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Abstract. In the area of cloud computing, judging the fulfillment of
service-level agreements on a technical level is gaining more and more
importance. To support this we introduce privacy preserving set relations
as inclusiveness and disjointness based on Bloom filters. We propose to
compose them in a slightly different way by applying a keyed hash func-
tion. Besides discussing the correctness of the set relations, we analyze
how this impacts the privacy of the sets content as well as providing
privacy on the sets cardinality. Indeed, our solution proposes to bring
another layer of privacy on the sizes. We are in particular interested
how the overlapping bits of a Bloom filter impact the privacy level of
our approach. We concretely apply our solution to a use case of cloud
security audit on access control and present our results with real-world
parameters.

Keywords: Bloom filters · set operations · set relations · outsourced computa-
tion

1 Introduction

When investigating the area of distributed systems, and in particular service
provisioning cloud systems based on Service-Level Agreements (SLAs) between
user and service provider we observe a strong tendency to involve a third party [7,
14,17,22]. The third party is in role of auditing and judging in a semi-automated
manner whether the offered services have indeed been successfully provided for a
given epoch in the past. We are interested in dependable and privacy-preserving
building blocks for a third party entity, let it be an auditor or other dependable
third parties. Besides other digital evidences which are out of the scope of the
work at hand, by using a kind of a whitelist approach an auditor would have
to store i) a whitelist and ii) some log-lists for a given duration of the past
to validate access to an offered service from different users respectively their
identities e.g. ip-addresses [21]. More concretely, we are interested in building
blocks which can be used to verify with a high level of confidence and in a
fully privacy preserving manner whether indeed users from a given group have
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accessed the service, or not. Thus, our objective is to provide a derivate of
private set operations, namely private set relations on sets (let it be a whitelist,
or, a general SLA) as well as multisets or sequences (let it be a simple loglist,
or, more general, a contractual intermediate state). In many related works, set
operations and relations are computed by multiparty based protocols, as in [13]
where the authors propose a method that enables two parties to construct a
decision tree without learning anything on each other’s data. All the parties
involved are sharing a set or a subset of their data with each other such that
they all contribute to the computations. However, in the work at hand, we face
different protocol requirements. We want all the parties that own data to upload
it to an outsourced third party that will perform solely by itself the required
computations. Such scenario has gained relevance with the increased usage of
cloud infrastructures. Contrary to multiparty based solutions, we believe that
preferably such a protocol class should be non-interactive. E.g. for an indeed
practical cloud auditing setting it is required that the user does not have to
be available for any validation step after having used a given cloud service. We
argue that in particular this non-interactive character is valuable, making our
approach beneficial compared to competing approaches.

Our Contributions. The concrete contributions of our work are threefold:

– We allow a third party entity to compute set relations namely, inclusiveness
and disjointness in an outsourced model to perform a security auditing use
case. To do so, we tune the Bloom filter approach by enhancing its privacy
with respect to the sets content. Such an approach is also providing privacy
on the sets cardinality.

– We present an attack to gain the sequences cardinality in the present con-
figuration. By analyzing the behavior of overlapping bits in the Bloom filter
environment we show what amount of information such an attack may pro-
vide.

– We implemented our solution and present our results obtained for the con-
crete cloud security audit on access control use case with real-world param-
eters.

One may argue that a simple pseudonymization could be sufficient for the
above sketched scenario, as solely apply a keyed hash function on the sets [4].
However, even if the pseudonymization function remains private to any other
party than the Bloom filter owners, one may directly gain knowledge on the
number of common elements of two Bloom filters. Such a naive approach will
also reveal which pseudonym is present in none, one or both sets. On the contrary,
Bloom filter representation has the particular feature of adding obfuscation to
the sets.

Organization of the Paper. In Section 4 we present the selected use case
scenario along with its security model. In Section 3 we provide an overview of
the existing solutions in the literature and we argue why our approach using
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Bloom filters is relevant. In Section 2 we provide a short introduction to the
subsequently discussed set relations and Bloom filters. Section 5 presents our
proposed protocols and the analysis of its correctness properties for different
parameters choices. In Section 6 we analyze the privacy fulfilled by our solution
by proposing an attack based on the overlapping bits characteristic, as we coined
it. In Section 7 we present our results obtained by our implementation before
concluding in Section 8.

2 Preliminaries

In this section we introduce the type of operations we are performing on sets
and how we represent them using the Bloom filters approach. In appendix A we
summarize the used notation.

Set Operations and Relations. Multiple types of operations could be per-
formed on sets. In this work, we aim to test set relations and some of them could
be reduced to compute the cardinality of some operations. For instance, being
able to compute the cardinality of the intersection of two sets indicates whether
they have elements in common or if one set is included in the other one. For
privacy concerns it could be of interest to solely reveal its cardinality instead
of the intersection itself. Therefore, we propose a solution to solve two kinds of
set relations namely the inclusiveness and the disjointness and define this as
follows:

Definition 1 (Inclusiveness). Let A and B be finite sets. A is included in B,
i.e. A ⊂ B, iff all elements from A are included in B : ∀a ∈ A : a ∈ B.

Definition 2 (Disjointness). Let A and B be finite sets. A and B are disjoint
iff none of the elements from A are included in B. In other words, A ∩ B = ∅ :
∀a ∈ A : a /∈ B.

In the remainder of this work, we will propose privacy preserving protocols to
perform the test of these two relations on sets.

Bloom Filters. A Bloom filter is a data structure introduced by Burton Howard
Bloom in 1970 [2]. It is used to represent a set of elements. With a Bloom filter
representing a certain set, one can verify whether an element is a member of this
set. Such a data structure consists of a tabular of m bits which is associated to
nkey public hash functions. At first, all the m bits are initialized to 0. Moreover
two functions namely add() and test() are available. To add an element to the
Bloom filter, one has to compute the hashes of this element with each of the
respective nkey hash functions. Then, set the bit to 1 for each position corre-
sponding to a hash value. To test whether one element is included in the Bloom
filter with the test() function, one has, by the same manner, to compute the
respective hash values of this element and verify if the respective bits are set to
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1. If at least one of these bits is set to 0, then with certainty the tested element
is not a member of the set represented by the Bloom filter (i.e. no false negative
for test() could append). On the contrary, with some probability, the test() func-
tion could retrieve a false positive. Indeed, even if all the bits that have been
verified are set to 1, the tested element may not be part of the set represented
by the Bloom filter. There exist multiple applications for this approach. It is
used by web browser or web site to optimize the cache or the site recommen-
dations. With database query operations it could also for example reduce the
disk lookups for non-existent rows or columns. Finally we could also mention
its relevancy with respect to cryptocurrencies by for instance accelerating the
wallet synchronization of Bitcoin or fasten the finding of logs on the Ethereum
blockchain.

