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Abstract

A traitor tracing scheme is a multi-user public-key encryption scheme where each user in the
system holds a decryption key that is associated with the user’s identity. Using the public key, a
content distributor can encrypt a message to all of the users in the system. At the same time, if
a malicious group of users combine their respective decryption keys to build a “pirate decoder,”
there is an efficient tracing algorithm that the content distributor can use to identify at least
one of the keys used to construct the decoder. A trace-and-revoke scheme is an extension of a
standard traitor tracing scheme where there is an additional key-revocation mechanism that the
content distributor can use to disable the decryption capabilities of compromised keys. Namely,
during encryption, the content distributor can encrypt a message with respect to a list of revoked
users such that only non-revoked users can decrypt the resulting ciphertext.

Trace-and-revoke schemes are challenging to construct. Existing constructions from standard
assumptions can only tolerate bounded collusions (i.e., there is an a priori bound on the number
of keys an adversary obtains), have system parameters that scale exponentially in the bit-length
of the identities, or satisfy weaker notions of traceability that are vulnerable to certain types of
“pirate evolution” attacks. In this work, we provide the first construction of a trace-and-revoke
scheme that is fully collusion resistant and capable of supporting arbitrary identities (i.e., the
identities can be drawn from an exponential-size space). Our scheme supports public encryption
and secret tracing, and can be based on the sub-exponential hardness of the LWE problem
(with a super-polynomial modulus-to-noise ratio). The ciphertext size in our construction scales
logarithmically in the size of the identity space and linearly in the size of the revocation list.
Our scheme leverages techniques from both combinatorial and algebraic constructions for traitor
tracing.

1 Introduction

Traitor tracing schemes [CFN94] provide content distributors a way to identify malicious receivers
and pirates. Specifically, a traitor tracing scheme is a public-key encryption scheme that is defined
over a set of global public parameters pp and many secret decryption keys {skid}. Each of the
decryption keys skid is associated with an identifier id (e.g., a user’s name or profile picture). Anyone
is able to encrypt a message using the public parameters pp and any user who holds a valid decryption
key skid can decrypt the resulting ciphertext. The main security property is traceability, which says
that if a coalition of users combine their respective decryption keys to create a new decryption
algorithm (i.e., a “pirate decoder”), there is an efficient tracing algorithm that, given (black-box)
access to the decoder, will successfully identify at least one of the secret keys that was used to
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construct the pirate decoder. As such, traitor tracing schemes provide an effective way for content
distributors to combat piracy.

In practice, simply identifying the keys that went into a pirate decoder is not enough; we also
require a way for the content distributor to disable the decryption capabilities of a compromised key.
Traitor tracing schemes that support efficient key-revocation mechanisms are called trace-and-revoke
schemes [NP00]. In a trace-and-revoke scheme, the encryption algorithm additionally takes in a
list of revoked users L. A ciphertext that is generated with respect to a revocation list L can only
be decrypted by keys for identities id /∈ L. Furthermore, the revocation mechanism should remain
compatible with tracing: namely, if an adversary builds a pirate decoder that can still decrypt
ciphertexts encrypted with respect to a revocation list L, the tracing algorithm should successfully
identify at least one of the non-revoked decryption keys (i.e., some id /∈ L) that went into the
construction of the pirate decoder. We give the formal definition in Section 4.

Properties of trace-and-revoke schemes. There are a number of possible properties that a
trace-and-revoke scheme could provide. We enumerate several important ones below:

• Collusion resistance: A trace-and-revoke scheme is t-collusion resistant if tracing works
as long as the pirate obtains fewer than t decryption keys, and the scheme parameters are
allowed to depend on t. When t can be an arbitrary polynomial, the scheme is fully collusion
resistant.

• A priori unbounded revocation: Some trace-and-revoke schemes support bounded revo-
cation where at setup time, there is an a priori bound r on the maximum number of revoked
users the scheme supports. A scheme supports a priori unbounded revocation if the number of
revoked users can be an arbitrary polynomial. We note here that while we can require an even
stronger property that supports revoking a super-polynomial number of users, the scheme
we develop in this work does not support this stronger property (except in certain restricted
settings; see Section 1.1).

• Black box tracing: A trace-and-revoke scheme supports black box tracing if the tracing
algorithm only requires oracle access to the pirate decoder. This means we do not need to
impose any restrictions on the structure of the adversary’s decoder. Tracing must work on
any decoder that is able to decrypt (or even better, distinguish) ciphertexts.

• Identity-based: A trace-and-revoke scheme is “identity-based” or supports arbitrary identities
if the set of possible identities ID the scheme supports can be exponential in size [NWZ16].
In most trace-and-revoke schemes, the set of possible identities is assumed to have polynomial
size (i.e., identities are represented by an element of the set [N ] = {1, . . . , N}). This means
that there is an a priori bound on the maximum number of users supported by the system,
and moreover, in practical scenarios, the tracing authority needs to separately maintain a
database mapping from a numeric index id ∈ [N ] to a user’s actual identifier (which may
not fit into a string of length logN). In addition, as noted in [NWZ16], an added benefit of
trace-and-revoke schemes that support arbitrary identities is anonymity: namely, a user can
obtain a decryption key for their identity without needing to reveal their identity to the key
issuer.
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Our results. In this work, we focus on constructing trace-and-revoke schemes that provide each
of the above guarantees. Namely, we seek schemes that are flexible (e.g., can support arbitrary
identities of polynomial length and an arbitrary polynomial number of revocations) while providing
strong security (i.e., full collusion resistance and security against arbitrary adversarial strategies).
We achieve these properties assuming sub-exponential hardness of the learning with errors (LWE)
assumption [Reg05]. Specifically, we show the following:

Theorem 1.1 (informal). Let λ be a security parameter and ID = {0, 1}n be the set of possible
identities. Assuming sub-exponential hardness of LWE, there exists a fully collusion resistant
trace-and-revoke scheme where the secret key for an identity id ∈ {0, 1}n has size n · poly(λ, log n)
and a ciphertext encrypting a message m with respect to a revocation list L ⊆ {0, 1}n has size
|m| + |L| · poly(λ, log n). Encryption in our scheme is a public operation while tracing requires
knowledge of a secret key.

Previous trace-and-revoke constructions were either not collusion resistant [NWZ16, ABP+17],
could only support a polynomial-size identity space [BW06, GKSW10, GQWW19], achieved weaker
models of tracing [NNL01, DF02], or relied on strong assumptions such as indistinguishability
obfuscation [NWZ16] or (positional) witness encryption [GVW19]. We refer to Section 1.2 for a
more detailed comparison of our construction with existing ones.

Open questions. Before giving an overview of our construction, we highlight several interesting
directions to further improve upon our trace-and-revoke scheme:

• Public tracing: Our tracing algorithm requires a secret key. It is an interesting open problem
to obtain fully collusion resistant trace-and-revoke for arbitrary identities with public tracing
from standard assumptions. In fact, even obtaining a collusion resistant traitor tracing scheme
with succinct keys and public tracing from standard assumptions is currently open.

• Succinct broadcast: The length of the ciphertexts in our construction scales linearly in the size of
the revocation list, and as such, our scheme only supports revocation for a polynomial number
of users. It is an open question is to develop an scheme that supports arbitrary identities and
where the ciphertext size scales sublinearly in the number of revoked users (and more generally,
where the ciphertext size scales with the description length of the revocation list rather
than its size). Schemes with these properties are often called “broadcast, trace, and revoke”
schemes [BW06] as they combine both the succinctness of a “broadcast encryption” [FN93]
with the tracing capability of a traitor tracing scheme. Existing broadcast, trace, and revoke
constructions [BW06, GKSW10, GQWW19] from standard assumptions can only handle a
polynomial number of users. We provide a more thorough comparison in Section 1.2.

• Polynomial hardness: Security of our tracing construction relies on the sub-exponential hardness
of LWE. Our reliance on sub-exponential hardness assumptions is due to our use of complexity
leveraging [BB04] to instantiate adaptively-secure variants of the underlying cryptographic
primitives we require in our construction. An important open problem is to base security on
polynomial hardness. The work of Goyal et al. [GKW19] show how to obtain traitor tracing for
an exponential-size identity space from a polynomial hardness assumption, but their scheme
does not support revocation.
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1.1 Construction Overview

In this section, we provide a high-level overview of our construction. Our approach combines an
identity-based traitor tracing scheme based on the techniques developed in [NWZ16, GKW18] with
the combinatorial revocation scheme from [NNL01]. We describe each of these components below.

Traitor tracing from private linear broadcast. Boneh et al. [BSW06] showed how to construct
a collusion resistant traitor tracing scheme from a private linear broadcast encryption (PLBE)
scheme. A PLBE scheme is an encryption scheme where decryption keys are associated with an
index i ∈ [N ], and ciphertexts are associated with a secret index j ∈ [N ] and a message m. The
correctness property guarantees that a decryption key ski for index i can decrypt all ciphertexts
encrypted to indices j where i ≤ j. There are two ways to generate a ciphertext. The public
encryption algorithm allows anyone to encrypt to the index N , which can be decrypted by secret
keys ski for all i ∈ [N ]. The secret encryption algorithm allows the tracing authority who holds
a tracing key to encrypt to indices j ≤ N . The “index-hiding” requirement guarantees that an
adversary who does not have a key for index j cannot distinguish an encryption to index j from an
encryption to index j+1. Finally, the “message-hiding” requirement says that ciphertexts encrypted
to index 0 are semantically secure (given any subset of decryption keys for indices 1 ≤ j ≤ N).
These properties form the basis of the tracing algorithm described in [BSW06]. Boneh et al. showed
how to construct PLBE from pairing-based assumptions where the ciphertexts have size O(

√
N).

Hence their scheme only supports a polynomial-size identity space.
Recently, Goyal et al. [GKW18] gave a new construction of a PLBE scheme from the LWE

assumption by combining a new cryptographic notion called mixed functional encryption (mixed
FE) with an attribute-based encryption (ABE) scheme [SW05, GPSW06]. Their construction
has the appealing property that the size of all of the system parameters (e.g., the public pa-
rameters, decryption keys, and ciphertexts) scale with poly(λ, logN). Thus, the construction of
Goyal et al. [GKW18] can in principle support arbitrary set of identities. However, the tracing
algorithm in the PLBE framework runs in time that scales linearly with the size of the identity
space. As a result, the [GKW18] construction does not support tracing over an exponential space of
identities.

Identity-based traitor-tracing from functional encryption. In [NWZ16], Nishimaki et al.
introduced a more general tracing algorithm for PLBE that supports an exponential identity space
(by abstracting the tracing problem as an “oracle jump-finding” problem). Their construction
relies on a PLBE scheme that satisfies a more general notion of index-hiding security. Namely a
ciphertext encrypted to index j1 should be indistinguishable from a ciphertext encrypted to index
j2 as long as the adversary does not have any keys in the interval (j1, j2].1 A limitation of this
construction is that the ciphertexts scale linearly in the bit-length of the identities. Nishimaki et al.
then show how to construct a traitor tracing scheme with short ciphertexts (i.e., one where the
ciphertext size scales with poly(log logN)) from a private broadcast encryption scheme that support
slightly more general broadcast sets. Finally, they note that private broadcast is just a special
case of general-purpose functional encryption which can be instantiated using indistinguishability
obfuscation [GGH+13], or, in the bounded-collusion setting, from LWE [GKP+13] or even just

1This property follows from the usual index-hiding security game by a standard hybrid argument when the indices are
drawn from a polynomial-size space, but not when the indices are drawn from an exponentially-large one.
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public-key encryption [SS10, GVW12].

A more general view of [GKW18]. In this work, we take a more general view of the PLBE
construction in [GKW18] and show that the construction in fact gives a secret-key predicate
encryption scheme with a broadcast functionality. In turn, PLBE can be viewed as a specific
instantiation of the predicate encryption scheme for the particular class of threshold predicates.
This view will enable our generalization to identity-based traitor tracing with short ciphertexts (by
following the approach of [NWZ16]) as well as enable an efficient mechanism for key revocation.
Note that the “broadcast functionality” considered here refers to a method to publicly encrypt a
message that can be decrypted by all secret keys in the system (i.e., broadcasting a message to all
users in the system). We are not requiring the ability to succinctly broadcast messages to subsets of
users (as in the setting of broadcast encryption [FN93]).

Specifically, in a secret-key (ciphertext-policy) predicate encryption scheme, ciphertexts are
associated with a predicate f and a message m, while decryption keys are associated with an
attribute x. Decrypting a ciphertext ctf,m associated with a predicate f and a message m with
a function key for an attribute x yields m if f(x) = 1 and ⊥ otherwise. Moreover, the policy f
associated with a ciphertext is hidden irrespective of whether decryption succeeds or not—this
property is the analog of the “strong” attribute-hiding property considered in the study of key-policy
predicate encryption [BW07, KSW08, SBC+07]. Finally, while the predicate encryption scheme is
secret-key, there exists a public encryption algorithm that allows anyone to encrypt a message with
respect to the “always-accept” policy (i.e., f(x) = 1 for all inputs x). In Section 3.1, we show how
to combine mixed FE (for general circuits) and attribute-based encryption (for general circuits) to
obtain a secret-key ciphertext-policy predicate encryption scheme with broadcast. This construction
is a direct analog of the [GKW18] construction of PLBE from the same set of underlying primitives.
Next, we note that this type of predicate encryption directly implies a fully collusion resistant traitor
tracing scheme with short ciphertexts via [NWZ16]. The one difference, however, is that since the
predicate encryption scheme is in the secret-key setting, only the tracing authority who holds the
master secret key is able to run the tracing algorithm. Thus in contrast to [NWZ16], our scheme
only supports secret tracing. We note that working in the secret-key setting introduces some new
challenges in the security analysis of the [NWZ16] construction. These can be handled using similar
techniques as those developed in [GKW18], and we discuss this in greater detail in Section 4.1.

Trace-and-revoke via revocable predicate encryption. Thus far, we have shown how to
combine ideas from [GKW18] and [NWZ16] to obtain a collusion resistant traitor tracing scheme
for arbitrary identities. The next step is to develop a mechanism for key revocation. Previously,
Nishimaki et al. showed how to use a revocable functional encryption scheme to construct a
trace-and-revoke scheme. In this work, we show that a revocable variant of our secret-key predicate
encryption scheme with broadcast also suffices for this general transformation. Namely, in a revocable
predicate encryption scheme, each decryption key is additionally tagged with an identity id, and at
encryption time (both secret and public), the encrypter provides both the decryption policy f and
the revocation list L. The resulting ciphertext can then be decrypted by all keys skid,x associated
with an identity id and an attribute x such that f(x) = 1 and id /∈ L.

A natural approach to support revocation is to include the revocation list L as part of the
ciphertext policy in the predicate encryption scheme. We would then embed the identity id as part
of the decryption key, and the final decryption policy would first check that id /∈ L and then check

5



that f(x) = 1. While this basic approach seems straightforward, it unfortunately does not apply in
our setting. As noted above, the predicate encryption scheme we construct is a secret-key scheme,
and the only public operation it supports is the broadcast functionality.2 Obtaining a public-key
analog of collusion resistant, strong attribute-hiding predicate encryption seems quite challenging
(and in fact, implies public-key functional encryption). But as we note in Remark 3.3, even in the
bounded-collusion setting (where we can construct public-key predicate encryption from standard
assumptions), this basic approach seems to run into a barrier, and any such instantiation from
standard assumptions would likely have to assume a bound on the maximum number of revoked
users. In this work, we seek solutions from standard assumptions that are collusion resistant and
support unbounded revocation.

Revocable predicate encryption via subset cover set systems. As we described above, con-
structing a collusion resistant trace-and-revoke scheme for arbitrary identities reduces to constructing
a secret-key revocable predicate encryption scheme with a broadcast functionality. To build the
necessary revocable predicate encryption scheme, we leverage ideas from combinatorial constructions
of traitor tracing. We note that while we rely on combinatorial ideas in our construction, we do
not provide a generic transformation of any predicate encryption scheme into a revocable analog.
Rather, our construction relies on a careful integration of the algebraic approach from [GKW18]
with the combinatorial approach from [NNL01].

The core combinatorial ingredient that we use for our construction is a subset-cover set system,
a notion that has featured in several traitor tracing constructions [NNL01, DF02, HS02]. Let
[N ] be the identity space. A subset-cover set system for [N ] is a set of indices [K] with the
following two properties. Each identity id ∈ [N ] is associated with a small number of indices
Iid ⊆ [K]. Moreover, given a revocation list L ⊆ [N ], there is an efficient algorithm to compute a
“covering” set of indices JL ⊆ [K] with the property that id ∈ L if and only if Iid ∩ JL = ∅. If we
instantiate using the subset-cover set system from [NNL01], then K = O(N), |Iid| = O(logN), and
|JL| = O(|L| log(N/ |L|)).

Given a subset-cover set system, a first attempt to construct a revocable predicate encryption
scheme is as follows. We associate a set of public parameters ppi and master secret key mski with
each index i ∈ [K]. A key for an identity id ∈ [N ] and an attribute x would consist of predicate
encryption keys skid,x ← KeyGen(mski, x) for all the predicate encryption schemes i ∈ Iid associated
with id. Finally, an encryption of a message m with respect to the revocation list L ⊆ [N ] would
consist of a collection of ciphertexts {cti}i∈JL where each cti is an encryption of m with respect to
ppi for i ∈ JL. By the property described above, if id /∈ L, then Iid ∩ JL 6= ∅. This means that
all non-revoked users id /∈ L will possess a key ski,x for some i ∈ JL, and therefore, will be able to
decrypt (provided that f(x) = 1). For a revoked user, it will be the case that i /∈ JL for all i ∈ Iid,
and they will be unable to decrypt. The problem though is that the size of the public parameters
now scale linearly with K (which is as large as N). As such, this scheme only supports a polynomial
number of identities. Thus, we need a different approach. We describe two candidate ideas below:

• If the underlying predicate encryption scheme has the property where the master secret
key msk can be sampled after the public parameters pp, then in principle, the construction

2The recent work of Goyal et al. [GQWW19] introduces a notion of broadcast mixed FE that supports a succinct
public broadcast to a restricted set of identities (of polynomial size). The notion we develop in this work supports an
exponential-sized identity space, but in a non-succinct manner (i.e., the ciphertext size scales linearly with the size of
the revocation list).
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above would suffice. Namely, we would use a single set of public parameters for all of the
predicate encryption schemes, and derive the master secret key mski for each i ∈ [K] from a
pseudorandom function (PRF). Unfortunately, such a predicate encryption scheme cannot
be secure since the adversary can always generate for itself a master secret key and use it to
decrypt.

