
Blackbox Constructions from Mix-Nets

Douglas Wikström

KTH Royal Institute of Technology
dog@kth.se

Abstract. Mix-nets constructed from homomorphic cryptosystems can
be generalized to process lists of ciphertexts as units and use different
public keys for different parts of such lists. We present a number of black-
box constructions that enriches the set of operations provided by such
mix-nets. The constructions are simple, fully practical, and eliminates
the need for some specialized protocols.

1 Introduction

A mix-net is a cryptographic protocol executed by a set of mix-servers. They
first run a distributed key generation protocol, i.e., they generate a joint public
key for which the secret key is secret shared among the servers. Then they
take a list of ciphertexts as input and output the corresponding plaintexts in
random order without disclosing any knowledge about how they are related to
the input ciphertexts. Additional functionality is possible such as only decrypting
or outputting re-encrypted and permuted ciphertexts instead plaintexts. The
notion of mix-nets was introduced by Chaum [5].

Although there are a few examples of non-standard applications of mix-nets,
e.g., Jakobsson et al. [22], the main application is in electronic voting systems
or in applications which can be framed as such.

Already in early work on efficient universally verifiable mix-nets such as
Neff [23] and Furukawa and Sako [13] it was noted that each input could be
a list of ciphertexts that is processed as a unit. This allows processing longer
plaintexts and multiple choices in an election at once. A related generalization
is that ciphertexts encrypted under different public keys can be processed as a
unit. This is made explicit by Groth [16], albeit in abstract form.

The problem of constructing a provably secure mix-net was arguably solved
years ago through a long line of theoretical works leading up to a few variations
with components from, e.g., [9, 26, 14, 25, 23, 13, 16, 30].

There is a rich literature on mix-nets, in particular numerous failed attempts
to construct a verifiable mix-net that led up to the current state of the art, as
well as different forms of proofs of shuffles, but this literature is not relevant
in this paper. There are also mix-nets that are not provably secure, but they
should not be used in security critical applications such as elections, if for no
other reason since they are not verifiable. Thus, they are not considered here.

VoteHere and NEC [12] presented the first implementations. The softwares
were never publicly available and we do not know exactly what VoteHere imple-
mented. NEC’s implementation used a central party for verification and did not
implement processing of long ciphertexts [11].

As far as we know the Verificatum Mix-Net (VMN) [1] was the first complete
and fully distributed implementation that is faithful to cryptographic theory
(completed 2008 and released under a free and open source license 2010). Both
generalizations of the El Gamal cryptosystem are implemented using abstrac-
tions similar to those used in [16]. Versions of VMN have been used in Wom-
bat [3] (2011) for student elections and election of the party leader of Meretz,
by nVotes (formerly Agora Voting) [31, 24] in primary and local elections from
2011 onwards, and in municipal elections in Norway 2013 and Estonia 2017 and
in national elections in Estonia 2019.

The Helios electronic voting system in it’s mix-net incarnation [20, 4] and the
UniCrypt/UniVote [10] implementations of voting systems both contain mix-nets
that were implemented after the completion of VMN. The worthwhile goal of
the former is to have a simplistic implementation in a script language with a
different information flow. The latter is an attempt to re-implement a subset of
the functionality in the same programming language (and other functionality),
but using different programming patterns [17].

Both use the proof of a shuffle of Terelius and Wikström [30]. Neither project
is comparable to VMN in scope, security, or completeness, but both can be used
with the blackbox constructions to some extent, so the constructions in this
paper are generic.

We remark that some results mentioned above have been re-discovered with
minor changes, e.g., the notion of “parallel mixing” [27] is essentially shuffling
multiple ciphertexts encrypted under the same or different public keys, and “ex-
ponentiation mixing” [18], for which a special purpose protocol follows trivially
from [32] and straightforward a blackbox solution is described here.

1.1 Contributions

We describe a number of ways in which a mix-net can be used as a blackbox.
Special purpose protocols are frequently proposed in the electronic voting litera-
ture that replicate such functionality in various more or less sound ways, so there
is a need to give an explicit unified treatment. The constructions presented here
are at most a small constant factor slower than a corresponding special purpose
protocol.

We explain how to swap public key encryption for one-time pad encryption for
a designated party. Then we sketch how some non-threshold access structures can
be implemented. We describe how to jointly compute any group homomorphism
on encrypted values with public and random scalars. This observation gives weak
universal mixing.

Then we show how a hypergraph with encrypted labels can be shuffled, i.e.,
the labels are re-encrypted and the hypergraph randomly permuted. This con-

2

struction seems novel, but simple cases of it are well known and of immediate
practical value.

Finally, we consider how to swap encryption under one public key for encryp-
tion under another public key. This is necessarily not blackbox, since it depends
on the structure of the cryptosystem itself, but it suffices to make blackbox calls
to the mix-net.

We think it is worthwhile to present these constructions in explicit form,
since we have seen several papers where the main results can either be viewed
as instances of these constructions or can be explained in a simpler and much
more focused way using these constructions, e.g., distributed Prêt à Votér ballot
generation [27] or checking numbers in Selene [28].

1.2 Why Are Blackbox Constructions Important?

In theory, blackbox constructions are important to reduce complexity and the
need for assumptions. One of the main foci of theoretical cryptography is to
relate different notions and assumptions. A well-known example is that a pseudo-
random generator can be constructed from any one-way function [19]. Blackbox
constructions are typically also easier to use as tools when developing novel ideas
and presenting them.

However, for the case of mix-nets the practical implications are much more
important. Implementing security critical software correctly is time consuming
and difficult. The software should have as few dependencies to external libraries
as possible, and all code must be analyzed, tested, optimized, and documented
both in code and in manuals. All data formats must be documented as well.

