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Abstract. We consider the problem of garbling arithmetic circuits and present a garbling scheme
for inner-product predicates over exponentially large fields. Our construction stems from a generic
transformation from predicate encryption which makes only blackbox calls to the underlying primitive.
The resulting garbling scheme has practical efficiency and can be used as a garbling gadget to securely
compute common arithmetic subroutines. We also show that inner-product predicates are complete by
generically bootstrapping our construction to arithmetic garbling for polynomial-size circuits, albeit
with a loss of concrete efficiency.
In the process of instantiating our construction we propose two new predicate encryption schemes,
which might be of independent interest. More specifically, we construct (i) the first pairing-free (weakly)
attribute-hiding non-zero inner-product predicate encryption scheme, and (ii) a key-homomorphic en-
cryption scheme for linear functions from bilinear maps. Both schemes feature constant-size keys and
practical efficiency.

1 Introduction

Garbled circuits were introduced by Yao in an oral presentation about secure function evaluation [42]. Given
a function f and an input x, Yao’s machinery generates a garbled circuit f̃ and an encoded input x̃. Anyone
holding x̃ can then evaluate the garbled circuit f̃ to recover the output f(x) and nothing beyond that.
Garbled circuits have been cast in the more generic framework of randomized encodings [29] and were
first recognized as a cryptographic primitives on its own in the work of Bellare, Hoang, and Rogaway [11].
Since their introduction, garbled circuits have found an enormous range of application to problems such as
computation over encrypted data [18], parallel cryptography [5], functional encryption [39], and many others.

Yao’s classical construction assumes a binary encoding of the inputs and operates over boolean gates.
Since arithmetic computation appear often in real-life scenarios, a natural question to ask is whether one
can garble arithmetic circuits over fields of exponential size. This is motivated by efficiency constraints, as
operating directly on the arithmetic representation of the input avoids the costly bit decomposition step.
Furthermore, certain cryptographic models [4] only admit access to inputs as atomic ring elements. Consider
an input encrypted under a linearly homomorphic encryption scheme [22], in this case there is no efficient
algorithm to decompose it to its binary representation and the only admissible operations are field addition
and scalar multiplication.

The first milestone in this regard was set by Applebaum, Ishai, and Kushilevitz [6] when they proposed
the first non-trivial garbling scheme for arithmetic computations over the integers. The scheme is based on
the hardness of the learning with errors (LWE) problem [38]. They also show several information-theoretic
garbling gadgets for arithmetic branching programs (or, equivalently, arithmetic formulae). The price to pay
for perfect security is a quadratic blowup in the input encodings, i.e., to evaluate a circuit of size s one needs
O(s2) space to encode its inputs. In this sense the former construction has better asymptotics.

1.1 Our Results

In this work we continue the study of arithmetic garbling and we propose a simple construction from number-
theoretic assumptions. Specifically, we construct a garbling scheme for inner-product predicates over expo-
nentially large fields, assuming the hardness of standard problems in bilinear groups. We shall note that, in
general, input vectors are linear in the size of the predicate being computed so the cost of evaluating the



encoding function might be comparable to evaluating the function itself. There are however two important
differences that make the problem of garbling inner-products non-trivial: (i) Part of the input vector might
be fixed in advance, in which case some steps of the encoding circuit can be precomputed, and (ii) the
encoding function does not depend on the garbled function. This means that the garbling algorithm and the
encoding algorithm can be executed non-interactively by two different parties.

Our construction (Section 3) consists of a compiler that transforms a predicate encryption scheme into an
arithmetic garbling scheme for inner products. The garbling algorithm makes only blackbox use of the un-
derlying primitives and thus has practical efficiency. In contrast with information-theoretic garbling schemes,
the size of the encoding depends exclusively on the decryption keys of the predicate encryption. To instan-
tiate our construction we propose a zero (ZIPE) and a non-zero (NIPE) inner-product predicate encryption
scheme from standard assumptions, more specifically:

– A NIPE scheme from DDH or LWE with constant-size keys (Section 4).
– A ZIPE scheme with small keys (2 group elements) and with ciphertexts consisting of exactly n group

elements (where n is the length of the vectors) from standard assumptions in bilinear groups (Section 5).

Combined with the DDH-based NIPE, the input encodings of our garbling scheme add only two group
elements and two integers (in Zp) to the size of the original vector, regardless of the vector length. This is
asymptotically optimal and it is comparable with the work of Applebaum et al. [7], where they construct
short encodings for classical boolean garbling. Finally we show that arithmetic garbling for inner-product
predicates is complete in the sense that it can be generically bootstrapped to the evaluation of polynomial-size
circuit (Section 6), albeit with a loss in efficiency.

1.2 Applications

Our garbling scheme for inner-products is motivated by practical scenarios where one needs to efficiently
garble simple arithmetic circuits. Such a garbling gadget can also be used as a building block within a larger
protocol to boost the efficiency of certain arithmetic subroutines, while retaining all of the advantages of
garbling schemes (e.g., low latency). Here we highlight some tasks of interest which can be solved with a
garbling scheme for inner-product predicates.

FHE Decryption. Most recent fully-homomorphic encryption schemes [16, 17, 25] feature a decryption algo-
rithm of the form

〈sk, c〉 ∈
[p
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]
(mod p)

where sk and c are vectors in Znp , and N is a polynomially large noise range. The decryption algorithm
returns 1 if the above condition is satisfied and 0 otherwise. This relation can be easily encoded as an
inner-product predicate by the so called lazy-OR trick [27]

∃η ∈
[p
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−N, p
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]
: 〈sk, c〉 − η ≡ 0 (mod p).

It is clear that whenever c encrypts a 0 the garbling scheme returns 0 in all position, whereas if c is an
encryption of 1 then the garbling gadget will return 0 everywhere except in exactly one position where it
returns 1. To hide the exact position of the 1 – as this would leak the value of η – we can randomly permute
the order in which the inner-product relation is tested against each η.

Private Set Intersection Predicate. A private set intersection predicate refers to the problem of securely
computing whether two vectors (x,y) ∈ Z2n

p have a common element, i.e., whether there exists an i such
that xi = yi. A standard approach to perform this task is to encode y as an n degree polynomial py with
roots in (y1, . . . , yn) and evaluate

∃i ∈ {1, . . . , n} : py(xi) ≡ 0 (mod p).

If we consider the vector of coefficients of py and the n vectors (xi, x
2
i , . . . , x

n
i ), then this reduces to the

computation of inner-product predicates, which we can efficiently garble.
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Matrix Multiplication. It is easy to see that the multiplication of an n × n matrix with an n size vector
reduces to n instances of inner-products. It follows that matrix multiplication predicates (and in general
secure linear algebra computations) can be generically reduced to the task of computing inner-products. Our
scheme can garble predicates of the form A ·B = C, where A ∈ Zn×mp , B ∈ Zm×np , and C is a publicly known
Zn×np matrix.

Statistics on Private Data. Our scheme can also be used to garble several interesting measures over a private
dataset x. Among others, we can securely check whether the weighted mean x is equal to a certain known
value µ by garbling the vector (x‖ − 1) and issuing encoding for the vector

(
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)
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where (w1, . . . , wn) is a vector of weights. As a further example, we can garble the square Euclidean distance
between two vectors x and y by expanding the equation

dx,y = (x1 − y1)2 + . . .+ (xn − yn)2

and encoding the mixed terms as inner-products.

1.3 Concrete Efficiency

In the following we discuss the concrete efficiency of our garbling scheme for inner-product predicates, when
instantiated with our ZIPE and the DDH-based NIPE. We measure the computational efficiency of our main
algorithms in terms of number of modular exponentiations and pairings and we omit routine calculations
such as additions and multiplications. The costs for an inner-product predicate over Fn are detailed below.

– Garbling : The cost of the garbling algorithm is dominated by a call of the setup and encryption algorithm
of the NIPE and ZIPE scheme, for a total of (5n + 11) exponentiations. The size of the garbled circuit
is (n+ 2) elements of the source group G1, an element of the target group GT , and (n+ 3) elements of
a DDH-hard group G.

– Encoding : The encoding algorithm runs in time comparable to that of (n+ 2) exponentiations. The size
of the encoded input is two element of source group G2 and two integers in Zp.

– Evaluation: The circuit evaluation consists of one call each to the decryption algorithms of the NIPE
and ZIPE scheme. This accounts for (2n + 4) exponentiations and 2 pairings. Note that the number of
pairings (the most expensive operation) is independent of the vector length.

When compared with information-theoretic constructions, our scheme brings down the size of the encodings
from quadratic to independent of the circuit size. This is an asymptotic improvement. The efficiency com-
parison with the construction of [6] is less clear since it is lattice-based. A concrete comparison would require
an implementation of their scheme, which is beyond the scope of this work. Regardless, we believe that
broadening the set of assumptions that suffice to construct arithmetic garbling with non-trivial efficiency
is an interesting goal on its own. Finally we remark that there exist tailor-made protocols to solve each
individual task, among the applications that we suggested above, which are highly optimized for the goal
and in practice outperform our solution. However our construction gives a unified and generic approach to
securely compute a large family of functions and inherits all the distinguishing features of garbling schemes,
such as the low round complexity.

1.4 Our Techniques

In this section we outline the main ideas behind our work and we give an overview of the techniques developed
throughout the paper.
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Arithmetic Garbling from Predicate Encryption. Our initial observation is an interesting connection between
garbling schemes and predicate encryption for inner-products. A predicate encryption scheme allows one to
encrypt a message m under a vector x ∈ Znp and issue decryption keys for vectors y ∈ Znp . The decrypter
can recover m if and only if 〈x,y〉 = 0. Furthermore, no information about x is leaked beyond the fact that
it is orthogonal to y. Given such a predicate encryption, we can construct an arithmetic garbling scheme
for inner-product predicates in a very natural way: Garbling a vector x corresponds to encrypting a fixed
message m∗ under x, whereas encoding an input y consists of generating a key for y. The evaluator can test
whether the decryption algorithm returns m∗ and learn whether 〈x,y〉 = 0. Since the predicate encryption
is attribute-hiding, this does not reveal any further information about x.

