai(X),

Bi(X), Ci(X) and Z(X), respectively, for 0 ≤ i ≤ m and 0 ≤ j ≤ d− 1 and 0 ≤ k ≤ d.

Perform the following consistency checks:

1. [generators] P1 6= 0G1 and P2 6= 0G2

2. [choice of secret values] ckA 6= 0G2
, ckB 6= 0G2

, vkγ 6= 0G2
, vkβγ 6= 0G1

and vkZ 6= 0G2

3. [consistency of pkH] pkH,0 = P1; For i = 1, . . . , d: e(pkH,i, P2) = e(pkH,i−1, ckH)

4. [consistency of pkA,pk
′
A,pkB ,pk

′
B] For i = n+ 1, . . . ,m+ 3: e(pkA,i, P2) = e(

∑d−1
j=0ai,jpkH,j , ckA)

e(pk′A,i, P2) = e(pkA,i, vkA)

and for i = 0, . . . ,m+ 3: e(P1,pkB,i) = e(
∑d−1
j=0bi,jpkH,j , ckB)

e(pk′B,i, P2) = e(vkB ,pkB,i)

5. [consistency of ckC] e(pkA,m+1, ckB) = e(
∑d
j=0zjpkH,j , ckC)

6. [consistency of vk] e(vkβγ , P2) = e(P1, v̂kβγ); e(P1, vkZ) = e(
∑d
j=0zjpkH,j , ckC)

and for i = 0, . . . , n: e(vkIC,i, P2) = e(
∑d−1
j=0ai,jpkH,j , ckA)

7. [consistency of pkC ,pk
′
C ,pkK] For i = 0, . . . ,m+ 3: e(pkC,i, P2) = e(

∑d−1
j=0ci,jpkH,j , ckC)

e(pk′C,i, P2) = e(pkC,i, vkC)

and for i = 0, . . . , n: e(pkK,i, vkγ) = e(vkIC,i + pkC,i, v̂kβγ) · e(vkβγ ,pkB,i)

and for i = n+ 1, . . . ,m+ 3: e(pkK,i, vkγ) = e(pkA,i + pkC,i, v̂kβγ) · e(vkβγ ,pkB,i)

8. If all checks in 1.–7. succeeded then return true and otherwise false.

Figure 3: CRS-consistency checks for [BCTV14] from [Fuc18].

1. performing some “minimal checks” on the CRS that were described in [GGPR13] for appli-
cations where WI is sufficient;

2. using a subversion-ZK scheme [BFS16];

3. generating the CRS in a two-party secure computation between the prover and the verifier;

4. using their concept of contingent payments for services (see Section 5), which they claim to
only require a subversion-WI proof system:

“The best solution in [the authors’] opinion is to use the protocol for ZK Contingent Service
Payments [. . .] In contrast to the protocol of [Fuc18] that would take an hour to run, this protocol
adds less than a minute to the prover’s runtime.” [CGGN17]

Countermeasure 1. In Section 4.2 we show that the proposed minimal checks on the CRS do
not address the issue, in that they do not prevent all attacks. We show that most of the CRS
elements need to be checked for consistency in order to exclude attacks even against WI.

Countermeasure 2. Subversion-ZK fixes the problem, since it assures the seller that the proof
she produces, using a CRS which could have been generated maliciously, will not reveal any infor-
mation about its witness.

One could thus simply replace the SNARK scheme in zkCP by the subversion-ZK version of
Pinocchio from [Fuc18] given in Figure 2; but this entails the expensive checks of consistency of

14

every CRS element given in Figure 3. CGGN write: “Note that this check requires the computation
of m bilinear maps, a much more expensive task than the simple checks required for WI. [. . .]
Our experimental results suggests that running the subversion-resistant checks of [Fuc18] for the
pay-to-sudoku example would take more than an hour on our benchmark machine.” [CGGN17]

They also write: “Indeed, subversion-ZK can be obtained as long as the above ‘WI checks’ are
performed and the value τ can be extracted by the simulator from the Verifier when it produces
a CRS.” However, as per our attack (Section 4.2), the minimal checks are not enough to ensure
subversion WI, thus a forteriori, they do not suffice to obtain subversion ZK.

Countermeasure 3. Using a secure computation protocol will still require techniques to ensure
that every element of the CRS was generated correctly and will therefore not alleviate the burden
of checking consistency of the entire CRS, as done by the prover in the subversion-ZK variant
(although it could avoid the computation of numerous pairing evaluations, see Footnote 3).