The use of blackbox constructions instead of special purpose protocols dras-
tically simplifies protocol construction and reduces the expertise needed to use
the functionality in a secure way. This reduces both security risks and costs. In
particular, it simplifies the specification of universally verifiable proofs of cor-
rectness.

1.3 Motivating Example

Even in elections where only a single ciphertext is needed to encrypt a vote it is
useful to be able to process multiple ciphertexts as units. Consider an election
with thousands of voting precincts of a few hundred up to a few thousand voters
each. There is no need to keep information about the voting district secret at the
time the vote is cast, whether in a polling station or on the Internet, and votes
should only be shuffled within the precinct before revealing the set of votes.

We can solve this problem either by processing the ciphertexts from each
voting precinct separately, or we could use a so-called restricted proof of a shuf-
fle [30] to ensure that the mix-servers never mixes ciphertexts from different
voting precincts.

An alternative solution is to simply add the index of the precinct as a prefix
to each vote, encrypt the index, and process both ciphertexts as a unit. The

3

prefix ciphertext could be added by the voter when casting the vote, but it can
just as well be added by the mix-servers at the time of tallying since the precinct
index is public. We stress that fixed and public randomness can be used to form
the encryptions of the indices.

The prefix ciphertexts of the shuffled pairs of ciphertexts are then decrypted
before or at the same time as the encryptions of the votes. Sorting with respect
to indices separates the ciphertexts (or votes) of each precinct.

2 Background

Although most of the constructions work for any homomorphic cryptosystem, we
concentrate on the El Gamal cryptosystem for concreteness. We also introduce
notation for hypergraphs to consider processing of more complex objects than
mere ciphertexts.

2.1 El Gamal Cryptosystem

The El Gamal cryptosystem [8] is defined over a group Gq of prime order q with
standard generator g. The setM of plaintexts is defined to be the group Gq and
the set of ciphertexts C is the product spaceM×M. The randomness used to
encrypt is sampled from R = Zq.

A secret key x ∈ R is sampled randomly, and a corresponding public key
pk = (g, y) is defined by y = gx. To encrypt a plaintext m ∈ M, a random
exponent s ∈ R is chosen and the ciphertext in C is computed as Encpk (m, s) =
(gs, ysm). A plaintext can then be recovered from such a ciphertext (u, v) as
Decx(u, v) = u−xv = m.

To encrypt an arbitrary string of bounded length t we also need an injection
{0, 1}t →M, which can be efficiently computed and inverted.

Homomorphic. The cryptosystem is homomorphic, i.e., for every public key pk
and every ciphertexts

(u1, v1) = Encpk (m1, s1) and (u2, v2) = Encpk (m2, s2)

their element-wise product

(u1u2, v1v2) = Encpk (m1m2, s1 + s2)

is an encryption of m1m2. If we set m2 = 1, then this feature can be used to
re-encrypt (u1, v1) without knowledge of the secret key. To see this, note that
for every fixed s1 and random s2, the sum s1 + s2 is randomly distributed in R.

Distributed El Gamal Cryptosystem. The El Gamal cryptosystem also allows
efficient protocols for distributed key generation and distributed decryption of
ciphertexts by k parties with threshold λ, i.e., λ parties are needed to decrypt.

4

The distributed key generation protocol generates a Shamir secret [29] shar-
ing polynomial p(z) =

∑λ−1
s=0 γsz

s of degree (λ − 1) defined over R. The joint
output of the protocol is then a polynomial in the exponent (Γ0, . . . , Γλ−1) de-
fined by Γs = gγs and the secret output xl to the lth party is defined as the
secret share xl = p(l). The joint public key is then y = Γ0 = gx, where x = p(0),
and the public key yl of the lth party can be derived as yl =

∏λ−1
s=0 Γ

ls

s = gxl .
The details [9, 14] of the verifiable secret sharing scheme are not important in
this paper, but the point of the sharing polynomial is that each server can verify
that its share is correct using this relation.

To jointly decrypt a ciphertext (u, v), the lth party publishes a partial de-
cryption factor fl computed as PDecxl(u, v) = u−xl and proves using a zero-
knowledge proof that it computed the decryption factor correctly relative to its
public key yl. Let ∆ be a set of size λ of indices l such that the proofs are correct.
Then Lagrange coefficients

cl =
∏

i∈∆\{l}

i

i− l

such that
∑
l∈∆ clxl = x can be computed. Instead of recovering x in the open

we can perform similar operations “in the exponent”. More precisely, decryption
factors can be combined to a joint decryption factor

f =
∏
l∈∆

f cll = PDecx(u, v) .

The ciphertext can then be trivially decrypted as TDec((u, v), f) = vf = m. If
no set ∆ of size λ exists, then no knowledge about the plaintext is leaked and
the ciphertexts cannot be decrypted.

2.2 Encrypting Longer Messages with Multiple Keys

The El Gamal cryptosystem can be generalized in several ways to encrypt longer
messages. One way is to simply use multiple public keys. More precisely, sup-
pose that pk = (pk1, . . . , pkκ) is a list of public keys with corresponding se-
cret keys sk = (sk1, . . . , skκ), where pk i ∈ C and sk i ∈ R. Then a message
m = (m1, . . . ,mκ) ∈Mκ can be encrypted as

Encpk (m, s) =
(
Encpk1

(m1, s1), . . . ,Encpkκ(mκ, sκ)
)
,

where s ∈ Rκ. We view this as the natural generalization of El Gamal to product
groups. We say that κ is the key width and define the message space to be
Mκ =Mκ, the randomness space to be Rκ = Rκ, and the ciphertext space to
be Cκ =Mκ ×Mκ.