However a garbling scheme must satisfy some additional properties. Among others, the scheme must
guarantee the authenticity of its output, i.e., the evaluator can efficiently show a proof of the result of the
computation. This property has been proved useful in the context of zero-knowledge protocols [30] and
verifiable computation [24]. A naive approach would be to substitute m∗ with a random message r∗ which
constitutes a valid proof that 〈x,y〉 = 0, as otherwise the decryption would have failed. However for the
complementary case (〈x,y〉 6= 0) the evaluator is left with nothing. Standard techniques, such as garbling
the complement of x, do not seem to apply here since we would need to find a vector x̄ orthogonal to any
y such that 〈x,y〉 6= 0, which may not exist.

We resolve this issue by shifting the complement to the cryptographic primitive: We additionally deploy
a non-zero inner-product predicate encryption scheme, which returns the encrypted message if 〈x,y〉 6= 0.
Given such a scheme, the solution consists in encrypting another random message under the same x, which
can be used to certify that the two vectors are not orthogonal. Since our garbling algorithm makes only
blackbox use of the underlying primitives, the resulting instantiations are simple and practical.

Arithmetic Garbling for Circuits. The connection between garbling and predicate encryption is not limited to
inner-products predicates but generalizes to polynomial-size circuits using universal encodings [41]. However,
current instantiations of attribute-hiding predicate encryption [23] for circuits are not yet in the domain of
practicality and are based on newly crafted assumptions.

Fortunately inner-product predicates are a very powerful tool and we show that our garbling scheme for
inner-product predicates can be generically bootstrapped into an arithmetic garbling scheme for poly-size
circuit with small (poly-size) domain. If we assume a relaxed model on the arithmetic representation of
the inputs, then we can leverage standard techniques to extend our scheme to an exponentially large input
domain. The remainder of this work focuses on constructing efficient inner-product encryption schemes to
instantiate our arithmetic garbling scheme. Our schemes aim at minimizing the size of the decryption keys,
as their size determines the size of the input encodings.

Non-Zero Inner-Product Encryption. We propose an efficient predicate encryption scheme for non-zero inner-
products with small keys. The construction consists of a generic transformation from inner-product functional
encryption, a primitive introduced by Abdalla et al. [1]. Our transformation makes only two calls to the
encryption (resp. decryption) algorithm of the inner-product functional encryption scheme and preserves all
the properties of the underlying construction. This transformation yields:

– the first pairing-free (weakly) attribute-hiding predicate encryption for inner-products,
– the first (weakly) attribute-hiding scheme based on the DDH assumption, and
– the first adaptively payload hiding scheme with a tight security reduction.

In the DDH-based instance, a key for a vector of any length corresponds to the vector itself and 2 elements
of Zp.

Zero Inner-Product Encryption. To construct a zero inner-product predicate encryption scheme, we start
from the same design paradigm as the lattice-based scheme of Boneh et al. [15]. In [15] the authors propose
a fully key-homomorphic public-key encryption scheme. Such a primitive allows anyone to transform an
encryption under attribute x into an encryption under (f(x), [f ]), where f(x) ∈ F and [f ] is an encoding
of the circuit computing f . Predicate encryption can then be instantiated in a very natural way: On input
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a predicate f , one can issue a key for (1, [f ]) and the decryptor can publicly apply the transformation from
above to any ciphertext and decrypt if and only if f(x) = 1. The advantage of this class of schemes is
that the complex operations are pushed to public algorithms and therefore the resulting decryption keys are
typically small.

We apply the same idea to the bilinear maps settings: Our scheme can be seen as a key-homomorphic
encryption for linear functions. The private key of a vector consists of two group elements, regardless of
the vector length. For a vector of length n, a ciphertext consists of exactly n group elements. In contrast,
previous solutions with similar key sizes (such as [10,19,35]), require at least 2n elements. A crucial difference
with respect to the lattice-based scheme [15] is that our scheme achieves a (weak) notion of attribute hiding.
The resulting scheme is only selectively secure, which is however enough for our purposes.

1.5 Related Work

The first formal treatment of arithmetic garbling is due to Applebaum, Ishai, and Kushilevitz [6]. They
proposed (i) a construction for any circuit based on lattices and (ii) an information-theoretic construction
for branching programs (or, equivalently, NC1 circuits). A shortcoming of the latter scheme is that the input
encoding grows quadratically with the circuit size, i.e., the encodings for a circuit of size s have length O(s2).
A followup work of Ball, Malkin, and Rosulek [9] investigates the concrete efficiency of arithmetic garbling
gadgets in the context of secure computation. Their constructions generalize the free-XOR technique [33]
and therefore assume the existence of correlation robust hashes.

Attribute-Based Encryption was first introduced in the seminal work of Goyal et al. [40] and refined
in [28,36]. Predicate encryption (PE) is a special case of ABE where ciphertexts hide the encoded policy, in
addition to the message. This notion was proposed by Katz, Sahai and Waters in [32] where they constructed
a scheme for inner-products: The owner of a key for a vector x can decrypt a ciphertext generated over a
vector y only if 〈x,y〉 = 0. ZIPE and NIPE schemes have been first identified in the work of Attrapadung
and Libert [8] where the authors also showed the utility of public-index inner-product PE. The efficiency of
inner-product-based schemes was improved by Chen, Gay and Wee in [19] and the first NIPE with constant-
size ciphertexts has been recently proposed in [20]. To the best of our knowledge, all of the known instances
of ZIPE and NIPE rely on bilinear maps or on the intractability of lattice problems.

In a different line of research Abdalla et al. [1] suggested a functional encryption scheme for inner-
products (IPFE) where ciphertexts encode some vector x and users with keys for a vector y can learn the
inner-product 〈x,y〉. This result has been extended to achieve full security [3], function privacy [12], and
support quadratic functions [10]. In the latter work, Baltico et al. also proposed a generic transformation to
predicate encryption for bilinear map evaluation. However, such a transformation retains security only for
those vectors x and y such that 〈x,y〉 ∈ {0, 1}. In particular, this is insufficient to instantiate a fully-fledged
NIPE, where the range of the inner-product spans the whole Zp. Following a similar paradigm, a trace-and-
revoke scheme has been recently proposed by Agrawal et al. [2]. A related work by Parno et al. [37] identifies
a surprising connection between attribute-based encryption and verifiable computation.

Concurrent Work. In concurrent and independent work, Katsumata and Yamada [31] show a similar compiler
from inner-product functional encryption to NIPE, thus also obtaining a NIPE from the DDH assumption.
However, the crucial difference with respect to our work is that their NIPE does not achieve any form of
attribute-hiding, which is necessary to instantiate our construction of arithmetic garbling for inner-product
predicates.

2 Preliminaries

In this section we introduce the notation and some basic definitions that we will use throughout our work.
We denote by λ ∈ N+ the security parameter and by poly(λ) any function that is bounded by a polynomial
in λ. We call a function negl(λ) if for every c ∈ Z, there exists some N ∈ Z such that for all λ > N it holds
that negl(λ) < 1

λc . We say that an algorithm is PPT if it is modeled as a probabilistic Turing machine whose
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ExpPrivAGC,Φ(1λ)

(C, x)← A(1λ)

if x /∈ {0, 1}n return ⊥
b←$ {0, 1}
if b = 0 : (C̃, e, d)← GC.Garble(1λ, C)

X̃ ← GC.Enc(e, x)

if b = 1 : y ← GC.ev(C, x)

(C̃, X̃, d)← S(1λ, y, Φ(C))

b′ ← A(C̃, X̃, d)

return b = b′

(a) Privacy game.

ExpAuthAGC(1λ)

(C, x)← A(1λ)

if x /∈ {0, 1}n return ⊥

(C̃, e, d)← GC.Garble(1λ, C)

X̃ ← GC.Enc(e, x)

Ỹ ← A(C̃, X̃)

return (Ỹ 6= GC.Eval(C̃, X̃)

and GC.Dec(d, Ỹ ) 6= ⊥)

(b) Authenticity game.

Fig. 1: The description of the security games for garbling schemes.

running time is bounded by some function poly(λ). Given a set S, we denote by x←$S the sampling of an
element uniformly at random from S. Vectors (x1, . . . , xn) are written as x and 〈x,y〉 denotes the inner
product of x and y.

2.1 Garbling Schemes

We recall the notion of garbling schemes as presented in [11].

Definition 1 (Garbling Scheme). A garbling scheme GC = (GC.Garble,GC.Enc,GC.Dec,GC.Eval,GC.ev)
is a tuple of algorithms, where C describes the circuit GC.ev(C, ·) : Fn 7→ Fm that we want to garble and
where the remaining algorithms follow.

(C̃, e, d)← GC.Garble(1λ, C) : On input 1λ and f , the probabilistic garbling algorithm outputs a garbled circuit

description C̃, the input encoding information e, and the output decoding information d.

X̃ ← GC.Enc(e, x) : The (possibly) probabilistic encoding algorithm takes the encoding information e as input,

and an initial input x ∈ Fn, and outputs a garbled input X̃.

Ỹ ← GC.Eval(C̃, X̃) : On input a garbled circuit C̃ and an garbled input X̃, evaluate C̃ on X̃ to produce a

deterministic garbled output Ỹ .

y ← GC.Dec(d, Ỹ ) : The deterministic decoding algorithm takes as input the decoding information d, and a

garbled output Ỹ , and outputs a final output y ∈ Fm.

The security notions we consider are privacy, obliviousness, and authenticity. Privacy means that seeing the
garbled circuit C̃ with a garbled input X̃ and decoding information d does not reveal more about C and x
than C(x). We denote by Φ(C) some side information that the garbled circuit leaks about the original circuit
C, like its size and topology. To define this formally, we resort to the simulation-based definition, which can
be shown to be equivalent to the game-based one via a standard argument (see [11]).

Definition 2 (Φ-Privacy). Let GC = (GC.Garble,GC.Enc,GC.Dec,GC.Eval,GC.ev) be a garbling scheme and
Φ a side information function. GC achieves Φ-privacy if there exists a PPT simulator S such that for all
PPT adversaries A there exists a negligible function negl such that

2 · Pr[ExpPrivAGC,Φ(1λ) = 1]− 1 ≤ negl(λ),

where ExpPrivAGC,Φ(1λ) is defined in Figure 1a.
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Authenticity prevents the adversary from learning any output labels other than the ones it can learn itself
from evaluating the circuit. This prevents a malicious adversary from claiming the evaluation yielded a
different result.

