
A Revocable Group Signature Scheme with Scalability from Simple

Assumptions and Its Application to Identity Management∗

Keita Emura§ and Takuya Hayashi§

§National Institute of Information and Communications Technology (NICT), Japan.
{k-emura, t-hayashi}@nict.go.jp

August 19, 2019

Abstract

Group signatures are signatures providing signer anonymity where signers can produce signa-
tures on behalf of the group that they belong to. Although such anonymity is quite attractive
considering privacy issues, it is not trivial to check whether a signer has been revoked or not. Thus,
how to revoke the rights of signers is one of the major topics in the research on group signatures. In
particular, scalability, where the signing and verification costs and the signature size are constant
in terms of the number of signers N , and other costs regarding signers are at most logarithmic
in N , is quite important. In this paper, we propose a revocable group signature scheme which is
currently more efficient compared to previous all scalable schemes. Moreover, our revocable group
signature scheme is secure under simple assumptions (in the random oracle model), whereas all
scalable schemes are secure under q-type assumptions. We implemented our scheme by employing
Barreto-Lynn-Scott curves of embedding degree 12 over a 455-bit prime field (BLS-12-455), and
Barreto-Naehrig curves of embedding degree 12 over a 382-bit prime field (BN-12-382), respectively,
by using the RELIC library. We showed that the online running times of our signing algorithm
were approximately 14 msec (BLS-12-455) and 11 msec (BN-12-382), and those of our verification
algorithm were approximately 20 msec (BLS-12-455) and 16 msec (BN-12-382), respectively. Fi-
nally, we showed that our scheme is applied to an identity management system proposed by Isshiki
et al.

1 Introduction

1.1 Revocable Group Signature

Group signatures [26] have been widely recognized as an extension of digital signatures. In conventional
signature schemes, a signer-specific public key is used for verifying signatures whereas in a group
signature scheme, a group public key is used. Thus signers are anonymous since a verifier just verifies
that a signer belongs to the group. Although such anonymity is quite attractive considering privacy
issues, on the other hand, it makes it difficult to provide revocation function. Furthermore, how to
revoke the rights of signers in group signatures is not trivial. In the early stage, either the signing cost
or the verification cost depend on the number of revoked signers R. Camenisch and Lysyanskaya [25]
proposed a method to revoke users by using accumulators, where the signing algorithm requires O(R)

∗An extended abstract appears in the 21st Information Security Conference (ISC) 2018 [35]. This is the full version.
We additionally considered weak opening soundness [71] and showed that our scheme can be applied to an identity
management system [46]. See Section 6 for details. We also additionally gave the implementation result of the Judge
algorithm.

1

computations. Boneh and Shacham [20] proposed group signatures with verifier-local revocation (VLR-
GS). In VLR-GS [20, 53, 59, 58, 63, 62, 77, 75], no signer is involved to the revocation procedure.
As a drawback, the verification cost is O(R), and is not constant. Moreover, VLR group signature
schemes provide a weaker security level called selfless anonymity.1 In 2009, Nakanishi, Fujii, Hira, and
Funabiki [61] broke this barrier by proposing a revocable group signature scheme with constant costs for
signing and verifying. One drawback of their scheme is that the public key size isO(

√
N) whereN is the

maximal number of signers. Later, Fan, Hsu, and Manulis [39] proposed a revocable group signature
scheme with not only constant signing/verification costs but also constant size public key. However, the
size of the revocation list is O(N). Slamanig et al. [73] proposed linking-based revocation, and gave an
instantiation based on the Delerablée-Pointcheval group signature scheme [32] by employing a generic
compiler [72]. They introduced a dedicated authority, which they call revocation authority (RA),
that can extract a revocation token from signatures by using a secret linking key. By using a simple
look-up operation (and cuckoo hashing), the constant-time revocation check is realized. However,
signatures are not publicly verifiable in the sense that the revocation check requires the secret linking
key. Recently, some VLR-type schemes realized sub-linear/constant verification costs [51, 69, 34, 36].
As a drawback, these schemes do not provide unlinkability, that is, they employed linkable parts
contained in signatures for efficiently executing verification procedure.

A major breakthrough was implemented by Libert, Peters, and Yung (LPY) [56] in 2012. In
the LPY scheme, a group manager periodically publishes a revocation list that contains ciphertexts of
broadcast encryption which will be decrypted by non-revoked signers. A non-revoked signer proves the
decryption ability of a ciphertext. The LPY scheme is scalable in the sense that it provides not only
constant signing and verification costs, but also other costs regarding signers are at most logarithmic
in N . They gave two schemes based on the complete subtree (CS) and the subset difference (SD)
methods [65]. They further improved the efficiency of the LPY schemes by proposing a revocable
group signature scheme with constant-size certification [55]. As followers of the LPY works, revocable
group signatures with compact revocation list size were proposed [6, 7, 64, 70].

1.2 Actual Efficiency of Revocable Group Signatures with Scalability

Although the LPY scheme and other similar schemes are “asymptotically” very efficient, these schemes
are not sufficiently efficient in practice. One reason for its inefficiency is that these schemes did not
rely on random oracles, but rather employed the Groth-Sahai proofs [43]. Of course, avoiding random
oracles and constructing schemes in the standard model are quite meaningful from a theoretical point
of view. However, in general, random oracles yield efficient schemes, especially, in the group signature
context. For example, the signature size of the LPY scheme is approximately 100 group elements,
and even if we exclude revocation functionality, the signature size of the Groth scheme [42] and the
(non-revocable) Libert-Peters-Yung scheme [57], which are recognized as the most efficient group
signature schemes in the standard model, are approximately 50 group elements. On the other hand,
we can construct (non-revocable) group signature schemes whose signature size are less than 10 group
elements when random oracles are introduced, e.g., Boneh-Boyen-Shacham [19], Furukawa-Imai [41,
45], Delerablée-Pointcheval [32], Bichsel et al. [18], Pointcheval-Sanders [68], Derler-Slamanig [33], and
Libert-Mouhartem-Peters-Yung [54]. 2

In terms of the running time of signing and verification, Begum et al. [13] gave an implementation
of the Nakanishi-Funabiki scheme [64], which is a revocable group signature with scalability secure in
the standard model, where the running time of the signing algorithm and the verification algorithm are
approximately 500 msec and 900 msec, respectively. They employed Barreto-Naehrig (BN) curves [12]

1Recently, Ishida et al. [44] showed that fully anonymous VLR group signatures can be realized. However, they
employed general NIZK proofs and no concrete instantiation has been proposed so far.

2As an exception, very recently, Clarisse and Sanders [29] proposed an efficient (non-revocable) group signature scheme
secure in the standard model. The signature size is just 5 group elements.

2

Table 1: Comparison of Revocable Group Signature Schemes with Scalability
Scheme Public key Signature Certificate Revocation list Signing Verification Std/ Assumption

Size Size† Size Size Cost Cost ROM§

LPY1(CS) [56] O(1) O(1) (96) O(logN) O(R · log(N/R)) O(1) O(1) Std q-Type

LPY2(SD) [56] O(logN) O(1) (96) O(log3N) O(R) O(logN)‡ O(1) Std q-Type

LPY3 [55] O(logN) O(1) (144) O(1) O(R) O(1) O(1) Std q-Type

AEHS [6, 7] O(1) O(1) (98) O(Rmax) O(1) O(R)‡ O(1) Std q-Type

NF [64] O(T logN) O(1) (143) O(T) O(R/T) O(T)‡ O(1) Std q-Type

SN [70] O(T + logN) O(1) (299) O(1) O(R/T) O(T)‡ O(1) Std q-Type

Ohara et al. [66] O(1) O(1) (18) O(logN) O(R · log(N/R)) O(1) O(1) ROM q-Type

Our Scheme O(1) O(1) (16) O(logN) O(R · log(N/R)) O(1) O(1) ROM Simple

N : The maximum number of group members.
R: The number of revoked signers.
Rmax: The maximum number of revoked signers.
T : The parameter of the accumulated/vector commitment value in [64, 70].

† We denote the number of group elements contained in a group signature on (). This number contains both the number of G elements and Zp elements.
‡ This complexity is only required at the first signature generation of each revocation epoch.
§ Standard Model / Random Oracle Model

over a 254-bit prime field and the embedding degree is 12, and utilized a library based on the “Cross-
twisted χ-based Ate (Xt-Xate) pairing” [4]. On the other hand, Emura, Hayashi, and Ishida [37]
proposed a group signature scheme with time-bound keys secure in the random oracle model, where
each signing key is associated with an expiry time, and they showed that the running time of their
signing and verification algorithms were less than 4 msec and 12 msec, respectively. They also employed
the BN curves over a 254-bit prime field, and utilized the RELIC library [5]. Of course we cannot
directly compare these two implementation results due to differences in the functionalities and the
selection of the underlying elliptic curves and parameters. However, these results somewhat indicate
that group signature schemes in the random oracle model are significantly more efficient than those
in the standard model.

In actual usage, Intel Software Guard Extensions (SGX) [2] employs the Intel Enhanced Privacy
Identification (EPID) scheme [1, 23], and the EPID scheme builds on top of the Boneh-Boyen-Shacham
group signature scheme [19] and the Furukawa-Imai group signature scheme [41, 45]. These group
signature schemes are secure in the random oracle model. Thus, improving efficency of revocable
group signature schemes in the random oracle model seems meaningful for a practical usage. To the
best of our knowledge, the Ohara et al. revocable group signature scheme [66] is the only scheme
that provides scalability in the random oracle model. The costs of the Ohara et al. scheme are
asymptotically the same as those of the CS-based LPY group signature scheme [56]. Moreover the
Ohara et al. scheme is significantly more efficient than the LPY scheme due to the random oracle. For
example, the signature size of the Ohara et al. scheme is 18 group elements whereas that of the LPY
scheme is 98 group elements. One drawback of the Ohara et al. scheme is the underlying complexity
assumptions, i.e., their scheme relies on a q-type assumption. Due to the Cheon attack [27], employing
q-type assumption should be avoided as much as possible. Thus, proposing an efficient revocable group
signature scheme with scalability from simple assumptions is still an open problem.

1.3 Our Contribution

In this paper, we propose a revocable group signature scheme with scalability from simple assumptions,
and give its implementation results. Our scheme is more efficient than previous all scalable schemes.
We summarized the efficiency of scalable schemes in Table 1. As in [56, 66], we only count arithmetic
operations here. We employed the methodology proposed by Ohara et al. [66], where the group
manager publishes a revocation list containing signatures of non-revoked signers, and a signer proves
that a signature corresponding to the signer is contained in the revocation list. In addition to this,
we employed the signature scheme proposed by Libert-Mouhartem-Peters-Yung (LMPY) [54] which
is secure under a simple assumption. The signature size of the LMPY scheme is constant regardless

3

of the number of message blocks due to the Kiltz-Wee quasi-adaptive non-interactive zero-knowledge
(QA-NIZK) arguments for linear subspaces [50]. Libert et al. proposed a group signature scheme
based on the LMPY signature scheme. Since the scheme does not provide revocation functionality,
our scheme can also be seen as a modification of the Libert et al. group signature scheme by adding
revocation functionality without additional complexity assumptions.

Finally, we implemented our scheme by employing Barreto-Lynn-Scott curves [11] of embedding de-
gree 12 over a 455-bit prime field (BLS-12-455), and Barreto-Naehrig curves [12] of embedding degree
12 over a 382-bit prime field (BN-12-382), respectively, by using the RELIC library. We showed that
the online running times of our signing algorithm were approximately 14 msec (BLS-12-455) and 11
msec (BN-12-382), and those of our verification algorithm were approximately 20 msec (BLS-12-455)
and 16 msec (BN-12-382), respectively.

As differences from proceedings version [35], we additionally considered weak opening sound-
ness [71] and showed that our scheme can be applied to an identity management system [46]. See
Section 6 for details. We also additionally gave the implementation result of the Judge algorithm.

