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Abstract. In this work we advance the study of leakage-resilient Authenticated Encryption with
Associated Data (AEAD) and lay the theoretical groundwork for building such schemes from
sponges. Building on the work of Barwell et al. (ASIACRYPT 2017), we reduce the problem
of constructing leakage-resilient AEAD schemes to that of building fixed-input-length function
families that retain pseudorandomness and unpredictability in the presence of leakage. Notably,
neither property is implied by the other in the leakage-resilient setting. We then show that such
a function family can be combined with standard primitives, namely a pseudorandom generator
and a collision-resistant hash, to yield a nonce-based AEAD scheme. In addition, our construction
is quite efficient in that it requires only two calls to this leakage-resilient function per encryption
or decryption call. This construction can be instantiated entirely from the T-sponge to yield a
concrete AEAD scheme which we call Slae. We prove this sponge-based instantiation secure in the
non-adaptive leakage setting. Slae bears many similarities and is indeed inspired by Isap, which
was proposed by Dobraunig et al. at FSE 2017. However, while retaining most of the practical
advantages of Isap, Slae additionally benefits from a formal security treatment.
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1 Introduction

The oldest and most fundamental application of cryptography is concerned with securing the communi-
cation between two parties who already share a secret key. The modern cryptographic construct for this
application is authenticated encryption with associated data (AEAD), which was the topic of the recent
CAESAR competition [6]. Most of the effort in this competition has been directed towards exploring new
designs, optimising performance, and offering robust security guarantees. However, there has not been
much progress in the development of AEAD constructions that, by design, protect against side-channel
attacks. This is a challenging problem that is likely to become a primary focus in the area of AEAD
design.

Recently, a handful of AEAD designs with this exact goal have emerged. Each of these is based
on a different approach with varying trade-offs between complexity, efficiency, and security guarantees.
One notable example is the work of Barwell et al. [4], which proposes AEAD constructions with strong
security guarantees but pays a relatively high price in terms of complexity and efficiency. Specifically,
their constructions achieve security against adaptive leakage but resort to elliptic-curve pairings and
secret sharing in order to realise implementations of a leakage-resilient MAC and a leakage-resilient
pseudorandom function (employed in a block-wise fashion for encryption) for instantiating their scheme.
A more hands-on approach was adopted by Dobraunig et al. in the design of their proposed AEAD scheme
Isap. It was conceived with the intent to protect against Differential Power Analysis (DPA) [12]. Isap
is entirely sponge-based and follows a fairly conventional design, augmented with a rekeying strategy.
Arguably, this simpler approach, employing readily-available symmetric primitives, is more likely to lead
to a pragmatic solution. However, Isap’s design rationale is predominantly heuristic, lacking any formal
security analysis to justify its claims. As such the efficacy of Isap’s approach in resisting side-channel
attacks is unclear, both qualitatively and quantitatively, curtailing any objective comparison with the
constructions from [4] and others.
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In light of the practical advantages that the sponge-based approach offers, we remedy this state of
affairs as follows. We propose Slae, a derivative of Isap which retains its main structure and benefits
but includes certain modifications to admit a formal security proof. We analyse its security in the
framework of leakage-resilient cryptography introduced by Dziembowski and Pietrzak [16], adapted to
the random transformation model. Specifically, we prove it secure with respect to the leakage-resilient
AEAD definition, put forward in [4] by Barwell et al., in the non-adaptive leakage setting. That is, we
assume a leakage function that is fixed a priori and whose output is limited to some number of bits λ.

Admittedly, Slae achieves qualitatively weaker security than the schemes of Barwell et al., since
it only achieves non-adaptive leakage resilience. Nevertheless, we contend that Slae strikes a more
pragmatic balance by improving on efficiency and ease of implementation while still benefiting from a
provably-secure design. Indeed, several other works [1, 15, 17, 25, 27] have settled for and argued that
non-adaptive leakage security often suffices in practice. Moreover, as discussed in [27], the syntax of
primitives like pseudorandom functions makes adaptive-leakage security impossible to achieve. In fact
Barwell et al. achieve security against adaptive leakage by resorting to a specialised implementation of
a pseudorandom function which requires an additional random input per invocation. In contrast, Slae
adheres to the standard nonce-based AEAD syntax and requires no source of randomness.

When viewed as sponge-based constructions, Slae and Isap look very similar and we do not claim
any particular novelty in that respect. Nevertheless, the rationale behind their design is rather different.
Isap was conceived as augmenting a standard sponge-based AEAD design with a rekeying strategy,
where the rekeying function is in turn also built from sponges, followed by some optimisations. The
rekeying is intended to frustrate Differential Power Analysis (which requires several power traces on the
same key but distinct inputs) by running the AEAD scheme with a distinct session key each time its
inputs change. In turn, the session key is produced by combining a hash of the inputs and the master
key through a rekeying function. Ostensibly, the rekeying function is itself strengthened against DPA by
reducing its input data complexity through a low sponge absorption rate. In contrast Slae is understood
through a top-down design where we gradually decompose a leakage-resilient AEAD scheme into smaller
components which we then instantiate using sponges. In particular there is no mention of rekeying or
session keys. Note that there is more to this distinction than mere renaming. For instance, if we compare
the MAC components in Isap and Slae we notice that the same value that serves as the MAC session
key in Isap is used directly as the MAC tag in Slae.

At a more general level, the key premise made in [12] is that sponges offer a promising and practical
solution to protect against side-channel attacks. Our work serves to provide formal justification to this
claim and allows one to calculate concrete parameters for a desired security level.

1.1 Contribution

Below is an outline of our contributions highlighting how we improve on prior works and some of the
challenges we face in our analysis.

A Generic Construction (FGHF′). The composition theorem in [4] reconsiders the N2 construction
from [22] in the setting of leakage resilience. Specifically they show that given a MAC that is both leakage-
resilient strongly unforgeable and a leakage-resilient pseudorandom function, together with an encryption
scheme that is leakage-resilient against augmented chosen plaintext attacks, the N2 construction yields
a leakage-resilient AEAD scheme. We extend this result, in the non-adaptive setting, by further decom-
posing the MAC and the encryption scheme into simpler lower-level primitives, ultimately giving rise to
the FGHF′ construction. In turn this constructs a leakage-resilient AEAD scheme from two fixed-size
leakage-resilient functions F and F ′, a standard pseudorandom generator G, and a collision-resistant
vector hash H. The construction requires that both F and F ′ be leakage-resilient pseudorandom func-
tions and that F ′ additionally be a leakage-resilient unpredictable function. The latter is a notion that
we introduce.

As pointed out in [4], in the adaptive leakage setting any MAC whose verification algorithm recom-
putes the tag and checks for equality with the candidate tag, simply cannot be strongly unforgeable. They
overcome this issue through an ingenious MAC implementation. However this requires three pairing eval-
uations per verification and a source of randomness. In the FGHF′ construction we show that by settling
for non-adaptive leakage security the canonical MAC construction, which recomputes the tag and checks
for equality, can be rescued. Specifically, we show that any leakage-resilient unpredictable function gives
rise to a canonical MAC which is strongly unforgeable. In contrast to the leakage-free setting, not every
pseudorandom function is an unpredictable function. This has to do with the fact that in unpredictability
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we give the adversary more freedom in what it can query to its oracles, which is in turn a necessary re-
quirement for composition to hold. In addition, we prove that one can combine a collision-resistant hash
function with fixed-input-length leakage-resilient pseudorandom and unpredictable functions to obtain
corresponding primitives with extended input domains.

For the encryption part, Barwell et al. use Counter Feedback Mode instantiated with a leakage-
resilient pseudorandom function and an additional extra call to generate the initial vector from the nonce.
Thus multiple calls to the leakage-resilient pseudorandom function are required for each encryption call.
In contrast we show that to meet the required security notion, one can do with just one call to the leakage-
resilient pseudorandom function and a pseudorandom generator, thereby resulting in a considerably more
efficient scheme. Thus, if one is content with non-adaptive leakage security then the FGHF′ construction
constitutes a simpler recipe yielding a more efficient AEAD scheme.

All the results needed to prove the security of the FGHF′ construction hold in the general adaptive
setting. The limitation to the non-adaptive leakage setting comes from the fact that leakage-resilient un-
predictable functions are unattainable in the adaptive-leakage setting if no further restriction is imposed
on the set of leakage functions.

Non-Adaptively Leakage-Resilient Functions from Sponges. Having reduced the task of con-
structing a leakage-resilient AEAD scheme to that of constructing suitable leakage-resilient function
families, we turn our attention to the latter problem. We instantiate both F and F ′ with the same
sponge-based construction, which we refer to as SlFunc. This construction is essentially the rekeying
function employed in Isap [12] instantiated with a random transformation (T-sponge) instead of a ran-
dom permutation (P-sponge). In [12] this was proposed without proof, instead its security was argued
based on its apparent similarity to the GGM construction [18] and the corresponding results in [17,25] for
it yielding a leakage-resilient pseudorandom function family. However, there are clear differences between
the sponge construction and the GGM construction and we do not see a way to make a direct connec-
tion between the security of the two. In fact our proof follows a fairly different strategy from the ones
presented in [17, 18, 25] – which all rely on a hybrid argument whereas ours does not. Moreover, for the
overall security of Slae we need this function family to additionally be leakage-resilient unpredictable,
which, as was discussed above, does not follow from it being leakage-resilient pseudorandom. We show
that this construction achieves both security notions when the absorption rate is set to a sufficiently
small value.

Another technical challenge that we face here is that we cannot employ the H-coefficient technique
which is commonly used to prove the security of various sponge-based constructions. Like most other
works on leakage resilience, we resort to arguments based on min-entropy and its chain rule in order to
deal with leakage. Unfortunately, such arguments do not combine well with the H-coefficient technique,
which precludes us from using it. In turn, this renders the security proof more challenging, as we have
to deal with an adversary that may choose its queries (not the leakage function) adaptively. In contrast,
the H-coefficient technique would automatically bypass this issue by reducing the security proof to a
counting problem.

A Concrete Sponge-Based AEAD Scheme (Slae). Finally, by instantiating the FGHF′ construc-
tion with the above sponge-based construction for F and F ′ and matching sponge-based constructions
for G and H we obtain Slae. We also present security proofs for the T-sponge instantiations of the
pseudorandom generator and the vector hash, which we were unable to readily find in the literature.
Slae is perhaps our most practical contribution – an entirely sponge-based leakage-resilient nonce-based
AEAD scheme with provable security guarantees that is simple to implement and reasonably efficient.
The efficiency of Slae could be further optimised using similar techniques to the ones described in [12]
for Isap. Furthermore our security proofs are conducted in the concrete security setting thereby allowing
practitioners to easily derive parameter estimates for their desired security level.

1.2 Related Work

To the best of our knowledge, the first authenticated encryption scheme claimed to be leakage-resilient
was RCB [3], but it was broken soon after [2].

A series of works [7, 8, 19, 23] have proposed a number of leakage-resilient symmetric encryption
schemes, message authentication codes, and authenticated encryption schemes. These constructions as-
sume that a subset of their components (block cipher instances) are leakage-free and that the leakage
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in the other components is simulatable, an assumption that is somewhat contentious [21, 26]. Based on
these assumptions, they show that the security of their encryption schemes reduces to the security of a
single-block variant of the same scheme. However, the security of the corresponding single-block schemes
remains an open question that is implicitly assumed to hold.

Abdalla, Beläıd, and Fouque [1] construct a symmetric encryption scheme that is non-adaptively
leakage-resilient against chosen-plaintext attacks. Interestingly, their scheme employs a rekeying function
that is not a leakage-resilient pseudorandom function. However their encryption scheme is not nonce-
based as it necessitates a source of randomness.

In independent and concurrent work [13] Dobraunig and Mennink analyse the leakage resilience of the
duplex sponge construction. While their leakage model is closer to ours, they prove something different.
Namely they show that the duplex is indistinguishable from an adjusted ideal extendible input function
(AIXIF) which is an ideal functionality incorporating leakage. In contrast we show that SlFunc is both
a leakage-resilient PRF (LPRF) and a leakage-resilient unpredictable function (LUF), and then leverage
this to construct a leakage-resilient AEAD scheme.

Other independent and concurrent work by Guo et al. [20] proposes an AEAD design, TETSPonge,
that combines a sponge construction with two tweakable block cipher instances. While their work and
ours share the goal of constructing leakage-resilient AEAD schemes, the two works adopt very different
approaches. Both the security definitions and the assumptions on which the security of the schemes
rely on are significantly different. One notable difference, is that the leakage resilience of TETSPonge
relies crucially on the tweakable block cipher instances being leak-free, presumably due to a hardened
implementation, whereas our treatment exploits and exposes the inherent leakage resilience of the sponge
construction.

1.3 Organization of the Paper

In Section 2 we review the basic concepts and security definitions that we require in the rest of the paper.
This is followed by a detailed description of Slae in Section 3. In Section 4 we cover the security analysis
of the generic FGHF′ construction. In Section 5 we cover the security of the sponge-based primitives
used to instantiate FGHF′ and thereby obtain Slae. We conclude in Section 6 with some remarks on
implementing Slae. The full details of the proofs can be found in the Appendix.

2 Preliminaries

We start by reviewing the basic tools and definitions that we require for our results. We begin by
establishing some notation. Some additional standard definitions appear in Appendix A.

2.1 Notation

For any non-negative integer n ∈ N we use [n] to denote the set {1, . . . , n}, where [n] = ∅ when n = 0.
For any two strings s1 and s2, |s1| denotes the size of s1 and s1 ‖ s2 denotes their concatenation. For a
positive integer k ≤ |s1|, we use bs1ck to denote the string obtained by truncating s1 to its leftmost k
bits. The empty string is denoted by ε, {0, 1}n denotes the set of bit strings of size n, and {0, 1}∗ denotes
the set of all strings of finite length. We write x� S to denote the process of uniformly sampling a value
from the finite set S and assigning it to x.

We make use of the code-based game-playing framework by Bellare and Rogaway [5], where the
interaction between a game and the adversary is implicit. In all games, the adversary is given as its input
the output of the initialize procedure, it has oracle access to the other procedures described in the game,
and its output is fed into the finalize procedure. The output of the finalize procedure is the output of the
game. For a game G and an adversary A, GA ⇒ y denotes the event that G outputs y when interacting
with A. Similarly, AG ⇒ x denotes the event that A outputs x when interacting with G. By convention
all boolean variables Bad are initialized to false, and for any table p[ ] its entries are all initialized to ⊥.
When lazy-sampling a random function with domain X and co-domain Y into a table p[ ], we use inset(p)
and outset(p) to denote respectively the sets of input and output values defined up to that point. That
is, inset(p) = {X : p[X] 6=⊥ ∧X ∈ X} and outset(p) = {p[X] : p[X] 6=⊥ ∧X ∈ X}. If G1 and G2 are
games and A is an adversary we define the corresponding adversarial advantage as

Adv
(
AG1 ,AG2

)
= Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1] ,
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and the corresponding game advantage as

Adv
(
GA
1 ,G

A
2

)
= Pr[GA

1 ⇒ true]− Pr[GA
2 ⇒ true] .

We operate in the random transformation model, where ρ is an idealised random transformation mapping
n-bit strings to n-bit strings. For any algorithm F that uses ρ as a subroutine, we use QF (q , µ) to denote
the number of calls to ρ required when evaluating F q times on a total of µ bits.

2.2 Syntax

Encryption. An authenticated encryption scheme with associated data Aead = (E ,D) is a pair of
efficient algorithms such that:

- The deterministic encryption algorithm E : K × N × A ×M → {0, 1}∗ takes as input a secret key
K , a nonce N , associated data A, and a message M to return a ciphertext C .

- The deterministic decryption algorithm D : K×N ×A×{0, 1}∗ →M∪{⊥} takes as input a secret
key K , a nonce N , associated data A, and a ciphertext C to return either a message in M or ⊥
indicating that the ciphertext is invalid.

Sets K, N , A, and M denote respectively the key space, the nonce space, the associated data space,
and the message space associated to the scheme. We assume throughout that E and D are never queried
on inputs outside of these sets. An authenticated encryption scheme is required to be correct and tidy.
Correctness requires that for all K ,N ,A,M if E(K ,N ,A,M ) = C then D(K ,N ,A,C ) = M . Analo-
gously, tidiness requires that for all K ,N ,A,C if D(K ,N ,A,C ) = M 6= ⊥ then E(K ,N ,A,M ) = C .
Furthermore we demand that encryption be length regular, i.e for all K ,N ,A,M it should hold that
|E(K ,N ,A,M )| is entirely determined by |N |, |A|, and |M |.

We will use the terms authenticated encryption scheme and symmetric encryption scheme to refer to
the analogously defined encryption scheme which does not admit associated data as part of its input.
For such schemes, A is implicitly set to the empty string in the security games.

Message Authentication. A message authentication code Mac = (T ,V) is a pair of efficient algorithms
with an associated key space K, domain X , and tag length t such that:

- The deterministic tagging algorithm T : K × X → {0, 1}t takes as input a key K and a value X to
return a tag T of size t.

- The deterministic verification algorithm V : K × X × {0, 1}t → {>,⊥} takes as input a key K , a
value X , and a tag T to return either > indicating a valid input or ⊥ otherwise.

We require that for any key K ∈ K and any admissible input X ∈ X , if T ← T (K ,X ), then
V(K ,X ,T ) = >. When X = {0, 1}∗ we end up with the usual MAC definition, however we will also
consider MACs over tuples of strings, e.g. X = {0, 1}∗ × {0, 1}∗ × {0, 1}∗. Such MACs where considered
in [22] and we follow suit in referring to such MACs as vector MACs.