• If the scheme supports a public encryption algorithm, then we can support revocation by
including the index i ∈ [K] as part of the policy associated with the ciphertext as well as
the attribute in the decryption key. Then, the decryption policy would additionally check
that the index associated with the key matched the index associated with the ciphertext.
Essentially, we ensure that a decryption key for i can only be used to decrypt ciphertexts
encrypted to index i. However, this revocation approach also does not seem to apply in our
setting because our predicate encryption scheme is in the secret-key setting, and it is not clear
how to generalize to a public-key encryption algorithm that can support more general policies
(while retaining the same security properties).3

While neither of these approaches directly apply in our setting, we can combine both ideas in
our construction to obtain a revocable predicate encryption scheme. As noted above, our basic
secret-key predicate encryption scheme with broadcast combines a mixed FE scheme with an ABE
scheme. Without getting into too many details, the construction has the following properties. Each
ciphertext in the scheme consists of a mixed FE ciphertext and an ABE ciphertext, and analogously,
each decryption key consists of a mixed FE decryption key and an ABE decryption key. The mixed
FE scheme is a secret-key scheme that supports a broadcast mechanism while the ABE scheme
is a standard public-key scheme. The key observation is that if both the underlying mixed FE
scheme and the ABE scheme support revocation, then the resulting predicate encryption scheme
also supports revocation. For our construction it is critical that both schemes support revocation
as we rely on the mixed FE scheme to hide the ciphertext policy and the ABE scheme to hide
the message. If only one of the underlying schemes supports revocation, then one or both of these
security properties become incompatible with revocation. We now describe how we implement
revocation for the underlying mixed FE and ABE schemes:

• The mixed FE scheme is a secret-key scheme that supports public broadcast. Unlike standard
predicate encryption, the security properties of mixed FE can be satisfied by schemes where
the master secret key is sampled after the public parameters, and this property is satisfied by
existing constructions [GKW18, CVW+18a]. This means that we can associate a different
mixed FE scheme with each index i ∈ [K] where the master secret key associated with each
instance is derived from a PRF. All of the mixed FE schemes share a common set of public
parameters. We can now use the first revocation idea described above to implement revocation
for the mixed FE scheme.

• Next, the ABE scheme is a public-key encryption scheme, and thus, we can use the second
type of revocation described above. Namely, we require a single set of ABE parameters and

3While the notion of attribute-based mixed FE from [CVW+18a] seems like it would also provide this functionality,
this revocation approach only preserves the message hiding property and not the mixed FE attribute hiding property
of the underlying attribute-based mixed FE scheme. For our trace-and-revoke scheme, we require both message
hiding and attribute hiding (which we refer to as “function hiding”). Obtaining the latter property seemingly requires
a way to revoke mixed FE decryption keys.
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simply include the index i ∈ [K] in both the decryption key and the ciphertext to identity
which index is being targeted.

By combining these two approaches for revocation, we show in Section 3.1 how to construct a
secret-key revocable predicate encryption with broadcast scheme from the sub-exponential hardness
of LWE. Notably, our final revocation mechanism relies critically on both the combinatoric properties
of the subset-cover set system as well as the specific algebraic nature of the predicate encryption
construction. Together, this yields the first collusion resistant trace-and-revoke scheme for arbitrary
identities from the same underlying assumptions (Theorem 1.1).

A simple extension: more general revocation policies. While the basic scheme we described
above supports revoking any polynomial number of identities, it naturally extends to support any
revocation policy supported by the underlying subset-cover set system. Specifically, if we use the
prefix-based subset-cover set system by Naor et al. [NNL01], our scheme supports revoking any
number of identities that can be specified by a polynomial number of prefix-based patterns. For
instance, we can revoke all users whose identity starts with a fixed prefix—which may consist of an
exponential number of identities. In a concrete application, if the first few bits of a user’s identity
specifies a region, then we can use prefix-based policies to efficiently revoke all of the users from one
or more regions. We provide more discussion in Remark 3.10.

1.2 Related Work

In this section, we survey some of the related work on traitor tracing and trace-and-revoke schemes
and compare our results to existing notions.

Traitor tracing and trace-and-revoke. Numerous works have studied constructions of both
traitor tracing and trace-and-revoke schemes from a wide range of assumptions and settings. Very
broadly, most existing constructions can be categorized into two main categories: combinatorial
approaches [CFN94, NP98, SSW01, CFNP00, NNL01, HS02, DF02, SSW01, BN08] and algebraic
approaches [KD98, NP00, BSW06, BW06, GKSW10, LPSS14, KT15, NWZ16, ABP+17, GKW18,
CVW+18a, GVW19, GQWW19]. We refer to these works and the references therein for a survey of
the field.

Many existing traitor-tracing and trace-and-revoke schemes (from standard assumptions) are
only secure against bounded collusions [CFN94, KD98, NP00, SSW01, LPSS14, KT15, NWZ16,
ABP+17]. Other schemes are fully collusion resistant, but can only handle a polynomial-size identity
space [BSW06, BW06, GKSW10, GKW18, CVW+18a, GQWW19]. In this work, we focus on schemes
that are fully collusion resistant and support arbitrary identity spaces. While there are schemes
that are both collusion resistant and support a super-polynomial identity space [NWZ16, GVW19],
these construction require strong assumptions such as indistinguishability obfuscation [BGI+12] or
positional witness encryption and cannot currently be based on standard intractability assumptions.

Several of the aforementioned schemes from standard assumptions [BW06, GKSW10, GQWW19]
additionally provide a succinct broadcast mechanism where anyone can encrypt a message to
any subset of the users with a ciphertext whose size scales with N1/2 [BW06, GKSW10] or with
N ε [GQWW19] for any constant ε > 0, where N is the total number of users in the system. Such
schemes are commonly referred to as “broadcast, trace, and revoke” schemes. Notably, the ciphertext
size in these constructions is independent of the number of revoked users and only depends on the
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total number of users. In our trace-and-revoke construction (Theorem 1.1), the ciphertext size
scales linearly with the number of revoked users (which can be Ω(N) in the worst case). Thus, in
the setting where we have a polynomial-size identity space and when the number of revoked users
is a sufficiently-large fraction of the total number of users, existing broadcast, trace, and revoke
constructions will have shorter ciphertexts. In the setting where there is an exponential identity
space, the ciphertexts in these existing constructions are also exponential, and they do not provide
a compelling solution.

Several works [NP98, CFNP00, BN08] consider a threshold notion of traitor tracing where the
tracing algorithm is only guaranteed to work for decoders that succeed with probability at least
δ = 1/poly(λ) (and the scheme parameters are allowed to depend on the parameter δ). In this work,
we focus on schemes that work for any decoder that succeeds with non-negligible probability.

Some combinatorial constructions [NNL01, HS02, DF02] are fully collusion resistant, but they
only satisfy a weaker notion of traceability where the tracing algorithm either succeeds in extracting
a pirated key or identifies an encryption strategy that disables the pirate decoder (this latter strategy
increases the ciphertext size). This weaker traceability notion has led to pirate evolution [KP07] and
Pirate 2.0 attacks [BP09] on schemes satisfying this weaker security notion. In this work, we focus
on the strong notion of traceability where the tracing algorithm always succeeds in extracting at
least one pirate key from any functional decoder. This notion is not affected by the pirate evolution
attacks.

Cryptographic watermarking. A closely-related notion to traitor tracing is cryptographic
watermarking [BGI+12, CHN+16]. Very briefly, a cryptographic watermarking scheme allows an
authority to embed arbitrary data into the secret key of a cryptographic function such that the
marked program preserves the original functionality, and moreover, it is difficult to remove the
watermark from the program without destroying its functionality. A collusion resistant watermarking
scheme for a public-key encryption scheme would imply a collusion resistant traitor tracing scheme.
Existing constructions [KW17, QWZ18, KW19] of watermarking from standard assumptions are
not collusion resistant and they are also limited to watermarking PRFs, which are not sufficient
for traitor tracing. The recent construction of watermarking for public-key primitives [GKM+19]
does imply a traitor tracing scheme for general identities (with public tracing), but only provides
bounded collusion resistance (in fact, in this setting, their construction precisely coincides with the
bounded collusion resistant traitor tracing construction from [NWZ16]). Moreover, it is not clear
that existing constructions of watermarking can be extended to support key revocation.

Concurrent work. In a recent and concurrent work, Goyal et al. [GKW19] also study the problem
of identity-based traitor tracing for arbitrary identities (i.e., which they call “traitor tracing with
embedded identities”). Their focus is on traitor tracing (without revocation) and achieving security
based on polynomial hardness assumptions. In contrast, our focus is on supporting both tracing and
revocation while still supporting arbitrary identities. Security of our construction, however, does
rely on making a stronger sub-exponential hardness assumption.

2 Preliminaries

We begin by introducing some notation. We use λ (often implicitly) to denote the security parameter.
We write poly(λ) to denote a quantity that is bounded by a fixed polynomial in λ and negl(λ) to
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denote a function that is o(1/λc) for all c ∈ N. We say that an event occurs with overwhelming
probability if its complement occurs with negligible probability. We say an algorithm is efficient if it
runs in probabilistic polynomial time in the length of its input. For two families of distributions

D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N, we write D1
c
≈ D2 if the two distributions are computationally

indistinguishable (i.e., no efficient algorithm can distribution D1 from D2 except with negligible
probability).

For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For integers 1 ≤ m ≤ n,
we write [m,n] to denote the set of integers {m,m + 1, . . . , n}, and [m,n]R to denote the closed
interval between m and n (inclusive) over the real numbers. For a distribution D, we write x← D
to denote that x is drawn from D. For a finite set S, we write x

r← S to denote that x is drawn
uniformly at random from S.

Cryptographic primitives. We now recall the standard definition of pseudorandom functions
and collision-resistant hash functions.

Definition 2.1 (Pseudorandom Function [GGM84]). A pseudorandom function (PRF) with key-
space K = {Kλ}λ∈N, domain X = {Xλ}λ∈N, and range Y = {Yλ}λ∈N is an efficiently-computable
function F : K ×X → Y such that for all efficient adversaries A,

Pr[k
r← K : AF (k,·)(1λ) = 1]− Pr[f

r← Funs[X ,Y] : Af(·)(1λ) = 1] = negl(λ).

Definition 2.2 (Keyed Collision-Resistant Hash Function). A keyed collision-resistant hash function
with key-space K = {Kλ}λ∈N, domain X = {Xλ}λ∈N, and range Y = {Yλ}λ∈N is an efficiently-

computable function H : K ×X → Y such that for all efficient adversaries A and sampling k
r← K,

Pr[(x0, x1)← A(1λ, k) : x0 6= x1 and H(k, x0) = H(k, x1)] = negl(λ).

Subset-cover set systems. As discussed in Section 1.1, the subset-cover framework introduced
by Naor et al. [NNL01] is the basis for many combinatorial trace-and-revoke schemes. We provide
the formal definition below:

Definition 2.3 (Subset-Cover Set System [NNL01]). Let N be a positive integer. A subset-cover
set system for [N ] is a set of indices [K] where K = poly(N) together with a pair of algorithms
(Encode,ComputeCover) satisfying the following properties:

• Encode(x) → Ix: On input an element x ∈ [N ], the encoding algorithm outputs a set of
indices Ix ⊆ [K].

• ComputeCover(L)→ JL: On input a revocation list L ⊆ [N ], the cover-computation algorithm
outputs a collection of indices JL ⊆ [K].

We require the following efficiency and security requirements for a subset-cover set system.

• Efficiency: Take any element x ∈ [N ] and any revocation list L ⊆ [N ]. Then, Encode(x)
runs in time poly(logN) and ComputeCover(L) runs in time poly(|L| , logN).

• Correctness: Take any element x ∈ [N ] and revocation list L ⊆ [N ], and let Ix ← Encode(x),
JL ← ComputeCover(L). Then, x ∈ L if and only if Ix ∩ JL = ∅.
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In this work, we will use the “complete subtree” system from [NNL01, §3.1]. The details of this
construction are not essential to our construction, so we omit them and just summarize the main
properties below:

Fact 2.4 (Subset-Cover Set System [NNL01, §3.1]). Let N be a positive integer. Then there
exists a subset-cover set system [K] for [N ] where K = 2N − 1, and where the algorithms
(Encode,ComputeCover) satisfy the following properties:

• For all elements x ∈ [N ], if Ix ← Encode(x), then |Ix| = logN + 1.

• For all revocation lists L ⊆ [N ], if JL ← ComputeCover(L), then |JL| = O(|L| log(N/ |L|)).

The generalized jump-finding problem. Next, we recall the generalized jump-finding problem
introduced by Nishimaki et al. [NWZ16, §3.1] for constructing identity-based traitor tracing schemes
with succinct ciphertexts. We note that [NWZ16] also introduced a simpler variant of the jump-
finding problem that essentially abstracts out the algorithmic core of the traitor tracing construction
from private linear broadcast. Here, we consider the generalized version because it enables shorter
ciphertexts (where the ciphertext size scales logarithmically with the bit-length of the identities)

Definition 2.5 (Generalized Jump-Finding Problem [NWZ16, Definition 3.9]). For positive integers
N, r, q ∈ N and δ, ε > 0, the (N, r, q, δ, ε) generalized jump-finding problem is defined as follows.
An adversary begins by choosing a set C of up to q tuples (s, b1, . . . , br) ∈ [N ]× {0, 1}r where all
of the s are distinct. Each tuple (s, b1, . . . , br) describes a curve between grid points from the top
to bottom of the grid [1, r] × [0, 2N ], which oscillates about the column at position 2s − 1, with
b = (b1, . . . , br) specifying which side of the column the curve is on in each row. The curves divide
the grid into |C|+ 1 contiguous regions. For each pair (i, x) ∈ [1, r]× [0, 2N ], the adversary chooses
a probability pi,x ∈ [0, 1]R with the following properties:

• For any two pairs (i, 2x), (j, 2x) ∈ [1, r]× [0, 2N ], it holds that |pi,2x − pj,2x| < δ.

• Let Ci = {(s, b1, . . . , br) ∈ C : 2s − bi} be the set of values 2s − bi for tuples in C. For any
two pairs (i, x), (i, y) ∈ [1, r]× [0, 2N ] such that (x, y] ∩ Ci = ∅, then |pi,x − pi,y| < δ.

• For all i, j ∈ [r], it holds that pi,0 = pj,0 and pi,2N = pj,2N . Define p0 = pi,0 and p2N = pi,2N .

• Finally, |p2N − p0| > ε.

Next, define the oracle Q : [1, r] × [0, 2N ] → {0, 1} to be a randomized oracle that on input (i, x)
outputs 1 with probability pi,x. Repeated calls to Q on the same input (i, x) will yield a fresh and
independently-sampled bit. The (N, r, q, δ, ε) generalized jump-finding problem is to output some
element in C given oracle access to Q.

Theorem 2.6 (Generalized Jump-Finding Algorithm [NWZ16, Theorem 3.10]). There is an efficient
algorithm QTraceQ(λ,N, r, q, δ, ε) that runs in time t = poly(λ, logN, r, q, 1/δ) and makes at most t
queries to Q that solves the (N, r, q, δ, ε) generalized jump-finding problem with probability 1−negl(λ)
whenever ε ≥ δ(9 + 4(dlogNe − 1)q). Moreover, any element (s, b1, . . . , br) ∈ [N ]× {0, 1}r output
by QTraceQ satisfies the following property (with overwhelming probability):

• For all i ∈ [r], |P (i, 2s− bi)− P (i, 2s− 1− bi)| ≥ δ, where P (i, x) := Pr[Q(i, x) = 1].
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Remark 2.7 (Cheating Oracles [NWZ16, Remark 3.8]). The algorithm QTraceQ from Theorem 2.6
succeeds in solving the (N, r, q, δ, ε) generalized jump-finding problem even if the oracle Q does not
satisfy all of the requirements in Definition 2.5. As long as the first two properties hold for all pairs
(i, x) and (j, y) queried by QTraceQ, the algorithm succeeds in outputting an element in C.

2.1 Functional Encryption

In this section, we recall the notions of attribute-based encryption (ABE) and mixed functional
encryption (mixed FE) that we use in this work.

Mixed FE. A mixed FE scheme [GKW18] is a secret-key FE scheme (i.e., a secret key is needed
to encrypt) where ciphertexts are associated with binary-valued functions f : X → {0, 1} and
decryption keys are associated with inputs x ∈ X . When a secret key skx associated with an input x
is used to decrypt a ciphertext encrypting a message f , the decryption algorithm outputs f(x).
The special property in a mixed FE scheme is that there additionally exists a public-key encryption
algorithm that can be used to encrypt to the “always-accept” function (i.e., the function f where
f(x) = 1 for all x ∈ X ). Moreover, ciphertexts encrypted using the public key are computationally
indistinguishable from ciphertexts produced by using the secret key to encrypt the “always-accept”
function. Finally, for our constructions, we require an additional property where the master public
key and the master secret key for the mixed FE scheme can be generated independently. This means
that we can have a family of mixed FE schemes sharing a common set of public parameters. As we
discuss in Remark 2.10, all existing mixed FE schemes satisfy this requirement.

Definition 2.8 (Mixed Functional Encryption [GKW18]). A mixed functional encryption scheme
ΠMFE with domain X and function family F = {f : X → {0, 1}} is a tuple of algorithms ΠMFE =
(PrmsGen,MSKGen,KeyGen,PKEnc,SKEnc,Dec) with the following properties:

• PrmsGen(1λ)→ pp: On input the security parameter λ, the parameter generation algorithm
outputs the public parameters pp.

• MSKGen(pp) → msk: On input the public parameters pp, the master secret key generation
algorithm outputs a master secret key msk.