Definition 3 (Authenticity). Let GC = (GC.Garble,GC.Enc,GC.Dec,GC.Eval,GC.ev) be a garbling scheme.
GC achieves authenticity if for all PPT adversaries A there exists a negligible function negl such that

Pr[ExpAuthAGC(1λ) = 1] ≤ negl(λ),

where ExpAuthAGC(1λ) is defined in Figure 1b.

Obliviousness is formalized in Appendix A.

2.2 Predicate Encryption

We recall the concept of predicate encryption (PE) [32]. A PE scheme allows to encrypt messages for certain
attributes and to encode Boolean predicates in the decryption keys. We denote by Σ an arbitrary set of
attributes and by F an arbitrary family of predicates over Σ, which may depend on the security parameter
λ and/or on the public parameters of the scheme. We assume the message space of the scheme to be a field
F.

Definition 4 (Predicate Encryption). A predicate encryption scheme for a class of predicates F over
the set of attributes Σ consists of four PPT algorithms (SetupPE,KGenPE,EncPE,DecPE) such that:

SetupPE(1λ) : The setup algorithm outputs a master public key ek and a corresponding private key msk.

KGenPE(msk, f) : The key generation algorithm takes as input the master secret key and a predicate f ∈ F .
It outputs a key dkf .

EncPE(ek,A,m) : The encryption takes as input the public key ek, an attribute A ∈ Σ, and a message m in
some associated message space. It returns a ciphertext c.

DecPE(dkf , c) : The decryption algorithm takes as input a secret key dkf and a ciphertext c. It outputs either
a message m or a special symbol ⊥.

For correctness, we require that for all λ ∈ N, all (ek,msk) ∈ SetupPE(1λ), all f ∈ F , all dkf ∈ KGenPE(msk, f),
all m ∈ F, and all A ∈ Σ:

If f(A) = 1 then DecPE(dkf ,EncPE(ek,A,m)) = m.
If f(A) = 0 then DecPE(dkf ,EncPE(ek,A,m)) = ⊥ with all but negligible probability.

A predicate encryption is attribute-hiding if the ciphertexts hide the payload and the attribute. In this work
we only consider a very weak version of this property, which is however sufficient for our purposes. In our
game, the adversary must specify the challenge attributes (A0,A1) together with the queries to the KGenPE
oracle before being provided with the public parameters. Furthermore, the adversary can request only one
key to the KGenPE oracle. We call this property static attribute-hiding and provide a formal definition below.

Definition 5 (Static Attribute-Hiding). A predicate encryption scheme is statically attribute-hiding
with respect to F if for all PPT adversaries A, the advantage of A in the following experiment is negligible
in the security parameter λ.

1. On input 1λ, A outputs a pair of attributes (A0,A1) ∈ Σ2 and a predicate f ∈ F . If f(A0) 6= f(A1) then
the challenger aborts.

2. SetupPE(1λ) is run to generate ek and msk and the adversary is given ek and KGenPE(msk, f).
3. A outputs two equal-length messages (m0,m1). If f(A0) = f(A1) = 1, then it is required that m0 = m1.

A random bit b is chosen and A is given the ciphertext c← EncPE(ek,Ab,mb).
4. A outputs a bit b′ and succeeds if b = b′.
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A predicate encryption scheme achieves payload-hiding if the message of a ciphertext is hidden from users
whose predicate does not satisfy the encoded vector x. In the literature this notion can be either presented in
its selective or adaptive variant: In the former the adversary is required to commit to the challenge attribute
A before even seeing the public parameters of the PE, while in the latter the adversary can specify A in the
challenge phase, together with the challenge message pair (m0,m1). Clearly, selective payload-hiding is a
strictly weaker notion, however it is still meaningful in certain contexts. In the following we formally define
the notion of selective payload-hiding PE, the adaptive version comes as a straightforward modification of
such a definition.

Definition 6 (Selective Payload-Hiding). A PE scheme is selectively payload-hiding with respect to
F and Σ if for all PPT adversaries A, the advantage of A in the following experiment is negligible in the
security parameter λ.

1. On input 1λ, A outputs an attribute A ∈ Σ.
2. SetupPE(1λ) is run to generate ek and msk and the adversary is given ek.
3. A may adaptively request keys for any predicates f1, . . . , fq ∈ F . In response, A is given the corresponding

keys dkfi ← KGenPE(msk, fi).
4. A outputs two equal-length messages (m0,m1). If there is an i such that fi(A) = 1, then it is required

that m0 = m1. A random bit b is chosen and A is given the ciphertext c← EncPE(ek,A,mb).
5. The adversary may continue to request keys for additional predicates, subject to the same restrictions as

before.
6. A outputs a bit b′ and succeeds if b = b′.

Zero Inner-Product Encryption. Zero inner-product encryption (ZIPE) is a specific type of predicate en-
cryption first explored by Katz, Sahai, and Waters [32] in 2008. In ZIPE the attributes are vectors of field
elements and the predicates are functions indexed by another vector of field elements that evaluate to 1
exactly if the inner-product of the two vectors is 0. Formally this can be defined as follows.

Definition 7 (Zero Inner-Product Encryption). A zero inner-product encryption scheme for vectors
of length n over a field F is a PE scheme for the class of attributes Σ = Fn and the class of predicates
F = {fy | y ∈ Fn} where fy : Fn → {0, 1} is defined as

fy(x) :=

{
0 if 〈y,x〉 6= 0

1 otherwise.

Non-Zero Inner-Product Encryption. This specific type of predicate encryption was first introduced by
Attrapadung and Libert [8]. In a non-zero inner-product encryption (NIPE) scheme the attributes are vectors
of field elements and the predicates are indexed by another vector of field elements and return 1 exactly if
the inner-product of the two vectors is 6= 0. Formally it can be defined as follows.

Definition 8 (Non-Zero Inner-Product Encryption). A zero inner-product encryption scheme for vec-
tors of length n over a field F is a PE scheme for the class of attributes Σ = Fn and the class of predicates
F = {fy | y ∈ Fn} where fy : Fn → {0, 1} is defined as

fy(x) :=

{
0 if 〈y,x〉 = 0

1 otherwise.

2.3 Inner-Product Functional Encryption

Here we provide a formal definition of an Inner-Product Functional Encryption (IPFE) scheme. This primitive
was introduced in the work of Abdalla et. al [1]. Such a scheme allows one to encode a vector field elements
v ∈ Fn in a ciphertext and to produce decryption keys for a vector u of the same family. Intuitively, security
demands that one can learn nothing beyond the inner-product of u and v. More formally:
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Definition 9 (Inner-Product Functional Encryption). Let F be a field. An inner-product functional
encryption scheme consists of four PPT algorithms (SetupIPFE,KGenIPFE,EncIPFE,DecIPFE) such that:

SetupIPFE(1λ) : The setup algorithm outputs a master public key ek and a corresponding private key msk.

KGenIPFE(msk,y) : The key generation algorithm takes as input the master secret key and a vector y ∈ Fn.
It outputs a key dky.

EncIPFE(ek,x) : The encryption takes as input the public key ek and a vector x ∈ Fn. It returns a ciphertext
c.

DecIPFE(dky, c) : The decryption algorithm takes as input a secret key dky and a ciphertext c. It outputs either
a message m ∈ F or a special symbol ⊥.

We define correctness as: for all λ, all (ek,msk) ← SetupIPFE(1λ), all y ∈ Fn, all dky ← KGenIPFE(msk,y),
and all x ∈ Fn it holds that DecIPFE(dky,EncIPFE(ek,x)) = 〈x,y〉. An IPFE scheme is semantically secure if
an adversary holding a key for a vector y and a ciphertext under a vector x does not learn anything except
for 〈x,y〉. The formal definition is elaborated below.

Definition 10 (Semantic Security). An IPFE scheme is semantically secure if for all PPT adversaries
A, the advantage of A in the following experiment is negligible in the security parameter λ.

1. SetupIPFE(1λ) is run to generate ek and msk and the adversary is given (1λ, ek).
2. A may adaptively request keys for vector y1, . . . ,yq ∈ Fn. In response, A is given the corresponding keys

dkyi ← KGenIPFE(msk,yi).
3. A outputs two equal-length messages (x0,x1) ∈ F2n. If there is an i such that 〈yi,x0〉 6= 〈yi,x1〉, then

the challenger aborts. A random bit b is chosen and A is given the ciphertext c← EncIPFE(ek,xb).
4. The adversary may continue to request keys for additional vectors, subject to the same restrictions as

above.
5. A outputs a bit b′ and succeeds if b = b′.

2.4 Bilinear Maps and Complexity Assumptions

Here we recall the notion of bilinear maps and introduce our complexity assumptions. Let G1 and G2 be two
cyclic groups of large prime order p. Let g1 ∈ G1 and g2 ∈ G2 be respective generators of G1 and G2. Let
e : G1 × G2 → GT be a function that maps pairs of elements in (G1,G2) to elements of some cyclic group
GT of order p. Throughout the following sections we write all of the group operations multiplicatively, with
identity elements denoted by 1. We require that:

– The map e and all the group operations in G1, G2, and GT are efficiently computable.
– The map e is non degenerate, i.e., e(g1, g2) 6= 1.
– The map e is bilinear, i.e., ∀u ∈ G1,∀v ∈ G2,∀(a, b) ∈ Z2, e(ua, vb) = e(u, v)ab.

We prove the security of one of our schemes based on the External Diffie-Hellman (XDH) assumption and
the Decisional-Bilinear Diffie-Hellman (DBDH) assumption. The latter is the standard extensions of the
Decisional Diffie-Hellman assumption [13] in groups with pairing. Such an assumption was introduced in the
context of identity-based encryption in the seminal work of Boneh and Franklin [14]. We define the XDH
and the DBDH assumption in the following.

Definition 11 (XDH Assumption). The XDH assumption holds in G1 if, for all PPT algorithms A,
there exists a negligible function negl such that∣∣Pr [1← A (g1, ga1 , gb1, gab1 )]− Pr

[
1← A

(
g1, g

a
1 , g

b
1, g

c
1

)] ∣∣ ≤ negl(λ)

where the probability is taken over the random choice of the generator g1 ∈ G1, the random choice of
(a, b, c) ∈ (Z∗p)3, and the random coins of A.
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Definition 12 (DBDH Assumption). The DBDH assumption holds in (G1,G2) if, for all PPT algo-
rithms A, there exists a negligible function negl such that∣∣∣∣∣ Pr

[
1← A

(
g1, g

a
1 , g

c
1, g2, g

a
2 , g

b
2, e(g1, g2)abc

)]
−Pr

[
1← A

(
g1, g

a
1 , g

c
1, g2, g

a
2 , g

b
2, e(g1, g2)z

)] ∣∣∣∣∣ ≤ negl(λ)

where the probability is taken over the random choice of g1 ∈ G1 and g2 ∈ G2, the random choice of
(a, b, c, z) ∈ (Z∗p)4, and the random coins of A.

