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Abstract

We present qTESLA, a family of post-quantum digital signature schemes
that exhibits several attractive features such as simplicity and strong se-
curity guarantees against quantum adversaries, and built-in protection
against certain side-channel and fault attacks. qTESLA—selected for round
2 of NIST’s post-quantum cryptography standardization project—conso-
lidates a series of recent schemes originating in works by Lyubashevsky,
and Bai and Galbraith. We provide full-fledged, constant-time portable
C implementations that showcase the code compactness of the proposed
scheme, e.g., our code requires only about 300 lines of C code. Finally,
we also provide AVX2-optimized assembly implementations that achieve
a factor-1.5 speedup.
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1 Introduction

The potential advent of quantum computers has prompted the cryptographic
community to look for quantum-resistant alternatives to classical schemes that
are based on factoring and (elliptic curve) discrete logarithm problems. Among
the available options, lattice-based cryptography has emerged as one of the most
promising branches of quantum-resistant cryptography, as it enables elegant and
practical schemes that come with strong security guarantees against quantum
attackers.

In this work, we introduce a family of lattice-based digital signature schemes
called qTESLA which consolidates a series of recent efforts to design an efficient
and provably (quantum) secure signature scheme. The security of qTESLA relies
on the so-called decisional ring learning with errors (R-LWE) problem [42].
Parameters are generated according to the provided security reduction from R-
LWE, i.e., instantiations of the scheme guarantee a certain security level as long
as the corresponding R-LWE instances give a certain hardness1.

The most relevant features of qTESLA are summarized as follows:

Simplicity. qTESLA is designed to be easy to implement with special emphasis
on the most used functions in a signature scheme, namely, signing and verifi-
cation. In particular, Gaussian sampling, arguably the most complex part of
traditional lattice-based signature schemes, is relegated exclusively to key gen-
eration. qTESLA’s simple design makes it straightforward to easily support more
than one security level and parameter set with a single and compact portable
implementation. For instance, our reference implementation written in portable
C and supporting all qTESLA parameter sets consists of only ∼ 300 lines of code2.

Security foundation. The security of qTESLA is ensured by a security reduction
in the quantum random oracle model (QROM) [17], i.e., a quantum adversary is
allowed to ask the random oracle in superposition. Moreover, the explicitness of
the reduction enables choosing parameters according to the reduction, while its
tightness enables smaller parameters and, thus, better performance for provably
secure instantiations.

Practical security. qTESLA facilitates realizations that are secure against im-
plementation attacks. For example, it supports constant-time implementations
(i.e., implementations that are secure against timing and cache side-channel at-
tacks by avoiding secret memory accesses and secret branches), and is inherently
protected against certain simple yet powerful fault attacks [18,45]. Moreover, it
also comes with a built-in safeguard to protect against Key Substitution (KS)
attacks [16, 43] (a.k.a. duplicate signature key selection attacks) and, thus, im-
proved security in the multi-user setting; see also [33].

1It is important to note that the security reduction requires a conjecture to bound a
probability explicitly. See §5 for details.

2This count excludes the parameter-specific packing functions, header files, NTT constants,
and (c)SHAKE functions.
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Related work. qTESLA is the result of a long line of research and consoli-
dates the most relevant features of the prior works. The first work in this line
is the signature scheme proposed by Bai and Galbraith [11], which is based
on the Fiat-Shamir construction of Lyubashevsky [39, 40]. The Bai-Galbraith
scheme is constructed over standard lattices and comes with a (non-tight) se-
curity reduction from the LWE and the SIS problem in the Random Oracle
Model (ROM). Dagdelen, El Bansarkhani, Göpfert, Güneysu, Oder, Pöppel-
mann, Sánchez, and Schwabe [23] presented improvements and the first imple-
mentation of the Bai-Galbraith scheme. The scheme was subsequently stud-
ied under the name TESLA by Alkim, Bindel, Buchmann, Dagdelen, Eaton,
Gutoski, Krämer, and Pawlega [8], who provided an alternative (tight) secu-
rity reduction from the LWE problem in the QROM. A variant of TESLA over
ideal lattices was derived under the name ring-TESLA [1]. qTESLA is a direct
successor of this scheme, with several modifications aimed at improving its secu-
rity, correctness, and implementation, the most important of which are: qTESLA
includes a new correctness requirement that prevents occasional rejections of
valid signatures during ring-TESLA’s verification; qTESLA’s security reduction
is proven in the QROM while ring-TESLA’s reduction was only given in the
ROM; the security estimations of ring-TESLA are not state-of-the-art and are
limited to classical algorithms while qTESLA’s instantiations are with respect to
state-of-the-art classical and quantum attacks; the number of R-LWE samples
in qTESLA is flexible, not fixed to two samples as in ring-TESLA, which enables
instantiations with better efficiency; our qTESLA implementations are protected
against several implementation attacks while known implementations of ring-
TESLA are not (e.g., do not run in constant-time). In addition, qTESLA adopts
the next features: following a standard security practice, the public polynomials
ai are freshly generated at each key pair generation; the underlying algebraic
support is extended to non-power-of-two cyclotomic rings; and the hash of the
public key is included in the signature computation to protect against KS at-
tacks [16], improving security in the multi-user setting.
Another variant of the Bai-Galbraith scheme is the lattice-based signature scheme
Dilithium [26, 41] which is constructed over module lattices. While qTESLA

and Dilithium share several properties such as a tight security reduction in
the QROM [35], Dilithium signatures are deterministic by default3, whereas
qTESLA signatures are probabilistic and come with built-in protection against
some powerful fault attacks such as the simple and easy-to-implement fault at-
tack in [18, 45]. It is also important to remark that, arguably, side-channel
attacks are more difficult to carry out against probabilistic signatures.
Two other signature schemes played a major role in the history of Fiat-Shamir
lattice signature schemes, namely, GLP [30] and BLISS [25]. These schemes
were inspirational for some of qTESLA’s building blocks, such as the encoding
function.

3Recently, a variant of Dilithium that produces probabilistic signatures was included as a
modification for round 2 of the NIST post-quantum project [41]. However, [41] suggests the
deterministic version as the default option.
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In a separate category we mention other lattice-based signature schemes such
as Falcon [48] and pqNTRUSign [53], which are not based on the Fiat-Shamir
paradigm. In comparison to qTESLA, these schemes follow rather complex design
principles and are not as easy to implement.

Software release. We have released our portable C and AVX2-optimized
implementations as open source:

https://github.com/Microsoft/qTESLA-Library.

The implementation software submitted to NIST’s Post-Quantum Cryptogra-
phy Standardization process is available here:

https://github.com/qtesla/qTesla.

Outline. After describing some preliminary details in §2, we present the sig-
nature scheme in §3, and describe the efficient realization of the scheme’s basic
functions in §4. In §5, we describe the security foundation of qTESLA and the
proposed parameter sets. Finally, we describe implementation details of our
portable C and AVX2-optimized implementations, as well as our experimental
results and a comparison with state-of-the-art signature schemes, in §6.
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2 Preliminaries

2.1 Notation

Rings. Let q be an odd prime throughout this work. Let Zq = Z/qZ denote
the quotient ring of integers modulo q, and let R and Rq denote the rings

Z[x]/〈xn + 1〉 and Zq[x]/〈xn + 1〉, respectively. Given f =
∑n−1
i=0 fix

i ∈ R, we

define the reduction of f modulo q to be
∑n−1
i=0 (fi mod q)xi ∈ Rq. Let Hn,h =

{
∑n−1
i=0 fix

i ∈ R | fi ∈ {−1, 0, 1},
∑n−1
i=0 |fi| = h}, and R[B] = {

∑n−1
i=0 fix

i ∈
R | fi ∈ [−B,B]}.

Rounding operators. Let d ∈ N and c ∈ Z. For an even (odd) modulus m ∈ Z≥0,
define c′ = c mod±m as the unique element c′ such that−m/2 < c′ ≤ m/2 (resp.
−bm/2c ≤ c′ ≤ bm/2c) and c′ = c mod m. We then define the functions [·]L :
Z → Z, c 7→ (c mod±q) mod±2d, and [·]M : Z→ Z, c 7→ (c mod±q − [c]L)/2d.
Hence, c mod±q = 2d · [c]M + [c]L for c ∈ Z. These definitions are extended
to polynomials by applying the operators to each polynomial coefficient, i.e.,
[f ]L =

∑n−1
i=0 [fi]L x

i and [f ]M =
∑n−1
i=0 [fi]M xi for a given f =

∑n−1
i=0 fix

i ∈
R.

Infinity norm. Given f ∈ R, the function maxk(f) returns the k-th largest ab-
solute coefficient of f . For an element c ∈ Z, we have that ‖c‖∞ = |c mod±q|,
and define the infinity norm for a polynomial f ∈ R as ‖f ‖∞ = max

i
‖fi‖∞.

Representation of polynomials and bit strings. We write a given polynomial f ∈
Rq as

∑n−1
i=0 fix

i or, in some instances, as the coefficient vector (f0, f1, . . . , fn−1)
in Znq . When it is clear by the context, we represent some specific polynomials
with a subscript (e.g., to represent polynomials a1, . . . , ak). In these cases, we

write aj =
∑n−1
i=0 aj,ix

i, and the corresponding vector representation is given
by aj = (aj,0, aj,1, . . . , aj,n−1) ∈ Znq for any j ∈ {1, . . . , k}. In the case of
sparse polynomials c ∈ Hn,h, these polynomials are encoded as the two ar-
rays pos list ∈ {0, . . . , n − 1}h and sign list ∈ {−1, 1}h representing the posi-
tions and signs of the nonzero coefficients of c, respectively. We denote this by
c , {pos list, sign list}.
In some cases, s-bit strings r ∈ {0, 1}s are written as vectors over the set {0, 1},
in which an element in the i-th position is represented by ri. This applies anal-
ogously to other sets. Multiple instances of the same set are represented by
appending an additional superscript. For example, {0, 1}s,t corresponds to t
s-bit strings each defined over the set {0, 1}.