We say that a MAC is canonical if it is implicitly defined by T , where V(K ,X ,T ) consists of running
T ′ ← T (K ,X ) and returning > if T ′ = T and ⊥ otherwise.

2.3 The Sponge Construction

The sponge construction is a versatile object that can be used to realise various cryptographic primitives.
Several variations of the sponge exist, Fig. 1 illustrates the plain version of the sponge as originally
introduced by Bertoni et al. [9]. We give here only a brief overview of its operation and the associated
nomenclature that we will use throughout this paper.

The sponge operates iteratively on its inputs through a transformation ρ, and generally includes an
absorbing phase and a squeezing phase. The transformation ρ maps strings of size n to strings of size n.
Associated to the sponge are two other values called the rate r and the capacity c, where n = r + c.
At any given iteration we refer to the output of the transformation as the state, which we denote by
S . Furthermore, we denote the leftmost r bits of S by S̄ and the remaining c bits by Ŝ . We will at
times refer to S̄ and Ŝ as the outer and inner parts of the state, respectively. In the absorbing phase
an input M is “absorbed” iteratively r bits at a time. At iteration i input Mi is absorbed by letting
Yi ← (Mi⊕ S̄i) ‖ Ŝi and setting Si+1 ← ρ(Yi). The initial value of S may generally be set to a constant, a
concatenation of a secret key and a constant, or by applying the transformation to either of these values.
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Fig. 1: Illustration of the plain sponge construction.

Output is produced from the sponge during the squeezing phase in one or more iterations, r bits at a
time. At iteration i output Zj is produced by setting Zj ← S̄i and Si+1 ← ρ(Si). The above variant is
normally referred to as the T-sponge, as it employs a fixed-size random transformation. An alternative
instantiation, known as the P-sponge, replaces this random transformation with a random permutation.

2.4 The Leakage Model

Our leakage model is based on leakage resilience as defined in [16]. This assumes that only computation
leaks, and in particular, that only the data that is accessed during computation can leak information. It
allows for continuous adaptive leakage, where in each query to a leakage oracle the adversary can specify
a leakage function from some predefined set L that it can chose adaptively based on prior outputs and
leakage. Throughout, we restrict ourselves to leakage functions that are deterministic and efficiently
computable. While our security definitions are formulated in this general setting, our main results will
be in the weaker granular non-adaptive leakage setting proposed in [17]. We view the non-adaptive
leakage setting as the special case where the leakage set L is restricted to be a singleton, fixed at the
start of the game. In granular leakage, a single time step is with respect to a single computation of
some underlying primitive, in our case, the transformation ρ. Correspondingly, in this case the adversary
specifies a vector of leakage functions and gets in return the aggregate leakage from the entire evaluation
of the higher-level construction. Note that in the granular setting the leakage sets for each iteration
can be distinct. Similarly, when studying the leakage resilience of composite constructions we have to
consider compositions of leakage functions. For instance, if construction C is composed of primitives A
and B with associated leakage sets LA and LB , then we associate to C the Cartesian product of the two
leakage sets, i.e. LC = LA × LB . The actual inputs that get fed to the leakage functions are implicitly
defined by the construction and its inputs, whereas the combined output is the aggregate output of all
function evaluations.

An analysis of sponge-based constructions compels us to consider leakage resilience in the random
transformation model. A similar setting, albeit in the random oracle model, was already considered by
Standaert et al. in [25]. A central question that arises in idealised settings like this is whether the leakage
function should be given access to the ideal primitive. As in [25], we will not give this access to the leakage
function. On the one hand, providing the leakage function with unlimited access to the random oracle
gives rise to artificial attacks, such as the “future computation attack” discussed in [25], that would not
arise in practice. On the other hand, depriving the leakage function from accessing the ideal primitive,
means that the leakage function cannot leak any bits of the ideal primitive’s output, which may seem
overly restrictive. However, for the case of sponge-based constructions this is less problematic because
from the adversary’s perspective the full output of a transformation call is completely determined by the
input to the next transformation call. As such, information about the output of one transformation call
can leak as part of the leakage in the next transformation call. Combined with the fact that the only
restriction that we will impose on the leakage function is to limit its output length, we think that this
leads to a fairly realistic leakage model.

We conclude our discussion on the leakage model by offering our interpretation of the significance
of leakage resilience security with respect to practical side channel attacks. One might object that we
model leakage by a deterministic function whose output is of a fixed bit-length whereas in practice the
leakage is noisy. However through the leakage function we are really trying to capture the maximum
amount of information that an adversary may obtain from evaluating the scheme on a single input.
Hence, the underlying assumption is that no matter how many times the scheme is run on the same
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input, in order to even out the noise, the information that the adversary can obtain is limited. Put
in more practical terms, this roughly translates to assuming that the scheme’s implementation resists
Simple Power Analysis (SPA). On the other hand, if the scheme is proven to be leakage-resilient then we
are guaranteed that an adversary cannot do much better even if it can observe and accumulate leakage
on multiple other (differing) inputs. Thus a proof of leakage resilience can be interpreted as saying that
if the scheme’s implementation is secure against SPA then, by the inherent properties of the scheme, it is
also secure against Differential Power Analysis (DPA). However, a proof of leakage resilience is of course
no guarantee that a scheme’s implementation will be secure against SPA.

2.5 Authenticated Encryption and Leakage Resilience

Recently, Barwell et al. [4] provided a definitional framework augmenting nonce-based authenticated
encryption with leakage. Their security notions capture the leakage resilience setting as defined in [16].
Furthermore, they prove composition theorems analogous to [22] that additionally take leakage into
account. Below we reproduce their security definitions and composition result which we will employ
in this work, with some minor adaptations. We recast their definitions in a style that admits code-
based proofs [5]. Unlike [4] we make no distinction between a scheme and its implementation since
we are interested in proving security for the actual scheme. When defining these security notions, we
only describe the game and the corresponding adversarial advantage. A scheme is understood to be
secure if the adversarial advantage is bounded by a sufficiently small value for all reasonably-resourced
adversaries. Our security theorems will then establish a bound on the adversarial advantage in terms of
the adversary’s resources, without drawing judgement as to what constitutes “small” and “reasonable”
since that is a rather subjective matter.

Classifying Adversarial Queries. As usual, the adversary has to be forbidden from making certain
queries in order to avoid trivial win conditions. Following the terminology of [4], if an adversary makes
a query (N ,A,M ) to an encryption oracle that returns C , then repeating this query to one of the
encryption oracles or querying (N ,A,C ) to one of the decryption oracles, is considered to be an equivalent
query. Note that any additional components of a query, such as the leakage function, are ignored for the
purpose of determining equivalence between two queries. If an adversary makes equivalent queries across
two oracles, it is said to forward that query from one oracle to the other. Note that the two oracles do
not need to be distinct, and thus forwarded queries include repeated queries to the same oracle.4

Let an encryption query refer to any query made to either a challenge encryption oracle or a leakage
encryption oracle. Then an adversary against an (authenticated) encryption scheme is said to be nonce
respecting if it never repeats a nonce in two distinct encryption queries.

Chosen-Plaintext Security with Leakage. Barwell et al. introduce an augmented variant of leakage-
resilient chosen-plaintext security called IND-aCPLA, that is required by their composition theorem. Here
the adversary is given access to three oracles. A challenge oracle that returns either a valid encryption
of a message or a random string of appropriate length. A leakage encryption oracle that, upon being
queried on a message and a leakage function, returns the corresponding ciphertext and the evaluated
leakage. The adversary is not allowed to forward queries between the two encryption oracles. In addition,
it has limited access to a leakage decryption oracle which returns the decryption of the queried ciphertext
and the leakage corresponding to the queried leakage function. However, it can only query this oracle on
inputs forwarded from the leakage encryption oracle. Thus the adversary can obtain decryption leakage,
but only on ciphertexts for which it already knows the corresponding message. Below is the formal
definition.

Definition 1 (IND-aCPLA Security). Let Se = (E ,D) be a symmetric encryption scheme and the
INDaCPLA game be as defined in Fig. 2. Then for any nonce-respecting adversary A that never forwards
queries to or from the Enc oracle, only makes queries to LDec that are forwarded from LEnc, and only
makes encryption and decryption queries containing leakage functions in the respective sets LE and LD,
its corresponding IND-aCPLA advantage is given by:

Advind-acpla
Se (A,LE ,LD) = 2 Pr

[
INDaCPLAA ⇒ true

]
− 1 .

4 This is not really required, since contrary to [4] the challenge oracles are not forgetful in our case. Nevertheless
we conform to the original definition of forwarded queries.
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Game INDaCPLA

procedure Initialize

b� {0, 1}; K � K
return

procedure Enc(N ,M )

C ← E(K ,N ,M )

if b = 0

if f [N ,M ] = ⊥

f [N ,M ] � {0, 1}|C |

return f [N ,M ]

else

return C

procedure LEnc(N ,M , L)

Λ← L(K ,N ,M )

C ← E(K ,N ,M )

return (C , Λ)

procedure LDec(N ,C , L)

Λ← L(K ,N ,C )

M ← D(K ,N ,C )

return (M , Λ)

procedure Finalize (b′)

return (b′ = b)

Fig. 2: Game used to define IND-aCPLA security.

Leakage-Resilient Function Families. We will distinguish among function families based on their
domain X . We will use the terms fixed-input-length function when X = {0, 1}l for some l ∈ N, variable-
input-length function when X = {0, 1}∗, and vector function when the domain is a cartesian product of
string sets, e.g. X = {0, 1}∗ × {0, 1}∗.

For such function families we will consider two security notions: leakage-resilient pseudorandom
functions (LPRF) and leakage-resilient unpredictable functions (LUF). While LPRF security is well-
established in the literature, LUF security is new. Below are the formal definitions. Note that no restric-
tion is made on the adversary’s queries in the LUF security definition.

Game LPRF

procedure Initialize

b� {0, 1}; K � K
return

procedure LF(X , L)

y ← F(K ,X )

Λ← L(K ,X )

return (y, Λ)

procedure F(X )

if b = 0

if f [X ] = ⊥
f [X ] � {0, 1}t

return f [X ]

else

return F(K ,X )

procedure Finalize (b′)

return (b′ = b)

Fig. 3: Game used to define LPRF security.

Definition 2 (LPRF Security). Let F : K×X → {0, 1}t be a function family over the domain X and
indexed by K, and the LPRF game be as defined in Fig. 3. Then for any adversary A that never forwards
queries to or from the F oracle and only queries leakage functions in the set LF , its corresponding LPRF
advantage is given by:

Advlprf
F (A,LF ) = 2 Pr

[
LPRFA ⇒ true

]
− 1 .

Definition 3 (LUF Security). Let F : K × X → {0, 1}t be a function family over the domain X and
indexed by K, and the LUF game be as defined in Fig. 4. Then for any adversary A its corresponding
LUF advantage is given by:

Advluf
F (A,LF ) = Pr

[
LUFA ⇒ true

]
.

8



Game LUF

procedure Initialize

win← false; K � K
return

procedure F(X )

S ←∪X
y ← F(K ,X )

return y

procedure Lkg(X , L)

Λ← L(K ,X )

return Λ

procedure Guess(X , y′)

y ← F(K ,X )

if X 6∈ S ∧ y = y′

win← true

return (y = y′)

procedure Finalize

return (win)

Fig. 4: Game used to define LUF security.

Unforgeability in the Presence of Leakage. For message authentication we will require the analogue
of strong unforgeability in the leakage setting (SUF-CMLA) put forth in [4]. This is essentially strong
unforgeability (SUF-CMA) formulated as a distinguishing game, with a challenge verification oracle and
additional tagging and verification oracles that leak. Below is the formal definition.

Game SUFCMLA

procedure Initialize

b� {0, 1}; K � K
return

procedure Vfy(X ,T )

if b = 0

return ⊥
else

v ← V(K ,X ,T )

return v

procedure LTag(X , L)

Λ← L(K ,X )

T ← T (K ,X )

return (T , Λ)

procedure LVfy(X ,T , L)

Λ← L(K ,X ,T )

v ← V(K ,X ,T )

return (v, Λ)

procedure Finalize (b′)

return (b′ = b)

Fig. 5: Game used to define SUF-CMLA security.

Definition 4 (SUF-CMLA Security). Let Mac = (T ,V) be a message authentication code and the
SUFCMLA game be as defined in Fig. 5. For any adversary A that never forwards queries from LTag to
Vfy, and only queries leakage functions to its tagging and verification oracles in the respective sets LT
and LV , its corresponding SUF-CMLA advantage is given by:

Advsuf-cmla
Mac (A,LT ,LV ) = 2 Pr

[
SUFCMLAA ⇒ true

]
− 1 .

Authenticated Encryption with Leakage. For an authenticated encryption scheme with associated
data our target will be LAE security, which is a natural extension of the classical security notion put
forth by Rogaway [24] to the leakage setting. This is defined formally below.

Definition 5 (LAE Security). Let Aead = (E ,D) be an authenticated encryption scheme with asso-
ciated data and the LAE game be as defined in Fig. 6. Then for any adversary A that never forwards
queries to or from the Enc and Dec oracles and only makes encryption and decryption queries containing
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Game LAE

procedure Initialize

b� {0, 1}; K � K
return

procedure Enc(N ,A,M )

C ← E(K ,N ,A,M )

if b = 0

if f [N ,A,M ] = ⊥

f [N ,A,M ] � {0, 1}|C |

return f [N ,A,M ]

else

return C

procedure Finalize (b′)

return (b′ = b)

procedure Dec(N ,A,C )

M ← D(K ,N ,A,C )

if b = 0

return ⊥
else

return M

procedure LEnc(N ,A,M , L)

Λ← L(K ,N ,A,M )

C ← E(K ,N ,A,M )

return (C , Λ)

procedure LDec(N ,A,C , L)

Λ← L(K ,N ,A,C )

M ← D(K ,N ,A,C )

return (M , Λ)

Fig. 6: Game used to define LAE security.

leakage functions in the respective sets LAE and LV D, its corresponding LAE advantage is given by:

Advlae
Aead (A,LAE ,LV D) = 2 Pr

[
LAEA ⇒ true

]
− 1 .

Generic Composition in the Leakage Setting. The N2 construction was introduced in [22] and
is depicted pictorially in Fig. 7. In [4] Barwell et al. prove a composition theorem for this construction
that holds in the leakage setting. We will make use of this theorem and for completeness we reproduce
it below, adapted to the random transformation model.

E

T

KE

KAN

C

T

M

A

Fig. 7: Graphical representation of the N2 construction.

Theorem 1 (LAE Security of the N2 Construction [4]). Let Se = (E ,D) be a symmetric encryption
scheme with associated leakage sets (LE ,LD) and Mac = (T ,V) be a MAC with associated leakage sets
(LT ,LV ). Further let N2 be the composition of Se and Mac described in Fig. 7, with associated leakage
sets (LAE ,LV D) where LAE = LE×LT and LV D = LD×LV . Then for any LAE adversary Aae against
N2 there exist adversaries Ase, Aprf , and Amac such that:

Advlae
N2 (Aae,LAE ,LV D) ≤ Advind-acpla

Se (Ase,LE ,LD)

+ Advlprf
T (Aprf ,LT ) + 2Advsuf-cmla

Mac (Amac,LT ,LV ) .
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The resources of the above adversaries are quantified as follows. Let q and µ be such that Aae makes
at most q queries to any of its oracles Enc, Dec, LEnc, and LDec, up to a total of µ bits for each oracle.
Further let qρ denote the number of queries that Aae makes to ρ. Then Ase queries each of Enc, LEnc,
and LDec at most q times up to a total of µ bits, and queries ρ at most QT (2q , 2µ)+QV(q , µ)+qρ times.
As for Alprf , it makes at most q and 2q queries to F and LF, totalling µ and 2µ bits respectively, and
QE(q , µ) + QD(q , µ) + qρ queries to ρ. Finally, Amac queries each its oracles Vfy, LTag, and LVfy at most
2q times, totalling 2µ bits in each case, and queries its ρ oracle QE(2q , 2µ) + QD(q , µ) + qρ times.

3 Slae: A Sponge-Based LAE Construction

Slae, pronounced “sleigh”, is a Sponge-based non-adaptive Leakage-resilient AEAD scheme. It is based
on, and is closely related to, a prior sponge-based AEAD scheme called Isap [12]. Isap is a nonce-based
AEAD scheme intended to inherently resist side-channel attacks while simultaneously fitting the well-
established syntax of AEAD schemes. More specifically, it claims security against Differential Power
Analysis (DPA) by employing a rekeying mechanism. An important challenge that Isap overcomes, is
to avoid decrypting distinct ciphertexts under the same key without maintaining a state. Furthermore,
as noted by Isap’s designers, the sponge construction seems markedly well-suited to protect against
side-channels. Typically, the sponge employs a large state that is continually evolving, which intuitively
endows it with an intrinsic resilience to information leakage. Thus, in contrast to other designs, Isap
potentially offers a fairly efficient LAE solution that can be instantiated with off-the-shelf primitives.
However, as we already noted, Isap’s biggest limitation is that its design is not backed by any formal
security analysis, not even in the absence of leakage.

Isap is composed of a symmetric encryption scheme IsapEnc and a MAC IsapMac combined ac-
cording to the N2 construction. These components were conceived by augmenting established sponge
constructs with a rekeying function. In particular the design rationale behind IsapMac is to augment
a sponge-based suffix MAC with a rekeying function. The rekeying is such that the key fed into the
suffix MAC itself depends on the inputs being authenticated and a master authentication key. Similarly
IsapEnc is a standard sponge-based encryption scheme whose key is derived from a master encryption
key and the nonce. Throughout, the rekeying function is realised from the sponge by setting the ab-
sorption rate to be one. Intuitively, Isap’s resistance to DPA comes from the fact that encryption and
authentication never use the same key more than once, and the slow absorption rate employed in the
rekeying function. Both of these factors limit the so-called data complexity of computations involving
secret values, which in turn encumbers DPA attacks. See [12] for more details on Isap.

