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Abstract. In this paper, we present an optimized FPGA implemen-
tation of a novel, fast and highly parallelized NTT-based polynomial
multiplier architecture, which proves to be effective as an accelerator
for lattice-based homomorphic cryptographic schemes. As input-output
(I/O) operations are as time-consuming as NTT operations during homo-
morphic computations in a host processor/accelerator setting, instead of
achieving the fastest NTT implementation possible on the target FPGA,
we focus on a balanced time performance between the NTT and I/O
operations. Even with this goal, we achieved the fastest NTT implemen-
tation in literature, to the best of our knowledge. For proof of concept,
we utilize our architecture in a framework for Fan-Vercauteren (FV) ho-
momorphic encryption scheme, utilizing a hardware/software co-design
approach, in which NTT operations are offloaded to the accelerator while
the rest of operations in the FV scheme are executed in software running
on an off-the-shelf desktop computer. Specifically, our framework is opti-
mized to accelerate Simple Encrypted Arithmetic Library (SEAL), devel-
oped by the Cryptography Research Group at Microsoft Research [27],
for the FV encryption scheme, where forward and inverse NTT opera-
tions are utilized extensively for large degree polynomial multiplications.
The hardware part of the proposed framework targets XILINX VIRTEX-
7 FPGA device, which communicates with its software part via a PCIe
connection. Offloading forward/inverse NTT and coefficient multiplica-
tion operations on FPGA, taking into account the time expended on
I/O operations, the proposed framework achieves almost x11 latency
speedup for the offloaded operations compared to their pure software
implementations. With careful pipelining, overlapping I/O operations
with actual polynomial multiplication computations, and assuming one
of the operands for the polynomial multiplication operation is already
inside the FPGA (valid assumption for encrypt/decrypt operations for
homomorphic applications), we achieved a throughput of almost 800k
polynomial multiplications per second, for polynomials of degree 1024
with 32-bit coefficients.

Keywords: Number Theoretic Transform, Large-Degree Polynomial Multipli-
cation, Fan-Vercauteren, SEAL, FPGA



1 Introduction

Fully Homomorphic Encryption (FHE) allows computations on encrypted data
eliminating the need for the access to plaintext data. FHE schemes provide
privacy in various applications, such as privacy-preserving processing of sen-
sitive data in cloud computing; albeit this being theoretically possible except
for those requiring relatively simple homomorphic operations. The idea of FHE
was first introduced in 1978 [25] and it had been an open problem until Gen-
try constructed the first functioning FHE scheme in 2009 [12], [13]. Since the
introduction of Gentry’s scheme, various practical FHE schemes have been in-
troduced [17], [11], [28]. Despite the tremendous performance improvement of
FHE schemes over the years, homomorphic computation is not yet quite feasible
for many cloud applications. There is still ongoing research and race to improve
the performance of arithmetic building blocks of the working FHE schemes. Dif-
ferent implementations and constructions were developed to introduce practical
hardware and software implementations of FHE schemes, such as [26], [8], HE-
lib [14], NFLlib [1], cuHe [9]. With the motivation of achieving a practical FHE
implementation, we focus on improving performance of the most time consum-
ing arithmetic building block of many FHE schemes in literature: large degree
polynomial multiplication. For proof of concept, we aim to obtain a framework
to accelerate the Fan-Vercauteren (FV) encryption scheme for homomorphic op-
erations [11].

There are various software and hardware implementations of the FV scheme
in the literature. Cryptography Research Group at Microsoft Research devel-
oped Simple Encrypted Arithmetic Library (SEAL) [27], providing a simple and
practical software infrastructure using the FV homomorphic encryption scheme
for homomorphic applications [11]. SEAL already gained recognition in the lit-
erature [18], [29], [4], [7], [2]. The work in [18] performs private comparison of
two input integers using SEAL. In [29], the authors propose a privacy-preserving
recommendation service and utilize the SEAL library for homomorphic opera-
tions. The GPU implementation in [4] is compared with the SEAL performance.
The SEAL team recently announced highly efficient SealPIR, which is a Private
Information Retrieval tool that allows a client to download an element from a
database stored by a server without revealing which element is downloaded [2].
In our proof-of-concept framework, we utilize our NTT-based polynomial multi-
plier design to accelerate SEAL software by offloading large degree polynomial
multiplication operations to the hardware accelerator implemented on a target
FPGA device.

Utilizing FPGA architectures as accelerator to software implementations is
currently a popular topic. Microsoft Research initiated Project Catapult in 2010
with the aim of investigating FPGA architectures as an alternative compute layer
in their cloud computing infrastructure [23]. This project was very successful
and they report a 95% increase in ranking throughput of each server that has
an FPGA connected to the CPU.

In general, implementations of specialized hardware architectures for specific
operations provide significant speed-up over software implementations. On the



other hand, it is neither effective nor practical to offload all sorts of computation
to hardware accelerators. Similarly, FHE schemes require highly diverse set of
involved operations, many of which can be efficiently implemented in software
and do not take up much time while quite a high percentage of their execution
time is expended in only few operations. In most FHE schemes, the most-time
consuming operation is large degree polynomial multiplication that involves vast
number of modular multiplication operations over integers, majority of which
is highly parallelizable. Nevertheless, software performance is bounded by the
number of integer multipliers existing in CPU architectures as most modern
CPU architectures feature a single 64-bit integer multiplier per core, limiting
the level of parallelization. Therefore, it makes perfect sense to execute those
operations in a hardware accelerator, which should be designed to improve the
overall performance of software implementation of a FHE scheme by taking
advantage of parallelizable operations and carefully designed, highly optimized
hardware functional units.