Countermeasure 4. Whereas WI proofs cannot be used in situations where solution are unique,
as for Sudoku, the authors suggest to use their protocol for zero-knowledge contingent service
payments (see Section 5), as it only requires subversion WI. In Section 5.2 we show that even for
zkCSP, subversion zero knowledge is required: their protocol could be insecure if the used proof
system only satisfies subversion WI.

4.2 The “Minimal Checks” are not Enough

Campanelli et al. [CGGN17, Section 3.3] write: “the prover can check that the CRS is ‘correctly
formed’ and in this case the protocol is witness indistinguishable (WI). In the QAP-based SNARK
described in [Figure 2], it is sufficient that the prover/seller checks that

– The polynomials A,B,C,Z are well formed with respect to the circuit C.

– The elements pkA,m+1, pk′A,m+1, pk′B,m+2, pkC,m+3, pk′C,m+3 are not equal to 0 ∈ G1 and
the element pkB,m+2 is not equal to 0 ∈ G2

– All the elements pkH,i are not 0 ∈ G1.

– The element vkZ is such that vkZ 6= 0 ∈ G2.

since this will guarantee that the proof is a uniformly distributed random value no matter what
witness is used.”

We show that these checks are not sufficient to guarantee subversion witness indistinguishability.
While under a CRS that passes the above checks, proofs that verify are distributed uniformly among
all valid proofs, this does not suffice. Consider an application for which witness indistinguishability
is a sufficient guarantee for the prover. As in the attack on the zkCP implementation [CGGN17],
we show how a malicious verifier can learn the value of wire sj . The verifier sets up the CRS as
follows:

• Compute the CRS as in Figure 2, except that pk′B,j is not set to Bj(τ)αBρBP1, but to any
other value; that is for an arbitrary ξ 6≡ Bj(τ) (mod p), define

pk′B,j := ξαBρBP1 .

Consider a proof π = (πA, π
′
A, πB, π

′
B, πC , π

′
C , πK , πH) created under this CRS for ~s ∈ Fm. Inspec-

tion of the scheme in Figure 2 yields:

15

πB =
〈
~c,pkB

〉
=
(
B0(τ) +

∑m
i=1siBi(τ) + δBZ(τ)︸ ︷︷ ︸

:=ϕ

)
ρBP2

π′B =
〈
~c,pk′B

〉
=
(
B0(τ) +

∑m
i=1
i 6=j
siBi(τ) + sjξ + δBZ(τ)︸ ︷︷ ︸

=:ϕ′

)
αBρBP1

If sj = 1 then, by the choice of ξ, we have ϕ 6≡ ϕ′ (mod p) and thus the second verification equation,

e(π′B, P2) = e(vkB, πB) , (3)

does not hold since

e(π′B, P2) = e(ϕ′αBρBP1, P2) 6= e(αBP1, ϕρBP2) = e(vkB, πB) .

The proof π produced by the prover does thus not verify when sj = 1.
On the other hand, if sj = 0 then ϕ = ϕ′ and Eq. (3) does hold. Since pk′B only affects the

computation of π′B and Eq. (3) is the only equation in which π′B occurs, the resulting proof is valid.
The verifier can thus determine the value sj by simply checking if the proof verifies. This kind

of attack was not considered in the argument from [CGGN17] given above, which only applies to
valid proofs. An apparent countermeasure could be to have the prover check its own proof before
sending it (and in fact, libsnark [BCG+14b] implements this security measure), but this does not
help either: if the verifier receives a valid proof, she knows that sj = 0, whereas if she does not
receive a proof, she can deduce that sj = 1.

The same attack works by changing one of the values contained in pk′A or pk′C ; moreover,
an analogous attack works by changing any of the values pkA,j , pkB,j , pkC,j or pkK,i for some
j ∈ {n + 1, . . . ,m}. If the corresponding value sj = 0, then, again, the change in pk has no
influence on the corresponding value πA, πB, πC or πK , respectively, and the proof remains valid,
whereas it will be invalid if sj = 1.

These attacks show that the scheme from [BCTV14], with provers only performing the minimal
checks proposed by [CGGN17], does not satisfy S-WI as formalized in Definition 2.3, no matter
whether the prover simply outputs the (possibly wrong) proof, or whether it returns ⊥ if the proof
does not verify. The adversary in game S-WI simply changes one of the key elements with index j
and queries its Prove oracle for two witnesses that differ in position j.