To express the probability of having a false positive when performing function
test() we introduce the notion of an overlapping bit. It corresponds to the case
where a certain bit of the Bloom filter has to be set to 1 due to the adding of
an element but this specific bit is already set to 1. The probability of having an
overlapping bit is null when the Bloom filter is still blank, and it grows along
with the number of inserted elements. We express this probability as following
with XBFA the amount of bits already set to 1 in BFA at a specific point in
time:

Pob =
XBFA

m
(1)

We could then express the average amount of different bits added to the Bloom
filter when adding one new element to it:

Xadd = nkey +

nkey∑
i=1

(
(−1)i ·

∑nkey−1
j=i

(
j
i

)
mi

)
(2)

And we could generalize it to the average amount of bits added to the Bloom
filter when adding N new elements to it:

Xadd(N) = nkey ·N +

nkey·N∑
i=1

(
(−1)i ·

∑(nkey·N)−1
j=i

(
j
i

)
mi

)
(3)

By observing the current state of a Bloom filter representing finite set A of nA
elements, one can express the exact amount of overlapping bits as the value
YBFA :

YBFA = (nA · nkey)−XBFA (4)

3 Related Work

Adding privacy to Bloom filters has been yet investigated in many works. The
first way of doing that consists of directly encrypting the Bloom filter with ho-
momorphic encryption as Kerschbaum did in [10] and [9] and how it has been
developed in [1]. In [15] the authors add privacy by using two approaches: blind
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signature schemes and oblivious pseudorandom functions. The second type of
approaches, as we suggest in the current work, consists of replacing the tradi-
tional hash functions of the Bloom filter by HMAC functions. We explain in
what way these existing solutions [6,8, 12,16,18,19] do not fit our requirements
and therefore our solution brings novelty. First of all, we highlight the fact that
none of the following solutions provide privacy on the sets cardinality. In [6] Goh
associates Bloom filters with a keyed pseudo-random function to allow a private
member testing in the Bloom filter. This is in particular one aspect we do not
want the auditor be able to do. In [8] the authors propose a solution that approx-
imately computes the dot product protocol using Bloom filters. Contrary to our
outsourced requirement, this solution is a two-parties interactive protocol. They
implemented their solution and show results for relatively small parameters (less
than 5 keys and no Bloom filters larger than 5000 bits). They conclude that their
solution roughly supports the use of more than four hash functions. In [12] the
authors expose a construction of Bloom filters along with HMAC protocol in a
wireless sensor aggregation scenario. Their approach is somehow similar but the
base station (equivalent to the auditor here) shares HMAC keys directly with
each of the nodes. Therefore, the merging of Bloom filters from different nodes
does not allow any operation since different keys are used. In [16], still by com-
bining the Bloom filter approach with a keyed hash function, the authors propose
a solution to compute the membership of elements in a set. Therefore, they ma-
nipulate Bloom filters of unique elements that leads to data leakage regarding
the amount of elements and could be very costly, especially when considering
thousands of them. In [18], authors compute sets intersections but in such proto-
cols, the parties (here the data sources) which perform the intersection need the
secret key to return the result. Such a construction does not fit our requirements
where in particular the active party (the auditor) should not hold the key for
privacy reasons. In [19] the authors present some experimental results produced
from relatively small Bloom filters parameters that shows limitations on having
a large amount of bits in Bloom filters to keep the set sizes protected. They
only motivate the use of HMAC by arguing that it adds an additional security
layer to their protocol. We notice that, works that provide results by testing
their solution are space limited. Other works [3, 5, 11], that deserve attention,
compute set relations and operations using the Bloom filters approach but in a
multiparty model that does not fit our requirements. In Table 1 we recap what
the aforementioned approaches provide compared to our proposed solution. For
each approach we precise if it can be used in an outsourced model where a ma-
licious third party performs the computations, if functions add(), test() and the
set relations inclusiveness (INC) and disjointness (DIS) are computable by the
third party.

4 A Cloud Security Auditing Use Case

Next, we present a use case of a cloud security audit on access control based
on [21]. In addition to the trendy increase of auditing in cloud environment, we
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Table 1. Comparison of the approaches.

Approach Outs. add() test() INC/DIS Card. privacy
Encrypted BF yes yes yes yes no

[1, 9, 10] (obfuscated results)

Blind Signature [15] no - - no no

BF with HMAC [6] yes no yes no no

- [8] no - - no no

- [12] yes yes yes no no

- [16] yes no yes yes no

- [18] yes yes yes no no

- [19] yes no no no no

PSI [3, 5, 11] no - - no yes

Our approach yes no no yes yes

highlight the relevancy of this use case in terms of managing the data at several
sides, namely clients, CSP and auditor along with its privacy requirements. Such
a third party involvement should be classified as malicious with respect to a solid
threat modeling as described below:

Scenario. This use case consists of users trying to connect and access a service
provided by a cloud service provider (CSP). To be authorized, one user should be
an employee from the specific company that required the service and in addition,
should be connecting to the service from an authorized IP address. An auditor
will have to verify that the CSP correctly performed the access control on the
company’s respective service by testing if the IP addresses of the successful users
are part of the authorized IP addresses set. On the contrary, the auditor will
also have to verify that no authorized user has been denied to connect.

With respect to the given privacy requirements, the IP addresses from the
successful and non-successful sequences as well as from the whitelist have to
remain hidden from the auditor. As we have seen in Section 2, by using Bloom
filters to represent any group of elements we lose the aspects of multiplicity and
order of this group. Therefore, in the remainder of this work we will only use the
notion of set. We define sets W, L1 and L2 we are considering in the scenario:

W = {w1, . . . , wnW} which corresponds to the whitelist, the set of the autho-
rized IP addresses.

L1 = {l1, . . . , lnL1
} which corresponds to the logfile of the IP addresses that

successfully connected.
L2 = {l′1, . . . , l′nL2

} which corresponds to the logfile of the IP addresses that
failed to connect.

As presented in Figure 1, we consider three parties; a cloud service provider CSP,
a client (company) C and an auditor AD.W represents the set of the authorized
IP addresses respectively to a specific client. Therefore, this set is generated and
protected by the client himself. Its content is originally sent from the C to the
CSP in a non-protected version such that the CSP could perform the access
control. Nevertheless, it should remain hidden from the auditor AD during the
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Fig. 1. Generic framework of the cloud security auditing. Users A, B and C should be
authorized to connect by the CSP while users D and E should not.

whole auditing process and thus being protected. L1 and L2 represent the sets of
the IP addresses for any connection attempts during the epoch [ta; tb], for which
the auditing is required. They respectively represent the set of the IP addresses
for all the successful connections and non-successful connections. Both contain
sensitive information therefore, their contents should also remain hidden from
the AD during the whole process.

Set Relations. To verify that the CSP performed correctly the access control,
the AD has to perform two types of set relations. First of all, to verify that only
users with authorized IP addresses succeeded to connect, the AD could perform
an inclusiveness relation between sets L1 and W, i.e. to test if all the elements
from L1 are included in W. Secondly, to verify that the CSP has rejected only
users connecting from non-authorized IP addresses, the AD could perform a
disjointness relation between W and L2.

Security Model. These set relations could be considered as hard-to-solve if we
want to achieve a considerable privacy level at the same time. Taking privacy
into account means guaranteeing privacy on the elements of the sets regarding
any external party and, in particular, the party which is performing the protocols
of inclusiveness and disjointness. In such scenario, we consider on the one hand
that the C and the CSP behave as honest-but-curious and on the other hand the
AD may act as a malicious party. Indeed, the CSP already knows the whitelist
content while the C will not have access to the logfiles during the auditing pro-
tocol since we are not in a multi-party computation model. The auditor AD will
have access to an obfuscated version of the sets and we thus consider the case
where it could try to retrieve information about their content or cardinality.