Finally, offloading computation to an accelerator results in overhead due to
the time spent in the network stack in both ends of the communication and actual
transfer of data, which we refer as the I/O time. As accelerating FHE involves
handling of large degree polynomials, this overhead can be prohibitively high
if the nature and the cost of the offloading are not factored in the accelerator
design.

To this end, two crucial design goals are considered in this work: i) hard-
ware accelerator architecture should be designed to provide significant levels of
speedup over software implementations and ii) the overhead due to communi-
cation (I/0 time) between hardware and software components of the framework
should be taken into account as a design parameter or constraint. Most works in
the literature focus solely on the first goal and report no accurate speedup val-
ues subsuming the I/O time. In this paper, we aim to address this problematic
by providing a fully working prototype of a framework consisting of an FPGA
implementing a highly efficient NTT accelerator and SEAL library running on
a CPU.

Our Contribution Our contributions in this paper are listed as follows:

– We present a novel FPGA implementation of a fast and highly parallelized
NTT-based polynomial multiplier architecture. We introduce several opti-
mizations for the NTT operations. For efficient modular arithmetic, we em-
ploy lazy reduction techniques as explained in [30]. We also slightly mod-
ify the NTT operation loops in order to be able to efficiently parallelize
NTT computations. Since input-output (I/O) operations are as important
as NTT operations running on the FPGA, instead of achieving the fastest
NTT implementation possible on the target FPGA, we focus on a balanced
performance between the NTT and I/O operations on the FPGA. Also, since
our implementations are targeting crytptographic applications, for security
NTT hardware is designed to run in constant time for every possible input
combination.



– We propose a framework including a high performance FPGA device, which
is connected to a host CPU. Our proposed framework interfaces the CPU
and the FPGA via a fast PCIe connection, achieving a 3̃2Gbps half-duplex
I/O speed. For proof of concept, we accelerate Number Theoretic Transform
(NTT) operations that are heavily utilized in SEAL for large degree poly-
nomial multiplications. Every time an NTT function is invoked by SEAL,
the computation is offloaded to the FPGA device via the fast PCIe connec-
tion. Our design utilizes 1024-degree polynomials to achieve 128-bit security
level. With our approach, latency of NTT operation is improved by almost
11x with about a 17% utilization of the VIRTEX-7 resources1. With careful
pipelining, I/O operations can be overlapped with actual NTT computations
on hardware and additional 3x throughput performance can be achieved for
pure NTT operations.

– We introduce a novel modular multiplier architecture for any NTT-friendly
prime modulus, which provides comparable time performance to those using
special primes.

– As the accelerator framework provides a simple interface and supports a
range of modulus lengths for polynomial coefficients it can easily be config-
ured for use with other FHE libraries relying on ring learning with errors
(ring LWE) security assumption.

2 Background

In this section we give definition of the FV scheme as presented in [11] and
arithmetic operations utilized in this scheme.

2.1 FV Homomorphic Encryption Scheme

In [11], the authors present an encryption scheme based on Ring Learning with
Errors (RLWE) problem [19]. The RLWE problem is simply a ring based version
of the LWE problem [24] and is formulated as follows in [19].

Definition 1. Decision-RLWE: For security parameter λ, let f(x) be a cyclo-
tomic polynomial Φm(x) with deg(f) = ϕ(m) depending on λ and set R =
Z[x]/(f(x)). Let q = q(λ) ≥ 2 be an integer. For a random element s ∈ Rq and

a distribution χ = χ(λ) over R, denote with A
(q)
s,χ, the distribution obtained by

choosing a uniformly random element a ← Rq and a noise term e ← χ and
outputting (a, [a · s+ e]q). The Decision−RLWEd,q,χ problem is to distinguish

between the distribution A
(q)
s,χ and the uniform distribution U(R2

q).

The above decision problem leads to the following encryption scheme as de-
scribed in [19]. Let the plaintext and ciphertext spaces taken as Rt and Rq,
respectively, for some integer t > 1. Let ∆ = bq/tc and denote with rt(q) = q

1 Although 22% of the BRAM primitives are utilized, most of them are used for
precomputed constants.



mod t. Then we have q = ∆ · t+ rt(q). We remark that q nor t have to be prime,
nor that t and q have to be coprime. Let b.e and [.]q represent round to nearest

integer and the reduction by modulo q operations, respectively. Let a
$←− S rep-

resents that a is uniformly sampled from the set S. Secret key generation, public
key generation, encryption and decryption operations described in Textbook-FV
are shown below.

– SecretKeyGen: s
$←− R2.

– PublicKeyGen: a
$←− Rq and e← χ.

(p0, p1) = ([−(a · s+ e)]q, a)

– Encryption: m ∈ Rt, u
$←− R2 and e1, e2 ← χ.

(c0, c1) = ([∆ ·m+ p0 · u+ e1]q, [p1 · u+ e2]q)

– Decryption: m ∈ Rt

m = [b tq [c0 + c1 · s]qe]t

2.2 Number Theoretic Transform

One of the high level fundamental operations in the FV scheme is the multipli-
cation of two polynomials of very large degrees. Recently, there has been many
publications in literature about multiplication of two large degree polynomials
and the NTT-based multiplication schemes which provide the most suitable al-
gorithms for efficient multiplication of large degree polynomials. In this work,
we utilize the iterative NTT scheme shown in Algorithm 1 as shown in [26].