3 Arithmetic Garbling for Inner-Products

In this section we present our compiler that turns predicate encryption schemes into garbling schemes for
inner-product predicates. Our first observation is that the ciphertext of an inner-product predicate encryption
scheme can already be seen as a garbled circuit if it satisfies some mild attribute-hiding properties. However,
to achieve authenticity one needs to encrypt a predicate f and its complement f . For inner-product predicates,
the complement of the predicate defined by a vector x is a vector y such that for all z it holds that
〈x, z〉 = 0 =⇒ 〈y, z〉 6= 0 and vice versa. Thus y is not always efficiently computable. We resolve this
issue by lifting the complement to the encryption scheme. Our construction (Figure 2) garbles the family of
predicates F = {fy | y ∈ Fn} where fy : Fn → {0, 1} is defined as

fy(x) :=

{
0 if 〈y,x〉 = 0

1 otherwise.

Our scheme uses a NIPE = (SetupNIPE,KGenNIPE,EncNIPE,DecNIPE) and ZIPE = (SetupZIPE,KGenZIPE,EncZIPE,
DecZIPE) for inner products of vectors in Fn+1 in a blackbox way.

Theorem 1. Let Φ be the function that takes as input an inner-product predicate and returns the length of
its vector. Let NIPE be a statically attribute-hiding NIPE scheme and let ZIPE be a statically attribute-hiding
ZIPE scheme, then the garbling scheme GC as described in Figure 2 achieves Φ-privacy.

Proof. We begin by describing the simulator SGC in Figure 3. Then we define the following sequence of
hybrids:

H0 : Defined as the experiment described in Definition 2 with the bit b = 0.
H1 : Defined as H0 except that if fy(x) = 0, then a random s← Fn+1 is sampled under the constraint that
〈x + r‖1, s〉 = 0. If fy(x) = 1, then a random s← Fn+1 is sampled under the constraint that 〈x + r‖1, s〉 6=
0. In both cases c0 is set to be EncZIPE

(
ekZIPE, s, r

0
)
.

H2 : Defined as H1 except that c1 is set to be EncNIPE
(
ekNIPE, s, r

1
)
.

H3 : Defined as H2 except that the keys dkZIPE and dkNIPE are computed as KGenZIPE(mskZIPE, r‖1) and
KGenNIPE(mskNIPE, r‖1), for a random r ∈ Fn.
H4 : Defined as the experiment described in Definition 2 with the bit b = 1 and using the simulator described
in Figure 3.

We proceed by proving the indistinguishability of each pair of hybrids.

Lemma 1. For all PPT A there exists a negligible function negl such that∣∣Pr [1← AH0(1λ)
]
− Pr

[
1← AH1(1λ)

]∣∣ ≤ negl(λ).

Proof (of Lemma 1). Assume towards contradiction that there exists a PPT adversary A such that∣∣Pr [1← AH0(1λ)
]
− Pr

[
1← AH1(1λ)

]∣∣ ≥ ε(λ),

for some non-negligible function ε. Then we can construct the reduction B = (B1,B2,B3) in Figure 4 against
the static attribute-hiding of the ZIPE scheme ZIPE. The reduction is clearly efficient. Note that when b = 0
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GC.Garble(1λ,y)

r←$Fn(
r0, r1

)
←$ {0, 1}2λ

(ekZIPE,mskZIPE)← SetupZIPE(1λ)

(ekNIPE,mskNIPE)← SetupNIPE(1λ)

c0 ← EncZIPE
(
ekZIPE,y‖ − 〈y, r〉 , r0

)
c1 ← EncNIPE

(
ekNIPE,y‖ − 〈y, r〉 , r1

)
C̃ :=

(
c0, c1

)
e := (mskZIPE,mskNIPE, r)

d :=
(
r0, r1

)
return (C̃, e, d)

GC.Eval(C̃, X̃)

parse C̃ as
(
c01, c

1
1

)
parse X̃ as (dkZIPE, dkNIPE)

r̃0 ← DecZIPE(dkZIPE, c
0)

r̃1 ← DecNIPE(dkNIPE, c
1)

Ỹ :=
(
r̃0, r̃1

)
return Ỹ

GC.ev(y,x)

return fy(x)

GC.Enc(e,x)

parse e as (mskZIPE,mskNIPE, r)

dkZIPE ← KGenZIPE(mskZIPE,x+ r‖1)

dkNIPE ← KGenNIPE(mskNIPE,x+ r‖1)

X̃ := (dkZIPE, dkNIPE)

return X̃

GC.Dec(d, Ỹ )

parse d as
(
r0, r1

)
parse Ỹ as

(
r̃0, r̃1

)
if r̃0 = r0 then return 0

elseif r̃1 = r1 then return 1

else return ⊥

Fig. 2: An arithmetic garbling scheme for inner product predicates.

then c∗ is of the form EncZIPE(ekZIPE,y‖− 〈y, r〉 , r0) which means that the reduction perfectly simulates the
view of H0. On the other hand when b = 1 then c∗ ← EncZIPE(ekZIPE, s, r

0) which is exactly the input of
H1. What is left to be shown is that the tuple ((y‖ − 〈y, r〉 , s) , (r + x)‖1) is an admissible challenge for the
static attribute-hiding experiment. We identify two cases:

1. fy(x) = 0 : In this case we have 〈r + x‖1, s〉 = 0 by definition and therefore

〈y‖ − 〈y, r〉 , (r + x)‖1〉 = 〈y, (r + x)〉 − 〈y, r〉 = 〈y, r〉+ 〈y,x〉 − 〈y, r〉
= 〈y,x〉 = 0 = 〈r + x‖1, s〉 .

2. fy(x) = 1 : In this case we have 〈r + x‖1, s〉 6= 0. Furthermore,

〈y‖ − 〈y, r〉 , (r + x)‖1〉 = 〈y, (r + x)〉 − 〈y, r〉 = 〈y,x〉 6= 0.

We can conclude that the challenge tuple is legitimate. By initial assumption we have that∣∣Pr [1← B(1λ)|b = 0
]
− Pr

[
1← B(1λ)|b = 1

]∣∣ ≥ ε(λ),

which is a contradiction to the static attribute-hiding of the ZIPE scheme ZIPE and proves our lemma. ut

Lemma 2. For all PPT A there exists a negligible function negl such that∣∣Pr [1← AH1(1λ)
]
− Pr

[
1← AH2(1λ)

]∣∣ ≤ negl(λ).

Proof (of Lemma 2). The proof is identical to the proof of Lemma 1 except that the reduction is against the
static attribute-hiding of NIPE. ut
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SGC(1λ, β, n)

(ekZIPE,mskZIPE)← SetupZIPE(1λ); (ekNIPE,mskNIPE)← SetupNIPE(1λ)

r←$Fn;
(
r0, r1

)
←$ {0, 1}2λ; d :=

(
r0, r1

)
dkZIPE ← KGenZIPE(mskZIPE, r‖1); dkNIPE ← KGenNIPE(mskNIPE, r‖1)

X̃ := (dkZIPE, dkNIPE)

if β = 0 then s← Fn+1 s.t. 〈r‖1, s〉 = 0

if β = 1 then s← Fn+1 s.t. 〈r‖1, s〉 6= 0

c0 ← EncZIPE
(
ekZIPE, s, r

0) ; c1 ← EncNIPE
(
ekNIPE, s, r

1) ; C̃ :=
(
c0, c1

)
return

(
C̃, X̃, d

)
Fig. 3: Construction of the simulator SGC.

B1(1λ)

(y,x)← A(1λ); r←$Fn

(ekNIPE,mskNIPE)← SetupNIPE(1λ)

dkNIPE ← KGenNIPE(mskNIPE,x+ r‖1)

if 〈y,x〉 = 0 then

s← Fn+1 s.t. 〈(r + x)‖1, s〉 = 0

if 〈y,x〉 = 1 then

s← Fn+1 s.t. 〈(r + x)‖1, s〉 6= 0

return ((y‖ − 〈y, r〉 , s) , (r + x)‖1)

B2(ek, dk)(
r0, r1

)
←$ {0, 1}2λ

return
(
r0, r0

)
B3(c∗)

c1 ← EncNIPE(ekNIPE,y‖ − 〈y, r〉 , r1)

d := (r0, r1); X̃ := (dk, dkNIPE)

C̃ :=
(
c∗, c1

)
; b′ ← A

(
C̃, X̃, d

)
return b′

Fig. 4: Reduction against the static attribute-hiding of ZIPE.

Lemma 3. For all PPT A there exists a negligible function negl such that∣∣Pr [1← AH2(1λ)
]
− Pr

[
1← AH3(1λ)

]∣∣ = 0.

Proof (of Lemma 3). Here the observation is that if r is sampled uniformly at random from a field Fn,
then for all x ∈ Fn we have that r and x + r are identically distributed. Therefore the modification is only
syntactical. ut

Lemma 4. For all PPT A there exists a negligible function negl such that∣∣Pr [1← AH3(1λ)
]
− Pr

[
1← AH4(1λ)

]∣∣ = 0.

Proof (of Lemma 4). The experiment H3 is identical to the simulator SGC (Figure 3) and thus the change is
only syntactical. ut

By Lemma 1, Lemma 2, Lemma 3, Lemma 4 we have that the H0 is computationally indistinguishable from
H4, which means that the advantage of any PPT adversary A in the privacy experiment (Definition 2) can
be bound to a negligible function in the security parameter. ut

Theorem 2. Let NIPE be a statically attribute-hiding NIPE scheme and let ZIPE be a statically attribute-
hiding ZIPE scheme, then the garbling scheme GC as described in Figure 2 achieves authenticity.
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Proof. We begin by defining the following sequence of hybrids.

H0 : Defined as the experiment described in Definition 3.
H1 : Same as H0 except that fy(x) = 1 : c0 ← EncZIPE

(
ekZIPE,y‖ − 〈y, r〉 , 0λ

)
.