Slae retains the main structure of Isap, as well as its benefits, but it includes some changes and
restrictions that facilitate its security analysis. While the majority of these differences are conceptual,
they are substantial enough, however, to invalidate any claim that our security proof applies to Isap.
The design of Slae can be understood across three different levels of abstraction. At the highest level,
like Isap, it is the N2 composition of a symmetric encryption scheme SlEnc and a MAC SlMac.
At the second abstraction level, SlMac and SlEnc can be viewed in terms of smaller components.
Specifically, we view SlMac as combining a collision-resistant vector hash function H and a fixed-input-
length function F ′, and we decompose SlEnc into a fixed-input-length function F and a pseudorandom
generator with variable output length G. Indeed this view corresponds to our generic construction of a
non-adaptively leakage-resilient AEAD scheme which we refer to as the FGHF′ construction.

Note that there is no explicit idea of rekeying in the FGHF′ construction. The only leakage-resilient
primitives are F and F ′. For security we will require both to be LPRF secure and F ′ to additionally
be LUF secure. Thus LAE schemes are easy to construct once we have such primitives. Moreover, F
is invoked once for encryption, and likewise F ′ is invoked once for authentication, irrespective of the
message length. Slae is obtained by instantiating the four components in the FGHF′ construction with
T-sponges. This is the third level view. While the design rationale behind the FGHF′ construction is
quite distinct from that of Isap, once instantiated, Slae and Isap suddenly look very similar.

We now describe Slae in more detail and then elaborate on the differences between Slae and Isap
in Section 3.4.

3.1 High-Level View of Slae

As already noted, Slae = (Slae-E ,Slae-D) is a nonce-based AEAD scheme composed from a nonce-
based symmetric encryption scheme SlEnc = (SlEnc-E ,SlEnc-D) and a MAC SlMac = (SlMac-T ,
SlMac-V). These are combined according to the N2 composition, where the key is split into an encryption
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key KE and an authentication key KA. During encryption, SlEnc-E takes the nonce, message, and key
KE to return a ciphertext which is then fed together with the nonce, associated data, and key KA, to
SlMac-T to produce a tag which is then appended onto the ciphertext. Decryption proceeds by reversing
these operations in a verify-then-decrypt manner, whereby ciphertext decryption using SlEnc-D proceeds
only if tag verification under SlMac-V was successful. The pseudocode for this composition is described
in Fig. 8.

Slae-E(K ,N ,A,M )

parse K as KE ‖ KA

C ← SlEnc-E(KE ,N ,M )

T ← SlMac-T (KA, (N ,A,C ))

C ← C ‖ T
return C

Slae-D(K ,N ,A,C )

parse K as KE ‖ KA

parse C as C ‖ T
v ← SlMac-V(KA, (N ,A,C ),T )

if v = >
M ← SlEnc-D(KE ,N ,C )

return M

else

return ⊥

Fig. 8: High-level description of Slae in terms of SlMac and SlEnc.

3.2 The SlMac Construction

A pseudocode description of SlMac = (SlMac-T ,SlMac-V) can be found in Fig. 9. It is a vector MAC
operating on the triple (N ,A,C ), where verification works by recomputing the tag for the given triple
and checking that it is identical to the given tag. As such, the core functionality of SlMac is captured in
the tagging algorithm SlMac-T , which is additionally depicted in Fig. 10. The tagging algorithm can be
understood as being composed of a (sponge-based) vector hash function compressing the triple (N ,A,C )
into a digest of size w bits, which is then fed to the unpredictable function SlFunc to produce a tag
of size t bits. The nonce N is required to be m bits long, whereas A and C can be of arbitrary length.
Accordingly, SlMac-T starts by padding both A and C so that their lengths are integer multiples of
the sponge rate r . Note that the padding function, lpad, always returns at least a single bit of padding
and is always applied, even if the input string is already an integer multiple of r .

To compute the hash digest H , the internal state is initialised to ρ(N ‖ IV ), where IV is a constant
string of size n −m, and the padded associated data A and the padded ciphertext C are then absorbed
block by block. An input separation mechanism is employed in order to demarcate the boundary between
A and C. This involves XORing the string 1‖0c−1 to the inner part of the state once A has been absorbed,
and ensures that distinct pairs (A,C) 6= (A,C) for which A‖C = A‖C do not result in the same hash
digest.

Once the hash digest is evaluated, it is fed into SlFunc to compute the final tag. This is also a
sponge-based construction for which a graphical representation appears in Fig. 11. Here the state is
initialised to ρ(KA ‖ IV ) and the hash digest is then absorbed at a reduced rate of rr bits. Once the
complete digest has been absorbed the left most t bits of the state are output as the tag.

3.3 The SlEnc Construction

This is the sponge-based symmetric encryption scheme SlEnc = (SlEnc-E ,SlEnc-D) described in
Fig. 12 and depicted in Fig. 13. It is easy to see that SlEnc-D(KE ,N , ·) = SlEnc-E(KE ,N , ·), and
consequently we only describe the operation of SlEnc-E . This algorithm can be viewed as being composed
of a pseudorandom function SlFunc, taking as input the pair (KE ,N ), and whose output is then fed
into a pseudorandom generator SPrg. The output of SPrg is then used to encrypt the message.

The nonce N is required to be m bits long and we do not require any additional padding for the
message. The evaluation of SlFunc proceeds by initialising the internal state to ρ(KE ‖ IV ), with a
constant IV of size n − k , and then absorbing the nonce at a reduced rate of rr bits. Once the nonce
is absorbed, the output state Sl+1 serves as the seed to the pseudorandom generator SPrg. A separate
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SlMac-T (KA, (N ,A,C ))

A← A ‖ lpad(A, r)

parse A as A1 ‖ . . . ‖ Au

st ∀i |Ai| = r

C ← C ‖ lpad(C , r)

parse C as C1 ‖ . . . ‖ Cv

st ∀i |Ci| = r

Y0 ← N ‖ IV
S1 ← ρ(Y0)

// Absorb Associated Data

for i in {1, . . . , u}

Yi ← (S̄i ⊕Ai) ‖ Ŝi

Si+1 ← ρ(Yi)

// Separate Inputs

Su+1 ← S̄u+1 ‖
(
Ŝu+1 ⊕ (1 ‖ 0c−1)

)
// Absorb Ciphertext

for i in {u+ 1, . . . , u+ v}

Yi ← (S̄i ⊕Ci−u) ‖ Ŝi

Si+1 ← ρ(Yi)

// Generate Tag

H ← bSu+v+1cw
T ← bSlFunc(KA,H )ct
return T

SlMac-V(KA, (N ,A,C ),T )

T ′ ← SlMac-T (KA, (N ,A,C ))

if T = T ′

return >
return ⊥

SlFunc(KA,H )

parse H as H1 ‖ . . . ‖ Hl

st ∀i |Hi| = rr

Y0 ← KA ‖ IV
S1 ← ρ(Y0)

for i in {1, . . . , l}

Yi ← (S̄i ⊕Hi) ‖ Ŝi

Si+1 ← ρ(Yi)

return bSl+1ct

lpad(A, r)

x← |A| mod r

return 1 ‖ 0r−x−1

Fig. 9: Pseudocode description of SlMac and SlFunc.
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pseudocode description of SPrg can be found in Fig. 14. The first ciphertext block is generated by
XORing the outer part of this state with the first message block. Afterwards the initial state is given
as input to the random transformation outputting a new state which is then used to derive the next
ciphertext block by simply XORing again the outer state with the next message block. This process is
repeated until the whole message has been processed. If the last message block is smaller than r bits, we
simply truncate the outer state to the required size and XOR both parts to obtain the last ciphertext
block.

SlEnc-E(KE ,N ,M )

parse N as N1 ‖ . . . ‖ Nl

st ∀i |Ni| = rr

parse M as M1 ‖ . . . ‖ Mv

st ∀i < v |Mi| = r and |Mv| ≤ r

// First Sponge Iteration

Y0 ← KE ‖ IV
S1 ← ρ(Y0)

// Absorb Nonce

for i in {1, . . . , l}

Yi ← (S̄i ⊕Ni) ‖ Ŝi

Si+1 ← ρ(Yi)

// Squeeze and Encrypt

for i in {l + 1, . . . , l + v − 1}
Ci−l ← S̄i ⊕Mi−l

Si+1 ← ρ(Si)

Cv ← bS̄l+vc|Mv| ⊕Mv

return C1 ‖ . . . ‖ Cv

SlEnc-D(KE ,N ,C )

parse N as N1 ‖ . . . ‖ Nl

st ∀i |Ni| = rr

parse C as C1 ‖ . . . ‖ Cv

st ∀i < v |Ci| = r and |Cv| ≤ r

// First Sponge Iteration

Y0 ← KE ‖ IV
S1 ← ρ(Y0)

// Absorb Nonce

for i in {1, . . . , l}

Yi ← (S̄i ⊕Ni) ‖ Ŝi

Si+1 ← ρ(Yi)

// Squeeze and Decrypt

for i in {l + 1, . . . , l + v − 1}
Mi−l ← S̄i ⊕ Ci−l

Si+1 ← ρ(Si)

Mv ← bS̄l+vc|Cv| ⊕ Cv

return M1 ‖ . . . ‖ Mv

Fig. 12: Pseudocode description of the SlEnc encryption scheme.
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Fig. 13: Graphical illustration of SlEnc-E .

3.4 Differences Between Slae and Isap

We have already described in passing some of the differences between Slae and Isap, but for clarity, we
summarise these distinctions below and discuss them in more detail.

The most prominent difference is that Slae is based on the T-sponge whereas Isap employs the
P-sponge. In particular the security proofs of Slae rely on treating ρ as a non-invertible transformation.
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SPrg(seed ,L)

v ←
⌈
L
r

⌉
S1 ← seed

for i in {1, . . . , v − 1}
Si+1 ← ρ(Si)

R ← S̄1 ‖ . . . ‖ S̄v

return bRcL

Fig. 14: Pseudocode description of SPrg.

Treating ρ as an invertible random permutation would add another layer of complexity to the security
analysis and we chose not to pursue this route at this point.

The description of Isap actually specifies three distinct permutations, each obtained from the same
round function but with a varying number of rounds. These are used in the different components of Isap
as a means of optimisation. Such heuristic optimisations could be employed in Slae as well, but in our
security analysis we instantiate Slae with the same random transformation throughout. Indeed this is
the more conservative assumption, since otherwise we would be treating these variants as being sampled
independently at random when in fact they are intimately related.

Another difference between Slae and Isap can be seen in their MAC components SlMac and
IsapMac. The design of IsapMac is based on combining a rekeying function IsapRk with a sponge-
based suffix MAC. In turn, IsapRk takes as input a hash of the MAC inputs. As a design optimisation,
it is then noted that this hash is already being computed as part of the suffix MAC, at which point it is
extracted, fed into IsapRk, and its output (the session key) is fed back into the last permutation of the
suffix MAC to yield the MAC tag. In contrast, in SlMac, the value corresponding to the session key in
IsapMac is output directly as the MAC tag.

Finally there are some differences in the way we set parameters in Slae as opposed to Isap. For
instance, Isap sets the size of the key and the nonce to be equal. On the other hand, our analysis
indicates that the limiting factor in the security of Slae is the key size. As such it makes sense to set the
key size k equal to the width of the sponge n while setting the nonce to be much smaller, say between
64 and 128 bits.

4 The Security of FGHF′

In this section we establish the security of the FGHF′ construction which is depicted in Fig. 15. This is
an abstraction of Slae, and proving its security brings us halfway towards proving the security of Slae.
At the same time, we believe the FGHF′ construction to be of independent interest as it serves as a
generic blueprint for constructing efficient AEAD schemes that are non-adaptively leakage-resilient.

The FGHF′ construction is a refinement of the N2 construction [22] which builds a nonce-based
AEAD scheme from a nonce-based symmetric encryption scheme and a vector MAC. Barwell et al. [4]
showed that the security of this construction extends to the setting of leakage resilience. Specifically they
showed that if the encryption component is IND-aCPLA secure and the vector MAC is both LPRF and
SUF-CMLA secure, then the composition is LAE secure. In turn the FGHF′ construction further breaks
down the encryption component, denoted by Se[F ,G], and the vector MAC component, denoted by
Mac[H,F ′], of N2 into smaller parts. Namely encryption is realised from a fixed-input-length leakage-
resilient PRF F and a standard PRG G, whereas the vector MAC is built from a vector hash function H,
and a fixed-input-length function F ′ that is both leakage-resilient pseudorandom and leakage-resilient
unpredictable.

Since FGHF′ is an instance of N2 we can apply the composition theorem of Barwell et al. [4], which
we reproduced and adapted to the random transformation model in Section 2.5. Moreover, since we can
view non-adaptive leakage as a special case of adaptive leakage where the leakage set is a singleton, the
theorem carries over to that setting which is what we are interested in here. Thus to prove that the
FGHF′ construction is LAE secure we only need to show that the encryption and MAC components
meet the requirements of Theorem 1.

As it turns out, we can realise an IND-aCPLA secure encryption directly from an LPRF and a
variable-output-length PRG. Here the PRG serves only to extend the range of the LPRF in order for
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Fig. 15: Graphical representation of the FGHF′ construction. It corresponds to the N2 composition of
Se[F ,G] = (E ,D) and Mac[H,F ′] = (T ,V) which are in turn composed of a fixed-input-length LPRF
F , a PRG G, a vector hash H, and a fixed-input-length function F ′ that is both a LUF and an LPRF.

the encryption scheme to accommodate variable-length messages. Surprisingly, a standard PRG without
any leakage resilience suffices. As for the vector MAC component it needs to be an LPRF over a vector
of strings and simultaneously satisfy SUF-CMLA security. Contrary to the leakage-free setting, the
latter property is not automatically implied by the former when a MAC is constructed from an LPRF
through the canonical construction. This is because the SUFCMLA game is more permissive than the
LPRF game with respect to the adversary’s queries. Namely, the adversary can forward queries from the
LVfy to Vfy, whereas in the LPRF game the adversary is not allowed to forward queries from LF to F.
This precludes reducing SUF-CMLA security to LPRF security due to our inability of simulating the
verification oracles via the respective LPRF oracles. Note that SUF-CMLA needs to be defined this way
for Theorem 1 to hold whereas lifting the restriction in the LPRF game would make it unsatisfiable.
We overcome this problem by noting that, in the non-adaptive leakage setting, unpredictability suffices
to achieve SUF-CMLA security, and at the same time we can allow the adversary to forward queries
between its leakage and challenge oracles while maintaining satisfiability. This leads to our notion of a
LUF which we prove to be sufficient to yield SUF-CMLA security. As we will see in the next section
we can construct fixed-input-length function families satisfying both notions rather easily from sponges.
Given such a function family F ′, we can turn it into the required vector MAC by composing it with a
collision-resistant vector hash function. Specifically we show that we can extend the domain of LPRFs
and LUFs, rather efficiently, by composing them with standard collision-resistant hash functions over
appropriate domains.

Combining the results in this section, leads to the LAE security of the FGHF′ construction against
non-adaptive leakage. We like this construction as it strikes a practical balance between security and
efficiency. By settling for non-adaptive leakage, which seems to suffice for many practical applications,
it only requires one call to each of the leakage-resilient primitives, F and F ′, per encryption query.
In this work we focused on Slae which is a specific sponge-based instantiation of FGHF′, but other
instantiations, possibly based on different techniques, are of course possible. Thus this construction
essentially reduces the problem of designing non-adaptively leakage-resilient AEAD schemes to that of
designing function families over small domains that are good LPRFs and LUFs, which conceptually is a
much simpler target.

4.1 Se[F ,G] is IND-aCPLA Secure

We begin by proving the security of the encryption component of FGHF′. Note that for this part security
holds in more general setting of adaptive leakage. Below is the formal theorem statement and its proof
is presented in Appendix B.1.

Theorem 2. Let Se[F ,G] be the encryption scheme depicted in Fig. 15, composed of the function family
F : K × {0, 1}m → {0, 1}n and the PRG G : {0, 1}n → {0, 1}∗ with respective associated leakage sets
LF and LG. Then for any IND-aCPLA adversary Ase against Se[F ,G] and associated leakage sets
LE = LD = LF × LG, there exist an LPRF adversary Alprf against F and a PRG adversary Aprg
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against G such that:

Advind-acpla
Se[F,G] (Ase,LE ,LD) ≤ 2 Advlprf

F (Alprf ,LF ) + 2 Advprg
G (Aprg) .

Let q and µ be such that Ase makes at most q queries totalling µ bits to each of its oracles Enc, LEnc,
and LDec, and let qρ denote the number of queries it makes to ρ. Then Alprf makes at most q and 2q
queries to its oracles F and LF, totalling qm and 2qm, respectively, and at most QG(2q , 2µ) + qρ to ρ. As
for Aprg, it makes at most q queries to its oracle G totalling µ bits and QF (2q , 2qm) + QG(2q , 2µ) + qρ
queries to ρ.

4.2 Mac[H,F ′] is SUF-CMLA Secure

Next we reduce the SUF-CMLA security of Mac[H,F ′] to the LUF security of F ′ and the collision
resistance of H. Towards this end, we first show that any LUF F̂ over domain X yields a SUF-CMLA
secure MAC with message space X via the canonical construction. Then we show that such a function F̂
can be constructed from a fixed-input-length LUF F ′ and a collision-resistant hash function with domain
X . The formal theorem statements now follow. Their proofs can be found in Appendices B.2 and B.3
respectively.

