
Obfuscating Simple Functionalities from
Knowledge assumptions

Ward Beullens1 and Hoeteck Wee2

1 imec-COSIC KU Leuven, Belgium
ward.beullens@esat.kuleuven.be

2 CNRS, ENS and PSL, France
wee@di.ens.fr

Abstract. This paper shows how to obfuscate several simple function-
alities from a new Knowledge of OrthogonALity Assumption (KOALA)
in cyclic groups which is shown to hold in the Generic Group Model.
Specifically, we give simpler and stronger security proofs for obfusca-
tion schemes for point functions, general-output point functions and
pattern matching with wildcards. We also revisit the work of Bishop
et al. (CRYPTO 2018) on obfuscating the pattern matching with wild-
cards functionality. We improve upon the construction and the analysis
in several ways:

– attacks and stronger guarantees: We show that the construction
achieves virtual black-box security for a simulator that runs in time
roughly 2n/2, as well as distributional security for larger classes of
distributions. We give attacks that show that our results are tight.

– weaker assumptions: We prove security under KOALA
– better efficiency: We also provide a construction that outputs n + 1

instead of 2n group elements.

We obtain our results by first obfuscating a simpler “big subset function-
ality”, for which we establish full virtual black-box security; this yields
a simpler and more modular analysis for pattern matching. Finally, we
extend our distinguishing attacks to a large class of simple linear-in-the-
exponent schemes.

1 Introduction

Program obfuscation is a powerful cryptographic primitive where an obfuscator
O takes the description of a program as input and outputs an obfuscated pro-
gram that has the same input-output behavior as the original program while
hiding how the program works internally. The first theoretic investigation of ob-
fuscation was made in the work of Barak et al. [1, 14] that defined the Virtual
Black Box (VBB) security definition, and showed that this strong definition can
not be satisfied for general circuits. This has sparked a line of research, starting
from [12], into trying to realize the weaker notion of indistinguishability ob-
fuscation for general circuits. There have been many candidate IO for circuits,
but they all rely on non-standard and poorly understood assumptions several of

Security General Output self-composable Assumption Reference

VBB 7 7 Nonstandard DDH [7]

VBB 3 3 ROM [15]

VBB 3 7 Strong OWP [16]

VBB 3 3 Perfect OWF [8]

VGB 3 3 Nonstandard DDH [4]

VBB 3 3 KOALA This work

Fig. 1. Security for obfuscation of point functions.

which have been broken. In contrast, there is a different line of work to achieve
the full VBB obfuscation for more restricted functionalities. Work in this di-
rection has shown that one can VBB obfuscate simple functionalities such as
point functions [7, 15, 16, 4, 8] and hyperplane membership testing [9]. Obfuscat-
ing the pattern matching with wildcards functionality (also called conjunctions)
was shown to be possible from LWE and variants [5, 6, 17, 13]. A pattern is spec-
ified by a string ρ in {0, 1, ?}n and matches an input x ∈ {0, 1}n if ρi = xi
or ρi = ? for all i ∈ [n]. Recently at CRYPTO 2018 Bishop et al. presented a
simple and efficient method for obfuscating pattern matching with wildcards [3]
where the obfuscated pattern compromises of 2n elements in a cyclic group, and
showed that the construction achieves distributional VBB (DVBB) security for
the uniform distribution over patterns containing a fixed number of wildcards
up to 0.75n.

1.1 Our Results

We introduce a knowledge assumption that is weaker than the generic group
model. The knowledge assumption is a natural decisional analogue of Damgard’s
KEA assumption [10], and asserts that given any adversary that distinguishes
gMr for any M and a random r from the uniform distribution, there exists
another adversary (sometimes referred to as an ”extractor”) that outputs a non-
trivial vector z such that zM = 0. We refer to this as the Knowledge of Orthogo-
nALity Assumption (KOALA). The assumption can also be viewed as a natural
decisional analogue of the recent algebraic group model [11], which essentially
asserts that the only way an adversary can compute a new group element is to
take a linear combination of previous ones.

To showcase the power of KOALA we give a simple proof for the VBB security
of the point function obfuscator of [7]. Moreover, we also give the first proof of
the self composability of this obfuscator and we extend the construction to VBB
obfuscation of point functions with general output. Prior work on obfuscating
point functions is summarized in Fig 1.

We improve on the work of Bishop et al. in a number of directions. First we
explain that it is possible to, given an obfuscation of a pattern ρ, learn if the
first half of ρ consists of wildcards. Since it is not possible to learn this efficiently
through black box access only, this attack shows that the construction is not VBB

2

Class of Patterns Distribution Security Assumption Reference

{0, 1, ?}n,
uniform, w ≤ 0.75n DVBB generic group [3]

exactly w ?’s
uniform, w ≤ n− ω(logn) DVBB generic group [2]

uniform, w ≤ n− ω(logn) DVBB KOALA Thm. 10

{0, 1, ?}n

– 20.5n-VBB KOALA Thm. 8

– not 20.499n-VBB – Thm. 6

min-entropy ≥ n + ω(logn) DVBB KOALA Thm. 9

min-entropy ≤ n− ω(logn) not DVBB – Lem. 4

Fig. 2. Security for obfuscation of pattern matching with wildcards in cyclic groups [3].
Note that the KOALA knowledge assumption holds in the generic group model. The
(independent) work of [2] also proved DVBB results for the class of patterns with
exactly w ?’s in the high min-entropy setting.

secure. Moreover, the attack shows that there are high entropy distributions for
which the scheme is not DVBB secure. On the other hand we prove stronger
security claims by proving the scheme to be VBB secure with simulators that
run in time roughly 2n/2. We also give optimal min-entropy bounds such that any
distribution that has this amount of min-entropy is automatically DVBB secure.
More precisely, we prove that any distribution over {0, 1, ?}n with n+ ω(log n)
bits of min-entropy is distributional VBB secure. We give a similar result for
distributions with a fixed number of wildcards. Previous works only showed
DVBB security for certain specific distributions, namely uniform distributions
with a fixed number of wildcards ≤ 3n/4. These distributions have min-entropy
at least 1.06n for sufficiently large n and therefore DVBB security for these
distributions follows as a special case of our DVBB result for high min-entropy
distributions. Another advantage of our security proofs is that they only rely on
the KOALA, rather than on the full generic group model.

In our security proof we show that the construction of Bishop et al. is essen-
tially built around an obfuscator for a new Big Subset-functionality that could
be of independent interest. For input size n, the functions of this functionality
are parametrized by a subset Y ⊂ [n] and a threshold value 0 ≤ t ≤ n. The
function fY,n,t : P([n]) → {0, 1} takes a subset X ⊂ [n] as input and outputs
1 if and only if X is a big enough subset of Y (i.e. |X| ≥ t). The key result is
that the big subset functionality can be obfuscated with VBB security assuming
KOALA. The security guarantees for the pattern matching functionality follow
from this result by embedding the pattern matching functionality into the big
subset functionality.

The scheme of [3] uses only linear operations which are hidden in the ex-
ponent of a cryptographic group. We formulate the framework for linear-in-the-
exponent obfuscation schemes in the hope of finding more efficient and more
secure constructions. On the positive side we find a more efficient construction
whose obfuscated programs are represented by n+ 1 group elements rather than
2n group elements while having at least the same security as the construction
of [3]. On the negative side we prove that our distinguishing attack extends to a
wide family of “natural” linear-in-the-exponent obfuscation schemes.

3

1.2 Technical Overview

We provide a brief overview of our obfuscation construction for the “big subset
functionality”, which is implicit in [3], and then explain how this relates to
obfuscating pattern matching with wildcards.

Obfuscating “big subset”. The functionality fY,n,t is parametrized by (Y, n, t)
where Y ⊆ [n], t ≤ n, and given an input X ⊆ [n],

fY,n,t(X) = 1⇔ |X| ≥ t and X ⊆ Y .

The obfuscation of fY,n,t comprises n group elements [v1]g, . . . , [vn]g (we use [·]g
to denote group exponentiation) where

– {vi : i ∈ Y } are random Shamir shares of 0, that is, the evaluations of a
random degree t− 1 polynomial whose constant term is 0, and

– the remaining vi’s, i /∈ Y are chosen uniformly at random.

To evaluate the obfuscated program on input X, we simply return 1 if and only
if reconstruction ”in the exponent” over the shares corresponding to X returns
[0]g.

To prove VBB security, we adopt a ”random or learn” strategy similar to
that in [7, 9, 16]. Given an adversary A, we try to simulate its view by feed-
ing it n random group elements. Suppose this simulation fails, which means A
distinguishes an obfuscation of fY,n,t from uniformly random group elements.
Then, by our KOALA assumption, then we can ”extract” from A a vector z
from which we can efficiently compute an X such that fY,n,t(X) = 1. In fact, X
simply corresponds to the indices of z that are non-zero; X ⊆ Y follows from
the fact that vi’s outside Y are uniformly random, and |X| ≥ t follows from the
secrecy of Shamir’s secret-sharing scheme. Finally, we show that given oracle
access to fY,n,t and an X such that fY,n,t(X) = 1, we can efficiently recover Y, t,
upon which we can simulate the view of the adversary perfectly.

We mention here that the actual simulation is a bit more complex, since the
KOALA assumption only guarantees extraction with inverse polynomial prob-
ability. Therefore, we will need to ”extract” multiple z’s and run the above
simulation of each of these z; the number of samples we need and thus the run-
ning time of the simulator is inverse polynomial in the simulation accuracy. We
also note that the same approach also yields a much easier proof for the VBB
security of Canetti’s point function obfuscator (which outputs just two group ele-
ments). Moreover, we can also give a proof for the self-composability of Canetti’s
obfuscator.