2 Preliminaries

2.1 Cryptographic Assumptions

In this subsection, we give the definitions of the Decisional Diffie-Hellman (DDH) assumption, the Sym-
metric eXternal Diffie-Hellman (SXDH) assumption, and the Symmetric Discrete Logarithm (SDL)
assumption. Let λ ∈ N be a security parameter. Let G, Ĝ, and GT be groups with prime order p > 2λ,
and e : G× Ĝ→ GT be a bilinear map. For g ∈ G and ĥ ∈ Ĝ, e(g, ĥ) 6= 1GT holds unless g 6= 1G and

ĥ 6= 1Ĝ.

Definition 2.1 (DDH Assumption). Let a, b
$← Z∗p and Z

$← G \ {gab}. We say that the DDH
assumption holds in G if for any probabilistic polynomial time (PPT) adversary A, the advantage
AdvDDH(λ) := |Pr[A(g, ga, gb, gab)→ true]− Pr[A(g, ga, gb, Z)→ true]| is negligible.

Definition 2.2 (SXDH Assumption). We say that the SXDH assumption holds if the DDH assumption
holds in both G and Ĝ.

Definition 2.3 (SDL Assumption [54]). Let a
$← Z∗p. We say that the SDL assumption holds in

(G, Ĝ,GT) if for any PPT adversary A, the advantage AdvSDL(λ) := Pr[A(g, ĝ, ga, ĝa)→ a] is negli-
gible.

2.2 QA-NIZK Arguments for Linear Subspaces

In this subsection, we introduce the Kiltz-Wee QA-NIZK arguments for linear subspaces [50] that
prove membership in the row space of a matrix M. As in [54], we assume that all algorithms take
as input the description of common public parameters cp = (G, Ĝ,GT , p). In QA-NIZK proofs, the
common reference string (CRS) may depend on the language to be proved. In the Kiltz-Wee case,
it depends a matrix M. As in [54], for soundness, M is required to be witness-samplable where the
reduction has to know the discrete logarithms of the group elements of M.

Bold capital letters, such as M, denote matrices, and bold lowercase letters, such as v, denote
vectors. For M ∈ Gt×n, we denote M = (Mi,j)i∈[1,t],j∈[1,n] = (~M1, . . . , ~Mt)

T where Mi,j ∈ G for

i ∈ [1, t] and j ∈ [1, n] and ~Mi = (Mi,1,Mi,2, . . . ,Mi,n) for i ∈ [1, t].

QA.KeyGen(cp,M): This CRS and trapdoor generation algorithm takes as input cp and a matrix M

where M = (Mi,j)i∈[1,t],j∈[1,n] ∈ Gt×n. Choose ĝz
$← Ĝ and a trapdoor tk = (χ1, . . . , χn)

$← Znp .

4

Compute ĝj = ĝ
χj
z for all j ∈ [1, n]. Compute zi =

∏n
j=1M

−χj
i,j for all i ∈ [1, t]. Output the

common reference string crs = ({zi}ti=1, ĝz, {ĝj}nj=1) ∈ Gt × Ĝn+1 and the trapdoor tk ∈ Znp .

Prove(crs,v, {ωi}ti=1): The proof generation algorithm takes as input crs = ({zi}ti=1, ĝz, {ĝj}nj=1), a

vector v, and witnesses {ωi}ti=1 where v = ~Mω1
1 · ~Mω2

2 · · · ~M
ωt
t = (

∏t
i=1M

ωi
i,1, . . . ,

∏t
i=1M

ωi
i,n)

holds. Output a proof π =
∏t
i=1 z

ωi
i which proves that v is a linear combination of the rows of

M.

Sim(tk,v): The simulation algorithm takes as input tk = (χ1, . . . , χn) and v = (v1, . . . , vn) ∈ Gn, and

output a simulated proof π =
∏n
j=1 v

−χj
j .

Verify(crs,v, π): The verify algorithm takes as input crs = ({zi}ti=1, ĝz, {ĝj}nj=1), v = (v1, . . . , vn), and
π, and output 1 if (v1, . . . , vn) 6= (1G, . . . , 1G) and 1GT = e(π, ĝz)

∏n
j=1 e(vj , ĝj) hold, and 0

otherwise.

As we can see,
∏n
j=1 e(vj , ĝj) =

∏n
j=1 e(vj , ĝ

χj
z) = e(

∏n
j=1 v

χj
j , ĝz) hold. Since π =

∏n
j=1 v

−χj
j , the

equation above holds. For the sake of clarity, π is described as

π =
t∏
i=1

(
n∏
j=1

M
−χj
i,j)ωi

=
t∏
i=1

(M−χ1
i,1 M−χ2

i,2 · · ·M−χni,n)ωi

= (M−χ1
1,1 M−χ2

1,2 · · ·M
−χn
1,n)ω1 · · · (M−χ1

t,1 M−χ2
t,2 · · ·M

−χn
t,n)ωt

= (Mω1
1,1M

ω2
2,1 · · ·M

ωt
t,1)−χ1 · · · (Mω1

1,nM
ω2
2,n · · ·M

ωt
t,n)−χn

=
n∏
j=1

v
−χj
j

It is particularly worth noting that the proof size is constant regardless of the dimensions of the
considered linear subspace.

2.3 The LMPY Signature Scheme

In this subsection, we introduce a signature scheme proposed by Libert-Mouhartem-Peters-Yung
(LMPY) [54] which is unforgeable under the SXDH assumption. The signature scheme can efficiently
sign block messages in Z`p. By employing the Kiltz-Wee QA-NIZK arguments, the signature size is
constant regardless of the number of blocks `. Moreover, the verification algorithm requires just 5
pairings.

Sig.KeyGen(λ, `): The key generation algorithm takes as input a security parameter λ and the block

size `. Choose bilinear groups cp = (G, Ĝ,GT , p) where p > 2λ and g
$← G and ĝ

$← Ĝ. Choose

ω, a
$← Zp and set h = gω and Ω = hω. Choose v = (v1, . . . , v`,W)

$← G`+1. For g ∈ G
and the identity matrix I`+1, we denote gI`+1 as the (` + 1) × (` + 1) matrix whose diagonal
components are g and other all elements are 1G. Let 1`+1 = (1G, . . . , 1G) ∈ G`+1. Set a matrix
M ∈ G(`+2)×(2`+4) as

M =

(
g 1`+1 1`+1 h

vT gI`+1 hI`+1 1T
`+1

)

5

Run QA.KeyGen(cp,M), and get crs = ({zi}`+2
i=1 , ĝz, {ĝj}

2`+4
j=1) and tk ∈ Z2`+4

p . Output the signing
key sk = ω, and the verification key vk = (cp, g, h, ĝ,v,Ω, crs).

Sig.Sign(vk, sk,m = (m1, . . . ,m`)): The signing algorithm takes as input vk = (cp, g, h, ĝ,v,Ω, crs),

sk = ω, and messages to be signed m = (m1, . . . ,m`). Choose s
$← Zp and compute σ1 =

gω(vm1
1 · · · vm`` ·W)s, σ2 = gs, and σ3 = hs. Set v = (σ1, σ

m1
2 , . . . , σm`2 , σ2, σ

m1
3 , . . . , σm`3 , σ3,Ω) ∈

G2`+4, and run the Prove algorithm to generate a proof π where v is in the row space of M.
The QA-NIZK proof π ∈ G is described as π = zω1 (zm1

2 · · · z``+1 · z`+2)s. Output the signature
σ = (σ1, σ2, σ3, π) ∈ G4.

Sig.Verify(vk, σ,m): The verification algorithm takes as input vk = (cp, g, h, ĝ,v,Ω, crs), σ = (σ1, σ2, σ3, π),
and m = (m1, . . . ,m`). Output 1 if the following holds, and 0 otherwise.

e(Ω, ĝ2`+4)−1

=e(π, ĝz)e(σ1, ĝ1)e(σ2, ĝ
m1
2 · · · ĝm``+1 · ĝ`+2)e(σ3, ĝ

m1
`+3 · · · ĝ

m`
2`+2 · ĝ2`+3)

The following theorem was given in [54].

Theorem 2.1 ([54]). The LMPY signature scheme is existentially unforgeable under chosen-message
attacks (EUF-CMA) if the SXDH assumption holds in (G, Ĝ,GT).

We remark that a signature is publicly re-randomizable, i.e., for a valid signature-message pair
σ = (σ1, σ2, σ3, π) and m = (m1, . . . ,m`), and a randomness s ∈ Zp,

(σ1 · (vm1
1 · · · vm`` ·W)s, σ2 · gs, σ3 · hs, π · (zm1

2 · · · z``+1 · z`+2)s)

is also a valid signature on m.

2.4 Sigma Protocols

Sigma protocols are three-move honest-verifier zero-knowledge protocols. First the prover takes as
input a statement and a witness, and sends a commitment com to the verifier. Next, the verifier,
that also takes as input the statement, sends a challenge chall to the prover. Finally, the prover sends
a response resp to the verifier. We require special soundness, where given two accepted transcripts
(com1, chall1, resp1) and (com2, chall2, resp2) with the condition com1 = com2 and chall1 6= chall2, there
is an extractor Extract that takes as input a statement s and two transcripts above, and outputs a
witness ω that satisfies L(s, ω) = 1. Moreover, we also require special honest verifier zero knowledge
(SHVZK), where there is a simulator Sim that takes as input a statement s and a challenge chall, and
outputs a transcript (com, chall, resp) that is indistinguishable from transcripts produced by the prover
and the verifier as above. See [54] for the formal definition.

Moreover, we require sigma protocols to have quasi unique responses. Informally, for a statement s,
and first two moves of the protocol, com and chall, no adversary can find responses resp and resp′ which
are both accepted but resp 6= resp′. If the success probability is zero, then it is called unique responses,
or it is also known as strict soundness [74]. See [40] for the formal definition. Faust et al. [40] proved
that if a sigma protocol has quasi unique responses, then the NIZK proof system derived via the Fiat-
Shamir transformation is simulation-sound. Simulation soundness guarantees that even after seeing
accepting proofs produced by the simulator, for both true and false statements, soundness holds. In
our group signature scheme, the underlying NIZK proof system is required to be simulation sound for
providing CCA anonymity where an adversary is allowed to access the opening oracle.

6

2.5 Complete Subtree Method

In this section, we introduce the Complete Subtree (CS) method [65]. Let N be the set of all signers,
and R ⊂ N be the set of revoked signers. By using the CS method, N \R is divided into num disjoint
sets such as N \R = S1 ∪ · · · ∪ Snum, and num = O(R · log(N/R)) where N = |N | and R = |R|.

Definition 2.4 (CS Algorithm). The CS algorithm takes as input a binary tree BT and a set of
revoked signers Rt where i ∈ Rt when a signer with index i is revoked at time t, and outputs a set of
nodes. The description of CS is given below.

CS(BT,Rt) :
X, Y← ∅;
∀i ∈ Rt

Add Path(i) to X;
∀x ∈ X

If xleft 6∈ X then add xleft to Y;
If xright 6∈ X then add xright to Y;

If |RLt| = 0 then add root to Y;
Return Y;

3 Revocable Group Signatures

In this section, we give the syntax and correctness definitions of revocable group signature. We use
the LPY definitions [56, 55] which are modified from the Kiayias-Yung (KY) model [48, 47] to match
the revocation functionality. Lifetime is divided into revocation epochs. At the beginning of each
revocation epoch t, the group manager (GM) publishes an revocation list RLt.

A revocable group signature scheme R-GS consists of 6 algorithms (Setup, Join,Revoke,Sign,Verify,
Open) as follows:

Definition 3.1 (Revocable Group Signature).

Setup(1λ, N): The setup algorithm takes as inputs a security parameter λ ∈ N and a maximal number
of members N ∈ N, and outputs a group public key gpk, the GM private key for revocation SGM,
and the opening authority (OA) private key for opening SOA. Moreover, the algorithm initializes
a public state St comprising a set data structure Stusers = ∅ and a string data structure Sttrans = ε.

