
FSPVDsse: A Forward Secure Publicly Verifiable

Dynamic SSE scheme

Laltu Sardar1 and Sushmita Ruj1,2
1Indin Statistical Institute, Kolkata, India

2CSIRO Data61, Australia
E-mail: laltuisical@gmail.com, sushmita.ruj@csiro.au

Abstract

A symmetric searchable encryption (SSE) scheme allows a client (data
owner) to search on encrypted data outsourced to an untrusted cloud
server. The search may either be a single keyword search or a complex
query search like conjunctive or Boolean keyword search. Information
leakage is quite high for dynamic SSE, where data might be updated. It
has been proven that to avoid this information leakage an SSE scheme
with dynamic data must be forward private. A dynamic SSE scheme is
said to be forward private, if adding a keyword-document pair does not
reveal any information about the previous search result with that keyword.

In SSE setting, the data owner has very low computation and storage
power. In this setting, though some schemes achieve forward privacy with
honest-but-curious cloud, it becomes difficult to achieve forward privacy
when the server is malicious, meaning that it can alter the data. Verifiable
dynamic SSE requires the server to give a proof of the result of the search
query. The data owner can verify this proof efficiently. In this paper, we
have proposed a generic publicly verifiable dynamic SSE (DSSE) scheme
that makes any forward private DSSE scheme verifiable without losing
forward privacy. The proposed scheme does not require any extra storage
at owner-side and requires minimal computational cost as well for the
owner. Moreover, we have compared our scheme with the existing results
and show that our scheme is practical.

Keywords— Searchable encryption, Forward privacy, Verifiability, BLS signature,
Cloud computing.

1 Introduction

Data stored in untrusted servers is prone to attacks by the server itself. In order to
protect confiential infomation, clients store encrypted data. This makes searching on
data quite challenging. A searchable symmetric encryption (SSE) scheme enables a
client or data owner to store its data in a cloud server without loosing the ability to
search over them. When an SSE scheme supports update, it is called a dynamic SSE
(DSSE) scheme.

There are plenty of works on SSE as well as DSSE. Most of them considers the cloud
server to be honest-but-curious. An honest-but-curious server follows the protocol but
wants to extract information about the plaintext data and the queries. However, if
the cloud itself is malicious, it does not follow the protocol correctly. In the context of

1

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

search, it can return only a subset of results, instead of all the records of the search.
So, there is need to verify the results returned by the cloud to the querier. An SSE
scheme for static data where the query results are verifiable is called Verifiable SSE
(VSSE). Similarly, if the data is dynamic the scheme is said to be a verifiable dynamic
SSE (VDSSE).

There are single keyword search VSSE schemes which are either new constructions
supporting verifiability or design techniques to achieve verifiability on the existing
SSE schemes by proposing generic algorithm. VSSE with single keyword search has
been studied in [5], [7], [12]. In [20], [22] etc., VSSE scheme with conjunctive query
has been studied. Moreover, there are also works that gives VDSSE scheme for both
single keyword search ([13]) as well as complex query search including fuzzy keyword
search ([27]) and Boolean query ([9]). However, Most of them are privately verifiable.
A VSSE or VDSSE scheme is said to be privately verifiable if only querier, who receive
search result, can verify it. On the other hand, a VSSE or VDSSE scheme is said to
be publicly verifiable if any third party, including the database owner, can verify the
search result without knowing the content of it.

There is also literature on public verifiability. Soleimanian and Khazaei [18] and
Zhang et al. [25] have presented SSE schemes which are publicly verifiable. VSSE with
Boolean range queries has been studied by Xu et al. [23]. Though, their verification
method is public, since the verification is based over blockchain databases, it has extra
monetary cost. Besides, Monir Azraoui [1] presented a conjunctive search scheme that
is publicly verifiable. In case of dynamic database, publicly verifiable scheme by Jiang
et al. [9] supports Boolean Query and that by Miao et al. [13] supports single keyword
search.

However, file-injection attack [26], in which the client encrypts and stores files sent
by the server, recovers keywords from future queries, has forced researchers to think
about dynamic SSE schemes to be forward private where adding a keyword-document
pair does not reveal any information about the previous search result with that key-
word. In addition, in presence of malicious cloud server, the owner can outsource
the verifiabilty to a third party auditor to reduce its computational overhead. The
only forward private single keyword search VSSE scheme is proposed by Yoneyama
and Kimura [24]. However, the scheme is privately verifiable and the owner requires
significant amount of computation for verification.