Distributions. The centered discrete Gaussian distribution with standard devi-
ation σ is defined to be Dσ = ρσ(c)/ρσ(Z) for c ∈ Z, where σ > 0, ρσ(c) =

exp(−c
2

2σ2 ), and ρσ(Z) = 1 + 2
∑∞
c=1 ρσ(c). We write x←σ Z to denote sampling

a value x with distribution Dσ. For a polynomial f ∈ R, we write f ←σ R to
denote sampling each coefficient of f with distribution Dσ. Moreover, for a finite
set S, we denote sampling s uniformly from S with s←$ S or s← U(S).
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2.2 The number-theoretic transform

Polynomial multiplication over a finite field is one of the fundamental operations
in lattice-based schemes. Satisfying the condition q = 1 mod 2n enables the use
of the Number-Theoretic Transform (NTT), leading to an efficient realization
of polynomial multiplication.
qTESLA specifies the generation of the polynomials a1, . . . , ak directly in the
NTT domain for efficiency purposes. Hence, we need to define polynomials in
such a domain. Let ω be a primitive n-th root of unity in Zq, i.e., ωn = 1 mod q,
and let φ be a primitive 2n-th root of unity in Zq such that φ2 = ω. Then, given

a polynomial a =
∑n−1
i=0 aix

i the forward transform is defined as

NTT : Zq[x]/〈xn + 1〉 → Znq , a 7→ ã =

n−1∑
j=0

ajφ
jωij


i=0,...,n−1

,

where ã = NTT(a) is said to be in the NTT domain. Similarly, the inverse
transformation of the vector ã in the NTT domain is defined as

NTT−1 : Znq → Zq[x]/〈xn + 1〉, ã 7→ a =

n−1∑
i=0

n−1φ−i
n−1∑
j=0

ãjω
−ij

xi.

It then holds that NTT−1(NTT(a)) = a for all polynomials a ∈ Rq. The polyno-
mial multiplication of a and b ∈ Rq can be performed as a·b = NTT−1(NTT(a)◦
NTT(b)), where · is the polynomial multiplication in Rq and ◦ is the coefficient
wise multiplication in Znq .

2.3 Hardness assumptions

The security of qTESLA is based on the hardness of the R-LWE problem. In
the following definition we use AO to denote that A has access to an oracle O.

Definition 1 (R-LWEn,k,q,χ). Let n, q > 0 be integers, χ be a distribution
over R, and s ← χ. We define by Ds,χ the R-LWE distribution which outputs
(a, 〈a, s〉+ e) ∈ Rq ×Rq, where a← U(Rq) and e← χ.

Given k tuples (a1, t1), . . . , (ak, tk), the decisional R-LWE problem R-LWEn,k,q,χ
is to distinguish whether (ai, ti)← U(Rq ×Rq) or (ai, ti)← Ds,χ for all i. The
R-LWE advantage is defined as

AdvR-LWE
n,k,q,χ (A) =

∣∣∣Pr
[
ADχ,s(·) = 1

]
− Pr

[
AU(Rq×Rq)(·) = 1

]∣∣∣ .
The above definition corresponds to the normal form of R-LWE [42], in which
the secret and error polynomials follow the same distribution χ. In qTESLA, χ
is instantiated with Dσ.
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3 The signature scheme qTESLA

In this section, we describe the signature scheme qTESLA, some of its most
relevant design features, and all the system parameters. We start with the
description of the scheme.

3.1 Description of the scheme

qTESLA is parameterized by λ, κ, n, k, q, σ, LE , LS , E, S, B, d, h, and bGenA;
see Table 1 in §3.2 for a detailed description of all the system parameters. The
following functions are required for the implementation of the scheme:

• The pseudorandom functions PRF1 : {0, 1}κ → {0, 1}κ,k+3, which takes as
input a seed pre-seed that is κ bits long and maps it to (k + 3) seeds of κ
bits each.

• The collision-resistant hash function G : {0, 1}∗ → {0, 1}320, which maps
a given input string to a 320-bit string.

• The pseudorandom function PRF2 : {0, 1}κ×{0, 1}κ×{0, 1}320 → {0, 1}κ,
which takes as inputs seedy and the random value r, each κ bits long, and
the hash G of a message m, which is 320-bit long, and maps them to the
κ-bit seed rand.

• The generation function of the polynomials a1, . . . , ak, GenA : {0, 1}κ →
Rkq which takes as input the κ-bit seed seeda and maps it to k polynomials
ai ∈ Rq.

• The Gaussian sampler function GaussSampler : {0, 1}κ × Z → R, which
takes as inputs a κ-bit seed seed ∈ {seeds, seede1 , . . . , seedek} and a nonce
counter ∈ Z>0, and outputs a polynomial in R sampled according to the
discrete Gaussian distribution Dσ.

• The encoding function Enc : {0, 1}κ → {0, . . . , n− 1}h×{−1, 1}h encodes
a κ-bit hash value c′ as a polynomial c ∈ Hn,h. The polynomial c is
represented as the two arrays pos list ∈ {0, . . . , n − 1}h and sign list ∈
{−1, 1}h, containing the positions and signs of its nonzero coefficients,
respectively.

• The sampling function ySampler : {0, 1}κ×Z→ R[B] samples a polynomial
y ∈ R[B], taking as inputs a κ-bit seed rand and a nonce counter ∈ Z>0.

• The hash-based function H : Rkq × {0, 1}320 × {0, 1}320 → {0, 1}κ. This
function takes as inputs k polynomials v1, . . . , vk ∈ Rq and first computes
[v1]M , . . . , [vk]M . The result is then hashed together with the hash G(m)
for a given message m and the hash G(t1, . . . , tk) to a string κ bits long.

• The correctness check function checkE, which gets an error polynomial
e as input and rejects if

∑h
k=1 maxk(e) is greater than some bound LE ;

see Algorithm 1. The function checkE guarantees the correctness of the
signature scheme by ensuring that ‖eic‖∞ ≤ E ∈ {LE , 2LE} for i =
1, . . . , k during key generation.

• The simplification check function checkS, which gets a secret polynomial s
as input and rejects it if

∑h
k=1 maxk(s) is greater than some bound LS ;
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see Algorithm 2. checkS ensures that ‖sc‖∞ ≤ S ∈ {LS , 2LS}, which is
used to simplify the security reduction.

We are now in position to describe qTESLA’s algorithms for key generation,
signing, and verification, which are depicted in Algorithms 3, 4 and 5, respec-
tively.

Key generation. First, the public polynomials a1, . . . , ak are generated uni-
formly at random over Rq (lines 2–4) by expanding the seed seeda using PRF1.
Then, a secret polynomial s is sampled with discrete Gaussian distribution Dσ.
This polynomial must fulfill the requirement check in checkS (lines 5–8). A sim-
ilar procedure to sample the secret error polynomials e1, . . . , ek follows. In this
case, these polynomials must fulfill the correctness check in checkE (lines 10–13).
To generate pseudorandom bit strings during the discrete Gaussian sampling
the corresponding value from {seeds, seede1 , . . . , seedek} is used as seed, and a
counter is used as nonce to provide domain separation between the different calls
to the sampler. Accordingly, this counter is initialized at 1 and then increased
by 1 after each invocation to the Gaussian sampler. Finally, the public key pk
consists of seeda and the polynomials ti = ais+ ei mod q for i = 1, . . . , k, and
the secret key sk consists of s, e1, . . . , ek, the seeds seeda and seedy, and the hash
g = G(t1, . . . , tk). All the seeds required during key generation are generated by
expanding a pre-seed pre-seed using PRF1.

Signature generation. To sign a message m, first a polynomial y ∈ R[B] is cho-
sen uniformly at random (lines 1–4). To this end, a counter initialized at one is
used as nonce, and a random string rand, computed as PRF2(seedy, r,G(m)) with
seedy, a random string r, and the digest G(m) of the message m, is used as seed.
The counter is used to provide domain separation between the different calls to
sample y. Accordingly, it is increased by 1 every time the algorithm restarts
if any of the security or correctness tests fail to compute a valid signature (see
below). Next, seeda is expanded to generate the polynomials a1, . . . , ak (line 5)
which are then used to compute the polynomials vi = aiy mod±q for i = 1, . . . , k
(lines 6–8). Afterwards, the hash-based function H computes [v1]M , . . . , [vk]M
and hashes these together with the digests G(m) and g in order to generate
c′. This value is then mapped deterministically to a pseudorandomly generated
polynomial c ∈ Hn,h which is encoded as the two arrays pos list ∈ {0, . . . , n−1}h
and sign list ∈ {−1, 1}h representing the positions and signs of the nonzero co-
efficients of c, respectively. In order for the potential signature (z ← sc+ y, c′)
at line 11 to be returned by the signing algorithm, it needs to pass a security
and a correctness check, which are described next.
The security check (lines 12–15), also called the rejection sampling, is used to
ensure that the signature does not leak any information about the secret s. It is
realized by checking that z /∈ R[B−S]. If the check fails, the algorithm discards
the current pair (z, c′) and repeats all the steps beginning with the sampling of
y. Otherwise, the algorithm goes on with the correctness check.
The correctness check (lines 18–21) ensures the correctness of the signature
scheme, i.e., it guarantees that every valid signature generated by the signing
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algorithm is accepted by the verification algorithm. It is realized by checking
that ‖[wi]L‖∞ < 2d−1 − E and ‖wi‖∞ < bq/2c − E. If the check fails, the
algorithm discards the current pair (z, c′) and repeats all the steps beginning
with the sampling of y. Otherwise, it returns the signature (z, c′) on m.

Verification. The verification algorithm, upon input of a message m, a signature
(z, c′), and a public key pk, computes {pos list, sign list} ← Enc(c′), expands
seeda to generate a1, . . . , ak ∈ Rq and then computes wi = aiz − bic mod±q
for i = 1, . . . , k. The hash-based function H computes [w1]M , . . . , [wk]M and
hashes these together with the digests G(m) and G(t1, . . . , tk). If the bit string
resulting from the previous computation matches the signature bit string c′, and
z ∈ R[B−S], the signature is accepted; otherwise, it is rejected.

Correctness of qTESLA. To guarantee the correctness of qTESLA it must hold for
a signature (z, c′) of a message m generated by Algorithm 4 that (i) z ∈ R[B−S]

and that (ii) the output of the hash-based function H at signing (line 9 of
Algorithm 4) is the same as the analogous output at verification (line 6 of
Algorithm 5). Requirement (i) is ensured by the security check during signing
(line 12 of Algorithm 4). To ensure (ii), the correctness check at signing is used
(line 18 of Algorithm 4). Essentially, this check ensures that for i = 1, . . . , k,
[aiz − tic]M = [ai(y + sc) − (ais + ei)c]M = [aiy − eic]M = [aiy]M . A formal
correctness proof can be found in Appendix A.