2.3 Modular Arithmetic

NTT arithmetic involves a large amount of modular addition, subtraction and
multiplication operations. For efficient modular arithmetic operations, we em-
ploy techniques discussed in [30]. In this section we present hardware-friendly
constant-time modular arithmetic algorithms. For the rest of the section, we as-
sume a K-bit modulusM . Our modular arithmetic operations compute numbers
in the range [0, 2K − 1], instead of [0,M − 1].

Modular Addition A hardware-friendly constant-time partial modular addi-
tion operation is shown in Algorithm 2. Assume largest values for A and B are
2K − 1, and smallest value for M is 2K−1 + 1.

Amax +Bmax = (2K − 1) · 2 = 2K+1 − 2 (1)

Amax +Bmax −Mmin = (2K − 1) · 2− (2K−1 + 1) = 3 · 2K−1 − 3 (2)



Input: Polynomial a(x) ∈ Zq[x] of degree n − 1, primitive n-th root of unity ω ∈
Zq, q ≡ 1 mod 2n

Output: Polynomial a(x) =NTT(a) ∈ Zq[x]
1: a←BitReverse(a)
2: for i from 2 by 2i to n do
3: ωi ← ω

n/i
n , ω ← 1

4: for j from 0 by 1 to i/2− 1 do
5: for k from 0 by i to n− 1 do
6: U ← a[k + j]
7: V ← ω · a[k + j + i/2]
8: a[k + j]← U + V
9: a[k + j + i/2]← U − V
10: end for
11: ω ← ω · ωi

12: end for
13: end for
14: return a

Algorithm 1: Iterative Number Theoretic Transform

Amax +Bmax − 2 ·Mmin = (2K − 1) · 2− (2K−1 + 1) · 2 = 2K − 4 (3)

Results of equation 1 and equation 2 are K + 1-bit numbers, and result of
equation 3 is a K-bit number. This shows that after an addition operation, at
most 2 subtraction operations are required to reduce the result of the addition
operation back to K bits. Therefore, in Algorithm 2, the result C is guaranteed
to be a K-bit number. As can be seen, Algorithm 2 is built to be a constant-time
operation.

Input: A,B,M (K–bit positive integers)
Output: C ≡ A+B mod M (K–bit positive integer)
1: T1 = A+B
2: T2 = T1−M
3: T3 = T1− 2 ·M
4: if (T2 < 0) then
5: C = T1
6: else if (T3 < 0) then
7: C = T2
8: else
9: C = T3
10: end if

Algorithm 2: Modular Addition Algorithm

Modular Subtraction For efficiency, we use partial modular subtraction op-
erations, instead of full modular subtraction. Our algorithm is shown in Algo-



rithm 3. Assume A is 0, largest value for B is 2K − 1, and smallest value for M
is 2K−1 + 1.

Amin −Bmax = 0− (2K − 1) = −2K + 1 (4)

Amin −Bmax +Mmin = −2K + 1 + (2K−1 + 1) = −2K−1 + 2 (5)

Amin −Bmax + 2 ·Mmin = −2K + 1 + 2 · (2K−1 + 1) = 3 (6)

Results of equation 4 and equation 5 are negative numbers, and result of
equation 6 is a K-bit positive number. This shows that after a subtraction oper-
ation, at most 2 addition operations are required to guaranteed a positive result.
Therefore, in Algorithm 3, the result C is guaranteed to be a positive K-bit
number. As can be seen, Algorithm 3 is built to be a constant-time operation.

Input: A,B,M (K-bit positive integers)
Output: C ≡ A−B mod M
1: T1 = A−B
2: T2 = T1 +M
3: T3 = T1 + 2 ·M
4: if (T2 < 0) then
5: C = T3
6: else if (T1 < 0) then
7: C = T2
8: else
9: C = T1
10: end if

Algorithm 3: Modular Subtraction Algorithm

Modular Multiplication For our entire hardware, we utilized Montgomery
Reduction algorithm [20], for reasons explained in Section 3. Word-level version
of the Montgomery Reduction Algorithm is shown in Algorithm 4. As can be
seen from the algorithm, Montgomery Reduction is a constant-time operation.

3 NTT Multiplier Architecture

In this section, design techniques used for an efficient and scalable NTT multi-
plier is explained. For proof of concept design, we chose to implement a 1024-
degree polynomial multiplication architecture targeting a 128-bit security level.
For the rest of the paper, n denotes the degree of the polynomial, q denotes
the prime used as modulus. Instead of fixing the modulus size and the modulus,
we implemented a scalable architecture supporting modulus lenghts between 22
and 32 bits. Our techniques can easily be extended and optimized for fixed-
length moduli. Our modular multiplier works for all NTT-friendly primes with
the property q ≡ 1 mod 2n, as shown in Algorithm 4.



Input: C = A ·B (a 2K-bit positive integer)
Input: M (a K-bit positive integer)
Input: mu (w-bit positive integer mu = −M−1mod2w, w <= K)
Output: Res = C ·R−1 mod M where R = 2K+w mod M
1: L = dK/we
2: T1 = C
3: for i from 0 to L− 1 do
4: T2 = T1 mod 2w

5: T3 = (T2 ·mu) mod 2w

6: T1 = b(T1 + (T3 ·M))/2wc
7: end for
8: T4 = T1−M
9: if (T4 < 0) then
10: Res = T1
11: else
12: Res = T4
13: end if

Algorithm 4: Word-Level Montgomery Reduction Algorithm

3.1 Core Multiplier

To optimize large polynomial multiplications for FV scheme, a fast and efficient
modular multiplier needs to be designed and utilized. In this work, we designed
a Modular Multiplier utilizing Montgomery Reduction techniques with a lazy
reduction approach as explained in [30]. Our Modular Multiplier Architecture is
optimized for modulus lengths between 22 and 32 bits.