H2 : Same as H1 except that if fy(x) = 0 : c1 ← EncNIPE
(
ekNIPE,y‖ − 〈y, r〉 , 0λ

)
.

We show that the distance between neighbouring experiments is negligible in the security parameter.

Lemma 5. For all PPT A there exists a negligible function negl such that∣∣Pr [1← AH0(1λ)
]
− Pr

[
1← AH1(1λ)

]∣∣ ≤ negl(λ).

Proof (of Lemma 5). Assume towards contradiction that there exists a PPT adversary A such that∣∣Pr [1← AH0(1λ)
]
− Pr

[
1← AH1(1λ)

]∣∣ ≥ ε(λ),

for some non-negligible function ε. Then we can construct the reduction B = (B1,B2,B3) in Figure 5 against
the static attribute-hiding of the ZIPE scheme ZIPE. The reduction is clearly efficient. Note that when b = 0

B1(1λ)

(y,x)← A(1λ)

r←$Fn

(ekNIPE,mskNIPE)← SetupNIPE(1λ)

dkNIPE ← KGenNIPE(mskNIPE,x+ r‖1)

return

((y‖ − 〈y, r〉 ,y‖ − 〈y, r〉) , (r + x)‖1)

B2(ek, dk)(
r0, r1

)
←$ {0, 1}2λ

if 〈y,x〉 6= 0 then

return
(
r0, 0λ

)
else return

(
r0, r0

)
B3(c∗)

c1 ← EncNIPE(ekNIPE,y‖ − 〈y, r〉 , r1)

X̃ := (dk, dkNIPE)

C̃ :=
(
c∗, c1

)
b′ ← A

(
C̃, X̃

)
return b′

Fig. 5: Reduction against the static attribute-hiding of ZIPE.

then c∗ is of the form EncZIPE(ekZIPE,y‖ − 〈y, r〉 , r0) which means that the reduction perfectly simulates
the view of H0. On the other hand when b = 1 then c∗ ← EncZIPE(ekZIPE,y‖ − 〈y, r〉 , 0λ) if and only if
〈y,x〉 6= 0, which is exactly the input of H1. We now argue that the reduction B is an admissible adversary
for the static attribute-hiding experiment. Note that the challenge attributes are identical, so the challenger
does not abort if the inner product of the challenge and the predicate is different from 0. By assumption we
have that

〈y‖ − 〈y, r〉 , (r + x)‖1〉 = 〈y, (r + x)〉 − 〈y, r〉 = 〈y, r〉+ 〈y,x〉 − 〈y, r〉
= 〈y,x〉 6= 0,

which satisfies the condition for an admissible adversary. It follows that∣∣Pr [1← B(1λ)|b = 0
]
− Pr

[
1← B(1λ)|b = 1

]∣∣ ≥ ε(λ),

which is a contradiction to the static attribute-hiding of the ZIPE scheme ZIPE and proves our lemma. ut
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Lemma 6. For all PPT A there exists a negligible function negl such that∣∣Pr [1← AH1(1λ)
]
− Pr

[
1← AH2(1λ)

]∣∣ ≤ negl(λ).

Proof (of Lemma 6). The proof is identical to the proof of Lemma 5 except that the reduction is against the
static attribute-hiding of the NIPE scheme NIPE. The modifications are obvious and therefore are omitted.

ut

Finally we show that the advantage of any PPT adversary A in H2 is negligibly close to 0.

Lemma 7. For all PPT A there exists a negligible function negl such that

Pr
[
1← HA2 (1λ)

]
≤ negl(λ).

Proof (of Lemma 7). To prove this lemma it is enough to observe that, for the case fy(x) = 1, the value
of r0 is information theoretically hidden to the eyes of A and therefore the probability that A outputs r0 is
negligible in the security parameter. The same argument works also for the case fy(x) = 0. ut

This concludes our proof. ut

Achieving obliviousness requires some modification of the garbling algorithm in a non-blackbox fashion,
which we describe in Appendix A.

Input Encoding. The core property of arithmetic garbled circuits is to reduce the task to evaluate a circuit
to evaluating an affine function over the inputs that depends only on some randomness (and in particular
not on the input itself). This corresponds to the encoding function, which in our construction consists of the
evaluation of the key generation of the NIPE and ZIPE schemes. Concerning our instantiations, the NIPE’s
key generation (see Section 4) is identical to the algorithm of the underlying IPFE scheme which in turn,
for all the schemes proposed by Agrawal et al. [3], evaluates an affine function over the inputs. For the case
of the ZIPE (see Section 5), the key generation corresponds to the computation of an affine function “in the
exponent”. Both classes of functions are well studied in the context of secure arithmetic computation and
admit efficient secure evaluation protocols [34].

4 Non-Zero Inner Product Encryption

Our construction of NIPE is a simple transformation based on inner product functional encryption (see
Definition 9). The basic idea is to encrypt the attribute vector x multiplied by the message m with an IPFE
scheme. Clearly, trying to decrypt with a vector y such that 〈x,y〉 = 0, will destroy all information about
m, since the decryption algorithm will output 〈mx,y〉 = m 〈x,y〉 = 0. On the other hand, decrypting with
any vector such that 〈x,y〉 6= 0 yields a blinded version of the message, where the mask is 〈x,y〉. Since x is
unknown to the eyes of the decryptor, to enable correctness, we should add a second IPFE ciphertext, of the
vector x, which decrypted with the same vector y will reveal the blinding factor. However, this simple version
does not achieve any form of attribute-hiding, since the decryptor can learn non-trivial information about
x, in case of correct decryption. To counter this issue, we blind the inner product 〈x,y〉 with an additional
random scalar r. In the security analysis, this additional degree of freedom will allow us to equivocate the
attributes. The scheme is formally described in Figure 6.

It is easy to see that NIPE is correct. By the correctness of IPFE, it holds that s = 〈mrx,y〉 = mr 〈x,y〉
and t = 〈rx,y〉 = r 〈x,y〉. If 〈x,y〉 6= 0 we therefore have st−1 = mr〈x,y〉

r〈x,y〉 = m. If on the other hand

〈x,y〉 = 0 then t = 0 and the decryption algorithm will always output ⊥.

Theorem 3. Let IPFE be a semantically secure inner product functional encryption scheme, then the non-
zero inner product encryption scheme NIPE shown in Figure 6 is adaptively payload-hiding.
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SetupNIPE(1λ)

(ek,msk)← SetupIPFE(1λ)

return (ek,msk)

KGenNIPE(msk,y)

dk← KGenIPFE(msk,y)

return dk

EncNIPE(ek,x,m)

r←$F
c1 ← EncIPFE(ek,mr · x)

c2 ← EncIPFE(ek, r · x)

return (c1, c2)

DecNIPE(dk, c)

parse c as (c1, c2)

s← DecIPFE(dk, c1)

t← DecIPFE(dk, c2)

if t 6= 0 then return st−1

return ⊥

Fig. 6: Construction of non-zero inner product encryption.

BKGenIPFE(msk,·)
1 (ek)

(m0,m1,x)← AKGenIPFE(·)(ek)

r←$F
return (m0r · x,m1r · x)

BKGenIPFE(msk,·)
2 (c∗)

c2 := EncIPFE(ek, r · x)

b′ ← AKGenIPFE(·)(c∗, c2)

return b′

Fig. 7: The reduction B from the adaptive payload-hiding of NIPE to the semantic security of IPFE.

Proof. Let A be an algorithm that breaks the adaptive payload-hiding property of NIPE with probability
1/2+ε(λ). We then construct an algorithm B = (B1,B2) breaking the semantic security of IPFE with the same
probability as depicted in Figure 7. Clearly, the public key passed to A is distributed exactly as specified by
the scheme. Further note that the attacker can only be successful if for all yi it queries to the key generation
oracle it must hold that 〈x,yi〉 = 0, since otherwise the attacker would have to choose m0 = m1. Therefore,
it holds that for all i, j, 〈x,yi〉 = 〈x,yj〉 = 0 and thus the condition on keys in the semantic security game
holds. It follows that the key generation oracle is simulated perfectly. Further, the challenge ciphertext is
always a correctly distributed ciphertext of mb, where b is the challenge bit chosen by the semantic security
game. Therefore, whenever A is successful, so is B. It follows that B is successful with probability 1/2 + ε(λ).
Since IPFE is semantically secure, ε(λ) must be negligible and NIPE is thus adaptively payload-hiding. ut

Theorem 4. Let IPFE be a semantically secure inner product functional encryption scheme, then the non-
zero inner product encryption scheme NIPE shown in Figure 6 is statically attribute-hiding.

Proof. Let A be an algorithm that breaks the static attribute-hiding property of NIPE with probability
1/2 + ε(λ). We then construct an algorithm B = (B1,B2) breaking the semantic security of IPFE with the
same probability as depicted in Figure 8. Note, that we use a notion of semantic security where B can output
pairs of messages. This notion follows from standard semantic security with a simple hybrid argument.

Clearly, the public key passed to A is distributed exactly as specified by the scheme. Further, the attacker
can only ask for a single decryption key and must do so before it outputs the challenge. The choice of r1
ensures that the condition on keys made by the semantic security game is satisfied. While r0 and r1 are
related, both uniformly distributed when viewed in isolation. The challenge ciphertext is therefore always a
correctly distributed ciphertext of mb, where b is the challenge bit chosen by the semantic security game.
Therefore, whenever A is successful, so is B. It follows that B is successful with probability 1/2 + ε(λ). Since
IPFE is semantically secure, ε(λ) must be negligible and NIPE is thus statically attribute-hiding. ut
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BKGenIPFE(msk,·)
1 (ek)

(x0,x1,y)← A(1λ)

dk← KGenIPFE(msk,y); r0 ←$F
if 〈x0,y〉 = 0 then r1 := r0

else r1 :=
r0 〈x0,y〉
〈x1,y〉

(m0,m1)← A(ek, dk)

return ((m0r0 · x0, r0x0), (m1r1 · x1, r1x1)

BKGenIPFE(msk,·)
2 (c∗1, c

∗
2)

b′ ← A((c∗1, c
∗
2))

return b′

Fig. 8: The reduction B from the static attribute-hiding of NIPE to the semantic security of IPFE.

4.1 Instantiations

Our transformation relies on a very powerful abstraction of inner-product functional encryption: We require
that the inner product of keys and messages is computed over a finite field and that the scheme supports mes-
sages from an exponentially large domain. Recent proposals for an adaptively-secure inner-product functional
encryption [3] include:

1. A scheme from DDH for small messages for inner product computations over Zp. The key size is that of
two integers in Zp.