• KeyGen(msk, x) → skx: On input the master secret key msk and an input x ∈ X , the
key-generation algorithm outputs a secret key skx.

• PKEnc(pp)→ ct: On input the public parameters pp, the public encryption algorithm outputs
a ciphertext ct.

• SKEnc(msk, f)→ ctf : On input the master secret key msk and a function f ∈ F , the secret
encryption algorithm outputs a ciphertext ctf .

• Dec(sk, ct)→ b: On input a secret key sk and a ciphertext ct, the decryption algorithm outputs
a bit b ∈ {0, 1}.

A mixed FE scheme should satisfy the following properties:
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• Correctness: For all functions f ∈ F and all inputs x ∈ X , and setting pp← PrmsGen(1λ),
msk ← MSKGen(pp), skx ← KeyGen(msk, x), ct ← PKEnc(pp), ctf ← SKEnc(msk, f), it
follows that

Pr[Dec(skx, ct) = 1] = 1− negl(λ) and Pr[Dec(skx, ctf ) = f(x)] = 1− negl(λ).

• Semantic security: For a bit b ∈ {0, 1}, we define the security experiment ExptMFESS[λ,A, b]
between a challenger and an adversary A. The challenger begins by sampling pp ←
PrmsGen(1λ), msk← MSKGen(pp), and gives pp to A. The adversary is then given access to
the following oracles:

– Key-generation oracle: On input x ∈ X , the challenger replies with skx ← KeyGen(msk, x).

– Encryption oracle: On input f ∈ F , the challenger replies with ctf ← SKEnc(msk, f).

– Challenge oracle: On input two functions f0, f1 ∈ F , the challenger replies with
ct← SKEnc(msk, fb).

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is also the output of
the experiment. An adversary A is admissible for the mixed FE semantic security game if
it makes one challenge query (f0, f1), and for all inputs x ∈ X the adversary submits to the
key-generation oracle, f0(x) = f1(x). The mixed FE scheme satisfies (adaptive) semantic
security if for all efficient and admissible adversaries A,

|Pr[ExptMFESS[λ,A, 0] = 1]− Pr[ExptMFESS[λ,A, 1] = 1]| = negl(λ).

• Public/secret key indistinguishability: For a bit b ∈ {0, 1}, we define the security
experiment ExptMFEPK/SK[λ,A, b] between a challenger and an adversary A. The challenger

begins by sampling pp← PrmsGen(1λ), msk← MSKGen(pp), and gives pp to A. The adversary
is then given access to the following oracles:

– Key-generation oracle: On input x ∈ X , the challenger replies with skx ← KeyGen(msk, x).

– Encryption oracle: On input f ∈ F , the challenger replies with ctf ← SKEnc(msk, f).

– Challenge oracle: On input a function f ∈ F , the challenger computes ct0 ←
PKEnc(pp) and ct1 ← SKEnc(msk, f) and gives skb to the adversary.

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is also the output of the
experiment. An adversary A is admissible for the public/secret key indistinguishability game
if it makes a single challenge query f ∈ F and for all inputs x ∈ X the adversary submits to
the key-generation oracle, f(x) = 1. The mixed FE scheme satisfies (adaptive) public/secret
key indistinguishability if for all efficient and admissible adversaries A, it holds that∣∣∣Pr[ExptMFEPK/SK[λ,A, 0] = 1]− Pr[ExptMFEPK/SK[λ,A, 1] = 1]

∣∣∣ = negl(λ).

Remark 2.9 (Non-Adaptive q-Query Security). For each of the security notions in Definition 2.8
(semantic security and public/secret key indistinguishability), we define a notion of non-adaptive
q-query security where the corresponding security notion only holds against all adversaries that
make at most q ∈ N queries to the encryption oracle, and moreover, all of the non-encryption queries
occur before the encryption queries.
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Remark 2.10 (Public Parameters). In existing mixed FE definitions [GKW18, CVW+18a], there
is a single Setup algorithm that generates both the public parameters pp and the master secret
key msk. In our setting, we require a stronger property where many mixed FE schemes can
share a common set of public parameters (output by PrmsGen). For this reason, we have separate
algorithms PrmsGen and MSKGen for generating pp and msk, respectively. All existing constructions
of mixed FE in fact satisfy this stronger requirement. This includes the construction of [GKW18]
as well as the constructions of [CVW+18a] instantiated with lockable or compute-and-compare
obfuscation [GKW17, WZ17], or with a suitable family of private constrained PRFs [BLW17] (i.e.,
the constructions of [CC17, BTVW17, CVW18b]).

Remark 2.11 (Sub-Exponential Hardness). To argue adaptive security of some of our constructions,
we require the stronger notion of sub-exponential hardness. We say that a primitive is sub-
exponentially secure if for all adversaries A running in time poly(λ), the adversary’s distinguishing
advantage is bounded by 2−Ω(λε) for some constant ε > 0. Sub-exponential hardness assumptions
are commonly used to argue adaptive security of cryptographic constructions via complexity
leveraging [BB04].

Fact 2.12 (Sub-Exponential Mixed FE from Sub-Exponential LWE). Assuming the sub-exponential
hardness of LWE (with a super-polynomial modulus-to-noise ratio), the [GKW18] construction gives a
sub-exponentially secure mixed FE scheme that supports the class of NC1 functions and satisfies non-
adaptive q-query security (Remark 2.9) for any a priori bounded q = poly(λ). Similarly, also assuming
sub-exponential hardness of LWE (with super-polynomial modulus-to-noise ratio), the [CVW+18a]
construction (in conjunction with lockable or compute-and-compare obfuscation [GKW17, WZ17]
or private constrained PRFs [CC17, BTVW17, CVW18b]) yields a sub-exponentially secure mixed
FE scheme that supports all circuits of a priori bounded polynomial depth d = d(λ) and satisfies
non-adaptive q-query security for a priori bounded q = q(λ). We describe one specific instantiation
below (specialized to the setting where q = 1). Suppose X = {0, 1}` and F is a function class
where each function f ∈ F can be described by a string of length z = z(λ) and which can
be computed by a Boolean circuit of depth d = d(λ).4 Then the non-adaptive 1-query mixed
FE scheme from [CVW+18a] instantiated with the key-homomorphic private constrained PRFs
from [CC17, BTVW17, CVW18b] satisfies the following properties:

• Public parameter size: |pp| = ` · poly(λ, d, z).

• Secret key size: A secret key skx for an input x ∈ X has size |skx| = `+ poly(λ, z).

• Ciphertext size: A ciphertext ct (output by either SKEnc or PKEnc) has size poly(λ, d, z).

• Decryption complexity: The decryption function Dec can be computed by a Boolean
circuit with depth poly(λ, d, z).

Attribute-based encryption. We now recall the definition of (key-policy) attribute-based en-
cryption (ABE) [SW05, GPSW06]. As we note in Fact 2.14, ABE schemes for general circuit policies
can be constructed from standard lattice assumptions.

4While the description length z of the function f can always be upper-bounded by the size of the Boolean circuit
computing f , for some function classes, the description length of f can be much smaller than the size of the Boolean
circuit computing f . This will be true for the circuit classes we use to construct trace-and revoke schemes.
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Definition 2.13 (Attribute-Based Encryption [SW05, GPSW06]). An attribute-based encryption
(ABE) scheme over a message space M, an attribute space X , and a function family F = {f : X →
{0, 1}} is a tuple of algorithms ΠABE = (Setup,KeyGen,Enc,Dec) with the following properties:

• Setup(1λ)→ (pp,msk): On input the security parameter λ, the setup algorithm outputs the
public parameters pp and the master secret key msk.

• KeyGen(msk, f) → skf : On input the master secret key msk and a function f ∈ F , the
key-generation algorithm outputs a decryption key skf .

• Enc(pp, x,m)→ ctx,m: On input the public parameters pp, an attribute x ∈ X , and a message
m ∈M, the encryption algorithm outputs a ciphertext ctx,m.

• Dec(sk, ct) → m/⊥: On input a decryption key sk, and a ciphertext ct, the decryption
algorithm either outputs a message m ∈M or a special symbol ⊥.

An attribute-based encryption scheme should satisfy the following properties:

• Correctness: For all functions f ∈ F , all attributes x ∈ X where f(x) = 1, and all messages
m ∈ M, if we set (pp,msk) ← Setup(1λ), skf ← KeyGen(msk, f), ctx,m ← Enc(pp, x,m), it
holds that

Pr[Dec(skf , ctx,m) = m] = 1− negl(λ).

• Semantic security: For a bit b ∈ {0, 1}, we define the experiment ExptABE[λ,A, b] between a
challenger and and an adversary A. The challenger begins by sampling (pp,msk)← Setup(1λ)
and gives pp to A. The adversary is then given access to the following oracles:

– Key-generation oracle: On input a function f ∈ F , the challenger replies with
skf ← KeyGen(msk, f).

– Challenge oracle: On input an attribute x ∈ X and messages m0,m1 ∈ M, the
challenger replies with ctb ← Enc(pp, x,mb).

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is the output of the
experiment. An adversary A is admissible for the security game if it makes a single challenge
query (x,m0,m1) and for all functions f it submitted to the key-generation oracle, it holds
that f(x) = 0. We say that an ABE scheme is semantically secure if for all efficient and
admissible adversaries A,

|Pr[ExptABE[λ,A, 0]]− Pr[ExptABE[λ,A, 1]]| = negl(λ).

Fact 2.14 (Attribute-Based Encryption from Sub-Exponential LWE). Assuming sub-exponential
hardness5 of LWE (with a super-polynomial modulus-to-noise ratio), there exist attribute-based
encryption schemes [GVW13, BGG+14] that supports all function families that can be computed
by Boolean circuits of a priori polynomially-bounded depth d = d(λ). We describe one specific
instantiation here. Suppose X = {0, 1}`,M = {0, 1}t, and F is a function class where every function
f ∈ F can be computed by a Boolean circuit of depth at most d = d(λ). Then, the [BGG+14] ABE
construction has the following properties:

5The ABE schemes from [GVW13, BGG+14] prove security in a selective model of security, while for our construction, we
require adaptive security. Thus, we rely on sub-exponential hardness (Remark 2.11) and complexity leveraging [BB04].
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• Public parameter size: For these parameters, |pp| = poly(λ, d, `).

• Secret key size: A secret key skf for a function f has size skf = |f |+ poly(λ, d, `). Here, |f |
denotes the description length of the function f .

• Ciphertext size: A ciphertext encrypting an attribute x ∈ {0, 1}` and message m ∈ {0, 1}t
has size t ·poly(λ, d, `). We can always use hybrid encryption where we use the ABE scheme to
encrypt a symmetric key k and then encrypt the message with k.6 In this case, the ciphertext
size is t+ ` · poly(λ, d, `).

3 Revocable Predicate Encryption

In this section, we introduce our notion of a secret-key revocable predicate encryption scheme that
supports a public broadcast functionality (i.e., a public-key encryption algorithm that outputs
ciphertexts that can be decrypted by all secret keys in the system). This will be the primary
primitive we use to construct our identity-based trace-and-revoke scheme (described in Section 4).
Our definitions can be viewed as a special case of the more general notion of (public-key) revocable
functional encryption from [NWZ16]. The advantage of considering this relaxed notion is that it
enables constructions from standard assumptions (whereas we only know how to construct fully
secure revocable functional encryption from indistinguishability obfuscation). We introduce our
notion below and then show how to construct it by combining mixed FE, ABE, and a subset-cover
set system in Section 3.1.

Definition 3.1 (Secret-Key Revocable Predicate Encryption with Broadcast). A secret-key revocable
predicate encryption scheme (RPE) scheme with broadcast for an identity space ID, an attribute
space X , a function family F = {f : X → {0, 1}}, and a message space M is a tuple of algorithms
ΠRPE = (Setup,KeyGen,Broadcast,Enc,Dec) defined as follows:

• Setup(1λ)→ (pp,msk): On input the security parameter λ, the setup algorithm outputs the
public parameters pp and the master secret key msk.

• KeyGen(msk, id, x)→ skid,x: On input the master secret key msk, an identity id ∈ ID, and an
attribute x ∈ X , the key-generation algorithm outputs a decryption key skid,x.

• Broadcast(pp,m,L) → ctm,L: On input the public key, a message m, and a revocation list
L ⊆ ID, the broadcast algorithm outputs a ciphertext ctm,L.

• Enc(msk, f,m,L)→ ctf,m,L: On input the master secret key msk, a function f ∈ F , a message
m ∈M, and a revocation list L ⊆ ID, the encryption algorithm outputs a ciphertext ctf,m,L.

• Dec(sk, ct)→ m/⊥: On input a decryption key sk and a ciphertext ct, the decryption algorithm
either outputs a message m ∈M or a special symbol ⊥.

A secret-key RPE scheme with broadcast should satisfy the following properties:

• Correctness: For all functions f ∈ F , all identities id ∈ ID, all attributes x ∈ X where
f(x) = 1, all messages m ∈ M, and all revocation lists L ⊆ ID where id /∈ L, if we set
(pp,msk)← Setup(1λ), skid,x ← KeyGen(msk, id, x), the following holds:

6We note that a symmetric encryption scheme can be constructed from any one-way function and therefore, can be
based on the hardness of LWE.
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– Broadcast correctness: If ctm,L ← Broadcast(pp,m,L), then

Pr[Dec(skid,x, ctm,L) = m] = 1− negl(λ).

– Encryption correctness: If ctf,m,L ← Enc(msk, f,m,L), then

Pr[Dec(skid,x, ctf,m,L) = m] = 1− negl(λ).

• Message hiding: For a bit b ∈ {0, 1}, we define the experiment ExptRPEMH[λ,A, b] between
a challenger and an adversary A. The challenger begins by sampling (pp,msk)← Setup(1λ)
and gives pp to A. The adversary is then given access to the following oracles:

– Key-generation oracle: On input an identity id ∈ ID and an attribute x ∈ X , the
challenger replies with skid,x ← KeyGen(msk, id, x).

– Encryption oracle: On input a function f ∈ F , a message m ∈M, and a revocation
list L ⊆ ID, the challenger replies with ctf,m,L ← Enc(msk, f,m,L).

– Challenge oracle: On input a function f ∈ F , two messages m0,m1 ∈ M, and a
revocation list L ⊆ ID, the challenger computes ctb ← Enc(msk, f,mb,L) and gives ctb
to the adversary.

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is the output of the
experiment. An adversary A is admissible for the message hiding game if it makes a single
challenge query (f,m0,m1,L) such that for all pairs (id, x) the adversary submitted to the
key-generation oracle, it holds that f(x) = 0 or id ∈ L. We say that ΠRPE satisfies (adaptive)
message hiding if for all efficient and admissible adversaries A,

|Pr[ExptRPEMH[λ,A, 0] = 1]− Pr[ExptRPEMH[λ,A, 1] = 1]| = negl(λ).

• Function hiding: For a bit b ∈ {0, 1}, we define the experiment ExptRPEFH[λ,A, b] between
a challenger and an adversary A exactly as ExptRPEMH[λ,A, b], except the challenge oracle is
replaced with the following:

– Challenge oracle: On input two functions f0, f1 ∈ F , a message m ∈ M, and a
revocation list L ⊆ ID, the challenger computes ctb ← Enc(msk, fb,m,L) and gives ctb
to the adversary.

We say an adversary A is admissible for the function-hiding game if it makes a single challenge
query (f0, f1,m,L) such that for all pairs (id, x) the adversary submitted to the key-generation
oracle, either f0(x) = f1(x) or id ∈ L. We say that ΠRPE satisfies (adaptive) function hiding if
for all efficient and admissible adversaries A,

|Pr[ExptRPEFH[λ,A, 0] = 1]− Pr[ExptRPEFH[λ,A, 1] = 1]| = negl(λ).

• Broadcast security: For a bit b ∈ {0, 1}, we define the security experiment ExptRPEBC[λ,A, b]
between a challenger and an adversary A exactly as ExptRPEMH[λ,A, b], except the challenge
oracle is replaced with the following:
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– Challenge oracle: On input a message m ∈ M and a revocation list L ⊆ ID, the
challenger computes ct0 ← Broadcast(pp,m,L) and ct1 ← Enc(msk, f,m,L) where faccept
is the “always-accept” function (i.e., faccept(x) = 1 for all x ∈ X ). It gives ctb to the
adversary.

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is the output of
the experiment. We say that ΠRPE satisfies (adaptive) broadcast security if for all efficient
adversaries A that make at most one challenge query,

|Pr[ExptRPEBC[λ,A, b] = 1]− Pr[ExptRPEBC[λ,A, 1]]| = negl(λ).

Remark 3.2 (Non-Adaptive q-Query Security). Analogously to Remark 2.9, for each of the security
notions in Definition 3.1 (message hiding, function hiding, and broadcast security), we define a
notion of non-adaptive q-query security where the corresponding security notion only holds against
all adversaries that make at most q ∈ N queries to the encryption oracle, and moreover, all of the
non-encryption queries occur before the encryption queries. Achieving this notion is easier and
suffices for our main construction (adaptively-secure trace-and-revoke).

Remark 3.3 (Embedding the Revocation List in the Attribute). A natural approach for constructing
a revocable predicate encryption scheme from any vanilla predicate encryption scheme is to include
the revocation list L as part of the function in the predicate encryption scheme. A decryption key for
an identity id would then check that id is not contained in the revocation list L associated with the
ciphertext. This is the approach suggested in [NWZ16, Remark 6.2] in the context of constructing
a revocable functional encryption scheme. While this approach may seem straightforward, it has
a significant drawback in most settings. In existing predicate encryption schemes schemes from
standard assumptions, the decryption functionality is represented as a circuit, which takes fixed-size
inputs. Thus, if the revocation list is embedded as part of the ciphertext, then a predicate encryption
scheme for circuit-based predicates would only be able to support an a priori bounded number of
revocations. In contrast, the our construction allows for revoking an arbitrary polynomial number
of users (Section 3.1). Of course, if we can construct predicate or functional encryption for Turing
machine or RAM computations, then this natural revocation approach would suffice. Existing
constructions of functional encryption for Turing machine computations all rely on indistinguishability
obfuscation [KLW15, AJS17, AS16, GS18].