Let gM ∈ M be a generator. Then the element g = (gM , gM , . . . , gM)
generates Mκ in the sense that for each element u ∈ Mκ there is a unique
element s ∈ Rκ such that u = (gs1M , . . . , gsκM). We use the following notation

gs = g(s1,...,sκ) = (gs1M , . . . , gsκM) ,

5

i.e., exponentiation is interpreted component wise.
With this notation, a secret key sk for El Gamal with key width κ is a ran-

domly chosen element x ∈ Rκ and the corresponding public key pk is defined as
(g, y), where y = gx. To encrypt a message m ∈Mκ an element s ∈ Rκ is sam-
pled randomly and then the ciphertext is computed as Encpk (m, s) = (gs, ysm),
where ysm is interpreted as component-wise multiplication. Decryption and com-
putation of decryption factors are defined similarly.

2.3 Encrypting Longer Messages with Multiple Ciphertexts

A standard hybrid argument implies that a longer plaintexts of the form m =
(m1, . . . ,mω) ∈ Mω

κ can be encrypted using a public key pk ∈ Cκ by en-
crypting each component independently, as

(
Encpk (m1, s1), . . . ,Encpk (mω, sω)

)
,

where s = (s1, . . . , sω) ∈ Rωκ is chosen randomly.
It is convenient to generalize our notation similarly to the generalization used

for multiple keys above. Thus, we let Mκ,ω = Mω
κ be the plaintext space, we

let Rκ,ω = Rωκ be the randomness space, and let Cκ,ω =Mκ,ω ×Mκ,ω be the
ciphertext space. With this notation, encryption of a message m ∈ Mκ,ω using
randomness s ∈ Rκ,ω is simply denoted Encpk (m, s) = (gs, ysm), where g is
understood to be a generator ofMκ.

Note that with this generalization pk ∈ Cκ and not in Cκ,ω which might have
been expected by the reader, but this is natural since the ω is variable even
for a fixed public key. Decryption and computation of decryption factors can be
defined in the natural way.

Abuse of Notation. We abuse notation when convenient and view a ciphertext
in Cκ,ω to be a list of ciphertexts

(
w1, . . . , wω

)
, where wi ∈ Cκ, despite that it is

of the form
(
(u1, . . . , uω), (v1, . . . , vω)

)
, i.e., when we abuse notation we think of

wi as (ui, vi).

2.4 Blackbox Mix-net

The input to a mix-net is a list of ciphertexts. The mix-servers then take turns
and re-encrypt each ciphertext and permute their order. The output of the λth
mix-server is a list of ciphertexts that have been re-encrypted and permuted by
λ mix-servers. Thus, if less than λ mix-servers are corrupted, this guarantees
that no knowledge is leaked about the correspondence between the input and
output ciphertexts. This operation is often called a shuffle.

To ensure that no ciphertexts are replaced each mix-server also proves in
zero-knowledge that it did indeed only re-encrypt and permute its input to form
its output. Such proofs are called proofs of shuffles. The first efficient solutions
were given by Neff [23] and Furukawa and Sako [13], but several proposals have
been presented and in VMN the proof of a shuffle of Terelius and Wikström [30]
is used. We think this allows a more intuitive explanation which is important
in the context of electronic voting, but this is arguably a matter of taste. These

6

proofs of shuffles work for both generalizations of El Gamal. A blackbox mix-net
is capable of:

1. joint key generation (joint public key and secret shared secret key),
2. shuffling ciphertexts (re-encrypting and permuting),
3. decrypting ciphertexts, and
4. mixing ciphertexts (shuffling and decrypting).

For the three latter operations the plaintexts of the input ciphertexts must
be straight-line extractable by a simulator in a proof of security, and sometimes
the ciphertexts must also be globally unique. From now on we assume that the
application ensures this when needed.

2.5 Hypergraphs

We denote a graph G by a pair (V,E), where V is a set of vertices and E is a set of
edges. In the case of undirected graphs an edge e is a set of two nodes u1, u2 ∈ V ,
whereas in the case of a directed graph the edge is an ordered pair to encode that
the edge goes from u1 to u2. The same convention is used for hypergraphs, i.e.,
the edge of an undirected hypergraph is a set of nodes u1, u2, . . . , us ∈ V and the
corresponding edge in a directed hypergraph is the ordered list (u1, u2, . . . , us).

3 Swapping to One-Time Pad Encryption

Sometimes we want the plaintexts of a mix-net to be available only to a dedicated
third party. There is a simple light-weight approach based on one-time pad
encryption to achieve this.

For an encryption Encpk (m) we simply let the receiver generate an encryption
Encpk (α) of a randomly chosen value in α ∈M. The mix-net then decrypts the
ciphertext Encpk (α)Encpk (m) = Encpk (αm) to get αm. Thus, the message m is
encrypted using the one-time pad α, which is known by the receiver. Lists of
ciphertexts are processed accordingly.

4 Non-threshold Access Structures

Recall that the secret key of the public key generated by most mix-nets is secret
shared with a threshold access structure, i.e., if there are k mix-servers a thresh-
old λ can be chosen such that any set of λ mix-servers can decrypt, but no set of
at most λ− 1 mix-servers can gain any knowledge of the encrypted plaintexts.

There is a rich literature on how to achieve other access structures [21], but
in this paper we focus on deriving as much functionality as possible in a practical
blackbox way from the key generation functionality of a standard mix-net.

The standard assumption in electronic voting systems is that there are k
equally trusted/untrusted parties that can play the roles of mix-servers. In prac-
tice, this is not necessarily a plausible assumption. Setting up a secure server

7

and maintaining it is difficult and expensive. Thus, it is worthwhile to consider
more flexible access structures. The problem is that simply implementing one of
the more flexible protocols available in the cryptographic literature brings added
software complexity, more complex specifications, and makes it more difficult to
implement verifiers of universally verifiable proofs of correctness. Hence, it is a
good idea to investigate alternatives.