We designed a 32-bit multiplier as shown in Figure 1. Since we are target-
ing and FPGA architecture, we used 16-bit core multipliers, because of DSP
size limitations. On Spartan-6 Architectures, DSP slices include 18-bit signed
multipliers and on Virtex-7 Architectures, DSP slices include 18x25-bit signed
multipliers. To follow literature, we chose to implement our multiplier for both
architectures, therefore we picked a core multiplier length of 16 bits.

Our NTT architecture is fully pipelined, therefore pipeline registers shown
in 1 does not affect the throughput of the overall architecture in terms of clock
cycles, improving the overall performance in terms of seconds significantly.

3.2 Modular Reduction

After a 32-bit multiplication operation, the result needs to be reduced back to the
bit-length of the modulus. For a scalable architecture, we modified Algorithm 4
to achieve a fast and efficient modular reduction operation. For efficiency, we
utilize the property:

q ≡ 1 mod 2n (7)

Any NTT-friendly prime q with this property can be written as:

q = qH · 2log22n + 1 (8)



B[31:16]

A[31:16]

B[15:0]

A[31:16]

B[31:0]

A[31:0]

C[63:0]

Multiplier

16x16

Multiplier

16x16

16x16

Multiplier

Multiplier

16x16

A[15:0]

B[15:0]

A[15:0]

B[31:16]

32x32 Multiplier

Adder

Tree

Fig. 1. 32-bit Multiplier



For our proof of concept design, n = 1024 and log22n = 11, which yields:

q = qH · 211 + 1 (9)

For Montgomery Reduction operation, if we select word size w = 11,

mu = −q−1mod 211 ≡ −1 mod 211 (10)

Utilizing this property, we rewrite Montgomery Reduction as shown in Algo-
rithm 5.

Input: C = A ·B (a 2K-bit positive integer, 44 ≤ K ≤ 64)
Input: q (a K-bit positive integer, q = qH · 211 + 1)
Output: Res = C ·R−1 mod M where R = 233 mod M
1: T1 = C
2: for i from 0 to 2 do
3: T1H = T1 >> 11
4: T1L = T1 mod 211

5: T2 = 2′s complement of T1L
6: carry = T2[10] OR T1L[10]
7: T1 = T1H + (qH · T2) + carry
8: end for
9: T4 = T1− q
10: if (T4 < 0) then
11: Res = T1
12: else
13: Res = T4
14: end if

Algorithm 5: Word-Level Montgomery Reduction algorithm modified for NTT-
friendly primes

Flow of operations for Algorithm 5 is shown in Figure 2.

To guarantee that one subtraction at the end of Algorithm 5 is enough,
K < (3 ∗ 11) needs to be satisfied. For K < (2 ∗ 11), 2 iterations are required
instead of 3. Our algorithm can easily be modified to scale for other n. For
example, for n = 2048, w = 12 and for a modulus of length (4∗12) < K < (5∗12),
5 iterations are required. For n = 4096, w = 13 and for a modulus of length
(4 ∗ 13) < K < (5 ∗ 13), 5 iterations are required.

Hardware design for Algorithm 5 is shown in Figure 3. Calculation of car-
ryin1, carryin2 and carryin3 signals is not shown in the Figure, it can easily be
extracted from Algorithm 5, Step 6. XY + Z is a multiply-accumulate opera-
tion, which can be realized using DSP blocks inside the FPGA. Each DSP slice
has an optional output register, which can be utilized as the pipeline register,
eliminating the need to utilize FPGA fabric registers for pipelining.
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3.3 NTT Unit

To achieve optimized performance for NTT computations, we modified the it-
erative NTT algorithm that was shown in Algorithm 1. Our optimizations are
based on modifications shown in [16]. Iterative NTT algorithm that we utilized
is shown in Algorithm 6.

Input: Polynomial a(x) ∈ Zq[x] of degree n− 1, primitive n-th root of unity ω ∈ Zq,
primitive 2n-th root of unity ψ ∈ Zq, N = 2n

Output: Polynomial a(x) =NTT(a) ∈ Zq[x]
1: curr ψ = 1
2: for i from 0 by 1 to N − 1 do
3: a[i] = a[i] · curr ψ
4: curr ψ = curr ψ · ψ
5: end for
6: for i from 1 by 1 to n do
7: m = 2n−i

8: for j from 0 by 1 to 2i−1 − 1 do
9: t = 2 · j ·m
10: for k from 0 by 1 to m− 1 do
11: curr ω = ω[2i−1k]
12: U ← a[t+ k]
13: V ← a[t+ k +m]
14: a[t+ k]← U + V
15: a[t+ k +m]← ω · (U − V )
16: end for
17: ω ← ω · ωi

18: end for
19: end for
20: return a

Algorithm 6: Modified Iterative Number Theoretic Transform

It should be noted that this NTT operation is not a complete NTT operation.
The resulting polynomial coefficients are not in correct order. We need to do a
permutation operation in order to be able to get a correct NTT result. However,
since we are in NTT domain and every operand that in the NTT domain will have
the same scrambled order, we can leave the result of this operation as it is without
doing the permutation. For polynomial multiplication, two polynomials will be
converted to NTT domain and their inner multiplication will be computed. This
operation will yield a result that is still in the same scrambled order.