3.1 Constructing Secret-Key Revocable Predicate Encryption with Broadcast

In this section, we describe our construction of a secret-key revocable predicate encryption with
broadcast scheme for general predicates by combining a mixed FE scheme, an ABE scheme, and
a subset-cover set system. As discussed in 1.1, our core construction (without revocation) can be
viewed as a direct generalization of the construction of private linear broadcast encryption from
mixed FE and ABE from [GKW18]. We next augment our construction with a subset cover set
system to support revocation. Our techniques allow revoking an arbitrary number of users (in
contrast to previous trace-and-revoke schemes from standard assumptions that could only handle
bounded revocations [NWZ16, ABP+17]). We give our full construction and its analysis below:

Construction 3.4 (Secret-Key Revocable Predicate Encryption with Broadcast). Fix an identity
space ID = {0, 1}n, attribute space X , function family F = {f : X → {0, 1}} and message space
M, where n = n(λ).
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• Let [K] be the subset-cover set system for the set ID = {0, 1}n. Let ΠSC = (Encode,
ComputeCover) be the algorithms associated with the set system.

• Let ΠMFE = (MFE.PrmsGen,MFE.MSKGen,MFE.KeyGen,MFE.PKEnc,MFE.SKEnc,MFE.Dec)
be a mixed FE scheme with domain X and function family F . Let ρ = ρ(λ) be the randomness
complexity of the master secret key generation algorithm MFE.MSKGen, let CT denote the
ciphertext space of ΠMFE (i.e., the range of MFE.PKEnc and MFE.SKEnc), and let SK denote
the secret key space of ΠMFE (i.e., the range of MFE.KeyGen). We will require that ΠMFE be
sub-exponentially secure (Remark 2.11), so let ε > 0 be a constant such that 2−Ω(λε) bounds
the advantage of any efficient adversary A for the security of ΠMFE.

• For a secret key mfe.sk ∈ SK and an index i∗ ∈ [K], define the function gmfe.sk,i∗ : CT × [K]→
{0, 1} to be the function

gmfe.sk,i∗(ct, i) =

{
1 MFE.Dec(mfe.sk, ct) = 1 and i = i∗

0 otherwise.

• Let ΠABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) be an attribute-based encryption
scheme over message space M, attribute space X ′ = CT × [K] and function family F ′ =
{mfe.sk ∈ SK, i∗ ∈ [K] : gmfe.sk,i∗}.

• Let F : K × [K]→ {0, 1}ρ be a pseudorandom function.

We construct a secret-key revocable predicate encryption scheme as follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm sets λ′ = max(λ, (logK)2/ε).
It then generates mixed FE public parameters mfe.pp← MFE.PrmsGen(1λ

′
). It also instantiates

an attribute-based encryption scheme (abe.pp, abe.msk)← ABE.Setup(1λ), samples a PRF key

k
r← K, and outputs

pp = (mfe.pp, abe.pp) and msk = (pp, abe.msk, k).

• KeyGen(msk, id, x): On input a master secret key msk, an identity id ∈ ID, and an attribute
x ∈ X , the key-generation algorithm does the following:

1. Compute a subset-cover encoding of the identity Iid ← Encode(id).

2. For each index i ∈ Iid, the algorithm samples randomness ri ← F (k, i). It then generates
a mixed FE master secret key mfe.mski ← MFE.MSKGen(mfe.pp; ri) and a mixed FE
decryption key mfe.ski,x ← MFE.KeyGen(mfe.mski, x).

3. Finally, for each i ∈ Iid, it constructs an ABE decryption key with respect to the function
gmfe.mski,x,i as follows: abe.ski,x ← ABE.KeyGen(abe.msk, gmfe.ski,x,i).

4. It outputs the collection of keys skid,x = {(i, abe.ski,x)}i∈Iid .

• Broadcast(pp,m,L): On input the public parameters pp = (mfe.pp, abe.pp), a message m, and
a revocation list L ⊆ ID, the broadcast algorithm does the following:

1. Obtain a cover for ID \ L by computing JL ← ComputeCover(L).
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2. For each i ∈ JL, it generates a mixed FE ciphertext mfe.cti ← MFE.PKEnc(mfe.pp) and
an ABE ciphertext abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m).

3. It outputs the ciphertext ctm,L = {(i, abe.cti)}i∈JL .

• Enc(msk, f,m,L): On input the master secret key msk = (pp, abe.msk, k), a function f ∈ F , a
message m ∈M, and a revocation list L ⊆ ID, where pp = (mfe.pp, abe.pp), the encryption
algorithm does the following:

1. Obtain a cover for ID \ L by computing JL ← ComputeCover(L).

2. Then, for each i ∈ JL, it computes ri ← F (k, i) and derives the corresponding mixed
FE master secret key mfe.mski ← MFE.MSKGen(mfe.pp; ri). It then encrypts mfe.cti ←
MFE.SKEnc(mfe.mski, f).

3. For each i ∈ JL, it computes abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m), and outputs the
ciphertext ctf,m,L = {(i, abe.cti)}i∈JL .

• Dec(sk, ct): On input a key sk = {(i, abe.ski)}i∈I and a ciphertext ct = {(i, abe.cti)}i∈J , the
decryption algorithm first checks if I ∩ J = ∅. If so, it outputs ⊥. Otherwise, it chooses an
arbitrary index i ∈ I ∩ J and outputs m← ABE.Dec(abe.ski, abe.cti).

Correctness and security analysis. We state our main theorems on the properties of Con-
struction 3.4 below, but defer their analysis to Appendix A.

Theorem 3.5 (Correctness). Suppose that ΠMFE, ΠABE, and ΠSC are correct. Then, the predicate
encryption scheme ΠRPE from Construction 3.4 is correct.

Theorem 3.6 (Message Hiding). Suppose that ΠMFE and ΠSC are correct, and ΠABE satisfies
semantic security. Then, the predicate encryption scheme ΠRPE from Construction 3.4 satisfies
message hiding.

Theorem 3.7 (Function Hiding). Suppose that ΠMFE satisfies sub-exponential non-adaptive q-query
(resp., adaptive) semantic security. Specifically, suppose that the advantage of any adversary running
in time poly(λ) in the semantic security game is bounded by 2−Ω(λε). In addition, suppose that
ΠABE is secure, F is a secure PRF, and ΠSC is correct. Then, the predicate encryption scheme in
Construction 3.4 satisfies non-adaptive q-query (resp., adaptive) function hiding security.

Theorem 3.8 (Broadcast Security). Suppose that ΠMFE satisfies sub-exponential non-adaptive q-
query (resp., adaptive) public/secret key indistinguishability. Specifically, suppose that the advantage
of any adversary running in time poly(λ) in the public/secret key indistinguishability game is bounded
by 2−Ω(λε). In addition, suppose that F is a secure PRF. Then the predicate encryption scheme
ΠRPE in Construction 3.4 satisfies non-adaptive q-query (resp., adaptive) broadcast security.

3.2 Instantiating Secret-Key Revocable Predicate Encryption with Broadcast

In this section, we describe one possible instantiation of secret-key revocable predicate encryption
with broadcast from Construction 3.4. In particular, combining Construction 3.4 with Theorems 3.5
through 3.8 yields the following corollary:
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Corollary 3.9 (Secret-Key Revocable Predicate Encryption from LWE). Take an identity-space
ID = {0, 1}n, attribute space X = {0, 1}`, and message spaceM = {0, 1}t where n = n(λ), ` = `(λ),
and t = t(λ). Let F = {f : X → {0, 1}} be a function family where every function f ∈ F can be
specified by a string of length z = z(λ) and computed by a Boolean circuit of depth d = d(λ). Then,
assuming sub-exponential hardness of LWE (with a super-polynomial modulus-to-noise ratio), there
exists a non-adaptive 1-key secure secret-key revocable predicate encryption scheme with broadcast
ΠRPE over the identity space ID, attribute space X , and function family F . Moreover, ΠRPE satisfies
the following properties:

• Public parameter size: |pp| = ` · poly(λ, d, n, z).

• Secret key size: The secret key skid,x for an identity id ∈ {0, 1}n and an attribute x ∈ {0, 1}`
has size |skid,x| = `+ poly(λ, d, n, z).

• Ciphertext size: An encryption ctm,L of a message m ∈ {0, 1}t with revocation list L has
size |ctm,L| = t+ |L| · poly(λ, d, n, z).

Proof. We instantiate Construction 3.4 using the subset-cover set system from Fact 2.4, the mixed
FE scheme using the construction from Fact 2.12, the ABE scheme using the construction from
Fact 2.14, and the PRF from any one-way function [GGM84]. The mixed FE scheme is instantiated
with domain X = {0, 1}` and function family F , while the ABE scheme is instantiated with message
spaceM, attribute space X ′ = CT ×[K] and function family F ′ = {mfe.sk ∈ SK, i∗ ∈ [K] : gmfe.sk,i∗}.
We will use the following bounds in our analysis:

• From Fact 2.4, we have that K = O(N), and correspondingly, logK = O(logN) = O(n).

• By Fact 2.12, we have that the length of a mixed FE ciphertext mfe.ct ∈ CT is bounded by
|mfe.ct| = poly(λ, d, z). Correspondingly, this means that the length `ABE of an ABE attribute
is bounded by `ABE = poly(λ, d, z) + logK = poly(λ, d, n, z).

• By Fact 2.12, each function gmfe.sk,i∗ can be implemented by a circuit with depth at most
poly(λ, d) + log logK = poly(λ, d, log n). Specifically, the mixed FE decryption circuit can be
evaluated by a circuit of depth poly(λ′, d) = poly(λ, d, n, z) and the equality-check circuit can
be evaluated by a circuit of depth log logK (since each input to the equality-check circuit
is a (logK)-bit value). Thus, the functions in F ′ can be computed by Boolean circuits
with depth at most dABE ≤ poly(λ, d, n, z). The description length of functions in F ′ is
|mfe.sk|+ logK = `+ poly(λ, n, z).

Putting all the pieces together, we now have the following:

• Public parameter size: The public parameters pp consist of the ABE public parameters
abe.pp and the mixed FE public parameters mfe.pp. By Fact 2.14,

|abe.pp| = poly(λ, dABE, `ABE) = poly(λ, d, n, z),

and correspondingly, by Fact 2.12,

|mfe.pp| = ` · poly(λ′, d, z) = ` · poly(λ, d, n, z),

since λ′ = poly(λ, logK) = poly(λ, n). Thus, |pp| = ` · poly(λ, d, n, z).
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• Secret key size: The secret key skid,x = {(i, abe.ski,x)}i∈Iid for an identity id and attribute
x consists of |Iid| ABE secret keys, where |Iid| ← Encode(id). By Fact 2.4, |Iid| = logN + 1 =
poly(n). Finally, by Facts 2.12 and 2.14

|abe.ski,x| =
∣∣gmfe.ski,x,i

∣∣+ poly(λ, dABE, `ABE) = `+ poly(λ, d, n, z).

Thus, |skid,x| = |Iid| · |abe.ski,x| = `+ poly(λ, d, n, z).

• Ciphertext size: Without loss of generality, we can always use hybrid encryption for the
ciphertexts. Namely, the encryption algorithm samples a symmetric key k to encrypt the
message and then encrypts k using the secret-key revocable predicate encryption scheme.
The final ciphertext ctm,L then consists of a symmetric encryption of the message m (which
has size |m|+ poly(λ)) and a revocable predicate encryption ciphertext ĉt of the key k. In
this case, |k| = poly(λ), and the overall ciphertext size is |ct| = |m| + poly(λ) +

∣∣ĉt∣∣, where
ĉt = {(i, abe.cti)}i∈JL is an encryption of k using ΠRPE. By construction, ĉt consists of |JL|
ABE ciphertexts, where JL ← ComputeCover(L). By Fact 2.4, |L| = O(|L| log(N/ |L|)) =
|L| · poly(n). By Fact 2.14, |abe.cti| = |k|+ `ABE · poly(λ, dABE, `ABE) = poly(λ, d, n, z), and so

|ctm,L| = |m|+ poly(λ) +
∣∣ĉt∣∣ = t+ |L| · poly(λ, d, n, z).

Remark 3.10 (Handling More General Revocation Policies). Construction 3.4 naturally supports
any revocation policy that can be described by a polynomial-size cover in the underlying subset-cover
set system. In particular, the prefix-based subset-cover set system by Naor et al. [NNL01] from
Fact 2.4 can compute a cover that excludes any polynomial number of prefixes (in addition to full
identities). For instance, we can use the set system to revoke all users whose identities start with “000”
or “01” (i.e., revoke all identities of the form 000*** and 01****). This way, the number of revoked
users in the set L can be exponential, as long as they can be described by a polynomial-number of
prefix-based clusters. Correspondingly, the traitor tracing scheme we construct in Section 4 will
also support these types of revocation policies.

4 Identity-Based Trace-and-Revoke

In this section, we describe how to construct an identity-based trace-and-revoke scheme using a
secret-key revocable predicate encryption scheme with broadcast (Definition 3.1). We begin by
recalling the formal definition of a trace-and-revoke scheme. Our definitions are adapted from the
corresponding ones in [BW06, NWZ16]. As we discuss in greater detail in Remark 4.2, our definition
combines aspects of both definitions and is strictly stronger than both of the previous notions.

Definition 4.1 (Trace-and-Revoke [NWZ16, adapted]). A trace-and-revoke scheme for a set of
identities ID and a message space M is a tuple of algorithms ΠTR = (Setup,KeyGen,Enc,Dec,
Trace) defined as follows:

• Setup(1λ)→ (pp,msk): On input the security parameter λ, the setup algorithm outputs the
public parameters pp and the master secret key msk.

• KeyGen(msk, id) → skid: On input the master secret key msk and an identity id ∈ ID, the
key-generation algorithm outputs a secret key skid.
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• Enc(pp,m,L)→ ctm,L: On input the public parameters pp, a message m ∈M, and a list of
revoked users L ⊆ ID, the encryption algorithm outputs a ciphertext ctm,L.

• Dec(sk, ct)→ m/⊥: On input a decryption key sk and a ciphertext ct, the decryption algorithm
either outputs a message m ∈M or a special symbol ⊥.

• TraceD(msk,m0,m1,L, ε)→ id/⊥: On input the master secret key msk, two messages m0,m1 ∈
M, a revocation list L ⊆ ID, a decoder-success parameter ε > 0, and assuming oracle access
to a decoder algorithm D, the tracing algorithm either outputs an identity id ∈ ID or ⊥.

Moreover, a trace-and-revoke scheme should satisfy the following properties:

• Correctness: For all messages m ∈ M, all identities id ∈ ID, and all revocation lists
L ⊆ ID where id /∈ L, if we set (pp,msk)← Setup(1λ), skid ← KeyGen(msk, id), and ctm,L ←
Enc(pp,m,L), then

Pr[Dec(skid, ctm,L) = m] = 1− negl(λ).

• Semantic Security: For a bit b ∈ {0, 1}, we define the security experiment ExptTRSS[λ,A, b]
between a challenger and an adversary A. The challenger begins by sampling (pp,msk) ←
Setup(1λ) and gives pp to A. The adversary is then given access to the following oracles:

– Key-generation oracle. On input an identity id ∈ ID, the challenger replies with
skid ← KeyGen(msk, id).

– Challenge oracle. On input two messages m0,m1 ∈M and a revocation list L ⊆ ID,
the challenger replies with ctb ← Enc(pp,mb,L).

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is the output of the
experiment. An adversary A is admissible for the semantic security game if it makes a single
challenge query (m0,m1,L), and moreover, for all key-generation queries id the adversary
makes, id ∈ L. We say that ΠTR is semantically secure if for all efficient and admissible
adversaries A,

|Pr[ExptTRSS[λ,A, 0] = 1]− Pr[ExptTRSS[λ,A, 1] = 1]| = negl(λ).

• Traceability: We define the experiment ExptTRTR[λ,A] between a challenger and an adver-
sary A. The challenger begins by sampling (pp,msk) ← Setup(1λ) and gives pp to A. The
adversary is then given access to the key-generation oracle:

– Key-generation oracle. On input an identity id ∈ ID, the challenger replies with
skid ← KeyGen(msk, id).

At the end of the game, the adversary outputs a decoder algorithm D, two messages m0,m1 ∈
M, a revocation list L ⊆ ID, and a non-negligible decoder-success probability ε > 0. Let
R ⊆ ID be the set of identities the adversary submitted to the key-generation oracle and let
id∗ ← TraceD(msk,m0,m1,L, ε). Then the output of the experiment is 1 if id∗ /∈ R \ L and 0
otherwise. We say that an adversary A is admissible for the traceability game if the decoder
algorithm output by A satisfies

Pr[b
r← {0, 1} : D(Enc(pp,mb,L)) = b] ≥ 1/2 + ε.
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Finally, we say that ΠTR satisfies traceability security if for all efficient and admissible
adversaries A,

Pr[ExptTRTR[λ,A] = 1] = negl(λ).

Remark 4.2 (Comparison to Previous Traceability Notions). Our notion of traceability in Defini-
tion 4.1 combines aspects of the notions considered in [BW06] and [NWZ16] and is stronger than
both of these previous definitions. First, similar to [NWZ16], we only require that the decoder
D output by A to be able to distinguish the encryptions of two adversarially-chosen messages.
The previous notion in [BW06] made the more stringent requirement that the adversary’s decoder
must correctly decrypt a noticeable fraction of ciphertexts. Thus, our definitions enable tracing for
much weaker decoders. Next, and similar to [BW06], our tracing definition naturally incorporates
revocation. Namely, if an adversary constructs a decoder that is able to distinguish encryptions
of two messages with respect to a revocation list L, then the tracing algorithm must identify a
compromised key that is outside L. In contrast, the definition in [NWZ16] only considered tracing
in a standalone setting: namely, while the scheme supports revocation, the tracing definition only
considered decoders that can decrypt ciphertexts encrypted to an empty revocation list. Overall, our
definition is stronger than the previous definitions and we believe provides a more realistic modeling
of the security demands in applications of trace-and-revoke systems.