Obfuscating pattern matching with wildcards. To go from obfuscating
the ”big subset functionality” to obfuscating pattern-matching with wildcards,
we observe that there is a simple embedding of {0, 1, ?}n into (P([2n]), 2n, n)
where we replace the i’th symbol with either 2i − 1, 2i or both. Indeed, this

4

was the approach (implicitly) taken in [3]. Unfortunately, this embedding also
allows an adversary to check whether any subset of n/2 positions of a pattern
correspond to wildcards, which is the basis for our distinguishing attack. As
mentioned earlier in the introduction, we show that

– this construction achieves VBB security with roughly 2n/2-time simulation.
This essentially follows from the fact that we can simulate any query to big
subset oracle with 2n/2 queries to the pattern matching oracle.

– this construction achieves D-VBB security for any distribution over {0, 1, ?}n
with min-entropy at least n+ω(log n). This essentially follows from the fact
that any distribution over (P([2n]), 2n, n) for big subset with min-entropy
n+ω(log n) is evasive. The latter in turn follows from the fact that any X ⊆
[2n] of size n is an accepting input for at most 2n patterns in (P([2n]), 2n, n).

– the construction is not D-VBB secure for some distribution over {0, 1, ?}n
with min-entropy n − ω(log n). In particular, take any a = ω(log n) and
consider the distribution where the first a positions is uniform over {0, 1}a,
the next a positions are ?’s, and the last n − 2a positions are uniform over
{0, ?}n−2a. This distribution is evasive, and yet we can distinguish obfusca-
tion of this distribution from that of the uniform distribution over {0, 1, ?}n.

Prior analysis only considers restricted distributions, namely the uniform distri-
bution over patterns with a fixed number of wildcards; we note that our tech-
niques are fairly general and also provide matching results for these restricted
distributions.

In the last section of the paper, we explore the possibility of achieving VBB
obfuscation for pattern matching with wildcards via some ”natural” generaliza-
tion of the above constructions. Our results here are mostly negative. Along the
way, we also present a compression technique that allows us to reduce the output
of the obfuscator from 2n to n+ 1 group elements.

Open problems. We conclude with a number of open problems on efficient
obfuscation using cyclic groups:

– Construct simple obfuscation schemes for simple functionalities beyond ”big
subset”.

– Prove or disprove: for every δ > 0, there exists an efficient obfuscation scheme
for pattern matching with wildcards that is D-VBB for any distribution
over {0, 1, ?} with min-entropy δn (alternatively, VBB secure with 2δn-time
simulation).

Roadmap. The rest of the paper consists of the following: In section 2 we state
the definitions of VBB, T -VBB and DVBB secure obfuscation schemes. We also
prove that T -VBB security implies DVBB security for T -elusive distributions.
In section 3 we describe the construction of [3] for obfuscating pattern matching
with wildcards. In section 4 we introduce the KOALA knowledge assumption and
we prove that it holds in the generic group model. We also showcase the power of

5

the KOALA by giving a simple proof of the VBB security of the point function
obfuscator of Canetti [7], and giving the first proof of its self composability.
In section 5 we introduce the big subset functionality, we show that it can be
obfuscated with VBB security and we prove that certain distributions of big
subset functions are elusive. In section 6 we give our security analysis including
a family of attacks and new security proofs. In section 7 we describe and study
linear-in-the-exponent obfuscation schemes for pattern matching with wildcards.
We find more efficient schemes, but we prove that there are no VBB secure
obfuscators in a broad class of constructions that follow this paradigm.

Independent work. We clarify here that an independent work of Bartusek, et
al. [2] achieved a subset of our results (in addition to other results not in this
work): the overlap are the construction with n + 1 group elements, as well as
distributional VBB for the uniform distribution over patterns with exactly w
wildcards for any w = ω(log n) in the generic group model.

2 Preliminaries

Notation. Throughout the paper we use [n] to denote the set {1, · · · , n}. We
write vectors in boldface (e.g. x) and their entries in plain text (e.g. x1). We also
use the implicit representation of group elements: If G is a cyclic group of order
p with generator g, then for a ∈ Zp we use [a]g to denote the group element ga.
If v ∈ Znp is a vector mod p, then [v]g denotes the tuple of n group elements
{gvi}i∈[n].

2.1 Security Definitions

In this section we define Virtual Black Box [1] (VBB) and Distributional Vir-
tual Black Box [5] (DVBB) security. We also introduce T -VBB security, which
is a variant of VBB security where the simulator is allowed to run in super-
polynomial time O(T). We prove that T -VBB security implies distributional
VBB security for distributions that are T -evasive (even with simulators that
make no black box queries).

Let F = {Fn}n∈N be a sequence of function families where Fn is a set
of functions that takes n bits as input. A PPT algorithm O is said to be an
Obfuscator for F if it takes an input length n (in unary representation) and a
function f ∈ Fn as input, and outputs an obfuscated program O(1n, f) that:

1. preserves functionality: For any n, f ∈ Fn and x ∈ {0, 1}n we have that
O(1n, f)(x) = f(x) with a probability that is overwhelming as a parameter
of n.

2. has only polynomial slowdown: For any n and f ∈ Fn the obfuscated pro-
gram O(1n, f) runs in time that is poly(n, T (f)), where T (f) is the run time
of f .

To ease notation, we don’t explicitly write the input length n as an input to the
obfuscator O in the rest of the paper.

6

Virtual Black Box security (VBB). If an obfuscator reveals no more in-
formation about the function f ∈ Fn than what can by learned from black
box access the obfuscator is said to be Virtual Black Box (VBB) secure. More
formally, we have the following definition

Definition 1 (VBB Security). An obfuscator O for the functionality {Fn}n∈N
is said to be VBB secure if for any PPT Adversary A and polynomial p(n), there
exists a PPT simulator S that has black box access to a function in F and an
n0 such that for any n ≥ n0 and any f ∈ Fn∣∣∣∣ Pr

O,A
[A(O(f)) = 1]− Pr

S
[Sf (1n) = 1]

∣∣∣∣ ≤ 1

p(n)
.

Remark 1. In our definition (and in our definition of T -VBB security below),
the simulator S is allowed to depend on the required simulator accuracy p(n).
This is slightly weaker than the original definition of [1].

One can relax the condition that S runs in polynomial time to obtain a
weaker security notion. An obfuscator satisfying this relaxed security notion
reveals nothing about the function it obfuscated beyond what can be learned
with a lot of black box queries.

Definition 2 (T -VBB Security). An obfuscator O for the functionality F is
said to be T -VBB secure if for any PPT Adversary A and any polynomial p(n),
there exists a simulator S that has black box access to a function in F that runs
in time O(T ∗ poly(n)) and an n0 such that for any n ≥ n0 and f ∈ Fn∣∣∣∣ Pr

O,A
[A(O(f)) = 1]− Pr

S
[Sf (1n) = 1]

∣∣∣∣ ≤ 1

p(n)
.

Distributional Virtual Black Box security (D-DVBB). A weaker no-
tion of Obfuscator security is that of Distributional VBB security (also called
Average-Case VBB). In the distributional setting, there is a sequence of distri-
butions D = {Dn}n∈N that the function f to be obfuscated is drawn from. If
an obfuscator O reveals nothing about functions randomly drawn from D be-
yond what can be learned from black box access, the obfuscator O is said to be
D-DVBB secure. This is captured by the following definition:

Definition 3 (D-DVBB Security). Let D = {Dn}n∈N be a sequence of dis-
tributions on F , and O an obfuscator for the F functionality. Then O is said
to be D-DVBB secure if for any adversary A and any sequence of predicates
P = {Pn : Fn → {0, 1}} there exists a PPT Simulator S such that∣∣∣∣ Pr

f←Dn,O,A
[A(O(f)) = Pn(f)]− Pr

f←Dn,S
[Sf (1n) = Pn(f)]

∣∣∣∣ = negl(n) .

The fact that VBB security implies distributional VBB security for any ar-
bitrary distribution is trivial. However, we prove that VBB security also implies

7

DVBB security with simulators that don’t make black-box queries for distri-
butions that are evasive. It is also the case that T -VBB implies DVBB with
simulators that make no black-box queries for distributions which are T -evasive.

Definition 4 (evasive, T -evasive). A sequence {Dn}n∈N of distributions on
{Fn}n∈N is evasive if there is a negligible function µ(n) such that for all x ∈
{0, 1}n we have

Pr
f←Dn

[f(x) 6= 0] < µ(n) .

A the sequence of distributions is said to be T -evasive if there is a negligible
function µ(n) such that for all x ∈ {0, 1}n we have

Pr
f←Dn

[f(x) 6= 0] <
µ(n)

T (n)
.

Lemma 1 (VBB implies DVBB without black-box queries for evasive
distributions). Suppose O is a VBB secure (resp. T -VBB secure) obfuscator
for the functionality {Fn}n∈N and let D = {Dn}n∈N be an evasive (resp. T -
evasive) sequence of distributions that can be sampled from efficiently, then O is
D-DVBB secure with a simulator that does not make any black box queries.

Proof. Let O, {Fn}n∈N and {Dn}n∈N be as in the statement of the theorem. Let
A be an adversary and P a predicate on F . We define a simulator S that draws
a function f from Dn and outputs A(O(f)). It is clear that this simulator makes
no black box queries to f . We now prove that S has negligible simulation error.