Theorem 3. Let F̂ : K×X → {0, 1}t be a function family with associated leakage set LF̂ , and let Mac[F̂ ]
be the corresponding canonical MAC with associated leakage sets LT , LV where LF̂ = LT = LV . Then

for any SUF-CMLA adversary Amac against Mac[F̂ ], there exists an adversary Aluf against F̂ such
that:

Advsuf-cmla
Mac[F̂ ]

(Amac,LT ,LV ) ≤ Advluf
F̂
(
Aluf ,LF̂

)
.

Let q and µ be such that Amac makes at most q queries totalling µ bits to each of its oracles Vfy,
LTag, and LVfy. Then Aluf makes at most q , 2q , and 2q queries to F, Lkg, and Guess, totalling µ, 2µ,
and 2µ bits, respectively.

Theorem 4. Let F ′ : K×{0, 1}w → {0, 1}t be a function family with associated leakage set LF ′ , and let
H : X → {0, 1}w be a hash function over any domain X . Further let their composition F̂ be defined as

F̂(K ,X ) = F ′(K ,H(X ))

where X ∈ X , K ∈ K, and LF̂ = LF ′ ×LH for any set of efficiently computable functions LH . Then for

any LUF adversary Aluf against F̂ , there exists a corresponding LUF adversary A′luf against F ′ and an
adversary Ahash against H such that:

Advluf
F̂
(
Aluf ,LF̂

)
≤ 2 Advcr

H (Ahash) + Advluf
F ′
(
A′luf ,LF ′

)
.

Let q and µ be such that Aluf makes at most q queries totalling µ bits to each of its oracles F, Lkg,
and Guess, and let qρ denote the number of queries it makes to ρ. Then A′luf makes at most q queries
totalling qw bits to each of its oracles F, Lkg, and Guess, and at most QH(3q , 3µ) + qρ queries to ρ. As
for Ahash, it requires at most QF ′(3q , 3qw) + QH(3q , 3µ) queries to ρ in order to simulate F ′ and H.

Combining both theorems, we obtain the following simple corollary reducing the SUF-CMLA security
of Mac[H,F ′] to that of its building blocks H and F ′.

Corollary 1. Let Mac[H,F ′] be the MAC component depicted in Fig. 15, composed of the hash func-
tion H and the function family F ′ with respective leakage sets LH and LF ′ . Then for any SUF-CMLA
adversary Amac against Mac[H,F ′] with associated leakage sets LT = LV = LF ′ × LH , there exists a
LUF adversary Aluf against F ′ and an adversary Ahash against H such that:

Advsuf-cmla
Mac[H,F ′] (Amac,LT ,LV ) ≤ 2 Advcr

H (Ahash) + Advluf
F ′ (Aluf ,LF ′) .

Suppose Amac makes at most q queries totalling at most µ bits to each of its oracles Vfy, LTag, and LVfy,
and qρ to ρ. Then Aluf makes at most 2q queries totalling at most 2qw bits to each of the oracles in the
LUF game, and QH(6q , 6µ) + qρ queries to ρ. As for Ahash it needs at most QF ′(6q , 6qw) + QH(6q , 6µ)
queries to ρ to simulate F ′ and H.
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4.3 Mac[H,F ′] is LPRF Secure

The final piece needed to apply Theorem 1 is to show that Mac[H,F ′], or rather its tagging algorithm
T [H,F ′], is a leakage-resilient PRF. Since by assumption F ′ is already an LPRF, this result is analogous
to Theorem 4 in that it provides us a with simple technique for extending the domain of an LPRF. The
proof can be found in Appendix B.4.

Theorem 5. Let F ′ : K×{0, 1}w → {0, 1}t be a function family with associated leakage set LF ′ , and let
H : X → {0, 1}w be a hash function over the domain X . Further let their composition F̂ be defined as

F̂(K ,X ) = F ′(K ,H(X ))

where X ∈ X , K ∈ K, and LF̂ = LF ′ ×LH for any set of efficiently computable functions LH . Then for

any LPRF adversary Alprf against F̂ , there exists a corresponding LPRF adversary A′lprf against F ′
and an adversary Ahash against H such that:

Advlprf

F̂

(
Alprf ,LF̂

)
≤ 2 Advcr

H (Ahash) + Advlprf
F ′
(
A′lprf ,LF ′

)
.

Let q and µ be such that Alprf makes at most q queries totalling µ bits to each of its oracles F and LF,
and let qρ denote the number of queries it makes to ρ. Then A′lprf makes at most q queries totalling qw
bits to each of its oracles F and LF, and at most QH(2q , 2µ) + qρ queries to ρ. As for Ahash, it requires
at most QF ′(2q , 2qw) + QH(2q , 2µ) queries to ρ in order to simulate F ′ and H.

4.4 The FGHF′ Composition Theorem

Collecting the results from this section and combining it with the N2 composition theorem we get the
following composition theorem for the FGHF′ construction.

Theorem 6 (LAE Security of the FGHF′ Construction). Let F be a fixed-input-length LPRF, G
a PRG, H a vector hash function, and F ′ be a fixed-input-length function that is both an LUF and an
LPRF with associated leakage sets LF , LG, LH , and LF ′ , respectively. Let FGHF′ be the composition of
F , G, H, and F ′ with associated leakage sets LAE = LV D = LF × LG × LH × LF ′ . Then for any LAE
adversary Aae against FGHF′ there exist adversaries Alprf , A′lprf , Aprg, Ahash, and Aluf such that:

Advlae
FGHF′ (Aae,LAE ,LV D) ≤ 2 Advlprf

F (Alprf ,LF ) + 2 Advlprf
F ′
(
A′lprf ,LF ′

)
+ 2 Advprg

G (Aprg) + 6 Advcr
H (Ahash)

+ 2 Advluf
F ′ (Aluf ,LF ′) .

Now suppose Aae makes at most q queries totalling at most µ bits to each of its Enc, LEnc, Dec, and LDec

oracles, and let qρ denote its number of queries to ρ. Then, Alprf makes at most 2q queries totalling 2qm
bits to each of its oracles F and LF, and at most 2QH(2q , 2µ) + 2QF ′(2q , 2qw) + QG(2q , 2µ) queries to ρ.
Similarly, A′lprf makes at most 2q queries totalling 2qw bits to each of its oracles F and LF, and at most
2QF (q , qm) + 2QG(q , µ) + QH(4q , 4µ) queries to ρ. Aluf makes at most 4q queries, totalling 4qw bits to
each of its oracles F and Lkg, and at most 2QF (2q , 2qm)+2QG(2q , 2µ)+ QH(12q , 12µ) to ρ. As for Aprg,
it makes at most q queries, totalling µ bits, to its oracle G and at most 2QH(2q , 2µ) + 2QF ′(2q , 2qw) +
QF (2q , 2qm) + QG(2q , 2µ) queries to ρ. Finally, Ahash requires at most 2QF (2q , 2qm) + 2QG(2q , 2µ) +
QF ′(12q , 12qw) + QH(12q , 12µ) queries to ρ.

5 Security of Sponge-Based Primitives

We now turn our attention to instantiating the constituent blocks of the FGHF′ construction using
sponge-based primitives. Specifically we prove the security of the vector hash function SvHash, the
pseudorandom generator SPrg, and the leakage-resilient function family SlFunc for instantiating both
F and F ′. All primitives are based on the T-sponge and this particular instantiation of the FGHF′

construction gives rise to Slae. The most interesting results are Theorems 7 and 8 which substantiate
our claim that sponges offer an inherent resistance to non-adaptive leakage. Informally these two theorems
state that by using a reduced absorption rate (e.g. rr = 1), the impact of leakage on security can be
limited to λ2rr . In particular, note that the aggregate security loss is independent of the number of
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queries, meaning that the effect of leakage cannot be amplified by repeated use. While sponge-based
hash functions and pseudorandom generators have been studied quite extensively, SvHash and SPrg
are non-standard constructions. Firstly, they are based on a transformation rather than a permutation
which is not common in the literature. Secondly, unlike other constructions SPrg treats the whole initial
state as the seed, and SvHash takes a triple of strings as its input. Thus while not particularly novel,
we include their security proofs for completeness.

5.1 Revised Security Bounds

The security bounds presented in the proceedings version of this paper [11] were overly optimistic, and
in fact, incorrect. This was pointed out to us by Bart Mennink and Krzysztof Pietrzak. The error was
due to a wrong enumeration of the support when applying Lemma 1 in the proofs.

5.2 A Sponge-Based Leakage-Resilient Function Family

Although LPRF and LUF security are incomparable notions, it is still possible to meet both notions
simultaneously through a single primitive. Indeed the FGHF′ construction requires that such a primitive
exist since F ′ is required to satisfy both security notions. We now show that the SlFunc construction
is well-suited for this role, and in fact that it can be used to instantiate both the F and F ′ components
– as is the case in Slae. Moreover, the most extensively studied leakage-resilient object is that of a
pseudorandom function due to its versatility in several potential applications. SlFunc yields a practical
construction of this primitive against non-adaptive leakage and as such we think it may be of independent
interest. The security of SlFunc is stated formally in the following two theorems. Their proofs can be
found in Sections C.1 and C.2 of the Appendix.

Theorem 7. Let SlFunc be the function family described in Fig. 9 taking as input strings of size (l ·rr)
bits and returning t-bit strings. Then for any LPRF adversary A against SlFunc and any vector of
leakage functions [L0, . . . , Ll ] where each component maps n bits to λ bits such that Lλ = {[L0, . . . , Ll ]},
it holds that:

Advlprf
SlFunc (A,Lλ) ≤ qT (qT + 2) + (qF + qLF)qρ

2n−rr−1
+

2qρ
2k−λ2rr

+
2lqFqρ
2n−λ2rr

.

In the above qρ, qF, and qLF denote respectively the number of queries A makes to its oracles ρ, F,
and LF and qT = (l + 1)(qLF + qF) + qρ. Moreover it is required that qρ + l(qF + qLF) ≤ 2k−1 and
(2rr )qρ + l(qF + qLF) ≤ 2n−1.

The next Theorem shows that SlFunc is a good LUF. Its proof bears some similarity to that of
Theorem 7 as it uses similar ideas. However one important difference lies in the leakage model that is
used in this theorem. Since the Lkg oracle returns only the leakage and no output, we add here an extra
leakage function that returns the leakage on the output of SlFunc. In the LPRF case this was not
required since in that game the leakage oracle returns the full output anyway.

Theorem 8. Let SlFunc be the function family described in Fig. 9 taking as input strings of size
(l · rr) bits and returning t-bit long strings. Then for any LUF adversary A against SlFunc, and
any vector of leakage functions [L0, . . . , Ll+1] where each component maps n bits to λ bits and letting
Lλ = {[L0, . . . , Ll+1]}, it holds that:

Advluf
SlFunc (A,Lλ) ≤ qT (qT + 2)

2n−rr
+

2qρ
2k−λ2rr

+
2lqLkgqρ
2n−λ2rr

+
qGuess

2t−λ−1
.

In the above qρ, qF, qLkg and qGuess denote respectively the number of queries A makes to its oracles ρ,
F, Lkg, and Guess and qT = (l + 1)(qF + qLkg + qGuess) + qρ. Moreover it is required that the following
conditions be satisfied qρ + (l + 1)(qF + qLkg + qGuess) ≤ 2k−1, (2rr )qρ + (l + 1)(qF + qLkg + qGuess) ≤ 2n−1,
and qGuess + (l + 1)(qF + qLkg + qGuess) ≤ 2n−1 .

5.3 The Security of SPrg

As explained in Section 3.3, SlEnc can be decomposed into the cascade of SlFunc and SPrg, matching
the encryption component of the FGHF′ construction. A pseudocode description of the variable-output-
length pseudorandom generator SPrg is given in Fig. 14. Decomposing SlEnc this way requires us
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to treat all of SPrg’s initial state as the seed, which deviates from the more conventional ways of
constructing sponge-based pseudorandom generators. Moreover we consider a security definition which
allows the adversary to make multiple queries to the PRG, each with differing output lengths.

The security of SPrg is stated formally in Theorem 9. Its proof follows from a standard hybrid
argument and can be found in Appendix C.3.

Theorem 9. Let SPrg be the pseudorandom generator described in Fig. 14. Then for any PRG adver-
sary A, it holds that:

Advprg
SPrg (A) ≤ vqGqρ

2c − qρ
+
vqρqG + v2q2

G

2n
+

q2
G

2n
.

In the above, A makes at most qρ queries to the random transformation ρ and qG queries to the challenge
oracle G. Moreover, v =

⌈
Lmax

r

⌉
, where Lmax is an upper bound on the adversary’s inputs to G.

5.4 A Sponge-Based Vector Hash Function

The final building block is the sponge-based vector hash function SvHash which is graphically repre-
sented in Fig. 10. It takes as input a triple of strings, namely a nonce, associated data and a ciphertext
to return a string digest. A salient feature of this construction is the xoring of 1 ‖ 0c−1 into the inner
state in order to separate the (padded) associated data from the (padded) ciphertext. We prove the
security of SvHash in a modular fashion, by first reducing its security to that of a plain hash function
taking a single input and then prove the collision-resistance of this latter construction in the random
transformation model. The collision-resistance of SvHash is stated formally in the following theorem,
and the full proof details can be found in Appendix C.4.

Theorem 10. Let SvHash be the vector hash function described in Fig. 10. Then for any adversary A

making q queries to ρ, it holds that:

Advcr
SvHash (A) ≤ q(q − 1)

2w+1
+

q(q + 2)

2c−1
.

5.5 Concrete Security of Slae

A bound for the security of Slae is obtained by directly combining the FGHF′ composition theorem
(Theorem 6) with Theorems 7 –10. It then only remains to derive concrete bounds for the expressions
QF ,QG ,QH,QF ′ for the specific case of Slae. Assuming a nonce size of m bits and that the output of
H is w bits long, the following expressions are easily derived from the algorithm definitions. Namely, we
have that:

QF (q , qm) = q

⌈
m + 1

rr

⌉
QF ′(q , qw) = q

⌈
w + 1

rr

⌉

QG(q , µ) =
⌈µ

r

⌉
QH(q , µ) =

⌈µ
r

⌉
+ 3q .

6 Concluding Remarks and Implementation Aspects

In this work we proposed the FGHF′ construction as a template for constructing non-adaptively leakage-
resilient AEAD schemes from relatively simpler primitives – requiring only two calls to the leakage-
resilient functions per encryption or decryption call. We then presented Slae as a sponge-based instan-
tiation of this construction, offering good performance and simplicity. Our security analysis shows that
if the absorption rate is set sufficiently low, the transformation sponge yields a leakage-resilient func-
tion with the desired properties. However some care is needed in interpreting these results. Like most
treatments of leakage resilience we assume that the leakage per evaluation is limited and does not drain
the entropy in the secret state. Thus it is implicitly assumed that an implementation is good enough
to withstand basic side-channel attacks like Simple Power Analysis (SPA) attacks. The benefit of our
leakage-resilience security proof is that resistance to basic attacks automatically translates to resistance
against more sophisticated attacks like Differential Power Analysis (DPA).
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In the FGHF′ construction and Slae, authenticity is verified by recomputing the MAC tag and
testing for equality between the recomputed tag and the one included in the ciphertext. While our
leakage model accounts for the leakage that may take place during the tag recomputation, equality
testing is assumed to be leak-free. Thus any implementation of Slae (or any other realisation of the
FGHF′ construction) needs to ensure that equality testing does not leak, or take additional measures,
such as masking, to protect against leakage from this component.

Finally the security of Slae relies on it being instantiated with a non-invertible transformation rather
than a permutation. On the other hand, most practical schemes employ permutations, such as Keccak-p
and Xoodoo-p. While in this work we did not specify any concrete transformation, a natural candidate
is to use ρ(x) = p(x) ⊕ x for p ∈ {Keccak-p,Xoodoo-p}. Although this construction is known to be
differentiable from a random transformation when given access to p, this should not preclude it from
being a suitable candidate for instantiating constructions in the random transformation model. Indeed,
Keccak-p and Xoodoo-p are also differentiable from a random permutation when given access to their
underlying building blocks.
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A Additional Preliminary Material

A.1 Standard Cryptographic Primitives

We make use of the following definition of a pseudorandom generator. Note that our syntax defines a
pseudorandom generator with variable output length, where the output length (in bits) is specified as
part of the input. In addition, in our security definition we allow the adversary to make multiple queries
to the challenge oracle G.

Definition 6 (Pseudorandom Generators). Let G : S × N → {0, 1}∗ be a pseudorandom generator
with an associated seed space S, and let the PRG game be as defined in Fig. 16. Then for any adversary
A, its corresponding PRG advantage is given by:

Advprg
G (A) = 2 Pr

[
PRGA ⇒ true

]
− 1 .

We define collision-resistant hash functions over a generic domain X . Letting X = {0, 1}∗ results in
the usual syntax but we can also, for instance, model a vector hash function over a triple of strings by
setting X = {0, 1}∗×{0, 1}∗×{0, 1}∗. For simplicity we only consider the random transformation model.

Definition 7 (Collision-Resistant Hash Functions). Let H : X → {0, 1}w be a hash function con-
structed from a random transformation ρ, with domain X and output length w. Then for any adversary
A with oracle access to ρ, its corresponding advantage is given by:

Advcr
H (A) = 2 Pr[(X0, X1)← Aρ : H(X0) = H(X1) ∧X0 6= X1 ∧X0, X1 ∈ X ] .
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Game PRG

procedure Initialize

b� {0, 1}
return

procedure G(L)

if b = 0

R � {0, 1}L

return R

else

seed � S
R ← G(seed ,L)

return R

procedure Finalize (b′)

return (b′ = b)

Fig. 16: Game used to define PRG security.