Remark 4.3 (Adaptive Security). We note that all of the security requirements in Definition 4.1
are adaptive: namely, the adversary chooses its challenge messages and revocation list after seeing
the public parameters and (adaptively-chosen) secret decryption keys. Our final construction is
fully adaptive (Construction 4.4, Corollary 4.8), but we do rely on complexity leveraging and
sub-exponential hardness assumptions. We remark here that a selective notion of security where the
adversary commits to its revocation list ahead of time does not seem to directly imply adaptive
security by the usual complexity leveraging technique [BB04] unless we additionally impose an a
priori bound on the size of the revocation list (which we do not require in our analysis). It is an
interesting problem to construct a fully collusion resistant trace-and-revoke scheme for arbitrary
identities from standard polynomial hardness assumptions.

4.1 Constructing an Identity-Based Trace-and-Revoke Scheme

Our construction follows the general high-level schema as that by Nishimaki et al. [NWZ16], except
our construction is secretly-traceable (but will provide full collusion resistance). Very briefly, we
use a secret-key revocable predicate encryption scheme to embed an instance of the generalized
jump-finding problem (Definition 2.5) where the position of the “jumps” correspond to non-revoked
keys. The tracing algorithm relies on the generalized jump-finding algorithm (Theorem 2.6) to
identify the compromised keys. We give our construction below.

Construction 4.4 (Identity-Based Trace-and-Revoke). Let ID = {0, 1}n be the identity space and
let M be a message space. We additionally rely on the following primitives:

• Let H : K × ID → [2`] be a keyed collision-resistant hash function.

• Let ID0 = [2`+1]. For a pair (i, u) ∈ [n]× [0, 2`+1], define the function fi,u : IDn0 → {0, 1} to
be the function that takes as input v = (v1, . . . , vn), where each vi ∈ ID0, and outputs 1 if
vi ≤ u and 0 otherwise. When u = 0, fi,u(v) = 0 for all i ∈ [n] and v ∈ IDn0 . Similarly, when
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u = 2`+1, fi,u(v) = 1 for all i ∈ [n] and v ∈ IDn0 . We will use a canonical “all-zeroes” function
to represent fi,0 and a canonical “all-ones” function to represent fi,2`+1 for all i ∈ [n].

• Let ΠRPE = (RPE.Setup,RPE.KeyGen,RPE.Broadcast,RPE.Enc,RPE.Dec) be a secret-key re-
vocable predicate encryption scheme with broadcast with attribute space IDn0 , label space
[2`], message space M, and function space F = {i ∈ [n], u ∈ [0, 2`+1] : fi,u}.

We construct a trace-and-revoke scheme ΠTR = (Setup,KeyGen,Enc,Dec,Trace) with identity space
ID and message space M as follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm samples a key hk
r← K,

parameters (rpe.pp, rpe.msk)← RPE.Setup(1λ), and outputs

pp = (hk, rpe.pp) and msk = (hk, rpe.msk).

• KeyGen(msk, id): On input the master secret key msk = (hk, rpe.msk) and an identity id =
(id1, . . . , idn) ∈ ID, the key-generation algorithm computes sid ← H(hk, id) and defines the
vector vid = (2sid− id1, . . . , 2sid− idn) ∈ IDn0 . It outputs skid ← RPE.KeyGen(rpe.msk, sid, vid).

• Enc(pp,m,L): On input the public parameters pp = (hk, rpe.pp), a messagem, and a revocation
list L ⊆ ID, the encryption algorithm first constructs a new list L′ ⊆ {0, 1}` where L′ = {id ∈
L : H(hk, id)}. Then, it outputs ctm,L ← RPE.Broadcast(rpe.pp,m,L′).

• Dec(sk, ct): On input a secret key sk and a ciphertext ct, the decryption algorithm outputs
m← RPE.Dec(sk, ct).

• TraceD(msk,m0,m1,L, ε): On input the decryption oracle D, the master secret key msk =
(hk, rpe.msk), messages m0,m1 ∈M, a revocation list L ⊆ ID, and a success probability ε, the
tracing algorithm begins by constructing the set L′ ⊆ {0, 1}` where L′ = {id ∈ L : H(hk, id)}.
It then defines the following randomized oracle Q:

On input a pair (i, u) ∈ [n]× [0, 2`+1]:

1. Sample a random bit b
r← {0, 1}, and construct the ciphertext ctb ←

RPE.Enc(rpe.msk, fi,u,mb,L′).
2. Run the decoder algorithm D on the ciphertext ctb to obtain a bit b′ ← D(ctb).
3. Output 1 if b = b′ and 0 otherwise.

Figure 1: The randomized oracle Q used for tracing.

Let q = 1, set δq = ε/(9 + 4(` − 1)q), and compute Tq ← QTraceQ(λ, 2`, n, q, δq, ε). If Tq
is non-empty, take any element (sid, id1, . . . , idn) ∈ Tq, and output id = (id1, . . . , idn) ∈ ID.
Otherwise, update q ← 2q and repeat this procedure.7

7We will argue in the proof of Theorem 4.7 that this algorithm will terminate with overwhelming probability.
Alternatively, we can set an upper bound on the maximum number of iterations qmax. In this case, the tracing
algorithm succeeds as long as the total number of keys issued is bounded by 2qmax . Note that this is not an a priori
bound on the number of keys that can be issued, just a bound on the number of iterations on which to run the
tracing algorithm, which can be a flexible parameter (independent of other scheme parameters).
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Correctness and security analysis. We now show that ΠTR from Construction 4.4 satisfies
correctness, semantic security, and traceability. We state the main theorems below, but defer
their formal proofs to Appendix B. The analysis proceeds similarly to the corresponding analysis
from [NWZ16], except we operate in the secret-traceability setting. The main challenge in the
secret-key setting is that when the adversary in the traceability game outputs a pirate decoder,
the reduction algorithm cannot easily tell whether the decoder is “useful” or not (where a “useful”
decoder is one that can be leveraged to break the security of the underlying secret-key revocable
predicate encryption scheme). The analysis in [NWZ16] solves this problem by having the reduction
algorithm sample ciphertexts of its own and observe the decoder’s behavior on those ciphertexts.
In this way, the reduction is able to estimate the decoder’s distinguishing advantage and identify
whether the adversary produced a good decoder or not. In the secret-key setting, the reduction
cannot sample ciphertexts of its own and as such, it cannot estimate the decoder’s success probability.
To solve this problem, we adopt the approach taken in [GKW18] and allow the reduction algorithm
to make a single encryption query to the secret-key predicate encryption scheme. Using the same
type of analysis as in [GKW18], we then show that with just a single encryption query, the reduction
can leverage the decoder output by the traceability adversary to break security of the underlying
predicate encryption scheme. The full analysis is provided in Appendix B.3.

Theorem 4.5 (Correctness). If H is collision-resistant and ΠRPE is correct, then ΠTR from Con-
struction 4.4 is correct.

Theorem 4.6 (Semantic Security). If ΠRPE satisfies broadcast security and message hiding (without
encryption queries), then ΠTR from Construction 4.4 is semantically secure.

Theorem 4.7 (Traceability). If H is collision-resistant and ΠRPE satisfies non-adaptive 1-query
message hiding security, non-adaptive 1-query function hiding, and non-adaptive 1-query broadcast
security, then ΠTR is traceable. In particular, the tracing algorithm Trace is efficient.

4.2 Instantiating the Trace-and-Revoke Scheme

In this section, we describe our instantiation of our resulting trace-and-revoke scheme using the
secret-key revocable predicate encryption scheme from Section 3.1 (Construction 3.4, Corollary 3.9).
In particular, combining Construction 4.4 with Theorems 4.5 through 4.7 yields the following
corollary:

Corollary 4.8 (Identity-Based Trace-and-Revoke from LWE). Assuming sub-exponential hardness
of LWE (with a super-polynomial modulus-to-noise ratio), there exists a fully secure identity-based
trace-and-revoke scheme with identity space ID = {0, 1}n and message space M = {0, 1}t with the
following properties:

• Public parameter size: |pp| = n · poly(λ, log n).

• Secret key size: The secret key skid for an identity id ∈ {0, 1}n has size skid = n·poly(λ, log n).

• Ciphertext size: An encryption ctm,L of a message m ∈ {0, 1}t with respect to a revocation
list L has size ctm,L = t+ |L| · poly(λ, log n).

Proof. The claim follows by instantiating Construction 4.4 with the following primitives:
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• We can instantiate the collision-resistant hash function H with the standard SIS-based collision-
resistant hash function [Ajt96, GGH96]. In this case, the hash key hk has size |hk| = poly(λ)
and the output length of the hash function is also ` = poly(λ).

• We instantiate the secret-key revocable predicate encryption scheme with broadcast ΠRPE

with the construction from Corollary 3.9. For i ∈ [n] and u ∈ [0, 2`+1], the description length
z of the functions fi,u ∈ F satisfies

z = |i|+ |u| ≤ log n+ `+ 3 = poly(λ, log n).

Moreover, each function fi,u is computing a comparison on `-bit values and selecting one
out of the n components of the vector. This can be computed by a Boolean circuit with
depth d = poly(λ, log n)—poly(λ) for the comparison and poly(log n) to select the element to
compare. Finally, the identity-space for the underlying revocable predicate encryption scheme
is ID0 = [2`+1] and the attribute space is IDn0 .

We now verify the parameter sizes for the resulting construction:

• Public parameters size: The public parameters pp consists of the hash key hk and the
public parameters rpe.pp for the revocable predicate encryption scheme. Thus,

|pp| = |hk|+ |rpe.pp| = poly(λ) + n` · poly(λ, d, `, z) = n · poly(λ, log n).

• Secret key size: The secret key skid for an identity id ∈ {0, 1}n consists of a secret key
for the underlying revocable predicate encryption scheme. By Corollary 3.9, we have that
|skid| = n`+ poly(λ, d, `, z) = n · poly(λ, log n).

• Ciphertext size: The ciphertext ctm,L for a message m ∈ {0, 1}t with respect to a revocation
list L consists of a ciphertext for the underlying revocable predicate encryption scheme. By
Corollary 3.9,

|ctm,L| = t+ |L| · poly(λ, d, `, z) = t+ |L| · poly(λ, log n).
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A Analysis of Construction 3.4

In this section, we provide the formal analysis of our secret-key revocable predicate encryption with
broadcast scheme from Section 3.1.

A.1 Proof of Theorem 3.5 (Correctness)

Take a function f ∈ F , an attribute x ∈ X , a message m ∈ M, and a revocation list L ⊆
ID where x /∈ L and f(x) = 1. Let pp = (mfe.pp, abe.pp), msk = (mfe.msk, abe.msk) be the
public parameters and the master secret key that are output by Setup(1λ), and take skid,x ←
KeyGen(msk, id, x). By construction, we have skid,x = {(i, abe.ski,x)}i∈Iid where Iid ← Encode(id),
abe.ski,x ← ABE.KeyGen(abe.msk, gmfe.mski,x,i), mfe.ski,x ← MFE.KeyGen(mfe.mski, x), ri ← F (k, i),
and mfe.mski ← MFE.MSKGen(mfe.pp; ri). We now show each of the requirements individually:

• Broadcast correctness: Let ctm,L ← Broadcast(pp,m,L). This means that ctm,L =
{(i, abe.cti)}i∈JL where JL ← ComputeCover(L), abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m),
and mfe.cti ← MFE.PKEnc(mfe.pp). Since x /∈ L, by correctness of ΠSC, there exists an index
i ∈ Iid∩JL. By correctness of ΠMFE, with overwhelming probability, MFE.Dec(mfe.ski,x,mfe.cti) =
1. This means that gmfe.mski,x,i(mfe.cti, i) = 1 and hence, by correctness of ΠABE, with over-
whelming probability, ABE.Dec(abe.ski,x, abe.cti) = m.
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• Encryption correctness: Let ctf,m,L ← Enc(msk, f,m,L). This means that ctf,m,L =
{(i, abe.cti)}i∈JL , where JL ← ComputeCover(L), abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m),
and mfe.cti ← MFE.SKEnc(mfe.mski, f). Since x /∈ L, there exists i ∈ Iid ∩ JL. By correct-
ness of ΠMFE, MFE.Dec(mfe.ski,x,mfe.cti) = f(x) = 1 with overwhelming probability, and
gmfe.mski,x,i(mfe.cti, i) = 1. Then, by correctness of ΠABE, ABE.Dec(abe.ski,x, abe.cti) = m
with overwhelming probability.

A.2 Proof of Theorem 3.6 (Message Hiding)

First, the only difference between ExptRPEMH[λ,A, 0] and ExptRPEMH[λ,A, 1] is in how the challenge
ciphertext is generated. Let (f,m0,m1,L) be a challenge query that the adversary A makes in the
message hiding game. In both experiments, the challenge ciphertext ctb = {(i, abe.cti)}i∈JL consists
of |JL| ABE ciphertexts abe.cti, where JL ← ComputeCover(L). In ExptRPEMH[λ,A, 0], each
ciphertext abe.cti is an encryption of m0, while in ExptRPEMH[λ,A, 1], abe.cti is an encryption of
m1. To argue that the ABE ciphertexts in the two experiments are computationally indistinguishable,
we proceed via a sequence of intermediate hybrid experiments where in each hybrid, we switch a
single ciphertext abe.cti from an ABE encryption of m0 to an ABE encryption of m1.

First, let Q = Q(λ) be a bound on the size of the cover JL ⊆ [K]. Such a bound exists because
|L| = poly(λ) since A has to output L, and so we can always bound |L| by the running time of A,
which is assumed to be poly(λ). Next, since ΠSC is efficient, |JL| ≤ poly(|L| , n) = poly(λ). Now, for
j ∈ [0, Q], we define a sequence of hybrid experiments as follows:

• Hybj : This is the real message-hiding experiment ExptRPEMH[λ,A, 0] except in how the
challenger responds to the challenge query. Specifically, when the adversary A makes its
challenge query (f,m0,m1,L), the challenger proceeds as follows:

1. Let JL ← ComputeCover(L) ⊆ [K]. Write JL = {i1, . . . , it} where i1 < i2 < · · · < it and
t ≤ Q.

2. Generate the mixed FE ciphertexts mfe.cti for all i ∈ JL exactly as in ExptRPEMH[λ,A, 0].

3. For i ≤ ij , the challenger sets abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m1). For i > ij , the
challenger sets abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m0).

4. It gives ct = {(i, abe.cti)}i∈JL to the adversary.

We write Hybj(A) to denote the output of Hybj with A. By definition, Hyb0 ≡ ExptRPEMH[λ,A, 0]
and HybQ ≡ ExptRPEMH[λ,A, 1]. We now show that by semantic security of ΠABE, each consecutive
pair of hybrids Hybj−1 and Hybj for j ∈ [Q] are computationally indistinguishable.

Lemma A.1. If ΠABE is semantically secure, then for all efficient adversaries A and j ∈ [Q],∣∣Pr[Hybj−1(A) = 1]− Pr[Hybj(A) = 1]
∣∣ = negl(λ).

Proof. Let A be an adversary that distinguishes Hybj−1 and Hybj . We use A to construct an
algorithm B that breaks semantic security of ΠABE. Algorithm B works as follows:

• Setup phase: First, B receives the public parameters abe.pp from the ABE challenger. It
generates mfe.pp ← MFE.PrmsGen(1λ

′
), k

r← K, where λ′ = max(λ, (logK)2/ε), and gives
pp = (mfe.pp, abe.pp) to A.
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• Query phase: Algorithm B responds to each of A’s oracle queries as follows:

– Key-generation oracle: On input an identity id ∈ ID and an attribute x ∈ X , algo-
rithm B first computes Iid ← Encode(id). Then, for each i ∈ Iid, it computes ri ← F (k, i),
mfe.mski ← MFE.MSKGen(mfe.pp; ri), and mfe.ski,x ← MFE.KeyGen(mfe.mski, x). It
then submits a key-generation query to the ABE challenger on the function gmfe.mski,x,i

to obtain an ABE secret key abe.ski,x. Finally, it replies to A with the keys skid,x =
{(i, abe.ski,x)}i∈Iid .

– Encryption oracle: On input a function f ∈ F , a message m ∈ M, and a re-
vocation list L ⊆ ID, algorithm B computes JL ← ComputeCover(L). For each
i ∈ JL, it computes ri ← F (k, i), mfe.mski ← MFE.MSKGen(mfe.pp; ri), and mfe.cti ←
MFE.SKEnc(mfe.mski, f), and abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m). It responds
with the ciphertext ctf,m,L = {(i, abe.cti)}i∈JL .

– Challenge oracle: On input a function f ∈ F , two messages m0,m1 ∈ M, and a
revocation list L ⊆ ID, algorithm B computes JL ← ComputeCover(L) ⊆ [K]. Write
JL = {i1, . . . , it} where i1 < i2 < · · · < it. For each i ∈ JL, it generates ri ← F (k, i),
mfe.mski ← MFE.MSKGen(mfe.pp; ri), and mfe.cti ← MFE.SKEnc(mfe.mski, f). It then
generates the ABE ciphertexts as follows:

∗ For i < ij , algorithm B sets abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m1).

∗ For i = ij , algorithm B makes a challenge query with attribute (mfe.cti, i) and
messages m0,m1 to receive a ciphertext abe.cti.

∗ For i > ij , algorithm B sets abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m0).

It replies to A with the ciphertext ct = {(i, abe.cti)}i∈JL .

• Output phase: At the end of the experiment, algorithm B outputs whatever A outputs.

We now show that B perfectly simulates either Hybj−1 or Hybj depending on whether it is interacting
in ExptABE[λ,B, 0] or ExptABE[λ,B, 1]. Furthermore, we show that as long as A is admissible for
ExptRPEMH[λ,A, b], algorithm B is admissible for ExptABE[λ,B, b]. These two conditions show that
algorithm B breaks semantic security of ΠABE with the same advantage of A for distinguishing
Hybj−1 and Hybj .

