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Abstract. Automatic tools have played an important role in design-
ing new cryptographic primitives and evaluating the security of ciphers.
Simple Theorem Prover constraint solver (STP) has been used to search
for differential/linear trails of ciphers. This paper proposes general STP-
based models searching for differential and linear trails with the optimal
probability and correlation for S-box based ciphers. In order to get trails
with the best probability or correlation for ciphers with arbitrary S-box,
we give an efficient algorithm to describe probability or correlation of S-
Box. Based on the algorithm we present a search model for optimal differ-
ential and linear trails, which is efficient for ciphers with S-Boxes whose
DDTs/LATs contain entities not equal to the power of two. Meanwhile,
the STP-based model for single-key impossible differentials considering
key schedule is proposed, which traces the propagation of values from
plaintext to ciphertext instead of propagations of differences. And we
found that there is no 5-round AES-128 single-key truncated impossible
differential considering key schedule, where input and output differences
have only one active byte respectively. Finally, our proposed models are
utilized to search for trails of bit-wise ciphers GIFT-128, DES, DESL and
ICEBERG and word-wise ciphers ARIA, SM4 and SKINNY-128. As a
result, improved results are presented in terms of the number of rounds
or probabilities/correlations.

Keywords: STP ·Differential trail· Linear trail· Bit-wise ciphers ·Word-
wise ciphers.

1 Introduction

Differential [9] and linear cryptanalysis [27] are the most popular cryptanalytic
methods, which have been used to analyze numerous symmetric ciphers. The
key point for these methods is to identify the differential or linear trail with high
probability or correlation. To obtain better trails and escape from complicated
manual work, automatic search tools have been widely used in cryptographic re-
search. Early automatic tools are implemented from scratch in general purpose
programming languages such as [6, 7, 28]. In recent years, automatic searching
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tools are mainly based on Mixed-Integer Linear Programming (MILP), Boolean
Satisfiability Problem (SAT)/Satisfiability Modulo Theories (SMT), and Con-
straint Programming (CP).

Table 1: Summary of Our Results on Bit-Oriented Ciphers

Cipher Trail Rounds
Probability/

Reference
Correlation

GIFT-128 Differential

9 2−46.0 [4]
9 2−45.4 * Sec. 6.1
10 2−49.4 * Sec. 6.1
11 2−54.4 * Sec. 6.1
12 2−60.4 * Sec. 6.1
13 2−67.8 * Sec. 6.1
18 2−109 [42]
18 2−103.4 Sec. 6.1
21 2−126.4 Sec. 6.1

ICEBERG Linear
6 2−30.1 [40]
6 2−30.0 * Sec. 6.1

DES RK Differential

4 2−4.6 [7]
4 2−3.4 * Sec. 6.1
6 2−12.9 [7]
6 2−12.2 * Sec. 6.1
7 2−20.4 [7]
7 2−18.3 Sec. 6.1

DESL RK Differential

4 2−4.7 [7]
4 2−2.4 * Sec. 6.1
5 2−7.2 [7]
5 2−5.6 * Sec. 6.1
6 2−12.1 [7]
6 2−8.0 * Sec. 6.1
7 2−20.0 [7]
7 2−12.2 * Sec. 6.1
8 2−33.5 [38]
8 2−21.3 Sec. 6.1
9 2−41.9 [37]
9 2−31.5 Sec. 6.1
10 2−51.9 [37]
10 2−37.8 Sec. 6.1
11 < 2−31 [7]
11 2−51.7 Sec. 6.1

RK Differential: Related-Key Differential.
∗: represents that the corresponding differential/linear trail is optimal.

MILP-based tools have been developed to automatically search for real differ-
ential and linear trails [13,29,38,39] and constructed to search for the impossible
differentials and zero-correlation linear approximations [11, 32] for S-Box based
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and ARX ciphers. These tools could express the whole Differential Distribu-
tion Table (DDT)/Linear Approximation Table (LAT) for the 4-bit S-Box [39].
For differential trails of ciphers with 8-bit S-Boxes, Abdelkhalek et al. present-
ed MILP-based tools, which firstly search for word-wise truncated differential
characteristics without describing the DDT of S-Box, and then with DDTs of
S-Boxes find specific differential trails satisfying the identified truncated differ-
ential characteristics [1].

Table 2: Summary of Our Results on Word-Oriented Ciphers

Cipher Trail Rounds
Probability/

Reference
Correlation

ARIA Linear

4 2−49.2 [26]
4 2−48 * Sec. 6.2
5 2−60 [2]
5 2−52.6 * Sec. 6.2
6 2−72 * Sec. 6.2

SM4 Differential
19 2−124 [34]
19 2−123 Sec. 6.2

SKINNY-128
Impossible 11 - [5]
Differential 12 - Sec. 6.2

∗: represents that the corresponding differential/linear trail is optimal.

Recently, the CP technique has been utilized to design a new general tool to
search for (impossible) differential, (zero-correlation) linear trails and integral
distinguishers [36]. Meanwhile, it has been applied to search for related-key dif-
ferential trails for AES, Midori-64 and Midori-128 in [17, 18]. From [17, 18, 36],
it is shown that CP-based tools are similar as MILP-based models that can also
deal with ciphers with 8-bit S-Boxes, which also search for word-wise truncated
differential characteristics without describing the DDT of S-Box first.

The SAT/SMT-based automatic tool uses SAT/SMT solvers to search for
differential or linear trails by solving a SAT/SMT problem. The SAT/SMT solver
has been used to design automatic searching tools to search for differential and
linear trails [3, 21,24,30,35].

For ciphers with 8-bit S-Boxes, it seems that the previous automatic search
tools for differential and linear trails including MILP-based and CP-based mod-
els are efficient for word-wise ciphers. For bit-wise ciphers, there are so many
truncated differential trails that it is infeasible to search for the optimal or long
bit-based differential trails by verifying all those truncated differential trails.
Another alternative method is to directly search for differential trails without
pre-searching truncated differentials, which may reduce searching efficiency.

Besides, for ciphers whose DDTs/LATs contain entities not equal to the
power of two (for convenience, we call this kind of DDT/LAT DDT*/LAT*),
Abdelkhalek et al. [1] already have shown how to model the DDT* with proba-
bility, where they rounded the probability described as its negative log2 at one
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decimal place. And this method may miss some good differential trails. Although
they claimed that they can increase the precision as much as they want, they
have not considered how to set the precision to avoid missing the good differen-
tial trails. Searching for the optimal differential or linear trails is an important
topic, e.g. Biryukov et al. have proposed the automatic search tool for the best
different and linear trails of ARX ciphers at FSE’16 [8].

Since the problem of searching for differential/linear trails involves many
XOR operations and STP [15] can model the XOR operation more easy than
MILP, CP and SAT, we will construct STP-based automatic search models for
optimal differential and linear trails, which will be suitable for ciphers even with
DDT* or LAT*.