This shows that the majority of elements of pk, the part of the CRS used by the prover, must
be checked for consistency. Only then can the prover be sure that every possible witness will lead
to a valid proof, which will be distributed independently of the witness, which will in turn ensures
subversion-resistant WI. In particular, the prover key pk consists of 7m−2n+d+19 group elements
and changing any of 7(m− n) values enables the attack.

4.3 Other zkSNARK Schemes

The Original GGPR SNARK. Our subversion-WI attacks against the Pinocchio instantiation
from [BCTV14] with the additional minimal checks from [GGPR13, CGGN17] equally apply to the
original zkSNARK [GGPR13] (of which Pinocchio is an optimized version).

The Groth16 SNARK. The most efficient zkSNARK scheme to date is due to Groth [Gro16]
and it replaces asymmetric Pinocchio in the next iteration of Zcash.

16

Proofs in this scheme consist of merely 3 bilinear-group elements and are verified by computing
only 3 pairings. There are no CRS elements pkA,i,pkB,i,pkC,i as in Figure 2; instead the prover
computes πA and πB by evaluating polynomials Ai and Bi “in the exponent” by itself, that is, πA
contains

∑d−1
j=0

(
a0,j +

∑m
i=1si ai,j

)
pkH,j (where pkH,i are defined as in Figure 2 and ai,0, . . . , ai,d−1

are the coefficients of polynomial Ai). Our initial attack from Section 4.2 does thus not carry over
immediately.

The bulk of CRS elements are of the form

pkK,i := δ−1
(
βAi(τ) + αBi(τ) + Ci(τ)

)
P1 ,

(where α, β and δ are part of the CRS randomness) and the third proof element πC contains the
term

∑m
i=n+1si pkK,i. It is thus easy to see that by modifying pkK,j for some j, proofs under such

a CRS will be invalid if and only if sj = 1.

Groth’s scheme [Gro16] was shown to be subversion-ZK [Fuc18] if all CRS elements are verified
using the bilinear map. The above attack thus shows that there is no way around this expensive
check, as already a single inconsistent element pkK,j suffices to break even subversion WI.

5 ZK Contingent Service Payments

5.1 Definition and Construction from CGGN

Intuition. Zero-knowledge contingent service payments (zkCSP) allow a service provider to
convince the buyer that a service has been provided; and whether the buyer can really be convinced
is contingent on him making the required payment. The underlying assumption is that there exists
a predicate V so that provision of the service can be proved by exhibiting a value s that satisfies
V . Campanelli et al. [CGGN17] introduce zkCSP after observing that the zkCP protocol cannot
be used, as the buyer is not interested in actually acquiring the proof s, but only in the fact that
the provider knows it.

Recall that in the ZK contingent payment protocol the seller of information s, which satisfies
a predicate V , does the following: she chooses a random key r, encrypts s under r, which yields a
ciphertext c, computes y = SHA(r) and sends the buyer the pair (y, c) together with a zkSNARK
proof of the following statement:

I know a value r such that the decryption s of c under key r satisfies V , and y = SHA(r).

In a ZK contingent service payment the service provider also selects a random value r, sends
only one value y, and proves the following:

I know two values s and r such that either s satisfies V and y is the SHA image of r; or y is
the image of r under a different hash function H.

Now there are two possibilities: either the seller used values s, r so that SHA(r) = y and V (s);
then she actually knows a “proof” s and can later use r to redeem the hash-locked transaction to y
that the buyer will make. However, if V (s) does not hold then, by the soundness of the proof, the
seller must have used a value r with H(r) = y. In this case, the seller cannot redeem the payment,
assuming that SHA and H satisfy claw-freeness (Section 2.5), meaning it is hard to find values r0, r1
with SHA(r0) = H(r1). Indeed, if the seller does not know a satisfying value s, she must use a
witness (s′, r) with H(r) = y to prove the statement; if she later somehow redeems the payment by
presenting r′ with y = SHA(r′), then she has found a claw (r′, r) for SHA and H.

17

Definition. We give the definition from [CGGN17], adapted to the Bitcoin setting and, as before,
denote by SHA the SHA256 hash function used by Bitcoin. (Note that here f plays the role of the
predicate V .)

In a zkCSP, a server A proves to a client B knowledge of s such that f(s) = 1 for an efficiently
computable function f : {0, 1}∗ → {0, 1} and wants to be paid for this information. The protocol
is required to have the following properties:

• If (a possibly malicious) A is paid then A really knows a value s satisfying f(s) = 1.

• If (a possibly malicious) B does not pay then B learns no information.

• Even when (a possibly malicious) B pays, he learns nothing except the fact A that knows a
satisfying s.