Fix any polynomial p(n) and let SVBB be a simulator that runs in polynomial
time (resp. O(T ∗ poly(n))) with a simulation error that is eventually less than

1
3p(n) . This is guaranteed to exist because of the VBB (resp T -VBB) property

of O. Then we have for large enough n that∣∣∣∣ Pr
f←Dn

[A(O(f)) = P (f)]− Pr
f←Dn

[SfVBB(1n) = P (f)]

∣∣∣∣ ≤∑
f∈Fn

Pr[Dn = f]
∣∣∣Pr[A(O(f)) = 1]− Pr[SfVBB(1n) = 1]

∣∣∣ ≤ 1

3p(n)
. (1)

Since SVBB makes at most polynomially many (resp. O(T ∗poly(n))) queries
to f and since the sequence D is evasive (resp. T -evasive) we have∣∣∣∣ Pr

f←Dn
[SfVBB(1n) = P (f)]− Pr

f←Dn
[S0VBB(1n) = P (f)]

∣∣∣∣ ≤ negl(n) , (2)

and similarly we have∣∣∣∣ Pr
f←Dn

[S0VBB(1n) = P (f)]− Pr
f1,f2←Dn

[Sf1VBB(1n) = P (f2)]

∣∣∣∣ ≤ negl(n) . (3)

8

Finally, similar to Eqn. 1 we have for large enough n that∣∣∣∣ Pr
f1,f2←Dn

[Sf1VBB(1n) = P (f2)]− Pr
f1,f2←Dn

[A(O(f1)) = P (f2)]

∣∣∣∣ ≤∑
f1∈Fn

Pr[Dn = f1]
∣∣∣Pr[Sf1VBB(1n) = 1]− Pr[A(O(f1)) = 1]

∣∣∣ ≤ 1

3p(n)
. (4)

Putting these four inequalities together we have for large enough n that∣∣∣∣ Pr
f←Dn

[A(O(f)) = P (f)]− Pr
f1,f2←Dn

[A(O(f1)) = P (f2)]

∣∣∣∣ ≤ 2

3p(n)
+ negl(n) ,

which shows that the simulator error is eventually lower than 1
p(n) for any p(n).

3 Obfuscation for Pattern Matching with Wildcards

The class of functions for the pattern matching with wildcards functionality
it parametrized by length n strings over the alphabet {0, 1, ?}. For a pattern
ρ = (ρi)i∈[n] in {0, 1, ?}n we define the pattern matching function fρ that takes
a binary string x = (xi)i∈[n] as input, and outputs whether the string matches
the pattern ρ. More precisely we have

fρ(x) =

{
1 if for all i either ρi = xi or ρi = ?

0 otherwise

A simple and efficient construction. The work of Bishop et al. [3] gives a
simple obfuscation scheme for the pattern matching with wildcards functionality.
The obfuscation of a pattern ρ consists of 2n elements {vi,j}(i,j)∈[n]×1,2 of a
cyclic group G of prime order p with generator g. This obfuscation is produced
by picking a random degree n− 1 polynomial h(x) = a1x+ · · ·+ an−1x

n−1 with
h(0) = 0 and defining

vi,j =

{
h(2i− j) if ρi = ? or ρi = j

ri,j otherwise
,

where the ri,j are chosen uniformly at random. The obfuscation O(ρ) then con-
sists of the 2n group elements [{vi,j}(i,j)∈[n]×{0,1}]g.

To evaluate the obfuscated program on input x, the evaluator computes the
polynomial interpolation coefficients

Ca =
∏
b∈[n],
b 6=a

−2b− xb
2a+ xa − 2b− xb

,

9

and computes h0 = [
∑
i∈[n] Civi,xi]g. If the pattern ρ accepts x then all the

vi,xi are of the form [h(2i − j)]g and the polynomial interpolation will work in
the exponent such that h0 = [h(0)]g = [0]g. If h0 = [0]g the obfuscated program
accepts the input x and otherwise it rejects. If the pattern ρ does not accept x at
least one uniformly random group element enters into h, so that the obfuscated
program will only accept a bad input with probability 1− 1

p .

Prior analysis in [3]. The construction of [3] is proven to be Distributional
VBB secure (Def. 3) in the generic group model for uniform distributions of
patterns with a fixed number up to 3n

4 wildcards. More strongly, it is proven
that the result of obfuscating a uniformly random pattern in {0, 1, ?}n with a
fixed number up to 3n

4 wildcards is indistinguishable from 2n uniformly chosen
group elements.

4 A New Knowledge Assumption : KOALA

We introduce a new assumption, the Knowledge of OrthogonALity Assumption
(KOALA), that is valid in the generic group model and based on which we
will prove the security of the Obfuscation scheme. The assumption says that an
adversary can only distinguish [v]g for vectors v drawn uniformly at random
from a subspace V ⊂ Znp from [u]g for uniformly random vectors u ∈ Znp if it
can also produce a non-zero vector orthogonal to V in the clear.

Definition 5 (KOALA). A sequence of cyclic groups {Gn}n∈N of order pn ∈
[2n, 2n+1) satisfies the knowledge of orthogonality assumption if for every PPT
adversary A, there exists a polynomial s(n) and a PPT algorithm A′ that outputs
nonzero vectors such that for every subspace V ⊂ Znp , if A distinguishes uniform
samples of [V]g from random with advantage

AdvA,V =

∣∣∣∣ Pr
v←V

[A([v]g) = 1]− Pr
u←Znp

[A([u]g) = 1]

∣∣∣∣ ,
then A′(1n) is orthogonal to V with probability

Pr[A′(1n) ∈ V ⊥ \ {0}] ≥ AdvA,V
s(n)

.

4.1 KOALA is weaker than Generic Group Model

Although KOALA is quite a strong assumption, it is weaker than the generic
group model:

Theorem 1 (Generic groups satisfy KOALA). A sequence of cyclic groups
{Gpn}n∈N of order pn ∈ [2n, 2n+1) satisfies KOALA in the generic group model.

10

Proof. Given an adversary A, we construct an extractor EA that satisfies the
condition of Def 5. The extractor runs A on a list of n generic group elements
e = {ei}i∈[n], then by looking at how A interacts with the group oracle E records
all the vectors v for which A has computed v ·e. When A terminates, E chooses
two distinct vectors that it has collected and outputs their difference.

More formally the extractor EA works as follows: EA simulates a group oracle
G2 that gives randomly encoded access to the group Znp . He does this by main-
taining a table {(qi, hi)}i∈I ⊂ Znp × {0, 1}n mapping vectors of Znp to random
handles that he updates on the fly when new vectors are discovered. Initially he
populates the table with random handles for the n unit vectors ei for i ∈ [n].
Then it runs AG2 with the handles of the n unit vectors as input. When A termi-
nates the extractor picks two distinct vectors qi,qj from the group oracle table
and outputs qi − qj .

We now fix a subspace V ⊂ Znp with basis {v1, · · · ,vk} and we show that if
A makes Q queries to the group oracle and distinguishes [V]g from [Znp]g with
probability

AdvA,V =

∣∣∣∣ Pr
v←V

[A([v]g) = 1]− Pr
u←Znp

[A([u]g) = 1]

∣∣∣∣ ,
then the extractor will output a nonzero vector orthogonal to V with probability

Pr[A′(1n) ∈ V ⊥ \ {0}] ≥ AdvA,V
(Q+ 2n)2

− 2

p
,

so the extractor satisfies the requirement in Def. 5. We show this through a
sequence of four games.

1. In the first game A is given access to the group oracle G1 for Gp, and it is
given the encoding of [u]g, for u a random vector from Znp as input.

Game1 = u← Znp ; ReturnAG1(u));

2. In the second game A is given a group oracle G2 for the group Znp . Let ei ∈ Znp
for i ∈ [n] be the unit vectors of Znp . The input to A is a random encoding
of these n unit vectors.

Game2 = ReturnAG2({ei}i∈[n]);

3. In the third game A is given access to a group oracle G3 for Zkp. Let e′i ∈ Zkp
for i ∈ [k] be the unit vectors of Zkp. The input to A is the encoding of n

vectors {mi}i∈[n], where mi =
∑k
j=1(vi)je

′
j .

Game3 = ReturnAG3({mi}i∈[n]);

4. In the last game A is given access to the group oracle G1 for Gp again, and
it is given the encoding of [v]g, for v a random vector from V as input.

Game4 = v← V ; ReturnAG1(v));

11

Game1 and Game2 are close. Consider the map φ1 : Znp → Gp : x 7→ [x ·u]g,
where u is the vector chosen uniformly from Znp in the first game. Now consider
a group oracle G1 ◦φ1 that maintains a table {(qi, [qi ·u]g, hi)}i∈I of vectors that
were queried, their images under φ1, and random encodings of the images φ1(qi).
As long as no two queries qi,qj map to the same element of Gp this is an honest
implementation of the group oracle G2. Moreover, φ1 maps the inputs to A in
Game2 to the inputs of A in Game1, so unless A queries G2 at two vectors that
are mapped to the same group element by φ1 the views of A in Game1 and Game2
are identical. After Q group oracle queries the table contains Q+ 2n entries. For
each pair of distinct vectors (qi,qj) the probability that φ1(qi) = φ1(qj) is 1/p,
so a union bound yields

|Pr[Game1() = 1]− Pr[Game2() = 1]| < (Q+ 2n)2/p

Game2 and Game3 are close unless nonzero vectors orthogonal to V
are found. Now, consider the map φ2 : Znp → Zkp, defined on the unit vectors
as

φ2(ei) =

k∑
j=1

(vi)je
′
j ,

and extended to all of Znp by linearity. Notice that the vectors orthogonal to
V are precisely the vectors in the kernel of φ2 because the i-th component of
φ2(u) is u · vi. Now consider the group oracle G3 ◦ φ2 that maintains the table
{(qi, φ2(qi), hi)}i∈I . This is an honest implementation of G2 as long as it is not
queried on two different vectors qi,qj that are mapped to the same vector by
φ2. The connecting map φ2 maps the inputs to A in Game2 to the inputs of A
in Game3. Therefore we have

|Pr[Game2() = 1]− Pr[Game3() = 1]| ≤ Collision ,

where Collision is the probability that two vectors in the table of G3 ◦ φ2 have
the same image under φ2.