A.2 Min-Entropy

Below are some definitions and results on min-entropy that we will need in in some of the proofs.

Definition 8. Let X, Y, and Z be random variables. The average-case guessing probability of X condi-
tioned on Y and Z = z is given by

GP(X |Y,Z = z) := Ey←Y

[
max
x

Pr[X = x |Y = y ∧ Z = z ]
]
.

The average-case min-entropy of X conditioned on Y and Z = z is defined to be:

H∞ (X |Y,Z = z ) := − log(GP(X |Y,Z = z)) .

Lemma 1 ([14]). Let X, Y, and Z be random variables such that the support of Y is bounded above by
2λ. Then

H∞ (X |Y,Z = z ) ≥ H∞ (X,Y |Z = z )− λ ≥ H∞ (X |Z = z )− λ .

B Security Proofs for Section 4

B.1 Proof of Theorem 2

We prove the theorem through the sequence of four games which are described in Fig. 17. The initialize
and finalize procedure as well as the leakage oracles are identical for all games, hence we only list them
once. Only the Enc oracle is changed in each game. Now, game G0 corresponds to the INDaCPLA game
instantiated with Se[F ,G], whereas game G3 is defined so that for any adversary its probability of winning
is exactly 1

2 .
It then follows that

Advind-acpla
Se[F,G] (Ase,LE ,LD) = 2 Adv

(
GAse
0 ,GAse

3

)
+ 2 Pr

[
GAse
3 ⇒ true

]
− 1

= 2

2∑
i=0

Adv
(
GAse
i ,GAse

i+1

)
.

We will bound the IND-aCPLA advantage of Ase by providing bounds on the distinguishing advantages
between subsequent games. We reduce the ability to distinguishing between games G0 and G1 to the
LPRF security of F , and that between games G1 and G2 to the PRG security of G. As for G2 and G3, we
will show that no adversary can distinguish between them, and therefore the corresponding advantage
term is also zero.

Let us begin by bounding the distinguishing advantage between game G0 and game G1. Recall that
G0 is the INDaCPLA game instantiated with Se[F ,G]. Game G1 is the same, except that the challenge
oracle samples seed at random instead of using the pseudorandom function F . We now construct an
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procedure Initialize

d� {0, 1}; K � K
return

procedure LEnc(N ,M , (LF , LG))

seed ← F(K ,N )

R ← G(seed , |M |)
C ← R ⊕M

ΛF ← LF (K ,N )

ΛG ← LG(seed ,M )

return (C , (ΛF , ΛG))

procedure LDec(N ,C , (LF , LG))

seed ← F(K ,N )

R ← G(seed , |C |)
M ← R ⊕ C

ΛF ← LF (K ,N )

ΛG ← LG(seed ,C )

return (M , (ΛF , ΛG))

procedure Enc(N ,M ) in G0 and G1

if d = 0

if f [N ,M ] = ⊥

f [N ,M ] � {0, 1}|M |

return f [N ,M ]

else

seed ← F(K ,N )

seed � {0, 1}n

R ← G(seed , |M |)
C ← R ⊕M

return C

procedure Finalize (d′)

return (d′ = d)

procedure Enc(N ,M ) in G2

if d = 0

if f [N ,M ] = ⊥

f [N ,M ] � {0, 1}|M |

return f [N ,M ]

else

R � {0, 1}|M |

C ← R ⊕M

return C

procedure Enc(N ,M ) in G3

if d = 0

C � {0, 1}|M |

return C

else

C � {0, 1}|M |

return C

Fig. 17: Games G0, G1, G2, and G3 used to prove Theorem 2. Game G1 contains the boxed code, G0

does not. Games G2 and G3 are identical to Game G1 except that oracle Enc is replaced with the one
described.

adversary Alprf against the LPRF security of F from any adversary Ase trying to distinguish between
games G0 and G1. Note that there will be two secret bits at play, b and d. The former is the one used
in the LPRF game (cf. Fig. 3) which Alprf is trying to guess. Depending on this bit, Alprf will simulate
either G0 or G1 to Ase. On the other hand, bit d is the secret bit sampled by Alprf when simulating
game G0 or G1 which Ase is trying to guess.

The adversary Alprf starts by sampling d at random and then proceeds as follows. For any leakage
query (N ,M , (LF , LG)) that Ase makes to LEnc, Alprf queries (N , LF ) to LF to obtain (seed , ΛF ) and
computes ΛG = LG(seed ,M ). It then computes the ciphertext C = G(seed , |M |) ⊕ M and forwards
(C , (ΛF , ΛG)) to Ase. Queries of the form (N ,C , (LF , LG)) which Ase makes to LDec are answered just
as queries to LEnc, except that the message M is obtained by XORing the ciphertext C to the output
of the PRG G and that LG takes C instead of M as input. For any challenge query (N ,M ) by Ase,
the behaviour of Alprf depends on the bit d. If it is equal to 0, it returns a random bit string of length
equal to the length of the message and records this bit string using the table f . If the bit d is equal to
1, Alprf queries N to its own challenge oracle F obtaining the seed seed for the pseudorandom generator
G. Subsequently, it computes C = G(seed , |M |)⊕M and sends C to Ase. Eventually, Ase outputs a bit
d′ to indicate whether it was in the ideal or in the real world. If Ase guessed correctly, i.e. d′ = d, Alprf
outputs b′ ← 0. Otherwise, Alprf outputs b′ ← 1.
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From its leakage oracle, Alprf obtains the leakage ΛF = LF (K ,N ) and the seed for the pseudorandom
generator. It then uses the seed to compute the ciphertext C or the message M together with the leakage
ΛG. When d = 0 (ideal world), Alprf can easily simulate the challenge oracle by sampling random
ciphertexts. However, when d = 1 (real world), Alprf uses its own challenge oracle to obtain the seed
for G. Then depending on the bit b, the seed will be the output of a pseudorandom function (b = 1)
or sampled randomly (b = 0). Since the games G0 and G1 only differ in how the seed for the PRG is
generated, depending on the value of b, Alprf provides Ase with a perfect simulation of either G0 or G1.

It remains to verify that Alprf is a valid LPRF adversary. By construction, as long as Ase queries
leakage functions from the permitted leakage set then so will Alprf . For any leakage query (N , ·, L =
(LF , ·)) to either LEnc or LDec by Ase, Alprf queries LF on (N , LF ). It remains to argue that Alprf does
not forward queries to or from its F oracle. Note that Alprf only makes queries to F to answer Ase’s
queries to Enc. Then since Ase must be nonce-respecting, it cannot reuse the same nonce across Enc and
LEnc. Moreover, all of its queries to LDec must be forwarded from LEnc. Thus the nonces between Enc

and the leakage oracles have to be disjoint and therefore Alprf ’s queries to F and LF will also be disjoint.
We are now ready to derive our first bound. From the foregoing discussion we have that

Adv
(
GAse
0 ,GAse

1

)
= Pr[GAse

0 ⇒ true]− Pr[GAse
1 ⇒ true]

≤ Pr[ALPRF
lprf ⇒ 0 | b = 1]− Pr[ALPRF

lprf ⇒ 0 | b = 0]

≤ Advlprf
F (Alprf ,LF ) .

Next, we bound the advantage in distinguishing G1 from G2. The only difference between these two
games is how R is generated, in G1 this is generated as G(seed) whereas in G2 it is sampled uniformly at
random. For any adversary Ase trying to distinguish between G1 and G2 we construct a PRG adversary
Aprg against G as follows. It starts by sampling a random key K for the PRF F and a random bit
d. For any query (N ,M , (LF , LG)) to LEnc that Ase makes, Aprg computes locally seed ← F(K ,N ),
R ← G(seed , |M |), and C ← R⊕M . It then computes ΛF ← LF (K ,N ) as well as ΛG ← LG(seed ,M ) and
returns (C , (ΛF , ΛG)) to Ase. Leakage queries to LDec are handled similarly, only XORing the ciphertext
to the output of the PRG G and feeding the ciphertext as input to LG. For any challenge query (N ,M )
by Ase, when d = 0 Aprg returns a random bit string of length equal to |M |. Otherwise, if d = 1 Aprg
queries its own challenge oracle G on |M | to obtain R and returns C ← R ⊕M to Ase. Then, when Ase
outputs a guess d′, Aprg outputs 0 if d′ = d and outputs 1 otherwise.

Now note that if b = 0 then Aprg provides Ase with simulation of G2 and if b = 1 it simulates G1.
However when b = 1, Aprg evaluates G both locally and through its oracle G on independently sampled
seeds. Since Ase cannot reuse the same nonce across queries to Enc and its leakage oracles, these two sets
of queries are always answered using independently-sampled seeds and its simulation of G2 is perfect.
We then have that

Adv
(
GAse
1 ,GAse

2

)
= Pr[GAse

1 ⇒ true]− Pr[GAse
2 ⇒ true]

≤ Pr[APRG
prg ⇒ 0 | b = 1]− Pr[APRG

prg ⇒ 0 | b = 0]

≤ Advprg
G (Aprg) .

We now conclude the proof by bounding the distinguishing advantage between the games G2 and
G3. These two games differ in two aspects. In the ideal world (d = 0), the former outputs a random bit
string using a table f while the latter forgetfully outputs a random bit string of the same size. However
as long as Ase is nonce-respecting it will not be able to distinguish these two cases since every output
will be freshly sampled. The other difference is how C is generated in the real world (d = 1). However
both methods yield identically distributed ciphertexts. Thus the two games are identical and therefore

Adv
(
GAse
2 ,GAse

3

)
= 0 .

Collecting all of the above bounds together yields

Advind-acpla
Se[F,G] (Ase,LE ,LD) ≤ 2 Advlprf

F (Alprf ,LF ) + 2 Advprg
G (Aprg) ,

which proves the theorem. ut
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B.2 Proof of Theorem 3

For any SUF-CMLA adversary Amac against Mac[F̂ ] we construct a LUF adversary Aluf against F̂ .
We proceed in two steps, we first bound the SUF-CMLA advantage of Amac by the probability of a
particular event occurring and then we bound this probability by the LUF advantage of Aluf . Let E be
the event that the Amac makes a query to Vfy which returns >. Then

Advsuf-cmla
Mac[F̂ ]

(Amac,LT ,LV ) = 2 Pr
[
SUFCMLAAmac ⇒ true

]
− 1

= 2 Pr
[
SUFCMLAAmac ⇒ true ∩ E

]
+ 2 Pr

[
SUFCMLAAmac ⇒ true ∩ E

]
− 1

≤ 2 Pr[E ] + 2 Pr
[
SUFCMLAAmac ⇒ true |E

]
− 1 .

Now, conditioned on E the Vfy oracle will always returns ⊥ irrespective of the value of b and hence the
probability of Amac winning is exactly one half. Thus the above can be re-written as

≤ 2 Pr[E ∩ b = 0] + 2 Pr[E ∩ b = 1] .

When b = 0 the Vfy oracle will always returns ⊥ and thus E simply cannot occur, i.e. the first term in
the above expression is zero. Thus

= 2 Pr[E | b = 1] Pr[b = 1]

= Pr[E | b = 1] .

We now bound this last probability by the LUF advantage of Aluf . By construction we have that
LT = LV = LF̂ . Then Aluf runs Amac and provides it with a simulation of the SUFCMLA game with
the bit b fixed to 1. Whenever Amac makes a query (X , L) to LTag, Aluf queries X to F and (X , L) to

Lkg to obtain respectively y = F̂(K ,X ) and Λ = L(K ,X ), and returns (y, Λ) back to Amac. Similarly if
Amac queries (X ,T , L) to its LVfy oracle, Aluf queries (X , L) to Lkg and (X ,T ) to Guess to obtain Λ
and v respectively, and returns (v, Λ) to Amac. Every query (X ,T ) that Amac makes to its Vfy oracle, is
forwarded by Aluf to its own Guess oracle and returns > to Amac if Guess returns true and ⊥ otherwise.

Recall that Aluf ’s queries to F are recorded in the set S, and it only wins the LUF game if it makes
a query to Guess which returns true where the corresponding X value is not contained in S. However
since Amac does not forward queries from LTag to Vfy, it is guaranteed that Aluf ’s queries to Guess are
not contained in S. It then follows that Aluf wins the LUF game whenever E occurs, and hence

Pr[E | b = 1] ≤ Advluf
F̂
(
Aluf ,LF̂

)
which proves the theorem. ut

B.3 Proof of Theorem 4

We prove the Theorem through the two games, G and G , as described in Fig. 18. Namely:

– Game G is the LUF game instantiated with F̂ and its associated leakage set LF̂ = LF ′ × LH , and
some additional bookkeeping to maintain the set Ω and test for the event Bad.

– Game G is identical to game G except that the winning condition is restricted to only hold if Bad
does not occur.

Moreover G and G are identical until Bad, and therefore by the game playing lemma we have that

Adv
(
GAluf , G

Aluf
)

= Pr[GAluf ⇒ true]− Pr[G
Aluf ⇒ true]

≤ Pr[Bad] .

Then, through some simple algebraic manipulation and substituting for the LUF advantage of F̂ we get

Advluf
F̂
(
Aluf ,LF̂

)
≤ 2 Pr[Bad] +

(
2 Pr[G

Aluf ⇒ true]− 1
)
. (1)
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Game G G

procedure Initialize

win← false; K � K
return

procedure F (X )

Z ← H(X )

Ω ←∪ (X ,Z )

if ∃(X ,Z ) ∈ Ω st X 6=X ∧ Z=Z

Bad ← true

S ←∪X
y ← F ′(K ,Z )

return y

procedure Finalize

return win ∧ ¬Bad

procedure Lkg(X , (LF ′ , LH))

ΛF ′ ← LF ′(K ,Z )

ΛH ← LH(X )

return Λ = (ΛF ′ , ΛH)

procedure Guess(X , y′)

Z ← H(X )

Ω ←∪ (X ,Z )

if ∃(X ,Z ) ∈ Ω st X 6=X ∧ Z=Z

Bad ← true

y ← F ′(K ,Z )

if X 6∈ S ∧ y = y′

win← true

return (y = y′)

Fig. 18: Games G and G used to prove Theorem 4. Game G includes the boxed code whereas G does
not.

We now bound the two terms on the right-hand side of the above inequality. We start by bounding the
probability that Aluf sets the flag Bad to true in game G. Towards this end we construct from Aluf
another adversary Ahash for breaking the collision resistance of H. The adversary Ahash samples a key
for F ′, runs Aluf and provides it with a simulation of G. Throughout the game it maintains the set Ω
and constantly checks for colliding pairs in this set. As soon as it finds a collision, i.e. Bad is set to true,
it halts and outputs this colliding pair. Clearly

Pr[Bad] ≤ Advcr
H (Ahash) . (2)

Now, to bound the second term of inequality (1), we construct from Aluf another adversary A′luf against

the LUF security of F ′. Specifically, A′luf runs Aluf and provides it with a simulation of the G game.
For any query that Aluf makes to any of its oracles which includes the value X , A′luf simply replaces
this value with H(X ) and forwards this query to its corresponding oracle and then passes the reply back
to Aluf . In the case of a leakage query, A′luf additionally evaluates LH(X ) locally and combines it with
the response it obtains from its oracle before forwarding it back to Aluf . By construction, the leakage
queries of A′luf will be in the permitted leakage set as long as Aluf ’s queries are. Moreover, whenever

Aluf wins the G game then A′luf also wins the LUF game with respect to F ′. This is because if Aluf
wins G then Bad must not have occurred, thus if the winning query (X , y′) is such that X 6∈ S then
H(X ) is also not contained in the corresponding set in the LUF game of A′luf . It then follows that(

2 Pr[G
Aluf ⇒ true]− 1

)
≤ Advluf

F ′
(
A′luf ,LF ′

)
. (3)

Combining inequalities (1), (2), and (3) yields the desired result. ut

B.4 Proof of Theorem 5

We prove the Theorem through the two games, G and G , described in Fig. 19. Namely:

– Game G is the LPRF game instantiated with F̂ and its associated leakage set LF̂ = LF ′ ×LH , and

some additional bookkeeping to maintain the sets Ω1 and Ω2 and test for events Bad1 and Bad2.
– Game G is identical to game G except that the F oracle returns the same output for any two inputs

which hash to the same value, even when d = 0, and the winning condition is restricted to only hold
if Bad1 does not occur.
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Game G G

procedure Initialize

d� {0, 1}; K � K
return

procedure LF(X , (LF ′ , LH))

Z ← H(X )

Ω1 ←∪ (X ,Z )

if ∃(X ,Z ) ∈ Ω2 st X 6=X ∧ Z=Z

Bad1 ← true

ΛF ′ ← LF ′(K ,Z )

ΛH ← LH(X )

y ← F ′(K ,Z )

return (y, (ΛF ′ , ΛH))

procedure Finalize

return (d′ = d) ∧ ¬Bad1

procedure F(X )

Z ← H(X )

Ω2 ←∪ (X ,Z )

if ∃(X ,Z ) ∈ Ω1 st X 6=X ∧ Z=Z

Bad1 ← true

if ∃(X ,Z ) ∈ Ω2 st X 6=X ∧ Z=Z

Bad2 ← true

f [X ]← f [X ]

if d = 0

if f [X ] = ⊥
f [X ] � {0, 1}t

return f [X ]

else

return F ′(K ,Z )

Fig. 19: Games G and G used to prove Theorem 5. Game G includes the boxed code whereas G does
not.