We highlight three security requirements that should be considered:
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SR1. The AD should not be able to modify any part of the Bloom filters BFW ,
BFL1

or BFL2
in an undetectable manner and should not be able to generate

its own Bloom filter and use it to perform the set relations protocols. I.e.,
performing the protocol with a Bloom filter from a client along with one
generated by the third party should result in a dummy outcome.

SR2. The AD should not be able to learn from BFW , BFL1 or BFL2 if:
1) wi = lj for some i, j 2) li = lj for some i 6= j
In other words, the AD should not be able to learn in how many occurrences
an element is present in a set and if a specific element from W is also in L1

or L2. We require a certain level of obfuscation over the computation on the
sets. Solely the results of the set relations should be revealed to the AD.

SR3. The AD should not learn the sets cardinalities nW , nL1 and nL2 from
BFW , BFL1 and BFL2 or any results from the protocols.

SR1 and SR2 are considered as mandatory while SR3 could be considered as
rather optional. Indeed, one may argue that even if the auditor knows the sets
cardinalities, he could still not guess which concrete IP addresses are in the sets.
But one could easily imagine that firstly, in some use cases knowing the set
cardinality is by itself a leak of privacy and secondly, there definitively do exist
cases where for example, knowing that a set contains few elements will lead the
auditor to infer which ones. Therefore, we will show that our solutions fulfill the
third privacy requirement to a certain level λn which corresponds to the amount
of possible size candidates of a set that the auditor will get after performing our
protocols.

5 Protocols

For simplicity of presentation, we present our protocols with only one client
involved. We remark that one can easily adapt it to a use case with multiple
clients using the same cloud provider. We also emphasize the fact that, to process
the two set relations, the considered Bloom filters should be similarly generated,
namely with the same size m, keyed hash function and set of keys K. First
we recall the two privacy enhancements from tuning the classical use of Bloom
filter. Then we present the inclusiveness and disjointness set relations before
explaining how the parameters should be selected to guarantee a certain level of
correctness on these two relations.

Privacy Enhancements. Using Bloom filters for privacy-sensitive scenarios is
not as common as its usage for the classical applications. Our approach to make
such a technique fitting privacy-sensitive use cases, is based on the use of a public
keyed collision-resistant hash function (e.g. MAC) with a set of nkey private keys
instead of the nkey public hash functions. W.l.o.g. we use an HMAC function to
solve the current use case. That being said, any party that does not hold the keys
cannot use the test() function to directly verify if a specific element is included
in the Bloom filter. The other security benefit when using an HMAC function is
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that even if the function is publicly released, any party that does not hold the
keys cannot add additional elements. More formally, we define a Bloom filter of
size m of a set A = {a1, . . . , anA}, with a set of nkey keys K = {k1, . . . , knkey}
and an HMAC function hk : {0, 1}∗ → {1, . . . ,m} with k ∈ K as:

BF
(
A, (hk)k∈K

)
= bfA[j]16j6m (5)

where bfA[j] = 1 if ∃ (i, κ) s.t. hkκ(ai) = j

bfA[j] = 0 otherwise

In the remaining parts of this work, we use the simplified notation BFA to
represent the Bloom filter of set A. The second privacy enhancement we add
to the use of Bloom filters corresponds to keep parameter nkey private to avoid
revealing the sets’ cardinalites. Having parameter nkey publicly released requires
too many overlapping bits in the Bloom filter. Indeed, the naive technique to
retrieve the cardinality of the set by looking at its respective Bloom filter would
be to divide its amount of bits set to one by parameter nkey. There exists an
optimized technique introduced by Swamidass and Baldi [20] which computes
n∗A an approximation of the number of distinct elements inserted in BFA with
XBFA the amount of bits set to 1 in the Bloom filter:

n∗A = − m

nkey
ln
[
1− XBFA

m

]
(6)

Such a technique requires even more overlapping bits to mislead the attacker.
We see that by making parameter nkey private, one could not be able to compute
n∗A anymore. We give examples in Table 2 for several parameter configurations,
we show the estimations of the cardinality of the sets with the naive technique
and the one from Swamidass and Baldi (S&B) when we simulate the generation
of 103 Bloom filters BFA.

By referring to the results in Table 2 obtained with the S&B technique,
we could agree on the necessity of having nkey private to save privacy on the
set cardinality. However, in Section 6 we show how an attacker could still gain
information on the set cardinality even with such a precaution. One may argue
the complexity of keeping the size of K private or the effort to store a large
amount of keys. We could then slightly modify the protocol to have a unique
key k. Indeed, the outcome of hk(x) will be divided in nkey equal size fragments
and each indicates an index of the Bloom filter to increment. As it is suggested
in [12], in case of fragment too small to contain information of size m, we may
perform multiple rounds of HMAC operations with different salts. Of course, in
such protocol modification, parameter nkey remains secret to bring privacy over
the sets size.

Initialization.

h,nkey,m,K←Setup: The client C should first choose and generate the Bloom
filter parameters: the dimension m, the HMAC function h, the amount of
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Table 2. Set cardinality estimations with the naive and Swamidass and Baldi (S&B)
technique for different parameters configurations.

nA m nkey XBFA n∗A with naive n∗A with S&B

100 1.44 · 103 10 [682− 758] [68.2 - 75.8] [92.4 - 107.6]

100 6.5 · 107 1700 [169824− 171718] [100.0- 101.1] [99.9 - 100.0]

1000 2 · 109 950 [949730− 949822] [999.7 - 999.8] [999.9 - 1000.1]

keys nkey and the set of keys K = {κ1, . . . , κnkey}. C generates parameters
by performing the following protocol:

– randomly choose nkey ∈ [nLkey;nUkey] with nkey, nLkey and nUkey integers.

– set m such that X∩=∅ < nLkey.

Values nLkey and nUkey are public and we determine them later considering
correctness and privacy in Sections 5 and 6. The restriction on parameter m
corresponds to a correctness consideration which we explain in more details
in Section 5. C then selects the public HMAC function h, generates its nkey
respective keys and privately shares parameters {h, nkey,m,K} with CSP.

BFW ,BFL1 ,BFL2 ←Create(W,L1,L2): C (resp. CSP) generates the Bloom
filter of its data W = {w1, . . . , wnW} (resp. L1 = {l1, . . . , lnL1

} and L2 =
{l′1, . . . , l′nL2

}).

BFW = BF
(
W, (hκ)κ∈K

)
= bfW [j]16j6m

BFL1
= BF

(
L1, (hκ)κ∈K

)
= bfL1

[j]16j6m

BFL2
= BF

(
L2, (hκ)κ∈K

)
= bfL2

[j]16j6m

Inclusiveness Protocol. This operator allows to verify if one set is included
in another. It performs directly on the Bloom filters of the respective sets. We
define this operator as BFA⊆B ← INC(BFA,BFB):

bfA⊆B[j]16j6m ← INC(BFA, BFB) (7)

where 0← bfA⊆B[j] if (bfA[j] = 1 ∧ bfB[j] = 0)

1← bfA⊆B[j] otherwise.