After inner multiplication of operands in NTT form, we apply inverse NTT
operation to bring the operand back to its polynomial domain. With slight mod-
ifications to inverse NTT operations, we were able to reverse this scrambling of
NTT operands without any extra permutation operations, which yielded a lower
latency for NTT operations.



In order to realize the most inner loop of the nested for loops shown in
Algorithm 6, we designed an NTT unit, shown in Figure 4. Latency of this NTT
unit is 5 clock cycles.
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Since each polynomial has 1024 coefficients, we decided to utilize 64 of these
NTT units and 128 separate BRAMS to hold these coefficients. Each BRAM
holds 8 of the coefficients and since we are utilizing an in-place NTT algorithm,
after reading a coefficient from a BRAM, we only have 1024/128 = 8 clock cycles
to write back the computed result to its corresponding place. This requirement
forced us to design a datapath with at most 6 clock cycle latency. The reason
we designed a 5 clock cycle latency datapath is that adding a 6th pipe stage did
not improve frequency.

4 Simple Encrypted Arithmetic Library (SEAL)

Simple Encrypted Arithmetic Library (SEAL), which was developed by Cryptog-
raphy Research Group at the Microsoft Research, is a homomorphic encryption
library. It provides an easy-to-use homomorphic encryption library for people in
academia and industry.

SEAL uses FV homomorphic encryption scheme for homomorphic opera-
tions. Although SEAL uses FV scheme, it performs some operations, such as de-
cryption operation, slightly different than the operations described in Textbook-
FV. Secret key generation, public key generation, encryption and decryption
operations described in Textbook-FV are already descried in Section 2.1.

In this paper, the proposed work focuses on accelerating the encryption op-
eration in SEAL by implementing the forward/inverse NTT operations used for
large degree polynomial multiplications in encryption operation on FPGA. The
encryption and decryption operations in SEAL software are explained in detail
in the following subsections, 4.1 and 4.2.



4.1 Encryption

Encryption operation in SEAL is implemented the same as the encryption oper-
ation in Textbook-FV scheme as shown in Algorithm 7. For the rest of the paper,
a variable with a bar over its name represents a polynomial in NTT domain. For
example, u and u are the same polynomials in polynomial and NTT domains,
respectively. In SEAL, public keys, p0 and p1, are stored in NTT domain and
other polynomials used in encryption operation are stored in polynomial domain.
In SEAL, polynomials u, e1 and e2 are randomly generated for each encryption
operation. Since encryption operation requires polynomial multiplications of u
and public keys, p0 and p1, the generated u is transformed into NTT domain
using NTT operation. After the inner multiplication of u and public keys in NTT
domain, inverse NTT operation is applied to transform the results from NTT do-
main to polynomial domain. Finally, necessary polynomial addition operations
are performed to generate ciphertexts, c0 and c1.

Timing breakdown of the encryption operation in SEAL is shown in Table 1.
We performed encryption operation in SEAL 1000 times and obtained the total
time for each step for these 1000 operations. The average time for one encryption
operation in SEAL is 1.051 ms. As shown in the table, random number gener-
ation (RNG) and large degree polynomial multiplication form almost the all of
the encryption operation time. The average time for NTT-based large degree
polynomial multiplication in one encryption operation is 0.046 ms.

In this paper, NTT-based large degree polynomial multiplications in encryp-
tion operation are aimed to be accelerated using FPGA. The design and imple-
mentation of efficient RNG for FPGA are beyond the scope of this work and it
should be addressed as the future work.

Input: m ∈ Rt, p0, p1 ∈ Rq

Output: c0 = [∆ ·m+ p0 · u+ e1]q, c1 = [p1 · u+ e2]q

1: u
$←− R2

2: p0u, p1u = ntt double multiply (u, p0, p1)
3: e1 ← χ
4: e2 ← χ
5: c0 = p0u+ e1 +∆ ·m
6: c1 = p1u+ e2
7: return c0, c1
8:
9: function ntt double multiply(u, p0, p1)
10: u =NTT(u)
11: p0u = p0 · u
12: p1u = p1 · u
13: p0u =INTT(p0u)
14: p1u =INTT(p1u)
15: return p0u, p1u
16: end function

Algorithm 7: Encryption Implementation in SEAL [27]



Table 1. Timing of Encryption Algorithm in SEAL

Zq[x]/(x
1024 + 1), q=27-bit, t=8-bit, 128-bit security

Operation Time (µs) Percentage (%)

u← R2 163.6 15.6 %

ntt double multiply 46.4 4.4 %

e1 ← χ 419.7 39.9 %

e2 ← χ 418.4 39.8 %

Others 3.0 0.3 %

4.2 Decryption

Decryption operation described in Textbook-FV requires divide-and-round op-
eration as shown in 4. In order to avoid this costly operation, SEAL uses full
RNS variant of Textbook-FV for decryption operation [5].

Decryption operation in SEAL uses ciphertexts, secret key and a redundant
modulus γ ∈ Z. In SEAL, secret key, s, is stored in NTT domain and other poly-
nomials used in decryption operation are stored in polynomial domain. Since
decryption operation requires polynomial multiplication of c1 and secret key, s,
the ciphertext c1 is transformed into NTT domain using NTT operation. Af-
ter the inner multiplication of c1 and secret key in NTT domain, inverse NTT
operation is applied to transform the result from NTT domain to polynomial
domain. Then, c0 is added into the multiplication result and the resulting poly-
nomial is multiplied with scalar [γ · t]q in polynomial domain. An operation,
called Fast Base Conversion, is applied to convert polynomial in modulo q
to two polynomials in modulo γ and in modulo t. Finaly, the final scaling and
multiplication operations are performed to recover decrypted message m.