JoinGM,Ui: The interactive protocol for joining between GM and a signer Ui (whose identity is IDi) in-
volves two interactive Turing machines Juser and JGM which execution is denoted as [Juser(gpk), JGM
(St, gpk,SGM)]. Ui obtains a membership secret seci and a membership certificate certi. We as-
sume that IDi is contained in seci. If the protocol is successfully done, GM updates Stusers ←
Stusers ∪ {IDi} and Sttrans ← Sttrans||〈i, transcripti〉.

Revoke(gpk,SGM, t,Rt ⊂ Stusers): The revocation algorithm takes as input gpk, SGM, a revocation epoch
t, and a set of revoked signers Rt ⊂ Stusers, and outputs an updated revocation list RLt which
contains Rt.

Sign(gpk, t, RLt, cert, sec,M): The signing algorithm takes as input gpk, a time t, RLt, cert, sec, and
a message M to be signed, and outputs ⊥ if ID ∈ Rt, and a group signature Σ, otherwise.

7

Verify(gpk, t, RLt,Σ,M): The verification algorithm takes as input gpk, t, RLt, Σ, and M , and outputs
1 or 0 which mean valid or invalid, respectively.

Open(gpk,SOA, t,Σ,M, St): The opening algorithm takes as input gpk, SOA, t, Σ, M , and St :=
(Stusers, Sttrans), and outputs ⊥ if the opening is failure, and i such that IDi ∈ Stusers ∪ {⊥},
otherwise.

Next, we define correctness. Let St be a public state, and St is said to be valid if it can be reached
from St = (∅, ε) by a Turing machine having oracle access to JGM. A state St′ is said to be extended
another state St if it can be reached from St. As in [47, 48, 55, 56] we use the notation certi
gpk seci
to express that there exist coin tosses $ for JGM and Juser such that, for some valid state St′, the
execution of [Juser(gpk), JGM(St, gpk,SGM)]($) provides Juser with 〈i, certi, seci〉.

Definition 3.2 (Correctness). We say that a revocable group signature scheme R-GS is correct if:

1. In a valid state St = (Stusers, Sttrans), the condition |Stusers| = |Sttrans| holds, and no two entries
of Sttrans can contain certificates with the same tag.

2. If [Juser(gpk), JGM(St, gpk,SGM)] is honestly run by both parties and 〈i, certi, seci〉 is obtained by
Juser, then certi
gpk seci holds.

3. For each t and any 〈i, certi, seci〉 satisfying condition 2,

Verify(gpk, t, RLt,Sign(gpk, t, RLt, cert, sec,M),M) = 1

holds if i 6∈ Rt.

4. For any 〈i, certi, seci〉 resulting from the interaction [Juser(·, ·), JGM(·, St, ·, ·)] for some valid state
St, any t s.t. i 6∈ Rt, Open(gpk,SOA, t,Σ,M, St) = i holds where Σ← Sign(gpk, t, RLt, cert, sec,M).

We introduce three security definitions, misidentification, non-frameability, and anonymity. Before
that, we introduce variables and oracles as follows:

• stateI : This is a data structure which is initialized as stateI = (St, gpk,SGM,SOA)← Setup(1λ, N).
This structure represents the state of the interface as the adversary invokes the various oracles,
and includes a counter t which indicates the number of signer revocation queries so far (i.e., the
current revocation epoch).

• n = |Stusers|: This is the current cardinality of the group.

• Sigs: This is a set of signatures Sigs created by the signing oracle. Each entry is represented as
(i, t,M,Σ), where Σ is a group signature on M signed by Ui at t.

• Ua: This is the set of corrupted signers who were introduced by the adversary A via an execution
of the join protocol.

• U b: This is the set of honest signers who were added in the system by the join protocol with the
adversary A who acts a dishonest GM. A can obtain the transcript of the join protocol, but A
cannot obtain sec.

• Qpub, QkeyGM, and QkeyOA: When these oracles are invoked, the interface looks up stateI , and
returns gpk, SGM, or SOA, respectively.

• Qa-join: This is the join oracle for a corrupted signer. On behalf of GM, the interface runs JGM
in interaction with Juser which is run by the adversary. If this protocol successfully ends, the
interface increments n ← n + 1, add IDn to Ua, and updates St s.t. Stusers ← Stusers ∪ {IDn}
and Sttrans ← Sttrans||〈n, transcriptn〉.

8

• Qb-join: This is the join oracle for an honest signer. On behalf of a signer, the interface runs
Juser in interaction with JGM which is run by the adversary. If this protocol successfully ends,
the interface increments n← n+ 1, add IDn to U b, and updates St s.t. Stusers ← Stusers ∪ {IDn}
and Sttrans ← Sttrans||〈n, transcriptn〉. Moreover, the interface stores certn and secn in a private
part of stateI .

• Qsig: This is the signing oracle. Given (i,M), the interface checks whether the private area
of stateI contains (certi, seci) or not, and also checks i 6∈ Rt, where t is the current revocation
epoch. In no such (certi, seci) with i 6∈ Rt exist or IDi 6∈ U b, then return ⊥. Otherwise, the
interface runs Σ← Sign(gpk, t, RLt, certi, seci,M), updates Sigs← Sigs||(i, t,M,Σ), and returns
Σ.

• Qopen: This is the opening oracle. Given (M,Σ), the interface runs Open(M,Σ, gpk, t,SOA, St)
using the current state St, and returns its output result.

• Q¬Sopen: This is the restricted opening oracle. Let S be a set with the form (M,Σ, t). Given
(M,Σ, t) the oracle returns the result of Open(gpk,SOA, t,Σ,M, St) if (M,Σ, t) 6∈ S.

• Qread and Qwrite: These are reading and writing oracles, respectively, in order to read/write
stateI . Qread outputs the whole stateI but the public/private keys and the private part of stateI
where membership secrets are stored after Qb-join queries. The adversary can modify stateI via
Qwrite at will as long as it does not remove or alter elements of Stusers, Sttrans, or invalidate the
public state St.

• Qrevoke: This is the revocation oracle. Given an index i ∈ N such that IDi ∈ Stusers, the interface
checks whether IDi is contained in the appropriate user set (i.e., either Ua or U b) or not, and
whether 〈i, transcripti〉 s.t. i 6∈ Rt is contained in Sttrans or not, where t is the current revocation
epoch. If not, then return ⊥. Otherwise, the interface increments t ← t + 1, adds i to Rt,
and updates RLt. We assumed that the adversary only revokes one signer per query to Qrevoke.
However, it can be easily extended to allow multiple signers revocation at once.

Moreover, we define the IsRevoked algorithm. This algorithm takes as input (sec, cert, RLt), and
outputs 1 if a signer who has (sec, cert) is contained in RLt, and 0 otherwise.

Next we introduce three security definitions, misidentification, non-frameability, and anonymity.
Briefly, misidentification guarantees that no adversary (who does not have SGM) can produce a valid
group signature whose opening result is in outside of the set of non-revoked adversarially-controlled
signers. Non-frameability guarantees that no adversary (who can corrupt GM and OA) can produce
a group signature whose opening result is an honest signer. Anonymity guarantees that no adversary
(who does not have SOA) can distinguish whether signers of two group signatures are the same or not.

Definition 3.3 (Misidentification). Let A be an adversary and C be the challenger. C runs stateI =
(St, gpk,SGM,SOA) ← Setup(1λ, R). A is allowed to access Qpub, Qa-join, Qrevoke, Qread, and QkeyOA.
Finally, A outputs (M∗,Σ∗). We say that A wins if (1) Verify(gpk, t∗, RLt∗ ,Σ

∗,M∗) = 1, where t∗ is
the challenge revocation epoch, and (2) for i∗ ← Open(gpk,SOA, t

∗,Σ∗,M∗, St′), i∗ 6∈ Ua \ Rt∗. Let
Advmis−id

A (λ) := Pr[A wins]. We say that R-GS is secure against misidentification attack if for all

PPT A, Advmis−id
A (λ) is negligible.

Definition 3.4 (Non-frameability). Let A be an adversary and C be the challenger. C runs stateI =
(St, gpk,SGM,SOA)← Setup(1λ, R). A is allowed to access Qpub, QKeyGM, QkeyOA, Qb-join, Qrevoke, Qsig,
Qread, and Qwrite. Finally, A outputs (M∗,Σ∗, t∗, RLt∗). We say that A wins if (1) Verify(gpk, t∗, RLt∗ ,
Σ∗,M∗) = 1, and (2) for i∗ ← Open(gpk,SOA, t

∗,Σ∗,M∗, St′), i∗ ∈ U b and (i∗, t∗,M∗,Σ∗) 6∈ Sigs. Let
AdvnfA (λ) := Pr[A wins]. We say that R-GS is non-frameable if for all PPT A, AdvnfA (λ) is negligible.

9

Definition 3.5 (Anonymity). Let A be an adversary and C be the challenger. C runs stateI =
(St, gpk,SGM,SOA) ← Setup(1λ, R). A is allowed to access Qpub, QKeyGM, Qrevoke, Qopen, Qread,
and Qwrite. A outputs (aux,M∗, t∗, RLt∗ , (cert∗0, sec∗0), (cert∗1, sec∗1)). For d ∈ {0, 1}, if (cert∗d
gpk

sec∗d), IsRevoked(sec∗d, cert∗d, RLt∗) = 0, and cert∗0 6= cert∗1, then C chooses b
$← {0, 1}, computes Σ∗ ←

Sign(t∗, RLt∗ , cert∗b , sec∗b ,M
∗), and sends Σ∗ to A. Then A is allowed to access Qpub, QKeyGM, Qopen,

Qread, and Qwrite, with one exception that A is not allowed to send (M∗,Σ∗, t∗) to Qopen. Finally, A
outputs b′ ∈ {0, 1}. Let AdvanonA (λ) := |Pr[b = b′] − 1

2 |. We say that R-GS is anonymous if all PPT
A, AdvanonA (λ) is negligible.

4 Proposed Revocable Group Signature Scheme

In this section, we give our proposed revocable group signature scheme.

Employing the Ohara et al. Methodology for LMPY Signatures: We employed the method-
ology proposed by Ohara et al. [66], where the group manager publishes a revocation list containing
signatures of non-revoked signers, and a signer proves that a signature corresponding to the signer is
contained in the revocation list. More concretely, each signer is assigned to a leaf node of a binary
tree. A signer, who has the identity ID, and whose path is {u0, u1, . . . , u`}, has LMPY signatures
on messages (ID, uj) as certificates for all uj ∈ {u0, u1, . . . , u`}. Thus, each user needs to manage
O(logN)-size certificates. The revocation list at time t also contains LMPY signatures on messages
(t, u′j) for all u′j ∈ {u′0, u′1, . . . , u′num} which is determined by the CS method. Thus, the size of revo-
cation list is O(R · log(N/R)). If the signer is not revoked at t, then there exists a node u such that
u ∈ {u0, u1, . . . , u`}∩{u′0, u′1, . . . , u′num}. The signer proves that the knowledge of two LMPY signatures
on (ID, u) and (t, u′), and u = u′. Thus, we setup two LMPY signature schemes with ` = 2 in our group
signature scheme. Let sk = ω and vk = (cp, g, h, ĝ,v,Ω, crs), where crs = ({zi}4i=1, ĝz, {ĝj}8j=1), are for

the first scheme, and sk′ = ω′ and vk′ = (cp, g′, h′, ĝ′,v′,Ω′, crs′), where crs′ = ({z′i}4i=1, ĝ
′
z, {ĝ′j}8j=1),

are for the second scheme. The first scheme signs m = (ID, u) where ID is the identity of a signer, and
u is a node of the binary tree. Let (σ1, σ2, σ3, π) be its signature. The second scheme signs m′ = (t, u)
where t is the current time and u is a node of the binary tree. Let (σ′1, σ

′
2, σ
′
3, π
′) be its signature.

Informally, for the NP language LLMPY induced by the relation RLMPY(vk, vk′, (σ̃,m), (σ̃′,m′)) = 1
iff Sig.Verify(vk, σ̃,m) = 1, Sig.Verify(vk′, σ̃′,m′) = 1, and m2 = m′2(= u), the verifier accepts if
LLMPY(s, (σ̃,m), (σ̃′,m′)) = 1 where the statement s here is the verification equation of the LMPY
scheme, and ((σ̃1, π̃), (ID, u)) and ((σ̃′1, π̃

′), u) are witnesses. Here, the current time t is not required to
be hidden, and is not a witness. We convert the sigma protocol via the Fiat-Shamir transformation.