Design features. qTESLA’s design comes with several built-in security fea-
tures. First, the public polynomials a1, . . . , ak are freshly generated at each key
generation, using the random seed seeda. This seed is stored as part of both sk
and pk so that the signing and verification operations can regenerate a1, . . . , ak.
This makes the introduction of backdoors more difficult and reduces drastically
the scope of all-for-the-price-of-one attacks [9,13]. Moreover, storing only a seed
instead of the full polynomials permits to save bandwidth since we only need κ
bits to store seeda instead of the kndlog2(q)e bits required to represent the full
polynomials.
To protect against KS attacks [16], we include the hash G of the polynomials
t1, . . . , tk (which are part of the public key) in the secret key, in order to use
it during the hashing operation to derive c′. This guarantees that any attempt
by an attacker of modifying the public key will be detected during verification
when checking the value c′ (line 6 of Alg. 5).

Also, the seed used to generate the randomness y at signing is produced by
hashing the value seedy that is part of the secret key, some fresh randomness r,
and the digest G(m) of the message m. The use of seedy makes qTESLA resilient
to a catastrophic failure of the Random Number Generator (RNG) during gen-
eration of the fresh randomness, protecting against fixed-randomness attacks
such as the one demonstrated against Sony’s Playstation 3 [19]. Likewise, the
random value r guarantees the use of a fresh y at each signing operation, which
makes qTESLA’s signatures probabilistic. Probabilistic signatures are, arguably,
more difficult to attack through side-channel analysis. Moreover, the fresh y
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prevents some easy-to-implement but powerful fault attacks against determin-
istic signature schemes [18, 45]; see [18, §6] for a relevant discussion. We note
that the use of a PRF (in our case, PRF2) reduces the need for a high-quality
source of randomness to generate r.

Another design feature of qTESLA is that discrete Gaussian sampling, arguably
the most complex function in many lattice-based signature schemes, is only
required during key generation, while signing and verification, the most used
functions of digital signature schemes, only use very simple arithmetic opera-
tions that are easy to implement. This facilitates the realization of compact and
portable implementations that achieve high performance.
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Algorithm 1 checkE

Require: e ∈ R
Ensure: {0, 1} . true, false

1: if
∑h
i=1 maxi(e) > LE then

2: return 1
3: end if
4: return 0

Algorithm 2 checkS

Require: s ∈ R
Ensure: {0, 1} . true, false

1: if
∑h
i=1 maxi(s) > LS then

2: return 1
3: end if
4: return 0

Algorithm 3 qTESLA’s key generation

Require: -
Ensure: key pair (sk, pk) with secret key sk = (s, e1, . . . , ek, seeda, seedy, g) and pub-

lic key pk = (t1, . . . , tk, seeda)

1: counter← 1
2: pre-seed←$ {0, 1}κ
3: seeds, seede1 , . . . , seedek , seeda, seedy ← PRF1(pre-seed)

 Generating a1, . . . , ak.
4: a1, . . . , ak ← GenA(seeda)
5: do
6: s← GaussSampler(seeds, counter)
7: counter← counter + 1

 Sampling s←σ R.
8: while checkS(s) 6= 0
9: for i = 1, . . . , k do

10: do
11: ei ← GaussSampler(seedei , counter)
12: counter← counter + 1

 Sampling e1, . . . , ek ←σ R.
13: while checkE(ei) 6= 0
14: ti ← ais+ ei mod q
15: end for
16: g ← G(t1, . . . , tk)
17: sk ← (s, e1, . . . , ek, seeda, seedy, g)
18: pk ← (t1, . . . , tk, seeda)

 Return pk and sk.
19: return sk, pk

12



Algorithm 4 qTESLA’s signature generation

Require: message m, and secret key sk = (s, e1, . . . , ek, seeda, seedy, g)
Ensure: signature (z, c′)

1: counter← 1
2: r ←$ {0, 1}κ
3: rand← PRF2(seedy, r,G(m))

 Sampling y ←$ R[B].
4: y ← ySampler(rand, counter)
5: a1, . . . , ak ← GenA(seeda)
6: for i = 1, . . . , k do
7: vi = aiy mod±q
8: end for
9: c′ ← H(v1, . . . , vk,G(m), g) } Computing the hash value.

10: c , {pos list, sign list} ← Enc(c′) } Generating the sparse polynomial c.
11: z ← y + sc } Computing the potential signature (z, c′).
12: if z /∈ R[B−S] then
13: counter← counter + 1

 Ensuring security (the “rejection sampling”).
14: Restart at step 4
15: end if
16: for i = 1, . . . , k do
17: wi ← vi − eic mod±q
18: if ‖[wi]L‖∞ ≥ 2d−1 − E ∨ ‖wi‖∞ ≥ bq/2c − E then
19: counter← counter + 1


Ensuring correctness.

20: Restart at step 4
21: end if
22: end for
23: return (z, c′) } Returning the signature for m.

Algorithm 5 qTESLA’s signature verification

Require: message m, signature (z, c′), and public key pk = (t1, . . . , tk, seeda)
Ensure: {0,−1} . accept, reject signature

1: c , {pos list, sign list} ← Enc(c′)
2: a1, . . . , ak ← GenA(seeda)
3: for i = 1, . . . , k do
4: wi ← aiz − tic mod±q
5: end for
6: if z /∈ R[B−S] ∨ c′ 6= H(w1, . . . , wk,G(m),G(t1, . . . , tk)) then
7: return −1 } Reject signature (z, c′) for m.
8: end if
9: return 0 } Accept signature (z, c′) for m.
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Table 1: Description and bounds of all the system parameters.

Param. Description Requirement

λ security parameter -
qh, qs number of hash and sign queries -
n dimension 2`

σ standard deviation of Dσ -
k # public polynomials a1, . . . , ak -
q modulus q = 1 mod 2n, q > 2B, q > 2d+1

qnk ≥ |∆S| · |∆L| · |∆H|,
qnk ≥ 24λ+nkd4q3

s(qs + qh)2

h # of nonzero entries of output elements of Enc 2h ·
(
n
h

)
≥ 22λ

κ out-/input length of different functions κ ≥ λ
LE , ηE bound in checkE dηE · h · σe
LS , ηS bound in checkS dηS · h · σe
S,E rejection parameters = LS , LE
M2 lower bound on the signature acceptance rate -

B determines interval randomness during sign near a power-of-two, B ≥
n√
M+2S−1

2(1− n√
M)

d #rounded bits d > log2(B), d ≥ log2

(
2E+1

1−M
1
nk

)
bGenA # blocks requested to SHAKE128 for GenA bGenA ∈ Z>0

|∆H| ∆H = {c− c′ : c, c′ ∈ Hn,h}
∑h
j=0

∑h−j
i=0

(
kn
2i

)
22i
(
kn−2i
j

)
2j

|∆S| ∆S =
{
z − z′ : z, z′ ∈ R[B−S]

}
(4(B − S) + 1)n

|∆L| ∆L = {x− x′ : x, x′ ∈ R and [x]M = [x′]M} (2d + 1)nk

sig size theoretical size of signature [bits] κ+ n(dlog2(B − S)e+ 1)
pk size theoretical size of public key [bits] kn(dlog2(q)e) + κ
sk size theoretical size of secret key [bits] n(k + 1)(dlog2(t− 1)e+ 1) + 2κ+ 320

with t = 89, 110, 133, 78 or 111

3.2 Parameter description

qTESLA’s system parameters and their corresponding bounds are summarized in
Table 1. The parameter λ is defined as the security parameter, i.e., the targeted
bit security of a given instantiation. In the standard R-LWE setting, we have
Rq = Zq[x]/〈xn + 1〉, where the dimension n is a power-of-two, i.e., n = 2`

for ` ∈ N. The parameter k ∈ Z>0 is the number of ring learning with errors
samples used by a given instantiation. Depending on the specific function, the
parameter κ defines the input and/or output lengths of the hash-based and
pseudorandom functions. This parameter is specified to be larger or equal to
the security level λ. This is consistent with the use of the hash in a Fiat-Shamir
style signature scheme such as qTESLA, for which preimage resistance is relevant
while collision resistance is much less. Accordingly, we take the hash size to be
enough to resist preimage attacks.
The parameter bGenA ∈ Z>0 represents the number of blocks requested in the first
call to cSHAKE128 during the generation of the public polynomials a1, . . . , ak.
The values of bGenA are chosen experimentally such that they maximize perfor-
mance on the targeted Intel platform; see §6.

Bound parameters and acceptance probabilities. The values LS and
LE are used to bound the coefficients of the secret and error polynomials in the
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evaluation functions checkS and checkE, respectively. Bounding the size of those
polynomials restricts the size of the key space; accordingly we compensate the
security loss by choosing a larger bit hardness as explained in §5. Both bounds,
LS and LE (and consequently S and E4), impact the rejection probability during
signature generation as follows. If one increases the values of LS and LE , the
acceptance probability during key generation, referred to as δkeygen, increases
(see lines 8 and 13 in Algorithm 3), while the acceptance probabilities of z and
w during signature generation, referred to as δz and δw resp., decrease (see
lines 12 and 18 in Algorithm 4). We determine a good trade-off between the
two acceptance probabilities during key generation and signing experimentally.
To this end, we start by choosing LS = ηS · h · σ (resp., LE = ηE · h · σ) with
ηS = ηE = 2.8 and compute the corresponding values for the parameters B,
d and q (which are chosen as explained later). We then carefully tune these
parameters by trying different values for ηS and ηE in the range [2.0, . . . , 3.0]
until we find a good trade-off between the different probabilities and, hence,
runtimes. The parameter B defines the interval of the random polynomial y
(see line 4 of Algorithm 4), and it is determined by the parameters M and S as
follows: (

2B − 2S + 1

2B + 1

)k·n
≥M ⇔ B ≥

k·n
√
M + 2S − 1

2(1− k·n
√
M)

,

where M is a value of our choosing. Once B is chosen, we select the value d that
determines the rounding functions [·]M and [·]L to be larger than log2(B) and
such that the acceptance probability of the check ‖[w]L‖∞ ≥ 2d−1−E in line 18
of Algorithm 4 is lower bounded by M . This check determines the acceptance
probability δw during signature generation. The acceptance probability of z,
namely δz, is related to the value of M . The final acceptance probabilities
δz, δw and δkeygen obtained experimentally, following the procedure above, are
summarized in Table 4.