Moreover G and G are identical until Bad = Bad1 ∪ Bad2, and therefore by the game playing lemma we
have that

Adv
(
GAlprf , G

Alprf
)

= Pr[GAlprf ⇒ true]− Pr[G
Alprf ⇒ true]

≤ Pr[Bad] .

Then, through some simple algebraic manipulation and substituting for the LPRF advantage of F̂ we
get

Advlprf

F̂

(
Alprf ,LF̂

)
≤ 2 Pr[Bad1 ∪ Bad2] +

(
2 Pr[G

Alprf ⇒ true]− 1
)
. (4)

We now bound the two terms on the right-hand side of the above inequality. We start by bounding
the probability that Bad occurs, i.e. Alprf sets Bad1 or Bad2 to true in game G. Towards this end we
construct from Alprf another adversary Ahash for breaking the collision resistance of H. The adversary
Ahash samples a key for F ′, runs Alprf and provides it with a simulation of G. Throughout the game it
maintains the sets Ω1 and Ω2 and constantly checks for the conditions that set Bad1 or Bad2 to true.
When either of these conditions occur a collision has been found, at which point Ahash halts and outputs
the colliding pair. It then follows that

Pr[Bad1 ∪ Bad2] ≤ Advcr
H (Ahash) . (5)

Now, to bound the second term of inequality (4), we construct from Alprf another adversary A′lprf
against the LPRF security of F ′. Specifically, A′lprf runs Alprf and provides it with a simulation of the

G game. For any query that Alprf makes to either of its oracles with the value X , A′lprf simply replaces
this value with H(X ) and forwards this query to its corresponding oracle and then passes the reply back
to Alprf . In the case of a leakage query, A′lprf additionally evaluates LH(X ) locally and combines it

with the response it obtains from its oracle before forwarding it back to Alprf . Now, since in G any two
queries to F that hash to the same value will return the same output (irrespective of the value d) A′lprf ’s
simulation is perfect. The leakage queries of A′lprf will be in the permitted leakage set as long as Alprf ’s

queries are. Moreover, as long as Bad1 does not occur the queries of A′lprf to its F and LF oracles will be

disjoint as long as Alprf ’s queries are disjoint. Thus whenever Alprf wins game G , A′lprf will also win

28



the LPRF game with respect to F ′, because if Alprf wins G then Bad1 must not have occurred. It then
follows that (

2 Pr[G
Alprf ⇒ true]− 1

)
≤ Advlprf

F ′
(
A′lprf ,LF ′

)
. (6)

Combining inequalities (4), (5), and (6) yields the desired result. ut

C Security Proofs for Section 5

C.1 Proof of Theorem 7

Game G1

Initialize

K � {0, 1}k

procedure ρ(Z )

if p[Z ] = ⊥
p[Z ] � {0, 1}n

return p[Z ]

procedure F(X )

parse X as X1 ‖ . . . ‖ Xl ∀i |Xi| = rr

Y0 ← K ‖ IV
if p[Y0] = ⊥

p[Y0] � {0, 1}n

S1 ← p[Y0]

for i in {1, . . . , l}

Yi ← (S̄i ⊕Xi) ‖ Ŝi

if p[Yi] = ⊥
p[Yi] � {0, 1}n

Si+1 ← p[Yi]

return Sl+1

procedure LF(X , L0, . . . , Ll)

parse X as X1 ‖ . . . ‖ Xl ∀i |Xi| = rr

Y0 ← K ‖ IV
Λ← L0(Y0)

if p[Y0] = ⊥
p[Y0] � {0, 1}n

S1 ← p[Y0]

for i in {1, . . . , l}

Yi ← (S̄i ⊕Xi) ‖ Ŝi

Λ← Λ ‖ Li(Yi)

if p[Yi] = ⊥
p[Yi] � {0, 1}n

Si+1 ← p[Yi]

return (Sl+1, Λ)

Fig. 20: Game G1 used in the proof of Theorem 7.

We prove the theorem for the case where SlFunc takes inputs of fixed length (l ·rr) and returns outputs
of length t = n. The general case then follows by means of a simple reduction which truncates the output
of SlFunc to t bits. The proof proceeds by considering the following sequence of games.

G1 This game is described in Fig. 20. It is the LPRF game instantiated with SlFunc and the bit b set
to 1, i.e. F always returns real evaluations of SlFunc. Furthermore the adversary is also given oracle
access to the random transformation ρ which SlFunc depends on. This random transformation is
sampled lazily across all oracles and the corresponding values are stored in a global array p[ ]. All
entries of p[ ] are initialised to ⊥. Thus,

Pr[ALPRF ⇒ 1 | b = 1] = Pr[AG1 ⇒ 1] . (7)

G2 In this game, described in Fig. 21, we introduce three flags Bad12, Bad22, and Bad32 and evaluate the
last round of the F oracle in a different but equivalent way. Here the transformation used in the
last round of F is considered to be special and its values are stored in p∗[ ] instead. However, as we
lazy-sample p[ ] and p∗[ ] we ensure that they are aligned on common input values. When one array is
to be sampled on an input for which the other array has already been defined, then one of the three
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Bad2 flags will be set and the output for that array is copied from the one that has already been
defined. Note that in comparison to G1 the sampling of the transformation’s outputs is unaltered, we
are merely storing them across two arrays instead of one. Thus, the functionality of the game and
the distribution of its random variables is unchanged, and hence

Pr[AG2 ⇒ 1] = Pr[AG1 ⇒ 1] . (8)

G2 This game is the game described in Fig. 21 without the boxed code. By removing the boxed code
we no longer maintain consistency between p[ ] and p∗[ ] on common inputs. In particular, the last
round of F is now evaluated using an independent random transformation. Clearly, G2 and G2 are
identical until the event Bad12∪Bad

2
2∪Bad

3
2 occurs. Then, by the fundamental lemma of game-playing

it follows that:

Pr[AG2 ⇒ 1]− Pr[AG2 ⇒ 1] ≤ Pr[Bad12 ∪ Bad22 ∪ Bad32] .

Moreover, for events C and E such that Bad32 ⊆ C and Bad12 ⊆ E, we have that

≤ Pr[E ∪ Bad22 ∪ C] ,

≤ Pr[C] + Pr[E |C] + Pr[Bad22 |C,E] . (9)

We now define event C appropriately and bound the above three probabilities. Let qρ, qLF, and qF
denote the number of queries A makes to its oracles ρ, LF, and F, respectively. We can further assume,
without loss of generality, that A never repeats a query to any of its oracles.
If Bad32 is set A must have made two distinct queries, X to F and X ′ to LF, such that SlFunc(K ,X ) =
SlFunc(K ,X ′). Then, note that SlFunc(K ,X ) can be viewed as the sponge-based hash function
from Section 5.4 evaluated on input 0‖X with an initial state of K ‖ IV (instead of 0n) and capacity
n − rr . We will use this observation to bound the probability of event C (and Bad13) occurring, but
let us first define event C. Let HK‖IV be the variable-input-length hash function just described, then
C is the event that one of the following conditions is satisfied.
(i) A makes queries X and X ′ across F and LF such that HK‖IV (0 ‖ X ) = HK‖IV (0 ‖ X ′) and

X 6= X ′.

(ii) A makes queries X and X ′ across F and LF such that HK‖IV (0 ‖X ) = HK‖IV (0 ‖X ′′) for some
X ′′ that is a prefix of X ′ and |X ′′| < |X ′|.

(iii) A makes a query X to F or LF such that HK‖IV (0 ‖ X ′) = K ‖ IV for some X ′ that is a prefix
of X .

(iv) A makes queries X and X ′ across F and LF such that HK‖IV (0 ‖X ′′) = HK‖IV (0 ‖X ′′′), where
X ′′ is a prefix of X , X ′′′ is a prefix of X ′, X ′′ 6= ε 6= X ′′′, and X ′′ 6= X ′′′.

Note that Bad32 ⊆ C is implied by the first condition. Now for any adversary A that causes C, we
can construct an adversary B that finds a collision in HK‖IV . Specifically, B knows K and uses this
together with its access to ρ to simulate game G2 to A while constantly checking if event C has
occurred. Note that any of the sub-cases in C will directly enable B to produce a collision on HK‖IV .
We can therefore use the security bound derived in Section 5.4 for H since it applies to any initial
state that H is assigned, as long as it is fixed at the start of the game. Thus, applying inequality (49)
from Appendix C.4 while setting w = n and c′ = n − rr yields

Pr[Bad32] ≤ Pr[C] ≤ qT (qT + 2)

2n−rr
, (10)

where qT = (l + 1)(qLF + qF) + qρ.
We now define event E and bound Pr[E |C]. At any point in time, let VF and VLF denote the set
unions of intermediate values {Y1, . . . ,Yl} evaluated in F and LF respectively over all queries made
up to that point. Further let Ej be the event that the jth query Z that A makes to ρ is such that
Z = Y0 or Z ⊕ A ‖ 0n−rr ∈ VF for some A ∈ {0, 1}rr . Then E represents the union of events Ej for
j ∈ {1, . . . , qρ}. Note that Bad12 ⊆ E as required, and we also have that

Pr[E |C] ≤ Pr[E1 ∪ E2 ∪ . . . ∪ Eqρ |C]

= Pr[E1 |C] + Pr[E2 |E1, C] + . . .

+ Pr[Eqρ |E1, . . . , Eqρ−1, C] . (11)
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Games G2 ,G2

Initialize

K � {0, 1}k

procedure ρ(Z )

if p[Z ] = ⊥
p[Z ] � {0, 1}n

if Z ∈ inset(p∗)

Bad12 ← true

p[Z ]← p∗[Z ]

return p[Z ]

procedure F(X )

parse X as X1 ‖ . . . ‖ Xl ∀i |Xi| = rr

Y0 ← K ‖ IV
if p[Y0] = ⊥

p[Y0] � {0, 1}n

S1 ← p[Y0]

for i in {1, . . . , l − 1}

Yi ← (S̄i ⊕Xi) ‖ Ŝi

if p[Yi] = ⊥
p[Yi] � {0, 1}n

Si+1 ← p[Yi]

Yl ← (S̄l ⊕Xl) ‖ Ŝl

if p∗[Yl ] = ⊥
p∗[Yl ] � {0, 1}n

if Yl ∈ inset(p)

Bad22 ← true

p∗[Yl ]← p[Yl ]

Sl+1 ← p∗[Yl ]

return Sl+1

procedure LF(X , L0, . . . , Ll)

parse X as X1 ‖ . . . ‖ Xl ∀i |Xi| = rr

Y0 ← K ‖ IV
Λ← L0(Y0)

if S1 = ⊥
S1 � {0, 1}n

for i in {1, . . . , l}

Yi ← (S̄i ⊕Xi) ‖ Ŝi

Λ← Λ ‖ Li(Yi)

if p[Yi] = ⊥
p[Yi] � {0, 1}n

if i = l ∧Yi ∈ inset(p∗)

Bad32 ← true

p[Yl ]← p∗[Yl ]

Si+1 ← p[Yi]

return (Sl+1, Λ)

Fig. 21: Games G2 and G2 used in the proof of Theorem 7. Game G2 includes the boxed code whereas
G2 does not.
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Now as long as C does not occur no two queries will result in values Yi and Yi′ such that Yi = Yi′

and i 6= i′. Thus no state variable p[Yi] occurs in more than one position (when considering both F

and LF), meaning that no state variable is subject to more than one leakage function and that no
internal state variable is ever exposed as the output of F or LF. Moreover, as long as E does not
occur, the outputs of ρ will never expose the internal state variables of F and LF. Then, for i ≥ 1,
guessing a value Yi ∈ VF is tantamount to guessing the corresponding Si, since Yi = Si⊕ (Xi ‖0n−rr )
and Xi is known to the adversary. Then by the union bound and the above observations it follows
that

Pr[Ej |E1, . . . , Ej−1, C] ≤
∑

Yi∈VF

2−H∞(Yi |Λ,E1,...,Ej−1,C )

+ 2−H∞(K |Λ,E1,...,Ej−1,C )

=
∑

Yi∈VF

2−H∞(Si |Λ,E1,...,Ej−1,C )

+ 2−H∞(K |Λ,E1,...,Ej−1,C ) . (12)

Although F does not leak we have to take into account that the same state variable may result
internally in a distinct query to LF and thereby be subject to leakage. With respect to the key the
adversary only learns L0(K ‖ IV ) from the leakage. However, for a given Si the adversary may obtain
(at most) the leakage Li(Si⊕ (Xi ‖ 0n−rr )) for each possible value of Xi. If we consider the aggregate
leakage for a given Si over all possible values of Xi, i.e. Li(Si⊕0rr ‖0n−rr )‖ . . .‖Li(Si⊕1rr ‖0n−rr ),
the support of this aggregate random variable is bounded by 2λ2

rr

. Then by applying Lemma 1 we
have that

H∞
(
K
∣∣Λ0, E1, . . . , Ej−1, C

)
≥ H∞

(
K
∣∣E1, . . . , Ej−1, C

)
− λ2rr

and

H∞
(
Si
∣∣Λi, E1, . . . , Ej−1, C

)
≥ H∞

(
Si
∣∣E1, . . . , Ej−1, C

)
− λ2rr . (13)

It now remains to bound the min-entropies of K and Si conditioned on E1, . . . , Ej−1 and C not
occurring. For each event Ej , conditioning on it not occurring excludes one value for the variable K
and 2rr possible values for the variable Si. On the other hand, conditioning on C excludes (at most)
a further (l + 1)(qF + qLF) from the possible values that K and Si may take. Then by constraining
the adversary’s queries such that qρ + (l + 1)(qF + qLF) ≤ 2k−1 and (2rr )qρ + (l + 1)(qF + qLF) ≤ 2n−1,
we obtain, for all possible j, the following bounds

H∞
(
K
∣∣E1, . . . , Ej−1, C

)
≥ k − 1

and

H∞
(
Si
∣∣E1, . . . , Ej−1, C

)
≥ n − 1 . (14)

Combining (12), (13), and (14) and applying the bound |VF| ≤ lqF yields

Pr[Ej |E1, . . . , Ej−1, C] ≤ 1

2k−λ2rr−1
+

lqF
2n−λ2rr−1

.

We then substitute the above in (11) to obtain

Pr[Bad12 |C] ≤ qρ
2k−λ2rr−1

+
lqFqρ

2n−λ2rr−1
. (15)

Finally, we bound the last term of inequality (9). The flag Bad22 is set if A makes some query to
F such that the corresponding Yl value was already contained in inset(p). Now if it were the case
that Yl was already in VF ∪ VLF when Bad22 occurs it would mean that event C has also occurred.
Thus, conditioned on C not occurring, the only way for Bad22 to be set is if Yl was already queried
to ρ by A. Let X ∗ represent A’s query to F that sets Bad22, resulting in the corresponding values
Y ∗i = S∗i ⊕ (X ∗i ‖ 0n−rr ) for 1 ≤ i ≤ l , such that Y ∗l was already queried to ρ. Then, conditioned
on E not occurring, the variable S∗l cannot be sampled during a query to ρ. That is, p[Y ∗l−1] must
be set during some query to F or LF after that Y ∗l was queried to ρ. Now let F be the event that A
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makes a query to F or LF resulting in S∗l such that for some A ∈ {0, 1}rr the value S∗l ⊕ (A ‖ 0n−rr )
was already queried to ρ. It then follows that

Pr[Bad22 |C,E] ≤ Pr[F |C,E] . (16)

We now bound Pr[F |C,E]. Let Fj denote the event that F occurs at the jth query that A makes
to F or LF. Then, by the union bound we have that

Pr[F |C] ≤ Pr[F1 |C,E] + Pr[F2 |C,E] + . . .+ Pr[FqF+qLF |C,E] .

Then for each query there are at most (2rr )qρ values that S∗l can take to set F out of 2n − (l +
1)(qF + qLF)− (2rr )qρ (due to conditioning on C and E). Thus

Pr[F |C] ≤
qF+qLF∑
j=1

(2rr )qρ
2n − (l + 1)(qF + qLF)− (2rr )qρ

≤ 2rr (qF + qLF)qρ
2n−1

=
(qF + qLF)qρ

2n−rr−1
. (17)

Then, combining inequalities (9), (10), (15), and (17) we obtain

Pr[AG2 ⇒ 1]− Pr[AG2 ⇒ 1] ≤ qT (qT + 2)

2n−rr
+

qρ
2k−λ2rr−1

+
lqFqρ

2n−λ2rr−1
+

(qF + qLF)qρ
2n−rr−1

, (18)

where qT = (l + 1)(qLF + qF) + qρ.

G3 This game is described in Fig. 22. Here we remove the three flags Bad12, Bad22, and Bad32, we introduce
flag Bad3, and change how the last round of F is evaluated. Notably, in tandem with p∗[ ] we maintain
an additional array f [ ], where the latter is indexed by strings of size l instead of n. Then in every
evaluation of F we sample a random string, store it in f [X ], and then copy this value to p∗[Yl ].
However if p∗[Yl ] was already defined, then Bad3 is set and the random string in f [X ] is replaced
with p∗[Yl ]. This ensures that no entry in p∗[ ] is ever overwritten. Thus the array p∗[ ] is sampled in
an equivalent manner as in G2. Moreover, the functionality of G2 is not dependent on the flags Bad12,
Bad22, and Bad32 and their removal is merely a cosmetic alteration. Hence G3 is identical to G2 and
it follows that

Pr[AG3 ⇒ 1] = Pr[AG2 ⇒ 1] . (19)

G3 This game is the game described in Fig. 22 without the boxed code. By removing the boxed code we
now have that F(X ) = f [X ], and therefore F(X ) behaves as a random function. Therefore

Pr[ALPRF ⇒ 1 | b = 0] = Pr[AG3 ⇒ 1] . (20)

Furthermore, G3 and G3 are identical until Bad3 occurs. Now, if Bad3 is set then A must have queried
X and X ′ (where X 6= X ′ since A is assumed to not repeat queries to F) such that they result in the
same value for Yl . As before we can view this as a collision on HK‖IV with l rounds. Thus, applying
the fundamental lemma of game-playing and using once again inequality (49) from Appendix C.4,
we have that

Pr[AG3 ⇒ 1]− Pr[AG3 ⇒ 1] ≤ Pr[Bad3]

≤ q′T (q′T + 2)

2n−rr
. (21)

where q′T = l(qLF + qF) + qρ.