Admissibility condition. Let (f,m0,m1,L) be the challenge query made by A. In response,
algorithm B submits

(
(mfe.ctij , ij),m0,m1

)
as its challenge query to the ABE challenger, where ij

is the jth smallest value in JL ← ComputeCover(L) and mfe.ctij ← MFE.SKEnc(mfe.mskij , f). To
show that B is admissible, we must show that for each key-generation query gmfe.ski,x,i that B makes,
gmfe.ski,x,i(mfe.ctij , ij) = 0. First, we note that B only makes key-generation queries when A makes
a key-generation query. Suppose A makes a key-generation query on a pair (id, x). Then, algorithm
B will issue key-generation queries on functions gmfe.mski,x,i for all i ∈ Iid where Iid ← Encode(id).
By admissibility of A, either id ∈ L or f(x) = 0. We consider these two cases:

• Suppose id ∈ L. By correctness of ΠSC, this means that JL ∩ Iid = ∅. Since ij ∈ JL, this
means, that ij /∈ Iid, and correspondingly, i 6= ij and so gmfe.mski,x,i(mfe.ctij , ij) = 0.

• Suppose f(x) = 0. For all i 6= ij , we have that gmfe.mski,x,i(mfe.ctij , ij) = 0, so it suffices
to only consider the case where i = ij . In this case, by correctness of ΠMFE, we have that
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MFE.Dec(mfe.mskij ,x,mfe.ctij ) = f(x) = 0 with overwhelming probability, and once again,
admissibility holds.

We conclude that if A is admissible, then with overwhelming probability, all of B’s key-generation
queries are also admissible.

Correctness of the simulation. The public parameters pp that B provides to A during the
setup phase of the experiment is distributed exactly as in Hybj−1 and Hybj . We now consider how
B simulates the responses to A’s oracle queries:

• Key-generation oracle: Let (id, x) be a key-generation query and let Iid ← Encode(id).
For each i ∈ Iid algorithm B generates the mixed FE decryption keys mfe.ski,x for all
i ∈ Iid exactly as described in Hybj−1 and Hybj . To construct the ABE decryption keys, the
challenger submits the function gmfe.ski,x,i for each i ∈ Iid to the ABE challenger to receive keys
abe.ski,x ← ABE.KeyGen(abe.msk, gmfe.mski,x,i), where abe.msk is the ABE secret key sampled
by the ABE challenger (and unknown to B). This is precisely the distribution of secret keys
that would be output in Hybj−1 and Hybj .

• Encryption oracle: Since the ABE scheme is a public-key encryption scheme, B perfectly
simulates the encryption queries as in Hybj−1 and Hybj .

• Challenge oracle: Let (f,m0,m1,L) be the challenge query made by A. Let JL = {i1, . . . it}
be the cover output by ComputeCover(L). By construction, algorithm B generates the cipher-
texts abe.cti for i 6= ij exactly as described in Hybj−1 and Hybj . For abe.ctij , algorithm B
submits ((mfe.ctij , ij),m0,m1) to the ABE challenger to obtain a ciphertext abe.ctij . If the
ABE challenger replies with ABE.Enc(abe.pp, (mfe.ctij , ij),m0), then B perfectly simulates
Hybj−1 while if the challenger replies with ABE.Enc(abe.pp, (mfe.ctij , ij),m1), then B perfectly
simulates the distribution in Hybj .

We conclude that depending on the challenge bit b for the ABE security game, algorithm B either
perfectly simulates Hybj−1 or Hybj for A. The lemma follows.

Theorem 3.6 now follows by a standard hybrid argument.

A.3 Proof of Theorem 3.7 (Function Hiding)

Proof overview. By construction, an encryption of a function f , a message m, and a revocation
list L consist of |JL| ABE ciphertexts {(i, abe.cti)}i∈JL where JL ← ComputeCover(L). Each of
these ABE ciphertexts is an encryption of the message m with attribute mfe.cti where mfe.cti is a
mixed FE encryption of the function f (under the mixed FE master secret key associated with index
i ∈ [K]). Therefore, to argue that a ciphertext for function f0 is indistinguishable from a ciphertext
for function f1, a natural idea is to consider a sequence of |JL| hybrid arguments, where in each
hybrid, we replace one of the mixed FE ciphertexts mfe.cti encrypting f0 to one encrypting f1. The
problem is that the adversary can choose the challenge revocation list L adaptively after it has made
a number of key generation and encryption queries. Thus, the reduction does not know in advance
the set JL ⊆ [K], and correspondingly, it does not know which of the K mixed FE instances will
appear in the challenge ciphertext. One approach is to have the reduction algorithm guess the
index i ∈ [K] that needs to be switched in each hybrid. This will incur a loss of K |JL| = Kpoly(λ) in
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the security reduction. Alternatively, we can consider a sequence of K hybrid experiments where
in hybrid Hybj , we set mfe.ctj to be an encryption to f0 whenever i ≤ j and an encryption to f1

whenever i > j. This incurs a loss of K in the security reduction; when K is super-polynomial in
the security parameter, we require sub-exponential security for the underlying mixed FE scheme.

Note that while we can consider a selective notion of security where the adversary must first
commit to its revocation list, selective security does not imply adaptive security in this setting,
since the size of the revocation list is not a priori bounded. This means that the reduction cannot
guess the revocation list at the beginning. For this reason, we directly argue adaptive security via a
sub-exponential security reduction.

Proof. We now describe the sequence of hybrid arguments we use in our analysis.

• Hyb0: This is the real function-hiding experiment ExptRPEFH[λ,A, 0]. Namely, the chal-
lenger begins by sampling (pp,msk) ← Setup(1λ), where pp = (mfe.pp, abe.pp) and msk =
(pp, abe.msk, k) and gives pp to A. The challenger then responds to oracle queries as follows:

– Key-generation oracle: On input an identity id ∈ ID and attribute x ∈ X , the chal-
lenger computes Iid ← Encode(id). For each i ∈ Iid, the challenger constructs mfe.mski ←
MFE.MSKGen(mfe.pp; ri) where ri ← F (k, i) and mfe.ski,x ← MFE.KeyGen(mfe.mski, x).
It computes abe.ski,x ← ABE.KeyGen(abe.msk, gmfe.mski,x,i) and replies with skid,x =
{(i, abe.ski,x)}i∈Iid .

– Encryption oracle: On input a function f ∈ F , a message m ∈ M and a revocation
list L ⊆ ID, the challenger replies with ctf,m,L ← Enc(msk, f,m,L). Namely, ctf,m,L =
{(i, abe.cti)}i∈JL , where JL ← ComputeCover(L), abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m),
mfe.cti ← MFE.SKEnc(mfe.mski, f), and mfe.mski ← MFE.MSKGen(mfe.pp;F (k, i)).

– Challenge oracle: On input two functions f0, f1 ∈ F , a message m ∈ M and a revo-
cation list L ⊆ ID, the challenger replies with ct∗ ← Enc(msk, f0,m,L), where ct∗ =
{(i, abe.cti)}i∈JL where JL ← ComputeCover(L), abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m),
mfe.cti ← MFE.SKEnc(mfe.mski, f0), and mfe.mski ← MFE.MSKGen(mfe.pp;F (k, i)).

At the end, the adversary outputs a bit b′ ∈ {0, 1}, which is also the output of the experiment.

• Hyb1: Same as Hyb0 except the challenger samples a truly random function f
r← Funs[[K], {0, 1}ρ]

at the beginning of the experiments and evaluates f(·) in place of F (k, ·).

• Hyb2: Same as Hyb1, except the challenger constructs the challenge ciphertext as ct∗ ←
Enc(msk, f1,m,L). This procedure is the same as in Hyb1, except the challenge now uses
mfe.cti ← MFE.SKEnc(mfe.mski, f1).

• Hyb3: This is the function-hiding experiment ExptRPEFH[λ,A, 1].

For an adversary A, we write Hybj(A) to denote the output of Hybj with A. We now show
that the output distributions of each consecutive pair of hybrid experiments are computationally
indistinguishable.

Lemma A.2. If F is a secure PRF, then for all efficient adversaries A,∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]
∣∣ = negl(λ).
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Proof. The lemma follows immediately from the definition of PRF security.

Lemma A.3. Suppose that ΠMFE satisfies sub-exponential non-adaptive q-query (resp., adaptive)
semantic security. Specifically, suppose that the advantage of any adversary running in time poly(λ)
in the semantic security game is bounded by 2−Ω(λε). Suppose also that ΠSC is correct. Then for all
efficient non-adaptive q-query (resp., adaptive) adversaries A,∣∣Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]

∣∣ = negl(λ).

Proof. As discussed above, we will define a collection of K + 1 hybrid experiments where in the jth

hybrid experiment, we set mfe.cti in the challenge ciphertext to be an encryption of f0 if i ≤ j and
an encryption of f1 if i > j. We rely on semantic security of ΠRPE to argue indistinguishability of
each adjacent pair of hybrids. We begin by defining our sequence of intermediate experiments:

• Hyb1,j : For each j ∈ [0,K], the experiment Hyb1,j is identical to Hyb1 except in the way the
challenger generates the challenge ciphertext. Specifically, when the adversary A makes its
challenge query (f0, f1,m,L), the challenger proceeds as follows:

1. Let JL ← ComputeCover(L) ⊆ [K].

2. For each i ∈ JL, the challenger computes ri ← f(i), and mfe.mski ← MFE.MSKGen(mfe.pp; ri).
It sets mfe.cti as follows:

– If i ≤ j, set mfe.cti ← MFE.SKEnc(mfe.mski, f1),

– If i > j, set mfe.cti ← MFE.SKEnc(mfe.mski, f0).

3. For each i ∈ JL, the challenger sets abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m).

4. It gives ct = {(i, abe.cti)}i∈JL to the adversary.

By construction, Hyb1,0 ≡ Hyb1 and Hyb1,K ≡ Hyb2. We now show that the output distributions of
each adjacent pair of hybrid experiments Hyb1,j−1 and Hyb1,j are computationally indistinguishable.
Let A be an adversary that distinguishes Hyb1,j−1 and Hyb1,j . We use A to construct an adversary
B that breaks semantic security of ΠMFE:

• Setup phase: At the beginning of the game, the mixed FE challenger samples mfe.pp ←
MFE.PrmsGen(1λ

′
) where λ′ = max(λ, (logK)2/ε) and gives mfe.pp to B. The challenger will

also sample a key mfe.msk← MFE.MSKGen(pp), which it keeps to itself. Algorithm B then
generates (abe.pp, abe.msk) ← ABE.Setup(1λ) and gives pp = (mfe.pp, abe.pp) to A. In the
following description, algorithm B will lazily sample the values of f : [K]→ {0, 1}ρ. Namely,
the first time B needs to compute f(i) on some i ∈ [K], algorithm B samples a random value

ri
r← {0, 1}ρ as the value for f(i) and will use this value for f(i) thereafter.

• Query phase: Algorithm B responds to each of A’s oracle queries as follows:

– Key-generation oracle: On input an identity id ∈ ID and an attribute x ∈ X ,
algorithm B computes Iid ← Encode(id). Then, for each i ∈ Iid, it generates mfe.ski,x as
follows:

∗ If i 6= j, algorithm B sets ri ← f(i), mfe.mski ← MFE.MSKGen(mfe.pp; ri), and
mfe.ski,x ← MFE.KeyGen(mfe.mski, x).

∗ If i = j, algorithm B makes a key-generation query on x to obtain mfe.ski,x.
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Then, for each i ∈ Iid, algorithm B computes abe.ski,x ← ABE.KeyGen(abe.msk, gmski,x,i).
It replies to A with skid,x = {(i, abe.ski,x)}i∈Iid .

– Encryption oracle: On input a function f ∈ F , a message m ∈M, and a revocation
list L ⊆ ID, algorithm B first computes JL ← ComputeCover(L). Then, for each i ∈ JL,
it generates the mixed FE ciphertext mfe.cti as follows:

∗ If i 6= j, algorithm B computes ri ← f(i), mfe.mski ← MFE.MSKGen(mfe.pp; ri), and
mfe.cti ← MFE.KeyGen(mfe.mski, x).

∗ If i = j, algorithm B makes an encryption query on f to obtain mfe.cti.

Then, for each i ∈ JL, algorithm B computes abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m).
It replies to the adversary with ctf,m,L = {(i, abe.cti)}i∈JL .

– Challenge oracle: On input two functions f0, f1 ∈ F , a message m ∈ M, and a
revocation list L ⊆ ID, algorithm B computes JL ← ComputeCover(L) ⊆ [K]. For each
i ∈ JL, it generates a mixed FE ciphertext mfe.cti as follows:

∗ If i < j, algorithm B sets ri ← f(i), mfe.mski ← MFE.MSKGen(mfe.pp; ri), and
mfe.cti ← MFE.SKEnc(mfe.mski, f1).

∗ If i = j, algorithm B makes a challenge query on the pair (f0, f1) to receive mfe.cti.

∗ If i > j, algorithm B sets ri ← f(i), mfe.mski ← MFE.MSKGen(mfe.pp; ri), and
mfe.cti ← MFE.SKEnc(mfe.mski, f0).

It then computes abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m) for all i ∈ JL, and gives
ct = {(i, abe.cti)}i∈JL to A.

• Output phase: At the end of the experiment, algorithm B outputs whatever A outputs.

We show that B perfectly simulates either Hyb1,j−1 or Hyb1,j depending on whether it is interacting
according to ExptMFESS[λ,B, 0] or ExptMFESS[λ,B, 1]. Furthermore, we show that as long as A
is admissible for ExptRPEFH[λ,A, b], algorithm B is admissible for ExptMFESS[λ,B, b]. These two
conditions show that algorithm B breaks semantic security of ΠMFE with the same advantage of A
for distinguishing Hyb1,j−1 and Hyb1,j .

Admissibility condition. Since A makes at most one challenge query, the same is true for
B. Let (f0, f1,m,L) be the challenge query made by A. In response, algorithm B computes
JL ← ComputeCover(L), and if j ∈ JL, then it makes a challenge query (f0, f1) to the mixed FE
challenger. If j /∈ JL, then B does not make any challenge query and thus, is trivially admissible.

Consider the case where j ∈ JL. To show that B is admissible, we must show that for each key-
generation query x ∈ X that B makes, f0(x) = f1(x). First we note that B makes a key-generation
query only when A makes a key-generation query. Suppose that A makes a key-generation query
on a pair (id, x). Then, algorithm B will compute Iid ← Encode(id) and if j ∈ Iid, it will make a
key-generation query x ∈ X to the mixed FE challenger. Since A is admissible for the semantic
security game, either id ∈ L or f0(x) = f1(x). We consider these two cases:

• Suppose that id ∈ L. Then, by correctness of ΠSC, we have JL ∩ Iid = ∅. Since j ∈ JL by
assumption, we have j /∈ Iid, and therefore, B does not make a key-generation query on x to
the mixed FE challenger.

• Suppose that f0(x) = f1(x). In this case, submitting x ∈ X to the mixed FE challenger does
not violate admissibility.
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We conclude that if A is admissible, then B is also admissible. In addition, algorithm B only makes
encryption queries when A makes an encryption query, and it makes at most 1 encryption query in
response to each of A’s encryption queries. Thus, if A is a non-adaptive q-query adversary, B is
also a non-adaptive q-query adversary.

Correctness of the simulation. The public parameters pp that B provides to A during the
setup phase of the experiment is distributed exactly as in Hyb1,j−1 and Hyb1,j . We now consider
how B simulates the responses to A’s oracle queries:

• Key-generation oracle: Let (id, x) be a key-generation query and let Iid ← Encode(id). For
each i ∈ Iid\{j}, algorithm B generates mixed FE decryption keys mfe.ski,x exactly as described
in Hyb1,j−1 and Hyb1,j . For mfe.skj,x, algorithm B submits x to the mixed FE challenger
to receive mfe.skj,x ← MFE.KeyGen(mfe.msk, x), where mfe.msk is the mixed FE secret key
sampled by the mixed FE challenge (and unknown to B). In this case, the master secret key
mfe.msk sampled by the challenger plays the role of mfe.mskj (and is correctly distributed
since in Hyb1,j−1 and Hyb1,j , the key mfe.mskj is sampled by running MFE.MSKGen(mfe.pp)
with uniform and independent randomness f(j), which is precisely the same distribution the
challenger uses to sample mfe.msk). Finally, the ABE decryption keys are constructed exactly
as in Hyb1,j−1 and Hyb1,j .

• Encryption oracle: Let (f,m,L) be an encryption query. Algorithm B constructs JL exactly
as in Hyb1,j−1 and Hyb1,j . Similarly, all of the ciphertext components mfe.cti for i ∈ JL\{j} are
correctly constructed. To simulate mfe.ctj (if j ∈ JL), algorithm B submits a key-generation
query on function f to receive from the challenger mfe.ctj ← MFE.SKEnc(mfe.sk, f), where
the challenger’s key mfe.msk plays the role of mfe.mskj in the simulation. Finally, the ABE
ciphertexts are computed exactly as in Hyb1,j−1 and Hyb1,j , so we conclude that B correctly
simulates the encryption queries.

• Challenge oracle: Let (f0, f1, ,m,L) be the challenge query made by A, and let JL ←
ComputeCover(L). For each i ∈ Iid\{j}, algorithm B generates mixed FE ciphertexts mfe.cti
exactly as described in Hyb1,j−1 and Hyb1,j . For mfe.ctj , algorithm B submits (f0, f1)
to the mixed FE challenger to receive mfe.ctj . If the mixed FE challenger replies with
MFE.SKEnc(mfe.msk, f0), then B perfectly simulates mfe.ctj in Hyb1,j−1 while if the challenger
replies with MFE.SKEnc(mfe.msk, f1), then B perfectly simulates mfe.ctj in Hyb1,j . Then, as
B generates the ABE ciphertexts exactly as in Hyb1,j−1 and Hyb1,j , it perfectly simulates
either Hyb1,j−1 or Hyb1,j .