1.1 Our Contributions

In this paper, we aim to build automatic search models to search for optimal
differential and linear trails for S-box based ciphers. Our contributions are de-
scribed as follows.

– STP-based model for differential and linear trails with optimal
probability and correlation. The direct way is to compute the probability
and correlation of trails by multiplying the entity of the DDT and LAT for
each S-Box, which is inefficient for STP solver. More efficient method is to
represent the differential probability by its negative log2, which has been
used in [1]. For DDT* and LAT*, they rounded the probability described as
its negative log2 at one decimal place, so some good differential trails may be
missed. We approximate the negative log2 of probability by a number to have
nf decimal place of accuracy. We shall simply call this nf the precision of
probability. How to set the precision nf to avoid missing the good differential
trails has not be considered. So we offer an efficient algorithm which can
determine the precision nf in order to ensure that we can obtain the optimal
trial with the best probability or correlation. With our decided precision we
propose STP-based models for differential and linear trails with optimal
probability and correlation for S-Box based ciphers even with DDT*/LAT*.
Note that our proposed algorithm to determine the precision can also be
used in MILP model [1] to find optimal trails. This model is illustrated in
Section 4.

– STP-based model for single-key impossible differentials with key
schedule. Although the previous MILP-based model [11, 32] for single-key
impossible differential has considered the differential property for specific
S-Boxes, it omits the key schedule and the obtained impossible differen-
tials always hold for any key schedule. The previous models are possible to
wrongly regard some impossible differentials as possible differentials, because
of losing constraints from the key schedule. We will construct an STP-based
model to search for the (truncated) single-key impossible differential consid-
ering the key schedule, where we trace propagations of values from plaintext
to ciphertext instead of propagations of differences. As we know, it is the
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first time to give a searching method for impossible differentials under the
key schedule. We present this technique in Section 5.

– Applications to bit-oriented block ciphers GIFT-128, DES, DESL
and ICEBERG.

For GIFT-128, we obtained optimal differential trails for 9 ∼ 13 rounds.
Moreover, we show that 25-round is sufficient to achieve a differential proba-
bility lower than 2−128, while the designers originally expected that 26 rounds
were required [4]. Meanwhile, we got a 21-round differential trail, which is
the best one according to the number of rounds compared with previous
public trails. And we identified improved 9-round and 20-round differential
trails according to the probability better than ones in [4, 42].

For DES, we obtained improved 4-, 6- and 7-round related-key differential
trails, where 4- and 6-round related-key differential trails are optimal.

For DESL, our identified differential trails from 4 to 7 rounds are optimal and
we got improved related-key differential trails for 4 ∼ 10 rounds compared
with results from the MILP-based method in [37, 38]. Meanwhile, it is the
first time that we got an 11-round related-key differential trail for DESL
with the probability 2−51.7.

For ICEBERG, we got the optimal 6-round linear trail with correlation
2−30.0.

We compare our identified differential and linear trails with those of previous
results in Table 1.

– Applications to word-oriented block ciphers AES, ARIA, SM4 and
SKINNY-128.

Using our model for single-key impossible differentials with key schedule, we
searched for 5-round AES-128 truncated impossible differentials, where input
and output differences have only one active byte respectively. As a result,
we found that there is no such truncated impossible differential for 5-round
AES-128. It is the first time to consider single-key truncated impossible
differentials with key schedule for AES-128.

We found 4-, 5- and 6-round ARIA linear trails with optimal correlation
2−48, 2−52.6 and 2−72, respectively, while the previous best linear trail only
covers 5 rounds with correlation 2−60 [26].

For SM4, we got the optimal 20-round linear trails which has the same
correlation as the one in [25] and identified an improved 19-round differential
trail with the probability 2−123.

We got 12-round impossible differentials for SKINNY-128 without consider-
ing key schedule. Compared with the previous result given in the specification
of SKINNY [5], the impossible differential we obtained has one more round.

We compare our identified (impossible) differential and linear trails with
those of previous results in Table 2.
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2 Previous SMT/SAT-Based Works for
Differential/Linear Trails

SAT solvers are used to solve the Boolean satisfiability problems and are based
on heuristic algorithms. SMT is the problem of deciding satisfiability of a logical
formula, expressed in a combination of first-order theories [10]. SMT solvers are
more powerful than SAT solvers since they work on an higher abstraction layer.
Differences through the round functions as constraints that can be processed by
SMT/SAT solvers. An advantage of using SMT over SAT for the modeling is
that most SMT solvers support reasoning over bit-vectors which are commonly
used in block cipher designs, especially when considering word-oriented ciphers.
And there are lots of efficient SMT solvers which have been used in various
software verification and analysis applications.

In this paper, we use the SMT solver STP which encodes the constraints with
CVC, SMT-LIB1 and SMT-LIB2 languages. STP aims at solving constraints of
bit-vectors and arrays [16], so it suits for S-Box based ciphers.

The STP-based model of searching for differential trails of ARX ciphers was
firstly introduced by Mouha and Preneel [30]. Liu et al. [24] gave equations of
the linear propagation for the modular addition and constructed the STP-based
model to search for linear trials of ARX ciphers. Moreover Kölbl et al. [21]
searched for linear trails for SIMON based on CryptoSMT [20] and STP [14].
Ankele and Kölbl [3] investigated the differential gap between single charac-
teristics and differentials for 4-bit S-Box based ciphers by CryptoSMT, where
they can search for the best differential trails for ciphers with S-Boxes whose
DDTs/LATs only contain entities equal to the power of 2.

Besides SMT-based models for differential and linear trails, SAT-based mod-
els have also been given by Sun et al. [35], where they computed the accurate
differential probability for LED64 and Midori64 using CryptoMiniSAT.

In all, searching models based on SAT/SMT solvers for S-Box based ciphers
have been involved in [3] and [35], where they extract all valid/invalid differential
trails to encode them in CNF and just restrict to S-Boxes whose entities in the
DDT only take values equal to the power of 2. However, DDTs/LATs of many
used S-Boxes contain entities not equal to 2i such as S-Boxes used in CLEFIA,
CRYPTON, and DES etc. Even for popular AES-like S-Boxes, their LATs also
belong to this type. In this paper, we aim to construct SMT-based models for
ciphers with DDT*s/LAT*s to search for best differential and linear trails.

3 Models for Differential/Linear Trails with the Minimal
Number of Active S-Boxes

Although the SAT/SMT searching problem for differential trails with the min-
imal number of active S-Boxes have been well implemented in [3] and [35], we
will reconstruct the model since the minimal number of active S-Boxes will be
used in our model for optimal differential/linear trails.
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3.1 Model for Differential Trails

Firstly, we describe equations of XOR and branching operations for differential
propagation [28]. Fig. 1 illustrates differential and linear propagations of XOR
and branching operations.