Combining inequalities (7), (8), (18), (19), (21), and (20) yields the desired result. ut
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Games G3 ,G3

Initialize

K � {0, 1}k

procedure ρ(Z )

if p[Z ] = ⊥
p[Z ] � {0, 1}n

return p[Z ]

procedure F(X )

parse X as X1 ‖ . . . ‖ Xl ∀i |Xi| = rr

Y0 ← K ‖ IV
if p[Y0] = ⊥

p[Y0] � {0, 1}n

S1 ← p[Y0]

for i in {1, . . . , l − 1}

Yi ← (S̄i ⊕Xi) ‖ Ŝi

if p[Yi] = ⊥
p[Yi] � {0, 1}n

Si+1 ← p[Yi]

Yl ← (S̄l ⊕Xl) ‖ Ŝl

f [X ] � {0, 1}n

if p∗[Yl ] 6= ⊥
Bad3 ← true

f [X ] � p∗[Yl ]

p∗[Yl ] � f [X ]

Sl+1 ← p∗[Yl ]

return Sl+1

procedure
LF(X , L0, . . . , Ll)

parse X as X1 ‖ . . . ‖ Xl ∀i |Xi| = rr

Y0 ← K ‖ IV
Λ← L0(Y0)

if S1 = ⊥
S1 � {0, 1}n

for i in {1, . . . , l}

Yi ← (S̄i ⊕Xi) ‖ Ŝi

Λ← Λ ‖ Li(Yi)

if p[Yi] = ⊥
p[Yi] � {0, 1}n

Si+1 ← p[Yi]

return (Sl+1, Λ)

Fig. 22: Games G3 and G3 used in the proof of Theorem 7. Game G3 includes the boxed code whereas
G3 does not.
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C.2 Proof of Theorem 8

We assume that SlFunc takes inputs of fixed length (l ·rr) and returns outputs of length t . Now consider
the game described in Fig. 23. It is the LUF game instantiated with SlFunc where the adversary
is also given oracle access to the random transformation ρ which SlFunc depends on. This random
transformation is sampled lazily across all oracles and the corresponding values are stored in a global
array p[ ]. All entries of p[ ] are initialised to ⊥. Thus,

Pr[LUFA ⇒ true] = Pr[GA ⇒ true] . (22)

At any point in time, let VLkg be the set union of intermediate values {Y1, . . . ,Yl} evaluated in Lkg over
all queries made by A up to that point. Similarly, let ULkg be the set of values Sl+1 evaluated in Lkg

over all queries made by A. Further let W be the event that A wins and B be the event that A makes a
query to ρ that is contained in VLkg ∪ {Y0}. Then for any event C it follows that

Pr[GA ⇒ true] ≤ Pr[W ∪B ∪ C]

≤ Pr[C] + Pr[B |C] + Pr[W |C,B] . (23)

Recall that SlFunc(K ,X ) can be viewed as the sponge-based hash function from Section 5.4 eval-
uated on input 0 ‖ X with an initial state of K ‖ IV (instead of 0n) and capacity n − rr . Let HK‖IV

denote the variable-input-length hash function just described and C be the event that one of the following
conditions is satisfied.

(i) A makes queries X and X ′ across F, Lkg, and Guess such that HK‖IV (0 ‖X ) = HK‖IV (0 ‖X ′) and
X 6= X ′.

(ii) A makes queries X and X ′ across F, Lkg, and Guess such that HK‖IV (0 ‖X ) = HK‖IV (0 ‖X ′′) for
some X ′′ that is a prefix of X ′ and |X ′′| < |X ′|.

(iii) A makes a query X to F, Lkg, or Guess such that HK‖IV (0 ‖ X ′) = K ‖ IV for some X ′ that is a
prefix of X .

(iv) A makes queries X and X ′ across F, Lkg, and Guess such that HK‖IV (0 ‖ X ′′) = HK‖IV (0 ‖ X ′′′),
where X ′′ is a prefix of X , X ′′′ is a prefix of X ′, X ′′ 6= ε 6= X ′′′, and X ′′ 6= X ′′′.

Now for any adversary A that causes C, we can construct an adversary B that finds a collision in
HK‖IV . Specifically, B knows K and uses this together with its access to ρ to simulate game G1 to A while
constantly checking if event C has occurred. Note that any of the sub-cases in C will directly enable B to
produce a collision onHK‖IV . We can therefore use the security bound derived in Section 5.4 forH since it
applies to any initial state thatH is assigned, as long as it is fixed at the start of the game. Thus, applying
inequality (49) from Appendix C.4 and setting w = n, c′ = n−rr , and qT = (l +1)(qF+qLkg+qGuess)+qρ,
yields

Pr[C] ≤ qT (qT + 2)

2n−rr
. (24)

We now bound Pr[B |C]. Let Bj be the event that B occurs on the jth query that A makes to ρ.
Then we have that

Pr[B |C] ≤ Pr[B1 ∪B2 ∪ . . . ∪Bqρ |C]

= Pr[B1 |C] + Pr[B2 |B1, C] + . . .

+ Pr[Bqρ |B1, . . . , Bqρ−1, C] . (25)

Now as long as C does not occur no two queries will result in values Yi and Yi′ such that Yi = Yi′

and i 6= i′. Thus no state variable p[Yi] occurs in more than one position (across F, Lkg, and Guess),
meaning that no state variable is subject to more than one leakage function and that no internal state
variable is ever exposed as the output of F. Moreover, as long as B does not occur, the outputs of ρ will
never expose any of the state variables contained in VLkg ∪ULkg ∪ {Y0}. Then, for i ≥ 1, guessing a value
Yi ∈ VLkg is tantamount to guessing the corresponding Si, since Yi = Si + (Xi ‖ 0n−rr ) and Xi is known
to the adversary. Then, by the union bound and the above observations, for all j ∈ {1, . . . , qρ}, we have
that
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Game G

Initialize

win← false; K � K
return

procedure ρ(Z )

if p[Z ] = ⊥
p[Z ] � {0, 1}n

return p[Z ]

procedure Guess(X , y′)

parse X as X1 ‖ . . . ‖ Xl ∀i |Xi| = rr

Y0 ← K ‖ IV
if p[Y0] = ⊥

p[Y0] � {0, 1}n

S1 ← p[Y0]

for i in {1, . . . , l}

Yi ← (S̄i ⊕Xi) ‖ Ŝi

if p[Yi] = ⊥
p[Yi] � {0, 1}n

Si+1 ← p[Yi]

y ← bSl+1ct
if X 6∈ S ∧ y = y′

win← true

return (y = y′)

procedure Finalize

return win

procedure F(X )

S ←∪X
parse X as X1 ‖ . . . ‖ Xl ∀i |Xi| = rr

Y0 ← K ‖ IV
if p[Y0] = ⊥

p[Y0] � {0, 1}n

S1 ← p[Y0]

for i in {1, . . . , l}

Yi ← (S̄i ⊕Xi) ‖ Ŝi

if p[Yi] = ⊥
p[Yi] � {0, 1}n

Si+1 ← p[Yi]

return bSl+1ct

procedure Lkg(X , L0, . . . , Ll+1)

parse X as X1 ‖ . . . ‖ Xl ∀i |Xi| = rr

Y0 ← K ‖ IV
Λ← L0(Y0)

if p[Y0] = ⊥
p[Y0] � {0, 1}n

S1 ← p[Y0]

for i in {1, . . . , l}

Yi ← (S̄i ⊕Xi) ‖ Ŝi

Λ← Λ ‖ Li(Yi)

if p[Yi] = ⊥
p[Yi] � {0, 1}n

Si+1 ← p[Yi]

Λ← Λ ‖ Ll+1(Sl+1)

return (Λ)

Fig. 23: Game G used in the proof of Theorem 8.

Pr[Bj |B1, . . . , Bj−1, C] ≤
∑

Yi∈VLkg

2−H∞(Yi |Λ,B1,...,Bj−1,C )

+ 2−H∞(K |Λ,B1,...,Bj−1,C )

=
∑

Yi∈VLkg

2−H∞(Si |Λ,B1,...,Bj−1,C )

+ 2−H∞(K |Λ,B1,...,Bj−1,C ) . (26)

Now with respect to the key the adversary only learns L0(K ‖ IV ) from the leakage. However, for
a given Si the adversary may obtain (at most) the leakage Li(Si ⊕ Xi ‖ 0n−rr ) for each possible
value of Xi. If we consider the aggregate leakage for a given Si over all possible values of Xi, i.e.
Li(Si⊕ 0rr ‖ 0n−rr ) ‖ . . . ‖Li(Si⊕ 1rr ‖ 0n−rr ), the support of this aggregate random variable is bounded
by 2λ2

rr

. Then by applying Lemma 1 we have that

H∞
(
K
∣∣Λ0, B1, . . . , Bj−1, C

)
≥ H∞

(
K
∣∣B1, . . . , Bj−1, C

)
− λ2rr

and

H∞
(
Si
∣∣Λi, B1, . . . , Bj−1, C

)
≥ H∞

(
Si
∣∣B1, . . . , Bj−1, C

)
− λ2rr . (27)
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It now remains to bound the min-entropies of K and Si conditioned on B1, . . . , Bj−1 and C not
occurring. For each event Bj , conditioning on it not occurring excludes one value for the variable K and
2rr possible values for the variable Si. This is because for any query Z that the adversary makes to ρ, the
values (Z ⊕0rr ‖0n−rr ), . . . , (Z ⊕1rr ‖0n−rr ) may all be contained VLkg. On the other hand, conditioning
on C excludes (at most) a further (l + 1)(qF + qLkg + qGuess) from the possible values that K and Si may
take. Thus if we constrain the adversary’s queries such that qρ + (l + 1)(qF + qLkg + qGuess) ≤ 2k−1 and
(2rr )qρ + (l + 1)(qF + qLkg + qGuess) ≤ 2n−1, we obtain, for all possible j, the following bounds

H∞
(
K
∣∣E1, . . . , Ej−1, C

)
≥ k − 1

and

H∞
(
Si
∣∣E1, . . . , Ej−1, C

)
≥ n − 1 . (28)

Combining (26), (27), and (28) and applying the bound |VLkg| ≤ lqLkg yields

Pr[Bj |B1, . . . , Bj−1, C] ≤ 1

2k−λ2rr−1
+

lqLkg
2n−λ2rr−1

.

We then substitute the above in (25) to obtain

Pr[B |C] ≤ qρ
2k−λ2rr−1

+
lqLkgqρ

2n−λ2rr−1
. (29)

We now conclude the proof by bounding Pr[W |C,B]. Let Wj be the event that W occurs on the jth

query that A makes to Guess. Then we have that

Pr[W |C,B] ≤ Pr[W1 ∪W2 ∪ . . . ∪Wqρ |C,B]

= Pr[W1 |C,B] + Pr[W2 |W 1, C,B] + . . .

+ Pr[WqGuess |W 1, . . . ,W qGuess−1, C,B] . (30)

Now conditioning on neither of events B and C occurring, it must be that if W occurs the value of Sl+1

corresponding to that query must be either new (freshly sampled) or contained in ULkg. In either case,
for all j ∈ {1, . . . , qGuess}, we have that

Pr[Wj |W 1, . . . ,W j−1, C,B] ≤ 2−H∞(bSl+1ct |Λ,W 1,...,W j−1,C,B ) , (31)

where the case where Sl+1 is freshly sampled corresponds to Λ = ε. Thus since Λ is at most Ll+1(Sl+1),
by Lemma 1 we have that

H∞
(
Sl+1

∣∣Λ,W 1, . . . ,W j−1, C,B
)
≥ H∞

(
Sl+1

∣∣W 1, . . . ,W j−1, C,B
)
− λ . (32)

Once again conditioning on C excludes (at most) (l + 1)(qF + qLkg + qGuess) from the possible values that
Sl+1 may take, whereas conditioning on B does not affect Sl+1. Moreover, for each event Wj , conditioning
on it not occurring excludes one value from the pool of values that Sl+1 may take. To cater for this we
require that the adversary’s queries satisfy qGuess + (l + 1)(qF + qLkg + qGuess) ≤ 2n−1. Then from the
above and (32) we have that

H∞
(
Sl+1

∣∣Λ,W 1, . . . ,W j−1, C,B
)
≥ n − 1− λ . (33)

To cater for the fact that Sl+1 is truncated to the leftmost t bits, we apply Lemma 1 once more. The
probability of guessing bSl+1ct can only increase when given the rightmost n − t bits of Sl+1. Thus

H∞
(
bSl+1ct

∣∣Λ,W 1, . . . ,W j−1, C,B
)
≥ t − λ− 1 . (34)

Combining inequalities (30), (31), and (34) yields

Pr[W |C,B] ≤ qGuess
2t−λ−1

. (35)

The theorem then follows by combining (23), (24), (29), and (35). ut
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ρ ρ ρ ρ ρ ρ ρ

⊕ ⊕ ⊕ ⊕ . . .

. . .

X

S̄1 S̄2
. . . S̄j S̄j+1 S̄j+2

S Sj+1 Sj+2

Fig. 24: A graphical illustration of the hybrid game Hj used to prove Theorem 9. The large box represents
a random function with input S and output (S̄2, . . . S̄j ,Sj+1). The additional output S̄1 is simply copied
from the input, i.e S̄1 = S̄ .

C.3 Proof of Theorem 9

The proof follows through a standard hybrid argument, where we gradually replace the SPrg construc-
tion with a random function that takes as its input the seed S . In each game hop we remove one call to
the random transformation and extend the output of the random function. This is illustrated in Fig. 24.

Let Lmax be an upper bound on the output bit-length specified by the adversary in its queries
to G. Then each evaluation will require at most v − 1 call to the random transformation, where v =⌈
Lmax

r

⌉
. Accordingly we specify the hybrid games H0,. . . ,Hv−1, as shown in Fig. 25. Following the hybrid

argument, a further game hop to game G0, displayed in Fig. 26, is required to complete the proof.
In game Hj (cf. Fig. 25), the G oracle samples the states S1, . . . ,Sj+1 ideally and independent of the

transformation ρ, while the remaining states Sj+2, . . . ,Sv are sampled by querying ρ. The output of the
G oracle is the concatenation of the outer states truncated to L bits. The boxed version, that is, Hj ,

ensures that the state Sj+1 is also evaluated through ρ, and thus Hj = Hj+1 . Note that H0 is equivalent
to the PRG game instantiated with SPrg with the challenge bit b fixed to 1. Thus,

Pr[APRG ⇒ 1 | b = 1] = Pr[AH0 ⇒ 1] . (36)

Moreover, we have that

Pr[AH0 ⇒ 1]− Pr[AHv−1 ⇒ 1] =

v−1∑
j=1

Pr[AHj−1 ⇒ 1]− Pr[AHj ⇒ 1] ,

and since Hj−1 = Hj , this reduces to

=

v−1∑
j=1

Pr[AHj ⇒ 1]− Pr[AHj ⇒ 1] .

Let Bad1j , Bad
2
j , and Bad3j each denote the event that the corresponding flag in game Hj is set. Further

note that games Hj and Hj are identical until one of these bad events occurs. Then, applying the
fundamental lemma of game playing and the union bound yields

≤
v−1∑
j=1

Pr[Bad1j ] + Pr[Bad2j ] + Pr[Bad3j ] . (37)

The flag Bad1j is set if the adversary makes a query S to ρ, such that S = Sj [S
∗] for some S∗ ∈ D.

Now, for any random variable Sj [S
∗], only the outer part S̄j [S

∗] is known to the adversary (through the
G oracle) and the inner c bits remain hidden. Moreover, at any point in time, there are only |D| such
variables and |D| ≤ qG. Hence, by the union bound

Pr[Bad1j ] ≤
qρ−1∑
i=0

|D|
2c − i

≤
qρ−1∑
i=0

qG
2c − i

≤ qGqρ
2c − qρ

. (38)
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Games Hj ,Hj

procedure ρ(S)

if p[S ] = ⊥
p[S ] � {0, 1}n

// keep random function and ρ consistent

if ∃S∗ ∈ D s.t. S = Sj [S
∗]

Bad1j ← true

p[S ]← Sj+1[S∗]

return p[S ]

procedure G(L)

S � {0, 1}n

D ←∪ S
S1[S ]← S

// evaluate random function

for i in {2, . . . , j + 1}
if Si[S ] = ⊥

Si[S ] � {0, 1}n

// keep random function and ρ consistent

if Sj [S ] ∈ inset(p)

Bad2j ← true

Sj+1[S ]← p[Sj [S ]]

// evaluate remaining part of SPrg

for i in {j + 1, . . . , v − 1}
if p[Si[S ]] = ⊥

p[Si[S ]] � {0, 1}n

// keep random function and ρ consistent

if ∃S∗ ∈ D s.t. Si[S ] = Sj [S
∗]

Bad3j ← true

p[Si[S ]]← Sj+1[S∗]

Si+1[S ]← p[Si[S ]]

R ← S̄1[S ] ‖ S̄2[S ] ‖ . . . ‖ S̄v[S ]

return bRcL

Fig. 25: The hybrid games used in the proof of Theorem 9. Game Hj contains the boxed code whereas
Hj does not.