High-level Description of the Signing Algorithm: We employ the Sign-then-Enc-then-Prove
(SEP) paradigm [15] where LMPY signatures are encrypted and the validity of the signatures is
proved without showing the signatures. In the signing algorithm, before encrypting LMPY sig-
natures, the signer re-randomizes (σ1, σ2, σ3, π) and (σ′1, σ

′
2, σ
′
3, π
′), and let σ̃ = (σ̃1, σ̃2, σ̃3, π̃) and

σ̃′ = (σ̃′1, σ̃
′
2, σ̃
′
3, π̃
′) be the signatures after re-randomization. Then, (σ̃2, σ̃3) and (σ̃′2, σ̃

′
3) are inde-

pendent from the signed messages and other signatures. Thus, these can be directly included in a
group signature, and we can reduce the size of group signature. Next, the signer encrypts (a part of)
signatures (σ̃1, π̃) and (σ̃′1, π̃

′) via the Cramer-Shoup encryption scheme [31] by using the public key
of the group manager. In addition to these LMPY signatures, the signer also encrypts VID = vID1 and
Vu = vu2 . The former is required to search the corresponding certificate certi = (i,Path(i), VID, {(σj,1,
σj,2, σj,3, πj , V

(j)
u)}uj∈Path(i)) from joining transcripts in the open algorithm. The latter is also required

to search j such that Vu = V
(j)
u = v

uj
2 for obtaining uj ∈ Path(i) in the open algorithm. We remark

that, in the original Cramer-Shoup scheme, designated verifier NIZK proofs are employed for the va-
lidity check of ciphertexts. That is, the validity of ciphertexts can be checked by the decryptor who

10

has the decryption key. Since group signatures are required to be publicly verifiable, as in [54, 66] we
employ publicly verifiable NIZK proofs constructed from sigma protocols via the Fiat-Shamir trans-
formation for the validity check. Moreover, for efficiency purposes, we employ the Cramer-Shoup
encryption scheme with a randomness-reuse variant [14], and a randomness θ is re-used for encrypting
plural messages. The signer proves the knowledge of ID, u, and θ, and also proves that two LMPY
signatures sign on the same node u. The verification algorithm checks the validity of NIZK proofs. All
procedures do not depend on the number of users, and thus we can achieve O(1) signing/verification
costs.

We give our revocable group signature scheme as follows.

Setup(1λ, N): Choose bilinear groups cp = (G, Ĝ,GT , p) where p > 2λ and g
$← G and ĝ

$← Ĝ. Choose

g′
$← G and ĝ′

$← Ĝ. Choose a hash function H : {0, 1}∗ → Zp which is modeled as a random
oracle.

1. Generate Two Key Pairs of the LMPY Scheme: Choose v = (v1, v2,W)
$← G3 and v′ =

(v′1, v
′
2,W

′)
$← G3. Choose a, a′

$← Zp, and compute h = ga and h′ = g′a
′
. Set ` = 2 in the

LMPY signature scheme, and set matrices M and M′ as follows.

M =


g 1G 1G 1G 1G 1G 1G h
v1 g 1G 1G h 1G 1G 1G
v2 1G g 1G 1G h 1G 1G
W 1G 1G g 1G 1G h 1G



M′ =


g′ 1G 1G 1G 1G 1G 1G h′

v′1 g′ 1G 1G h′ 1G 1G 1G
v′2 1G g′ 1G 1G h′ 1G 1G
W ′ 1G 1G g′ 1G 1G h′ 1G


Run QA.KeyGen(cp,M) and QA.KeyGen(cp,M′) of the QA-NIZK argument, and get crs =
({zi}4i=1, ĝz, {ĝj}8j=1) and crs′ = ({z′i}4i=1, ĝ

′
z, {ĝ′j}8j=1). Set sk = ω, vk = (cp, g, h, ĝ,v,Ω =

hω, crs), sk′ = ω′, and vk′ = (cp, g′, h′, ĝ′,v′,Ω′ = h′ω
′
, crs′).

2. Generate a Key Pair of the Cramer-Shoup Scheme (with a Randomness-reuse Variant):

Choose xz, yz, xσ, yσ, xID, yID, xu, yu, x
′
z, y
′
z, x
′
σ, y
′
σ

$← Zp and compute Xz = gxzhyz , Xσ =
gxσhyσ , XID = gxIDhyID , Xu = gxuhyu , X ′z = gx

′
zhy

′
z , and X ′σ = gx

′
σhy

′
σ .

3. Output gpk = (vk, vk′, Xz, Xσ, XID, Xu, X
′
z, X

′
σ), SGM = (sk, sk′), and SOA = (xz, yz, xσ,

yσ, xID, yID, xu, yu, x
′
z, y
′
z, x
′
σ, y
′
σ).

JoinGM,Ui: A signer Ui and GM run the following interactive protocol.

1. Ui chooses IDi
$← Zp, computes VID = vIDi1 , ZID = zIDi2 , Ĝ2,ID = ĝIDi2 , and Ĝ5,ID = ĝIDi5 , and

sends (VID, ZID, Ĝ2,ID, Ĝ5,ID) to GM.

2. If VID has been appeared in transcripts of St, then GM aborts. Otherwise, GM checks the
following equations hold.

e(VID, ĝ2) = e(v1, Ĝ2,ID), e(ZID, ĝ2) = e(z2, Ĝ2,ID)

e(VID, ĝ5) = e(v1, Ĝ5,ID),

If all tests pass, GM samples a fresh index i ∈ Zp and a fresh leaf node (then Path(i) is
fixed), and sends i to Ui. Otherwise, GM aborts.

11

3. Prove the Knowledge of IDi: Ui runs an interactive zero-knowledge proof of knowledge
of IDi = logv1

(VID) in interaction with GM. We employ the Cramer-Damg̊ard-MacKenzie
transformation [30] which converts a sigma protocol into a perfect zero-knowledge proof of
knowledge. We give the 4-round protocol in the Appendix.3 Let πK(ID) be the interaction
transcript.

4. Generate LMPY Signatures as a Certificate: For all uj ∈ Path(i), GM chooses sj
$← Zp and

computes a LMPY signature on messages (IDi, uj) by using sk = ω such that V
(j)
u = v

uj
2

and σj,1 = gω(VID · V
(j)
u ·W)sj , σj,2 = gsj , σj,3 = hsj , and πj = zω1 (ZID · z

uj
3 · z4)sj . Finally,

GM sends certi = (i,Path(i), VID, {(σj,1, σj,2, σj,3, πj , V
(j)
u)}uj∈Path(i)) to Ui.

5. Finally, GM stores transcripti = ((ZID, Ĝ2,ID, Ĝ5,ID), πK(ID), certi) and Ui stores (certi, seci)
where seci = IDi.

Revoke(gpk,SGM, t,Rt ⊂ Stusers): Run Y ← CS(BT,Rt). For all uj ∈ Y , GM chooses sj
$← Zp

and computes a LMPY signature on messages (t, uj) by using sk′ = ω′ such that σ′j,1 =

g′ω
′
(v′1

t · v′2
uj ·W ′)sj , σ′j,2 = g′sj , σ′j,3 = h′sj , and π′j = z′1

ω′(z′2
t · z′3

uj · z′4)sj . Output RLt =
(t, Y, {(σ′j,1, σ′j,2, σ′j,3, π′j , uj)}uj∈Y).

Sign(gpk, t, RLt, certi, seci,M): Let u be a node where u ∈ Path(i)∩Y . If u does not exist, then output
⊥. Let (σ1, σ2, σ3, π) be a LMPY signature on (IDi, u) contained in certi, and let (σ′1, σ

′
2, σ
′
3, π
′)

be a LMPY signature on (t, u) contained in RLt. Choose s, s′
$← Zp and re-randomize signatures

as follows.

σ̃1 = σ1 · (vIDi1 · vu2 ·W)s, σ̃2 = σ2 · gs, σ̃3 = σ3 · hs, π̃ = π · (zIDi2 · zu3 · z4)s

σ̃′1 = σ′1 · (v′1
t · v′2

u ·W ′)s′ , σ̃′2 = σ′2 · g′
s′
, σ̃′3 = σ′3 · h′

s′
, π̃′ = π′ · (z′2

t · z′3
u · z′4)s

′

Choose θ
$← Zp and compute a ciphertext of the Cramer-Shoup encryption CCramer-Shoup =

(C1, C2, Cz, Cσ, CID, Cu, C
′
z, C

′
σ) such that

C1 = gθ, C2 = hθ, Cz = π̃ ·Xθ
z , Cσ = σ̃1 ·Xθ

σ

CID = vIDi1 ·Xθ
ID, Cu = vu2 ·Xθ

u, C
′
z = π̃′ ·X ′z

θ
, C ′σ = σ̃′1 ·X ′σ

θ

Here, the randomness θ is re-used. Then, prove the knowledge of (IDi, θ, u). Namely, choose

rID, rθ, ru
$← Zp, and compute R1 = grθ , R2 = hrθ , R3 = vrID1 ·X

rθ
ID , R4 = v2

ru ·Xu
rθ , and R5 and

R6 such that

R5 =
(
e(Xz, ĝz)e(Xσ, ĝ1)

)rθ(e(σ̃2, ĝ2)e(σ̃3, ĝ5)
)−rID(e(σ̃2, ĝ3)e(σ̃3, ĝ6)

)−ru
R6 =

(
e(X ′z, ĝ

′
z)e(X

′
σ, ĝ
′
1)
)rθ(e(σ̃′2, ĝ′3)e(σ̃′3, ĝ

′
6)
)−ru

Compute c← H(gpk, t, CCramer-Shoup, σ̃2, σ̃3, σ̃
′
2, σ̃
′
3, R1, . . . , R6,M), sID = rID+c·IDi, sθ = rθ+c·θ,

and su = ru + c · u.4

Output a group signature Σ = (CCramer-Shoup, σ̃2, σ̃3, σ̃
′
2, σ̃
′
3, c, sID, sθ, su) ∈ G12 × Z4

p.

3As mentioned by Libert et al. [54], we can remove this interaction by using an extractable commitment. For example,
Delerablée and Pointcheval [32] employed the Paillier encryption [67] as the underlying extractable commitment scheme.
Then, the decryption key allows the extraction.

4We can easily see that the underlying sigma protocol has unique responses. Let all values, except resp = (sID, sθ, su),

be fixed. Then, assume that an accepted response (s′ID, s
′
θ, s
′
u) 6= (sID, sθ, su) exists. Then, from gsθ · C−c1 = gs

′
θ · C−c1 ,

sθ = s′θ holds. From v
sID
1 ·X

sθ
ID ·C

−c
ID = v

s′ID
1 ·X

s′θ
ID ·C

−c
ID and sθ = s′θ, sID = s′ID holds. From v2

su ·Xu
sθ ·C−cu = v2

s′u ·Xu
s′θ ·C−cu

and sθ = s′θ, su = s′u holds. Thus, (s′ID, s
′
θ, s
′
u) = (sID, sθ, su) holds and this shows that the sigma protocol has unique

responses, and the NIZK proof system converted by the Fiat-Shamir transformation is simulation sound.