Suppose that we have public keys pk1, . . . , pk t generated by different, possibly
non-disjoint, sets S1, . . . , St of mix-servers.

4.1 Simple Special Cases

Suppose that t = 2 and pk1 = (g, y) and pk2 = (g, z). Then it is obvious that
a single public key (g, yz) can be formed, and that ciphertexts encrypted under
this public key can only be decrypted if both S1 and S2 are able to decrypt.
This is readily generalized to multiple sets of mix-servers. Conversely, if the
same plaintext m is encrypted using the public keys pk1, . . . , pk t along with a
zero-knowledge proof that this is the case, then any set Si of mix-servers can
decrypt.

These simple constructions show that we can easily handle 1-out-of-t as well
as t-out-of-t access structures on top of the threshold access structure of each
set of mix-servers.

4.2 Nested Threshold Access Structure

A sender generates an additional public key pk , which is only used for com-
mitment purposes. It interprets its message as the first component Γ0 ∈ M
of Feldman’s verifiable secret sharing scheme, and chooses Γi ∈ M randomly
for 1, . . . , δ − 1. Then it forms encryptions Di = Encpk (Γi) to be used as com-
mitments, computes αl =

∏δ−1
s=0 Γ

ls

s for l = 1, . . . , t, and forms encryptions wl =
Encpk l(αl). Finally, it combines these ciphertexts to a tuple

(
(Di)i∈[0,δ−1], (wl)l∈[t]

)
and provides a zero-knowledge proof that wl and

∏δ−1
s=0D

ls

s encrypt the same
message (under the public keys pk and pk l). Note that the list (wl)l∈[t] can be
interpreted as a ciphertext for a generalized El Gamal cryptosystem when it is
shuffled.

This is effectively a Feldman-like verifiable secret sharing scheme such that
any subset ∆ of at least δ plaintexts allows reconstructing the plaintext

Γ0 =
∏
l∈∆

αcll .

where cl is the lth Lagrange coefficient. We remark that the Di’s are used as
commitments, they are never decrypted, and they could be replaced by Pedersen
commitments.

8

Which Mix-servers Must Shuffle? If the sets S1, . . . , St are disjoint, then
at least λl mix-servers from Sl must take part in the shuffling, where λl is the
threshold number of mix-servers needed to decrypt ciphertexts encrypted under
the public key pk l. This allows us to consider the full sequence of shufflings
as a sequence of t “mix-servers”. Strictly speaking a smaller number of servers
than

∑
l∈[t] λl is needed if the sets of mix-servers are not disjoint, but using this

optimization in practice is error prone.

5 Group Homomorphisms with Random Scalars

Suppose that one is given ciphertexts of the form (ui, vi) = Encpk (mi) for i =
1, . . . , N and wish to compute ciphertexts of the form (u′i, v

′
i) = Encpk (mz

i)
for some random value z ∈ R, or indeed simply mz

i . The original ciphertexts
may have been shuffled. This is needed in so-called identity shuffling. A special
purpose protocol for this is easily derived from [32].

The mix-servers run the key generation phase as usual to generate a public
key pk and corresponding secret key, but they run it an additional time to
generate a public key pk ′ for which the corresponding secret key is a randomly
chosen z ∈ R.

To form the ciphertexts (u′i, v′i) they decrypt the ciphertexts(
(u−1i , v−1i), (1, 1)

)
i∈[N]

viewed as ciphertexts inM1,2×M1,2 with the same public key pk ′ to get “plain-
texts” (u′i, v′i)i∈[N] = (uzi , v

z
i)i∈[N]. If these are decrypted, then the plaintexts are

of the form mz
i .

The above is in fact all we need to compute any homomorphism with ran-
dom scalars under encryption. To see this, given secretly shared random values
z1, . . . , zt ∈ R, and ciphertexts of the form Encpk (m1,i), . . . ,Encpk (mt,i) we can
compute ciphertexts of the form Encpk (mz1

1,i), . . . ,Encpk (mz1
t,i), which in turn al-

lows us to compute a ciphertext of the form Encpk (
∏t
j=1m

zj
j,i).

Remark 1 (Exponents may be biased). Careful readers may observe that the
exponents zi are not uniformly distributed when verifiable secret sharing is im-
plemented directly using Feldman’s scheme [9]. We are not aware of any natural
example where this matters. We refer the reader to Gennaro et al. [14] for a
discussion about this issue.

This problem can be resolved using Pedersen VSS [26] and a slight modifica-
tion to the decryption protocol, but we are not aware of any mix-net where this
is implemented.

When the number of servers is small the bias is so small that the biased
distribution is relatively close to the uniform distribution, so unless there is a
large number of secret shared values, any attack on the system that assumes
samples from the biased distribution immediately translates to an attack that
does not require this, albeit with a slightly worse success probability.

9

6 Weak Universal Shuffle

For the El Gamal cryptosystem ciphertexts formed using any public key de-
fined over groupM are not only indistinguishable from each other under chosen
plaintext attacks, they are indistinguishable from random elements in C.

Furthermore, a public key pk = (g, y) may be viewed as an encryption of
1 ∈ M. We can re-encrypt it as any other ciphertext by choosing r ∈ R and
forming Encpk (1, r)pk , but this has the same distribution as pkr = (gr, yr).
This is interesting, since we can form a pair (pk , w) of a public key and an
encryption under this key and re-encrypt both without reference to any external
public key, i.e., we can choose r, s ∈ R randomly and compute (pk ′, w′) =
(pkr,Encpk (1, s)w).