1.1 Our Contribution

In this paper, we have contributed the followings in the literature of VSSE.

1. We have formally define a verifiable DSSE scheme. Then we have proposed a
generic verifiable SSE scheme (Ψs) which is very efficient and easy to integrate.

2. We have proposed a generic publicly verifiable dynamic SSE scheme (Ψf). Our
proposed scheme is forward private. This property is necessary to protect a
DSSE scheme from file injection attack. However, no previous publicly verifiable
scheme is forward private. In fact, only forward private scheme [24] is privately
verifiable.

3. We present formal security proofs for these schemes and shows that they are
adaptively secure in random oracle model.

Both of the schemes do not uses any extra storage, at owner side, than the embedded
schemes. Thus, for a resource constrained client, the schemes are very effective and
efficient.

In Table 1, we have compared our proposed schemes with existing ones.

2

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

Table 1: Different verifiable SSE schemes

Data Type static dynamic
Query Type single complex single complex
Verification private public private public private public private public

Schemes [5], [7], [17], [12], Ψs [18] [22], [11], [23] [18] [24], [3] [13], Ψf [27] [9]
Forward Private not applicable [24], Ψf

1.2 Organization

We have briefly described the works related to verifiable SSE in Section 2. We have
discussed the required preliminary topics in Section 3. In Section 4, we have presented
a generic approach of verifiable SSE scheme. In Section 5, we present our proposed
generic construction of publicly verifiable DSSE scheme in details. We have com-
pared its complexity with similar publicly verifiable schemes in Section 6. Finally, we
summaries our work in Section 7 with possible future direction of research.

2 Related Works

The term Searchable Symmetric Encryption is first introduced by Curtmola et al. [8]
where they have given formal definition of keyword search schemes over encrypted data.
Later, Chase et al. [6] and Liesdonk et al. [21] presented single keyword search SSE
for static database. Thereafter, as the importance of database updating is increased,
the work has been started on dynamic SSE. Kamara et al. [10] first have introduced
a dynamic single keyword search scheme based on encrypted inverted index. There
are remarkable works on single keyword search on dynamic database. However, file-
injection attack, by Zhang et al. [26] have forced the researchers to think about dynamic
SSE schemes to be forward private. It is easy to achieve forward privacy with ORAM.
However, due to large cost of communication, computation and storage, ORAM based
schemes are almost impractical.

In 2016 Bost [2] has presented a non-ORAM based forward private dynamic SSE
scheme. Later, few more forward private schemes have been proposed. Though, the
works [4], [19] etc. provide backward privacy, now we are not bother about it since
there is no formal attack on non-backward private DSSE schemes. Though, till now
there are no formal attack on non-backward private DSSE schemes, there are works [4]
and [19] that provide backward privacy. In most of the above mentioned schemes, the
cloud service providers are considered to be honest-but-curious. However, the schemes
fails to provide security in presence of malicious cloud server.

Chai and Gong [5] have introduced the first VSSE scheme. They stores the set
of document identifiers in a trie like data structure where each node corresponding to
some keyword stores identifiers containing it. Cheng et al. [7] have presented a VSSE
scheme for static data based on the secure indistinguishability obfuscation. Their
scheme also supports Boolean queries and provides publicly verifiability on the return
result. Ogata and Kurosawa [7] have presented a no-dictionary generic verifiable SSE
scheme. Cuckoo hash table is used here for this private verifiable scheme. With multi-
owner setting, Liu et al. [12] have presented a VSSE with aggregate keys. Miao et
al. [15] presented a VSSE in same multi-owner setting. However, all of the above
schemes were for static database and are privately verifiable where the VSSE schemes
by Soleimanian and Khazaei [18] and Zhang et al. [25] are publicly verifiable.

The above works are only for static data. There are few works also that deals with
complex queries when the data is static. Conjunctive query on static data has been
studied by Sun et al. [20], Miao et al. [16], Wang et al. [22], Li et al. [11], Miao et
al. [14] etc. These schemes have private verifiability. Boolean range queries on SSE
has been studied by Xu et al. [23]. Though, their verification method is public, since

3

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

the verification is based over blockchain databases it has good monetary cost. Besides,
Monir Azraoui [1] presented a conjunctive search that is publicly verifiable.

Dynamic verifiable SSE with complex queries also has been studied. Zhu et al. [27]
presented a dynamic fuzzy keyword search scheme which is privately verifiable and
Jiang et al. [9] has studied Publicly Verifiable Boolean Query on dynamic database.
Moreover, single keyword search scheme on dynamic data is described by Yoneyama
and Kimura [24], Bost et al. [3] etc.