2. A construction from LWE for inner products over Zp with a stateful key generation algorithm, where
keys are of size Zµp , where µ depends on the security parameter but not on the vector length n.

A direct application of our transformation to the first scheme would yield a NIPE with an inefficient de-
cryption: The output of the original scheme is of the form gm, that in our construction would translate into
two elements (gr, gmr) ∈ G2, for a randomly distributed r. To retrieve m one would then compute two dis-
crete logarithms. However we can easily solve this, for messages m from a small domain, via a nonblack-box
modification of our decryption algorithm. To retrieve m one can compute the discrete logarithm of gmr to
base gr. Assuming a message space sufficiently small, this gives us the first full-fledged NIPE from the DDH
assumption. We stress that a small message space does not hinder the applicability of a NIPE to our garbling
scheme (Section 3), which requires one to encrypt a message r1 ∈ {0, 1}λ from a large space. We suggest two
possible solutions to bypass this problem:

1. Split r1 in small chunks, e.g., take its binary representation, and encrypt each block separately with fresh
randomness. This variant is still secure by a standard hybrid argument.

2. Modify the garbling scheme in a non-black box way to set the decoding label corresponding to 1 to
H(gr, gmr), where H : G2 → {0, 1}λ is any collision-resistant hash function. Note that the garbling
algorithm has access to the random coins of the encryption, and therefore (gr, gmr) is efficiently com-
putable. This allows the evaluation algorithm to recover the correct label without computing any discrete
logarithm.

For the second instantiations, our NIPE scheme inherits the stateful key generation algorithm. This is not
an issue in the context of garbling schemes since our construction issues only a single decryption key.

5 Zero Inner Product Encryption

Our ZIPE scheme is inspired by the work of Boneh et al. [15] and can be seen as a key-homomorphic public-
key encryption for linear functions. Recall that a key-homomorphic public key encryption allows anyone to
transform an encryption under attribute x into an encryption under (f(x), [f ]), where f(x) ∈ F and [f ] is
an encoding of the circuit computing f . This design paradigm offers a very natural way to instantiate an
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attribute-based encryption scheme: One can simply issue a key for (1, [f ]) and the decrypter can publicly
apply the transformation of above to any cipher and decrypt if and only if f(x) = 1. The advantage of
this class of schemes is that the computational complexity is pushed to public operation and therefore the
resulting decryption keys are typically small.

We exploit the same idea to construct a predicate encryption with small keys from bilinear maps. Since
our public evaluation happens in the exponent, our scheme is key-homomorphic for linear functions only.
However, a crucial difference with respect to the work of Boneh et al. [15] is that the structure of bilinear
groups allows us to hide the attributes even to the eyes of the evaluator, which applies the function f
obliviously over x. The formal description of our construction is shown in Figure 9.

SetupZIPE(1λ)

(g1, g2,G1,G2,GT )← G(1λ)

(κ1, . . . , κn)←$Znp
α←$Zp
msk := (g1, g2, g

α
2 , κ1, . . . , κn)

ek := (g1, g2, g
α
1 , g

κ1
1 , . . . , gκn1 )

return (ek,msk)

KGenZIPE(msk,y)

parse msk as (g1, g2, a2, κ1, . . . , κn)

r←$Zp

d0 := a2 ·

(
n∏
i=1

gκiyi2

)r
d1 := gr2

return dk := (d0, d1,y)

EncZIPE(ek,x,m)

parse ek as (g1, g2, a1, h1, . . . , hn)

(κ0, t)←$Z2
p

h0 := gκ0
1

c0 := m · e(a1, g2)t

c′0 := gt1

for i = {1, . . . , n} : ci := (hxi0 hi)
t

return (c0, c
′
0, c1, . . . , cn)

DecZIPE(dk, c)

parse dk as (d0, d1,y)

parse c as (c0, c
′
0, c1, . . . , cn)

m := c0
e
(∏n

i=1 c
yi
i , d1

)
e(c′0, d0)

return m

Fig. 9: Construction of zero inner product encryption.

For correctness, evaluating the decryption algorithm we get the following:

c0
e (
∏n
i=1 c

yi
i , d1)

e(c′0, d0)
= m · e(a1, g2)t

e (
∏n
i=1(hxi0 hi)

tyi , gr2)

e
(
gt1, a2 · (

∏n
i=1 g

κiyi
2 )

r)
= m · e(g1, g2)αt

e (
∏n
i=1(hxi0 hi)

yi , g2)
rt

e(g1, g2)αte(g1,
∏n
i=1 g

κiyi
2 )rt

= m ·
e
(∏n

i=1 g
yi(κ0xi+κi)
1 , g2

)rt
e(g1,

∏n
i=1 g

κiyi
2 )rt

= m ·
e
(
g
κ0〈y,x〉+

∑n
i=1 κiyi

1 , g2

)rt
e(g1, g

∑n
i=1 κiyi

2 )rt

= m · e(g1, g2)rtκ0〈y,x〉+rt
∑n
i=1 κiyi

e(g1, g2)rt
∑n
i=1 κiyi

= m · e(g1, g2)rtκ0〈y,x〉 (1)
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Clearly, if 〈y,x〉 = 0, then Equation 1 is equal to m. On the other hand, if 〈y,x〉 6= 0 then Equation 1 would
only be equal to m if rtκ0 〈y,x〉 happens to be equal to 0 which will happen only with negligible probability.

Theorem 5. If the DBDH assumption holds in (G1,G2), then the zero inner product encryption scheme
ZIPE shown in Figure 9 is selectively payload-hiding.

Proof. Let A be an algorithm that breaks the selective payload-hiding property of ZIPE with probability
1/2 + ε(λ). We then construct an algorithm B distinguishing the two cases of the DBDH problem with an
advantage of ε(λ) as depicted in Figure 10. It is easy to see, that the public key generated by B,

B(g1, A1, C1, g2, A2, B2, Z)

b←$ {0, 1}
x← A(1λ); ω←$Znp
ek := (g1, B2, A1, g

ω1
1 Ax11 , . . . , gωn1 Axn1 )

(m0,m1)← AKGen′ZIPE(·)(ek); κ′ ←$Zp
c∗ := (Z ·mb, C1, C

x1κ
′+ω1

1 , . . . , Cxnκ
′+ωn

1 )

b′ ← A(c∗)

if b′ = b then return 1

else return 0

KGen′ZIPE(y)

ρ←$Zp

d0 := B
− 〈ω,y〉〈x,y〉
2 ·Ar〈x,y〉2 · gr〈ω,y〉2

d1 := gr2 ·B
− 1
〈x,y〉

2

return dk := (d0, d1,y)

Fig. 10: The reduction B from the selective payload-hiding of ZIPE to DBDH assumption.

a1 = gα1 and hi = gωi+αxi1

is correctly distributed. By the definition of DBDH α is uniformly distributed in Zp and, since ωi is a
uniformly random value, κi = ωi + αxi is also uniformly distributed. Further, we argue that the secret keys
output by KGen′ZIPE(y) are correctly distributed. We have

d0 = B
− 〈ω,y〉〈x,y〉
2 ·Aρ〈x,y〉2 · gρ〈ω,y〉2 = g

−β
∑n
i=1 ωiyi∑n
i=1

xiyi
+ρ(α

∑n
i=1 xiyi+

∑n
i=1 ωiyi)

2

= g
αβ−β

(∑n
i=1 ωiyi∑n
i=1

xiyi
+α
)
+ρ(α

∑n
i=1 xiyi+

∑n
i=1 ωiyi)

2

= g
αβ+

(
ρ− β∑n

i=1
xiyi

)
(
∑n
i=1(ωi+αxi)yi)

2 = Bα2 ·B
(
ρ
β−

1∑n
i=1

xiyi

)
(
∑n
i=1 κiyi)

2

and

d1 = gr2 ·B
− 1
〈x,y〉

2 = B
ρ
β−

1∑n
i=1

xiyi

2 .

Clearly (d0, d1) are a correct decryption key under ek with randomness r = ρ
β −

1∑n
i=1 xiyi

. This randomness

is uniformly distributed, because r is chosen independently and uniformly at random. Finally, the challenge
ciphertext is c0 = Z ·mb, c

′
0 = C1 = gγ1 , and

ci = Cxiκ
′+ωi

1 = (gκ
′xi+ωi

1 )γ = (g
(κ′−α)xi+ωi+αxi
1 )γ = (g

(κ′−α)xi
1 hi)

γ .

If it holds that Z = e(g1, g2)αβγ = e(gα1 , B1)γ , then c∗ clearly is a correctly distributed ciphertext for

message mb and randomnesses t = γ and κ0 = κ′−α. Thus, Pr
[
1← B

(
g1, g

α
1 , g

γ
1 , g2, g

α
2 , g

β
2 , e(g1, g2)αγβ

)]
=
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1/2 + ε(λ). On the other hand, if Z = e(g1, g2)ζ for an independent random ζ, then c0 = Z ·mb information

theoretically hides mb and A can therefore only guess. Thus, Pr
[
1← B

(
g1, g

α
1 , g

γ
1 , g2, g

α
2 , g

β
2 , e(g1, g2)ζ

)]
=

1/2. Combining the two cases, we get∣∣∣∣∣∣ Pr
[
1← B

(
g1, g

α
1 , g

γ
1 , g2, g

α
2 , g

β
2 , e(g1, g2)αγβ

)]
− Pr

[
1← B

(
g1, g

α
1 , g

γ
1 , g2, g

α
2 , g

β
2 , e(g1, g2)ζ

)] ∣∣∣∣∣∣ = ε(λ)

as claimed. Since DBDH holds in (G1,G2), ε(λ) must therefore be negligible and ZIPE is thus selectively
payload-hiding. ut

Theorem 6. If the XDH assumption holds in (G1,G2), then the zero inner product encryption scheme ZIPE
shown in Figure 9 is statically attribute-hiding.

Proof. Let A be an algorithm that breaks the static attribute-hiding property of ZIPE with probability
1/2 + ε(λ). We then construct an algorithm B distinguishing the two cases of the XDH problem with an
advantage of ε(λ) as depicted in Figure 11. Note that, for simplicity, we consider a modified version of the
game where the challenger always encrypts m0. The simulation is however indistinguishable from the original
experiment since the scheme is selectively payload-hiding (see proof above).