The modulus q. This parameter is chosen to fulfill several bounds and as-
sumptions that are motivated by efficiency requirements and qTESLA’s secu-
rity reduction. To enable the use of fast polynomial multiplication using the
NTT, q must be a prime integer such that q mod 2n = 1. Moreover, we
choose q > 2B. To choose parameters according to the security reduction,
it is first convenient to simplify our security statement. To this end we ensure
that qnk ≥ |∆S| · |∆L| · |∆H|; see Table 1 for the definition of the respective
sets. Then, the following equation (see Theorem 1 in §5.1.1) has to hold:

23λ+nkd+2q3
s(qs + qh)2

qnk
≤ 2−λ ⇔ q ≥

(
24λ+nkd+2q3

s(qs + qh)2
)1/nk

.

Following the NIST’s call for proposals [44, §4.A.4], we choose the number of
classical queries to the sign oracle to be qs = min{264, 2λ/2} for all our parameter

4In an earlier version of this document we needed to distinguish LS/LE and S/E. Although
this is not necessary in this version, we keep all four values LS , S, LE , E for consistency reasons.
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sets. Moreover, we choose the number of queries of a hash function to be
qh = min{2128, 2λ}.

Key and signature sizes. The theoretical bitlengths of the signatures and
public keys are given by κ+ n · (dlog2(B − S)e+ 1) and k · n · (dlog2(q)e) + κ,
respectively. To determine the size of the secret keys we first define t as the
number of β-bit entries of the discrete Gaussian sampler’s CDT tables (see Ta-
ble 2) which corresponds to the maximum value that can be possibly sampled to
generate the coefficients of secret polynomials s. Then, it follows that the the-
oretical size of the secret key is given by n(k + 1)(dlog2(t− 1)e+ 1) + 2κ+ 320
bits.

4 Realization of basic functions

In this section, we describe the low-level algorithms for the basic functions
required in the signature scheme.

Pseudorandom bit generation. Several functions used for the implementa-
tion of qTESLA require hashing and pseudorandom bit generation. This function-
ality is provided by so-called extendable output functions (XOFs). For qTESLA

we use the XOF function SHAKE [27] in the realization of the functions G and
H, and cSHAKE128 [34] in the realization of the functions GenA and Enc. To
implement the functions PRF1, PRF2, ySampler, and GaussSampler implementers
are free to pick a cryptographic PRF of their choice. For simplicity purposes,
in our implementations we use SHAKE (in the case of PRF1 and PRF2) and
cSHAKE (in the case of ySampler and GaussSampler). With the exception of
GenA and Enc (which always use cSHAKE128), our Level-I parameter set uses
(c)SHAKE128 and our Level-III parameter set uses (c)SHAKE256.
For the remainder, we use XOF(X, L,D) to denote a call to a XOF, where X is
the input string, L is the output length in bytes, and D is an optional domain
separator5.

Generation of seeds. qTESLA requires the generation of the seeds seeds,
seede1 , . . . , seedek , seeda, and seedy during key generation. These seeds, of
κ bits each, are then used to produce the polynomials s, e1, . . . , ek, a1, . . . ,
ak, and y, respectively. In our implementations, the seeds are generated by
first calling the system RNG to produce a pre-seed of size κ bits (line 2 of
Algorithm 3), and then expanding this pre-seed using SHAKE as the XOF
function; see Algorithm 6.

Generation of a1, . . . ,ak. The procedure to generate a1, . . . , ak is as follows.
The seed seeda produced by PRF1 is expanded to (rateXOF · bGenA) bytes using
cSHAKE128, where rateXOF is the SHAKE128 rate constant 168 [27] and bGenA
is a qTESLA parameter (see §3.2). Then, the algorithm proceeds to do rejec-
tion sampling over each 8 · dlog2(q)e-bit string of the cSHAKE output modulo

5The domain separator D is used with cSHAKE, but ignored when SHAKE is used.
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Algorithm 6 Seed generation, PRF1

Require: pre-seed ∈ {0, 1}κ
Ensure: (seeds, seede1 , . . . , seedek , seeda), where each seed is κ bits long

1: 〈seeds〉‖〈seede1〉‖ . . . ‖〈seedek 〉‖〈seeda〉‖〈seedy〉 ← XOF(pre-seed, κ · (k + 3)/8),
where each 〈seed〉 ∈ {0, 1}κ

2: return (seeds, seede1 , . . . , seedek , seeda)

2dlog2(q)e, discarding every package that has a value equal or greater than the
modulus q. Since there is a possibility that the cSHAKE output is exhausted
before all the k · n coefficients are filled out, the algorithm permits successive
(and as many as necessary) calls to the function requesting rateXOF bytes each
time. The first call to cSHAKE128 uses the value D = 0 as domain separator.
This value is incremented by one at each subsequent call.
The procedure above, which is depicted in Algorithm 7, produces polynomi-
als with uniformly random coefficients. Thus, following a standard practice,
qTESLA assumes that the resulting polynomials a1, . . . , ak are already in the
NTT domain, eliminating the need for their NTT conversion during the poly-
nomial multiplications. This permits an important speedup of the polynomial
operations without affecting security.

Algorithm 7 Generation of public polynomials ai, GenA

Require: seeda ∈ {0, 1}κ. Set b = d(log2 q)/8e and the SHAKE128 rate constant
rateXOF = 168

Ensure: ai ∈ Rq, for i = 1, . . . , k

1: D ← 0, b′ ← bGenA
2: 〈c0〉‖〈c1〉‖ . . . ‖〈cT 〉 ← cSHAKE128(seeda, rateXOF · b′, D), with 〈ct〉 ∈ {0, 1}8b
3: i← 0, pos← 0
4: while i < k · n do
5: if pos > b(rateXOF · b′)/bc − 1 then
6: D ← D + 1, pos← 0, b′ ← 1
7: 〈c0〉‖〈c1〉‖ . . . ‖〈cT 〉 ← cSHAKE128(seeda, rateXOF · b′, D), with 〈ct〉 ∈
{0, 1}8b

8: end if
9: if cpos mod 2dlog2 qe < q then †

10: abi/nc+1,i−n·bi/nc ← cpos mod 2dlog2 qe, where a polynomial ax is inter-
preted as a vector of coefficients (ax,0, ax,1, . . . , ax,n−1)

11: i← i+ 1
12: end if
13: pos← pos+ 1
14: end while
15: return (a1, ..., ak)

Gaussian sampling. One of the advantages of qTESLA is that discrete Gaussian
sampling is only required during key generation to sample e1, ..., ek, and s (see
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Table 2: CDT parameters used in qTESLA.

Parameter set Bit precision #rows in CDT Size of CDT
Targeted Implemented [byte]

qTESLA-p-I 64 63 78 624
qTESLA-p-III 128 125 111 1776

Alg. 3). Nevertheless, certain applications might still require an efficient and
secure implementation of key generation and one that is, in particular, portable
and protected against timing and cache side-channel attacks. Accordingly, we
employ a constant-time discrete Gaussian sampler based on the well-established
technique of cumulative distribution table (CDT) of the normal distribution,
which consists of precomputing, to a given β-bit precision, a table CDT[i] :=
b2β Pr[c 6 i | c ←σ Z]c, for i ∈ [−t + 1 . . . t − 1] with the smallest t such that
Pr[|c| > t | c ←σ Z] < 2−β . To obtain a discrete Gaussian sample, one picks a
uniform sample u ←$ Z/2βZ, looks it up in the table, and returns the value z
such that CDT[z] 6 u < CDT[z+ 1]. In the case of qTESLA, this method is very
efficient due to the values of σ being relatively small, as can be seen in Table 4.
In our implementations, the CDT method is implemented by generating a chunk
of c | n samples at a time. For example, we fix the chunk size to c = 512 when
the dimension n is a multiple of 512. Then, to generate each sample in a chunk
the precomputed CDT table is fully scanned, using constant-time logical and
arithmetic operations to produce a Gaussian sample. To generate the required
uniform samples, we use cSHAKE as XOF using the seed seed produced by
PRF1 as input string, and a nonce D (written as counter in Alg. 3) as domain
separator. For the precomputed CDT tables, the targeted sampling precision
β is conservatively set to a value much greater than λ/2, as can be seen in
Table 2.

Sampling of y. The sampling of the polynomial y (line 4 of Algorithm 4) can
be performed by generating n (dlog2Be + 1)-bit values uniformly at random,
and then correcting each value to the range [−B,B+1] by subtracting B. Since
values need to be in the range [−B,B], coefficients with value B+ 1 need to be
rejected, which in turn might require the generation of additional random bits.
Algorithm 8 depicts the procedure used in our implementations. For the pseu-
dorandom bit generation, the seed rand produced by PRF2 (see line 3 of Algo-
rithm 4) is used as input string to a XOF, while the nonce D (written as counter
in Algorithm 4) is intended for the computation of the values for the domain
separation. The first call to the XOF function uses the value D′ ← D · 28 as
domain separator. Each subsequent call to the XOF increases D′ by 1. Since
D is initialized at 1 by the signing algorithm, and then increased by 1 at each
subsequent call to sample y, the successive calls to the sampler use nonces D′

initialized at 28, 2 · 28, 3 · 28, and so on, providing proper domain separation
between the different uses of the XOF in the signing algorithm. Our implemen-
tations use cSHAKE as the XOF function.
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Algorithm 8 Sampling y, ySampler

Require: seed rand ∈ {0, 1}κ and nonce D ∈ Z>0. Set b = d(log2B + 1)/8e
Ensure: y ∈ R[B]

1: pos← 0, n′ ← n, D′ ← D · 28

2: 〈c0〉‖〈c1〉‖ . . . ‖〈cn′−1〉 ← XOF(rand, b · n′, D′), where each 〈ci〉 ∈ {0, 1}8b
3: while i < n do
4: if pos ≥ n′ then
5: D′ ← D′ + 1, pos← 0, n′ ← brateXOF/bc
6: 〈c0〉‖〈c1〉‖ . . . ‖〈cn′−1〉 ← XOF(rand, rateXOF, D

′), where each 〈ci〉 ∈ {0, 1}8b
7: end if
8: yi ← cpos mod 2dlog2 Be+1 −B
9: if yi 6= B + 1 then

10: i← i+ 1
11: end if
12: pos← pos+ 1
13: end while
14: return y = (y0, y1, . . . , yn−1) ∈ R[B]

Hash-based function H. This function takes as inputs k polynomials v1, . . . , vk
in Rq and computes [v1]M , . . . , [vk]M . The result is hashed together with the
hash G of a message m and the hash G(t1, . . . , tk) to a string c′ that is κ bits
long. The detailed procedure is as follows. Let each polynomial vi be inter-
preted as a vector of coefficients (vi,0, vi,1, . . . , vi,n−1), where vi,j ∈ (−q/2, q/2],
i.e., vi,j = vi,j mod±q. We first compute [vi]L by reducing each coefficient mod-
ulo 2d and decreasing the result by 2d if it is greater than 2d−1. This guarantees
a result in the range (−2d−1, 2d−1], as required by the definition of [·]L. Next,
we compute [vi]M as (vi mod±q − [vi]L)/2d. Since each resulting coefficient is
guaranteed to be very small it is stored as a byte, which in total makes up a
string of k · n bytes. Finally, SHAKE is used to hash the resulting (k · n)-byte
string together with the 40-byte digests G(m) and G(t1, . . . , tk) to the κ-bit
string c′. This procedure is depicted in Algorithm 9.