This allows construction of a mix-net that shuffles ciphertexts encrypted
under distinct keys. Note that holder of a secret key can always identify any
randomized version of its own public key. Thus, the strongest privacy property
we can expect is weaker than what is common for mix-nets, namely that no
knowledge of how the plaintexts and ciphertexts of non-corrupted parties are
related is leaked. For correctness on the other hand, we can require full correct-
ness and universal verifiability. The first paper we are aware of that makes use of
these observations to construct a universal shuffle is Golle et al. [15], but their
construction is different from the one given here.

The challenge in constructing an efficient proof of a universal shuffle is that
the ciphertexts no longer share a common public key in the underlying group,
which means that key techniques such as batching [2] fails. However, with a
mild assumption on the public keys we can shuffle pairs of the above form using
homomorphic maps instead of individually generated randomness for each pair,
and this is straightforward using a blackbox mix-net as explained in Section 5.

6.1 Randomized Public Keys and Plaintext Awareness

Let pk1, . . . , pkN ∈ C be public keys of the form pk i = (gi, yi), where gi ∈Mi is
randomly chosen and yi = g

xji
i for some xji ∈ R for ji ∈ [N ′]. In other words,

some public keys may be randomized versions of the same public key. If the
xji are randomly chosen, then (gzi , y

z
i)i∈[N] is indistinguishable from a randomly

chosen element inM2N under the Decision Diffie-Hellman assumption.
To guarantee privacy the blackbox mix-net requires that each public key-

ciphertext pair
(
pk i,Encpki(mi, ri)

)
is submitted along with a mechanism for

extracting the plaintext mi, e.g., a straight-line extractable proof of knowledge,
but here we also need to be able to extract ai ∈ R such that gi = gai and
yi = g

xji
i . This is needed to ensure that the pair as a whole is non-malleable.

In practice we can define gi = H("app, sid, id, counter"), where H is a ran-
dom oracle and the input is unique for the application, session, submittor, and
index. Another way is to let a mix-net re-encrypt public keys before use.

10

6.2 Protocol

A universal shuffle can now be implemented using a blackbox mix-net. The
protocol takes as input

(
pk i, wi

)
i∈[N]

, where pk i = (gi, yi), gi ∈M and xji ∈ R
are random, and yi = g

xji
i and wi = Encpki(mi) for some mi ∈ M. The output

is indistinguishable from ciphertexts of the form(
Encpkπ(i)

(1, z1)pkπ(i),Encpkπ(i)
(1, z2)wπ(i)

)
i∈[N]

,

where z1, z2 ∈ R and π are randomly chosen. The protocol proceeds as follows:

1. generate a public key pk of width two,
2. form ciphertexts(

ai, bi
)
i∈[N]

=
(
Encpk (pk i, 0),Encpk (wi, 0)

)
i∈[N]

,

3. shuffle to form permuted and re-encrypted ciphertexts(
a′i, b

′
i

)
i∈[N]

=
(
Encpk (pkπ(i)),Encpk (wπ(i))

)
i∈[N]

4. compute (a′′i , b
′′
i)i∈[N] =

(
(a′i)

z1 , (a′i)
z2b′i

)
i∈[N]

, with random z1, z2 ∈ R, and
5. decrypt (a′′i , b′′i)i∈[N] relative pk .

By construction z1 and z1 maps down to the permuted public key pkπ(i)
and ciphertext wπ(i), so the output is of the form

(
pkz1π(i), pk

z2
π(i)wπ(i)

)
i∈[N]

as
claimed.

We ignore inputs from corrupted parties above to illustrate how privacy is
provided for non-corrupted parties, but the inputs from corrupted parties are
processed in the same way.

7 Shuffling Hypergraphs with Encrypted Vertex Labels

Suppose that we are given a hypergraph G = (V,E) and an encryption wv
of some label for each vertex v ∈ V , i.e., we have a public hypergraph with
encrypted vertex labels. Our goal is to apply a random isomorphism to the
hypergraph and at the same time re-encrypt the encryptions of the labels to
hide how the resulting hypergraph is related to the original.

Example 1 (Pre-computed Ciphertexts). In the Prêt à Votér [6] submission scheme
each voter is handed a set of pre-computed choice-ciphertexts pairs sorted lexi-
cographically with respect to the ciphertexts and printed on paper. Generating
the sets of ciphertexts can be done as in the motivating example. To transfer
the plaintexts to the printer we simply swap to encryption under the printer’s
public key or one-time pads.

We may think of the encrypted choices of a voter as the encrypted labels
on a tree with a unique root representing the voter, so we may view the set of
all encrypted labels as a forest to be shuffled and hence a simple example of
shuffling a graph.

11

Example 2 (Rotation). There are efficient special purpose protocols for proving a
rotation shuffle of homomorphic ciphertexts introduced by de Hoogh et al. [7]. We
can simply encode the directed cyclic graph, view the ciphertexts as encrypted
labels, and shuffle the graph to achieve the same result.

Our method does not give a way to enforce the use of a permutation that is
not an isomorphism of a certain graph as in [30].

7.1 Simplified Notation

In Section 2 we have given an explicit exposition of the fact that we can shuffle
lists of ciphertexts, encrypted under the same or different public keys, but the
standard notation is not convenient for our purposes.

In the following we write 〈m〉pk for an encryption of a message m under a
public key pk . We stress that m may be a tuple (m1, . . . ,mk) of elements, in
which case we write 〈m1, . . . ,mk〉pk . When the public key is understood from
the context, then we drop it from our notation.

7.2 Encoding Edges in Undirected Hypergraphs

The basic idea is simple: we generate encryptions of unique tags (values in the
message space) and use these to encode edges similarly to the motivating ex-
ample by prepending ciphertexts with the encryptions of tags. Then we shuffle
the resulting longer ciphertexts and only decrypt the ciphertexts containing the
tags. This allows identifying the edges of the randomized hypergraph with re-
encrypted encryptions of the labels.