We conclude that B breaks semantic security of ΠMFE with the same advantage A has for distin-
guishing between hybrids Hyb1,j−1 and Hyb1,j . Thus, by a hybrid argument, if there exists an
efficient adversary A that can distinguish between Hyb1 and Hyb2 with non-negligible advantage
ε0 = 1/poly(λ), then there exists an efficient adversary B that runs in time poly(λ) = poly(λ′) that

breaks semantic security of ΠMFE with advantage at least ε0/K. By construction, K ≤ 2(λ′)ε/2 , and
so B succeeds with advantage at least

ε0/2
(λ′)ε/2 = 1/poly(λ′) · 2−(λ′)ε/2 = 2−O((λ′)ε/2),

which contradicts the sub-exponential hardness of ΠMFE.
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Lemma A.4. If F is a secure PRF, then for all efficient adversaries A,∣∣Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]
∣∣ = negl(λ).

Proof. The only difference between hybrids Hyb2 and Hyb3 is that the adversary uses f(·) in place
of F (k, ·) when responding to the adversary’s queries. The lemma follows immediately from the
definition of PRF security.

Theorem 3.7 now follows by a standard hybrid argument.

A.4 Proof of Theorem 3.8

For similar reasons as those described in the proof of Theorem 3.7, we rely on sub-exponential
hardness of mixed FE in our analysis. The analysis here proceeds very similarly as the proof of
Theorem 3.7 (Appendix A.3), and many steps are in fact identical. We present the proof in full for
completeness. We start by defining a sequence of hybrid experiments:

• Hyb0: This is the broadcast security experiment ExptRPEBC[λ,A, 0]. Namely, the chal-
lenger begins by sampling (pp,msk) ← Setup(1λ), where pp = (mfe.pp, abe.pp) and msk =
(pp, abe.msk, k) and gives pp to A. The challenger then responds to oracle queries as follows:

– Key-generation oracle: On input an identity id ∈ ID and attribute x ∈ X , the
challenger replies with skid,x ← KeyGen(msk, id, x).

– Encryption oracle: On input a function f ∈ F , a message m ∈ M and a revocation
list L ⊆ ID, the challenger replies with ctf,m,L ← Enc(msk, f,m,L).

– Challenge oracle: On input a message m ∈ M and a revocation list L ⊆ ID,
the challenger replies with ct∗ ← Broadcast(pp,m,L), where ct∗ = {(i, abe.cti)}i∈JL
where JL ← ComputeCover(L), abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m), and mfe.cti ←
MFE.PKEnc(mfe.pp).

At the end, the adversary outputs a bit b′ ∈ {0, 1}, which is also the output of the experiment.

• Hyb1: Same as Hyb0, except the challenger samples a truly random function f
r← Funs[[K], {0, 1}ρ]

at the beginning of the experiment and evaluates f(·) in place of F (k, ·).

• Hyb2: Same as Hyb1, except the challenger responds to the challenge query with ct∗ ←
Enc(msk, faccept,m,L). Specifically, the challenger computes mfe.cti ← MFE.SKEnc(mfe.mski, f)
where mfe.mski ← MFE.MSKGen(mfe.pp, ri) and ri ← f(i) for each i ∈ JL and sets ct∗ =
{(i, abe.cti)}i∈JL where abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m).

• Hyb3: This is the broadcast security experiment ExptRPEBC[λ,A, 1].

For an adversary A, we write Hybj(A) to denote the output of Hybj with A. We now show
that the output distributions of each consecutive pair of hybrid experiments are computationally
indistinguishable.

Lemma A.5. If F is a secure PRF, then for all efficient adversaries A,∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]
∣∣ = negl(λ).
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Proof. The lemma follows immediately from the definition of PRF security.

Lemma A.6. Suppose ΠMFE satisfies sub-exponential non-adaptive q-query (resp., adaptive) pub-
lic/secret key indistinguishability. Specifically, suppose that the advantage of any adversary running
in time poly(λ) in the public/secret key indistinguishability game is bounded by 2−Ω(λε). Then, for
all efficient non-adaptive q-query (resp., adaptive) adversaries A,∣∣Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]

∣∣ = negl(λ).

Proof. Similar to the proof of Theorem 3.7, we will define K + 1 experiments where in the jth

hybrid, we use the public encryption algorithm of ΠMFE to encrypt ciphertexts to indices j′ ≤ j and
we use the secret encryption algorithm of ΠMFE to encrypt ciphertexts to indices j′ > j. We then
rely on public/secret key indistinguishability to show that each pair of intermediate experiments are
computationally indistinguishable. We begin by defining our sequence of intermediate experiments:

• Hyb1,j : For each j ∈ [0,K], the experiment Hyb1,j is identical to Hyb1 except for the way the
challenger generates the challenge ciphertext. Specifically, when the adversary A makes its
challenge query (m,L), the challenger proceeds as follows:

1. Let JL ← ComputeCover(L) ⊆ [K].

2. For each i ∈ JL, the challenger computes ri ← f(i), and mfe.mski ← MFE.MSKGen(mfe.pp; ri).
It sets mfe.cti as follows:

– If i ≤ j, set mfe.cti ← MFE.SKEnc(mfe.mski, faccept),

– If i > j, set mfe.cti ← MFE.PKEnc(mfe.pp).

3. For each i ∈ JL, the challenger sets abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m).

4. It gives ct = {(i, abe.cti)}i∈JL to the adversary.

By construction, Hyb1,0 ≡ Hyb1 and Hyb1,K ≡ Hyb2. We now show that the output distributions of
each adjacent pair of hybrid experiments Hyb1,j−1 and Hyb1,j are computationally indistinguishable.
Let A be an adversary that distinguishes Hyb1,j−1 and Hyb1,j . We construct an algorithm B that
breaks public/secret key indistinguishability of ΠMFE. Algorithm B works as follows:

• Setup phase: Same as in the proof of Lemma A.3.

• Query phase: Algorithm B responds to each of A’s oracle queries as follows:

– Key-generation oracle: Same as in the proof of Lemma A.3.

– Encryption oracle: Same as in the proof of Lemma A.3.

– Challenge oracle: On input a message m ∈M and a revocation list L ⊆ ID, algorithm
B computes JL ← ComputeCover(L) ⊆ [K]. For each i ∈ JL, it generates the mixed FE
ciphertext mfe.cti as follows:

∗ If i < j, algorithm B sets ri ← f(i), mfe.mski ← MFE.MSKGen(mfe.pp; ri), and
mfe.cti ← MFE.SKEnc(mfe.mski, faccept).

∗ If i = j, algorithm B makes a challenge query faccept to receive mfe.cti.

∗ If i > j, algorithm B sets mfe.cti ← MFE.PKEnc(mfe.pp).
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It then computes abe.cti ← ABE.Enc(abe.pp, (mfe.cti, i),m) for all i ∈ JL, and gives
ct = {(i, abe.cti)}i∈JL to A.

• Output phase: At the end of the experiment, algorithm B outputs whatever A outputs.

We show that B perfectly simulates either Hyb1,j−1 or Hyb1,j depending on whether it is interacting
in ExptMFEPK/SK[λ,B, 0] or ExptMFEPK/SK[λ,B, 1]. Furthermore, we show that as long as A is
admissible for ExptRPEBC[λ,A, b], algorithm B is admissible for ExptMFEPK/SK[λ,B, b]. These two
conditions show that algorithm B breaks public/secret key indistinguishability of ΠMFE with the
same advantage of A for distinguishing Hyb1,j−1 and Hyb1,j .

Admissibility condition. The only time algorithm B submits a challenge query is when respond-
ing to A’s challenge query. Namely, when A makes a single challenge query (m,L), algorithm B
computes JL ← ComputeCover(L), and if j ∈ JL, it makes a challenge query faccept to the mixed
FE challenger. By definition, B is admissible if for all key-generation queries x that it makes to
the mixed FE challenger, faccept(x) = 1, which holds by definition of faccept. Moreover, if A is a
non-adaptive q-query adversary for the broadcast hiding game, then it makes at most q encryption
queries and all of these queries occur after the non-encryption queries. By construction, algorithm
B only makes encryption queries when A makes an encryption query, and it makes at most 1
encryption query in response to each of A’s encryption queries. Thus, if A is a non-adaptive q-query
adversary, B is also a non-adaptive q-query adversary.

Correctness of the simulation. The public parameters pp that B provides to A during the
setup phase of the experiment is distributed exactly as in Hyb1,j−1 and Hyb1,j . We now consider
how B simulates the responses to A’s oracle queries:

• Key-generation oracle: Same as in the proof of Lemma A.3.

• Encryption oracle: Same as in the proof of Lemma A.3.

• Challenge oracle: Let (m,L) be the challenge query made byA, and let JL ← ComputeCover(L).
For each i ∈ Iid\{j}, algorithm B generates mixed FE ciphertexts mfe.cti exactly as described
in Hyb1,j−1 and Hyb1,j . For mfe.ctj , algorithm B submits faccept to the mixed FE challenger to
receive mfe.ctj . If the mixed FE challenger replies with MFE.PKEnc(mfe.pp), them B perfectly
simulates mfe.ctj in Hyb1,j while if the challenger replies with MFE.SKEnc(mfe.msk, faccept),
then B perfectly simulates mfe.ctj in Hyb1,j−1.

We conclude that B breaks public/secret key indistinguishability of ΠMFE with the same advantage
that A has for distinguishing between hybrids Hyb1,j−1 and Hyb1,j . Thus, by a hybrid argument,
if there exists an efficient adversary A that can distinguish between Hyb1 and Hyb2 with non-
negligible advantage ε0 = 1/poly(λ), then there exists an efficient adversary B that runs in time
poly(λ) = poly(λ′) that breaks public/secret key indistinguishability of ΠMFE with advantage at

least ε0/K. By construction, K ≤ 2(λ′)ε/2 , and so B succeeds with advantage at least

ε0/2
(λ′)ε/2 = 1/poly(λ′) · 2−(λ′)ε/2 = 2−O((λ′)ε/2),

which contradicts the sub-exponential hardness of ΠMFE.
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Lemma A.7. If F is a secure PRF, then for all efficient adversaries A,∣∣Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]
∣∣ = negl(λ).

Proof. The only difference between hybrids Hyb2 and Hyb3 is that the adversary uses f(·) in place
of F (k, ·) when responding to the adversary’s queries. The lemma follows immediately from the
definition of PRF security.

Theorem 3.8 now follows by a standard hybrid argument.

B Analysis of Construction 4.4

In this section, we provide the formal analysis of the trace-and-revoke scheme from Section 4.1.

B.1 Proof of Theorem 4.5 (Correctness)

Take a message m ∈ M, an identity id ∈ ID, and a revocation list L ⊆ ID where id /∈ L.
Take (pp,msk) ← Setup(1λ), skid ← KeyGen(msk, id) and ctm,L ← Enc(pp,m,L). In this case,
pp = (hk, rpe.pp), msk = (hk, rpe.msk), skid is output by RPE.KeyGen(rpe.msk, H(hk, id), vid) for
some vector vid ∈ IDn0 , and ctm,L is output by RPE.Broadcast(rpe.pp,m,L′) where L′ = {id ∈ L :
H(hk, id)}. Since H is collision-resistant and id /∈ L, we have H(hk, id) /∈ L′ with overwhelming
probability. The claim now follows by broadcast correctness of ΠRPE.

B.2 Proof of Theorem 4.6 (Semantic Security)

We proceed with a hybrid argument:

• Hyb0: This is experiment ExptTRSS[λ,A, 0]. Namely, the challenger responds to the challenge
query (m0,m1,L) with the ciphertext ct∗ ← Enc(pp,m0,L).

• Hyb1: Same as Hyb0, except the challenger constructs the challenge ciphertext as ct∗ ←
Enc(msk, faccept,m0,L) where faccept is the “always-accept” function.

• Hyb2: Same as Hyb1, except the challenger constructs the challenge ciphertext to be ct∗ ←
Enc(msk, faccept,m1,L).

• Hyb3: Same as Hyb2, except the challenger constructs the challenge ciphertext as ct∗ ←
Enc(pp,m1,L).

We now show that each consecutive pair of hybrid experiments are computationally indistinguishable:

• Hybrids Hyb0 and Hyb1 are computationally indistinguishable by broadcast security of ΠRPE.
Specifically, suppose that there exists an efficient adversary A that distinguishes Hyb0 from
Hyb1. We use A to construct an adversary B for the broadcast security game:

1. At the beginning of the broadcast security game, algorithm B receives the public param-
eters rpe.pp from the broadcast security challenger. In addition it samples a hash key
hk

r← K and gives pp = (hk, rpe.pp) to A.
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2. Whenever A makes a key-generation query on an identity id ∈ ID, algorithm B computes
sid ← H(hk, id) and the vector vid ∈ IDn0 as in the real KeyGen algorithm. It then makes
a key-generation query to its challenger on the pair (sid, vid) to obtain a key skid, which
it forwards to A.

3. Whenever A makes a challenge query on input (m0,m1,L), algorithm B first constructs
L′ = {id ∈ L : H(hk, id)} and makes a challenge query on the pair (m0,L′). The
challenger replies to B with a ciphertext ct∗, which it forwards to A.

4. At the end of the game, algorithm B outputs whatever A outputs.

By construction, if ct∗ ← RPE.Broadcast(rpe.pp,m0,L′), then B perfectly simulated Hyb0 for
A, and if ct∗ ← RPE.Enc(rpe.msk, faccept,m0,L′), where rpe.msk is the secret key sampled by
the broadcast security challenger, then B perfectly simulated Hyb1 for A. The claim follows.

• Hybrids Hyb1 and Hyb2 are computationally indistinguishable by message hiding of ΠRPE.
Specifically, support there exists an efficient adversary A that can distinguish Hyb1 from Hyb2.
We use A to construct an adversary B for the message hiding game:

1. At the beginning of the message hiding game, algorithm B receives the public parameters
rpe.pp from the broadcast security challenger. In addition, it samples a hash key hk

r← K
and gives pp = (hk, rpe.pp) to A.

2. Whenever A makes a key-generation query on id ∈ ID, algorithm B computes sid ←
H(hk, id) and the vector vid ∈ IDn0 as in the real KeyGen algorithm. It makes a key-
generation query to its challenger on the pair (sid, vid) to obtain a key skid, which it
forwards to A.

3. Whenever A makes a challenge query on input (m0,m1,L) algorithm B first constructs
L′ = {id ∈ L : H(hk, id)} and makes a challenge query (faccept,m0,m1,L′) to the message
hiding challenger. The challenger replies to B with a ciphertext ct∗ which it forwards
to A.

4. At the end of the game, algorithm B outputs whatever A outputs.

First, we argue that B is admissible for the message hiding game. Since A is admissible for the
semantic security game, this means that for all key-generation queries id ∈ ID that A makes,
it must be the case that id ∈ L. By construction of L′, this means that sid = H(hk, id) ∈ L′ for
all id appearing in a key-generation query. Thus, B is admissible for the message hiding game.
Now, if the message hiding challenger replies with ct∗ ← RPE.Enc(rpe.msk, faccept,m0,L′),
where rpe.msk is the master secret key sampled by the message hiding challenger, then B
perfectly simulates Hyb1 for A. Conversely, if ct∗ ← RPE.Enc(rpe.msk, faccept,m1,L′), then B
perfectly simulates Hyb2 for A. The claim follows.

• Hybrids Hyb2 and Hyb3 are computationally indistinguishable by broadcast security of ΠRPE

(via the same argument used to show indistinguishability of hybrids Hyb0 and Hyb1).

B.3 Proof of Theorem 4.7 (Traceability)

Let Q be the randomized oracle from Figure 1, and let A be an efficient adversary for the traceability
game. At the beginning of the traceability game, the challenger samples (pp,msk)← Setup(1λ) and
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gives pp = (hk, rpe.pp) to the adversary and keeps msk = (hk, rpe.msk) for itself. Let R ⊆ ID be
the set of identities A submits to the key-generation oracle in the traceability game and let L be
the set of revoked users chosen by A. At the end of the traceability game, the adversary A outputs
two messages m0 and m1, a revocation list L ⊆ ID, and a success probability ε. For each id ∈ R,
let sid ← H(hk, id). By collision-resistance of H, all of the sid will be distinct with overwhelming
probability. We start by showing that the oracle Q defines an instance of the generalized jump-finding
problem for the (adversarially-chosen) set C = {id ∈ R \ L : (sid, id1, . . . , idn)}. First, for a pair
(i, u) ∈ [1, n]× [0, 2`+1], let pi,u := Pr[QD(i, u) = 1]. In addition, for α ∈ {0, 1}, we define

pi,u,α := Pr[ct← RPE.Enc(rpe.msk, fi,u,mα,L′) : D(ct) = α],

where L′ = {id ∈ L : H(hk, id)}. We now show that the oracle Q satisfies each of the requirements
in Definition 2.5:

Lemma B.1. Suppose ΠRPE satisfies non-adaptive 1-query function hiding. Then, for any two
(adversarially-chosen) pairs (i, 2u), (j, 2u) ∈ [1, n]× [0, 2`+1], we have that |pi,2u − pj,2u| = negl(λ).

Proof. Suppose A produces a decoder D along with indices i, j ∈ [1, n] and u ∈ [0, 2`+1] such
that |pi,2u − pj,2u| ≥ ε0 = 1/poly(λ) with non-negligible probability ε1. We use A to construct an
adversary B that breaks the 1-query function hiding property of ΠRPE:

1. At the beginning of the function hiding game, algorithm B receives the public parameters rpe.pp
from the function hiding challenger. It chooses a hash key hk

r← K and gives pp = (hk, rpe.pp)
to A.

2. When A makes a key-generation query on an identity id ∈ ID, the challenger computes
sid ← H(hk, id) and constructs the vector vid = (2sid− id1, . . . , 2sid− idn). Algorithm B makes
a key-generation query on the pair (sid, vid) to obtain a key skid, which it forwards to A.

3. At some point, A outputs a decoder algorithm D, two messages m0,m1 ∈ M, a revocation
list L ⊆ ID and a decoder success probability ε. It also outputs indices i, j ∈ [1, n] and
u ∈ [0, 2`+1].

4. Algorithm B constructs the set L′ = {id ∈ L : H(hk, id)}. It chooses two random bits

α, β
r← {0, 1} and makes a challenge query on (mα, fi,2u, fj,2u,L′) to obtain a ciphertext ct∗.

Then, if β = 0, it also makes an encryption query on (mα, fi,2u,L′) and if β = 1, it makes an
encryption query on (mα, fj,2u,L′). Let ctβ be the resulting ciphertext. Finally, the challenger
checks if D(ctβ) = D(ct∗) and outputs β if so and 1− β otherwise.