Encoding function. This function maps the bit string c′ to a polynomial
c ∈ Hn,h ⊂ R of degree n − 1 with coefficients in {−1, 0, 1} and weight h, i.e.,
c has h coefficients that are either 1 or −1. For efficiency, c is encoded as two
arrays pos list and sign list that contain the positions and signs of its nonzero
coefficients, respectively.
For the implementation of the encoding function Enc we follow [1,25]. Basically,
the idea is to use an XOF to generate values uniformly at random that are
interpreted as the positions and signs of the h nonzero entries of c. The outputs
are stored as entries to the two arrays pos list and sign list.

The pseudocode of our implementation of this function is depicted in Algo-
rithm 10. This works as follows. The algorithm first requests rateXOF bytes
from a XOF, and the output stream is interpreted as an array of 3-byte packets
in little endian format. Each 3-byte packet is then processed as follows, be-
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Algorithm 9 Hash-based function, H

Require: polynomials v1, . . . , vk ∈ Rq, where vi,j ∈ (−q/2, q/2], for i = 1, . . . , k and
j = 0, . . . , n− 1, and the digests G(m) and G(t1, . . . , tk), each of length 40 bytes.

Ensure: c′ ∈ {0, 1}κ

1: for i = 1, 2, . . . , k do
2: for j = 0, 1, . . . , n− 1 do
3: val← vi,j mod 2d

4: if val > 2d−1 then
5: val← val− 2d

6: end if
7: w(i−1)·n+j ← (vi,j − val)/2d

8: end for
9: end for

10: 〈wk·n〉‖〈wk·n+1〉‖ . . . ‖〈wk·n+39〉 ← G(m), where each 〈wi〉 ∈ {0, 1}8
11: 〈wk·n+40〉‖〈wk·n+41〉‖ . . . ‖〈wk·n+79〉 ← G(t1, . . . , tk), where each 〈wi〉 ∈ {0, 1}8
12: c′ ← SHAKE(w, κ/8), where w is the byte array 〈w0〉‖〈w1〉‖ . . . ‖〈wk·n+79〉
13: return c′ ∈ {0, 1}κ

ginning with the least significant packet. The dlog2 ne least significant bits of
the lowest two bytes in every packet are interpreted as an integer value in little
endian representing the position pos of a nonzero coefficient of c. If such value
already exists in the pos list array, the 3-byte packet is rejected and the next
packet in line is processed; otherwise, the packet is accepted, the value is added
to pos list as the position of a new coefficient, and then the third byte is used
to determine the coefficient’s sign as follows. If the least significant bit of the
third byte is 0, the coefficient is assumed to be positive (+1), otherwise, it is
taken as negative (−1). In our implementations, sign list encodes positive and
negative coefficients as 0’s and 1’s, respectively.
The procedure above is executed until pos list and sign list are filled out with
h entries each. If the XOF output is exhausted before completing the task then
additional calls are invoked, requesting rateXOF bytes each time. qTESLA uses
cSHAKE128 as the XOF function, with the value D = 0 as domain separator
for the first call. D is incremented by one at each subsequent call.

Polynomial multiplication based on the NTT. As mentioned earlier, the
outputs a1, . . . , ak of GenA are assumed to be in the NTT domain. Hence, the
polynomial multiplications with the form ai · b, for some b ∈ Rq, can be effi-
ciently realized as NTT−1(ai ◦ NTT(b)).
To compute the power-of-two NTT in our implementations, we adopt butterfly
algorithms that efficiently merge the powers of φ and φ−1 with the powers of
ω, and that at the same time avoid the need for the so-called bit-reversal op-
eration which is required by some implementations [9, 46, 49]. Specifically, we
use an algorithm that computes the forward NTT based on the Cooley-Tukey
butterfly that absorbs the products of the root powers in bit-reversed ordering.
This algorithm receives the inputs of a polynomial a in standard ordering and
produces a result in bit-reversed ordering. Similarly, for the inverse NTT we use
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Algorithm 10 Encoding function, Enc

Require: c′ ∈ {0, 1}κ
Ensure: arrays pos list ∈ {0, ..., n − 1}h and sign list ∈ {−1, 1}h containing

the positions and signs, resp., of the nonzero elements of c ∈ Hn,h
1: D ← 0, cnt← 0
2: 〈r0〉‖〈r1〉‖ . . . ‖〈rT 〉 ← cSHAKE128(c′, rateXOF, D), where each 〈rt〉 ∈
{0, 1}8

3: i← 0
4: Set all coefficients of c to 0
5: while i < h do
6: if cnt > (rateXOF − 3) then
7: D ← D + 1, cnt← 0
8: 〈r0〉‖〈r1〉‖ . . . ‖〈rT 〉 ← cSHAKE128(c′, rateXOF, D), where each 〈rt〉 ∈
{0, 1}8

9: end if
10: pos← (rcnt · 28 + rcnt+1) mod n
11: if cpos = 0 then
12: if rcnt+2 mod 2 = 1 then
13: cpos ← −1
14: else
15: cpos ← 1
16: end if
17: pos listi ← pos
18: sign listi ← cpos
19: i← i+ 1
20: end if
21: cnt← cnt+ 3
22: end while
23: return {pos list0, . . . , pos listh−1} and {sign list0, . . . , sign listh−1}

an algorithm based on the Gentleman-Sande butterfly that absorbs the inverses
of the products of the root powers in bit-reversed ordering. The algorithm re-
ceives the inputs of a polynomial ã in bit-reversed ordering and produces an
output in standard ordering. Polished versions of these well-known algorithms,
which we follow in our implementations, can be found in [51, Algorithm 1 and 2].

Sparse multiplication. While standard polynomial multiplications can be ef-
ficiently carried out using the NTT as explained above, sparse multiplications
with a polynomial c ∈ Hn,h, which only contain h nonzero coefficients in {−1, 1},
can be realized more efficiently with a specialized algorithm that exploits the
sparseness of the input. An efficient algorithm to compute these sparse multi-
plications over Zq[x]/〈xn + 1〉 is presented in Algorithm 11. This algorithm is
used for the multiplications in lines 11 and 17 of Algorithm 4 and in line 4 of
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Algorithm 11 Sparse polynomial multiplication for power-of-two cyclotomic
rings

Require: g =
∑n−1
i=0 gix

i ∈ Rq with gi ∈ Zq, and list arrays pos list ∈
{0, . . . , n− 1}h and sign list ∈ {−1, 1}h containing the positions and signs,
resp., of the nonzero elements of a polynomial c ∈ Hn,h

Ensure: f = g · c ∈ Rq
1: Set all coefficients of f to 0
2: for i = 0, . . . , h− 1 do
3: pos← pos listi
4: for j = 0, . . . , pos− 1 do
5: fj ← fj − sign listi · gj+n−pos
6: end for
7: for j = pos, . . . , n− 1 do
8: fj ← fj + sign listi · gj−pos
9: end for

10: end for
11: return f

Algorithm 5, which have as inputs a given polynomial g ∈ Rq and a polyno-
mial c ∈ Hn,h encoded as the position and sign arrays pos list and sign list (as
output by Enc).

5 Security and instantiations of qTESLA

In this section, we discuss qTESLA’s security and the security proof in the QROM.
Afterwards, we describe our two main approaches to instantiate the scheme, the
hardness estimation of R-LWE, and the proposed parameter sets.

5.1 Provable security in the QROM

The standard security requirement for signature schemes, namely Existential
Unforgeability under Chosen-Message Attack (EUF-CMA), dates back to Gold-
wasser, Micali, and Rivest [29]: The adversary can obtain qS signatures via
signing oracle queries on messages of their own choosing, and must output one
valid signature on a message not queried to the oracle.
qTESLA’s EUF-CMA security is supported by a reduction in the QROM [17],
in which the adversary is granted access to a quantum random oracle. Namely,
Theorem 1 gives a reduction from the R-LWE problem to the EUF-CMA se-
curity of qTESLA in the QROM. It is very similar to [8, Theorem 1], which
gives the security reduction for qTESLA’s predecessor TESLA. It is important
to note that to port the reduction idea from TESLA over standard lattices to
qTESLA over ideal lattices, we assume that Conjecture 1 holds. The formal
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statement of qTESLA’s security and a sketch of the proof, together with the re-
quired conjecture, is given below. This includes an expanded explanation on
why the conjecture should hold true, as well as experimental results confirming
our statements.
Under the conjecture and with parameters corresponding to Table 1, the secu-
rity reduction is tight and explicit. This allows for choosing efficient provably
secure parameters, i.e., to choose parameters according to the provided security
statement, as explained in §5.2.
Remark 1. (Expansion of public keys) The explanations below assume an “ex-
panded” public key (t1, . . . , tk, a1, . . . , ak). In the description of qTESLA, how-
ever, a1, . . . , ak are generated from seeda which is part of the secret and public
key. This assumption can be justified by another reduction in the QROM: as-
sume there exists an algorithm A that breaks the original qTESLA scheme with
public key (t1, . . . , tk, seeda). Then we can construct an algorithm P that breaks
a variant of qTESLA with “expanded” public key (t1, . . . , tk, a1, . . . , ak). To this
end, we model GenA(·) as a (programmable) random oracle. The algorithm P
chooses first seed′a ←$ {0, 1}κ and reprograms GenA(seed′a) = (a1, . . . , ak). Af-
terwards, it forwards (t1, . . . , tk, seed

′
a) as input tuple to A. Quantum queries to

GenA(·) by A can be simulated by P according to the construction of Zhandry
based on 2qh-wise independent functions [52].

5.1.1 Security reduction from R-LWE

Our security statement in Theorem 1 gives a reduction from the R-LWE prob-
lem to qTESLA’s EUF-CMA security in the QROM. Theorem 1 holds assuming
a conjecture, as explained below.