Fig. 1: XOR and Branching

Property 1 For the XOR operation, denote ∆in
0 , ∆in

1 as input differences and
denote ∆out as the output difference, then the corresponding equation is ∆in

0 ⊕
∆in

1 = ∆out.

Property 2 For the branching operation, the input difference is written as ∆in

and output differences are written as ∆out
0 and ∆out

1 . The corresponding equation
is ∆in = ∆out

0 = ∆out
1 .

In order to search for differential trails with the minimal number of active
S-Boxes, it is unnecessary to describe differential probabilities of S-Boxes in this
model. We only focus on valid difference propagations through S-Boxes.

Property 3 Assume that N S-Boxes are involved in the differential trail. For
the i-th S-Box Si, denote ∆in

i ∈ Fm
2 and ∆out

i ∈ Fl
2 as input and output differ-

ences, respectively. vi represents the validity of the difference propagation, and
could be written as

vi =

{
0 (invalid) if (∆in

i , ∆
out
i ) ∈ S0i , j = 0,

1 (valid) if (∆in
i , ∆

out
i ) ∈ Sji , 0 < j ≤ 2m,

where the set Sji (1 ≤ i ≤ N) contains all pairs of input and output differences
with the probability j/2m.

To search for the valid differential trail, it is required to give functions vi = 1
for all N S-Boxes. And the number of active S-Boxes needs setting an expected
threshold.

If the differential for S-box α → β is valid propagation, we describe it in
CVC language,

ASSERT(( 4in
i = α && 4out

i = β ) => (vi = 1)),

otherwise, we present it in CVC language,

ASSERT(( 4in
i = α && 4out

i = β ) => (vi = 0)).
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To avoid finding the trivial trail, set the input difference of the first round
as non-zero in the single-key setting, while set the difference of master key as
non-zero in the related-key setting. Algorithm 1 illustrates the whole process of
searching for a differential trail with the expected number of active S-Boxes.

With the purpose of obtaining differential trails with the minimal number of
active S-Boxes, we could proceed Algorithm 1 by adjusting the expected thresh-
old repeatedly.

Algorithm 1 Model for Differential Trails with the Expected Number of Active
S-Boxes
Input: The number of rounds r, Expected threshold, Flag. /*If Flag = 1, search the

trail in the single-key setting; If Flag = 0, search the related-key differential trail.*/
Output: A differential trail with the expected number of active S-Boxes.

1: for round ← 1 to r do
2: Represent equations about S-Boxes with Property 3.
3: Illustrate equations about linear operations with Property 1,2.

4: if Flag = 1 then
5: Describe equations, which set input differences as non-zero.
6: else
7: Describe equations, which set differences of the master key as non-zero.
8: List equations corresponding to the key schedule.

9: Give equations to set the number of S-Boxes less than the expected threshold.
10: Input all above equations into STP and solve them.

3.2 Model for Linear Trails

Firstly, we describe equations of XOR and branching operations for linear prop-
agations [28].

Property 4 Suppose that Γ in
0 , Γ in

1 are input masks and Γ out is the output mask
of the XOR operation. Then the equation is Γ in

0 = Γ in
1 = Γ out.

Property 5 Suppose that Γ in is the input mask, Γ out
0 and Γ out

1 are output
masks of the branching operation. Then the equation is Γ in = Γ out

0 ⊕ Γ out
1 .

Due to the duality between differential and linear propagations, the model
for finding linear trails is similar to it for finding differential trails. We offer a
simple description about equations for S-Boxes.

Property 6 Assume that N S-Boxes are involved in the linear trail. For the
i-th S-Box Si (0 ≤ i < N), denote Γ in

i ∈ Fm
2 and Γ out

i ∈ Fl
2 as input and output
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masks, respectively. ui represents the validity of the linear propagation, and could
be written as

ui =

{
0 (invalid) if (Γ in

i , Γ out
i ) ∈ T0

i , j = 0,

1 (valid) if (Γ in
i , Γ out

i ) ∈ Tj
i , 0 < j ≤ 2m−1,

where the set Tj
i (1 ≤ i ≤ N) contains all pairs of input and output masks with

the correlation ±j/2m−1.

The function ui = 1 needs writing in this model to obtain the valid linear
trail. With the purpose of searching for linear trails with the minimal number
of active S-Boxes, we could proceed the similar algorithm as Algorithm 1 and
execute it repeatedly by changing the expected threshold.

4 Models for Differential/Linear Trails with Optimal
Probability/Correlation

Models we give in Section 3 only focuses on finding trails with the optimal
number of active S-Boxes. However, trails with optimal probability or correlation
may not have the minimal number of active S-Boxes. Hence, we could miss some
better trails. For example, for the 6-round related-key differential trail of DES,
the minimal number of active S-Boxes is 4 , while actually the number of active
S-Boxes is 5 for the trail with optimal probability.

In this section, models to search for differential and linear trails with optimal
probability and correlation are presented, which are also suitable for ciphers with
DDT*s/LAT*s. How to efficiently represent the probabilities and correlations of
the differential and linear trails for such ciphers is the most important step in
this model. The direct way is to compute the probability and correlation of trails
by multiplying the entity of the DDT and LAT for each S-Box. However, from
some experiments, we found that it is inefficient to compute the probability
and correlation in this way by STP. These experiments will be presented in
Section 4.4.

Note that Abdelkhalek et al. [1] already have shown how to model the DDT*
with probability, where they rounded the probability described as its negative
log2 at one decimal place. And this method may miss some good differential
trails. Although they claimed that they can increase the precision as much as
they want, they have not considered how to set the precision to avoid missing
the good differential trails.

In this section, we will give a method to decide the precision for probabilities
and correlations in order to get the optimal trails.

4.1 Efficient Method for Computing the Probability

Suppose the total number of S-Boxes (including active and non-active S-Boxes)
in the differential trail is N . And the number of S-Boxes with the probability
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j/2m is Nj , where 2 ≤ j ≤ 2m and j is even. It is obvious that N =
∑2m

j=2Nj .
Under the Markov cipher assumption, the probability p of this differential trail
is

p =
(2m)N2m × . . .× 6N6 × 4N4 × 2N2

(2m)N
,

which could be written as a general form

p =fp(N2m , N2m−2, . . . , N2)

=(2m/2m)N2m × ((2m − 2)/2m)N2m−2 × . . .× (4/2m)N4 × (2/2m)N2 .
(1)

To compute the probability p, an approximation function G∗ of fp(N2m , N2m−2,
. . ., N2) is built.

First, compute the negative logarithm of the function fp and obtain

g∗(N2m , N2m−2, . . . , N2) = − log2 fp(N2m , N2m−2, . . . , N2)

= −
∑

2≤j≤2m
j is even

Nj∑
k=1
Nj 6=0

(log2 j −m).