The flag Bad2j is set whenever the G oracle samples a value Sj contained in inset(p). Since the G oracle
samples the values Sj uniformly at random from {0, 1}n , it follows that

Pr[Bad2j ] ≤
qG∑
i=1

|inset(p)|
2n

.

At any point in time, |inset(p)| ≤ qρ + qG(v − j − 1), since each query to ρ and G adds at most 1 and
(v − j − 1), new values to inset(p) respectively. This leads to

≤
qG∑
i=1

qρ + qG(v − j − 1)

2n
≤ qρqG + q2

G (v − j − 1)

2n
. (39)

The flag Bad3j is set if, for some i ∈ {j + 1, . . . , v − 1} and some S∗ ∈ D, the oracle G samples a value
Si[S ] equal to Si[S

∗]. The probability of this bad event depends solely on the number of queries that A

makes to its oracle G. In each query at most, (v− j− 1) states are sampled which can set this flag, hence

Pr[Bad3j ] ≤
qG∑
i=1

(v − j − 1)|D|
2n

.

Since at any point in time |D| ≤ qG, this reduces to

≤
qG∑
i=1

(v − j − 1)
qG
2n
≤ (v − j − 1)q2

G

2n
. (40)
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Game G0

procedure ρ(S)

if p[S ] = ⊥
p[S ] � {0, 1}n

return p[S ]

procedure G(L)

S � {0, 1}n

R � {0, 1}vr

if S ∈ D
Bad ← true

R ← S̄1[S ] ‖ . . . ‖ S̄v[S ]

D ←∪ S
(S̄1[S ], . . . , S̄v[S ])← R

return bRcL

Fig. 26: Games G0 and G0 used in the proof of Theorem 9. Game G0 contains the boxed code, G0 does
not.

Combining (37), (38), (39), and (40) yields

Pr[AH0 ⇒ 1]− Pr[AHv−1 ⇒ 1] ≤
v−1∑
j=1

Pr[Bad1j ] + Pr[Bad2j ] + Pr[Bad3j ]

≤
v−1∑
j=1

qGqρ
2c − qρ

+
qρqG + q2

G (v − j − 1)

2n
+

(v − j − 1)q2
G

2n

≤ vqGqρ
2c − qρ

+
vqρqG + v2q2

G

2n
(41)

To conclude the proof we require one more game hop. Consider the game G0 displayed in Fig. 26. In
this game, the G oracle first samples a value S , followed by sampling a random output R, independent
of ρ. The boxed code ensures that the output R is identical if a value for S is sampled twice. This game
is equivalent to Hv−1 which yields

Pr[AHv−1 ⇒ 1] = Pr[AG0 ⇒ 1] . (42)

Now, games G0 and G0 (also displayed in Fig. 26) are identical until Bad occurs. The flag is set to true
if a value S is sampled that is already in the set D. At any point in time |D| ≤ qG, and S is sampled by
the G independently of A, thus

Pr[AG0 ⇒ 1]− Pr[AG0 ⇒ 1] ≤ Pr[Bad] ≤
qG∑
i=1

|D|
2n
≤

qG∑
i=1

qG
2n
≤ q2

G

2n
. (43)

Moreover G0 and the PRG game with its challenge bit fixed to 0 are functionally equivalent, and therefore

Pr[AG0 ⇒ 1] = Pr[APRG ⇒ 1 | b = 0] . (44)

By combining (36), (41), (42), (43), and (44) we obtain the desired result. ut

C.4 Proof of Theorem 10

We prove the theorem in two stages. First, we reduce the collision resistance of the vector hash function
to the collision resistance of the standard sponge-based hash function. Towards this end we introduce a
padding scheme which we call input separation padding (isPad). This will allow us to view the evaluation
of the vector hash over a triple of inputs as the evaluation of the standard sponge-based hash over an
encoding of this triple of inputs into a single string – see Fig. 27. We show that isPad is injective, and
consequently that any collision in the vector hash yields a collision in the standard sponge-based hash
function. In the second part, we prove that the standard sponge-based hash function, instantiated with
a random transformation, is collision-resistant. This part is based on the proof described by Boneh and
Shoup in [10]. However, since their proof is in the random permutation model, it requires minor changes
to adapt it to the random transformation model. We state it here for completeness.
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Fig. 27: Above: the sponge-based vector hash function SvHash (used in Slae). Below: SvHash viewed
as the standard sponge-based hash function H′ with its inputs encoded via isPad.

The padding isPad is described in Fig. 28, which in turn makes use of lpad?. The latter takes the
triple (N ,A,C ) and an integer r (the rate) as input and outputs (N ,A,C) such that the size of each
is a multiple of r . The first input (N ) is simply padded with 0’s to a length r , whereas A and C are
padded with lpad(A, r) and lpad(C , r). Here lpad simply applies the 10∗ padding described in Fig. 9 and
is already used in SvHash– see Fig. 10. Then (N ,A,C) is mapped to a string Z = Z1 ‖ Z2 ‖ Z3 whose
length is a multiple of r + 1, where Z1 is N appended with a 0, Z2 is A with a 0 inserted after each
r bits, and Z3 is C where a 1 is inserted after the first r bits and a 0 after all other r bits. Note that
nonces are assumed to be of fixed size.

First note that lpad is itself an injective encoding. Assume now, towards a contradiction, that the isPad
encodings of two distinct triples are equal, i.e. (N ,A,C ) 6= (N ,A,C ) and Z = Z. It then immediately
follows that N = N , since the nonces are of fixed size, and that |Z| = |Z|. There are then only two
possible cases: (1) |Z2| 6= |Z2| or (2) |Z2| = |Z2|. For the first case, assume, without loss of generality,
that |Z2| < |Z2|, i.e. u < u, where u and u are the number of r -bit blocks of A and A, respectively. Then
when writing the strings Z and Z directly below each other, the block C1 is above Au+1. However, isPad
requires that C1 is followed by a 1 whereas Au+1 is followed by a 0 which contradicts the assumption
that Z = Z. As for the second case, it follows that Z2 = Z2 and Z3 = Z3. In turn this means that
A = A and C = C, and by the injectivity of lpad it also follows that A = A and C = C . Since we
already established that N = N , we have that (N ,A,C ) = (N ,A,C ), which contradicts our assumption
that the inputs are distinct.

isPad((N ,A,C ), r)

(N ,A,C)← lpad?((N ,A,C ), r)

Z1 ←N ‖ 0

Z2 ← A1 ‖ 0 ‖ A2 ‖ 0 ‖ . . . ‖ Au ‖ 0 st ∀i |Ai| = r

Z3 ← C1 ‖ 1 ‖ C2 ‖ 0 ‖ . . . ‖ Cv ‖ 0 st ∀i |Ci| = r

return Z ← Z1 ‖ Z2 ‖ Z3

lpad?((N ,A,C ), r)

N ← N ‖ 0r−|N |

A← A ‖ lpad(A, r)

C ← C ‖ lpad(C , r)

return (N ,A,C)

Fig. 28: The padding schemes isPad and lpad?.
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Now we can use isPad to reduce the collision resistance of SvHash over triples to the collision
resistance of the standard sponge-based hash H′ over strings. Both hash functions are depicted in Fig. 27.
Furthermore, note that SvHash can be expressed as SvHash(N ,A,C ) = H′(isPad(N ,A,C )). This
mapping is such that H′ requires an extra call to the random transformation and has capacity c′ = c−1,
where c is the capacity of H′. Now, since isPad is injective, any collision that is found on SvHash must
correspond to a collision on H′. Moreover since isPad is efficiently computable, any collision on SvHash
can easily be translated into a collision on H′. This leads to a straightforward reduction which for any
adversary A against SvHash yields an adversary with similar resources A against H′ such that

AdvcrSvHash (A) ≤ AdvcrH′
(
A
)
. (45)

This concludes the first part of the proof and we now go on to prove the collision-resistance of the
standard sponge-based hash function H′ with capacity c′.

We assume, without loss of generality, that the adversary makes queries to the random transformation
which correspond to its final output. That is, it queries the random transformation on all intermediate
states that occur while computing the output. Furthermore, we assume that no redundant queries are
made by the adversary, i.e. whenever the adversary makes a ρ query on Y yielding S = ρ(Y ), the
adversary will never make another ρ query on Y . This assumption is justified by the fact that an adversary
gets no additional information from redundant queries and any adversary that makes redundant queries
can easily be turned into an adversary which makes no redundant queries.

Similar to the proof in [10], we use a directed graph G to visualize the attack. At the start, the graph
contains all bit strings of length n as nodes and no edges. Let Y and S be two nodes. An edge from Y
to S is added to the graph, if the adversary makes a query to ρ on Y resulting in S . Since there are no
redundant queries, an edge is added to the graph exactly once. In contrast to the proof in [10], we have
to deal with the fact that the transformation ρ is not injective and that a node may have more than one
incoming edge. For k ≥ 1, a path of length k can be described by a sequence of 2k nodes

Y1,S2,Y2,S3,Y3, . . . ,Sk,Yk,Sk+1 .

Moreover it holds that Ŷ1 = IV , Ŝi = Ŷi for i = 2, . . . , k, and the graph G contains edges Yi → Si+1

for i = 1, . . . , k. The message of this path is defined as a tuple (M1, . . . ,Mk) of bit strings of length r ,
where M1 = Ȳ1 and Mi = S̄i ⊕ Ȳi for i = 2, . . . , k. The result of this path is Mk+1 = S̄k+1. Such a path
corresponds to the computation of H′(M1 ‖ . . . ‖ Mk) resulting in output Mk+1. We write such paths as

M1|Y1 → S2|M2|Y2 → · · · → Sk|Mk|Yk → Sk+1|Mk+1 .

We can then define a collision in the hash function in terms of the graph G. A collision corresponds
to finding a pair of colliding paths, which are paths on different messages (M1, . . . ,Mk) 6= (M ′

1, . . . ,M
′
l )

resulting in messages Mk+1 and M ′
l+1 which agree in their first w bits, i.e. bMk+1cw = bM ′

l+1cw .
As in [10], we use the notion of problematic paths. Consider the following two paths on messages

(M1, . . . ,Mk) 6= (M ′
1, . . . ,M

′
l ) of length k and l, respectively.

M1|Y1 → S2|M2|Y2 → · · · → Sk−1|Mk−1|Yk−1 → Sk|Mk|Yk → Sk+1|Mk+1

M ′
1|Y ′1 → S ′2|M ′

2|Y ′2 → · · · → S ′l−1|M ′
l−1|Y ′l−1 → S ′l |M ′

l |Y ′l → S ′l+1|M ′
l+1

Intuitively, we call a pair of paths problematic if their states are equal before the last random transfor-
mation is applied. More formally, using the above representation of a path, if Yk = Y ′l then the paths
are called problematic.

Let us denote by CP the event that the adversary finds a pair of colliding paths and by PP the event
that the adversary finds a pair of problematic paths. Then the probability of finding a pair of colliding
paths, i.e. a collision in the hash function, is bounded as follows

Pr[CP ] ≤ Pr[CP ∧ ¬PP ] + Pr[PP ] . (46)

We start by proving an upper bound for Pr[CP ∧ ¬PP ]. This argument closely follows the argument
given in [10], however, we obtain a different bound due to the fact that the proof is in the random
transformation model. That a pair of paths are both colliding and not problematic means that the final
edges correspond to ρ queries on different inputs resulting in outputs where the first w bits are equal.
That is, the adversary makes queries to ρ on Y 6= Y ′ which result in S and S ′, respectively, such that
bS̄cw = H = bS̄ ′cw . For i ≤ j, let Xij denote the event that the i-th query of the adversary is some value
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Y resulting in S = ρ(Y ), while the j-th query is on some value Y ′ 6= Y , yielding output S ′ = ρ(Y ′)
with bS̄cw = bS̄ ′cw . Fix i, j, the random coins of the adversary, and the outputs of all queries made
before the j-th query. Then Y , S , and Y ′ are fixed while S ′ is distributed uniformly at random over a
set of size 2n . Since there are 2n−w nodes W for which it holds that bW cw = bS̄cw , S ′ must be equal
to one of these, thus

Pr[Xij ] ≤
2n−w

2n
≤ 1

2w
,

which leads to

Pr[CP ∧ ¬PP ] ≤
q∑
j=1

j−1∑
i=1

Pr[Xij ] ≤
q∑
j=1

j−1∑
i=1

1

2w
≤ q(q − 1)

2w+1
.

Next, we prove an upper bound for Pr[PP ]. The probability of finding a pair of problematic paths
is closely related to two basic attacks against random sponges introduced by Bertoni et al. [9], which
allows us to upper bound the probability. The first one, called path to an inner state, asks, for a given
bit string x ∈ {0, 1}c′ , to find a path to a node S with inner part equal to x, i.e. Ŝ = x. To match this to
our case, we define E1 to be the event that an adversary finds a path to the inner state IV . The second
one, called inner collision, asks to find two different paths to nodes S and S ′ with equal inner states, i.e.
Ŝ = Ŝ ′, hence we define E2 to be the event that an adversary finds an inner collision. In the following,
we show that

Pr[PP ] ≤ Pr[E1 ] + Pr[E2 ] , (47)

i.e. every adversary that finds a pair of problematic paths either finds a path to the inner state IV (E1 )
or an inner collision (E2 ). Consider an adversary that finds a pair of problematic paths which are of
length k and l, respectively. Write these paths as

M1|Y1 → S2|M2|Y2 → · · · → Sk−1|Mk−1|Yk−1 → Sk|Mk|Yk → Sk+1|Mk+1

M ′
1|Y ′1 → S ′2|M ′

2|Y ′2 → · · · → S ′l−1|M ′
l−1|Y ′l−1 → S ′l |M ′

l |Y ′l → S ′l+1|M ′
l+1

Due to the fact that the paths are problematic, it holds that Yk = Y ′l and (M1, . . . ,Mk) 6= (M ′
1, . . . ,M

′
l ).

We further assume that the pair is the shortest among all pairs of problematic paths. This means that
k+ l is minimal, and without loss of generality, that k ≤ l. There are three cases to consider, depending
on the length of the paths:

1. (k = 1 and l = 1) In this case, the paths are simply M1|Y1 → S2|M2 and M ′
1|Y ′1 → S ′2|M ′

2. The
messages of these paths are M1 and M ′

1, respectively. However, it is impossible that both Y1 = Y ′1
and M1 6= M ′

1. By construction it holds that

Ȳ1 = M1 6= M ′
1 = Ȳ ′1

which leads to a contradiction.

2. (k = 1 and l ≥ 2) In this case, we have that Y1 = Y ′l . The adversary has made a ρ query on Y ′l−1
which resulted in S ′l = ρ(Y ′l−1). Therefore, it holds that Ŝ ′l = Ŷ ′l = Ŷ1 = IV . The first equality
follows from the construction, where the inner state between two evaluations of ρ does not change.
The second one trivially follows from Y1 = Y ′l , while the third follows again from the construction.
By taking the path up to node S ′l , the adversary has found a path to the inner state IV , i.e. event
E1 occurs.

3. (k ≥ 2 and l ≥ 2) Here it holds that Yk = Y ′l . Consider now the last but one edges which are

Yk−1 → Sk|Mk|Yk

Y ′l−1 → S ′l |M ′
l |Y ′l

There are two cases depending on the absorbed messages Mk and M ′
l :

(a) The absorbed messages are equal, i.e. Mk = M ′
l . Hence, it holds that Sk = S ′l . Due to the fact

that ρ is a random transformation we have to further distinguish between the following sub-cases:
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i. (Yk−1 = Y ′l−1) This contradicts the minimality of k + l, as we can find a shorter pair of
problematic paths by throwing away the last edge in each path, while the truncated messages
(M1, . . . ,Mk−1) and (M ′

1, . . . ,M
′
l−1) still differ.

ii. (Yk−1 6= Y ′l−1) In this case, both Yk−1 and Y ′l−1 map to Sk = S ′l , therefore the adversary
has found an inner collision on the nodes Sk and S ′l , i.e. event E2 occurs.

(b) The absorbed messages are different, i.e. Mk 6= M ′
l . This yields S̄k 6= S̄ ′l which further implies

Sk 6= S ′l and Yk−1 6= Y ′l−1. On the other hand, the absorbed messages do not affect the inner

state of Sk and S ′l which ensures Ŝk = Ŝ ′l . Combining these, it holds that the adversary has found
an inner collision on the nodes Sk and S ′l by taking the paths up to Sk and S ′l , i.e. event E2
occurs. We emphasise that Yk−1 6= Y ′l−1 implies that the paths are indeed distinct.

This proves inequality (47). Thus, we can upper bound Pr[PP ] using the following bounds on Pr[E1 ]
and Pr[E2 ] by Bertoni et al. [9], where q denotes the number of queries the adversary makes to ρ.

Pr[E1 ] ≤ q

2c′
Pr[E2 ] ≤ q(q + 1)

2c′+1

Substituting everything into (46) yields

Pr[CP ] ≤ q(q − 1)

2w+1
+

q

2c′
+

q(q + 1)

2c′+1
≤ q(q − 1)

2w+1
+

q(q + 2)

2c′
. (48)

By combining (45) and (48) we get

AdvcrSvHash (A) ≤ AdvcrH′
(
A
)
≤ Pr[CP ] ≤ q(q − 1)

2w+1
+

q(q + 2)

2c′
, (49)

and then replacing c′ = c − 1 we obtain the desired result:

AdvcrSvHash (A) ≤ q(q − 1)

2w+1
+

q(q + 2)

2c−1
.

ut
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