We remark that this operator is equivalent to the bitwise binary operator com-
bination:

INC(BFA, BFB) ≡ ¬(BFA) OR BFB (8)

AD firstly computes the inclusion protocol on the two respective Bloom filters
of sets L1 and W to test if L1 ⊆ W, namely if all the authorized connections
have been made from authorized IP addresses:

INC(BFL1 , BFW) = BFL1⊆W = bfL1⊆W [j]16j6m
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Then AD expresses XL1⊆W which corresponds to the number of bits set to 1 in
the resulting Bloom filter:

XL1⊆W =

m∑
j=1

bfL1⊆W [j] (9)

AD tests if XL1⊆W = m and can conclude that L1 ⊆ W if no false positive
occurred. Otherwise we have L1 *W with certainty. In Appendix B, we provide
a toy example of this protocol.

Disjointness Protocol. This set relation allows to verify that no elements
from one set are included in another set. In other words, this allows to claim
that two sets are disjoint. This test function is not trivial, indeed, if we use
Bloom filters it is not sufficient to highlight the cases where a bit 1 has been
inserted at the same index for the two respective Bloom filters. We define this
operator as BFA∩B=∅ ← DIS(BFA,BFB):

bfA∩B=∅[j]16j6m ← DIS(BFA, BFB) (10)

where 1← bfA∩B=∅[j] if (bfA[j] = 1 ∧ bfB[j] = 1)

0← bfA∩B=∅[j] otherwise.

We remark that this operator is equivalent to the bitwise logical-and operator:

DIS(BFA, BFB) ≡ BFA AND BFB. (11)

To verify that no authorized user failed to connect to the service offered by CSP,
AD performs the disjointness relation on the respective Bloom filters of W and
L2:

DIS(BFW , BFL2) = BFW∩L2=∅ = bfW∩L2=∅[j]16j6m

Then AD expresses XW∩L2=∅ which corresponds to the number of bits set to 1
in the resulting Bloom filter:

XW∩L2=∅ =

m∑
j=1

bfW∩L2=∅[j] (12)

AD compares it such that:

if XW∩L2=∅ < nLkey then W and L2 are distinct

if XW∩L2=∅ > nLkey then W and L2 have at least one element in common

Indeed for each element which is included in both sets, we get nkey times a bit
set to 1 in the resulting Bloom filter. However we could still get such a bit set
to 1 due to a bit set to 1 in BFW and BFL2 stemming from different elements
originally added to the Bloom filters. We call such a case a false positive for the
disjointness relation. We will discuss its probability of occurrence in the following
sections. In Appendix C, we give a toy example of this protocol.
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Correctness of the Set Relations. In this section we consider the correct-
ness of our two proposed relations. We recall that the Bloom filter approach
allows false positives but no false negative on the test() function. Nevertheless,
in this work we are not considering the test() function and we thus focus on the
overlapping bits of the Bloom filters resulting from our set relations.

Correctness of the Inclusiveness Relation. For the inclusiveness relation, we
notice that only false positive could append and not false negative. Indeed, after
performing INC(BFL1 , BFW), if there is an index j with bfL1⊆W [j] = 0, we
have bfL1

[j] = 1 and bfW [j] = 0, then with certainty, at least one element from
L1 does not belong to W. Concretely, if the outcome of the auditing process
states that L1 *W then we have a probability of correctness of 1. On the other
hand, if we get L1 ⊆ W as result, this outcome is not necessarily correct and
we get a probability of correctness equals to 1− PFP the probability of having
a false positive. PFP could be expressed in terms of parameters nkey, m and
nW denoting the amount of elements inserted in BFW . The probability that our
inclusiveness relation outcomes a false positive whereas one element l1 from L1

is not in W is equivalent to the one to have test(W, l1) resulting true with the
same parameters. We detail the value of PFP :

First, we denote the probability that after inserting nA elements, a certain
bit is equal to 1 is:

1− (1− 1

m
)nkey·nA (13)

If we consider that ZL1,W elements from L1 are not included in W, the proba-
bility of having a false positive after computing the inclusiveness relation is:

PFP >
(
1− (1− 1

m
)nkey·nA

)nkey·ZL1,W (14)

PFP '
(
1− (1− 1

m
)Xadd(nA)

)Xadd(ZL1,W)
(15)

In Appendix D, we give a toy example of a case of a false positive happening
during the inclusiveness relation protocol. In Appendix E we give a validation
of (14) by comparing its results with testing our implementation of the Bloom
filter construction.

Correctness of the Disjointness Relation. For the disjointness relation, we have
on the contrary no case of false positive but a case of false negative may append.
Indeed, if we get XW∩L2=∅ < nLkey then it means that BFW and BFL2 have less

than nLkey (and thus less than nkey) indexes i where bfW [i] = 1 and bfL2
[i] = 1.

It is then not possible that W and L2 have common elements. Regarding the
false negative scenario, it could append if we get too many overlapping bits in
the resulting Bloom filter. It consists of a case whereW and L2 have no element
in common but AD gets XW∩L2=∅ > nLkey. To avoid such a case, we have to
accurately tune the parameters such that in a case of distinct sets W and L2,
the respective value XW∩L2=∅ will never (with acceptable probability) be greater
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than nLkey. To do so, C has to carefully select the parameters nkey and m such

that X∩=∅ + ε < nLkey. Value X∩=∅ represents the expected value of XW∩L2=∅
when performing the disjointness protocol on two distinct setsW and L2. Value ε
represents a default value that guarantees that XW∩L2=∅ is, with an acceptable
probability, never greater than nLkey when W and L2 are distinct. To express
value X∩=∅, we first give the probability of having a bit set to 1 for any index j
in both Bloom filters BFW and BFL2 , knowing that W and L2 are distinct:

p(bfW [j] = 1 ∧ bfL2
[j] = 1) = p(bfW [j] = 1) · p(bfL2

[j] = 1) (16)

= (1− (1− 1

m
)nkey·nW ) · (1− (1− 1

m
)nkey·nL2 )

Finally, the expected amount of bits set to 1 in both BFW and BFL2
at the

same index resulting from distinct set elements is:

X∩=∅ = m · (1− (1− 1

m
)Xadd(nW)) · (1− (1− 1

m
)Xadd(nL2

)) (17)

When we have Z ′W,L2
common elements inserted in both Bloom filters, we get

XW∩L2=∅ ' Z ′W,L2
·nkey+X∩=∅. Therefore, if C takes care that X∩=∅ never gets

greater or equal to nLkey, then AD could notice when the two sets have common
elements even in the case of Z ′W,L2

= 1. In Appendix F we verify the correctness
of (17).

Choosing Parameters Regarding Correctness. In the classical use of Bloom filters
as presented in [2], some usage recommendations are made to generate parame-
ters nkey and m:

m = −nA · ln (PFP )

(ln 2)2
(18)

nkey =
m

nA
· ln 2 (19)

We recall that initially Bloom filters are not supposed to hold such relations
testing as inclusiveness or disjointness. Therefore, the considerations on the
generation of nkey and m are manifold. In Table 3 we provide some examples of
correct parameters m and nkey such that the false positive probability PFP of in-
clusiveness relation is acceptable and the expected amount X∩=∅ is significantly
smaller than, by instance, nLkey = 5. We notice that in Table 3, parameters nkey
and m are significantly smaller than the ones considered later but we recall that
we care here solely about correctness of the set relations and not about privacy
of the set cardinality.