B(g1, g2, A,B,C)

b←$ {0, 1}
(x0,x1,y)← A(1λ); ω ← Znp ; (a, r)←$Z2

p

if
〈
x1,y

〉
= 0 then u := 1

else u :=

〈
x0,y

〉〈
x1,y

〉
ek :=

(
g1, g2, g

a
1 , A

x01−u·x
1
1 · gω1

1 , . . . , Ax0,n−u·x1,n · gωn1

)
dk :=

(
g
a+r〈y,ω〉
2 , gr2

)
(m0,m1)← A(ek, dk); κ′ ←$Zp

c∗ :=
(
e(B, ga2 ) ·m0, B,C

xb1κ
′+x01−ux

1
1Bω1 , . . . , Cx

b
nκ
′+x0n−ux

1
nBωn

)
b′ ← A(c∗)

if b′ = b then return 1

else return 0

Fig. 11: The reduction B from the static attribute-hiding of ZIPE to the XDH assumption.

It is easy to see, that the public encryption key used by B is correctly distributed. g1, g2 and ga1 are

computed exactly as specified in the scheme and the hi = Ax
0
i−u·x

1
i · gωi1 = g

α(x0
i−u·x

1
i )+ωi

1 are correctly
distributed values with κi = α(x0i − u · x1i ) + ωi, because the ωi are chosen independently and uniformly at
random. Further, the decryption key is correctly distributed. d1 = gr2 is computed exactly as specified by the
scheme and it is easily verified that due to the choice of the κi the following holds

a2 ·

(
n∏
i=1

gκiyi2

)r
= ga2 ·

(
g
∑n
i=1 κiyi

2

)r
= ga2 ·

(
g
∑n
i=1(α(x

0
i−u·x

1
i )+ωi)yi

2

)r
= ga2 ·

(
g
α
∑n
i=1(x

0
i yi−u·x

1
i yi)+

∑n
i=1 ωiyi

2

)r
= ga2 ·

(
g
α
(
〈x0,y〉−u〈x1,y〉︸ ︷︷ ︸
=0 by choice of u

)
+〈y,ω〉

2

)r
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= g
a+r〈y,ω〉
2

and dk is therefore a correctly distributed decryption key for y. Finally, for the challenge ciphertext we have
c0 = e(B, ga2 ) ·mb = e(a2, g2)β ·mb, c0

′ = B = gβ . In the case that C = gαβ1 , we further have

ci = Cx
b
iκ
′+x0

i−ux
1
iBωi = g

αβ(xbiκ
′+x0

i−ux
1
i )+βωi

1 = (g
αxbiκ

′+α(x0
i−ux

1
i )+ωi

1 )β

= (g
αxbiκ

′+κi
1 )β = ((gακ

′

1 )x
b
ihi)

β .

I.e., the challenge ciphertext is a correctly distributed ciphertext for mb under xb with randomness t = β
and κ0 = ακ′, both of which are uniformly distributed. By assumption we have that

Pr
[
1← B

(
g1, g2, g

α
1 , g

β
1 , g

αβ
1

)]
= 1/2 + ε(λ).

On the other hand, let us now consider the case where C = gγ is a uniformly sampled element of G1. Then,
for all i, we have that

ci = Cx
b
iκ
′+x0

i−ux
1
iBωi = g

γ(xbiκ
′+x0

i−ux
1
i )

1 Bωi = g
xbiκ
′γ

1 g
γ(x0

i−ux
1
i )

1 Bωi

= g
xbiκ
′γ+γ(x0

i−ux
1
i )

1 Bωi .

If we fix b = 0:

ci = g
x0
iκ
′γ+γ(x0

i−ux
1
i )

1 Bωi = g
x0
iγ(κ

′+1)−γux1
i

1 Bωi = g
x0
iγ
′− γ′

(κ′+1)
ux1
i

1 Bωi .

Where the last equality is obtained by defining γ′ = γ(κ′+ 1) and rearranging the equation. Note that, since
γ is uniformly distributed in Zp, then so is γ′. We now rewrite 1

(κ′+1) as (κ′′+ 1). Again it is easy to see that

κ′′ is a uniformly distributed element of Zp. Therefore we have

ci = g
x0
iγ
′−γ′(κ′′+1)ux1

i
1 Bωi ,

which implies that, for the case b = 0 all of the ci are distributed identically to the case b = 1. This means
that the choice of b is information theoretically hidden to the eyes of A. Thus it holds that

Pr
[
1← B

(
g1, g2, g

α
1 , g

β
1 , g

γ
1

)]
= 1/2.

Combining the two cases, we get∣∣∣Pr [1← B (g1, g2, gα1 , gβ1 , gαβ1 )]
− Pr

[
1← B

(
g1, g2, g

α
1 , g

β
1 , g

γ
1

)]∣∣∣ = ε(λ)

as claimed. Since XDH holds in (G1,G2), ε(λ) must therefore be negligible and ZIPE is statically attribute-
hiding. ut

6 Bootstrapping to P/poly

We discuss several bootstrapping techniques to extend the domain of a garbling scheme for inner-products.
As previously discussed, the main difference between arithmetic and standard garbling is that the former
does not have access to the binary representation of the input x. Instead, the encoding algorithm must
operate directly on the algebraic representation of x as a field element. Here we consider two variants of such
a model:

1. The encoding algorithm has access to the algebraic representation of the first n powers of the input
(x, x2, . . . , xn) ∈ Fn. This relaxed model is motivated by the scenario when the input is encrypted under
a multiplicatively-homomorphic encryption scheme (such as ElGamal [21]).

2. In the (standard) more restrictive version, the encoding algorithm operates only on x ∈ F.

Depending on which model we consider, we describe a different bootstrapping technique to compile an
arithmetic garbling scheme for inner-product predicates to a fully-fledged arithmetic garbling scheme for
P/poly. For the latter case, the transformation is limited to circuits with small (poly-size) input domain.
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Loose Arithmetic Representation. As already observed by Katz, Sahai, and Waters [32], inner-product predi-
cates are sufficient to encode the evaluation of bounded-degree polynomials: Garbling the evaluation of a poly-
nomial p(x) = c0+c1x+ . . . , cnx

n is done by evaluating GC.Garble(1λ, c), where c := (c0, c1, . . . , cn). Then, the
encoding of the input x is obtained by running the encoding algorithm on the vector x := (1, x, x2, . . . , xn).
Then, the resulting garbled circuit securely evaluates the predicate 〈c,x〉 = p(x) = 0, which corresponds to
a polynomial predicate of degree-n.

It is a well known fact that any NC1 circuit can be represented by a polynomial with polynomial de-
gree [26], which immediately implies that our garbling scheme supports log-depth circuits. Since NC1 circuits
have a boolean output space, then polynomial predicates suffice. Given this garbling gadget for NC1 circuits,
the final step of the transformation consists in applying the Chinese Remainder Theorem-based compiler of
Applebaum, Ishai, and, Kushilevitz [6], which yields an arithmetic garbling scheme for P/poly.

Restrictive Arithmetic Representation. The main ingredient of the transformation is a classical projective
garbling scheme. Let {1, . . . , n}, for some polynomially-bounded n, be the input space. To garble a function
f one first runs a classical garbling scheme on the following (boolean) circuit

Γ (x)

parse x = x1‖ . . . ‖xn
for i ∈ {1 . . . , n}

if xi = 1 then y := i

return f(y)

and obtains the vector of labels (X0
1 , X

1
1 , . . . , X

0
n, X

1
n) together with the encoded circuit Γ̃ . Then for each

i ∈ {1, . . . , n} run the arithmetic garbling scheme for inner products for the following predicate

Υi(x) := x− i = 0

using X0
i and X1

i as the random coins (i.e., the values of r0 and r1 in Figure 2). The final garbled circuit
consists of the elements (Γ̃ , Υ̃1, . . . , Υ̃n). Inputs are then encoded using the corresponding algorithm X̃ ←
GC.Enc(e, x), as defined in Figure 2. Given X̃, one can evaluate all the circuits (Υ̃1, . . . , Υ̃n), which return the
set of labels (X0

1 , . . . , X
0
x−1, X

1
x, X

0
x+1, . . . , X

0
n). That is, the evaluator recovers the 0 label on all bits except

for the position corresponding to the value x. Such a set of labels constitutes a valid encoding for Γ̃ so the
evaluator can recover the result of the computation f(x).
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A Obliviousness

We define obliviousness for a garbling scheme in the following.

ExpOblAGC,Φ(1λ)

(C, x)← A(1λ)

if x /∈ {0, 1}n return ⊥
b←$ {0, 1}
if b = 0 : (C̃, e, d)← GC.Garble(1λ, C)

X̃ ← GC.Enc(e, x)

if b = 1 : (C̃, X̃)← S(1λ, Φ(C))

b′ ← A(C̃, X̃)

return b = b′

Fig. 12: Obliviousness game.

Definition 13 (Φ-Obliviousness). Let GC = (GC.Garble,GC.Enc,GC.Dec,GC.Eval,GC.ev) be a garbling
scheme and Φ a side information function. GC achieves Φ-obliviousness if there exists a PPT simulator S
such that for all PPT adversaries A there exists a negligible function negl such that

2 · Pr[ExpOblAGC,Φ(1λ) = 1]− 1 ≤ negl(λ),

where ExpOblAGC,Φ(1λ) is defined in Figure 12.
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To argue about obliviousness of our garbling scheme, we must define an additional property for a predicate
encryption scheme. In a nutshell, such a property demands that an encryption of a random message is
computationally indistinguishable from a failed decryption. We refer to this notion as oblivious decryption
and we formally define it in the following.

Definition 14 (Oblivious Decryption). A PE scheme has oblivious decryption with respect to F and
Σ if for all PPT adversaries A, the advantage of A in the following experiment is negligible in the security
parameter λ.

1. On input 1λ, A outputs a pair of attributes (A0,A1) ∈ Σ2 and a predicate f ∈ F .
2. Setup(1λ) is run to generate ek and msk and the adversary is given ek and KeyGen(msk, f).
3. A random b is chosen and a random message r ← F is sampled, then A is given the ciphertext c ←

Enc(ek,Ab, r).
4. A outputs a bit b′ and succeeds if b = b′.

We can show that the property as defined above suffices to construct an oblivious garbling scheme.