The function g∗ is only composed of addition operations, so the efficiency of
computations is improved. Obviously, the probability of the differential trail is
equal to 2−g

∗
. To avoid modelling the probability of a trail by multiplying the

differential probabilities for each active S-box, the main idea here is to represent
the differential probabilities by its negative log2, and round the involved irra-
tional values of the logarithms to the required precision such that the monotony
is preserved.

It is the fact that the value of log2 j is either an integer or an irrational decimal
in the function g∗. We regard the situation that all values of log2 j are integers as
a special case. In this special case, the function g∗ is computed by the addition
of integers, which could be easily implemented by STP. Unfortunately, in most
cases, not all log2 j are integers. And STP is defined in the bit-vector theory,
which only supports bit-vector variables and common bit-vector operations, such
as XOR, AND, and Modular Addition etc [14]. Therefore STP’s input language
has no floating point datatypes or operations.

For coping with this situation, our strategy is to transform log2 j into integers
by multiplying 10nf to g∗, where nf is a positive integer and called the precision
of probability. Then take the integral part by the ceiling function to obtain the
approximation function G∗, where

G∗(N2m , N2m−2, . . . , N2) = −
∑

2≤j≤2m
j is even

Nj∑
k=1
Nj 6=0

d(log2 j −m)× 10nf e. (2)

Due to the ceiling function, with the increase of the approximation function
G∗, the probability will not always decrease, and vice versa. In this way, the
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approximation function G∗ could not be used to find the optimal trail with the
maximal probability because of the possibility of missing better trails. In order
to fix this problem, we have to elaborately choose the value of nf in G∗ to ensure
that the following property holds.

Property 7 For any two (2m−1 − 1)-tuples {N2m , N2m−2, . . . , N2} and {N ′2m ,
N
′

2m−2, . . ., N
′

2}, if fp(N2m , N2m−2, . . . , N2) > fp(N
′

2m , N
′

2m−2, . . . , N
′

2), then

G∗(N2m , N2m−2, . . ., N2) < G∗(N
′

2m , N
′

2m−2, . . . , N
′

2).

We give Algorithm 2 to choose the value of nf to make G∗ satisfy Property 7.
In Algorithm 2, a list TN is built first, which stores values of fp and cor-

responding (2m−1 − 1)-tuple {N2m−2, . . . , N4, N2}. Then sort the list TN by
multiple keywords fp, N2m−2, · · · , N4, N2 in ascending order. Initialize nf as
1. And compute values of the approximation function G∗ with corresponding
tuples in TN as inputs. Check whether G∗ satisfies Property 7 or not. If so, Al-
gorithm 2 will return the value of nf ; otherwise, change the value of nf to nf +1
and recompute G∗. Let the amounts of value of non-zero entities in DDT expect
2m be M and the number of loops for computing nf is b. Usually b < 20. The

time of step 2-6 is
(
M+Ns−1

Ns

)
times of computations of fp. The running time of

step 8-17 is 2b×
(
M+Ns−1

Ns

)
times of computations of G∗.

This method to compute the probability of a differential trail is suitable for
any automatic tools besides STP, especially for ones that seem not perform well
for decimal operations or multiplication.

4.2 Model for Differential Trails

The complete model for differential trails is described in this subsection.

Property 8 Assume that N S-Boxes are involved in the differential trail. For
the i-th S-Box Si, denote ∆in

i ∈ Fm
2 and ∆out

i ∈ Fl
2 as input and output differ-

ences, respectively. vi is the flag variable to represent the validity of the difference
propagation, where

vi =

{
0 (invalid) if (∆in

i , ∆
out
i ) ∈ Sji , j = 0,

1 (valid) if (∆in
i , ∆

out
i ) ∈ Sji , 0 < j ≤ 2m.

The probability of Si can be represented by pi, and pi is defined as follows.

pi =

{
0 if ∆in

i = 0,

c∗j if (∆in
i , ∆

out
i ) ∈ Sji , 0 < j < 2m,

where c∗j = −d(log2 j−m)× 10nf e and the set Sji (1 ≤ i ≤ N) contains all pairs
of input and output differences with the probability j/2m.

To keep the differential trail valid, the equation vi = 1 needs to be appended.
In addition, it is essential to set the value of approximation function G∗ =
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Algorithm 2 Algorithm to Calculate nf for Given NS and DDTs

Input: The number of active S-Boxes NS , DDTs.
Output: nf ∈ Z+.
Data:
TN : a list storing 2m−1-tuples {fp, N2m−2, . . . , N4, N2};
Vcount: the number of rows in the list TN ;
fp[i]: the value of the i-th fp in the list TN ;
G∗[i]: the value of the approximation function corresponding to the i-th (2m−1−1)-

tuples {N2m−2, . . . , N4, N2} in TN .

1: Vcount ← 0
2: for all possible values of (2m−1 − 1)-tuples {N2m−2, . . . , N4, N2} do
3: fp ← 1

2NS ·pm
·
∏2m−1−1

k=1 (2k)N2k

4: insert {fp, N2m−2, . . . , N4, N2} into TN

5: Vcount + +

6: sort TN indexed by multiple keywords fp, N2m−2, . . . , N4, N2 in ascending order
7: nf ← 1

8: G∗[1] ← −
∑2m−1−1

k=1 (N2k × d(log2 2k − m) × 10nf e) corresponding to the 1-st
(2m−1 − 1)-tuple in TN

9: for i← 2 to Vcount do

10: G∗[i] ← −
∑2m−1−1

k=1 (N2k × d(log2 2k −m) × 10nf e) corresponding to the i-th
(2m−1 − 1)-tuple in TN

11: if G∗[i] > G∗[i− 1] then
12: continue
13: else if G∗[i] = G∗[i− 1] and fp[i] = fp[i− 1] then
14: continue
15: else
16: nf + +
17: goto Line 8

return nf

∑N
i=1 pi no more than the expected threshold G∗th and the number of active

S-Boxes as NS .

Further, when applying our model in the single-key setting, set the input
difference of the first round as nonzero in order to avoid trivial trails. And set
the difference of the master key as nonzero in the related-key setting.

Input all equations into STP and solve them. If it outputs a trail, we can
gradually reduce the value of G∗th and run STP again to get the differential trail
with optimal probability.

We present Algorithm 3 to search for the differential trail with the expected
probability. In addition, a general procedure to search for differential trails with
optimal probability is depicted in Algorithm 4. In some cases, we can only ob-
tain an optimized trail instead of the optimal one due to the unpractical time
complexity of Algorithm 4.
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Algorithm 3 Searching Algorithm for the Differential Trail with the Expected
Probability

Input: The number of rounds r, Expected threshold G∗th, NS , Flag. /*If Flag=1,
search the trail in the single-key setting; If Flag=0, search the related-key differential
trail.*/
Output: A differential trail with the probability less than G∗th.

1: for round ← 1 to r do
2: Represent equations about S-Boxes with Property 8.
3: Illustrate equations about linear operations with Property 1 and Property 2.