For each edge e = {u, v} between vertices labeled by ciphertexts 〈mu〉 and
〈mv〉 we generate an encryption 〈αe〉 of a random tag αe and form the ciphertexts
〈αe,mu〉 and 〈αe,mv〉. Then we shuffle the resulting twin ciphertexts and only
decrypt the tags to reveal which re-encrypted encryptions of labels belong to the
same edge. However, most vertices are contained in more than one edge, e.g., u
could be contained in an edge e′ = {u, v′}. Naively we could add an encryption
of another tag αe′ to form 〈αe′ , αe,mu〉 and 〈αe′ ,mv′〉.

The difference in lengths is not a big problem, since the degree of each vertex
will be public in the output isomorphic hypergraph anyway. In other words the
ciphertexts of each length can be shuffled separately, or we can add dummy
ciphertexts of the form 〈⊥〉 for a symbol ⊥ that is not used as an tag.

The problem is that the order in which we add the encrypted tags will reveal
information about how the encrypted labels in the output correspond to the
encrypted labels of the original hypergraph, but this is easily resolved by using
the mix-net to shuffle the order of the tags.

For each vertex u, we form the ciphertexts 〈αe1〉, . . . , 〈αek〉, where Eu =
{ei}i∈[k] is the set of edges containing u, and shuffle them. We can apply the trick
from the motivating example to shuffle the set of encrypted tags of all vertices
in a single execution of the mix-net. We can then re-combine the ciphertexts
giving a longer encryption of the tags in random order. This permits us to abuse

12

notation and denote the result by 〈βu,mu〉, where βu = {αe}e∈Eu , i.e., we can
assume that we can use encryptions of unordered sets of tags.

The key properties we need from the encrypted random tags is that they are
secret, unique, and matched with edges randomly. We do not require that the
tags themselves are randomly chosen. We consider several ways of generating
such encrypted tags in Section 7.4.

7.3 Directed Hypergraphs

Encoding directed hypergraphs is readily done by partitioning the set of tags of
a vertex into groups where each group contains the tags of edges in which the
vertex appears at a given position. For example, if a vertex u has an encrypted
label 〈mu〉, then its complete ciphertext would be

〈β1, ◦, β2, ◦, β3, ◦, . . . βs,mu〉 ,

where βi is the set random tags of edges where it appears as the ith vertex. Here
we use an encryption of a special symbol ◦, different from both ⊥ and all tags,
to divide the random tags into groups.

For graphs where each vertex appears approximately the same number of
times at each position in some edge, we can instead add the needed number of
dummy encryptions of ⊥ and avoid using ◦ at all, since the sets can be inferred.
What is most efficient depends on the application.

7.4 On Encrypted Tags

The most obvious and general way to generate the encrypted tags we need is
to simply form encryptions 〈1〉, 〈2〉, . . . , 〈|E|〉 using fixed randomness, shuffle the
list of ciphertexts, and use the resulting ciphertexts 〈α1〉, 〈α1〉, . . . , 〈α|E|〉. This
means that the ith edge ei is assigned a randomly chosen tag αi for every index
i ∈ [|E|].

The most efficient approach in the random oracle model is to simply interpret
the output of a random oracle evaluated over a suitable session identifier as
ciphertexts 〈α1〉, 〈α1〉, . . . , 〈α|E|〉. In this case the indices will be randomly chosen
inM. If this space is exponentially large, then the indices will be distinct with
overwhelming probability.

If the message spaceM is a dense subgroup of a multiplicative group, then
the indices can be chosen as small unique primes pe ∈ M for e ∈ E. The
advantage of this approach is that 〈{pe}e∈Eu〉 can be represented as 〈

∏
e∈Eu pe〉

in a single ciphertext provided that Eu is not too large. If it is too large, then
we can still use the general approach and prepare encrypted indices in random
order that are used and combined as products in single ciphertexts. Recovering
the individual primes is done by fast factorization.

We can in fact use the idea of compacting multiple encrypted indices into one
for any known set of indices. The only property we need is unique factorization
over the set of indices, which is the case with overwhelming probability for

13

randomly chosen indices, but we can of course also define αei = g2
i−1

for the
ith edge ei to ensure this. The problem is that factoring (or computing discrete
logarithms) is expensive, so this is only feasible when the degree of each vertex
is small.

Again, what is the fastest approach depends on the application.

7.5 Restricting the Set of Isomorphisms

So far we have only considered the full set of isomorphisms of a graph, but it
is quite natural to consider cases where some edges can be identified, e.g., a
set of disjoint and possibly different labeled graphs could be enumerated and
an encrypted label added to each, with edges to all its vertices, to keep track
of each graph (generalization of motivating example). To achieve this we would
simply encrypt publicly known and unique tags using fixed randomness.

More generally, we can start with the generic construction for any graph and
add encryptions of publicly known edge tags or vertex labels to effectively reduce
the set of isomorphisms to those that keep these edges or vertices fixed.

7.6 Shuffling Graphs Spanning Multiple Sessions

Multiple sessions correspond to using a single session with publicly known unique
tags to not only separate inputs in the different sessions, but also to identify
which input belongs to which session. This cannot be avoided, since ciphertexts
from different sessions are not mixed. Thus, using multiple sessions simply im-
poses a natural restriction on the set of admissible isomorphisms of the labeled
graph.

Strictly speaking the generalization in Section 2.2 is not needed to process ci-
phertexts containing components encrypted under different public keys as units,
since we can consider the graph with edges between the ciphertexts in different
sessions. Processing ciphertexts encrypted under different public keys separately
in different sessions and using tags to link them is convenient if the inputs come
in batches, but it also allows a tradeoff in practice between this approach and
using the generalization of Section 2.2.