Theorem 1 (Security reduction from R-LWE). Let the parameters be as in Ta-
ble 1, in particular, let qnk ≥ 24λ+nkd4q3

s(qs + qh)2. Assume that Conjecture 1
holds. Assume that there exists a quantum adversary A that forges a qTESLA

signature in time tΣ, making at most qh (quantum) queries to its quantum ran-
dom oracle and qs (classical) queries to its signing oracle. Then there exists a
reduction S that solves the R-LWE problem with

AdvEUF-CMA
qTESLA (A) ≤ AdvR-LWE

k,n,q,σ (S) +
23λ+nkd · 4 · q3

s(qs + qh)2

qnk
+

2(qh + 1)√
2h
(
n
h

) (1)

and in time tLWE which is about the same as tΣ in addition to the time to
simulate the quantum random oracle.

The idea of the security reduction is as follows. Let A be an algorithm that
breaks qTESLA, i.e., given an “expanded” public key (t1, . . . , tk, a1, . . . , ak), al-
gorithm A outputs (z, c′,m) after some time tΣ. Let forge(t1, . . . , tk, a1, . . . , ak)
denote the event that the forger A successfully produces a valid signature
for (t1, . . . , tk, a1, . . . , ak), i.e., with probability Pr [forge(t1, . . . , tk, a1, . . . , ak)],
(z, c′) is a valid signature of message m. We model the hash-based function H
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as a quantum random oracle. In particular, algorithm A is allowed to make (at
most) qh quantum queries to a quantum random oracle H and (at most) qs classi-
cal queries to a qTESLA signing oracle. However, the message m that is returned
by A must not be queried to the signing oracle. We then build an algorithm S
that solves the decisional R-LWE problem with a runtime that is close to that
of A and with a probability of success close to Pr [forge(t1, . . . , tk, a1, . . . , ak)].
The reduction S gets as input a tuple (t1, . . . , tk, a1, . . . , ak) and must decide
whether it follows the R-LWE distribution (see Definition 1) or U(R2k

q ). It for-
wards (t1, . . . , tk, a1, . . . , ak) as the public key to A. In the reduction, S must
simulate the responses to A’s queries to the hash and sign oracles. It is then
shown that if (t1, . . . , tk, a1, . . . , ak) follows the R-LWE distribution then the
probability that S answers correctly is close to Pr [forge(t1, . . . , tk, a1, . . . , ak)].
Furthermore, if (t1, . . . , tk, a1, . . . , ak) follows the uniform distribution over R2k

q

then S returns the wrong answer with negligible probability.

The proof follows closely the approach proposed in [8], that shows the security of
qTESLA’s predecessor TESLA, except for the computation of the two probabili-
ties coll(−→a ,−→e ) and nwr(−→a ,−→e ) that we define and explain next. For simplicity,
we assume that the randomness is sampled uniformly random in R[B]. We call
a polynomial f well-rounded if f ∈ R[bq/2c−E] and [f ]L ∈ R[(2d−1−E)]. For our
discussion we also define the following sets of polynomials:

Y = {y ∈ R[B]},
∆Y =

{
y − y′ : y, y′ ∈ R[B]

}
= R[2B],

∆L = {x− x′ : x, x′ ∈ R and [x]M = [x′]M},
Hn,h = {c ∈ R[1] | ‖c‖2 =

√
h},

∆Hn,h = {c− c′ : c, c′ ∈ Hn,h},
W = {[w]M : w ∈ Rq}.

Moreover, we denote −→a = (a1, ..., ak) and −→e = (e1, ..., ek) and define nwr(−→a ,−→e )
:= Pr(y,c)∈R[B]×Hn,h [aiy − eic not well-rounded for at least one i ∈ {1, ..., k}].

This quantity varies as a function of a1, ..., ak, e1, ..., ek. In contrast to [8],
we cannot upper bound this in general in the ring setting. Instead, we check
experimentally that our acceptance probability for wi in line 18 of Algorithm 4
(signature generation) is at least 1/4 for our provably secure parameter sets (see
Table 4). Hence, nwr(−→a ,−→e ) < 3/4.

Secondly, we need to bound the probability

coll(−→a ,−→e ) := max
(w1,...,wk)∈Wk

{
Pr

(y,c)∈R[B]×Hn,h
[[aiy − eic]M = wi for i = 1, ..., k]

}
.

In [8, Lemma 4] the corresponding probability coll(A,E) for standard lattices is
upper bounded, given A ∈ Zm×nq , E ∈ Zm×n′q , and n,m, n′ ∈ Z. Unfortunately,
the proof does not carry over to the ring setting for the following reason. In
the proof of [8, Lemma 4], it is used that if the randomness y ∈ [−B,B]n is
not equal to 0, the vector Ay mod q is uniformly random distributed over Zq
and hence also Ay − Ec is uniformly random distributed over Zq. This does
not necessarily hold if the polynomial y is chosen uniformly in R[B]. Moreover,
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in [8, Equation (99)], ψ denotes the probability that a random vector x ∈ Zmq
is in ∆L, i.e.,

ψ = Pr
x∈Zmq

[x ∈ ∆L] ≤
(

2d + 1

q

)m
. (2)

The quantity ψ is a function of the TESLA parameters q,m, d, and it is neg-
ligibly small. We cannot prove a similar statement for the signature scheme
qTESLA over ideals. Instead, we need to conjecture the following.

Conjecture 1. Let y be a random element of ∆Y and a1, . . . , ak be k random
elements in the ring Rq. Then with only negligible probability it will be the case
that for each i, each coefficient of aiy is in {−2d − 2E + 1, . . . , 2d + 2E − 1}.
More formally,

Pr
(−→a ,y)←$Rk×R[2B]

[∀i ∈ {1, . . . , k} : ai · y ∈ R[2d+2E−1]] ≤
1

2n+8λ
· |Hn,h|
|∆Hn,h|

.

We briefly describe why this conjecture is needed in the security reduction for
qTESLA, and why it should be expected to be true.

This conjecture is needed in bounding the value coll(−→a ,−→e ) which corresponds
to the maximum likelihood that the values aiy − eic mod q round to some
specific values. For example, if during key generation all of the ai’s are set to
be 0, then the rounding of any aiy − eic is 0, which is a poor choice of a public
key.

In the proof of TESLA [8], to establish that such an event is unlikely to occur,
the value G(A,E) was defined, and a relation was shown between the values
coll(A,E) and G(A,E). For qTESLA, we can define G(−→a ,−→e ) as

G(−→a ,−→e ) = {(y, c) ∈ ∆Y×∆Hn,h : ∀i, aiy − eic ∈ ∆L}. (3)

A similar relation holds for qTESLA so that we can derive a bound on coll(−→a ,−→e )
from a bound on G(−→a ,−→e ). Specifically, following the same logic as [8, Lemma
5], we can see that

coll(−→a ,−→e ) ≤ G(−→a ,−→e )

|Y| · |Hn,h|
. (4)

In fact, we can largely drop the −→e part of the equation, and simply write G(−→a ).
Because each ei is chosen so that eic is always quite small, we can see that the
rounding [aiy]M of aiy is almost always the same as [aiy − eic]M , and ignore
the effects of eic. By considering the maximum difference between two elements
that round to the same value, we can replace ∆L with R[2d−1]. Then since each
coefficient of eic ∈ ∆Hn,h is at most 2E, we can see that aiy− eic ∈ ∆L implies
that aiy ∈ R[2d+2E−1]. This allows us to define the set G(−→a ) = {y ∈ ∆Y :
∀i, aiy ∈ R[2d+2E−1]} and establish that |G(−→a ,−→e )| ≤ |∆Hn,h| · |G(−→a )|.

To demonstrate a bound on the size of G(−→a ), we calculate the expected value
and employ Markov’s inequality. Very similarly to the logic of [8, AppendixB.9],
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we determine that the expected size of G(−→a ) is equal to |∆Y| times the proba-
bility that appears in Equation (1).

If this probability is lower than the bound in Equation (1), then we can employ
Markov’s inequality to establish that

Pr−→a ,−→e
[coll(−→a ,−→e ) ≥ 2−λ] ≤ 2−7λ. (5)

The reason we require coll(−→a ,−→e ) to be so low is because in the proof, it will be
multiplied by factors such as the number of hash function queries squared. We
refer to Equation (153) in [8] for how this quantity fits into the proof.

Here we sketch a brief argument as to why this conjecture should be expected
to be true. The set Rq,[2d+2E−1] forms an incredibly tiny fraction of our ring

Rq. That fraction is (2d+1 + 4E − 1)n/qn. For qTESLA-p-I and qTESLA-p-III,
it is approximately 1/25,500 and 1/210,000, respectively. So the closer picking a
random −→a and y and computing the products is to picking k uniform elements,
the closer we get to this fraction.

For invertible y, it is easy to see that this corresponds exactly to picking out k
uniform elements, and so the probability is much lower than we need. All that
must be accounted for is the non-invertible y. For these, it should hold that the
ideal generated by y still only has a negligible fraction that is inRq,[2d+2E−1], and
indeed it should be the case that only a small part of ∆Y is non-invertible.

To allow experimentation with our parameters, we wrote a script6 that samples
such a y and a and checks if their product is in R[2d+2E−1]. After running
the script over the parameter sets qTESLA-p-I and qTESLA-p-III 10,000 times
each, we did not observe an instance in which a uniform element of Rq and
R[2B] was in R[2d+2E−1]. This supports the claim that our conjecture holds
true for the provably secure instantiations of qTESLA.

5.2 Relation between the R-LWE hardness and qTESLA’s
security

Our parameters are chosen such that εLWE ≈ εΣ and tΣ ≈ tLWE
7, which guar-

antees that the bit hardness of the R-LWE instance is theoretically the same
as the bit security of our signature scheme, by virtue of the security reduc-
tion and its tightness. The reduction provably guarantees that the scheme has
the selected security level as long as the corresponding R-LWE instance gives
the assumed hardness level and the aforementioned conjecture holds. This ap-
proach provides a strong security argument. We emphasize that our provably

6The script can be found at /Supporting_Documentation/Script_for_conjecture/

Script_for_experiments_supporting_the_security_conjecture.py in the qTESLA submis-
sion package available at https://qtesla.org.