4: if Flag=1 then
5: Describe equations, which sets input differences as non-zero.
6: else
7: Describe equations, which sets differences of the master key as non-zero.
8: List equations corresponding to the key schedule.

9: Give equations to set the value of G∗ less than the expected threshold G∗th.
10: Give equations to set the number of active S-Boxes as NS .
11: Input all above equations into STP and solve them.

4.3 Model for Linear Trails

In a similar way, the approximation function G∗∗ for computing the absolute
correlation of trails is given below.

G∗∗(N2m−1 , N2m−1−2, . . . , N2) = −
∑

2≤j≤2m−1

j is even

Nj∑
k=1
Nj 6=0

d(log2 j −m+ 1)× 10nf e.

Meanwhile, the value of nf in the approximation function G∗∗ should be
elaborately set due to the same reason as that in the function G∗.

Property 9 Assume that N S-Boxes are involved in the linear trail. For the
i-th S-Box Si, denote input and output masks as Γ in

i ∈ Fm
2 and Γ out

i ∈ Fl
2 ,

respectively. ui is the flag variable to represent the validity of the linear mask
propagation, where

ui =

{
0 (invalid) if (Γ in

i , Γ out
i ) ∈ Tj

i , j = 0,

1 (valid) if (Γ in
i , Γ out

i ) ∈ Tj
i , 0 < j ≤ 2m−1.

The absolute correlation of Si can be represented by Ci, and Ci is defined as
follows.

Ci =

{
0 if Γ out

i = 0,

c∗∗j if (Γ in
i , Γ out

i ) ∈ Tj
i , 0 < j < 2m−1,

where c∗∗j = −d(log2 j −m+ 1)× 10nf e and the set Tj
i (1 ≤ i ≤ N) contains all

pairs of input and output masks with the absolute correlation ±j/2m−1.
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Algorithm 4 General Searching Procedure for Differential Trails with Optimal
Probability

Input: The number of rounds r, Pmax

Output: A differential trail with optimal probability.
Data: Pmax represents the maximal probability of all DDTs.

1: Proceed Algorithm 1 with STP to obtain the differential trail with the minimal
number of active S-Boxes Ns.

2: Compute the probability of this differential trail, denoted as p.
3: Store this trail in list L.
4: t← 0
5: Set the number of active S-Boxes as Ns + t, and then compute the value of nf with

Algorithm 2.
6: Gradually reduce the value of G∗th and proceed Algorithm 3 to find the optimal

trail with Ns + t active S-Boxes.
7: Compute the probability of this differential trail denoted as p′.
8: if p′ > p then
9: p← p′

10: Use this trail update L.

11: t+ +
12: if (Pmax)NS+t > p then
13: goto Line 5
14: else
15: return L and p

To keep the linear trail valid, the equation ui = 1 needs to be included.
Meanwhile, equations about setting the value of approximation function G∗∗ =∑N

i=1 Ci no more than the expected threshold G∗∗th are required as well. The
number of active S-Boxes is set as NS .

In order to avoid trivial trails, it is essential to set the input mask of the first
round as non-zero.

Proceed the searching process similar with Algorithm 3 and Algorithm 4,
then the linear trail with optimal or optimized absolute correlation could be
obtained.

4.4 Efficiency of Approximation Functions and Multiplication

As we described before, we could compute the probability/correlation of trails by
two methods. One is to multiply entities of DDTs/LATs, and the other is using
the approximation function G∗/G∗∗. We did some experiments on ARIA and
DES on one PC with four Intel(R) Core(TM) i5 CPUs (3.20GHz) to compare
the running time between those two methods.

Results are shown in Table 3. It is clear to see that the process of computing
by the approximation function is much more efficient. And for multiplication, it
will be impossible to gain a trail for long rounds.
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Table 3: Comparison of Running Time

Cipher Trail Round
Time (mins)

G∗/G∗∗ Multiplication

ARIA Linear
3 21 1241
5 221 terminated after 430 minutes ∗

DES
Related-key

6 235 >6720
differential

∗ : STP printed the error message: memory manager can’t handle
the load.

5 Models for Impossible Differentials under Key-Schedule

A direct way to construct STP-based models of searching for impossible dif-
ferentials and zero-correlation linear trails is to use equations for S-Boxes in
Property 3 and Property 6. And we specify input and output differences or
masks for ciphers. Based on these equations, we let STP solve the model. If STP
reveals that there is no solution, it means that the differential or linear trail with
the given input and output differences or masks is an impossible differential or
zero-correlation linear trail.

Although the above model for impossible differential has considered the d-
ifferential property for specific S-Boxes, it assumes that round keys are inde-
pendent and uniformly random. However, this assumption doesn’t hold due to
the existence of the key schedule. In original models for searching for single-key
impossible differential, the key schedule is omitted and the obtained impossible
differentials always hold for any key schedule. The original models are possible
to wrongly regard some impossible differentials as possible differentials, because
of losing constraints from the key schedule.

Related work about impossible differentials under the key schedule has been
involved in [41], where it is proved that there is no truncated impossible differ-
ential for more than 4-round AES-256 considering the key schedule. However,
their method cannot be used for AES-128 and AES-192. The interesting ques-
tion is whether there is a truncated impossible differential for 5-round AES-128
or AES-192 considering the key schedule.

How to search for impossible differentials under the key schedule has not
been considered as we know. In this section, we will build an STP-based model
to search for (truncated) impossible differentials under the key schedule. In this
model, we have to trace propagations of values from plaintext to ciphertext
instead of propagations of differences. Therefore, original models couldn’t be
applied.

Fig. 2 illustrates the idea of this model. Suppose that EK is an encryption
algorithm comprised of r rounds, which includes the addition of round keys,
linear operations and S-Boxes in each round. And K is the master key. The
round key of EK is produced by the key schedule. For plaintexts P1 and P2,
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corresponding ciphertexts are C1 = EK(P1) and C2 = EK(P2). Denote ∆in as
the plaintext difference and ∆out as the ciphertext difference of EK .

Equations about the addition of the round key and S-Boxes are illustrated
as follows.

Property 10 Denote X1 and X2 as the input and output of the addition of
round key Ki. Then we have X2 = X1+Ki, where + is either the XOR operation
or the modular addition.

Property 11 Denote Y1 and Y2 as values of the input and output of the S-Box
Si. Then we have Y2 = Si(Y1).

First, set ∆in and ∆out as specific values. For any plaintext pair (P1, P2 =
P1 ⊕∆in) and any master key K, the corresponding ciphertext pair is (C1, C2).
If we can find one plaintext-ciphertext pair satisfying the given difference values
∆in and ∆out under a master key value, it means that we identify a valid dif-
ferential pair, and the differential with the input difference ∆in and the output
difference ∆out is possible. If C1 ⊕ C2 6= ∆out for all possible values of P1 and
K, an impossible differential is obtained.