A publicly verifiable SSE scheme is recently also proposed by Miao et al. [13].
Yoneyama and Kimura [24] presented a scheme based on Algebraic PRF which is
verifiable as well as forward private that performs single keyword search. However, the
scheme is privately verifiable and the owner requires significant amount of computation
for verification.

Our proposed scheme Ψf is generic forward private verifiable scheme which is
compatible with any existing forward private DSSE scheme. Our scheme also do not
use any extra owner-storage for verifiability and has minimal search time computation
for the owner.

3 Preliminaries

3.1 Cryptographic Tools

3.1.1 Bilinear Map

Let G and GT be two (multiplicative) cyclic groups of prime order q. Let G =< g >.
A map ê : G × G → GT is said to be an admissible non-degenerate bilinear map if–
a) ê(ua, vb) = ê(u, v)ab, ∀u, v ∈ G and ∀a, b ∈ Z (bilinearity) b) ê(g, g) 6= 1 (non-
degeneracy) c) ê can be computed efficiently.

3.1.2 Bilinear Hash

Given a bilinear map ê : G×G→ GT and a generator g, a bilinear hash H : {0, 1}∗ →
G maps every random string to an element of G. The map is defined as H(m) =
gm, ∀m ∈ {0, 1}∗.

3.1.3 Bilinear Signature (BLS)

Let ê : G×G→ GT be a bilinear map where |G| = |GT | = q, a prime and G =< g >. A
bilinear signature (BLS) scheme S=(Gen, Sign, Verify) is a tuple of three algorithms
as follows.• (sk, pk) ← Gen: It selects α

$←− [0, q − 1]. It keeps the private key sk = α.
publishes the public key pk = gα.

• σ ← Sign(sk,m): Given sk = α, and some message m, it outputs the signature
σ = (H(m))α = (gm)α where H : {0, 1}∗ → G is a bilinear hash.

• {0/1} ← Verify(pk,m, σ): Return whether ê(σ, g) = ê(H(m), gα)

3.2 System Model

In this section, we briefly describe the system model considered in this paper. In
our model of verifiable SSE, there are three entities–Owner, Auditor and Cloud. The
system model is shown in the Fig. 1. We briefly describe them as follows.

1. Owner: Owner is the owner as well as user of the database. It is considered
to be trusted. It builds an secure index, encrypts the data and then outsources
both to the cloud. Later, it sends encrypted query to the cloud for searching.
Therefore, it is the querier as well. It is the client who requires the service.

4

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

Figure 1: The system model

2. Cloud: Cloud or the cloud server is the storage and computation service
provider. It stores the encrypted data sent from the owner and gives result
of the query requested by it. The cloud is assumed to be malicious. It can
deviate from protocol by not only computing on, or not storing the data but
also making the querier fool by returning incorrect result.

3. Auditor: Auditor is an honest-but-curious authority which does not collude
with the cloud. Its main role is to verify whether the cloud executes the protocol
honestly. It tells the querier whether the returned result is correct or not.

3.3 Design Goals

Assuming the above system model, we aim to provide solution of the verifiability
problem of existing forward private schemes. In our design, we take care to achieve
the following objectives.

1. Confidentiality: The cloud servers should not get any information about the
uploaded data. On the other hand, queries should not leak any information
about the database. Otherwise the cloud may get knowledge about the plaintext
information.

2. Efficiency: In our model, the cloud has a large amount of computational power
as well as good storage. The owner is weak. So, in the scheme the owner
should require significantly small amount of computation and storage cost while
performing verifiability.

3. Scalability: Since, the owner have to pay for the service provided by the cloud,
it is desirable to outsource as much data as possible. The owner should capable
to outsource large amount of data to the cloud. On the other hand, the cloud
should answer the queries fast using less computation power.

4. Forward privacy: It is observed previously that a DSSE scheme without for-
ward privacy is vulnerable to even honest-but-curious adversary. So, our target
is to make a publicly verifiable DSSE scheme without loosing its forward privacy
property.

3.4 Definitions

Let W be a set of keywords. D be the space of document identifiers and DB be the
set of documents to be outsourced. Thus, DB ⊆ D. For each keyword w ∈ W, the set
of document identifiers that includes w is denoted by DB(w) = {idw1 , idw1 , . . . , idwcw},
where cw = |DB(w)| and idwi ∈ DB. Thus,

⋃
w∈W

DB(w) ⊆ DB. Let DB = {cid : id ∈

D} where cid denotes the encrypted document that has identifier id.