In addition to A and B, the protocol involves a trusted party T representing the blockchain, which
maintains in a ledger the coin balance of every party. T accepts two types of messages and executes
the instructions honestly:

Contingent payments from party B of the form: Transfer m bitcoins to a party that presents
a SHA preimage of y. If the party that issued the instruction has at least m coins then T
publishes the message on the blockchain.

Redemption payments from A of the form: Here is a SHA preimage x of y; transfer m bitcoins
to my account. If there has been a corresponding contingent-payment message for m and y,
and SHA(x) = y, then T posts the message on the blockchain, reduces B’s balance by m and
credits A’s balance by m.

A zkCSP protocol is a 3-party protocol between A, who has private input s, and parties B and T ,
all of which have public input f . The view of (possibly malicious) B̂ is defined as its randomness
and all exchanged messages:

ViewB̂(s, f) := CoinsB̂ ‖Messages [A(s, f), B̂(f), T (f)] ‖Out [A(s, f), B̂(f), T (f)] .

A zkCSP protocol must satisfy the following two security notions [CGGN17]:

Extraction For any possibly malicious efficient Â, if at the end of the protocol Â’s
balance increases with non-negligible probability, then there exists an efficient ex-
tractor ExtÂ, which outputs a string ŝ such that f(ŝ) = 1;

Zero-Knowledge For any possibly malicious efficient B̂, there exists an efficient sim-
ulator SimB̂ which on input f outputs a distribution which is computationally
indistinguishable from ViewB̂(s, f).

Instantiation. The instantiation [CGGN17] makes use of a hash function H : {0, 1}∗ → {0, 1}256,
which is claw-free with SHA, and whose outputs on a random value from {0, 1}256 are indistinguish-
able from those of SHA. It moreover uses a witness-indistinguishable proof-of-knowledge system
Π = (Π.Pg,Π.P,Π.V) for the following NP-relation:

Rf,H(y, (s, r)) ⇔
(
f(s) = 1 ∧ y = SHA(r)

)
∨
(
f(s) = 0 ∧ y = H(r)

)
, (4)

In other words, Π lets users prove knowledge of a preimage of some y under the following function:

Ff,H(s, r) =

{
SHA(r) if f(s) = 1

H(r) otherwise
(5)

The protocol is given as Protocol 1 on the next page, and CGGN state the following theorem:

18

Protocol 1

1. A, on input s, chooses r randomly from {0, 1}256 and computes y = Ff,H(s, r).

2. A sends y to B and makes a WI proof of knowledge of (s, r) with y = Ff,H(s, r). If the
proof fails, the buyer stops.

3. B makes a contingent payment of m bitcoins for the hash value y.

4. A sends a redemption payment message for value z. If SHA(z) = y then T posts the
message and transfers m bitcoins from B to A.

*Theorem 4.1 [CGGN17]. Assume that SHA and H are claw-free and the distributions
SHA(r) and H(r) for r chosen at random from {0, 1}256 are computationally indistin-
guishable [and the proof system is a WI proof of knowledge] then Protocol 1 is a secure
zkCSP protocol.

Extraction of the protocol is shown by a reduction to claw-freeness of SHA and H. The extractor
Ext is defined as follows: suppose A sends y and makes a convincing proof of knowledge; then using
the extractor for the proof system, Ext extracts a witness (ŝ, r̂) and returns ŝ.

Assume that A is paid but extraction fails, that is, f(ŝ) 6= 1. By extractability of the proof
system, (ŝ, r̂) is a witness for y under Rf,H, which implies y = H(r̂). On the other hand, A is only
paid if it presented a value z with SHA(z) = y. The pair (z, r̂) is thus a claw for SHA and H.

Zero knowledge is argued by constructing a simulator SimB̂ for a possibly malicious B̂ as follows:

For step 1, SimB̂ will choose r, s at random and compute y = Ff,H(s, r). Note that
the message in step 1 is computationally indistinguishable from the message sent by the
real A due to the computational indistinguishability of the output distributions of SHA

and H. For step 2, SimB̂ will just run a “real” proof that y = Ff,H(s, r): note that due
to witness indistinguishability, this proof is indistinguishable from a proof of a “correct”
proof when the witness is such that f(s) = 1.

While SimB̂, as described above, simulates steps 1 and 2 of Protocol 1, it is not clear how
step 4 is simulated, which is part of ViewB̂. In particular, if the simulator chooses values s, r with
f(s) = 0 (which will be typically the case) then y = H(r). However, if the value s′ that party A
holds satisfies f(s′) = 1 then, after sending y′ in step 2, A would send z with SHA(z) = y′ in step 4
(so SimB̂ would have to break claw-freeness to simulate this).