12

Verify(gpk, t, RLt,Σ,M): Compute R̄1 = gsθ · C−c1 , R̄2 = hsθ · C−c2 , R̄3 = vsID1 · Xsθ
ID · C

−c
ID, R̄4 =

v2
su ·Xu

sθ · C−cu , and R̄5 and R̄6 such that

R̄5 =
(
e(Xz, ĝz)e(Xσ, ĝ1)

)sθ(e(σ̃2, ĝ2)e(σ̃3, ĝ5)
)−sID(e(σ̃2, ĝ3)e(σ̃3, ĝ6)

)−su
×
(
e(Cz, ĝz)e(Cσ, ĝ1)e(σ̃2, ĝ4)e(σ̃3, ĝ7)e(Ω, ĝ8)

)−c
R̄6 =

(
e(X ′z, ĝ

′
z)e(X

′
σ, ĝ
′
1)
)sθ(e(σ̃′2, ĝ′3)e(σ̃′3, ĝ

′
6)
)−su

×
(
e(C ′z, ĝ

′
z)e(C

′
σ, ĝ
′
1)e(σ̃′2, ĝ

′ t
2 · ĝ′4)e(σ̃′3, ĝ

′ t
5 · ĝ′7)e(Ω′, ĝ′8)

)−c
Output 1 if c = H(gpk, t, CCramer-Shoup, σ̃2, σ̃3, σ̃

′
2, σ̃
′
3, R̄1, . . . , R̄6,M) and 0 otherwise.

Open(gpk,SOA, t,Σ,M, St):

1. If Verify(gpk, t, RLt,Σ,M) = 0, then output ⊥.

2. Otherwise, decrypt (C1, C2, Cz, Cσ, CID, Cu, C
′
z, C

′
σ) by using (xz, yz, xσ, yσ, xID, yID, xu,

yu, x
′
z, y
′
z, x
′
σ, y
′
σ) such that σ1 = Cσ ·C−xσ1 ·C−yσ2 , π = Cz ·C−xz1 ·C−yz2 , VID = CID ·C−xID1 ·

C−yID2 , Vu = Cu · C−xu1 · C−yu2 , σ′1 = C ′σ · C
−x′σ
1 · C−y

′
σ

2 , and π′ = C ′z · C
−x′z
1 · C−y

′
z

2 .

3. Search VID from in the database of joining transcripts and get (Ĝ2,ID, Ĝ5,ID). If there is no
such entry, then output ⊥.

4. Let VID be contained in certi where certi = (i,Path(i), VID, {(σj,1, σj,2, σj,3, πj , V
(j)
u)}uj∈Path(i)).

Search j such that Vu = V
(j)
u and obtain uj ∈ Path(i). If there is no such j, then output ⊥.

5. Check whether (σ1, σ̃2, σ̃3, π) and (σ′1, σ̃
′
2, σ̃
′
3, π
′) are valid LMPY signatures as follows.

e(Ω, ĝ8)−1 = e(π, ĝz)e(σ1, ĝ1)e(σ̃2, Ĝ2,ID · ĝ
uj
3 · ĝ4)e(σ̃3, Ĝ5,ID · ĝ

uj
6 · ĝ7)

e(Ω′, ĝ′8)−1 = e(π′, ĝ′z)e(σ
′
1, ĝ
′
1)e(σ̃′2, ĝ

′ t
2 · ĝ

′ uj
3 · ĝ′4)e(σ̃′3, ĝ

′ t
5 · ĝ

′ uj
6 · ĝ′7)

If the above equations hold, then output i and ⊥ otherwise.

5 Security Analysis

Intuitively, security against misidentification attacks hold as follows. Due to revocation functionality
the winning condition of the adversary is changed from i∗ 6∈ Ua to i∗ 6∈ Ua \ Rt∗ where i∗ is the
opening result of the group signature output by the adversary at time t∗, Ua is the set of signers who
joined via Qa-join queries, and Rt∗ is the set of revoked signers at time t∗. Remark that i may be ⊥.
We divide the condition i∗ 6∈ Ua \ Rt∗ to (1) i∗ 6∈ Ua and (2) i∗ ∈ Rt∗ . The first case is the same as
that of the proof given by Libert et al. [54], i.e., the adversary produces a valid group signature whose
opening result is in outside of the set of adversarially-controlled signers. This case is reduced to the
unforgeability of the LMPY signature scheme on some (ID, u) where ID was not chosen in interactions
between the adversary and the Qa-join oracle. The second case is that the adversary can produce a valid
group signature whose opening result is in the set of revoked signers. This case is also reduced to the
unforgeability of the LMPY signature scheme on some (t∗, u) where u is a node and the signature is
not contained in the revocation list RLt∗ . Since the LMPY signature is unforgeable under the SXDH
assumption, Theorem 5.1 holds. For security against framing attacks, in the join protocol, a signer
chooses ID and it is unknown to the group manager. Thus, from a forged signature output by the
adversary of framing attacks, we can construct an algorithm that extracts such an unknown identity
and uses it to solve the SDL problem. Moreover, due to the soundness of the QA-NIZK argument and
the CCA security of the Cramer-Shoup encryption scheme, our scheme is anonymous.

13

Theorem 5.1. The proposed group signature scheme is secure against misidentification attacks if the
SXDH assumption holds in (G, Ĝ,GT) in the random oracle model.

Proof: Let A be an adversary and C be the challenger of the LMPY signature scheme. We construct
an algorithm B that breaks the unforgeability of the LMPY scheme by using A as follows.

Case (1): In this case, we assume that i∗ 6∈ Ua. First, B chooses bilinear groups cp = (G, Ĝ,GT , p)
where p > 2λ, vectors v and v′, and matrices M and M′ with the discrete logarithms of the
group elements of M and M′ (i.e., M and M′ are witness-samplable). B sends cp and M to C
and obtains crs = ({zi}4i=1, ĝz, {ĝj}8j=1). B runs QA.KeyGen(cp,M′) and generates sk′ = ω′ and

vk′ = (cp, g′, h′, ĝ′,v′,Ω′ = h′ω
′
, crs′) where crs′ = ({z′i}4i=1, ĝ

′
z, {ĝ′j}8j=1). B generates other compo-

nents (Xz, Xσ, XID, X
′
z, X

′
σ) with SOA = (xz, yz, xσ, yσ, xID, yID, xu, yu, x

′
z, y
′
z, x
′
σ, y
′
σ), and sets gpk =

(vk, vk′, Xz, Xσ, XID, Xu, X
′
z, X

′
σ). For Qpub and QkeyOA queries, B sends gpk and SOA to A respec-

tively.

Qa-join: A is allowed to run Juser. We show how to simulate JGM as follows. First A sends (VID, ZID,

Ĝ2,ID, Ĝ5,ID) to B. If VID has been appeared in transcripts of St, then B aborts. Otherwise, B
checks the verification equations hold (see the step (2) of the joining procedure). If all tests
pass, B samples a fresh index i ∈ Zp and a fresh leaf node, and sends i to A. Next, B uses
the knowledge extractor of the proof of knowledge of ID = logv1

(VID) by rewinding A, and
obtains ID. For all uj ∈ Path(i), B sends (ID, uj) to C as a signing query , and finally B sends

certi = (i,Path(i), VID, {(σj,1, σj,2, σj,3, πj , V
(j)
u)}uj∈Path(i)) to A.

Qrevoke: Since B knows sk′ = ω′, B just runs the Revoke algorithm as usual.

At some point t∗, A outputs a forged group signature Σ∗ = (C∗Cramer-Shoup, σ̃
∗
2, σ̃
∗
3, σ̃
′ ∗
2 , σ̃′ ∗3 , c∗, s∗ID,

s∗θ, s
∗
u) and its message M∗. By rewinding A, due to the generalized Forking Lemma [16], B obtains two

vaid group signatures (C∗Cramer-Shoup, σ̃
∗
2, σ̃
∗
3, σ̃
′ ∗
2 , σ̃′ ∗3 , c∗, s∗ID, s

∗
θ, s
∗
u) and (C∗Cramer-Shoup, σ̃

∗
2, σ̃
∗
3, σ̃
′ ∗
2 , σ̃′ ∗3 ,

c†, s†ID, s
†
θ, s
†
u) with c∗ 6= c†, s∗ID 6= s†ID, and s∗u 6= s†u. B computes ID∗ = (s†ID − s

∗
ID)/(c∗ − c†) mod p

and u∗ = (s†u − s∗u)/(c∗ − c†) mod p. Moreover, B decrypts C∗Cramer-Shoup and obtains (σ1, π) where
(σ1, σ̃

∗
2, σ̃
∗
3, π) is a valid LMPY signature on (ID∗, u∗), and due to the winning condition, B has not

sent (ID∗, u∗) to C as a signing query. Thus, B outputs (ID∗, u∗) and (σ1, σ̃
∗
2, σ̃
∗
3, π) as a forgery and

breaks the unforgeability of the LMPY scheme.

Case (2): In this case, we assume that i∗ ∈ Rt∗ . As in the first case, B chooses cp, v, v′, M, and
M′. B sends cp and M′ to C and obtains crs′ = ({z′i}4i=1, ĝ

′
z, {ĝ′j}8j=1). B runs QA.KeyGen(cp,M) and

generates sk = ω and vk = (cp, g, h, ĝ,v,Ω = hω, crs) where crs = ({zi}4i=1, ĝz, {ĝj}8j=1). B generates
other components (Xz, Xσ, XID, Xu, X

′
z, X

′
σ) with SOA = (xz, yz, xσ, yσ, xID, yID, xu, yu, x

′
z, y
′
z, x
′
σ, y
′
σ),

and sets gpk = (vk, vk′, Xz, Xσ, XID, Xu, X
′
z, X

′
σ). For Qpub and QkeyOA queries, B sends gpk and SOA

to A respectively.

Qa-join: Since B knows sk = ω, B just runs the JoinGM,Ui protocol as usual.

Qrevoke: First, B runs Y ← CS(BT,Rt). For all uj ∈ Y , B sends (t, uj) to C as a signing query. Finally,
B outputs RLt = (t, Y, {(σ′j,1, σ′j,2, σ′j,3, π′j , uj)}uj∈Y).

As in the first case, at some point t∗, A outputs Σ∗ and M∗. B rewinds A and obtains u∗.
B decrypts C∗Cramer-Shoup and obtains (σ′1, π

′) where (σ′1, σ̃
′ ∗
2 , σ̃′ ∗3 , π′) is a valid LMPY signature on

(t∗, u∗). Due to the winning condition, B has not sent (t∗, u∗) to C as a signing query. Thus, B outputs
(t∗, u∗) and (σ′1, σ̃

′ ∗
2 , σ̃′ ∗3 , π′) as a forgery and breaks the unforgeability of the LMPY scheme.

Theorem 5.2. The proposed group signature scheme is secure against framing attacks under the SDL
assumption in the random oracle model.

14

Proof: LetA be an adversary. We construct an algorithm B that solves the SDL problem by usingA as

follows. First, B takes an SDL instance (g, ĝ, ga, ĝa) as input. B chooses g′, v2, v
′
1, v
′
2,W

′ $← G, ĝ′
$← Ĝ,

αh, αv, αW , αz, a
′ $← Zp, and computes h = gαh , v1 = gαv , W = gαW , ĝz = ĝαz , and h′ = g′a

′
. In order

to compute {zi}4i=1 of crs and {z′i}4i=1 of crs′, B chooses tk = {χj}8j=1 and tk′ = {χ′j}8j=1 respectively. B
setups other values as usual, i.e., B knows SGM = (sk, sk′), SOA = (xz, yz, xσ, yσ, xID, yID, xu, yu, x

′
z, y
′
z,

x′σ, y
′
σ), tk, and tk′. For Qpub, QkeyGM, and QkeyOA queries, B sends gpk, SGM, and SOA toA respectively.

Qb-join: A is allowed to run JGM. We show how to simulate Juser as follows. B chooses δi
$← Zp, and

implicitly sets IDi = a · δi where a is the solution of the SDL problem. B computes

VID = (ga)αv ·δi = vIDi1

ZID =
(
(ga)αv ·δi

)−χ1
(
(ga)δi

)−χ2
(
(ga)αh·δi

)−χ5

= (vIDi1)−χ1(gIDi)−χ2(hIDi)−χ5 = zIDi2

Ĝ2,ID =
(
(ĝa)αz ·δi

)χ2 =
(
(ĝαz)χ2

)a·δi = (ĝχ2
z)IDi = ĝIDi2

Ĝ5,ID =
(
(ĝa)αz ·δi

)χ5 =
(
(ĝαz)χ5

)a·δi = (ĝχ5
z)IDi = ĝIDi5

and sends (VID, ZID, Ĝ2,ID, Ĝ5,ID) to A. Moreover, B simulates the interactive proof of knowledge
of IDi = logv1

(VID) using the simulator. Finally, B obtains certi = (i,Path(i), VID, {(σj,1, σj,2, σj,3,
πj , V

(j)
u)}uj∈Path(i)).