Timing breakdown of the decryption operation in SEAL is shown in Table 2.
We performed decryption operation in SEAL 1000 times and obtained the total
time for each step for these 1000 operations. The average time for one decryption
operation in SEAL is 0.067 ms.

Table 2. Timing of Decryption Algorithm in SEAL

Zq[x]/(x
1024 + 1), q=27-bit, t=8-bit, 128-bit security

Operation Time (µs) Percentage (%)

ntt multiply 29.3 43.5 %

ct = (c1s+ c0)[γt]q 4.4 6.5 %

fastbconv 14.8 21.9 %

Others 19.0 28.1 %



Input: c0, c1, s ∈ Rq, γ ∈ Z
Output: m ∈ Rt

1: c1s = ntt multiply (c1, s)
2: ct = (c1 · s+ c0)[γ · t]q
3: for m ∈ {t, γ} do
4: s(m) ← fastbconv(ct, q, {t, γ}) · | − q−1|m mod m
5: end for
6: for i = 0 to N do
7: if (s(γ)[i] > (γ/2)) then
8: s(γ)[i] = s(γ)[i]− γ
9: end if
10: m[i] = [s(t)[i]− s(γ)[i]]t
11: end for
12: m = [m · | − γ−1|]t
13: return m
14:
15: function ntt multiply(c1s)
16: c1 =NTT(c1)
17: c1s = c1 · s
18: c1s =INTT(c1s)
19: return c1s
20: end function
21: function fastbconv(x, q, β)
22: return (

∑k
i=1 |xi.

qi
q
|qi ·

q
qi
mod m)m∈β

23: end function

Algorithm 8: Decryption Implementation in SEAL [27]

5 The Proposed Design

In this section, we summarize the design techniques we used for our entire frame-
work and briefly explain our optimizations.

5.1 Hardware/Software Co-Design Framework

In order to be able to speed-up homomorphic encryption operations of the
SEAL library, we designed a proof-of-concept framework that includes SEAL
and an FPGA-based accelerator. To establish communication between the soft-
ware stack and the FPGA, we utilized RIFFA driver [15], which employs a PCIe
connection between the CPU and the FPGA. Resulting framework is shown in
Figure 5. Inside SEAL, there is a function:

ntt double multiply poly nttpoly

which is described as Perform NTT multiply (a∗b, a∗c) when b, c are already in
NTT domain. This function is invoked by the encryption function and it is used
to realize ntt double multiply operation as explained in Algorithm 7. In our
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Fig. 5. Hardware/Software Co-Design Framework

modified version of SEAL, this function sends its input data to the connected
FPGA and once FPGA returns the computed result, it returns this result to
its caller function. One important aspect of this communication is that, since
we utilized Direct Memory Access (DMA), necessary data is directly sent from
the memory to the FPGA, instead of bringing it to the CPU first. This way,
cache of the CPU is not trashed and running this function does not affect the
performance of other operations running on the CPU.

For this work, we are using Xilinx Virtex-7 FPGA VC707 Evaluation Kit
to realize our framework. This VC707 board includes a PCI Express x8 Gen2
Edge Connector (with a layout for Gen3). XILINX IP Core 7-Series Integrated
Block for PCI Express provides a 128-bit interface with a 250 MHz clock, which
provides a 4GB/sec bandwidth. As shown in Figure 5, separate FIFO structures
are utilized for data input from the RIFFA driver and data output to the RIFFA
driver. This approach is utilized to enable a pipelined architecture and maximize
performance. For our datapath, we are utilizing a 200 MHz clock to compensate
the long critical paths of our design. Although our design is optimized for 1024-
degree polynomials, it can easily be modified to realize multiplications for larger
degree polynomials.

5.2 Our Hardware

Overall design of our hardware is shown in Figure 6. This hardware employs 64
separate BRAMS for each precomputed parameter (ω, ω−1, Ψ , Ψ−1, Modulus)
and 128 separate BRAMS for input U. The multiplier in front of input U is
realizing curr ψ = curr ψ · ψ operation shown in Algorithm 6, as the input is
being received from the PCIe link. Therefore, that step of the algorithm does
not add any latency to overall NTT operations.

After the hardware computes the NTT of input U, it realizes inner multipli-
cation with P0 and performs inverse NTT on the result. After this operation,
the hardware realizes inner multiplication of NTT(U) with P1 and performs



Input: Polynomial U(x) ∈ Zq[x] of degree N−1, public key (P0, P1), primitive 2N -th
root of unity ψ ∈ Zq

Output: Polynomials U · P0, U · P1 ∈ Zq[x]
1: for i from 0 by 1 to N -1 do
2: U ψ[i] = U [i] · ψi

3: end for
4: U ψ =NTT(U ψ)
5:
6: for i from 0 by 1 to N -1 do
7: U ψ P0[i] = U ψ[i] · P0[i]
8: end for
9: U ψ P0 =INTT(U ψ P0)
10:
11: for i from 0 by 1 to N -1 do
12: U ψ P1[i] = U ψ[i] · P1[i]
13: end for
14: U ψ P1 =INTT(U ψ P1)
15:
16: for i from 0 by 1 to N -1 do
17: U P0[i] = U ψ P0[i] · (ψ−i ·N−1)
18: end for
19: for i from 0 by 1 to N -1 do
20: U P1[i] = U ψ P1[i] · (ψ−i ·N−1)
21: end for
22: return U P0, U P1

Algorithm 9: Operation Implemented in Our Design
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Table 3. Comparative table for SPARTAN-6 implementations

Work Scheme N q LUTs Slice DSP BRAM Period Latency
(ns) (µs)

[6]* SHE 1024 31-bit 10801 3176 0 0 5.150 40.988

[6]* SHE 1024 31-bit 6689 2112 4 8 4.154 33.094

[6]* SHE 1024 31-bit 2464 915 16 14 4.050 32.282

TW** FV 1024 32-bit 1208 556 14 14 4.727 37.674

* Uses fixed modulus.
** This work

inverse NTT on the result. After inverse NTT operations, necessary multiplica-
tions are also realized during the output stage of the overall operation as shown
in Algorithm 9.