Theorem 7. Let Φ be the function that takes as input an inner-product predicate and returns the length of
its vector. Let NIPE be a NIPE scheme with oblivious decryption and let ZIPE be a ZIPE scheme scheme
with oblivious decryption, then the garbling scheme GC as described in Figure 2 achieves Φ-obliviousness.

Proof. The simulator is identical to the one described in Figure 3 except that the string s is sampled uniformly
at random from Fn+1 and the decoding information d is set to be the empty string. The indistinguishability
argument follows along the same lines, except that the distance between neighbouring experiments is bounded
with reductions against the oblivious decryption of ZIPE and NIPE, respectively. ut

A.1 Obliviousness of ZIPE

Here we show that our ZIPE scheme has oblivious decryption.

Theorem 8. If the XDH assumption holds in (G1,G2), then the zero inner product encryption scheme ZIPE
shown in Figure 9 has oblivious decryption.

Proof. Let A be an algorithm that breaks the oblivious decryption of ZIPE with probability 1/2 + ε(λ). We
then construct an algorithm B distinguishing the two cases of the XDH problem with an advantage of ε(λ)
as depicted in Figure 13.

It is easy to show that the public encryption key used by B is correctly distributed: g1, g2 and ga1 are
computed exactly as specified in the scheme and the hi = Aδi · gωi1 are correctly distributed values since ωi
are chosen independently and uniformly at random. Further, we argue that the decryption key is functional
Further, the decryption key is correctly distributed. d1 = gr2 is computed exactly as specified by the scheme
and it is easily verified that the following holds

a2 ·

(
n∏
i=1

gκiyi2

)r
=ga2 ·

(
g
∑n
i=1 κiyi

2

)r
=ga2 ·

(
g
∑n−1
i=1 (αδi+ωi)yi+(αδ′+ωn)yn

2

)r
=ga2 ·

(
g
∑n
i=1 ωiyi+α(

∑n−1
i=1 δiyi+δ

′yn︸ ︷︷ ︸
=0 by choice of δ′

)
2

)r
=g

a+r〈y,ω〉
2

and dkw is therefore a correctly distributed decryption key for w. In the case that (g1, g2, A,B,C) is a well-

formed DDH tuple (i.e., A = gα1 , B = gβ1 , C = gα·β1 ) then we argue that c∗ is a well-formed ciphertext for a
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B(g1, g2, A,B,C)

b←$ {0, 1}

(x0,x1,y)← A(1λ); δ←$Zn−1
p ; ω←$Znp ; (a, r, s)←$Z3

p; T ←$GT

δ′ :=
−〈δ, (y1, . . . , yn−1)〉

yn

ek :=
(
g1, g2, g

a
1 , A

δ1 · gω1
1 , . . . , Aδn−1 · gωn−1

1 , Aδ
′
· gωn1

)
dkw := (g

a+r〈y,ω〉
2 , gr2)

c∗ :=
(
T,B,Cδ1Bω1+sx

b
1 , . . . , Cδn−1Bωn−1+sx

b
n−1 , Cδ

′
Bωn+sx

b
n

)
b′ ← A(ek, dkw, c

∗)

if b′ = b then return 1

else return 0

Fig. 13: The reduction B from the oblivious decryption of ZIPE to the XDH assumption.

random message m: Observe that T = e(B, ga2 ) ·m = e(a2, g2)β ·m, for a certain m. Since T is randomly

sampled form GT , then so is m. Clearly B = gβ1 , and for all i ∈ {1, . . . , n− 1} we have that

ci = CδiBωi+sx
b
i = gαβδi1 g

β(ωi+sxbi)
1 = g

β(αδi+ωi)+βsx
b
i

1 =
(
gαδi+ωi1

)β (
g
sxbi
1

)β
=
(
hih

xbi
0

)β
.

where h0 = gs1, for some random s ∈ Zp. A similar argument can be used to show that cn = Cδ
′
Bωn+sx

b
n

is correctly distributed. It follows that the challenge ciphertext is well formed for a random m, under xb

with randomness t = β and κ0 = s, which are uniformly sampled. Therefore by initial assumption we

have that Pr
[
1← B

(
g1, g2, g

α
1 , g

β
1 , g

αβ
1

)]
= 1/2 + ε(λ). We now turn to the case where C = gγ1 is a uni-

formly sampled element of G1. In this case the observation is that c∗ is exclusively composed by random
group elements: Clearly T and B are two random elements of GT and G1, respectively. Further, for all

i ∈ {1, . . . , n− 1}, the value of ci = CδiBωi+sx
b
i is uniformly distributed in G1 since δi is randomly sampled

from Zp. Finally cn = Cδ
′
Bωn+sx

b
n is also uniformly distributed in G1 since C is a random element of G1.

Therefore the value of b is information theoretically hidden to the eyes of the adversary. Thus, we have that

Pr
[
1← B

(
g1, g2, g

α
1 , g

β
1 , g

γ
1

)]
= 1/2. Combining the two cases, we get∣∣∣Pr [1← B (g1, g2, gα1 , gβ1 , gαβ1 )]

− Pr
[
1← B

(
g1, g2, g

α
1 , g

β
1 , g

γ
1

)]∣∣∣ = ε(λ)

as claimed. Since XDH holds in (G1,G2), ε(λ) must be negligible and therefore ZIPE has oblivious decryption.
ut

A.2 Obliviousness of NIPE

The last barrier towards efficiently instantiating the garbling scheme in Figure 2 with our NIPE construction
is the fact that the scheme, as described in Figure 6, does not have oblivious decryption. Consider a cipher
c = (c1, c2) = (EncIPFE(ek,mr · x),EncIPFE(ek, r · x)) of our scheme, for some attribute x. Whenever key
dky ← KeyGenIPFE(msk,y) corresponding the predicate y cannot decrypt c, then we have that 〈x,y〉 = 0.
By the correctness of the IPFE it follows that (DecIPFE(dky, c1),DecIPFE(dky, c2)) = (〈mr · x,y〉 , 〈r · x,y〉) =
(mr · 〈x,y〉 , r · 〈x,y〉) = (0, 0), which is efficiently distinguishable from the successful decryption of a random
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message. It follows that a blackbox instantiation of our garbling scheme (Figure 2) would achieve privacy
and authenticity but not obliviousness.

In Figure 14 we show how to modify the NIPE proposed in Section 4 to achieve oblivious decryption.
The resulting scheme will no longer be correct, however it can still be used to implement the garbling scheme
(Figure 2) with a minor modification of the decoding procedure.

Setup∗NIPE(1λ)

(ek,msk)← SetupIPFE(1λ)

return (ek,msk)

KGen∗NIPE(msk,y)

dk← KGenIPFE(msk,y||1)

return dk

Enc∗NIPE(ek,x,m)

(r, u1, u2)←$F3

c1 ← EncIPFE(ek,mr · x||u1)

c2 ← EncIPFE(ek, r · x||u2)

return (c1, c2)

Dec∗NIPE(dk, c)

parse c as (c1, c2)

s← DecIPFE(dk, c1)

t← DecIPFE(dk, c2)

return (s, t)

Fig. 14: Modified non-zero inner product encryption.

The garbling scheme in Figure 2 is then modified as follows: The extra randomness (u1, u2) sampled in
the encryption algorithm Enc∗NIPE is also included in the decoding information d, which now consists of the
tuples (r0, r1) and (u1, u2). Upon receiving Ỹ = (r̃0, r̃1), the decoding procedure checks whether r̃0 = r0 and
returns 0 if this is the case. Else it parses r̃1 as (s, t) and returns 1 if r1 = s−u1

t−u2
holds. In case none of the

checks verifies, the decoding algorithm returns ⊥.
It is an easy exercise to show that the garbling scheme still achieves privacy, authenticity, and obliviousness

under the assumption that the ZIPE scheme ZIPE and the modified NIPE scheme NIPE∗ achieve static
attribute-hiding and oblivious decryption. The only non-trivial part of the argument is to show that the
scheme in Figure 14 has oblivious decryption.

Theorem 9. Let IPFE be a semantically secure inner product functional encryption scheme, then the non-
zero inner product encryption scheme NIPE∗ shown in Figure 14 has oblivious decryption.

Proof. Let A be an algorithm that breaks the oblivious decryption of NIPE with probability 1/2 + ε(λ). We
then construct an algorithm B = (B1,B2) breaking the semantic security of IPFE with the same probability as
depicted in Figure 15. Note, that we use a notion of semantic security where B can output pairs of messages.

BKGenIPFE(msk,·)
1 (ek)

(x0,x1,y)← A(1λ)

r, s, r0, s0 ←$F4

r1 = 〈rx0,y〉+ r0 − 〈rx1,y〉
s1 = 〈sx0,y〉+ s0 − 〈sx1,y〉
return ((rx0||r0, rx1||r1), (sx0||s0, sx1||s1)

BKGenIPFE(msk,·)
2 (c∗1, c

∗
2)

b′ ← A((c∗1, c
∗
2))

return b′

KGen′IPFE(·)(y)

return KGenIPFE(msk,y||1)

Fig. 15: The reduction B from the oblivious decryption of NIPE to the semantic security of IPFE.

This notion follows from standard semantic security with a simple hybrid argument.
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Clearly, the public key and the decryption key passed to A are distributed exactly as specified by the
scheme. Further, the attacker can only ask for a single decryption key and must do so before it outputs the
challenge. Note that we can rewrite r = m · s, for some m ∈ F, since s and r are uniformly distributed over
F, then so is m. It follows that, for both choices of b, the challenge ciphertexts are correctly distributed to
the eyes of the adversary.

What is left to be shown is that the advantage of A carries over to the distinguisher, in particular we
need to show that the challenges of B are legit, i.e., 〈rx0||r0,y||1〉 = 〈rx1||r1,y||1〉 and 〈sx0||s0,y||1〉 =
〈sx1||s1,y||1〉. This easily follows from the fact that

〈rx1||r1,y||1〉 = 〈rx1,y〉+ r1

= 〈rx1,y〉+ 〈rx0,y〉+ r0 − 〈rx1,y〉
= 〈rx0,y〉+ r0.

A similar argument holds for the second ciphertext. It follows that whenever A is successful, so is B. Therefore
B is successful with probability 1/2 + ε(λ). Since IPFE is semantically secure, ε(λ) must be negligible and
NIPE has oblivious decryption. ut
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