Describe equations from the encryption algorithm with Property 10 and
Property 11, then input all required equations in this model into STP and let it
solve. If STP returns unsatisfiable, it shows that the differential pair (∆in, ∆out)
is impossible. Otherwise, the solved plaintext-ciphertext pair together with the
value of K is a valid pair for the differential pair (∆in, ∆out) under K. To iden-
tify the impossible differential, values of ∆in and ∆out should be changed and
put all equations into STP again until STP returns unsatisfiable.

The complete model is presented in Algorithm 5. Note that, this model could
be used to find truncated impossible differentials or related-key impossible dif-
ferentials as well.

Ek

P1

k

C1

Ek

P2

k

C2

P1 P2=

C1 C2=

Fig. 2: Impossible Differential with Key Schedule

6 Applications

In this section, we apply our models to some S-Box based ciphers including
bit-oriented ciphers such as GIFT-128, DES, DESL and ICEBERG and word-
oriented ones such as AES, SM4, ARIA and SKINNY-128. Compared with pre-
vious results, we obtain improved differential and linear trails according to the
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Algorithm 5 Model for Impossible Differential under Key Schedule

Input: The number of rounds r, Plaintext difference ∆in, Ciphertext difference ∆out.
Output: A possible differential trail or unsatisfiable.

/* If STP outputs invalid, an impossible differential could be obtained. */

1: Represent equations, which compute round keys by the key schedule.
2: P1 ⊕ P2 = ∆in.
3: C1 ⊕ C2 = ∆out.
4: for i← 1 to r do
5: Illustrate equations about the addition of round keys with Property 10.
6: Describe equations about linear operations with Property 1 and Property 2.
7: Give equations about S-Boxes with Property 11.

8: Input all above equations into STP and solve them.

number of rounds or the probability and correlation. In some cases, we obtain
the differential or linear trail with optimal probability or correlation. Our run-
ning environment is a cluster of computers with two Intel(R) Xeon(R) E5-2690
CPU (2.60GHz, 128G memory, 24 cores).

6.1 Applications to Bit-Oriented Block Ciphers

Differential Trails for GIFT-128. GIFT is a lightweight SPN block cipher
proposed at CHES’17 [4], which has two versions GIFT-64 and GIFT-128. The
substitution layer is made up of 4-bit S-Boxes and GIFT is a bit-oriented algo-
rithm. We focus on GIFT-128, whose block size and key size are 128-bit. The
specification [4] presented a 9-round differential trail with the probability 2−46.0

and pointed out that the probability of 26-round differential trails cannot be
larger than 2−127. In [42], an 18-round differential trail with the probability
2−109 has been identified.

We obtained optimal differential trails for 9 ∼ 13 rounds. And our identified
9-round differential trail with the probability 2−45.4 is better than the one in
the specification [4]. Meanwhile, we got a 21-round differential trail with the
probability 2−126.4, which is the longest differential trail until now. We found an
improved 18-round differential trail with the probability 2−103.4, which is better
than the one in [42]. Moreover, we give a tighter security bound of GIFT-128
against differential cryptanalysis. The probabilities of our optimal 12-round and
13-round differential trails are 2−60.4 and 2−67.8, respectively, which ensures that
25-round is sufficient to achieve a differential probability lower than 2−128, while
the designers originally expected that 26 rounds were required [4]. Details of 12-,
13- and 21-round differential trails are illustrated in Table 5, 6 and 7.

Related-Key Differential Trails for DES and DESL. DES [31] is a 16-
round Feistel network cipher with block size 64 bits and key size 56 bits. The
DESL [23], based on the classical DES, was proposed by Leander et al. The
main difference between DES and DESL lies in the round function. DESL uses
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eight same S-boxes instead of eight different ones in DES and omits the initial
permutation and its inverse. In [28], Matsui introduced a practical algorithm for
deriving the best differential trail of DES. But the search algorithm developed
by Matsui only targeted at the single-key setting. Then in [7], Biryukov and
Nikolić presented an algorithm to find reduced-round related-key differential
characteristics from 3 to 16 rounds for DES and DESL. They found the best
related-key trails of DESL for up to 7 rounds and upper bounds for more than 7
rounds. In [39], Sun et al. found a related-key differential trail for 8-round DESL
with probability 2−33.5. In [37], they also provided related-key differential trials
for 9-round and 10-round DESL with probability 2−41.9 and 2−51.9, respectively.

We choose different positions of the starting round to find the optimized
related-key differential trails for DES and DESL. We obtained improved related-
key differential trails for 4-, 6- and 7-round DES depicted in Table 8. Moreover,
we found that 4-round and 6-round related-key differential trails for DES are
optimal.

For DESL, we attained improved related-key differential trails for 4 ∼ 10
rounds compared with previous results in [7, 37, 39]. And an 11-round related-
key differential trail of DESL was found with probability 2−51.7. Note that we
show that our identified trails from 4 to 7 rounds are optimal. We list our trails
in Table 9.

The running time about searching for trails of DES is several minutes.

Linear Trails for ICEBERG. ICEBERG, proposed at FSE 2004, is a block
cipher with block size 64 bits and key size 128 bits [33]. Sun et al. identified a
linear approximation with correlation 2−30.1 and presented key recovery attacks
to 7-round ICEBERG [40].

We regard the non-linear layer as eight same 8-bit S-Boxes. At first, by the
model in Section 3, we gained that the minimal number of active S-Boxes for
6-round linear trails of ICEBERG is 12. The we use the model in Section 4.3
to find the linear trails for ICEBERG. Finally, we identified the linear trail for
6-round ICEBERG with optimal correlation 2−30.0 listed in Table 10, which is
slightly better than the previous result in [40].

6.2 Applications to Word-Oriented Block Ciphers

Truncated Impossible Differentials for AES-128 under Key Schedule.
The existence of 5-round truncated impossible differentials of AES-128 under
key schedule is an unsolved problem. It is unpractical to solve this problem
by searching for all truncated impossible differentials for AES-128 under key
schedule using the model in Section 5, because the total number of truncated
differentials to be checked is 232. Intuitively, truncated differentials with only one
active byte for input and output differences respectively are more possible to be
impossible differentials. Thus, we focus on searching 5-round AES-128 truncat-
ed impossible differentials with key schedule, where input and output differences
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have only one active byte respectively. As a result, there is no truncated impos-
sible differential satisfying the above condition. The average running time for
checking one truncated differential is around 480 minutes.

Moreover, we found that 5-round truncated impossible differentials, which
have the input difference with any number of active bytes and the output differ-
ence with 16 active bytes, don’t exit.