6 Privacy Analysis

In this section we show how our solutions fulfill privacy in terms of content and
cardinality. Since the overlapping bits distribution, as well as the privacy of the
Bloom filter’s content and cardinality are similar, no matter if they represent a
whitelist or a logfile, we consider in this section generic sets A and B.
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Table 3. Appropriate parameters m and nkey considering PFP and X∩=∅ with fixed
nA and nB.

nA nB m nkey PFP X∩=∅
102 5 · 101 106 10 9.9 · 10−31 0.50

102 103 107 10 9.9 · 10−41 0.99

103 103 7.62 · 109 1861 ∼ 0 4.54 · 102

104 2 · 102 9.47 · 109 1468 ∼ 0 4.55 · 102

Distribution of the Overlapping Bits. In this section we analyze the charac-
teristics of overlapping bits occurring throughout the basic step of Bloom filters
generation. As it is illustrated in Appendix G, we obtain such a distribution by
running the generation of 103 Bloom filters for each parameters configuration.
From these distributions we could notice several characteristics. First, the more
elements we add to the Bloom filter, the larger is the overlapping bits range. By
instance, if we follow recommendations from (18) and (19), and we insert only 10
elements, we get a range of overlapping bits to approximately 10. When we have
100 inserted elements the range increases to approximately 40. Since our proto-
cols use an HMAC function which generates a uniform random distribution, we
could consider that the overlapping bits follow a normal distribution. If it is the
case, to consider 99.7% of the possible overlapping bits values for a Bloom filter
representing a specific set, one could define them in the range [µ − 3σ;µ + 3σ]
with µ the mean and σ the standard deviation. Setting the parameters in the
objective to tune the distribution to get an acceptable overlapping bits range
regarding the aiming level of privacy could be intended. In Table 4 we see how
the standard deviation of the overlapping bits distribution varies depending on
the parameters and the amount of inserted elements. As a second character-

Table 4. The average and standard deviation of the overlapping bits distribution in
Bloom filters BFA and BFB for different parameters configurations.

nA nB m nkey µA σA µB σB
10 100 1.44 · 103 10 3.3 1.73 278.6 10.3

100 100 2.2 · 107 1700 653.9 24.6 654.9 26.1

10 100 2 · 106 1700 72.3 8.4 7023.4 77.9

100 1000 6 · 107 500 20.8 4.44 2075.8 45.3

istic, we observe that when we have two sets with highly distant cardinalities
nA � nB (or resp. nB � nA), the number of overlapping bits in the Bloom
filter of the smaller set YBFA (resp. YBFB) substantially decreases and the one
of the larger set substantially increases. Having too few overlapping bits in a
Bloom filter could be problematic, especially if it could even be predictable by
the attacker. By running tests we notice that no matter which nkey is picked or
how many elements are inserted in the Bloom filters, if the ratio nA

nB
remains the
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same, then firstly the expected amounts of overlapping bits in BFA and BFB
remain approximately the same and secondly YBFA (resp. YBFB) is quite small.
Moreover, we see that it is even worse if we keep decreasing the ratio nA

nB
. One

solution to keep having an acceptable range of overlapping bits in the Bloom
filter representations of the smaller set, even if we have a significant difference in
the cardinalities, could be to use a greater domain [nLkey;nUkey]. Indeed, for the
same ratio nA

nB
, we get greater overlapping bits ranges.

Privacy on the Content. First, we claim that no attacker could determine
which concrete IP address is included in the whitelist neither the log files. This
holds by means of the Bloom filter construction. Indeed, each element from the
sets are mapped with the HMAC function constructed from a cryptographic hash
function and therefore benefits from its on-wayness characteristic. This means
that the only straightforward manner to get any knowledge on the Bloom filter
content would be to use the test() function which is only computable by CSP
and C. From this statement SR1 and SR2 are fulfilled:

SR1. If AD does not know the HMAC’s keys K = {k1, . . . , knkey}, it cannot
generate its own Bloom filter or add any element to an existing one and
perform the set relations. Indeed, they require that all the considered Bloom
filters are generated with the same keys.

SR2. These two sub-requirements are fulfilled thanks to the Bloom filter inher-
ent characteristics. Indeed, the first one holds because of the fact that all
elements inserted in a Bloom filter are mixed together and it is not possible,
even from the same Bloom filter, to distinguish between them. The second
sub-requirement holds since when the whitelist Bloom filter is created, even
if an element occurs multiple times in the logfile, it will be added to the
respective Bloom filter only once.

Privacy on the Cardinality. In this section, we focus on the ability of any
attacker to retrieve the cardinality of the sets from one or multiple versions of
the Bloom filter’s representation of the set. We show that our solution fulfills
the third security requirement:

SR3. The overlapping bits property of the Bloom filters allows to hide the exact
number of elements in the whitelist or the logfile. However, AD is able to
determine the amount of bits set to 1 in the Bloom filters. It could then
deduct the following information: nA >

XBFA
nkey

. By keeping parameter nkey
secret to AD, we consider the cardinalities obfuscated and SR3 could still
be considered as fulfilled to a certain level.

We recall that there exists an optimized manner to get the cardinality of a set
from its Bloom filter representation as explained in Section 5, the S&B technique.
Without any overlapping bit, getting the result is therefore straightforward. On
the contrary, having multiple overlapping bits will lead any non-authorized party

15



to misinterpret the cardinality. To ensure that, the ratio of the amount of overlap-
ping bits over parameter nkey should be important. Another aspect to consider
with such an approach is that anytime an attacker gets a different Bloom filter
of the same set A, he can get closer to its cardinality. Indeed, the cardinality

of A will always be greater or equal to
XBFA
nkey

. By accessing XBFA for multiple

different Bloom filters of the same set A, he therefore can refine his cardinality
guessing.

We also notice that having an acceptable probability of false negative and an
acceptable level of privacy for the set cardinalities are contradicting strategies.
Indeed, our approach to solve the disjointness set relation is based on reducing
the amount of overlapping bits to avoid confusion having common elements.

Sets Cardinalities Attack. We present here how an attacker, as the au-
ditor, could aim to retrieve cardinalities nA and nB. To do so, the AD will
firstly try to determine parameter nkey used by the owner of A and B. The
AD knows that nkey ∈ [nLkey;nUkey] and that nkey is a factor of the amount of
bits inserted in both Bloom filters. The candidates list for nkey is represented
as Lnkey = {l1, . . . , lλnkey } with λnkey a security parameter that represents the

size of this list. We also consider the two sub-lists LAnkey = {l1, . . . , lλA} and

LBnkey = {l1, . . . , lλB} which correspond to the lists of factors regarding BFA and

BFB before the cross-checking that leads to Lnkey . We set YBFA ∈ [obA1 ; obA2 ]
and YBFB ∈ [obB1

; obB2
] the amounts of overlapping bits in the Bloom filters.