Qrevoke: Since B knows sk′ = ω′, B just runs the Revoke algorithm as usual.

Qsig: Since B knows certi for i ∈ U b, B can compute CCramer-Shoup as usual. Note that for re-
randomization process, B uses VID and ZID. B simulates (c, sID, sθ, su) as follows. B chooses

c, sID, sθ, su
$← Zp and computes R1 = gsθ · C−c1 , R2 = hsθ · C−c2 , R3 = vsID1 · Xsθ

ID · C
−c
ID,

R4 = v2
su ·Xu

sθ · C−cu , and R5 and R6 such that

R5 =
(
e(Xz, ĝz)e(Xσ, ĝ1)

)sθ(e(σ̃2, ĝ2)e(σ̃3, ĝ5)
)−sID(e(σ̃2, ĝ3)e(σ̃3, ĝ6)

)−su
×
(
e(Cz, ĝz)e(Cσ, ĝ1)e(σ̃2, ĝ4)e(σ̃3, ĝ7)e(Ω, ĝ8)

)−c
R6 =

(
e(X ′z, ĝ

′
z)e(X

′
σ, ĝ
′
1)
)sθ(e(σ̃′2, ĝ′3)e(σ̃′3, ĝ

′
6)
)−su

×
(
e(C ′z, ĝ

′
z)e(C

′
σ, ĝ
′
1)e(σ̃′2, ĝ

′ t
2 · ĝ′4)e(σ̃′3, ĝ

′ t
5 · ĝ′7)e(Ω′, ĝ′8)

)−c
B programs the random oracleH such that c = H(gpk, t, CCramer-Shoup, σ̃2, σ̃3, σ̃

′
2, σ̃
′
3, R1, . . . , R6,M),

and returns Σ = (CCramer-Shoup, σ̃2, σ̃3, σ̃
′
2, σ̃
′
3, c, sID, sθ, su) to A.

At some point t∗, A outputs a forged group signature Σ∗ = (C∗Cramer-Shoup, σ̃
∗
2, σ̃
∗
3, σ̃
′ ∗
2 , σ̃′ ∗3 , c∗, s∗ID,

s∗θ, s
∗
u) and its message M∗. Let i∗ be the opening result of Σ∗. Due to the winning condition,

i∗ ∈ U b and i∗ did not sign M∗, i.e., (i∗, t∗,M∗,Σ∗) 6∈ Sigs. By rewinding A, due to the generalized
Forking Lemma [16], B obtains two vaid group signatures (C∗Cramer-Shoup, σ̃

∗
2, σ̃
∗
3, σ̃
′ ∗
2 , σ̃′ ∗3 , c∗, s∗ID, s

∗
θ, s
∗
u)

and (C∗Cramer-Shoup, σ̃
∗
2, σ̃
∗
3, σ̃
′ ∗
2 , σ̃′ ∗3 , c†, s†ID, s

†
θ, s
†
u) with c∗ 6= c†, s∗ID 6= s†ID, and s∗u 6= s†u. B computes

ID∗ = (s†ID − s
∗
ID)/(c∗ − c†) mod p. Since i∗ ∈ U b, B has chosen δi∗ which satisfies ID∗ = a · δi∗ . B

computes a = ID∗/δi∗ mod p, and solves the SDL problem.

Theorem 5.3. The proposed group signature scheme is anonymous in the random oracle model if the
SXDH assumption holds in (G, Ĝ,GT).

Proof: Let A be an adversary, and Si be the event that A successfully guesses b in Game i.

15

Game 0: This is the anonymity game. A sends (cert∗0, sec∗0) and (cert∗1, sec∗1)), and obtains Σ∗ which

is computed by (cert∗b , sec∗b) for b
$← {0, 1}.

Game 1: This game is the same as Game 0 except that if for (σ∗1, σ
∗
2, σ
∗
3, π
∗) chosen byA as either cert∗0

or cert∗1, logg(σ
∗
2) 6= logh(σ∗3) holds, then the challenger aborts. This contradicts the soundness

of the QA-NIZK argument, and as in [54], |Pr[S1]−Pr[S0]| is bounded by the advantage of the
DDH problem in Ĝ, and is negligible.

Game 2: This game is the same as Game 1 except that we change the responce of a Qopen query.
For Σ = (CCramer-Shoup, σ̃2, σ̃3, σ̃

′
2, σ̃
′
3, c, sID, sθ, su) where logg′(σ̃

′
2) 6= logh′(σ̃

′
3) even if the Open

algorithm does not output ⊥, the challenger outputs ⊥. Again, this contradicts the soundness of
the QA-NIZK argument, and |Pr[S2]−Pr[S1]| is bounded by the advantage of the DDH problem
in Ĝ, and is negligible.

Game 3: This game is the same as Game 2 except that we change the way to compute the challenge

group signature Σ∗. For (s∗ID, s
∗
θ, s
∗
u), choose c, sID, sθ, su

$← Zp and computes from R1 to R6

and program the random oracle H as in the simulation of Qsig in the proof of security against
framing attacks. Since the probability that (c, sID, sθ, su) has been chosen before is at most 1/p4,
|Pr[S3]− Pr[S2]| is negligible.

Game 4: This game is the same as Game 3 except that we use SOA = (xz, yz, xσ, yσ, xID, yID,
xu, yu, x

′
z, y
′
z, x
′
σ, y
′
σ) to compute C∗Cramer-Shoup = (C∗1 , C

∗
2 , C

∗
z , C

∗
σ, C

∗
ID, C

∗
u, C

′∗
z, C

′∗
σ). That is,

C∗z = π̃ · (C∗1)xz(C∗2)yz , C∗σ = σ̃1 · (C∗1)xσ(C∗2)yσ

C∗ID = vIDi1 · (C∗1)xID(C∗2)yID , C∗u = vu2 · (C∗1)xu(C∗2)yu

C ′
∗
z = π̃′ · (C∗1)x

′
z(C∗2)y

′
z , C ′

∗
σ = σ̃′1 · (C∗1)x

′
σ(C∗2)y

′
σ

This modification is conceptual, and Pr[S4] = Pr[S3] holds.

Game 5: This game is the same as Game 4 except that the distribution of the challenge group

signature is changed such that for θ′
$← Zp, replace C∗2 = hθ to C∗2 = hθ+θ

′
. Due to Lemma 1

in [54], |Pr[S5]−Pr[S4]| is bounded by the advantage of the DDH problem in G, and is negligible.

Game 6: This game is the same as Game 5 except that we change the rejection rule of the opening

query. Instead of choosing h
$← G in the setup phase, choose α

$← Zp, set h = gα, and returns
⊥ if C2 6= Cα1 for Σ = (CCramer-Shoup, σ̃2, σ̃3, σ̃

′
2, σ̃
′
3, c, sID, sθ, su). Due to Lemma 2 in [54], the

probability that this event happens is bounded by qO · qH/p where qO is the number of opening
queries and qH is the number of hash queries.

In Game 6, Σ∗ perfectly hides (π̃, σ̃1, v
ID
1 , v

u
2 , π̃

′, σ̃′1), and Pr[S6] = 1/2.

6 Application to Identity Management

Isshiki et al. [46] proposed an identity management system employing group signatures. In this section,
we show that our revocable group signature scheme is also applied to their identity management
system.

Briefly, their system is explained as follows. There are five entities: an issuing manager, who issues
signing keys to users, a user-revocation manager, who has a role of revocation, an accounting manager,
who can trace signers, an outsourcee, who provides a service, and users. First, a user joins a group and
obtains a signing key from the issuing manager. When a user requests the service, the user generates
a group signature and sends it to the outsourcee. The outsourcee provides the service if the signature

16

is valid, and stores the group signature as the usage log. Due to anonymity, the outsourcee does not
have to identify the user and also does not have to manage any identity list. At a certain interval,
the accounting manager opens the group signature and charges the users according to their usage.
When a user wants to leave the group or behaves maliciously, the user-revocation manager revokes
the user. Since three managers are defined, Isshiki et al. required that the underlying group signature
scheme can separate the keys for each manager. Fortunately, our scheme matches this requirement.
Concretely, for SGM = (sk, sk′), and SOA = (xz, yz, xσ, yσ, xID, yID, xu, yu, x

′
z, y
′
z, x
′
σ, y
′
σ), we can set sk

as the issuing key, sk′ as the revocation key, and SOA as the opening key.
Isshiki et al. employed the Camenisch-Groth group signature scheme [24] with a slight modifica-

tion to provide a membership certificate update mechanism.5 The Camenisch-Groth group signature
scheme employs composite-order groups and elliptic curves, and for which Isshiki et al. set 2048-bit
and 169-bit orders, respectively. Then, they showed that the running time of the signing algorithm was
approximately 135 msec, and that of the verification algorithm was approximately 112 msec, which
are slower than those of our scheme (see Section 7). Moreover, each user is required to update their
membership certificate when revocation occurs. Isshiki et al. showed that if 1000 user revocations
occur, then a user needs 3 seconds to update their membership certificate. In our scheme, no such
certificate update is required.

Providing Weak Opening Soundness: In the Bellare-Shi-Zhang (BSZ) model [17], the OA provides
a proof for opening, i.e., ownership of group signatures. Sakai et al. [71] considered opening soundness,
which requires that it is infeasible to produce a proof of ownership of a valid group signature for any user
except the original signer. They gave two definitions, weak opening soundness and opening soundness.
Weak opening soundness can rule out the possibility that a malicious user can claim ownership of a
signature produced by an honest user by forging an opening proof. Note that the malicious user does
not collude with other entities, especially the GM and OA. As mentioned by Derler and Slamanig [33]
and Sakai et al., weak opening soundness is reasonable in many applications. Since the LPY model,
which we employed in this paper, does not support the ownership proof, it would be better to consider
(weak) opening soundness. In particular, in the system of Isshiki et al., a user may claim that “I
did not use the service” when the accounting manager opens a group signature and charges the user.
Then, the accounting manager needs to prove that the signer of the group signature is the user. To
capture this situation, weak opening soundness is enough since the user does not collude with the
accounting manager. Thus, we modify our scheme to provide weak opening soundness as follows.
First, we modify the Open algorithm and introduce the Judge algorithm, as in the Sakai et al. model
as follows. To distinguish, we denote the Open algorithm as OpenPoO when the algorithm outputs a
non-interactive proof of the ownership τ . Let upki be the public key of user Ui. We assume that upki
is computed by Ui in the join phase.

OpenPoO(gpk,SOA, t,Σ,M, St): The modified opening algorithm takes as input gpk, SOA, t, Σ, M ,
and St := (Stusers, Sttrans), and outputs ⊥ if the opening is failure, and (i, τ) such that IDi ∈
Stusers ∪ {⊥}, otherwise. Here, τ is a non-interactive proof of the ownership of Σ.

Judge(gpk, i, upki,Σ,M, τ): The judgement algorithm takes as input gpk, i, upki, Σ, M , and τ , and
outputs 1 if (Σ,M) is provided by Ui, and 0 otherwise.

Next, we modify our scheme as follows. Let upki = vIDi1 . Since vIDi1 has been contained in certi
in the original scheme, publishing upki does not affect its security.6 Moreover, we introduce another
random oracle H ′ : {0, 1}∗ → Zp.

5This group signature scheme is listed as Mechanism 5 in ISO/IEC 20008-2 [3].
6More concretely, in the definition of security against misidentification attacks, an adversary can obtain certi via the

Qa-join oracle. In the definition of Non-frameability, an adversary can obtain certi via the Qb-join oracle. In the definition
of Anonymity, an adversary can generate all certificates by myself by using SGM.

17

OpenPoO(gpk,SOA, t,Σ,M, St): In addition to the original opening procedure, the algorithm computes
τ as follows when the original algorithm outputs i. Briefly, τ is a NIZK proof of (xID, yID)
satisfying the relation XID = gxIDhyID and upki = CID · C−xID1 · C−yID2 . That is, the relation
shows that the decryption result of CID by using (xID, yID) contained in SOA is upki.