To see this, note that the straightforward way to handle both multiple public
keys and multiple ciphertexts is to think of plaintexts and ciphertexts as rectan-
gles. The width corresponds to how many ciphertexts there are and the height
corresponds to the number of keys used. This maps directly to the notation in
Section 2.2 and Section 2.3.

However, more complex configurations are possible, e.g., we could have three
ciphertexts encrypted with one public key and two with another. Handling this
in: the mix-net implementation, configuration files, documentation, the descrip-
tion of the universally verifiable proof of correctness, and in verifiers’ code is
adds too much complexity.

Combining dummy ciphertexts, the generalization of El Gamal to multiple
public keys, and linking of ciphertexts gives a rich set of possible tradeoffs in
practice.

14

7.7 Adding Edge Labels

We can handle encrypted edge labels in addition the encrypted vertex labels
by adding vertices to carry the edge labels. Concretely, for each edge e with
encrypted label 〈me〉 we add a vertex ue to e and interpret 〈me〉 as its vertex
label. Then we add two edges eold and enew with publicly known tags containing
all original vertices, and all added vertices, respectively. This is equivalent to
shuffling the edge labels in a separate session.

7.8 Dual Construction and Encrypted Edge Labels

Note that our construction correspond to representing a graph (V,E) by enumer-
ating the vertices and edges and representing structure by the vertex-edge set
pairs {(i, Jui) | i ∈ [|V |]}, where Ju = {j | u ∈ ej}. We present this construction
since it seems most natural that vertices have encrypted labels.

However, if the edges have encrypted labels, then it is more natural to rep-
resent it using the index-edge pairs {(j, Iej) | ej ∈ E}, where Ie = {i | ui ∈ e}.
The encrypted random edge tags are then replaced by encrypted random vertex
tags, and we can also add vertex labels by adapting the method of Section 7.7.
In applications we choose the most convenient representation.

8 Semi-blackbox Construction for Swapping Public Keys

We end with a construction that is not fully blackbox in that it necessarily uses
the structure of the cryptosystem, but only uses blackbox calls to the mix-net to
swap encryption under one public key for encryption under another public key.

Consider an encryption of m of the form (u, v) = (gr, yrm) under a public
key (g, y) and let (g, z) be another public key. We can simply let the mix-net
decrypt (u−1, 1) relative to (g, z) to get a plaintext of the form v′ = zr, and form
(u, v′v) = (gr, (yz)rm). Re-encrypting this relative (g, yz) gives a ciphertext of
the form (gs, (yz)sm), which can be decrypted relative (g, y) to get the plaintext
zsm from which the ciphertext (gs, zsm) can be formed.

Observe that a simulator that holds r can compute both m and v′ without
knowing the logarithms of y or z, so provided that the mix-net is secure the
protocol has the same effect as having a trusted party that holds both secret
keys and outputs the intermediate results.

For multiple ciphertexts we can modify the mix-net to use the identity per-
mutation, but we can also use the trick from the motivating example.

9 Security

To prove the overall security of a protocol that makes use of the constructions
presented here we need rigorous analysis, but due to the diversity of the con-
structions this is out of scope in this paper.

15

However, standard methods from cryptography can be used to argue that
the constructions behave as if a trusted party performed the mix-net operations.
All we need to observe is that every secret exponent that appears in the use of
the mix-net can be extracted by a simulator and decryption can be simulated.
If we require that the simulator can extract the randomness used to form all
input ciphertexts, then this suffices. To what extent ciphertexts must be distinct
is application dependent and out of scope in this paper.

10 Complexity

Complexity estimates for mix-nets made in the literature are often overly pes-
simistic, and benchmarks for implementations of proofs of shuffles in isolation
do not take into account the tradeoffs needed in practice to properly implement
a complete mix-net.

We refer the reader to the benchmarks and heuristic complexity analysis of
VMN [34] for more information and invite the reader to run the benchmark
suite for any parameters of particular interest. We are not aware of any other
implementation of a mix-net with a serious benchmark.

The complexity of a shuffle for a fixed security parameter is O(λNκω) where
the threshold is λ, the number of plaintexts is N , the key width is κ, and the
width of each plaintext is ω. For fixed λ, κ, and ω, the complexity is of the form
aN + b.

However, for fixed λ and N it is of the form aκω+bκ+cω+d where a, b, and
c are notably smaller than d. For example, processing ciphertexts of width ten
takes roughly three times as much time as shuffling single ciphertexts for some
standard security parameters.

Moreover, the running time of decryption is almost independent of the num-
ber of mix-servers due to a parallelized variation of the standard distributed
decryption protocol (see [33] and the source code for details). This applies to
verification of the universally verifiable proof as well.

Thus, the constructions are less costly than the reader may expect, certainly
fully practical, and suffices in all applications except those with the most strin-
gent time constraints.

References

1. Verificatum AB. Verificatum site. http://www.verificatum.org, January 2017.
2. M. Bellare, J.A. Garay, and T. Rabin. Batch verification with applications to

cryptography and checking. In LATIN, volume 1380 of Lecture Notes in Computer
Science, pages 170–191. Springer Verlag, 1998.

3. Jonathan Ben-Nun, Niko Fahri, Morgan Llewellyn, Ben Riva, Alon Rosen, Amnon
Ta-Shma, and Douglas Wikström. A new implementation of a dual (paper and
cryptographic) voting system. In Manuel J. Kripp, Melanie Volkamer, and Rüdiger
Grimm, editors, 5th International Conference on Electronic Voting 2012, (EVOTE

16

2012), Co-organized by the Council of Europe, Gesellschaft für Informatik and E-
Voting.CC, July 11-14, 2012, Castle Hofen, Bregenz, Austria, volume 205 of LNI,
pages 315–329. GI, 2012.