In each Bloom filter, some overlapping bits could have occurred, therefore the
attacker knows that regarding BFA, nkey is a factor of XBFA or (XBFA + 1)
or (XBFA + 2) . . . Similarly holds for BFB. It means that LAnkey (resp. LBnkey ) is
composed by elements lj which verify the two characteristics:

lj ∈ [nLkey;nUkey] and lj |xA with xA ∈ [XBFA + obA1
;XBFA + obA2

]

(resp. lj |xB with xB ∈ [XBFB + obB1
;XBFB + obB2

])

Finally, we have LnA = (li)i∈[1;λnA ] the list of candidates for nA with λnA the

amount of elements in LnA . Similarly we have LnB = (li)i∈[1;λnB ] the list of
candidates for nB with λnB the amount of elements in LnB . The first step of the
attack consists of listing all the common factor of {XBFA , (XBFA + 1), (XBFA +
2), . . . } and {XBFB , (XBFB + 1), (XBFB + 2), . . . } to generate lists LAnkey and

LBnkey . Then, AD will intersect the two list to generate the candidates list Lnkey .
The second phase of the attack is to translate Lnkey into lists LnA and LnB .

The AD could use the S&B technique [20] to approximate size nA and since
parameter m is public and value XBFA is directly computable, we have the
following function:

n∗A(nkey) = − m

nkey
ln
[
1− XBFA

m

]
(20)

When we look closely to the list Lnkey , we could notice that if some elements
are following, they are translated to the same candidate of nA. In other words,
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multiple elements from Lnkey correspond to the same element from LnA , thus we
get λnA 6 λnkey . In Appendix H we give a toy example of this sets cardinalities
attack.

Attack on Three Cases. We implement the sets cardinalities attack and we
run it with different levels of knowledge for the auditor. We differentiate three
cases such that the best case, the in between case and the worst case. They could
be seen as three attacker models where the level of knowledge is minimal in the
best case and maximal in the worst case.

Best Case. The auditor knows nothing on the expected overlapping bits dis-
tribution. AD considers that any amount of overlapping bits could occur and
thus the attack will not get it any valuable information on the sets cardinality.
Indeed, the attack will return λA = λB = λnkey = (nUkey − nLkey). In such ideal
case we get a perfect privacy on the sets cardinality.

In-between Case. In such a case we consider that the auditor has more knowl-
edge on the overlapping bits that affect the Bloom filters. We assume that the
auditor is not able to predict the exact overlapping bits distribution but could
approximately estimate the overlapping bits ranges [obA1

; obA2
] and [obB1

; obB2
].

AD will perform the attack with these maximized default ranges.

Worst Case. In the worst case assumption, the AD knows the exact overlap-
ping bits distribution for both Bloom filters. With this knowledge, the auditor
could associate a weight to any element from Lnkey and thus element from LnA

and LnB . We set weight for each element from Lnkey based on the overlapping
distribution of each Bloom filter.

7 Implementation and Results

We have implemented our protocols of the set relations in Java. The following
measurements have been made with CPU configuration of Intel Core i5 M520
2.40GHz x 4.

Results on the Cloud Auditing Use case. First of all, running the imple-
mentation allowed us to express a precise value of the false positive (resp. false
negative) rate. We test our solution with parameters suiting the cloud security
auditing use case meaning a whitelist of 103 or 104 elements and logfiles from
102 to 104 elements. To test the false positive case, we generate Bloom filters of
a whitelistW and a logfile L1 with different amounts of IP addresses. The tested
parameters configurations are displayed in Table 5. Every IP addresses inserted
in BFL1

are also inserted in BFW except for one. For every parameters configu-
ration we test the inclusiveness relation INC(L1,W) 103 times. We performed
the same experimentation protocol with the disjointness relation. In both cases
we obtain 0.00% of false positives respectively false negatives.
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Performance. In Table 5 we show the performance of our two set relations.
We run 104 times each set operator for more accuracy and the computation
times are expressed in seconds. We see that performance times decrease linearly
depending on parameter m, indeed as presented, the set relations are equivalent
to bit-wise operations on the Bloom filters. That being said, we also notice
that the performance times considering the set cardinality privacy are by far
acceptable especially in an auditing use case.

Table 5. Running times of the two set relations in seconds.

nW nL1 nL2 m nkey n
L
key n

U
key Time for INC(L1,W) Time for DIS(L2,W)

103 103 103 1.18 · 109 733 500 2000 2.57 · 10−1 2.16 · 10−1

103 103 103 7.62 · 109 1861 500 2000 2.51 · 10−1 7.44 · 10−1

104 9 · 103 2 · 102 2.93 · 109 816 500 2000 2.29 · 10−1 2.80 · 10−1

104 9 · 103 2 · 102 9.47 · 109 1468 500 2000 2.16 · 10−1 8.67 · 10−1

8 Conclusion

We showed how to compute two specific set relations namely inclusiveness and
disjointness of outsourced sets of data in a privacy preserving manner. In addi-
tion to fulfill privacy on the content, we provided a certain level of privacy on
the cardinality of the Bloom filter’s data structure. Our implementation results
validate that this level is acceptable for instance when applied to a cloud secu-
rity audit on access control. Such an approach based on Bloom filters could be
easily adapted also to other set relations or operations like equality or relative
complement.
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A Notation

AD, C, CSP The auditor, the client and the cloud service provider
W The client’s whitelist
L1,L2 The two sets of the logfile
A, B Generic sets

INC(), DIS() Inclusiveness and disjointness operators
BFA, BFA∩B, BFA⊆B=∅ The respective Bloom filter representation of A,

the inclusiveness and the disjointness relation between A and B
bfA[i] ith index of BFA
nA, NA Cardinality of set A and maximization of this size

h HMAC function
K Set of the keys used with function h
nkey Amount of keys in K

nL
key, n

U
key Lower and upper bounds of nkey

m Size of the Bloom filter
PFP Probabilities of having a false positive to the inclusiveness operator
PFN Probabilities of having a false negative to the disjointness operator
XBFA Number of bits set to 1 in BFA
X∩=∅ Estimation of the number of bits set to 1 in BFA⊆B=∅

if A and B were disjoint
YBFA Amount of overlapping bits in BFA
Y ∗BFA Estimation of YBFA

ZA,B Amount of elements from A which are not in B
Z′A,B Amount of elements in both A and B
ρ, µ Standard deviation and mean of the overlapping bits distribution

Lnkey , L
A
nkey Candidates lists of nkey used in general, in BFA

LnA Candidates list of nA
λnkey , λ

A
nkey , λnA Cardinalities of the candidates lists Lnkey , L

A
nkey and LnA

[obLA; obUA] Range of the overlapping bits distribution for BFA

B Toy Example: Inclusiveness Relation

We give an example of the inclusiveness relation with quite small sets and pa-
rameters. We test if A and A′ are included in B.
A = {x1, x2}, A′ = {x1, x4}, B = {x1, x2, x3}
m = 12, nkey = 3, K = {k1, k2, k3}

hk1(x1) = 10, hk1(x2) = 1, hk1(x3) = 5, hk1(x4) = 9
hk2(x1) = 11, hk2(x2) = 10, hk2(x3) = 12, hk2(x4) = 2
hk3(x1) = 2, hk3(x2) = 5, hk3(x3) = 8, hk3(x4) = 1

By computing the inclusiveness relation we see that A ⊆ B. On the contrary
A′ * B since bfA′ [9] = 1 and bfB[9] = 0.
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BFA 1 1 0 0 1 0 0 0 0 1 1 0