5

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

We assume that there is a one-way function H ′ that maps each identifier id to
certain random numbers. These random numbers is used as document name corre-
sponding to the identifier. The function is can be computed by both the owner and
cloud. However, from a document name, the identifier can not be recovered. Through-
out, we use identifiers. However, when we say cloud returns documents to the owner,
we assume the cloud performs the function on every identifiers before returning them.

Let, H : {0, 1}∗ → {0, 1}λ be a cryptographic hash function, H be a bilinear hash,
R : {0, 1}∗ → {0, 1}∗ be a PRNG and F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a HMAC.
A stateful algorithm stores its previous states and use them to compute the current
state.

3.5 Verifiable Dynamic Searchable Symmetric Encryption
(VDSSE)

An SSE scheme allows a client to outsource a dataset it owns to a cloud service
provider in encrypted form without loosing the ability to perform query over the
data. The most popular query is the keyword search where the dataset is a collection
of documents. The client can retrieve partial encrypted data without revealing any
meaningful information to the cloud. Throughout we take query as single keyword
search query.

A dynamic SSE (DSSE) scheme is a SSE scheme that supports updates. A Ver-
ifiable DSSE (VDSSE) scheme is a DSSE scheme together with verifiability. The
verification can be done either by an external auditor or the owner. The primary rea-
son to bring a auditor is to reduce computational costs of verifiability at owner-side.
This allows an owner to be lightweight.

Though a VDSSE scheme supports update, we do not verify whether the cloud
updates the database correctly or not. We only want to get the correct result with
respect to current state of the database. If cloud updates the database incorrectly,
it can not give the actual result. Due to verifiability, it will be failed in verification
process to the auditor. We define a verifiable DSSE scheme formally as follows.

Definition 1 (Verifiable Dynamic SSE). A verifiable dynamic SSE (VDSSE) scheme
Ψ is a tuple (VKeyGen, VBuild, VSearchToken, VSearch, VUpdateToken, VUpdate) of
algorithms defined as follows.

• K ← VKeyGen(1λ): It is a probabilistic polynomial-time (PPT) algorithm run by
the owner. Given security parameter λ it outputs a key K.

• (DB, γ) ← VBuild(K,DB): The owner run this PPT algorithm. Given a key
K and a set of documents DB, it outputs the encrypted set of documents DB
and an encrypted index γ.

• τs ← VSearchToken(K,w): On input a keyword w and the key K, the owner
runs this PPT algorithm to output a search token τs.

• (Rw, νw) ← VSearch(ts, γ): It is a PPT algorithm run by the cloud and the
auditor collaboratively that returns a set of document identifiers result Rw to the
owner with verification bit νw.

• τu ← VUpdateToken(K, id): It is a owner-side PPT algorithm that takes the key
K and a document identifier id and outputs a update token τu.

• (DB
′
, γ′)← VUpdate(τu, op, γ,DB): It is a PPT algorithm run by the cloud. It

takes an update token τu, operation bit op, the encrypted document set DB and
the index γ and outputs updated (DB

′
, γ′).

Computational Correctness A VDSSE scheme Ψ is said to be correct if ∀λ ∈ N, ∀K
generated using KeyGen(1λ) and all sequences of search and update operations on γ,
every search outputs the correct set of identifiers, except with a negligible probability.

6

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

Verifiability Note that, when we are saying a scheme is verifiable, it means that it
verifies whether the search result is from the currently updated state of the database
according to the owner. Verification does not include update of the database at cloud
side. For example, let an owner added a document with some keywords and the
cloud does not update the database. Later, if the owner searches with some keywords
present in the document and it should get the identifier of the document in the result
set. Then, the result can be taken as verified.

3.6 Security Definitions

We follow security definition of [18]. There are two parts in the definition– confi-
dentiality and soundness. We define security in adaptive adversary model where the
adversary can send query depending on the previous results. Typically, most of the
dynamic SSE schemes define its security in this model.

A DSSE, that does not consider verifiability, considers honest-but-curious (HbC)
cloud server. In these cases, The owner of the database allows some leakage on ev-
ery query made. However, it guarantees that no meaningful information about the
database are revealed other than the allowed leakages. Soundness definition ensures
that the results received form the cloud server are correct.