6 Results and Comparison

In order to be able to present a fair comparison with the state of art in litera-
ture, the proposed NTT multiplier is first implemented on a Spartan-6 FPGA
(xc6slx100) using Verilog and implementation results are generated using Xilinx



Table 4. Device utilization of the proposed hardware

Total Used Used (%)

LUTs 303600 33875 11.16%

DFFs 607200 15690 2.58%

RAMB36E1s 1030 227.5 22.09%

DSP48E1s 2800 476 17.00%

Table 5. Comparative table

Work Scheme Platform N q LUT/ DSP BRAM Freq. Perf.
(bits) Gate (ms)

[10]* GH-FHE 90-nm TSMC 2048 64 26.7 M – – 666 MHz 7.750

[21] LTV VIRTEX-7 32k 32 219 K 768 193 250 MHz 0.152

[6]* RLWE SPARTAN-6 256 21 2829 4 4 247 MHz 0.006
SHE SPARTAN-6 1024 31 6689 4 8 241 MHz 0.033

[3]* HE SPARTAN-6 1024 17 – 3 2 – 0.100

[22] * HE SPARTAN-6 1024 30 1644 1 6.5 200 MHz 0.110

TW** FV VIRTEX-7 1024 32 33875 476 227.5 200 MHz 0.00125

* Uses fixed modulus.
** This work

ISE 14.7 with default synthesis option. This small version of our NTT multiplier
is designed to be as similar as possible to the one in [6]. The implementation
results are shown in Table 3. Our hardware has a clock cycle latency that is
almost identical to their design. These results show that our method requires
almost half the area with a comparable clock period. Therefore, our method can
easily be utilized for any design requiring a generic NTT-friendly prime modulus.

Although SPARTAN-6 family provides fast computations for polynomial
multiplication operations, they lack fast I/O infrastructure. Therefore, they are
not suitable for accelerator applications requiring high volume of data transfer.
From table 3, our hardware achieves 1/37.674µs = 26543 polynomial multipli-
cations per second. A 32-bit coefficient 1024-degree polynomial occupies 32Kbit
memory space. Assuming we only have to transfer one polynomial per multipli-
cation to the FPGA, to have a balanced pipelined design, a 829.4Mb/s I/O speed
is required, which achieves almost the same result as the CPU implementation.
In an accelerator setting, multiple polynomial multipliers need to be instantiated
inside the FPGA, which will create a heavy burden on I/O operations.

In our accelerator design, we developed the architecture described in Section 5
into Verilog modules and realized it using Xilinx Vivado 2018.1 tool for the
Xilinx Virtex-7 FPGA VC707 Evaluation Kit (XC7VX485T-2FFG1761). The
implementation results are summarized in Table 4. There is a plethora of works
reported in the literature about multiplication of two large degree polynomials
using NTT-based multiplication schemes [10], [21], [6], [3], [22]. Although some



of these works also perform different operations such as full encryption and full
decryption [10], we only reported the hardware and performance results for large
polynomial multiplication part of these works. The works in the literature and
the hardware proposed in this paper are reported in Table 5.

Since we target an efficient accelerator design, we implemented our archi-
tecture on an FPGA and obtained performance numbers on a real CPU-FPGA
heterogeneous application setting. Our XILINX VC707 board has a PCI Express
x8 gen2 Edge connector, which can achieve a theoretical 4GB/s connection speed
with a 250MHz clock. At this speed, sending a polynomial of degree 1024 with 32-
bit coefficients from the CPU to FPGA via DMA takes 1µ s (256 clock cycles).
In SEAL software, for encrypt operations, we replaced software-based NTT,
Inverse NTT and coefficient multiplication operations with hardware-based op-
erations. In this setting, a pure software implementation yields 46.4µs, and an
accelerator-based implementation, including I/O operations, yields 4.3µs latency
per polynomial multiplication, which is an almost 11x speedup.

For decryption operation, without pipelining, we achieved 1 + 1.25 + 1 =
3.25µs for decryption operation, where 1µs is spent for input, 1.25µs for poly-
nomail multiplication and another 1µs is spent for output. Compared to 29.3µs
software performance, we achieved a 9x acceleration. With careful pipelining,
overlapping I/O operations with actual polynomial multiplication computations,
and assuming one of the operands for the polynomial multiplication operation
is already inside the FPGA (a valid assumption for encrypt/decrypt operations
for homomorphic applications), we achieved a throughput of almost 800k for
degree-1024, 32-bit coefficient polynomial multiplications per second. Compared
to 1/29.3µs = 34129 polynomial multiplications per second, we achieved an al-
most 24x speedup over pure software implementation. Therefore, with pipelining,
our hardware can provide almost 3x performance compared to serial implemen-
tation.

7 Conclusion

In this paper, we present an optimized FPGA implementation of a novel, fast
and highly parallelized NTT-based polynomial multiplier architecture, which
is shown to be effective as an accelerator for lattice-based homomorphic cryp-
tographic schemes. To the best of our knowledge, our NTT-based polynomial
multiplier has the lowest latency in literature.