Game3 and Game4 are close. The proof of this transition is very similar to
that of the first transition, with the connecting map φ3 : Zkp → Gp : x 7→ [x · c]g,

where c ∈ Zkp is the unique vector such that v =
∑k
i=1 civi. The map φ3 sends the

input of A in Game3 to the input of A in Game4, so like in the first transition, the
view of A is identical in Game3 and Game4 as long as no two queries to G1 ◦ φ3
are mapped to the same group element by φ. This happens with probability
bounded by (Q+ 2n)2/p, so we have

|Pr[Game3() = 1]− Pr[Game4() = 1]| < (Q+ 2n)2/p

Putting everything together. Combining the previous results with the
triangle inequality we get

|Pr[Game1() = 1]− Pr[Game4() = 1]| < Collision + 2(Q+ 2n)2/p .

12

Here the left hand side is exactly the distinguishing advantage AdvA,V , so we
get

Collision > AdvA,V −
2(Q+ 2n)2

p
.

The extractor outputs the difference of two randomly chosen vectors out of the
Q + 2n vectors in the table of G2. Therefore, since the kernel of φ2 is exactly
the set of vectors orthogonal to V we know that E outputs a vector in V ⊥ \ {0}
with probability at least Collision

(Q+2n)2 , which finishes the proof.

4.2 Obfuscating Point Functions from KOALA

To demonstrate the power of KOALA, we prove the VBB security of the simple
point function obfuscator of [7]. To obfuscate the function that tests whether an
input x ∈ Zp is equal to x0 the obfuscator simply outputs [r]g, [−x0r]g, where
[r]g is a uniformly random group element. On input x ∈ Zp, the evaluator simply
computes [xr − x0r] and outputs 1 if and only if this is equal to [0]g.

Theorem 2 (Obfuscating point functions from KOALA). The point func-
tion obfuscator from [7] using a sequence of groups {Gn}n∈N that satisfies KOALA
is VBB secure.

Proof. Given an adversary A and required simulator accuracy of 1
p(n) , let A′ and

s(n) be the PPT algorithm and polynomial that are guaranteed to exists because
of KOALA. We construct a simulator S that on input [v]g = ([v1]g, [v2]g) calls
A′(1n) to get output o = (o1, o2), if o2 = 0 then S discards o and otherwise
it makes a black box query to the point function on input o1

o2
. The simulator S

repeats this a total of s(n)p(n) times. Then there are two cases:

A All of the black box queries return 0. In this case S picks a uniformly
random vector u ∈ Z2

p and outputs A([u]g).
B A black box query with input x0 returns 1. In this case S outputs
A(O(x0)).

In case of event B the simulation of S is perfect, so the simulation error of
S is

Pr[A]·
∣∣∣∣ Pr
r←Zp

[A([r]g, [xr]g) = 1]− Pr
r1,r2←Zp

[A([r1]g, [r2]g) = 1]

∣∣∣∣ = Pr[A]AdvA,〈(1,−x)〉 .

Event A only occurs if none of the outputs of A′ are orthogonal to 〈(1,−x)〉, so
using KOALA we get that the simulation error is bounded by

Pr[A(1n)⊥·(1,−x) 6= 0]s(n)p(n)AdvA,〈(1,−x)〉 ≤
(

1−
AdvA,〈(1,−x)〉

s(n)

)s(n)p(n)
·AdvA,〈(1,−x)〉 .

Using 1− x ≤ e−x and e−x ≤ 1
x for x > 0 this means that the simulation error

is bounded by

e−AdvA,〈(1,−x)〉p(n) · AdvA,〈(1,−x)〉 ≤
1

p(n)
,

as required.

13

Definition 6 (Array of functions). Let f1, · · · , fk : D → R be a sequence of
k functions on the same domain D, then we define a new function Jf1, · · · , fkK :
[k]×D → R by

Jf1, · · · , fkK (i, x) = fi(x).

Definition 7 (VBB Self composability). A VBB secure obfuscator O for a
function family F is said to be VBB self composable if O′ : (f1, · · · , fk) ∈ F∗ →
(O(f1), · · · ,O(fk)) is a VBB secure obfuscator for the function family{

Jf1, · · · , fkK |(f1, · · · , fk) ∈ Fk
}

Remark 2. This definition is stronger than the one of [15] because it works si-
multaneously for all (polynomially bounded) k, rather than a fixed value of k.

Theorem 3. The point function obfuscator from [7] using a sequence of groups
{Gn}n∈N that satisfies KOALA is VBB self composable.

Proof. Let A be an adversary and let p(n) be a polynomial such that 1
p(n) is

the desired simulator accuracy. We then construct a simulator S that works in
two phases. On input (O(x1), · · · ,O(xk)) the simulator S starts with a learning
phase S in which it tries to recover as many of the xi as possible. Then in the
simulation phase it outputs A(u1, · · · , uk), where

ui =

{
O(xi) if S has learned xi

[ri]g if S has not learned xi
,

where the ri are uniformly random vectors in Z2
p.

Learning phase: The learning phase starts with a empty set L = {} of
learned xi’s. Let A′1 and s(n) be the PPT algorithm and the polynomial given
by the KOALA assumption. Then, like in the proof of Theorem 2, we call A0()
a total of ks(n)p(n) times to get an output o = ((o1,1, o1,2), · · · , (ok,1, ok,2)). For
all i ∈ [k], if oi,2 6= 0, then S queries the black box oracle for fi at input

oi,1
oi,2

.

If all the queries return False, the learning phase ends and S moves on to the
Simulation phase. Conversely, if the query fi(xi) returns True, then (i,xi) is
added to L.

If the learning phase has not ended in the first iteration (i.e. if xi are dis-
covered), then we construct a new adversary A2 that accepts k− |L| obfuscated
programs as input. The adversary A2 computes an obfuscation O(xi) for each
xi that it has learned, and plugs it into the slots of A = A1. The k − |L| inputs
are plugged into the remaining slots and then A2 calls A with these inputs and
returns the output of A. The KOALA guarantees there exist a PPT algorithm
A′2 and polynomial s2(n). Then S calls A′2() a total of ks2(n)p(n) times to get
outputs o = ((o1,1, o1,2), · · · , (ok,1, ok,2)). Again, if oi,2 6= 0, then S queries the
black box oracle for fi at input

oi,1
oi,2

. If all the queries return False, the learning

phase ends and S moves on to the Simulation phase. Conversely, if the query
fi(xi) returns True, then (i,xi) is added to L.

14

This process continues with Ai + 1 the algorithm that calculates O(xi) for
the newly discovered xi and plugging it into Ai. After at most k iterations no
new inputs are learned and the Learning phase terminates.

Simulation phase: After the Learning phase the simulator S computes
ui = O(xi) for all (i,xi) in L. Then it fixes the remaining ui to [ri]g for ri
random vectors in Z2

p and outputs A(u1, · · · ,uk). In other words, S calls the
last iteration Ai of the adversary constructed in the Learning phase on uniformly
random input, and return the result.

Now we analyze the simulation error of this simulator S. Let I = {i|∃xis.t.(i,xi) ∈
L} be the set of indices of the xi that are learned at the end of the learning phase.
Now, for X ⊂ [k] Let uX,i be the distribution defined as

uX,i =

{
O(xi) if i in X

[U(Z2
p)]g else

Then we have that the output of S is equal to A(uI,1, · · · , uI,k), so the
simulation error of S is bounded by∣∣∣Pr[A(O(fx1

), · · · ,O(fxk)) = 1]− Pr[SJfx1 ,··· ,fxk K](1kn) = 1
∣∣∣ ≤∑

X⊂[k]

Pr[X = I] |Pr[A(O(fx1), · · · ,O(fxk)) = 1]− Pr[A(uX,1, · · · , uX,k) = 1]| =

∑
X⊂[k]

Pr[X = I] · AdvA,X ,

where AdvA,X denotes the advantage of A for distinguishing O(fx1), · · · ,O(fxk)
from uX,1, · · · , uX,k.

The probability Pr[X = I] is equal to Pr[reach X] Pr[stay at X| reach X],
where Pr[reach X] is the probability that S reaches a state where the indices of
the learned xi is exactly X, and Pr[stay at X| reach X] is the probability that S
does not leave this state, given that this state is reached. So, Pr[stay at X| reach X]
is bounded by the probability that none of vectors outputted by A′i is nonzero
and orthogonal to the 2(k−|X|) dimensional space of obfuscations of the k−|X|
point functions that are not learned. According the KOALA this implies

Pr[stay at X| reach X] ≤
(

1− AdvA,X
si(n)

)ksi(n)p(n)
≤ 1

kAdvA,Xp(n)
.

Plugging this in to the upper bound for the simulator error shows that it is
bounded by ∑

X⊂[k]

Pr[reach X] · 1

kp(n)
.

Now, since there are at most k iterations in the learning phase (each new it-
eration increases |L|, and |L| ≤ k) we know that

∑
X⊂[k] Pr[reach X] is bounded

by k, so the simulation error of S is bounded by 1
p(n) , as required.

15

Definition 8 (multi-bit output point functions). Point functions with multi-
bit output are parametrized by two bitstrings a ∈ {0, 1}n and b ∈ {0, 1}l. The
function fx,y is defined as

fa,b(x) =

{
b if x = a

⊥ else

Theorem 4 (Obfuscating multi-bit output point functions). Suppose O
is a VBB self-composable obfuscator for point functions, then there exists a VB
self-composable obfuscator O′ for point functions with multi-bit output

Proof. On input (a,b) ∈ {0, 1}n × {0, 1}l the obfuscator O′ simply computes
and outputs l obfuscated programs O(a||b1), · · · ,O(a||bl). To evaluate O′(a,b)
at input x, one simply evaluates all the obfuscations at x||0 and x||1. If for some
of the obfuscations neither x||0 nor x||1 is accepted, then the evaluator returns
⊥, otherwise the evaluator returns y defined as

yi =

{
0 if i-th obfuscated program accepts x||0
1 if i-th obfuscated program accepts x||1

Correctness and poly-time slowdown of this obfuscator O′ follows immedi-
ately from the correctness and poly-time slowdown of O.