BFA’ 1 1 0 0 0 0 0 0 1 1 1 0

BFB 1 1 0 0 1 0 0 1 0 1 1 1

BFA⊆B 0 0 0 0 0 0 0 0 0 0 0 0

BFA’⊆B 0 0 0 0 0 0 0 0 1 0 0 0

�1

C Toy Example: Disjointness Relation

We give another toy example to test the disjointness relation between BFA,
BF ′A and BFB.
A = {x4, x5}, A′ = {x1, x4}, B = {x1, x2, x3}
m = 12, nkey = 3, nLkey = 3, nUkey = 5, K = {k1, k2, k3}

hk1(x1) = 10, hk1(x2) = 1, hk1(x3) = 5, hk1(x4) = 9, hk1(x5) = 6
hk2(x1) = 11, hk2(x2) = 10, hk2(x3) = 12, hk2(x4) = 2, hk2(x5) = 1
hk3(x1) = 2, hk3(x2) = 5, hk3(x3) = 8, hk3(x4) = 1, hk3(x5) = 7

BFA 1 1 0 0 0 1 1 0 1 0 0 0

BFA’ 1 1 0 0 0 0 0 0 1 1 1 0

BFB 1 1 0 0 1 0 0 1 0 1 1 1

BFA∩B 1 1 0 0 0 0 0 0 0 0 0 0

BFA’∩B 1 1 0 0 0 0 0 0 0 1 1 0

�1

We get XA∩B = 2 and XA′∩B = 4. Since we have XA∩B < nLkey, we definitively

know that A and B are disjoint. On the contrary, we get XA′∩B > nLkey, therefore
A′ and B might be disjoint. Indeed with such toy configuration we haveX∩=∅ = 2
and we do not get nLkey << X∩=∅ and with XA′∩B = 4 we hesitate between either
A′ and B disjoint or having one element in common.

D Toy Example: False Positive with the Inclusiveness
Relation

We give here an example of the inclusiveness relation between BFA and BFB
and we obtain a false positive case.
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A = {x1, x5}, B = {x1, x2, x3}
m = 12, nkey = 3, nLkey = 3, nUkey = 5, K = {k1, k2, k3}

hk1(x1) = 10, hk1(x2) = 1, hk1(x3) = 5, hk1(x5) = 12
hk2(x1) = 11, hk2(x2) = 10, hk2(x3) = 12, hk2(x5) = 5
hk3(x1) = 2, hk3(x2) = 5, hk3(x3) = 8, hk3(x5) = 1

BFA 1 1 0 0 1 0 0 0 0 1 1 0

BFB 1 1 0 0 1 0 0 1 0 1 1 1

BFA⊆B 0 0 0 0 0 0 0 0 0 0 0 0

�1

By performing the inclusiveness relation INC on BFA and BFB we get A ⊆ B
but this is not correct since x5 /∈ B.

E False Positive Probability

We test our implementation of Bloom filters construction for multiple parameters
configurations. We express in Table 6 the percentage of false positive obtained
while performing 104 times the inclusiveness relation and we verify that it cor-
responds to the respective PFP expressed in (14).

Table 6. Comparation of the False positive percentage resulting from the running of
the inclusiveness relation’s implementation and the probability from (14).

nW nkey m PFP %FP

102 101 1 · 103 1.02 · 10−2 9.00 · 10−3

102 7 · 102 1 · 104 5.28 · 10−1 5.38 · 10−1

103 5 5 · 103 1.01 · 10−1 1.01 · 10−1

103 102 2 · 104 5.09 · 10−1 5.12 · 10−1

104 5 · 102 1 · 106 3.40 · 10−2 4.00 · 10−2

104 103 1.5 · 106 2.80 · 10−1 2.20 · 10−1
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F Predicting 0verlapping Bits for the Disjointness
Relation

We compare the value of X∩=∅ obtained by (17) with the value of XW∩L2=∅
obtained by running 104 times our implementation. We show our results in Table
7.

Table 7. Comparation of the overlapping bits on the disjointness relation between two
distinct sets and its prediction from (17).

nW nL2 nkey m X∩=∅ XW∩L2=∅
102 102 10 1 · 103 3.99 · 102 4.00 · 102

102 102 10 1 · 106 9.99 · 10−1 1.02 · 100

102 102 700 1 · 104 9.99 · 103 9.98 · 103

102 103 700 1 · 107 4.71 · 103 4.72 · 103

103 103 5 5 · 107 5.00 · 10−1 5.02 · 10−1

103 103 100 2 · 104 1.97 · 104 1.97 · 104

103 103 1500 1 · 107 1.94 · 105 1.94 · 105

103 104 1000 1 · 107 6.01 · 105 6.02 · 105

104 104 1500 1 · 108 1.94 · 106 1.94 · 106

G Overlapping Bits Distribution

To complete our analysis of the overlapping bits we run our Bloom filter im-
plementation for several parameters configurations 103 times each. We start by
illustrating in Figure 2 the distribution of YBFA in two parameters configura-
tions knowing {nA = 50, m = 1.3 · 107, nkey = 200} and {nA = 200, m =
1.4 · 107, nkey = 100}.

In Figure 3, we show the distributions for Bloom filters of two sets with
similar cardinalities (nA ≈ nB) and the same parameters configuration. We also
show the distribution of the amount of bits in the Bloom filter corresponding
to the result of the disjointness operator between the two previous Bloom filter
representing two distinct set. We have {nA = 1000,m = 1.44 · 104, nkey = 10}
and {nB = 1100,m = 1.44 · 104, nkey = 10}.

In Figure 4 we show a case where the parameters are generated following
recommendations from (18) and (19) for set B and 100 distinct elements in-
serted in the Bloom filters. We use the same parameters configuration with set
A containing only 10 distinct elements (nA � nB). We have {nA = 10,m =
1.44 · 103, nkey = 10} and {nB = 100,m = 1.44 · 103, nkey = 10}.
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Fig. 2. The amounts of overlapping bits distribution for 103 Bloom filters of the same
set generated.

2,600 2,800 3,000 3,200 3,400 3,600 3,800 4,000

0

0.5

1

1.5

2

YBFA YBFB and XA∩B=∅

%

nA = 1000,m = 1.44 · 104, nkey = 10

nB = 1100,m = 1.44 · 104, nkey = 10

XA∩B=∅ =
∑m

j=1 bfA∩B=∅
Threshold of 1%

Fig. 3. The amounts of overlapping bits distribution for nA ≈ nB.

H Set Cardinality Attack

We give a toy example of the attack obtained with our implementation of the
protocol. The parameters selected by the clients are the following: nkey = 17
with nLkey = 10 and nUkey = 30, m = 1.5 · 108, nA = 1024 and nB = 2305.

The auditor gets BFA and BFB and counts their respective bits set to 1;
XBFA = 17407 and XBFB = 39179. He is then listing the factors as described in
Section 6 by considering the overlapping bits amounts as YBFA , YBFB ∈ [0; 10].
The auditor selects the common factors from LAnkey and LBnkey and narrows the

candidates list to Lnkey = {10, 11, 12, 13, 14, 15, 16, 17, 21, 23}. We note that the
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Fig. 4. The amounts of overlapping bits distribution for nA � nB.