Linear Trails for ARIA. ARIA, an iterative 128-bit block cipher, follows the
SPN structure [22] and it has been adopted by some famous standard protocols
such as IETF (RFC 5794), SSL/TLS (RFC 6209) and PKCS #11. For reduced-
round ARIA, we could see that the linear attack is better than the differential
one from previous attacks. So we focus on searching for linear trails here. The
best known linear trail covers 4-round ARIA with correlation 2−49.15, which was
given by Liu et al. in [26]. And Abdelkhalek et al. presented a 5-round linear
hull with correlation 2−57.5, where the best linear trail has correlation 2−60 [2].

Firstly, we used the model in Section 3 to obtain that the minimal number
of active S-Boxes is 17 for 5-round ARIA. Then by setting the number of active
S-Boxes as 17, we can get nf = 7 using the similar algorithm as Algorithm 2.
According to the expected value of the correlation, we adjusted the corresponding
value of G∗∗ and used the model in Section 4.3 to find linear trails for ARIA.
Finally, we identified the linear trail for 5-round ARIA with optimal correlation
2−52.6 listed in Table 4. And the running time of obtaining this trial is 485
minutes.

In a similar way, we found the optimal linear trail for 4-round ARIA with
correlation 2−48 and the optimal 6-round ARIA linear trail with correlation 2−72

shown in the Table 4.

Differential/Linear Trails for SM4. SM4 [12], underlying the block cipher
used in WAPI standard, the Chinese national standard for WLAN, is a 128-
bit block cipher with unbalanced generalized Feistel structure. Su et al. [34]
presented a family of about 214 differential characteristics for 19-round SM4
and an attack on 23-round SM4, where the best differential characteristics has
probability 2−124.

The model in Section 4.2 is applied to find differential trails for SM4. Finally,
we get the improved differential trail for 19-round SM4 with probability 2−123.
Meanwhile, we searched for the linear trail of SM4 and found that the correlation
of the best 20-round linear trail is 2−60 same as the one in [25].

Impossible Differential Trails for SKINNY without Key Schedule.
SKINNY is a family of lightweight block ciphers designed by Beierle et al. [5],
which adopts the substitution-permutation network and TWEAKEY frame-
work [19]. According to the block size, there are SKINNY-64 and SKINNY-
128. In [5], 16 11-round impossible truncated differential characteristics in the
single-key setting have been found by MILP for SKINNY-64 and SKINNY-128.
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We make use of the method described in the first paragraph in Section 5 and
get 3072 12-round impossible differentials for SKINNY-128 in single-key setting.
And one of them is

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0) 9 (0, 0, β, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, β, 0),

where δ and β are arbitrary non-zero unfixed differences. We get one more round
impossible differential for SKINNY-128 compared with that given in the speci-
fication of SKINNY [5].

7 Conclusions

In this paper, STP-based models are constructed to search for optimal differen-
tial and linear trails for S-box based ciphers, which are suitable for ciphers with
DDT* and LAT*. Moreover, our models give an efficient algorithm to decide
the precision of probabilities/correlations in order to not lose the better trails
for ciphers with DDT*/LAT*. In this way, we can get the optimal trails more
efficiently. In general, it is difficult to search for optimal long-round trails due to
the limited computing resource. For some long-round ciphers, we can not get the
optimal trails, but our computed precision should be helpful to get an improved
trail. Meanwhile, models to find single-key impossible differentials with the key
schedule are proposed and applied to 5-round AES. Our models have been ap-
plied on several S-Box based block ciphers, and obtained improved results. Till
now, there are many automatic search models based on SAT, SMT, MILT and
CP. It is very difficult to compare their efficiency because some models are suit-
able for some ciphers and other models are appropriate for other ciphers. In this
paper, we just provide an additional automatic search model, but we can not
ensure that it has advantage for any cipher.

References

1. A. Abdelkhalek, Y. Sasaki, Y. Todo, M. Tolba and A. M. Youssef. MILP Modeling
for (Large) S-boxes to Optimize Probability of Differential Characteristics. IACR
Transactions on Symmetric Cryptology. VOLUME 2017, ISSUE 4, pp. 99-129.

2. A. Abdelkhalek, M. Tolba and A. M. Youssef. Improved Linear Cryptanalysis of
Round-Reduced ARIA. In: M. Bishop, A. Nascimento (eds) ISC 2016. LNCS 9866,
pp. 18-34. Springer.

3. R. Ankele and S. Kölbl. Mind the Gap - A Closer Look at the Security of Block
Ciphers against Differential Cryptanalysis. Cryptology ePrint Archive, Report
2018/689, (2018). https://eprint.iacr.org/2018/689.pdf.

4. S. Banik, S.K. Pandey, T. Peyrin, Y. Sasaki, S.M. Sim and Y. Todo. GIFT: A
Small Present. In: Fischer W., Homma N. (eds) CHES 2017. LNCS 10529, pp.
321-345. Springer.

5. C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sas-
drich and S. M. Sim. The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS. In: M. Robshaw, J. Katz (eds) CRYPTO 2016. LNCS 9815, pp.
123-153. Springer.

https://eprint.iacr.org/2018/689.pdf


Title Suppressed Due to Excessive Length 21
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A Our Identified Trails

Table 4: Linear Trails of ARIA
Linear Trail of 5-Round ARIA

Round Input mask Correlation

1 0x000000000000000000AF000000000000 2−3

2 0xEAEA000000EAEA00000000EAEA00EA00 2−21.8

3 0x00000000000000000023000000000000 2−3

4 0xEAEA000000EAEA00000000EAEA00EA00 2−21.8

5 0x00000000000000000023000000000000 2−3

6 0x68680000006868000000006868006800 –

Linear Trail of 4-Round ARIA

Round Input mask Correlation

1 0x9000700071006F000000000000000000 2−12

2 0x00070007000700070000000000000000 2−12

3 0x07000700070007000000000000000000 2−12

4 0x00120012001200120000000000000000 2−12

5 0x56B2B9B2E4EF56EFEF5DB200EF00B25D –

http://eprint.iacr.org/2018/390
http://eprint.iacr.org/2018/390
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Table 5: Differential Trial of 12-Round GIFT-128
Round Input difference Probobility

1 0x0000000A00000CC00000000000000000 2−6

2 0x00000000000000000000000001060000 2−5

3 0x0000000000000000000000A000000000 2−2

4 0x00000100000000000000000000000000 2−3

5 0x00000000000000000800000000000000 2−2

6 0x00002000000010000000000000000000 2−5

7 0x04040000020200000000000000000000 2−8

8 0x00000000505000000000000050500000 2−12

9 0x00000000000000000000000000A000A0 2−4

10 0x00000011000000000000000000000000 2−6

11 0x000000000C0000000600000000000000 2−4

12 0x00002000000000000000000000400000 2−3.4

13 0x04000010020000000000004000000020

Table 6: Differential Trial of 13-Round GIFT-128
Round Input difference Probobility