Now we show that the construction is VBB secure for compositions of k multi-
bit output point functions. Let A be an adversary and let 1

p(n) be the desired sim-

ulator accuracy. Then the VBB self-composability property ofO immediately im-
plies there is a PPT simulator S with the desired simulator accuracy that makes
black box queries to the k×l point functions fa1||b11 , · · · , fa1||b1l , · · · , fak||bk1 , · · · , fak||bkl .
We can answer these queries because we have black box access to fa1||b1

, · · · , fak||bk .
To answer a query to fai||bij with input x, b we first query the black box oracle
for fai||bi(x). If this returns ⊥, we answer the query with False, otherwise if

fai||bi(x) = bi ∈ {0, 1}l, then we answer the query with bij = b.

5 Obfuscating Big Subset Functionality

The obfuscator for pattern matching with wildcards of [3] contains an obfusca-
tor for a different functionality, we call this other functionality the big subset
functionality. We show that there is an embedding of the pattern matching with
wildcards functionality into the big subset functionality and hence, that any ob-
fuscator for the big subset functionality can be transformed generically into an
obfuscator for pattern matching with wildcards. This transformation preserves
VBB security at the cost of a slowdown of the simulator by a factor 2n/2. The
transformation also preserves distributional VBB security with simulators that
make no black box queries without slowing down the simulator. Since the obfus-
cator of [3] is an instantiation of this transformation this will ultimately allow us
to prove its VBB security with super-polynomial simulator and Distributional
VBB security for a wide variety of distributions.

16

Definition 9 (Big Subset Functionality). For each n ∈ N, we define the
class of functions parametrized by (Y, n, t), where Y is a subset of [n] and t is a
threshold value with 0 ≤ t ≤ n. We define fY,n,t : P ([n])→ {0, 1} that on input
a subset X outputs

fY,n,t(X) =

{
1 if |X| ≥ t and X ⊂ Y
0 otherwise

.

5.1 VBB Secure Obfuscation of Big Subset Functionality

The following construction is implicit in [3]: To obfuscate the function fY,n,t the
obfuscator picks a random degree t− 1 polynomial h(x) = a1x+ · · ·+ at−1x

t−1

with coefficients in Zp such that h(0) = 0. Then it outputs n group elements
[v]g defined as

vi =

{
h(i) if i ∈ Y
ri otherwise

,

where the ri ∈ Zp are chosen uniformly at random. To evaluate the function at
input X ⊂ [n] we use polynomial interpolation in the exponent to check if the
points {(i, oi) | i ∈ X} lie on a degree |X| − 1 polynomial hx with hx(0) = 0.

We now prove that under KOALA this construction is a VBB secure obfus-
cator.

Theorem 5 (O is VBB secure). Let O be the obfuscator for the big subset
functionality defined above, using a family of cyclic groups that satisfies KOALA.
Then O is VBB secure.

Proof. Let A be an adversary and p(n) the polynomial such that 1
p(n) is the

desired simulator accuracy. Then we construct a simulator S that runs in time
O(p(n)∗poly(n)) such that for any (Y, n, t) with sufficiently large n the simulation
error ∣∣∣∣ Pr

O,A
[A(O(Y, n, t)) = 1]− Pr

S
[SfY,n,t(1n) = 1]

∣∣∣∣ ≤ 1

p(n)
.

The simulator S is constructed as follows: According to KOALA, there exists
a PPT algorithm A′ that samples vectors in Znp that are likely to be orthogonal
to any subspace V such that A can distinguish [v]g ← [V]g from [u]g ← [Z]g.
Now S repeatedly calls x ← A′ and queries the fY,n,t oracle on Sup(x) for a
total of R(n) times (for R some polynomial to be determined later). Now there
are two possibilities:

A. All of the fY,n,t queries return 0. In this case S just picks a uniformly
random vector u ∈ Znp and outputs A([u]g).

B. One of the queries fY,n,t(X) returns 1. In this case S makes n − |X|
additional queries to fY,n,t on the inputs X ∪ {i} for i 6∈ X in order to learn
the set Y . Once S knows Y it queries fY,n,t on subsets of Y of increasing
size until it gets an accept in order to learn the threshold value t. Then S
outputs A(O(Y, n, t)).

17

The intuition to why this simulator works is that either A can distinguish
O(Y, n, t) from randomness, in which case we can show that B occurs with
overwhelming probability, or A cannot distinguish O(Y, n, t) from [u]g in which
case the event A can happen with non-negligible probability, but this is not a
problem because then S outputs A([u]g) which is close enough to A(O(Y, n, t)).

Let s(n) be the polynomial from the KOALA assumption (Def. 5) such that
for any subspace V ⊂ Znp

Pr[A′(1n) ∈ V ⊥ \ {0}] ≥ AdvA,V
s(n)

.

The remainder of the proof shows that the simulation error of S is bounded by
s(n)
R(n) , so by taking R(n) = s(n)p(n), we get that the simulation error of S is less

than 1
p(n) , as required.

Let VY,n,t be the set of exponent vectors of possible obfuscations of fY,n,t.
This is a vector space that can be written as VY,n,t = C + E, where C is

C =
{
{h(i)}i∈[n] |h a degree t− 1 polynomial with h(0) = 0 } ,

and E is the subspace with basis {ei | i 6∈ Y }. C is the column space of the
(almost Vandermonde) n-by-(t− 1) matrix

1 1 · · · 1

2 22 · · · nt−1
...

...
. . .

...

n n2 · · · nt−1

Any (t − 1)-by-(t − 1) submatrix of this matrix is invertible, which means that
elements in C⊥ are either 0 or have more than (t − 1) nonzero entries. So for
any x ∈ (V ⊥Y,n,t \ {0}) ⊂ (C⊥ \ {0}) we have |Sup(x)| ≥ t. Also, x ∈ E⊥, which

implies that Sup(x) ⊂ Y . Therefore, x ∈ V ⊥Y,n,t \ {0} implies fY,n,t(Sup(x)) = 1.
So the event A that the support of none of the vectors sampled by A′ is

accepted by the fY,n,t oracle is less probable than the event that none of the
vectors sampled by A′ is orthogonal to VY,n,t. Because of KOALA this means

Pr[A] ≤
(
1− Pr[A′(1n) ∈ V ⊥ \ {0}]

)R(n) ≤
(

1− AdvA,V
s(n)

)R(n)

. (5)

The simulator returns the output A on random input or on input O(Y, n, t)
in case of event A or event B respectively, so

Pr[SfY,n,t(1n) = 1] = Pr[A] · Pr
u←Znp

[A([u]g) = 1] + Pr[B] · Pr[A(O(Y, n, t)) = 1] ,

so the simulation error of S is equal to

Pr[A] ·
∣∣∣∣Pr[A(O(V, n, t)) = 1]− Pr

u←Znp
[A([u]g) = 1]

∣∣∣∣ = Pr[A] · AdvA,VY,n,t .

18

Combining this with Eqn. 5 says that the simulation error of S is at most(
1−

AdvA,VY,n,t
s(n)

)R(n)

·AdvA,VY,n,t ≤ exp

[
AdvA,VY,n,tR(n)

s(n)

]
AdvA,VY,n,t ≤

s(n)

R(n)
,

where for the first inequality we use 1 − x ≤ exp(−x), and for the second in-
equality we use exp(−x) ≤ 1

x for x > 0.

5.2 Evasive Distributions

We describe several evasive distributions for the big subset functionality, which
will come in handy later for analyzing pattern matching with wildcards.

Lemma 2 (Evasive distributions for big subset). Let D = {Dn}n∈N be a
sequence of distributions and t0(n), t1(n) functions with 0 ≤ t0(n) ≤ t1(n) ≤ n.
Then we have

1. If Dn outputs (Y, n, t) with t ≥ t0, and the min-entropy of Dn is n− to(n) +
ω(log n), then D is evasive.

2. If Dn outputs (Y, n, t0(n)) with |Y | = t1(n), and the min-entropy of Dn is

log(
(

n−t0(n)
t1(n)−t0(n)

)
) + ω(log n), then D is D evasive.

Proof. Suppose D and t0 satisfy the assumptions of 1 and let mn be the min-
entropy of Dn. Take any n and X ⊂ [n]. Now we prove that

Pr
(Y,n,t)←Dn

[fY,n,t(X) = 1] ≤ (n− t0(n))2n−t0(n)−mn .

If |X| ≤ t0(n), then clearly this probability is zero, because we have |X| ≤ t with
probability 1. So suppose |X| ≥ t0(n). Then there are at most 2n−t0(n) values
of Y such that X ⊂ Y and at most (n − t0(n)) values of t such that |X| ≤ t.
This makes a total of (n− t0(n))2n−t0(n) triples (Y, n, t) such that fY,n,t(X) = 1.
Since each of these triples occurs with probability at most 2−mn the inequality
above follows.

This shows that if the min-entropy of Dn is n− to(n) + ω(log n), then

Pr
(Y,n,t)←Dn

[fY,n,t(X) = 1] ≤ (n− t0(n))2−ω(logn) ,

which is a negligible function of n, so D is evasive.
The argument to prove 2 is very similar, the only difference being that t =

to(n) and |Y | = t1(n) reduces the number of triples (Y, n, t) such that fY,n,t(X) =
1. If |X| < t0(n), then there are no accepting triples. If |X| ≥ t0 the number of

Y of size t1(n) such that X ⊂ Y is
(

n−t0(n)
t1(n)−t0(n)

)
, so

Pr
(Y,n,t)←Dn

[fY,n,t(X) = 1] ≤
(

n− t0(n)

t1(n)− t0(n)

)
2−mn .