7To be precise, we assume that the time to simulate the (quantum) random oracle is smaller
than the time to forge a signature. This assumption is commonly made in “provably secure”
cryptography.
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secure parameters are chosen according to their security reductions from R-LWE
but not according to reductions from underlying existing worst-case to average-
case reductions from SIVP or GapSVP to R-LWE [42]. In this work, we pro-
pose two provably secure parameter sets called qTESLA-p-I and qTESLA-p-III;
see §5.4.
Remark 2. In practical instantiations of qTESLA, the bit security does not ex-
actly match the bit hardness of R-LWE (see Table 4). This is because the bit
security does not only depend on the bit hardness of R-LWE, but also on the
probability of rejected/accepted key pairs and on the security of other building
blocks such as the encoding function Enc. First, in all our parameter sets the
key space is reduced by the rejection of polynomials s, e1, . . . , ek with large co-
efficients via checkE and checkS. In particular, depending on the instantiation,
the size of the key space is decreased by d| log2(δKeyGen)|e bits. We compensate
this security loss by choosing an R-LWE instance of larger bit hardness. Hence,
the corresponding R-LWE instances give at least λ + d| log2(δKeyGen)|e bits of
hardness against currently known (classical and quantum) attacks. Finally, we
instantiate the encoding function Enc such that it is λ-bit secure.

5.3 Hardness estimation of our instances

Lattice reduction is arguably the most important building block in most efficient
attacks against R-LWE instances. As the Block-Korkine-Zolotarev algorithm
(BKZ) [20, 21] is considered the most efficient lattice reduction in practice, the
model used to estimate the cost of BKZ determines the overall hardness estima-
tion. While many different cost models for BKZ exist [4], we decided to adopt
the BKZ cost model of 0.265β + 16.4 + log2(8d) for the hardness estimation of
our parameters (denoted by BKZ.qsieve), where β is the BKZ block size and d
is the lattice dimension. It corresponds to solving instances of the shortest vec-
tor problem of blocksize β with a quantum sieving algorithm [36,37]. This cost
model is conservative since it only takes into account the number of operations
needed to solve a certain instance and assumes that the attacker can handle huge
amounts of quantum memory. We compare our chosen hardness estimation for
R-LWE in Table 3 with other BKZ models, including the one from [9] (de-
noted by BKZ.ADPS16) and the classical algorithms using sieving [14] (denoted
by BKZ.sieve).

Table 3: Security estimation (bit hardness) under different BKZ cost models.

BKZ cost model qTESLA-p-I qTESLA-p-III

BKZ.sieve 150 304
BKZ.qsieve 139 279
BKZ.ADPS16 108 247

Hardness estimation of R-LWE. Since its introduction in [42], it has re-
mained an open question to determine whether the R-LWE problem is as hard
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as the LWE problem for instances typically used in signature schemes. Sev-
eral results exist that exploit the structure of some ideal lattices, e.g., [22, 28].
However, up to now, these results do not seem to apply to R-LWE instances
that are typically used in practice. Consequently, we assume that the R-LWE
problem is as hard as the LWE problem, and estimate the hardness of R-LWE
using state-of-the-art attacks against LWE.
Albrecht, Player, and Scott [7] presented the LWE-Estimator, a software to es-
timate the hardness of LWE given the matrix dimension n, the modulus q, the
relative error rate α = (

√
2πσ)/q, and the number of given LWE samples. The

LWE-Estimator determines the hardness against the fastest classical and quan-
tum LWE solvers currently known, i.e., it outputs an upper (conservative) bound
on the number of operations an attack needs to break a given LWE instance.
In particular, the following attacks are considered in the LWE-Estimator: the
meet-in-the-middle exhaustive search, the coded Blum-Kalai-Wassermann algo-
rithm [31], the recent dual lattice attacks in [2], the enumeration approach by
Linder and Peikert [38], the primal attack [5, 12], the Arora-Ge algorithm [10]
using Gröbner bases [3], and the latest analysis to compute the block sizes used
in the lattice basis reduction BKZ by Albrecht et al. [6]. Moreover, quantum
speedups for the sieving algorithm used in BKZ [36,37] are also considered. We
integrated the LWE-Estimator with commit-id 3019847 on 2019-02-14 in the
sage script that we wrote to perform the security estimation.

5.4 Parameter sets

We propose two parameter sets called qTESLA-p-I and qTESLA-p-III, which
are summarized in Table 4.

6 Implementation and performance evaluation

6.1 Portable C implementation

Our compact reference implementation is written exclusively in portable C using
approximately 300 lines of code. It exploits the fact that it is straightforward
to write a qTESLA implementation with a common codebase, since the different
parameter set realizations only differ in some packing functions and system
constants that can be instantiated at compilation time. This illustrates the
simplicity and scalability of software based on qTESLA.

Protection against side-channel attacks. All our implementations run
in constant-time, i.e., they avoid the use of secret address accesses and secret
branches and, hence, are protected against timing and cache side-channel at-
tacks. The following functions are implemented securely via constant-time logi-
cal and arithmetic operations: H, checkE, checkS, the correctness test for rejec-
tion sampling, polynomial multiplication using the NTT, sparse multiplication,
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Table 4: Parameters for each of the proposed parameter sets with qh =
min {2λ, 2128} and qs = min {2λ/2, 264}; we choose κ = 256.

Param. qTESLA-p-I qTESLA-p-III

λ 95 160

n, k 1 024, 4 2 048, 5

σ 8.5 8.5

q 343 576 577 856 145 921
≈ 228 ≈ 230

h 25 40

LE , E 554 901
LS , S 554 901

B, d 219 − 1, 22 221 − 1, 24

bGenA 108 180

δw, δz 0.37, 0.34 0.33, 0.42
δsign, M 0.13, 0.3 0.14, 0.3
δkeygen 0.59 0.43

sig size [bytes] 2, 592 5, 664
pk size [bytes] 14, 880 38, 432
sk size [bytes] 5, 224 12, 392

classical bit hardness 150 304
quantum bit hardness 139 279

and all the polynomial operations requiring modular reductions or corrections.
Some of the functions that perform some form of rejection sampling, such as the
security test at signing, GenA, ySampler, and Enc, potentially leak the timing
of the failure to some internal test, but this information is independent of the
secret data. Table lookups performed in our implementation of the Gaussian
sampler are done with linear passes over the full table and producing samples
via constant-time logical and arithmetic operations.

Polynomial arithmetic. Our polynomial arithmetic, which is dominated by
polynomial multiplications based on the NTT, uses a signed 32-bit datatype
to represent coefficients. Throughout polynomial computations, intermediate
results are let to grow and are only reduced or corrected when there is a chance
of exceeding 32 bits of length, after a multiplication, or when a result needs to
be prepared for final packing (e.g., when outputting public keys). Accordingly,
to avoid overflows the results of additions and subtractions are either corrected
or reduced via Barrett reductions whenever necessary. We have performed a
careful bound analysis for each of the proposed parameter sets in order to maxi-
mize the use of lazy reduction and cheap modular corrections in the polynomial
arithmetic. In the case of multiplications, the results are reduced via Mont-
gomery reductions. To minimize the cost of converting to/from Montgomery
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representation we use the following approach. First, the so-called “twiddle fac-
tors” in the NTT are scaled offline by multiplying with the Montgomery con-
stant R = 232 mod q. Similarly, the coefficients of the outputs ai from GenA
are scaled to remainders r′ = rn−1R mod q by multiplying with the constant
R2 · n−1. This enables an efficient use of Montgomery reductions during the
NTT-based polynomial multiplication NTT−1(ã ◦ NTT(b)), where ã = NTT(a)
is the output of GenA which is assumed to be in NTT domain. Multiplications
with the twiddle factors during the computation of NTT(b) naturally cancel out
the Montgomery constant. The same happens during the pointwise multiplica-
tion with ã, and finally during the inverse NTT, which naturally outputs values
in standard representation without the need for explicit conversions.

6.2 AVX2 optimizations

We optimized two functions with hand-written assembly exploiting AVX2 vec-
tor instructions, namely, polynomial multiplication and XOF expansion during
sampling of y.

Our polynomial multiplication follows the recent approach by Seiler [51], and
the realization of the method has some similarities with the implementation
from [26]. That is, our implementation processes 32 coefficients loaded in 8
AVX2 registers simultaneously, in such a way that butterfly computations are
carried out through multiple NTT levels without the need for storing and load-
ing intermediate results, whenever possible. We illustrate our procedure for
a polynomial a of dimension n = 512 written as the vector of coefficients
(a0, a1, . . . , a511). First, we split the coefficients in 8 subsets a′i equally dis-
tributed, namely, a′0 = (a0, . . . , a63), a′1 = (a64, . . . , a127), and so on. We start
by loading the first 4 coefficients of each subset a′i, filling out 8 AVX2 registers in
total, and then performing 3 levels of butterfly computations between the corre-
sponding pairs of subsets according to the Cooley-Tukey algorithm. We repeat
this procedure 16 times using the subsequent 4 coefficients from each subset a′i
each time. Note that the 3 levels can be completed at once without the need for
storing and loading intermediate results. A similar procedure applies to level 4.
However, in this case we instead split the coefficients in 16 subsets a′i such that
a′0 = (a0, . . . , a31), a′1 = (a32, . . . , a63), and so on. We first compute over the first
8 subsets, and then over the other 8. In each case, the butterfly computation
is iterated 8 times to cover all the coefficients (again, 4 coefficients are taken
at a time from each of the 8 subsets). After level 4, the coefficients are split
again in the same 16 subsets a′i. Conveniently, remaining butterflies need to
only be computed between coefficients that belong to the same subset. Hence,
the NTT computation can be completed by running 16 iterations of butterfly
computations, where each iteration computes levels 5–9 at once for each subset
a′i. Therefore, these remaining NTT levels can be computed without additional
stores and loads of intermediate results.
One difference with [26, 51] is that our NTT coefficients are represented as 32-
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Table 5: Performance (in thousands of cycles) of the portable C and the AVX2
implementations of qTESLA on a 3.4GHz Intel Core i7-6700 (Skylake) processor.
Results for the median and average (in parenthesis) are rounded to the nearest
102 cycles. Signing is performed on a message of 59 bytes.

Scheme keygen sign verify

C

qTESLA-p-I 2, 358.6 (2, 431.9) 2, 299.0 (3, 089.9) 814.3 (814.5)

qTESLA-p-III 13, 151.4 (13, 312.4) 5, 212.3 (7, 122.6) 2, 102.3 (2, 102.6)

A
V

X
2

qTESLA-p-I 2, 212.4 (2, 285.0) 1, 370.4 (1, 759.0) 678.4 (678.5)

qTESLA-p-III 12, 791.0 (13, 073.4) 3, 081.9 (4, 029.5) 1, 745.3 (1, 746.4)

bit signed integers, which motivates a speedup in the butterfly computation by
avoiding the extra additions that are required to make the result of subtractions
positive when using an unsigned representation.
Our approach reduces the cost of the portable C polynomial multiplication from
76, 300 to 18, 400 cycles for n = 1024, and from 174, 800 to 43, 900 cycles for
n = 2048.