In fact, Protocol 1 can be proved to satisfy zero knowledge, when using a non-interactive proof
system Π for which, as for zkCP, the buyer B generates the CRS—provided that Π satisfies sub-
version zero knowledge (Definition 2.5). This notion guarantees that for any B̂ that produces a
CRS, there exists a simulator S = (S.crs, S.pf), where S.crs simulates a CRS and coins ρ for B̂ (as
required for ViewB̂) and outputs a trapdoor td.

Using this simulator S, the simulator SimB̂ for Protocol 1 first chooses r←$ {0, 1}256 and com-
putes y := SHA(r). It runs (crs, ρ, td)←$ S.crs(Rf,H) and π←$ S.pf(Rf,H, crs, td, y) and sends (y, π)

to B̂. If B̂ makes a contingent payment for hash value y and A makes a redemption payment
step 4, then SimB̂ can simulate this using value r. ViewB̂ now consists of the coins ρ, as well as the
messages and outputs of all parties.

We now show that subversion witness indistinguishability is actually not sufficient to guarantee
security of the protocol, by defining a subversion-WI proof system which lets party B learn whether
A holds a satisfying s, without paying.

19

5.2 WI is not Enough

In Section 4.2 we showed that for the zkSNARK systems from the literature [GGPR13, PHGR13,
BCTV14, Gro16], there appears to be little computational gain in only aiming for subversion WI
(sWI) as opposed to subversion ZK (sZK). There is however a huge difference in terms of the
cryptographic hardness assumptions on which they rely: while sWI is unconditional, sZK requires
a strong non-falsifiable knowledge-type assumption [Fuc18]. Moreover, since (s)WI is a weaker
notion than (s)ZK, even from an efficiency perspective, it is preferable to construct protocols that
only require (s)WI, as it may be achievable by more efficient protocols.

We now show that even if Protocol 1 can rely on a CRS generated by a trusted party, that
is, when subversion resistance is not required, security is not guaranteed when the used proof
system is only WI, as assumed in [CGGN17]. Consider a WI proof-of-knowledge (PoK) system
Π = (Π.Pg,Π.P,Π.V) for Rf,H from Eq. (4) and consider the following variant Π′ of Π:

• Π′.Pg is defined as Π.Pg.

• Π′.P(crs, y, (s, r)): run π ← Π.P(crs, y, (s, r));

if f(s) = 1, let β := 1, else let β := 0;

return π′ := (π, β).

• Π′.V(crs, y, (π, β)): return Π.V(crs, y, π).

It is immediate that proof system Π′ for Rf,H again satisfies completeness and knowledge soundness
(Definition 2.1), as this notion is independent of Π′.P. Moreover, if SHA and H are claw-free then Π′

is witness-indistinguishable (the same argument shows that subversion WI of Π′ is inherited from
subversion WI of Π):

In game WIΠ′,Rf,H,A (cf. Figure 1) the adversary must decide a bit b. It is given access to a
Prove oracle, which, given a statement y and two valid witnesses w0 = (r0, s0) and w1 = (r1, s1)
for it, returns a proof (πb, βb) for y computed with wb.

If β0 = β1 then indistinguishability follows from indistinguishability of π0 and π1, that is, from
WI of Π. On the other hand, β0 and β1 are different (say β0 = 0 and β1 = 1) only if f(s0) = 0 and
f(s1) = 1. But together with validity of w0 and w1 for y, this implies y = H(r0) and y = SHA(r1),
which means that the adversary must find a claw (r1, r0) for the pair (SHA,H) in order to make
such a query.

As proofs computed by Π′.P obviously leak whether the used witness (s, r) satisfies f(s) = 1,
this yields the following theorem (whose formal proof is analogous to the proof of Theorem 5.2).

Theorem 5.1 If SHA and H are claw-free and there exists a WI proof-of-knowledge (PoK) scheme
Π for relation Rf,H, then there exists a WI PoK scheme Π′ so that Protocol 1, when instantiated
with Π′, reveals whether the seller proved knowledge of a valid value s or not.

A slight variation of the above argument yields the following theorem, which we formally prove.

Theorem 5.2 If SHA and H are claw-free, if there exists a unique value s with f(s) = 1 and if
there exists a subversion-WI PoK scheme Π for relation Rf,H, then there exists a subversion-WI
PoK scheme Π′′ so that Protocol 1, when instantiated with Π′′, reveals the value s if the seller used
it in the protocol.