1. Choose r′xID , r
′
yID

$← Zp.

2. Compute RID = gr
′
xIDhr

′
yID and RCID = C

−r′xID
1 C

−r′yID
2 .

3. Compute c′ = H ′(gpk, t, CID, C1, C2, RID, RCID) and s′xID = r′xID + c′xID and s′yID =
r′yID + c′yID.

4. Output (i, τ) where τ = (c′, s′xID , s
′
yID

).

Judge(gpk, i, upki,Σ,M, τ): If Verify(gpk, t, RLt,Σ,M) = 0, then output 0. Otherwise, compute R̄ID =

gs
′
xIDhs

′
yIDX−c

′

ID and R̄CID = C
−s′xID
1 C

−s′yID
2 (upki/CID)−c

′
. Output 1 if c′ = H ′(gpk, t, CID, C1, C2,

R̄ID, R̄CID), and 0 otherwise.

In the definition of weak opening soundness, an adversary modeled as the malicious user is given gpk,
and declares a message to be signed M and two users, i and i∗. A signature Σ on M is honestly
computed by using a signing key of i (in our notation, certi and seci), and is given to the adversary
with the signing key of i∗ (in our notation, certi∗ and seci∗). Then the adversary outputs τ∗. The
adversarey wins if i 6= i∗ and Judge(gpk, i∗, upki∗ ,Σ,M, τ∗) = 1.

If one can provide τ that is accepted by the Judge algorithm, we can construct an extractor that
extracts (xID, yID) via the Forking Lemma. That is, the knowledge of (xID, yID) is indispensable to
produce τ . This shows that the scheme provides weak opening soundness under the DL assumption.
As a remark, we need to modify the definition of the Qopen oracle where it outputs τ in addition to
the opening result. Then, in the proof of Anonymity, we need to construct a simulator that produces
τ without knowing SOA. This can be simply done by using the programmability of the random oracle
H ′, and does not affect Anonymity.

7 Implementation

In this section, we give our implementation results of the proposed scheme. We chose two security
parameters for our implementation: a Barreto-Lynn-Scott (BLS) curve [11] of embedding degree
12 over a 455-bit prime field (BLS-12-455) as a “conservative”128-bit security parameter, and a
Barreto-Naehrig (BN) curve [12] of embedding degree 12 over a 382-bit prime field (BN-12-382) as an
“optimistic”128-bit security parameter, both of them are categorized as 128-bit security parameters in
the recent IETF internet-draft [76]. According to the Barbulescu-Duquesne security estimation [10],
BN-12-382 may not ensure 128-bit security, however, we followed the draft categorization, and adopt
both optimistic and conservative parameters in this paper. Note that since our proposed scheme is
based on the SXDH problem, it is necessary to employ elliptic curves that have type 3 pairings, such
as BN and BLS curves. Our implementation environment was as follows: CPU: Core i7-7700K(4.20
GHz) and gcc 6.3.0. We employed the RELIC library [5].

Table 2 summarizes benchmarks of the elliptic curve and pairing operations on BLS-12-455 and
BN-12-382 in our environment. Here, Mul(G,Type), Mul(Ĝ,Type) and Exp(GT ,Type) are scalar
multiplication in G and Ĝ, and exponentiation in GT , respectively. If a base point is previously
known and fixed, then Type is set as K, otherwise it is set as U. Note that we always use Type U for
exponentiations in GT since the RELIC library does not support Type K in GT . Table 4 shows sizes
of group elements: Zp, G, Ĝ, and GT , on parameters BLS-12-455 and BN-12-382.

18

Table 2: Benchmarks of Group Operations

Operation
Time (µsec)

BLS-12-455 / BN-12-382

Mul(G,U) 248.729 / 209.145
Mul(G,K) 131.631 / 109.539

Mul(Ĝ,U) 530.114 / 438.078

Mul(Ĝ,K) 326.377 / 264.513
Exp(GT ,U) 743.482 / 632.369

Pairing
Miller loop 669.451 / 577.744
Final exp. 779.022 / 418.154

Total 1448.473 / 995.898

Table 3: Efficiency Comparison

Sign

Ohara et al. [66] 27 Mul(G,K) + 2 Mul(G,U) + 4 ML + 2 FE

Ours 22 Mul(G,K) + 2 Mul(G,U) + 4 Mul(Ĝ,K) + 2 Exp(GT ,U) + 4 ML + 2 FE

Verify

Ohara et al. [66] 23 Mul(G,K) + 11 Mul(G,U) + 4 ML + 2 FE

Ours 6 Mul(G,K) + 8 Mul(G,U) + 10 Mul(Ĝ,K) + 4 Exp(GT ,U) + 8 ML + 2 FE

ML: Miller Loop, FE: Final Exponentiation.

7.1 Comparison to Ohara et al. Scheme [66]

Before showing our implementation results, we concretely compare our scheme and Ohara et al.
scheme [66] in aspects of computational performance and signature size.

We summarize the efficiency of the signing and verification algorithms in Table 3. For efficiency im-
provement and fair comparison, we optimized the computations of signing and verification algorithms
of our and Ohara et al. schemes. We modified the equations to reduce the number of exponentiations
in GT and the number of pairing operations (Miller loops and final exponentiations) as much as possi-
ble, and also allowed to precompute some elements which are corresponding to public and static values,
such as gpk. With the timing from Table 3, we can estimate the Ohara et al. scheme outperforms our
scheme. This is considered as a trade-off between efficiency and complexity assumptions.

For signature size, our scheme contains 16 group elements (12 elements in G and 4 elements in
Zp) whereas in the Ohara et al. scheme, a signature contains 18 group elements (5 elements in G and
13 elements in Zp). When the BLS-12-455 is employed, our signature size is 852 bytes whereas that
of the Ohara et al. scheme is 797 bytes. This is because, the signature of our scheme contains many
elements in G compared to that of Ohara et al. scheme, and the size of element in G is slightly but
significantly larger than that of a value in Zp on BLS-12-455. On the other hand, when BN-12-382 is
employed, the size of a value in Zp is almost the same as that of an element in G due to the structure
of BN curves (See Table 4). In this case, our signature size is 780 bytes whereas that of the Ohara et
al. scheme is 869 bytes. Table 5 shows our evaluation of signature size.

7.2 Implementation Results

Table 6 shows the running times of our scheme. Here, we set N = 8192, and assumed that 10%
of users are revoked (R = 819). In the Sign, Verify, and Open algorithms, since some values are

19

Table 4: Element Size (Bytes)

Zp G Ĝ GT

BLS-12-455 39 58 115 456
BN-12-382 48 49 97 384

Table 5: Signature Size

G Zp
Signature Size (Bytes)
BLS-12-455/BN-12-382

Ohara et al. [66] 5 13 797/869
Ours 12 4 852/780

fixed and it is unnecessary to recompute them during time t, these values are first precomputed then
used at Sign/Verify/Open in our implementation. In Table 6, “Precompute” rows show the timings
of the precomputation phase, and “Online” rows show the actual Sign/Verify/Open timings after
the precomputation. Note that the Open, OpenPoO, and Judge algorithms call the Verify algorithm.
However, additional running time should be incurred, and thus the running times of these algorithms
do not contain those of the Verify algorithm. Moreover, the running time of the OpenPoO algorithm
does not contain the running time of the Open algorithm when a proof τ is additionally produced.

8 Conclusion

In this paper, we proposed a revocable group signature scheme with scalability that is secure under
the simple assumptions in the random oracle model. We implemented our scheme, and showed that
it is feasible in practice. In addition, we can consider the following as future works.

Bootle et al. [21] considered full dynamicity, where signers can join and leave a group at any
time, and mentioned that the LPY model is not fully dynamic; our scheme is also not fully dynamic
for the same reason. They mentioned that a possible countermeasure against the above attack is
to regard unassigned leaves as revoked until they are assigned. However, due to the complexity of
the CS method, this does not provide scalability since the size of the revocation list linearly depends
on N since R can be greater than N/2 [65]. It would be interesting to consider full dynamicity with
scalable revocation. They also showed that the accountable ring signature scheme, which implies group
signatures, proposed in [22] satisfies full dynamicity. Later, Lai et al. [52] proposed an accountable
ring signature scheme that is secure in the standard model (which can also be seen as a fully dynamic
group signature scheme). They also proposed a generic construction of sanitizable signatures with
unlinkability based on accountable ring signatures. Recently, Ling et al. proposed a fully dynamic
group signature scheme from lattices [60].

Backes, Hanzlik, and Schneider [8] considered membership privacy by pointing out that in the
accountable ring signature scheme [22], group information contains a description of the active members
at each epoch. They mentioned that this can be an issue when group signatures are used in an access
control system for resources, e.g., phishing or DoS for a particular resource. They also proposed an
efficient fully dynamic group signature scheme in the standard model that is secure under simple
assumptions, where a group signature contains 28 G elements, 15 Ĝ elements, and one Zp element.
As another type of membership privacy, Emura et al. [38] considered hiding the number of revoked
signers since if the number is revealed, then one may guess the reason behind such circumstances,
which may lead to harmful rumors.

Kiayias and Zhou [49] and Chow et al. [28] proposed hidden identity-based signatures where

20

Table 6: Implementation Results

Algorithm
Time (msec)

BLS-12-455 / BN-12-382

Setup 29.394 / 23.468

Join
GM 52.258 / 41.208
User 8.895 / 7.145
Total 61.153 / 48.353

Sign
Precompute 13.933 / 10.785

Online 14.262 / 11.156

Verify
Precompute 20.761 / 15.099

Online 20.096 / 16.461

Revoke 21.782 / 17.405

Open (w/o Verify) 17.851 / 14.017

OpenPoO (w/o Open) 1.343 / 1.110
Judge (w/o Verify) 1.853 /1.519

opening only just requires the secret key of the OA and does not require any other secret members
list. Thus, the membership list can be hidden from the OA. In our scheme, the OA needs to know the
database of joining transcripts, which may cause a list exposure risk since the list is not a secret key
by definition and secure storage for such a large list is relatively expensive. Thus, it is meaningful to
remove such a list for the opening procedure. Considering these improvements is left as an important
open problem.

Acknowledgement

This work was partially supported by the JSPS KAKENHI Grant Numbers JP16K00198 and JP19H04107.

References

[1] Intel Enhanced Privacy ID (EPID) Security Technology. https://software.intel.com/en-us/
articles/intel-enhanced-privacy-id-epid-security-technology.

[2] Intel Software Guard Extensions (Intel SGX). https://software.intel.com/en-us/sgx.

[3] ISO/IEC 20008-2. Information technology - security techniques - anonymous digital signatures -
part 2: Mechanisms using a group public key. 2013.

[4] M. Akane, Y. Nogami, and Y. Morikawa. Fast ate pairing computation of embedding degree 12
using subfield-twisted elliptic curve. IEICE Transactions, 92-A(2):508–516, 2009.

[5] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. https:

//github.com/relic-toolkit/relic.

[6] N. Attrapadung, K. Emura, G. Hanaoka, and Y. Sakai. A revocable group signature scheme from
identity-based revocation techniques: Achieving constant-size revocation list. In ACNS, pages
419–437, 2014.

21

[7] N. Attrapadung, K. Emura, G. Hanaoka, and Y. Sakai. Revocable group signature with constant-
size revocation list. Comput. J., 58(10):2698–2715, 2015.

[8] M. Backes, L. Hanzlik, and J. Schneider. Membership privacy for fully dynamic group signatures.
IACR Cryptology ePrint Archive, 2018:641, 2018.

[9] R. Barbulescu and S. Duquesne. Updating key size estimations for pairings. IACR Cryptology
ePrint Archive, 2017:334, 2017.

[10] R. Barbulescu and S. Duquesne. Updating key size estimations for pairings. J. Cryptology, 2018.

[11] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with prescribed embed-
ding degrees. In SCN, pages 257–267, 2002.