The rest of the argument is the same as in the proof of 1.

19

6 Obfuscating Pattern Matching with Wildcards,
Revisited

In this section, we further investigate the security of the obfuscation scheme
of [3]. On the negative side we introduce an attack that allows an adversary to
learn if the first half of the pattern consists of wildcards. This proves the scheme
is not VBB secure, and even that the scheme is not DVBB secure for some high
entropy distributions. On the positive side however, we prove that the scheme is
VBB secure if we allow for a super-polynomial simulator.

We also show that any distribution of patterns that has at least n+ω(log n)
bits of min-entropy is automatically secure. We give similar bounds for distribu-
tions that output patterns with a fixed number of wildcards. Our attacks match
these min-entropy bounds and hence they show that the bounds are nearly op-
timal. The bounds immediately prove that the scheme is DVBB secure for uni-
form patterns and uniform patterns with a fixed number of wildcards up to
n−ω(log n). This is stronger than the result of [3] that only proves DVBB secu-
rity for uniform distributions of up to 3n

4 wildcards. Having up to n − ω(log n)
wildcards is optimal, because for n−O(log n) wildcards a pattern can be recov-
ered through black box queries in polynomial time and VBB security is trivial.
Indeed, if there are only O(log n) non wildcards, then after polynomially many
black box queries at random inputs we will get an accepting input. Once an
accepting input x ∈ {0, 1}n is found we can learn the entire pattern with n
additional black box queries on the n inputs that differ from x at exactly one
position.

6.1 The Construction of [3] is not VBB Secure

By looking at an obfuscation of a pattern ρ it is possible to check whether the first
half consists of wildcards. This is done by simply doing polynomial interpolation
in the exponent in the values vi,j for (i, j) ∈ [dn/2e]×{0, 1}. Determining whether
the first half of a pattern consists of wildcards is not efficiently possible with
only black box access, so this attack breaks VBB security. Moreover, this breaks
DVBB security for high entropy distributions.

Let [v]g = [{vi,j}(i,j)∈[n]×{0,1}]g be the obfuscation of a pattern ρ. To simplify
the notation we assume that n is even. The [vi,j]g are of the form [p(2i− j)]g for
all (i, j) ∈ [n/2] × {0, 1} if and only if the first half of the pattern ρ consist of
wildcards. Therefore we can compute the polynomial interpolation coefficients

Ci,j =
∏

(a,b)∈[n/2]×{0,1},
(a,b)6=(i,j)

−2a+ b

2i− j − 2a+ b

and then h = [
∑

(i,j)∈[n/2]×{0,1} Ci,jvi,j]g will be equal to [p(0)]g = [0]g if the
first half of ρ consist of wildcards. If the first half does not consist of wildcards,
then a random group element enters in the calculation of h and then h 6= [0]g
with overwhelming probability 1− 1/p.

20

Lemma 3 (A very evasive insecure distribution). There exists a sequence
of distributions {Dn}n∈N that is 2n/2n−ω(1)-evasive such that the obfuscation
scheme of [3] is not D-DVBB secure.

Proof. Let Dn be the distribution that tosses a fair coin and on tails outputs a
uniformly random pattern without wildcards and on heads outputs a uniformly
random pattern with wildcards in the first half but no wildcards in the second
half. Clearly for any x the probability

Pr
ρ←Dn

[fρ(x) = 1] < 2−n/2 ,

so this sequence of distributions is 2n/2n−ω(1)-evasive. Let A the adversary that
executes the attack of the previous paragraph and outputs 1 if h = [0]g and 0
otherwise. Let P be the predicate of the first half of a pattern being wildcards
and let S be a PPT simulator. Since our distribution is evasive we have∣∣∣∣ Pr

ρ←Dn,S
[Sfρ(1n) = P (ρ)]− Pr

ρ←Dn,S
[S0(1n) = P (ρ)]

∣∣∣∣ = negl(n).

Now we can bound the simulation error of S:∣∣∣∣ Pr
ρ←Dn

[A(O(ρ)) = P (ρ)]− Pr
ρ←Dn,S

[Sfρ(1n) = P (ρ)]

∣∣∣∣ ≤∣∣∣∣ Pr
ρ←Dn

[A(O(ρ)) = P (ρ)]− Pr
ρ←Dn,S

[S0(1n) = P (ρ)]

∣∣∣∣− negl(n) =∣∣∣∣(1− 1

2p

)
− 1

2

∣∣∣∣− negl(n).

which is clearly not negligible. This proves the obfuscation scheme is not distri-
butional VBB secure for this scheme.

Theorem 6 (O is not 20.5nn−ω(1)-VBB secure.). Let O be the obfuscation
scheme for pattern matching with wildcards from [3], then O is not 20.5nn−ω(1)-
VBB secure.

Proof. This follows immediately from Lemma 1 combined with Lemma 3.

The distribution of Lemma 3 has n/2 + 1 bits of min-entropy, but the attack
can be generalized to showcase distributions that are not DVBB with even more
min-entropy. If a pattern has wildcards in the first a ≤ n/2 positions, 0 or ? in the
next n−2a positions and 0,1 or ? in the last a positions, then an attacker can do
polynomial interpolation on the (n−a)+a values {[vi,0]g}i∈[n−a]∪{[vi,1]g}i∈[a] to
detect this. If we pick a = ω(log n) and we sample from these patterns uniformly
we get an evasive distribution. So, similar to the proof of Lemma 3 this leads to
an insecure distribution.

Lemma 4 (Insecure distribution with high min-entropy). There exists a
sequence of distributions {Dn}n∈N with n− 2a+ log(3)a+ 1 bits of min-entropy
such that the obfuscation scheme of [3] is not D-DVBB secure if a = ω(log n).

21

We showed that the construction is not VBB secure because by looking at
O(ρ) it is possible to learn something about ρ in polynomial time that would
take O(2n/2) black box queries to learn otherwise. Later, we will prove that this
is essentially the best attack (assuming KOALA). Specifically, we prove that
anything that can be learned from an obfuscation of f can also be learned from
roughly 2n/2 black box queries to fρ (see Theorem 8).

6.2 Pattern Matching from Big Subset

Next, we show how to derive an obfuscation scheme for pattern matching starting
with that for big subset.

Theorem 7 (Pattern matching with wildcards obfuscator from big
subset obfuscator). For an obfuscation scheme O for the big subset func-
tionality, there exists an obfuscator O′ for the pattern matching with wildcards
functionality such that:

1. If O is T -VBB secure with simulators making Q black box queries, then O′
is (T +Q2n/2)-VBB secure.

2. If O is T -VBB secure with simulators making Q black box queries, then O′
is (T +Q(2w +n))-VBB secure for pattern matching with up to w wildcards.

3. For a sequence of distributions {D′n}n∈N of length n patterns, let Dn =
(YD′n , 2n, n), where for pattern ρ, the subset Yρ is defined as

2i− j ∈ Yρ ⇔ ρi = ? or ρi = j .

Then, if O is D-DVBB secure with simulators that don’t make black box
queries, then O′ is D′-DVBB secure with simulators that don’t make black
box queries.

Proof. The obfuscator O′ works as follows:

– To obfuscate a pattern ρ ∈ {0, 1, ?}n the obfuscator O′ simply outputs
O(Yρ, n, 2n).

– To evaluate the Obfuscated program at input x ∈ {0, 1}n, one simply outputs
O(Yρ, 2n, n)(Xx), where

Xx = {2i− j | (i, j) ∈ [n]× {0, 1} s.t. xi = j} .

To prove 1, assume that A is an adversary against the O′ obfuscator, and that
1

p(n) is the desired simulator accuracy. We can use A as an adversary to O, so if

O is T -VBB secure there exists a simulator S, running in time O(T ∗ poly(n)),
such that for sufficiently large n we have∣∣∣∣ Pr

O,A
[A(O(Yρ, 2n, n)) = 1]− Pr

S
[SfYρ,2n,2(1n) = 1]

∣∣∣∣ ≤ 1

p(n)
.

So S is almost a good simulator to prove T -VBB security forO′, the only problem
is that S makes black box queries to fYρ,2n,n instead of to fρ. To solve this

22

problem it suffices to prove that one can answer queries to fYρ,2n,n using at

most O(2n/2) queries to fρ.
If fYρ,2n,n is queried on input X with |X| < n we can return 0 without

making any queries to fρ. We define

Wildcards = {i | 2i ∈ X and 2i− 1 ∈ X} ,
Zeros = {i | 2i ∈ X and 2i− 1 6∈ X} and

Ones = {i | 2i 6∈ X and 2i− 1 ∈ X} .

Since 2|Wildcards| + |Ones| + |Zeros| = |X| ≥ n we have |Wildcards| + |Ones| +
|Zeros| ≥ n/2. This means there are at most 2n/2 inputs x that are zero at the
indices of Wildcards∪ Zeros and one at the indices in Ones. We query fρ at each
of these inputs. If each of these queries returns 0 we know that X 6⊂ Yρ, so we
return 0. If one of the queries returns a 1 we can do n additional black box
queries to fρ to recover the entire pattern ρ and we output 1 only if X ⊂ Yρ.

This shows that there is a simulator S ′ for O′ with negligible simulation error
that runs in time O(T ∗ poly(n) +Q2n/2), which proves 1. For 2 we observe that
if ρ has at most w wildcards, then |Wildcards| ≤ w which implies |Wildcards| +
|Ones|+ |Zeros| ≥ n−w. Therefore we can answer each query to fYρ,2n,n in time
O(2w + n) which proves 2.