Proof. Let Π be a subversion-WI PoK system for the language defined by relation Rf,H from
Eq. (4). Then the proofs of the following modified system Π′′ reveal the value s whenever f(s) = 1:

20

Game S-WIΠ′′,A Game1

// Ignore the boxes for game S-WI

b←$ {0, 1} ; (crs, st)←$ A

b′←$ AProve(crs, st)

Return (b = b′)

Prove(y, (s0, r0), (s1, r1))

// If R(y, (s0, r0)) is false, return ⊥:

If f(s0) = 1 ∧ y 6= SHA(r0) then return ⊥
If f(s0) = 0 ∧ y 6= H(r0) then return ⊥

// If R(y, (s1, r1)) is false, return ⊥:

If f(s1) = 1 ∧ y 6= SHA(r1) then return ⊥
If f(s1) = 0 ∧ y 6= H(r1) then return ⊥
If f(s0) 6= f(s1) then return ⊥ (I)

// Compute π←$ Π′′.P(crs, y, (sb, rb))

π←$ Π.P(crs, y, (sb, rb))

If f(sb) = 1 then let π′′ := sb; else π′′ := 0

Return (π, π′′)

Figure 4: Subversion-WI game for adversary A against scheme Π′′ for relation Rf,H(y, (s, r)) in the
proof of Lemma 5.3.

• Π′′.Pg is defined as Π.Pg.

• Π′′.P(crs, y, (s, r)): run π ← Π.P(crs, y, (r, s));

if f(s) = 1, return π′′ := (π, s);

else return π′′ := (π, 0).

• Π′′.V(crs, y, (π, ŝ)): return Π.V(crs, y, π).

As for Π′ above, completeness and knowledge soundness are both directly inherited from Π. We
prove that Π′′ is sWI in the lemma below, which concludes the proof.

Lemma 5.3 Let Π be a subversion-WI PoK system for Rf,H. If SHA and H are claw-free and if
there exists only one value s with f(s) = 1 then the system Π′′ defined in the proof of Theorem 5.2
is sWI. In particular, for every adversary A against sWI of Π′′, there exists an sWI adversary B
against Π and an adversary C against the claw-freeness of SHA and H, such that

Advs-wi
Π′′,A ≤ Advs-wi

Π,B + 2 ·Advcf
(SHA,H),C .

Proof. We start with writing out the game S-WIΠ′′,A in Figure 4, where we also define Game1, a
variant of the game, which includes the box. Let E denote the event that in some call to the Prove
oracle, Game1 returns ⊥ in the boxed line (I). Since games G0 := S-WIΠ′′,A and G1 := Game1
behave identically if E does not occur, we have:

Pr[G0]− Pr[G1] =
(

Pr[G0|E]− Pr[G1|E]
)

Pr[E] +
(

Pr[G0|¬E]− Pr[G1|¬E]
)

Pr[¬E]

≤ Pr[E] . (6)

Consider an adversary C that simulates Game1 for A and if at some point A makes an oracle call
Prove(y, (s0, r0), (s1, r1)) that returns ⊥ in line (I), then C stops the simulation. If f(s0) = 0 and
f(s1) = 1 then C returns (r1, r0), else it returns (r0, r1).

We show that whenever E occurs then (and only then) C breaks claw-freeness of SHA and H:
Suppose, w.l.o.g. f(s0) = 0 and f(s1) = 1. Since the simulation of the oracle proceeded until

21

zkCP-from-zkCSP

1. A, on input s, selects a key r, encrypts c := Encr(s) and computes y = SHA(r).

2. A sends (y, c) to B together with a WI proof of knowledge π that

y = GV,c,H(r) :=

{
SHA(r) if V (Decr(c)) = 1

H(r) otherwise

3. B makes a contingent payment of m bitcoins for the hash value y.

4. A sends a redemption payment message for value z. If SHA(z) = y then T posts the message
and transfers m bitcoins from B to A.

5. B computes s′ = Decz(c).

line (I), we have y = H(r0) and y = SHA(r1) (otherwise it would have returned ⊥ before). Adversary
C’s output (r1, r0) is thus a claw for SHA and H and we therefore have

Advcf
(SHA,H),C = Pr[CF(SHA,H),C] = Pr[E] . (7)

Finally, consider the following adversary B against sWI of proof system Π. B forwards the CRS
from A to its challenger and simulates A’s Prove queries (y, (s0, r0), (s1, r1)) by forwarding them to
its own prove oracle. If it obtains ⊥ or if f(s0) 6= f(s1), it returns ⊥ to A; otherwise, if it obtained
π, it does the following: if f(s0) = 1, it returns (π, s0), else it returns (π, 0).