[12] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In Selected
Areas in Cryptography, pages 319–331, 2005.

[13] N. Begum, T. Nakanishi, S. Sadiah, and M. E. Islam. Implementation of a revocable group
signature scheme with compact revocation list using accumulator. In CANDAR, pages 610–615,
2016.

[14] M. Bellare, A. Boldyreva, K. Kurosawa, and J. Staddon. Multirecipient encryption schemes: How
to save on bandwidth and computation without sacrificing security. IEEE Trans. Information
Theory, 53(11):3927–3943, 2007.

[15] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on general assumptions. In EUROCRYPT,
pages 614–629, 2003.

[16] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In ACM CCS, pages 390–399, 2006.

[17] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups.
In CT-RSA, pages 136–153, 2005.

[18] P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty via group
signatures without encryption. In SCN, pages 381–398, 2010.

[19] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO, pages 41–55, 2004.

[20] D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In ACM CCS, pages
168–177, 2004.

[21] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of fully dynamic group
signatures. In ACNS, pages 117–136, 2016.

[22] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit. Short accountable ring
signatures based on DDH. In ESORICS, pages 243–265, 2015.

[23] E. Brickell and J. Li. Enhanced privacy ID from bilinear pairing for hardware authentication and
attestation. In IEEE SocialCom, pages 768–775, 2010.

[24] J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical aspects. In
SCN, pages 120–133, 2004.

[25] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation
of anonymous credentials. In CRYPTO, pages 61–76, 2002.

22

[26] D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT, pages 257–265, 1991.

[27] J. H. Cheon. Discrete logarithm problems with auxiliary inputs. J. Cryptology, 23(3):457–476,
2010.

[28] S. S. M. Chow, H. Zhang, and T. Zhang. Real hidden identity-based signatures. In Financial
Cryptography and Data Security, pages 21–38, 2017.

[29] R. Clarisse and O. Sanders. Short group signature in the standard model. IACR Cryptology
ePrint Archive, 2018:1115, 2018.

[30] R. Cramer, I. Damg̊ard, and P. D. MacKenzie. Efficient zero-knowledge proofs of knowledge
without intractability assumptions. In Public Key Cryptography, pages 354–373, 2000.

[31] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226, 2003.

[32] C. Delerablée and D. Pointcheval. Dynamic fully anonymous short group signatures. In VI-
ETCRYPT, pages 193–210, 2006.

[33] D. Derler and D. Slamanig. Highly-efficient fully-anonymous dynamic group signatures. In ACM
AsiaCCS, pages 551–565, 2018.

[34] K. Emura and T. Hayashi. A light-weight group signature scheme with time-token dependent
linking. In LightSec, pages 37–57, 2015.

[35] K. Emura and T. Hayashi. A revocable group signature scheme with scalability from simple
assumptions and its implementation. In ISC, pages 442–460, 2018.

[36] K. Emura and T. Hayashi. Road-to-vehicle communications with time-dependent anonymity:
A lightweight construction and its experimental results. IEEE Trans. Vehicular Technology,
67(2):1582–1597, 2018.

[37] K. Emura, T. Hayashi, and A. Ishida. Group signatures with time-bound keys revisited: A new
model and an efficient construction. In ACM AsiaCCS, pages 777–788, 2017.

[38] K. Emura, A. Miyaji, and K. Omote. An r-hiding revocable group signature scheme: Group
signatures with the property of hiding the number of revoked users. J. Applied Mathematics,
2014:983040:1–983040:14, 2014.

[39] C. Fan, R. Hsu, and M. Manulis. Group signature with constant revocation costs for signers and
verifiers. In CANS, pages 214–233, 2011.

[40] S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability of the Fiat-Shamir
transform. In INDOCRYPT, pages 60–79, 2012.

[41] J. Furukawa and H. Imai. An efficient group signature scheme from bilinear maps. IEICE
Transactions, 89-A(5):1328–1338, 2006.

[42] J. Groth. Fully anonymous group signatures without random oracles. In ASIACRYPT, pages
164–180, 2007.

[43] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In EURO-
CRYPT, pages 415–432, 2008.

[44] A. Ishida, Y. Sakai, K. Emura, G. Hanaoka, and K. Tanaka. Fully anonymous group signature
with verifier-local revocation. In SCN, pages 23–42, 2018.

23

[45] A. Ishida, Y. Sakai, K. Emura, G. Hanaoka, and K. Tanaka. Proper usage of the group signature
scheme in ISO/IEC 20008-2. In ACM AsiaCCS, pages 515–528, 2019.

[46] T. Isshiki, K. Mori, K. Sako, I. Teranishi, and S. Yonezawa. Using group signatures for identity
management and its implementation. In Workshop on Digital Identity Management, pages 73–78,
2006.

[47] A. Kiayias and M. Yung. Group signatures: Provable security, efficient constructions and
anonymity from trapdoor-holders. IACR Cryptology ePrint Archive, 2004:76, 2004.

[48] A. Kiayias and M. Yung. Secure scalable group signature with dynamic joins and separable
authorities. IJSN, 1(1/2):24–45, 2006.

[49] A. Kiayias and H. Zhou. Hidden identity-based signatures. IET Information Security, 3(3):119–
127, 2009.

[50] E. Kiltz and H. Wee. Quasi-adaptive NIZK for linear subspaces revisited. In EUROCRYPT,
pages 101–128, 2015.

[51] V. Kumar, H. Li, J. J. Park, K. Bian, and Y. Yang. Group signatures with probabilistic revocation:
A computationally-scalable approach for providing privacy-preserving authentication. In ACM
CCS, pages 1334–1345, 2015.

[52] R. W. F. Lai, T. Zhang, S. S. M. Chow, and D. Schröder. Efficient sanitizable signatures without
random oracles. In ESORICS, pages 363–380, 2016.

[53] A. Langlois, S. Ling, K. Nguyen, and H. Wang. Lattice-based group signature scheme with
verifier-local revocation. In Public Key Cryptography, pages 345–361, 2014.

[54] B. Libert, F. Mouhartem, T. Peters, and M. Yung. Practical “signatures with efficient protocols”
from simple assumptions. In ACM AsiaCCS, pages 511–522, 2016.

[55] B. Libert, T. Peters, and M. Yung. Group signatures with almost-for-free revocation. In CRYPTO,
pages 571–589, 2012.

[56] B. Libert, T. Peters, and M. Yung. Scalable group signatures with revocation. In EUROCRYPT,
pages 609–627, 2012.

[57] B. Libert, T. Peters, and M. Yung. Short group signatures via structure-preserving signatures:
Standard model security from simple assumptions. In CRYPTO, pages 296–316, 2015.

[58] B. Libert and D. Vergnaud. Group signatures with verifier-local revocation and backward un-
linkability in the standard model. In CANS, pages 498–517, 2009.

[59] S. Ling, K. Nguyen, A. Roux-Langlois, and H. Wang. A lattice-based group signature scheme
with verifier-local revocation. Theor. Comput. Sci., 730:1–20, 2018.

[60] S. Ling, K. Nguyen, H. Wang, and Y. Xu. Lattice-based group signatures: Achieving full dynam-
icity with ease. In ACNS, pages 293–312, 2017.

[61] T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki. Revocable group signature schemes with
constant costs for signing and verifying. In Public Key Cryptography, pages 463–480, 2009.

[62] T. Nakanishi and N. Funabiki. Verifier-local revocation group signature schemes with backward
unlinkability from bilinear maps. In ASIACRYPT, pages 533–548, 2005.

24

[63] T. Nakanishi and N. Funabiki. A short verifier-local revocation group signature scheme with
backward unlinkability. In IWSEC, pages 17–32, 2006.

[64] T. Nakanishi and N. Funabiki. Revocable group signatures with compact revocation list using
accumulators. IEICE Transactions, 98-A(1):117–131, 2015.

[65] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In
CRYPTO, pages 41–62, 2001.

[66] K. Ohara, K. Emura, G. Hanaoka, A. Ishida, K. Ohta, and Y. Sakai. Shortening the Libert-
Peters-Yung revocable group signature scheme by using the random oracle methodology. IEICE
Transactions, 2019, to appear. Available at https://eprint.iacr.org/2016/477.

[67] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT, pages 223–238, 1999.

[68] D. Pointcheval and O. Sanders. Short randomizable signatures. In CT-RSA, pages 111–126, 2016.

[69] S. Rahaman, L. Cheng, D. D. Yao, H. Li, and J. J. Park. Provably secure anonymous-yet-
accountable crowdsensing with scalable sublinear revocation. PoPETs, 2017(4):384–403, 2017.

[70] S. Sadiah and T. Nakanishi. Revocable group signatures with compact revocation list using vector
commitments. IEICE Transactions, 100-A(8):1672–1682, 2017.

[71] Y. Sakai, J. C. N. Schuldt, K. Emura, G. Hanaoka, and K. Ohta. On the security of dynamic
group signatures: Preventing signature hijacking. In Public Key Cryptography, pages 715–732,
2012.

[72] D. Slamanig, R. Spreitzer, and T. Unterluggauer. Adding controllable linkability to pairing-based
group signatures for free. In ISC, pages 388–400, 2014.

[73] D. Slamanig, R. Spreitzer, and T. Unterluggauer. Linking-based revocation for group signatures:
A pragmatic approach for efficient revocation checks. In Mycrypt, pages 364–388, 2016.

[74] D. Unruh. Quantum proofs of knowledge. In EUROCRYPT, pages 135–152, 2012.

[75] L. Wei and J. Liu. Shorter verifier-local revocation group signature with backward unlinkability.
In Pairing-Based Cryptography, pages 136–146, 2010.

[76] S. Yonezawa, T. Kobayashi, and T. Saito. Pairing-Friendly Curves. Internet-Draft draft-
yonezawa-pairing-friendly-curves-02, Internet Engineering Task Force, July 2019. Work in
Progress.

[77] S. Zhou and D. Lin. Shorter Verifier-Local Revocation Group Signatures from Bilinear Maps. In
CANS, pages 126–143, 2006.

Appendix

In this appendix, we introduce a 4-round protocol for proving the knowledge of ID = logv1
(VID)

converted by the Cramer-Damg̊ard-MacKenzie transformation [30]. The Cramer-Damg̊ard-MacKenzie
transformation converts a sigma protocol into a 4-round perfect zero-knowledge proof of knowledge.
Briefly, a sigma protocol for the relation ID = logv1

(VID) (say Sigma) induces a commitment scheme.
From this commitment scheme, a sigma protocol for the knowledge of the committed value can be
constructed (say Sigma′). In the actual protocol, first the verifier commits a random value and proves
knowledge of the value by using Sigma′. Next, the prover runs the OR-proof Sigma∨ Sigma′. We give
a zero-knowledge proof of knowledge protocol for ID = logv1

(VID) as follows.

25

Verifier: Choose ¯ID, c̄
$← Zp and compute a = v

¯ID
1 · V

−c̄
ID . Choose r ¯ID, rc̄

$← Zp and compute R′ =
v
rĪD
1 · V

−rc̄
ID . Send (a,R′) to the prover.

Prover: Choose ĉ, rID
$← Zp and compute R = vrID1 . Choose s′ID, s

′
c̄, ĉ
′ $← Zp and compute R′′ =

v
s′ID
1 · V

−s′c̄
ID · a−ĉ′ . Send (ĉ, R,R′′) to the verifier.

Verifier: Compute s ¯ID = r ¯ID + ĉ · ¯ID and sc̄ = rc̄ + ĉ · c̄. Choose c
$← Zp. Send (s ¯ID, sc̄, c) to the prover.

Prover: Check R′ = v
sĪD
1 · V

−sc̄
ID · a−ĉ. If the equation does not hold, then abort. Compute c∗ = c− ĉ′

and sID = rID + c · ID. Send (c∗, ĉ′, sID, s
′
ID, s

′
c̄) to the verifier.

Verifier: Check c = c∗ + ĉ′, R = vsID1 · V −cID , and R′′ = v
s′ID
1 · V −s

′
c̄

ID a−ĉ
′
. If these equations hold, then

accept. Otherwise, reject.

26