1 0x0000000000000000000000A00000C600 2−6

2 0x00000106000000000000000000000000 2−5

3 0x00000000000000000A00000000000000 2−2

4 0x00000000000010000000000000000000 2−3

5 0x00000000000000000000000000080000 2−2

6 0x00000000000000000000002000000010 2−5

7 0x00000000000000000000040400000202 2−8

8 0x00000000000005050000000000000505 2−12

9 0x0000000000000000000A000A00000000 2−4

10 0x00000000000000000000000000001100 2−6

11 0x0000000600000000000000000000000C 2−4

12 0x00000000000000000200000200000000 2−4

13 0x00002000000004000000020000004000 2−6.8

14 0x04020004020101020000000100040400
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Table 7: Differential Trial of 21-Round GIFT-128
Round Input difference Probobility

1 0x00000000906000000000000000000000 2−5

2 0x00000000000000000000000000A00000 2−2

3 0x00000010000000000000000000000000 2−3

4 0x00000000080000000000000000000000 2−2

5 0x00200000001000000000000000000000 2−5

6 0x00000000000000004040000020200000 2−8

7 0x00005050000000000000505000000000 2−12

8 0x0000000000000000000000000A000A00 2−4

9 0x00000000000000110000000000000000 2−6

10 0x00080000000800000000000000000000 2−4

11 0x00000000000000002020000010100000 2−10

12 0x00005050000000000000505000000000 2−12

13 0x0000000000000000000000000A000A00 2−4

14 0x00000000000000110000000000000000 2−6

15 0x00080000000800000000000000000000 2−4

16 0x00000000000000002020000010100000 2−10

17 0x00005050000000000000505000000000 2−12

18 0x0000000000000000000000000A000A00 3−4

19 0x00000000000000110000000000000000 4−6

20 0x00000000000C00000006000000000000 5−4

21 0x00000000004000000000200000000000 6−3.4

22 0x00100400000000000040010000200000
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Table 8: Related-Key Differential Trails of DES
Related-Key Differential Trail of 4-Round DES

Round ∆Xr
L ∆Xr

R ∆Kr Probability

1 0xFFFDFFFF 0xFFFFFFFF 0xFFFFFFFFFFFF 1
2 0xFFFFFFFF 0xFFFDFFFF 0xFFFFFBFFFFFF 1
3 0xFFFDFFFF 0xFFFFFFFF 0xFFFFFFFFFFFF 1
4 0xFFFFFFFF 0xFFFDFFFF 0xFFFFDFFFFFFF 2−3.4

5 0xFFFDFFFF 0xFFBFEFBF – –

Related-Key Differential Trail of 6-Round DES

Round ∆Xr
L ∆Xr

R ∆Kr Probability

0 0x84010140 0x00020000 0x000800000000 2−4.4

1 0x00020000 0x00000000 0x000000000000 1
2 0x00000000 0x00020000 0x000004000000 1
3 0x00020000 0x00000000 0x000000000000 1
4 0x00000000 0x00020000 0x000020000000 2−3.4

5 0x00020000 0x80000000 0x800000000000 2−4.4

6 0x80000000 0x00028820 – –

Related-Key Differential Trail of 7-Round DES

Round ∆Xr
L ∆Xr

R ∆Kr Probability

3 0xFDFEFFFB 0xFFDFFFFF 0xFFFDFFFFFFFF 2−2.4

4 0xFFDFFFFF 0xFDFFFFFF 0xFFEFFFFFFFFF 2−5

5 0xFDFFFFFF 0xFFDFFFFF 0xFFFFBFFFFFFF 2−3.4

6 0xFFDFFFFF 0xFDFFFFFF 0xFFBFFFFFFFFF 1
7 0xFDFFFFFF 0xFFDFFFFF 0xFFFEFFFFFFFF 1
8 0xFFDFFFFF 0xFDFFFFFF 0xFDFFFFFFFFFF 2−2.7

9 0xFDFFFFFF 0xFFDFFFFF 0xF7FFFFFFFFFF 2−4.8

10 0xFFDFFFFF 0xF97F7EFF – –



Title Suppressed Due to Excessive Length 27

Table 9: Related-Key Differential Trails of 4∼7-Round DESL
Related-Key Differential Trail of 4-Round DESL

Round ∆Xr
L ∆Xr

R ∆Kr Probability

1 0xFFFDFFFF 0xFFFFFFFF 0xFFFFFFFFFFFF 1
2 0xFFFFFFFF 0xFFFDFFFF 0xFFFFFBFFFFFF 1
3 0xFFFDFFFF 0xFFFFFFFF 0xFFFFFFFFFFFF 1
4 0xFFFFFFFF 0xFFFDFFFF 0xFFFFDFFFFFFF 2−2.4

5 0xFFFDFFFF 0xFFFFFFBF – –

Related-Key Differential Trail of 5-Round DESL

Round ∆Xr
L ∆Xr

R ∆Kr Probability

6 0x00000000 0x00000020 0x000000000100 1
7 0x00000020 0x00000000 0x000000000000 1
8 0x00000000 0x00000020 0x000000000040 2−3.4

9 0x00000020 0x00000400 0x000000008000 1
10 0x00000400 0x00000020 0x000000000400 2−2.2

11 0x00000020 0x00000401 – –

Related-Key Differential Trail of 6-Round DESL

Round ∆Xr
L ∆Xr

R ∆Kr Probability

5 0x00200028 0x00000000 0x000000020000 2−2.4

6 0x00000000 0x00000020 0x000000000100 1
7 0x00000020 0x00000000 0x000000000000 1
8 0x00000000 0x00000020 0x000000000040 2−3.4

9 0x00000020 0x00000400 0x000000008000 1
10 0x00000400 0x00000020 0x000000000400 2−2.2

11 0x00000020 0x00000401 – –

Related-Key Differential Trail of 7-Round DESL

Round ∆Xr
L ∆Xr

R ∆Kr Probability

5 0xFFDFFFD7 0xFFFFFFFF 0xFFFFFFFDFFFF 2−2.4

6 0xFFFFFFFF 0xFFFFFFDF 0xFFFFFFFFFEFF 1
7 0xFFFFFFDF 0xFFFFFFFF 0xFFFFFFFFFFFF 1
8 0xFFFFFFFF 0xFFFFFFDF 0xFFFFFFFFFFBF 2−3.4

9 0xFFFFFFDF 0xFFFFFBFF 0xFFFFFFFF7FFF 1
10 0xFFFFFBFF 0xFFFFFFDF 0xFFFFFFFFFBFF 2−4

11 0xFFFFFFDF 0xFFFFFFFF 0xFFFFFFF7FFFF 2−2.4

12 0xFFFFFFFF 0xFEFBFF5F – –

Table 10: Linear Trial of 6-Round ICEBERG
Round Input mask Correlation

1 0x4761000000000047 2−6.9

2 0x0000000000000004 2−2.5

3 0x0040000000100040 2−7.8

4 0x0000000000000040 2−2.4

5 0x0040000000100040 2−7.8

6 0x0000000000000040 2−2.4
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