This perfectly simulates Game1: Case b = 0 it immediate; if b = 1 and if B did not return ⊥, we
have f(s0) = f(s1). If f(s0) = 1 then by uniqueness, s0 = s1 and B returned (π, sb) as required. If
f(s0) = 0 then (π, 0) is the correct proof for both b = 0 and b = 1. We thus have

Pr[S-WIΠ,B] = Pr[G1] . (8)

Together, we have

Advs-wi
Π′′,A = 2 Pr[G0]− 1

(6)

≤ 2(Pr[G1] + Pr[E])− 1
(7),(8)

= Advs-wi
Π,B + 2 ·Advcf

(SHA,H),C ,

which proves the lemma.

5.3 ZK Contingent Payments from zkCSP

We conclude by showing that the issues found with zkCSP carry over to the authors’ preferred
fix of the problem they discovered with ZK contingent payments, namely to follow their zkCSP
approach. Recall that in zkCP the seller A wants to sell a secret (or solution) s to the buyer B,
and there is some predicate V that decides validity of values s.

The authors [CGGN17, Section 4.2] (we slightly changed notation for consistency with the
above) propose a protocol that uses a symmetric-key encryption scheme (Enc,Dec) and subversion-
WI PoK system for the following relation:

R′V,H((y, c), r)) ⇔
(
V (Decr(c)) = 1 ∧ y = SHA(r)

)
∨
(
V (Decr(c)) = 0 ∧ y = H(r)

)
. (9)

The protocol is specified as zkCP-from-zkCSP above. Note that V in Eq. (9) corresponds to f
in Eq. (4); the main difference to zkCSP is that instead of π proving knowledge of s, this is done

22

explicitly via c, which makes s extractable by the buyer once r is revealed. Note also that by
collision-resistance of SHA, in this case we must have have z = r and thus s′ = s with overwhelming
probability.

We show that when solutions are unique, as is the case for Sudoku, using a WI proof system
(rather than a ZK-secure one) makes the protocol insecure, as the buyer might learn s entirely
before making any payment.

Theorem 5.4 If SHA and H are claw-free, if there is only one value s with V (s) = 1 and if there
exists a subversion-WI PoK scheme Π for relation R′V,H, then there exists a subversion-WI PoK
scheme Π′, so that zkCP-from-zkCSP, when instantiated with Π′, reveals the value s if the seller
used it in the protocol.

The theorem is shown analogously to Theorem 5.2; we give a proof sketch: Again, assume a
subversion-WI PoK system Π for relation R′V,H. Then the following proof system fully reveals the
value s if f(s) = 1:

• Π′.Pg is defined as Π.Pg.

• Π′.P(crs, (y, c), r): run π ← Π.P(crs, (y, c), r); compute s := Decr(c);

if V (s) = 1, return π′ := (π, s); else return π′ := (π, 0).

• Π′.V(crs, y, (π, ŝ)): return Π.V(crs, y, π).

Completeness and knowledge soundness of Π′ are again immediate. Subversion WI is proved as in
Lemma 5.3; we give a sketch:

Suppose in game S-WI, the adversary asks for a proof of statement (y, c) under one of two
(different) valid witnesses r0 or r1. Define sb = Decrb(c). We distinguish 3 different cases:

• V (s0) = 1 = V (s1). By uniqueness of V , we have s0 = s = s1 and the adversary receives a
proof (π, s), where π is WI.

• V (s0) = 0 6= 1 = V (s1) (or the other way round): validity of the witnesses w.r.t. R′V,H implies
y = H(r0) and y = SHA(r1), which means that (r1, r0) is a claw for SHA and H.

• V (s0) = 0 = V (s1): Then for both values of b, the adversary receives a WI proof (π, 0).

Thus to break sWI of the modified scheme Π′, either the adversary must break claw-freeness, or it
breaks sWI of the original scheme Π.

Conclusion. We have showed that in the fixed zkCP protocol from [CGGN17], the minimal
checks do not prevent an attack that lets the buyer learn one bit of information about the digital
good. The reason is that the proposed variant of the SNARK proof is not subversion-witness-
indistinguishable (sWI). Moreover, even if the used proof system was sWI, this would not prevent
the buyer from even learning the good completely before making any payment.

To conclude, we gave evidence that expensive verification of the CRS of the common SNARK
schemes cannot be avoided in order to secure zkCP and zkCSP protocols.