YBFA/YBFB XBFA + YBFA LA
nkey

XBFB + YBFB LB
nkey

0 1707 13 39179 29

1 1708 16, 17 39180 10, 12, 15, 20, 30

2 1709 21 39181 ∅
3 1710 10 39182 11, 13, 22, 26

4 1711 23 39183 ∅
5 1712 12 39184 16

6 1713 11 39185 17

7 1714 ∅ 39186 14, 18, 21

8 1715 15, 27 39187 ∅
9 1716 14, 28 39188 ∅
10 1717 ∅ 39189 ∅

auditor has reduced the candidates list by more than half. Indeed, before the
attack we had λnkey = 21 and now λnkey = 10.

Then the auditor translates Lnkey into LnA and LnB with the (S&B) tech-
nique:

LnA = {757, 829, 1024, 1088, 1161, 1243, 1339, 1451, 1583, 1741}
LnB = {1704, 1866, 2305, 2449, 2612, 2799, 3014, 3265, 3562, 3918}

We give more examples of the attack in particular for each of the three cases
considered as attacker model.

H.1 Best Case

The auditor could only translate the information that nkey is any integer and
nkey ∈ [nLkey;nUkey]. Therefore, the auditor reduces the candidates list to LnA =

[dn∗A(nUkey)e; bn∗A(nLkey)c] and gets its cardinality as λnA = bn∗A(nLkey)c−

26



dn∗A(nUkey)e + 1 since in this case the attacker could not yet exclude any value
from LnA . We notice that in some cases, λnA could be very small even without
performing the attack. It is the case especially when nA is quite small. In Table
8 we give some examples of LnA and λnA without any attack.

Table 8. Respective LnA and λnA for several parameter configurations.

nA m nL
key nU

key XBFA LnA λnA

10 2 · 106 1500 2000 16935 [9; 11] 3

100 2 · 106 1500 2000 162968 [85; 113] 29

100 6 · 107 500 1000 49981 [51; 100] 50

1000 6 · 107 500 1000 497936 [501; 1000] 500

H.2 In-between case

In Table 9 we show the results of the attack with such a limited knowledge.

Table 9. Results of the attack.

nA nB m nkey [obA1 ; obA2 ] [obB1 ; obB2 ] λA λB λnkey λnA λnB

100 1000 6 · 107 500 [0 - 50] [1500 - 2500] 38 315 38 38 38

10 100 2 · 106 1700 [0 - 150] [6000 - 8000] 46 425 46 3 3

100 100 2.2 · 107 1700 [500- 1000] [500 - 1000] 142 140 136 29 29

H.3 Worst case

For this attacker model we give examples with three different parameters config-
urations. In each case, we run 103 Bloom filter generations of each specific set to
obtain a precise overlapping bits distribution. Then we provide all the retrieved
candidates for parameter nkey and how they are translated into nA and nB can-
didates along with their respective weight. In particular we set a weight of 1.00
for the most probable candidate for parameter nkey and then, we set the other
ones proportionately to this one.

We start by a parameters configuration of {nA = 100, nB = 1000, m = 6·107,
nkey = 500, nLkey = 500, nUkey = 1000}. Before the attack the auditor knows that
LnA = [50; 100], λnA = 51, LnB = [500; 1000] and λnB = 501. In Table 10 we
show the results of the attack obtained by running our implementation with the
overlapping bits distribution obtained by generating 103 Bloom filters of the two
sets. We see in Table 10 that the attacker gets greater weights for candidates
which are not the correct ones. In particular we have six couples of candidates
with an equal or greater probability than the correct couple nA, nB.
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Table 10. Example of translating Lnkey into LnA and LnB .

Element from Lnkey Weight Element from LnA and LnB Weight

500 0.67 100 and 1000 0.67

505 1.00 99 and 990 1.00

532 0.02 94 and 940 0.02

625 0.67 80 and 800 0.67

633 0.02 79 and 790 0.02

641 0.94 78 and 780 0.94

658 0.02 76 and 760 0.02

685 0.14 73 and 730 0.14

862 0.85 58 and 580 0.85

877 0.43 57 and 570 0.43

893 0.02 56 and 560 0.02

909 1.00 55 and 550 1.00

926 0.17 54 and 540 0.17

1000 0.67 50 and 500 0.67

The second selected parameters configuration is {nA = 10, nB = 100, m = 2·106,
nkey = 1700, nLkey = 1500 and nUkey = 2000}. Before the attack the auditor
knows that LnA = [8; 11], λnA = 3, LnB = [85; 113] and λnB = 29. In Table
11 we show the attack’s results. With the attack, we get LnA = {9, 10, 11} and

Table 11. Example of translating Lnkey into LnA and LnB .

Element from Lnkey Weight Element from LnA and LnB Weight

1545, 1546, 1547 0.10, 0.53, 1.00 110 and 11 1.63

1700, 1701, 1702 0.16, 0.71, 0.84 100 and 10 1.71

1889, 1890 0.33, 0.71 90 and 9 1.04

LnB = {90, 100, 110} with λnA = λnB = 3. We also get the greater weight for
the correct candidates.

We give a last example where nA ≈ nB. The selected parameters are {nA =
100, nB = 100, m = 2.2·107, nkey = 1700, nLkey = 1500, nUkey = 2000}. Before the
attack the auditor knows that LnA = λnA = [85; 113] and λ = λnB = 29. In Table
12 we show the resulting LnA and LnB . Finally we get LnA = LnB = [85; 113]
and λnA = λnB = 29 namely the same lists that before performing the attack.
The auditor gets information on whether one candidate is more probable than
another regarding the attached weight. We notice in this example that the correct
value for nA and nB (100) is not the most probable, and even the auditor gets
height candidates with an higher or equivalent probability of being the correct
size. We see then that in some cases, the attack allows the auditor to reduce
its lists LnA and LnB but in other cases it only provides approximation on the
probability of being the actual size. We have shown in this section, depending
on the considered security model, how much information any attacker could gain
on the sets cardinality. We have seen that increasing the domain of parameters
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Table 12. Example of translating Lnkey into LnA and LnB .

Element from Lnkey Weight Element from LnA and LnB Weight

1504 0.46 113 0.46

1518 0.61 112 0.61

1531 0.21 111 0.21

1545 0.54 110 0.54

1560 0.18 109 0.18

1574 0.93 108 0.93

1589 0.43 107 0.43

1604 0.64 106 0.64

1619 0.75 105 0.75

1634, 1635 0.18 104 0.36

1650 0.54 103 0.54

1666 0.21 102 0.21

1683 0.68 101 0.68

1700 0.71 100 0.71

1717 0.68 99 0.68

1734, 1735 0.21 98 0.42

1752 0.29 97 0.29

1771 0.61 96 0.61

1789 0.46 95 0.46

1808 0.46 94 0.46

1828 0.93 93 0.93

1848 0.61 92 0.61

1868 0.96 91 0.96

1889 0.71 90 0.71

1910 1.00 89 1.00

1932 0.61 88 0.61

1954 0.82 87 0.82

1976 0.18 86 0.18

2000 0.71 85 0.71

nkey and m could allow to reduce such information. We also recall that we
assume in this use case that the most predominant privacy consideration is on
the content of the sets. Preserving the cardinality’s privacy is therefore secondary
and providing a certain level of privacy is considered as sufficient.
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