Next, we show that B is admissible and breaks function hiding with non-negligible advantage.

• To see that B is admissible, take any vid = (2sid − id1, . . . , 2sid − idn) that B submits to the
key-generation oracle. Suppose that fi,2u(vid) = 1. This means that vid,i = 2sid − idi ≤ 2u.
Since idi, idj ∈ {0, 1}, this means that vid,j = 2sid− idj ≤ 2u, and correspondingly fj,2u(vid) = 1.
Thus, for all vid that B submits to the key-generation oracle, fi,2u(vid) = fj,2u(vid). Moreover,
B makes exactly 1 query to the encryption oracle after making all of its key-generation and
challenge queries, so it is admissible for the non-adaptive 1-query function hiding game.
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• We now compute the distinguishing advantage of algorithm B. We consider two settings,
depending on the challenge bit b ∈ {0, 1}. When b = 0, the challenger constructs the challenge
ciphertext as ct∗ ← RPE.Enc(rpe.msk, fi,2u,mα,L′). We compute the probability that B
outputs 1 in this case. Let b′ denote the output bit of B.

Pr[b′ = 1] = Pr[β = 1 ∧ D(ct1) = D(ct∗)] + Pr[β = 0 ∧ D(ct0) 6= D(ct∗)]

=
1

2

(
Pr[D(ct1) = D(ct∗)] + Pr[D(ct0) 6= D(ct∗)]

)
, (B.1)

since β is a uniform (and independently) random bit. Here (and in the remainder of the
analysis), the probabilities are taken over the decoder’s randomness, algorithm B’s randomness,
and the challenger’s randomness. To simplify the notation in the following analysis, we will
write p̂i and p̂j to denote pi,2u,0 and pj,2u,0, respectively. Similarly, we will write q̂i and q̂j to
denote pi,2u,1 and pj,2u,1, respectively. In particular, this means that

p̂i := Pr[ct← RPE.Enc(rpe.msk, fi,2u,m0,L′) : D(ct) = 0]

Now, using the fact that ct0, ct1, and ct∗ are all independently constructed, we have that

Pr[D(ct1) = D(ct∗)] = Pr[D(ct1) = 0 ∧ D(ct∗) = 0] + Pr[D(ct1) = 1 ∧ D(ct∗) = 1]

= Pr[D(ct1) = 0] Pr[D(ct∗) = 0] + Pr[D(ct1) = 1] Pr[D(ct∗) = 1].

Suppose α = 0. Then, ct∗, ct0, and ct1 are all encryptions of m0, and so we have

Pr[D(ct1) = D(ct∗)] = Pr[D(ct1) = 0] Pr[D(ct∗) = 0] + Pr[D(ct1) = 1] Pr[D(ct∗) = 1]

= p̂j · p̂i + (1− p̂j)(1− p̂i).

A similar calculation shows that

Pr[D(ct0) 6= D(ct∗)] = Pr[D(ct0) = 0] Pr[D(ct∗) = 1] + Pr[D(ct0) = 1] Pr[D(ct∗) = 0]

= p̂i · (1− p̂i) + (1− p̂i) · p̂i.

Together with Eq. (B.1),

Pr[b′ = 1 | b = 0 ∧ α = 0] =
1

2

(
p̂i · (1− (p̂i − p̂j)) + (1− p̂i) · (1− (p̂j − p̂i))

)
. (B.2)

We can do a similar sequence of calculations when α = 1. The only difference in this case is
that ct∗, ct0, and ct1 are now encryptions of m1 instead. This means that

Pr[D(ct1) = D(ct∗))] = (1− q̂j)(1− q̂i) + q̂j · q̂i
Pr[D(ct0) 6= D(ct∗)] = (1− q̂i) · q̂i + q̂i · (1− q̂i).

Correspondingly,

Pr[b′ = 1 | b = 0 ∧ α = 1] =
1

2

(
q̂i · (1− (q̂i − q̂j)) + (1− q̂i) · (1− (q̂j − q̂i))

)
. (B.3)

Consider now the case where b = 1. In this case, the challenge ciphertext is given by
ct∗ ← RPE.Enc(rpe.msk, fj,2u,mα,L′). When b = 1 and α = 0, we now have

Pr[D(ct1) = D(ct∗))] = p̂j · p̂j + (1− p̂j)(1− p̂j)
Pr[D(ct0) 6= D(ct∗)] = p̂i · (1− p̂j) + (1− p̂i) · p̂j ,
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and correspondingly,

Pr[b′ = 1 | b = 1 ∧ α = 0] =
1

2

(
p̂j · (1− (p̂i − p̂j)) + (1− p̂j) · (1− (p̂j − p̂i))

)
. (B.4)

Lastly, when b = 1 and α = 1, we have

Pr[b′ = 1 | b = 1 ∧ α = 1] =
1

2

(
q̂j · (1− (q̂i − q̂j)) + (1− q̂j) · (1− (q̂j − q̂i))

)
. (B.5)

From Eq. (B.2) and (B.4)

Pr[b′ = 1 | b = 1 ∧ α = 0]− Pr[b′ = 1 | b = 0 ∧ α = 0] = (p̂j − p̂i)2.

Similarly, from Eq. (B.3) and (B.5),

Pr[b′ = 1 | b = 1 ∧ α = 1]− Pr[b′ = 1 | b = 0 ∧ α = 1] = (q̂j − q̂i)2.

Finally, since the challenger samples α
r← {0, 1}, algorithm B’s advantage is given by∣∣Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

∣∣ =
1

2

(
(p̂j − p̂i)2 + (q̂j − q̂i)2

)
. (B.6)

It suffices to show this quantity is non-negligible. First, we note that B perfectly simulates
the traceability game for A, so with probability ε1, the decoder D that A outputs will satisfy
|pj,2u − pi,2u| ≥ ε0. Consider this case. First, by definition,

pi,2u = Pr[QD(i, 2u) = 1] =
1

2
(pi,2u,0 + pi,2u,1) =

1

2
(p̂i + q̂i).

Similarly, pj,2u = 1
2(p̂j + q̂j). By the triangle inequality,

ε0 ≤ |pj,2u − pi,2u| ≤
1

2

(
|p̂j − p̂i|+ |q̂j − q̂i|

)
.

Thus, at least one of |p̂j − p̂i| ≥ ε0 or |q̂j − q̂i| ≥ ε0 must hold. Appealing to Eq. (B.6), we
conclude that algorithm B’s distinguishing advantage for the 1-query function hiding game is
at least ∣∣Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

∣∣ ≥ ε1ε
2
0

2
,

which is non-negligible.

Lemma B.2. Let Ci = {(sid, id1, . . . , idn) ∈ C : 2sid − idi}. Suppose ΠRPE satisfies non-adaptive
1-query function hiding security. Then, for any two (adversarially-chosen) pairs (i, u1), (i, u2) ∈
[1, n]× [0, 2`+1] where u1 ≤ u2 and (u1, u2] ∩ Ci = ∅, |pi,u1 − pi,u2 | = negl(λ).

Proof. The proof follows by a similar argument as in the proof of Lemma B.1. Specifically, suppose
A is able to produce a decoder D together with indices i ∈ [1, n], u1, u2 ∈ [0, 2`+1] with non-negligible
probability ε1 such that all of the following conditions hold:

• |pi,u1 − pi,u2 | ≥ ε0 = 1/poly(λ)

• u1 ≤ u2 and (u1, u2]∩Ci = ∅, where C and Ci are the sets defined by the adversary’s queries.
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We use A to construct an adversary B that breaks the 1-query function hiding security of ΠRPE:

1. At the beginning of the function hiding game, algorithm B receives the public parameters rpe.pp
from the function hiding challenger. It chooses a hash key hk

r← K and gives pp = (hk, rpe.pp)
to A.

2. When A makes a key-generation query on an identity id ∈ ID, the challenger computes
sid ← H(hk, id) and constructs the vector vid = (2sid− id1, . . . , 2sid− idn). Algorithm B makes
a key-generation query on the pair (sid, vid) to obtain a key skid, which it forwards to A.

3. At the end of the game, algorithm A output a decoder algorithm D, two messages m0,m1 ∈M,
a revocation list L ⊆ ID and a decoder success probability ε. It also chooses indices i ∈ [1, n]
and u1, u2 ∈ [0, 2`+1]. If u1 > u2 or (u1, u2] ∩ Ci 6= ∅, then B aborts and outputs 0.

4. Algorithm B constructs the set L′ = {id ∈ L : H(hk, id)}. It chooses two random bits

α, β
r← {0, 1} and makes a challenge query on (mα, fi,u1 , fi,u2 ,L′) to obtain a ciphertext ct∗.

Then, if β = 0, it also makes an encryption query on (mα, fi,u1 ,L′) and if β = 1, it makes an
encryption query on (mα, fi,u2 ,L′). Let ctβ be the resulting ciphertext. Algorithm B checks if
D(ctβ) = D(ct∗) and outputs β if so and 1− β otherwise.

As in the proof of Lemma B.1, we argue that B is admissible and that it breaks function hiding
with non-negligible advantage.

• First, we show that B is admissible. Let (sid, vid) be a key-generation query made by B,
where vid = (2sid − id1, . . . , 2sid − idn). We need to show that for all non-revoked identities
id /∈ L (i.e., all sid /∈ L′), fi,u1(vid) = fi,u2(vid). Since id /∈ L, this means that id ∈ R \ L,
and correspondingly, (sid, id1, . . . , idn) ∈ C. By construction, if B does not abort, then
(u1, u2] ∩ Ci = ∅ so that means that 2sid − idi /∈ (u1, u2]. There are now two possibilities. If
fi,u1(vid) = 1, then vid,i ≤ u1 ≤ u2, and so fi,u2(vid) = 1. Alternatively, if fi,u1(vid) = 0, then
vid,i = 2sid − idi > u1. Since 2sid − idi /∈ (u1, u2], it must be the case that 2sid − idi > u2, in
which case, fi,u2(vid) = 0. Finally, B only makes 1 encryption query after making all of its
key-generation and challenge queries, so we conclude that it is admissible for the non-adaptive
1-query function hiding game.

• Next, we consider the distinguishing advantage of B. First, B perfectly simulates the traceability
game for A so with probability ε1, B will not abort and the decoder D that A satisfies
|pi,u1 − pi,u2 | ≥ ε0. Using the same type of analysis as in the proof of Lemma B.1, we conclude
that in this case, B is able to win the 1-query function hiding game with advantage at least
ε1ε

2
0/2, which is non-negligible.

Lemma B.3. For all i, j ∈ [n], we have that pi,0 = pj,0. Set p0 = p1,0. Moreover, if ΠRPE satisfies
non-adaptive 1-query message hiding, then p0 ≤ 1/2 + negl(λ).

Proof. By definition, fi,0 and fj,0 are identical functions (and have the same canonical representation)
for all i, j ∈ [n]. Thus, for all i, j ∈ [n], pi,0 = pj,0. We now show that p0 ≤ 1/2 + negl(λ). To show
this, we first define the following process. Let m0,m1 ∈M be the messages, L be the revocation
list, and D be the decoder chosen by the adversary. Let L′ = {id ∈ L : H(hk, id)}. Now, sample

a random bit b
r← {0, 1} and construct the ciphertext ct ← RPE.Enc(rpe.msk, f1,0,m0,L′). Let

p̂ := Pr[D(ct) = b]. Since D and ct are sampled independently of b, p̂ = 1/2. We now show that if A
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produces a decoder such that |p0 − p̂| ≥ ε0 with probability at least ε1, we can use A to construct
an adversary B that breaks 1-query message hiding security of ΠRPE:

1. At the beginning of the message hiding game, algorithm B receives the public parameters rpe.pp
from the message hiding challenger. It choose a hash key hk

r← K and gives pp = (hk, rpe.pp)
to A.

2. When A makes a key-generation query on an identity id ∈ ID, the challenger computes
sid ← H(hk, id) and constructs the vector vid = (2sid− id1, . . . , 2sid− idn). Algorithm B makes
a key-generation query on the pair (sid, vid) to obtain a key skid, which it forwards to A.

3. At the end of the game, A outputs a decoder algorithm D, two messages m0,m1 ∈ M, a
revocation list L ⊆ ID and a decoder success probability ε.

4. Algorithm B constructs the set L′ = {id ∈ L : H(hk, id)}. It chooses two random bits

α, β
r← {0, 1} and makes a challenge query on (f1,0,mα,m0,L′) to obtain a ciphertext ct∗.

Next, if β = 0, it makes an encryption query on (mα, f1,0,L′) and if β = 1, it makes an
encryption query on (m0, f1,0,L′). Let ctβ be the resulting ciphertext. Algorithm B checks if
D(ctβ) = D(ct∗) and outputs β if so and 1− β otherwise.

Since f1,0 is the all-zeroes function, and B makes exactly 1 encryption query after making all of its
non-encryption queries, algorithm B is admissible for the non-adaptive 1-query message-hiding game.
We now consider the distinguishing advantage of B. Since B perfectly simulates the traceability
game for A, with probability ε1, the decoder D that A outputs will satisfy |p0 − p̂| > ε0. The claim
now follows by the same type of analysis as in the proof of Lemma B.1. In particular, algorithm B
wins the 1-query message hiding game with advantage at least ε1ε

2
0/2, which is non-negligible. This

means that |p0 − p̂| = negl(λ), and the claim follows.

Lemma B.4. For all i, j ∈ [n], we have that pi,2`+1 = pj,2`+1. Set p2`+1 = p1,2`+1. Moreover,
assuming ΠRPE satisfies non-adaptive 1-query broadcast security, p2`+1 ≥ 1/2 + ε− negl(λ), where ε
is the non-negligible decoder success probability output by A.

Proof. By definition, fi,2`+1 and fj,2`+1 are identical functions and have the same canonical representa-
tion (i.e., fi,2`+1 ≡ faccept ≡ fj,2`+1) for all i, j ∈ [n]. We now show that p2`+1 ≥ 1/2+ε−negl(λ). Sim-
ilar to the proof of Lemma B.3, consider the following process. Let m0,m1 ∈M be the messages, L be
the revocation list, andD be the decoder chosen by the adversary. Let L′ = {id ∈ L : H(hk, id)}. Now,

sample a random bit b
r← {0, 1} and construct the ciphertext ct← RPE.Broadcast(rpe.pp,mb,L′).

Let p̂ := Pr[D(ct) = b]. Since A is admissible for the traceability game, p̂ ≥ 1/2 + ε. We now show
that if A produces a decoder such that |p0 − p̂| ≥ ε0 with probability at least ε1, we can use A to
construct an adversary B that breaks 1-query broadcast security of ΠRPE:

1. At the beginning of the broadcast security game, algorithm B receives the public parameters
rpe.pp from the challenger. It choose a hash key hk

r← K and gives pp = (hk, rpe.pp) to A.

2. When A makes a key-generation query on an identity id ∈ ID, the challenger computes
sid ← H(hk, id) and constructs the vector vid = (2sid− id1, . . . , 2sid− idn). Algorithm B makes
a key-generation query on the pair (sid, vid) to obtain a key skid, which it forwards to A.

3. At the end of the game, A outputs a decoder algorithm D, two messages m0,m1 ∈ M, a
revocation list L ⊆ ID and a decoder success probability ε.
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4. Algorithm B constructs the set L′ = {id ∈ L : H(hk, id)}. It chooses two random bits

α, β
r← {0, 1} and makes a challenge query on (mα,L′) to obtain a ciphertext ct∗. Next if

β = 0, it computes ctβ ← RPE.Broadcast(rpe.pp,mα,L′), and if β = 1, it makes an encryption
query on (faccept,mα,L′) to obtain a ciphertext ctβ. Algorithm B checks if D(ctβ) = D(ct∗)
and outputs β if so and 1− β otherwise.

By definition, f1,2`+1 ≡ faccept. Moreover, B makes at most 1 encryption query after making all of its
non-encryption queries, so it is admissible for the non-adaptive 1-query broadcast security game. We
now compute the distinguishing advantage of B. Since B perfectly simulates the traceability game
for A, with probability ε1, the decoder D that A outputs will satisfy |p2`+1 − p̂| > ε0. The claim
now follows by the same type of analysis as in the proof of Lemma B.1. In particular, algorithm B
wins the 1-query broadcast security game with advantage at least ε1ε

2
0/2, which is non-negligible.

This means that |p2`+1 − p̂| = negl(λ) and the claim follows.

Combining Lemmas B.1 through B.4, we conclude that the oracle Q defines an instance of the
(2`, n, |C| , δ, ε)-generalized jump-finding game for any δ ≤ ε/(9 + 4(`− 1) |C|), where C is the set
of non-revoked identities queried by the adversary.8 By Theorem 2.6 and Remark 2.7, the Trace
algorithm will recover an element in C with overwhelming probability when executed on some
q > log |C|. By construction of C, if this happens, then Trace will output an identity id ∈ R \ L.
Thus, the Trace algorithm will terminate in at most log |C| = poly(λ) iterations, and each iteration
requires time poly(λ, `, n, ε, |C|) = poly(λ). This means that overall, the Trace algorithm terminates
in polynomial time (with overwhelming probability). It suffices to argue that running QTraceQ on
values of q < |C| does not cause the Trace algorithm to output an element that is not in C. This also
follows from the correctness requirement in Theorem 2.6. Namely, QTraceQ only outputs elements
where there is a “jump” (of magnitude at least δq) in the decryption advantage, and for smaller
values of q, the magnitude δq of the jumps is greater. Thus, any element output by QTraceQ using
a value of q < |C| must also be contained in C. We conclude that with overwhelming probability,
TraceD(msk,m0,m1,L, ε) will output some id∗ ∈ R \ L, and the claim follows.

8Technically, we have only showed that the first two properties of Definition 2.5 hold for efficiently-sampleable pairs of
points (i, x) and (j, y), but this is sufficient for invoking Theorem 2.6 (see Remark 2.7). Namely, since QTraceQ is an
efficient algorithm, all of the properties in Definition 2.5 hold for the inputs queried by QTraceQ.
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