Acknowledgements. We are grateful to the anonymous reviewers of ACM CCS 2019 for their
helpful remarks.

23

References

[ABLZ17] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A subversion-resistant
SNARK. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume
10626 of LNCS, pages 3–33. Springer, Heidelberg, December 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Shafi Gold-
wasser, editor, ITCS 2012, pages 326–349. ACM, January 2012.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013.

[BCG+14a] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

[BCG+14b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. libsnark,
2014. Available at https://github.com/scipr-lab/libsnark.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In 2015 IEEE Symposium
on Security and Privacy, pages 287–304. IEEE Computer Society Press, May 2015.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von Neumann architecture. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security 2014, pages 781–796. USENIX Association, August 2014.

[BDM16] Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski. Efficient zero-knowledge contin-
gent payments in cryptocurrencies without scripts. In Ioannis G. Askoxylakis, Sotiris Ioannidis,
Sokratis K. Katsikas, and Catherine A. Meadows, editors, ESORICS 2016, Part II, volume 9879
of LNCS, pages 261–280. Springer, Heidelberg, September 2016.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS:
Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, edi-
tors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, Heidelberg,
December 2016.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Heidelberg, August 1993.

[BGG18] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. In Aviv Zohar, Ittay Eyal, Vanessa Teague,
Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors, Financial
Cryptography and Data Security - FC 2018, volume 10958 of LNCS, pages 64–77. Springer,
2018.

[Bow16] Sean Bowe. pay-to-sudoku, 2016. https://github.com/zcash-hackworks/pay-to-sudoku.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

24

https://github.com/scipr-lab/libsnark
https://github.com/zcash-hackworks/pay-to-sudoku

[But13] Vitalik Buterin. A next-generation smart contract and decentralized application platform, 2013.
http://www.ethereum.org/pdfs/EthereumWhitePaper.pdf.

[CGGN17] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge
contingent payments revisited: Attacks and payments for services. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 229–243.
ACM Press, October / November 2017.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In 18th ACM STOC, pages 364–369. ACM Press, May 1986.

[DBB+15] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan Boneh. Provisions:
Privacy-preserving proofs of solvency for bitcoin exchanges. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 720–731. ACM Press, October 2015.

[DEF18] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. FairSwap: How to fairly exchange digital
goods. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 967–984. ACM Press, October 2018.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December
2014.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In 31st FOCS, pages 308–317. IEEE
Computer Society Press, October 1990.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and Ricardo Dahab,
editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–347. Springer, Heidelberg, March
2018.

[Gab19] Ariel Gabizon. On the security of the bctv pinocchio zk-snark variant. Cryptology ePrint
Archive, Report 2019/119, 2019. ia.cr/2019/119.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, June 2011.

[Les00] Lawrence Lessig. Code is law. Harvard Magazine, 2000. https://harvardmagazine.com/

2000/01/code-is-law-html.

[Max11] Gregory Maxwell. Zero knowledge contingent payments, 2011. https://en.bitcoin.it/wiki/
Zero_Knowledge_Contingent_Payment.

25

http://www.ethereum.org/pdfs/EthereumWhitePaper.pdf
ia.cr/2019/119
https://harvardmagazine.com/2000/01/code-is-law-html
https://harvardmagazine.com/2000/01/code-is-law-html
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http://bitcoin.

org/bitcoin.pdf.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991.

[Sza97] Nick Szabo. Formalizing and securing relationships on public networks. First Monday 9, 1997.

[TZL+17] Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine Shi. Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge. In EuroS&P 2017, pages
19–34. IEEE, 2017.

[Wik19] Bitcoin Wiki. Hash-locked transaction, 2019. https://en.bitcoin.it/wiki/Hashlock.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014. https:

//gavwood.com/paper.pdf.

[Zca] Zcash. http://z.cash.

26

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://en.bitcoin.it/wiki/Hashlock
https://gavwood.com/paper.pdf
https://gavwood.com/paper.pdf
http://z.cash

	Introduction
	Definitions
	Notation
	NP Relations and NI Systems
	Security Notions
	Bilinear Groups
	Claw-Free Functions

	SNARKs
	Definitions
	Asymmetric Pinocchio
	CGGN's Subversion Attack

	No Shortcuts to Subversion WI
	Suggested Countermeasuers by CGGN
	The ``Minimal Checks'' are not Enough
	Other zkSNARK Schemes

	ZK Contingent Service Payments
	Definition and Construction from CGGN
	WI is not Enough
	ZK Contingent Payments from zkCSP