4. Philippe Bulens, Damien Giry, and Olivier Pereira. Running mixnet-based elections
with helios. In Hovav Shacham and Vanessa Teague, editors, 2011 Electronic Voting
Technology Workshop / Workshop on Trustworthy Elections, EVT/WOTE ’11, San
Francisco, CA, USA, August 8-9, 2011. USENIX Association, 2011.

5. D. Chaum. Untraceable electronic mail, return addresses and digital pseudo-nyms.
Communications of the ACM, 24(2):84–88, 1981.

6. David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-
verifiable election scheme. In Sabrina De Capitani di Vimercati, Paul F. Syverson,
and Dieter Gollmann, editors, Computer Security - ESORICS 2005, 10th Euro-
pean Symposium on Research in Computer Security, Milan, Italy, September 12-
14, 2005, Proceedings, volume 3679 of Lecture Notes in Computer Science, pages
118–139. Springer, 2005.

7. S. de Hoogh, B. Schoenmakers, B. Skoric, and J. Villegas. Verifiable rotation of
homomorphic encryptions. In Public Key Cryptography – PKC 2009, volume 5443
of Lecture Notes in Computer Science, pages 393–410. Springer Verlag, 2009.

8. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985.

9. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 427–438.
IEEE Computer Society Press, 1987.

10. Bern University for Applied Sciences. Univote site. https://www.univote.ch,
January 2017.

11. J. Furukawa. Private communication., April 2017.
12. J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An implementation

of a universally verifiable electronic voting scheme based on shuffling. In Financial
Cryptography 2002, volume 2357 of Lecture Notes in Computer Science, pages 16–
30. Springer Verlag, 2002.

13. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Advances
in Cryptology – Crypto 2001, volume 2139 of Lecture Notes in Computer Science,
pages 368–387. Springer Verlag, 2001.

14. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gen-
eration for discrete-log based cryptosystems. J. Cryptology, 20(1):51–83, 2007.

15. Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson. Universal
re-encryption for mixnets. In Tatsuaki Okamoto, editor, Topics in Cryptology
- CT-RSA 2004, The Cryptographers’ Track at the RSA Conference 2004, San
Francisco, CA, USA, February 23-27, 2004, Proceedings, volume 2964 of Lecture
Notes in Computer Science, pages 163–178. Springer, 2004.

16. J. Groth. A verifiable secret shuffle of homomorphic encryptions. In Public Key
Cryptography – PKC 2003, volume 2567 of Lecture Notes in Computer Science,
pages 145–160. Springer Verlag, 2003.

17. Rolf Haenni and Eric Dubuis. Private communication., February 2016.
18. Rolf Haenni and Oliver Spycher. Secure internet voting on limited devices with

anonymized dsa public keys. In Proceedings of the 2011 Conference on Electronic
Voting Technology/Workshop on Trustworthy Elections, EVT/WOTE’11, pages 8–
8, Berkeley, CA, USA, 2011. USENIX Association.

17

19. J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of a pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

20. Helios. Helios site. http://www.heliosvoting.org, January 2017.
21. Martin Hirt and Ueli M. Maurer. Player simulation and general adversary struc-

tures in perfect multiparty computation. J. Cryptology, 13(1):31–60, 2000.
22. Markus Jakobsson and Ari Juels. Mix and match: Secure function evaluation via

ciphertexts. In Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT
2000, 6th International Conference on the Theory and Application of Cryptology
and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume
1976 of Lecture Notes in Computer Science, pages 162–177. Springer, 2000.

23. A. Neff. A verifiable secret shuffle and its application to e-voting. In 8th ACM
Conference on Computer and Communications Security (CCS), pages 116–125.
ACM Press, 2001.

24. nVotes. nvotes site. https://nvotes.com, March 2019.
25. C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all/nothing

election scheme. In Advances in Cryptology – Eurocrypt ’93, volume 765 of Lecture
Notes in Computer Science, pages 248–259. Springer Verlag, 1994.

26. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology – Crypto ’91, volume 576 of Lecture Notes in
Computer Science, pages 129–140. Springer Verlag, 1992.

27. Kim Ramchen and Vanessa Teague. Parallel shuffling and its application to prêt
à voter. In Proceedings of the 2010 International Conference on Electronic Vot-
ing Technology/Workshop on Trustworthy Elections, EVT/WOTE’10, pages 1–8,
Berkeley, CA, USA, 2010. USENIX Association.

28. Peter Y. A. Ryan, Peter B. Rønne, and Vincenzo Iovino. Selene: Voting with trans-
parent verifiability and coercion-mitigation. In Jeremy Clark, Sarah Meiklejohn,
Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors,
Financial Cryptography and Data Security - FC 2016 International Workshops,
BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016,
Revised Selected Papers, volume 9604 of Lecture Notes in Computer Science, pages
176–192. Springer, 2016.

29. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

30. B. Terelius and D. Wikström. Proofs of restricted shuffles. In Africacrypt 2010,
volume 6055 of Lecture Notes in Computer Science, pages 100–113, 2010.

31. Agora Voting. Agora voting site. https://www.agoravoting.com, January 2017.
32. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In Advances

in Cryptology – Asiacrypt 2005, volume 3788 of Lecture Notes in Computer Science,
pages 273–292. Springer Verlag, 2005.

33. D. Wikström. How to implement a stand-alone verifier for the Verificatum mix-net.
http://www.verificatum.org, October 2011.

34. D. Wikström. Complexity analysis of the Verificatum mix-net. http://www.
verificatum.org, October 2016.

18