To prove 3, assume A is an adversary against the O′ obfuscator and {P ′n}n∈N
a sequence of predicates. Define a sequence of predicates Pn : {P ([2n], 2n, [2n])} →
{0, 1} such that Pn((Yρ, 2n, n)) = P ′n(ρ) for all ρ ∈ 0, 1∗ and with arbitrary be-
havior on other inputs. By assumption there exists a simulator S for (A, P) that
makes no black box queries and with negligible simulation error∣∣∣∣ Pr
(Yρ,2n,n)←Dn

[A(O(Yρ, 2n, n)) = Pn(Yρ, 2n, n)]− Pr
(Yρ,2n,n)←Dn

[S(1n) = Pn(Yρ, 2n, n)]

∣∣∣∣ .
But this simulation error is exactly equal to∣∣∣∣ Pr

ρ←D′n
[A(O′(ρ)) = P ′n(ρ)]− Pr

(ρ←D′n
[S(1n) = P ′n(ρ)]

∣∣∣∣ ,
so S is also a good simulator for (A, P ′), which proves that O′ is D′-DVBB
secure.

6.3 Security Guarantees for Construction of [3]

Since the obfuscator of [3] is an instantiation of the transformation of Theorem 7
with the big subset obfuscator whose VBB security we prove in Theorem 5
we can now derive security guarantees. In particular we derive the 2n/2-VBB
security of the obfuscator and we prove that a sequence of distributions that has
enough min-entropy is automatically DVBB secure. We prove one statement for
distributions that output (Y, n, t) with t ≥ t0 for a certain t0, and one statement

23

for distributions that output (Y, n, t) with a fixed t = t0, and a fixed size of Y
equal to t1. The following follows immediately from combining Theorem 7 with
Theorem 5 (note that VBB security is equivalent to 1-VBB security, because
the T -VBB security definition hides polynomial factors in the runtime of the
simulators).

Theorem 8 (O is 2n/2-VBB secure and 2w-VBB secure.). The obfuscator
for pattern matching with wildcards from [3] is 2n/2-VBB secure. If the func-
tionality is restricted to patterns with at most w(n) wildcards, the obfuscator is
2w-VBB secure.

The DVVB security of the pattern matching obfuscator for a wide variety of
distributions also follows.

Theorem 9 (DVBB security for min-entropy distributions). Let D =
{Dn}n∈N be a sequence of distributions over {0, 1, ?}n and let w(n) be a function
with 0 ≤ w(n) ≤ n, then

1. If the min-entropy of Dn is n + ω(log n), then the obfuscation scheme is
D-DVBB secure with simulators that make no black box queries.

2. If Dn is supported on patterns with w(n) wildcards, and its min-entropy is
log(

(
n

w(n)

)
) + ω(log n), then the obfuscation scheme is D-DVBB secure with

simulators that make no black box queries.

Proof. The embedding of pattern matching instances into big subset instances
ρ 7→ (Yρ, 2n, n) is injective so it preserves min-entropy. Now point 1 of Lemma 2
with t0(2n) = n says that if the min-entropy of D′ = (Yρ, 2n, n) is n+ ω(log n),
then the obfuscation scheme for the big subset functionality is D′-DVBB secure
with a simulator that makes no black box queries. From this, Theorem 7 says that
the obfuscation scheme for pattern matching is D-VBB secure with simulators
that make no black box queries.

To prove 2, we use point 2 of Lemma 2 with t0(2n) = n and t1(2n) = n+w(n).
This tells us that if the min-entropy of Dn is log(

(
n

w(n)

)
) + ω(log n) then the big

subset-obfuscator is DVBB secure. From this, Theorem 7 says that the pattern
matching-obfuscator is D-DVVB secure.

The min-entropy bounds of theorem 9 are almost optimal. The generalized
attack of Lemma 4 gives a distribution which has min-entropy larger than n −
ω(log n). Similarly, we can construct distributions of functions with exactly w(n)
wildcards for which the scheme is not DVBB secure that have min-entropy at
least log(

(
n

w(n)

)
)− ω(log n).

From the min-entropy criteria it follows immediately that the obfuscator
of [3] is DVVB secure for uniform distributions, and uniform distributions with
a fixed number of wildcards.

Theorem 10 (DVBB security for uniform distributions). Let O be the
obfuscator from [3], and let w(n) be a function with n ≤ w(n) ≤ n, such that
n− w(n) is ω(log n) then

24

1. O is DVBB secure for the sequence of uniform distributions of patterns of
length n, and

2. O is DVBB secure for the sequence of uniform distributions of length n
patterns with w(n) wildcards

Proof. There are 3n patterns of length n, so the min-entropy of the uniform
distributions is log(3)n, which is clearly n + ω(log n). The claim now follows
from Theorem 9.

For 2, there are
(

n
w(n)

)
2n−w(n) patterns, so the min-entropy of the distribution

is log(
(

n
w(n)

)
) + n− w(n), so again the claim follows from Theorem 9.

Remark 3. The condition that n − w(n) is ω(log n) is essentially optimal, be-
cause if the number of non-wildcards is O(log n), then an adversary can find
an accepting input in polynomial time and recover the entire pattern with n
additional black box queries.

7 Generalizing the Scheme

A natural question is whether we can generalize the scheme of [3] to create a
scheme that is fully VBB secure. For example, one could hope to introduce some
extra error terms to the scheme to prevent the attack of Sect. 6.1 and get a fully
VBB secure scheme. However, we formulate a big class of generalizations of the
scheme and show that all these schemes suffer from an attack similar the one in
Sect. 6.1. On the positive side we give a variant of the scheme of [3] which has
exactly the same security, but where the obfuscation only consists of n+1 group
elements instead of 2n.

7.1 Framework

At a high level, the construction of [3] consist of a mapping u : {0, 1}n → Zmp
that maps an input x to a vector ux of length m (In the construction we have
m = 2n), and a mapping V that assigns a vector space Vρ to each pattern ρ
in {0, 1, ?}n. An obfuscation of the pattern ρ is then [v]g, where v is a vector,
chosen uniformly from Vρ. To evaluate the obfuscated program at input x the
evaluator computes [u>x · v]g. If this inner product is [0]g the evaluator outputs
1, otherwise it outputs 0. For correctness, we require that ux is orthogonal to
Vρ if and only fρ(x) = 1. This ensures that the obfuscated program outputs 1 if
fρ(x) = 1 with probability 1, and 0 if fρ(x) = 0 with overwhelming probability
1− 1/p.

Definition 10 (Linear-in-the-exponent obfuscation scheme). A linear-
in-the-exponent obfuscation scheme (for pattern matching with wildcards) is a

tuple (u, V,m(n),O), where u is a mapping {0, 1}n → Zm(n)
p and V is a mapping

that sends patterns in {0, 1, ?}n to subspaces of Zm(n)
p such that

ux ∈ V ⊥ρ ⇔ fρ(x) = 1,

25

and O is the obfuscation scheme that in input ρ outputs [v]g, for a uniformly
chosen vector v ∈ Vρ. Note that m(n) has to be bounded by a polynomial, because
otherwise O does not have a polynomial slowdown.

Concretely, in the construction of [3] the mapping u assigns to input x ∈
{0, 1}n the length-2n vector ux whose (2i− j)-th component is the correct poly-
nomial interpolation coefficient if xi = j, and 0 otherwise. For a pattern ρ, the
vector space Vρ = C + Eρ, where

C =
{
{h(i)}i∈[n] |h a degree t− 1 polynomial with h(0) = 0 } ,

and Eρ is the subspace with basis {e2i−j | ρi 6= ? and ρi 6= j}. We have correct-
ness because ux is orthogonal to C regardless of x, and orthogonal to E if and
only if fρ(x) = 1.

7.2 Compression

We observed that ux is orthogonal to C, regardless of x. This is because ux · v
corresponds to looking at certain coefficients of u and doing polynomial inter-
polation on them at 0, while the entries of u ∈ C are precisely the evaluation
of a low degree polynomial h with h(0) = 0. This shows that u sends all the
inputs x to a vector in C⊥, which is a subspace of dimension n + 1. So the
scheme is not using the additional n − 1 dimensions of Z2n

p , which is wasteful.
We can “cut out” these extra dimensions to get a scheme (u′, V ′) which has
more compact obfuscated programs consisting of n+1 group elements instead of
2n, but still has the same security. This compression can be performed for any
linear-in-the-exponent obfuscation scheme (u, V) if 〈ux |x ∈ {0, 1}n〉 6= Zmp .

Theorem 11 (Compressing linear-in-the-exponent schemes). Let (u, V,m,O)
be a linear-in-the-exponent obfuscation scheme, then there exists a scheme (u′, V ′,m′,O′)
such that

m′(n) = dim(〈ux |x ∈ {0, 1}n〉) = dim(〈u′x |x ∈ {0, 1}n〉).

Let T be a function and {Dn}n∈N be a sequence of distributions of length-n
patterns. If O is VBB, T -VBB or D-DVBB secure then O′ is VBB, T -VBB or
D-DVBB secure respectively.

Proof. For any n, let Un = 〈ux |x ∈ {0, 1}n〉 be the space spanned by the ux.
Let m′(n) = dim(Un) and let u1, · · · ,um′(n) be a basis for U and extend this

to a basis u1, · · · , un for all of Zm(n)
p . Let M be the matrix whose columns are

the ui, and M> and M−1 the first m′(n) rows of M> and M−1 respectively.

Now we define u′x = M−1ux and V ′ρ = M>Vρ. Let u be a vector from Vρ and

v′ = M>v, then we have

u′x
> · v′ = u>x ·M−1

>
·M> · v = u>x · v .

26

This shows that the new linear-in-the-exponent obfuscation scheme (u′, V ′,m′,O′)
is correct if the original scheme is.