For proof of concept, we utilize our architecture in a framework for Fan-
Vercauteren (FV) homomorphic encryption scheme, adopting a hardware/soft-
ware co-design approach, in which NTT operations are offloaded to the accel-
erator while the rest of operations in the FV scheme are executed in software
running on an off-the-shelf desktop computer. We realized the framework on
an FPGA connected to the PCIe bus of an off-the-shelf desktop computer and
used it to accelerate the FV homomorphic encryption scheme. Our proposed
framework operates with SEAL, a homomorphic encryption library developed
by Cryptography Research Group at Microsoft Research, and accelerates the



encryption and decryption operations in SEAL. We used XILINX VC707 board
utilizing a XILINX VIRTEX-7 FPGA for our implementation. We improved the
latency of NTT-based large degree polynomial multiplications in encryption op-
eration by almost 11x compared to its pure software implementation. With care-
ful pipelining, overlapping I/O operations with actual polynomial multiplication
computations, and assuming one of the operands for the polynomial multiplica-
tion operation is already inside the FPGA (valid assumption for encrypt/decrypt
operations for homomorphic applications), we achieved a throughput of almost
800k for degree-1024, 32-bit coefficient polynomial multiplications per second.

In this paper, we showed that utilizing a mid-range FPGA as an accelerator
for SEAL is very promising for homomorphic encryption operations. Also, since
lattice-based cryptography is one of the prominent candidates for post-quantum
cryptography applications, our results can be profitably used for hardware im-
plementations of post-quantum cryptographic algorithms when high time per-
formance is required from both latency and throughput perspectives.

As future work, we plan to implement more time-consuming operations used
in encryption/decryption operation in SEAL such as RNG on the FPGA board.
Alternatively, NTT-based large-degree polynomial multiplications in all opera-
tions, not just in encryption, in SEAL can be performed on the FPGA device.
We strongly believe that this will lead to better speedup values for the overall
computation. Also, RIFFA framework can be modified to serve as a full-duplex
communication channel. Although full-duplex communication is not necessary
for SEAL library, it can be important for other applications.

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.O., Lepoint,
T.: Nfllib: Ntt-based fast lattice library. In: Sako, K. (ed.) Topics in Cryptology -
CT-RSA 2016. pp. 341–356. Springer International Publishing, Cham (2016)

2. Angel, S., Chen, H., Laine, K., Setty, S.: Pir with compressed queries and amor-
tized query processing. Cryptology ePrint Archive, Report 2017/1142 (2017),
https://eprint.iacr.org/2017/1142

3. Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient fpga imple-
mentations of lattice-based cryptography. In: 2013 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST). pp. 81–86 (June 2013).
https://doi.org/10.1109/HST.2013.6581570

4. Badawi, A.A., Veeravalli, B., Mun, C.F., Aung, K.M.M.: High-performance fv
somewhat homomorphic encryption on gpus: An implementation using cuda.
Transactions on Cryptographic Hardware and Embedded Systems 2018, 70–95
(2018). https://doi.org/10.13154/tches.v2018.i2.70-95

5. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full rns variant of fv like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) Se-
lected Areas in Cryptography – SAC 2016. pp. 423–442. Springer International
Publishing, Cham (2017)

6. Chen, D.D., Mentens, N., Vercauteren, F., Roy, S.S., Cheung, R.C.C., Pao, D.,
Verbauwhede, I.: High-speed polynomial multiplication architecture for ring-lwe
and she cryptosystems. IEEE Transactions on Circuits and Systems I: Regular
Papers 62(1), 157–166 (Jan 2015). https://doi.org/10.1109/TCSI.2014.2350431



7. Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic inhomomor-
phic encryption. In: Smart, N.P. (ed.) Topics in Cryptology – CT-RSA 2018. pp.
116–136. Springer International Publishing, Cham (2018)

8. de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient soft-
ware implementation of ring-lwe encryption. In: 2015 Design, Automation
Test in Europe Conference Exhibition (DATE). pp. 339–344 (March 2015).
https://doi.org/10.7873/DATE.2015.0378

9. Dai, W., Sunar, B.: cuhe: A homomorphic encryption accelerator library. In:
Pasalic, E., Knudsen, L.R. (eds.) Cryptography and Information Security in the
Balkans. pp. 169–186. Springer International Publishing, Cham (2016)

10. Doroz, Y., Ozturk, E., Sunar, B.: Accelerating fully homomorphic encryption
in hardware. IEEE Transactions on Computers 64(6), 1509–1521 (June 2015).
https://doi.org/10.1109/TC.2014.2345388

11. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/144

12. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford, CA,
USA (2009), aAI3382729

13. Gentry, C.: Fully homomorphic encryption using ideal lattices.
In: Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing. pp. 169–178. STOC ’09, ACM, New
York, NY, USA (2009). https://doi.org/10.1145/1536414.1536440,
http://doi.acm.org/10.1145/1536414.1536440

14. Halevi, S., Shoup, V.: Algorithms in helib. In: Garay, J.A., Gennaro, R. (eds.)
Advances in Cryptology – CRYPTO 2014. pp. 554–571. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

15. Jacobsen, M., Freund, Y., Kastner, R.: Riffa: A reusable integration frame-
work for fpga accelerators. In: 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines. pp. 216–219 (April 2012).
https://doi.org/10.1109/FCCM.2012.44

16. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) Cryptology and
Network Security. pp. 124–139. Springer International Publishing, Cham (2016)
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