Sampling of y is sped up by using the AVX2 implementation of SHAKE by
Bertoni, Daemen, Hoffert, Peeters, Van Assche, and Van Keer [15], which allows
us to sample up to 4 coefficients in parallel.

We note that it is possible to modify GenA to favor a vectorized computation
of the XOF expansion inside this function. However, we avoid this optimiza-
tion because it degrades the performance on smaller platforms with no vector
instruction support.

6.3 Performance on x64

We evaluated the performance of our implementations on an x64 machine pow-
ered by a 3.4GHz Intel Core i7-6700 (Skylake) processor running Ubuntu 16.04.3
LTS. As is standard practice, TurboBoost was disabled during the tests. For
compilation we used gcc version 7.2.0 with the command gcc -O3 -march=native

-fomit-frame-pointer. The results for the portable C and AVX2 implemen-
tations are summarized in Table 5.

qTESLA computes the combined (median) time of signing and verification on the
Skylake platform in approximately 0.92 and 2.15 milliseconds with qTESLA-p-I

and qTESLA-p-III, respectively. This demonstrates that the speed of qTESLA,
although slower than other lattice-based signature schemes, can still be consid-
ered practical for most applications.

The AVX2 optimizations improve the performance by a factor 1.5x, approxi-
mately. The speedup is mainly due to the AVX2 implementation of the poly-
nomial multiplication, which is responsible for ∼ 70% of the total speedup.
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qTESLA computes the combined (median) time of signing and verification on the
Skylake platform in approximately 0.60 and 1.42 milliseconds with qTESLA-p-I

and qTESLA-p-III, respectively.

We note that the overhead of including g, i.e., the hash of part of the public
key, in the signature computation of c′ is between 3–8% of the combined cost of
signing and verification.

6.4 Comparison

Table 6 compares qTESLA to representative state-of-the-art post-quantum sig-
nature schemes in terms of bit security, signature and public key sizes, and
performance of portable C reference and AVX2-optimized implementations (if
available). If both median and average of cycle counts are provided in the lit-
erature, we report the average for signing and the median for verify. To have
a fair comparison, we state the bit security of qTESLA, Falcon, and Dilithium
assuming the same BKZ cost model of 0.265β + 16.4 + log2(8d) with β be-
ing the BKZ blocksize and d being the lattice dimension (for schemes that use
other cost models, we write in brackets the bit security stated in the respective
papers).

FALCON-512, the only other scheme proposing parameters according to their
(tight) security reduction, features the smallest (pk + sig) size among all the
post-quantum signature schemes shown in the table. However, Falcon has some
shortcomings due to its high complexity. This scheme relies on very complex
Fourier sampling methods and requires floating-point arithmetic, which is not
supported by many devices. This makes the scheme significantly harder to
implement in general, and hard to protect against side-channel and fault attacks
in particular. The recent efficient implementation by Pornin [47] makes use of
complicated floating-point emulation code to deal with the portability issues,
and contains several thousands of lines of C code. Still, the software cannot be
labeled as a strictly constant-time implementation because some portions of it
allow a limited amount of leakage to happen. This should be contrasted against
the simple and compact implementation of qTESLA.

Schemes based on other underlying problems, such as SPHINCS+ and MQDSS,
offer compact public keys at the expense of having very large signature sizes.
In contrast, qTESLA has smaller signature sizes, and is significantly faster for
signing and verification.

In summary, qTESLA offers a good balance between efficiency, accompanied by
a simple, compact, and secure design.
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Table 6: Comparison of different post-quantum signature schemes

Scheme Security const.- Sizes Cycle counts [k-cycles] CPU
[bit] time [B] Reference AVX2

S
el

ec
te

d
la

tt
ic

e-
b

a
se

d
si

g
n

a
tu

re
s

BLISS-BI
128 7

pk: 896 sign: ≈435.2 -
U

[24,25] sig: 717 verify: ≈102.0 -
FALCON-512a 158b

7
pk: 897 sign: 1,368.5 1,009.8

S
[47] (103) sig: 617 verify: 95.6 81.0

Dilithium-I 77b
3

pk: 896 sign: 785.2 265.2
S

[41] (53) sig: 1, 387 verify: 172.7 78.2
Dilithium-II 122b

3
pk: 1, 184 sign: 1,378.1 410.7

S
[41] (91) sig: 2, 044 verify: 272.8 109.0

Dilithium-III 160b
3

pk: 1, 472 sign: 2,035.9 547.2
S

[41] (125) sig: 2, 701 verify: 375.7 155.8
qTESLA-p-I a pk: 14, 880 sign: 3, 089.9 1, 759.0
(this paper)

95b 3
sig: 2, 592 verify: 814.3 678.5

S

qTESLA-p-III a pk: 38, 432 sign: 7, 122.6 4, 029.5
(this paper)

160b 3
sig: 5, 664 verify: 2, 102.3 1, 746.4

S

O
th

er
s SPHINCS+-128f-sa

128c 3
pk: 32 sign: 325,311 129,137

H
(SHAKE256) [32] sig: 16,976 verify: 13,541 9,385
MQDSS-31-64

128c 3
pk: 64 sign: 85,268.7 9,047.1

H
[50] sig: 43,728 verify: 62,306.1 6,133.0

a Parameters are chosen according to given security reduction in the ROM/QROM.
b Bit security against classical and quantum adversaries with BKZ cost model

0.265β + 16.4 + log2(8d) [4]; (originally stated bit security given in brackets).
c Bit security analyzed against classical and quantum adversaries.

U: Unknown 3.4GHz Intel Core for BLISS.

S: 3.3GHz Intel Core i7-6567U (Skylake) for FALCON-512 (TurboBoost enabled), 2.6GHz
Intel Core i7-6600U (Skylake) for Dilithium, and 3.4GHz Intel Core i7-6700 (Skylake) for
qTESLA.

H: 3.5GHz Intel Core i7-4770K (Haswell).
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[5] Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving
LWE by reduction to unique-SVP. In: Lee, H.S., Han, D.G. (eds.) In-
formation Security and Cryptology - ICISC 2013. LNCS, vol. 8565, pp.
293–310. Springer (2013)
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that

Pr [Verify(pk,m, σ) = 0 : (sk,pk)← KeyGen(), σ ← Sign(sk,m) for m ∈M] = 1,

where the probability is taken over the randomness of the probabilistic algo-
rithms. To prove the correctness of qTESLA, we have to show that for every
signature (z, c′) of a message m generated by Algorithm 4 it holds that (i)
z ∈ R[B−S] and (ii) the output of the hash-based function H at signing (line 9
of Algorithm 4) is the same as the analogous output at verification (line 6 of
Algorithm 5).

Requirement (i) is ensured by the security check during signing (line 12 of Al-
gorithm 4). To ensure (ii), we need to prove that, for genuine signatures and for
all i = 1, . . . , k it holds that [aiy]M = [aiz− tic]M = [ai(y+sc)−(ais+ei)c]M =
[aiy+aisc−aisc−eic]M = [aiy−eic]M . From the definition of [·]M , this means
proving that (aiy mod±q− [aiy]L)/2d = (aiy− eic mod±q− [aiy− eic]L)/2d, or
simply [aiy]L = eic+ [aiy − eic]L.

The above equality must hold component-wise, so let us prove the corresponding
property for individual integers.

Assume that for integers α and ε it holds that |[α− ε]L| < 2d−1 −E, |ε| ≤ E <
bq/2c, |α−ε mod±q| < bq/2c−E, and −bq/2c < α ≤ bq/2c (i.e., α mod±q = α).
Then, we need to prove that

[α]L = ε+ [α− ε]L. (6)

Proof. To prove Equation (6), start by noticing that |ε| ≤ E < 2d−1 implies
[ε]L = ε. Thus, from −2d−1 + E < [α− ε]L < 2d−1 − E and −E ≤ [ε]L ≤ E it
follows that

−2d−1 = −2d−1 + E − E < [ε]L + [α− ε]L < 2d−1 − E + E = 2d−1,

and therefore

[[ε]L + [α− ε]L]L = [ε]L + [α− ε]L = ε+ [α− ε]L. (7)

Next we prove that
[[ε]L + [α− ε]L]L = [α]L. (8)

Since |ε| ≤ E < bq/2c and |α− ε mod±q| < bq/2c, it holds further that

[[ε]L + [α− ε]L]L (9)

= ((ε mod±q) mod±2d + (α− ε mod±q) mod±2d) mod±q mod±2d(10)

= (ε mod±q + (α− ε mod±q)) mod±2d. (11)

Since |ε| ≤ E and |α − ε mod±q| < bq/2c − E, it holds that |α − ε| + |ε| <
(bq/2c − E) + E = bq/2c. Hence, Equation (11) is the same as

= (ε+ α− ε mod±q) mod±2d = (α mod±q) mod±2d = [α]L.
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By combining Equation (7) and Equation (8) we deduce that [α]L = ε+[α−ε]L,
which is the equation we needed to prove.

Now define α := (aiy)j and ε := (eic)j with i ∈ {1, ..., k} and j ∈ {0, ..., n− 1}.
From line 18 of Algorithm 4, we know that for i = 1, ..., k, ‖[aiy − eic]L‖∞ <
2d−1 − E and ‖aiy − eic‖∞ < bq/2c − E for an honestly generated signature,
and that Algorithm 3 (line 13) guarantees ‖eic‖∞ ≤ E. Likewise, by definition
it holds that E < bq/2c; see §5. Finally, vi = aiy is reduced mod±q in line 7 of
Algorithm 4 and, hence, vi is in the centered range−bq/2c < aiy ≤ bq/2c.

In conclusion, we get the desired condition for ring elements, [aiy]L = eic +
[aiy − eic]L, which in turn means [aiz − tic]M = [aiy]M for i = 1, ..., k.

40


	Introduction
	Preliminaries
	Notation
	The number-theoretic transform
	Hardness assumptions

	The signature scheme qTESLA
	Description of the scheme
	Parameter description

	Realization of basic functions
	Security and instantiations of qTESLA
	Provable security in the QROM
	Security reduction from R-LWE

	Relation between the R-LWE hardness and qTESLA's security
	Hardness estimation of our instances
	Parameter sets

	Implementation and performance evaluation
	Portable C implementation
	AVX2 optimizations
	Performance on x64
	Comparison

	References
	Correctness of qTESLA