To prove that the compression preserves security, let A′ be an adversary that
breaks VBB, T -VBB or D-DVBB security of O′, then it is easy to see that the
adversary A that on input [v]g computes [M>v]g and outputs A′([M>v]g) is an
adversary that breaks VBB, T -VBB or D-DVBB security of O respectively.

7.3 Impossibility Result

We have proven that the construction of [3] is essentially only 2n/2-VBB se-
cure. So constructing a simple, efficient and fully VBB secure construction is
still an open problem. A priori, one can hope to find another construction that
follows the linear-in-the-exponent paradigm which is fully VBB secure, or per-
haps something that is 2

√
n-VBB secure. Unfortunately we show that our attack

on the construction of [3] generalizes to a wide class of “natural” linear-in-the
exponent constructions. Recall that our attack on the scheme of [3] allowed to
check whether the first half of an obfuscated pattern consists of wildcards. This
was done by interpolating on the first n values. In the language of the linear-
in-the-exponent framework this means there is a vector o (which corresponds to
polynomial interpolation) that is orthogonal to Vρ for every pattern ρ that has
wildcards in the first n/2 positions. So, given an obfuscated programO(ρ) = [v]g,
one can test if the first half of the obfuscated pattern ρ consists of wildcards by
checking if [o> · v]g = [0]g. One crucial element here for the attack work is that
[o> · v]g 6= [0]g with a large probability if [v]g is the obfuscation of a pattern
that does have non-wildcard characters in the first half of the pattern. For the
construction of [3] this is obviously true.

The same thing happens for general linear-in-the-exponent obfuscation schemes.
We show in Lemma 5 that if a ≤ n

log(m) , then there exist a subset A ⊂ [n] of

size a and a non-zero attack vector o such that o is orthogonal to Vρ for every
pattern ρ that has only wildcards outside of A. If o is not orthogonal to obfus-
cations of uniformly chosen patterns with a non-negligible probability, then this
breaks VBB security (and even 2

n
ω(logn) -VBB security). Note that without loss

of generality we can assume that no vector is orthogonal to every Vρ, because
otherwise we can use the compression trick to obtain a more efficient and equally
secure scheme. Schemes for which each vector is not orthogonal to a significant
fraction of the Vρ are called natural. We then prove that there are no natural
linear-in-the-exponent obfuscation schemes.

Definition 11 (Natural linear-in-the-exponent schemes). A linear-in-the-
exponent obfuscation scheme (u, V,m,O) is called natural if there exists a poly-
nomial p(n) such that for all vectors o

Pr
ρ←{0,1,?}n

[o 6∈ V ⊥ρ] ≥ 1

p(n)
.

Remark 4. All schemes where m(n) = n+ 1 are natural.

27

Lemma 5 (There exist vectors orthogonal to patterns with wildcards
at fixed positions). Let (u, V,m,O) be a linear-in-the-exponent obfuscation
scheme for pattern matching with wildcards. Then if a(n) ≤ n

log(m(n)) then there

exist subsets An ⊂ [n] of size |An| = a(n) and non-zero vectors on such that on
is orthogonal to Vρ for any pattern ρ that has wildcards outside of An.

Proof. Suppose (u, V,m,O) is a linear-in-the-exponent obfuscation scheme for

pattern matching with wildcards. Let a(n) be a function such that 2b
n
a(n)
c >

m(n) then we will prove that there is a subset A ⊂ [n] of size |A| = a together
with a non-zero vector o such that o is orthogonal to Vρ for all patterns ρ such
that ρi = ? for all i outside of A. It suffices to show this in the case that the Vρ
are maximal given the correctness constraints, i.e.

Vρ = 〈ux |x ∈ {0, 1}n : ρ(x) = 1〉⊥ .

Clearly, if we prove there exists a vector o that is orthogonal to the maximal
Vρ, than this o will also be orthogonal to whatever the Vρ are in any other
linear-in-the-exponent obfuscation scheme with the same u map.

For i ∈ [n] and j ∈ {0, 1, ?} let ei,j be the pattern that has the character j
at position i and wildcards at all other positions. Then we have for a general
pattern ρ that fρ(x) = 1 if and only if fei,ρj (x) = 1 for all i ∈ [n]. Therefore we

have that

Vρ = 〈ux |x ∈ {0, 1}n : fei,ρi (x) = 1 ∀i ∈ [n]〉⊥

=

n∑
i=1

〈ux |x ∈ {0, 1}n : fei,ρi (x) = 1〉⊥ =

n∑
i=1

Vei,ρi .

Working towards a contradiction, suppose no A ⊂ [n] of size |A| = a and o
exists. This means that for every set A ⊂ [n] of size |A| = a we have

∩{V ⊥ρ | ρ : ρi = ?∀i 6∈ A} = {0} ,

which is equivalent to
∑
{Vρ | ρ : ρi = ?∀i 6∈ A} = Zm(n)

p . Using the fact that
Vρ =

∑n
i=0 Vei,ρi this is the same as(∑

i∈A
Vei,0

)
+

(∑
i∈A

Vei,1

)
= Zm(n)

p . (6)

Pick dna e disjoint subsets A1, · · · , Ak, each of size a, and define the vector
spaces

V ji =
∑
i∈Ai

Vei,j .

Then Eqn. 6 says that for any i we have V 0
i +V 1

i = Zm(n)
p . At the same time we

have for any y ∈ {0, 1}k that

Vy =

k∑
i=1

V yi
i 6= Znp ,

28

because if ρ is the pattern such that ρi = yj if i ∈ Aj and ρi = ? otherwise,

then Vρ =
∑k
i=1 V

yi
i , and Vρ is not equal to Zmp (n) because by correctness it is

orthogonal to x for any x that is accepted by ρ.
Now we show that the 2k none of the spaces Vy

⊥ are included in the sum of
the other 2k − 1 ones. Indeed, suppose V ⊥y ⊂

∑
y′ 6=y V

⊥
y′ , which is equivalent to

Vy ⊃
⋂

y′ 6=y Vy′ , then after adding Vy to both sides we get

Vy ⊃
⋂

y′ 6=y

(Vy′ + Vy) .

But this is a contradiction because the left hand side is not equal to Zm(n)
p

while each space in the intersection is equal to Zm(n)
p because if yi 6= y′i, then

Vy′ +Vy contains V 0
i +V 1

i = Zm(n)
p . The fact that none of 2k subspaces of Zm(n)

p

is included in the sum of the other 2k − 1 ones implies that m(n) ≥ 2k = 2b
n
a c,

which contradicts the assumption that m(n) < 2b
n
a c.

The following theorem follows readily from Lemma 5 and the discussion
above.

Theorem 12 (Limitations of linear-in-the-exponent obfuscation). There

are no natural linear-in-the-exponent obfuscation schemes that are 2
n

ω(logn) -VBB
secure.

Since every scheme with the minimal dimensionality of m = n+1 is automat-
ically natural, this implies that no VBB secure constructions with m(n) = n+ 1
exist.

Proof. Let a(n) = n
log(m(n)) − 1. Then Lemma 3 says that there exists an An

of size a(n) and vectors on such that o is orthogonal to Vρ for all patterns ρ
that have wilcards outside of An. Sampling uniformly from patterns that have
wildcards outside of An and no wildcards at locations in An are 2a(n)n−ω(1)-
elusive. But obfuscations of these patterns can be efficiently distinguished from
obfuscations of uniformly random patterns (which are also elusive) with the
vectors on, because the former are orthogonal to o, and the latter are not with
non negligible probability (because of the naturality assumption). Then it follows
from Lemma 1 that the scheme is not 2a(n)n−ω(1)-VBB secure. The claim follows
because 2a(n)n−ω(1)) is eventually bigger than 2n/f(n) for every f(n) that is
ω(log n).

Acknowledgements. This work started at ENS over the summer; we thank
Luke Kowalczyk for telling us about [3], as well as Michel Abdalla, Georg Fuchs-
bauer and Hendrik Waldner for helpful discussions. This work was supported
in part by the Research Council KU Leuven: C16/15/058, C14/18/067 and
STG/17/019. In addition, this work was supported by the European Commis-
sion through the Horizon 2020 research and innovation programme under grant
agreement H2020-DS-LEIT-2017-780108 FENTEC, by the Flemish Government

29

through FWO SBO project SNIPPET and by the IF/C1 on Cryptanalysis of
post-quantum cryptography. Ward Beullens is funded by an FWO fellowship.
Hoeteck Wee is supported by ERC Project aSCEND (H2020 639554).

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im) possibility of obfuscating programs. In: CRYPTO. pp. 1–18.
Springer (2001)

2. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for ob-
fuscating conjunctions. Cryptology ePrint Archive, Report 2018/936 (2018),
https://eprint.iacr.org/2018/936

3. Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A simple
obfuscation scheme for pattern-matching with wildcards. In: CRYPTO. pp. 731–
752. Springer (2018)

4. Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation.
In: Annual Cryptology Conference. pp. 520–537. Springer (2010)

5. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: CRYPTO, Part II.
pp. 416–434 (2013)

6. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring LWE. In: ITCS. pp. 147–156. ACM (2016)

7. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: CRYPTO. pp. 455–469. Springer (1997)

8. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 489–508. Springer (2008)

9. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership.
In: TCC. pp. 72–89. Springer (2010)

10. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: CRYPTO. pp. 445–456. Springer (1991)

11. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: CRYPTO. pp. 33–62. Springer (2018)

12. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing 45(3), 882–929 (2016)

13. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS. pp. 612–621
(2017)

14. Hada, S.: Zero-knowledge and code obfuscation. In: ASIACRYPT. pp. 443–457
(2000)

15. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: International conference on the theory and applications of cryptographic
techniques. pp. 20–39. Springer (2004)

16. Wee, H.: On obfuscating point functions. In: STOC. pp. 523–532. ACM (2005)
17. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.

In: FOCS. pp. 600–611 (2017)

30