3.6.1 Confidentiality

Confidentiality ensures that a scheme does not give any meaningful information other
than it is allowed. In our model, we have considered the cloud to be malicious. How-
ever, the auditor is HbC. Since, verifiability has some monetary cost for the owner,
it wants verifiability only when it is required. Also the auditor does not have the
database and search ability. Given the proof, it only verifies the result. Thus, if the
scheme is secure from cloud, it is so from auditor. Again, we have assumed that the
cloud and the auditor do not collude. Hence, we do not consider the auditor in our
definition of confidentiality.

Definition 2 (CKA2-Confidentiality). Let Ψ = (VKeyGen, VBuild, VSearchToken,
VSearch, VUpdateToken) be a verifiable DSSE scheme. Let A, C and S be a stateful ad-
versary, a challenger and a stateful simulator respectively. Let L=(Lbld,Lsrch,Lupdt)
be a stateful leakage algorithm. Let us consider the following two games.

RealA(λ):

1. The challenger C generates a key K ← VKeyGen(1λ).

2. A generates and sends DB to C.

3. C builds (DB, γ)← VBuild(K,DB) and sends (DB, γ) it to A.

4. A makes a polynomial number of adaptive queries. In each of them, it sends
either a search query for a keyword w or an update query for a keyword-document
pair (w, id) and operation bit op to C.

5. C returns either a search token τs ← VSearchToken(K,w) or an update token
τu ← VUpdateToken(K, id) to A depending on the query.

6. Finally A returns a bit b that is output by the experiment.

IdealA,S(λ):

1. A generates a set DB of documents and gives it to S together with Lbld(DB).

2. S generates (DB, γ) and sends it to A
3. A makes a polynomial number of adaptive queries q. For each query, S is given

either Lsrch(w,DB) or Lupdt(op, w, id) depending on the query.

7

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

4. S returns, depending on the query q, to A either search token τs or update token
τu.

5. Finally A returns a bit b′ that is output by the experiment.

We say Ψ is L-secure against adaptive dynamic chosen-keyword attacks if ∀ PPT
adversary A, ∃ a simulator S such that

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]| ≤ µ(λ) (1)

where µ(λ) is negligible in λ.

3.6.2 Soundness

The soundness property ensures that if a malicious cloud tries to make the owner fool
by returning incorrect result it will be caught to the auditor. We define game-based
definition of soundness as follows.

Definition 3. Let Ψ be a verifiable DSSE scheme with Ψ = (VKeyGen, VBuild,
VSearchToken, VSearch, VUpdateToken). Let us consider the following game.

soundA,Ψ(λ):

1. The challenger C generates a key K ← VKeyGen(1λ).

2. A generates and sends DB to C.

3. C computes (DB, γ)← VBuild(K,DB) and sends (DB, γ) to A.

4. A makes a polynomial number of adaptive queries. In each of them, it sends
either a search query for a keyword w or an update query for a keyword-document
pair (w, id) and operation bit op to C.

5. C returns either a search token τs ← VSearchToken(K,w) or an update token
τu ← VUpdateToken(K, id) to A depending on the query.

6. After making polynomial number of queries, A chooses a target keyword w and
send search query to C.

7. C returns a search token τs. A executes and gets (Rw, νw) where νw = accept is
verification bit from C.

8. A generates pair (R∗w) for a keyword w and gets verification bit ν∗w = accept.

9. If ν∗w = accept even when R∗w 6= DB(w), A returns 1 as output of the game,
otherwise returns 0.

We say that Ψ is sound if ∀ PPT adversaries A, Pr[soundA,Ψ(λ) = 1] ≤ µ(λ).

8

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

4 Verifiable SSE with static data

Since, in a verifiable SSE scheme, there is no update, it does not have VUpdate or
VUpdateToken operation. We present a generic scheme that will make any SSE scheme
verifiable. Our target is to achieve verifiability, in presence of malicious server, without
loosing any other security property with minimal communication and computational
costs.

4.1 Issues with the existing verifiable SSE schemes

There are papers who considered static SSE schemes and suggested authentication tag
generation using MAC to protect the integrity of the search result. For each keyword
w, they generates a tag tagw = H(idw1 ||idw2 || . . . ||idwcw) where H is a one-way hash
function. Trivially, if the tags are stored at the owner side then the scheme becomes
privately verifiable. In that case, when a search is required, the owner can check
integrity after receiving the result from the cloud.

However, this integrity checking does not protect the SSE scheme from malicious
adversary if the tags are outsourced to the cloud. Checking integrity provides security
only from honest-but curious cloud servers. Let us consider an example. Suppose a
keyword w ∈ W is searched and cloud gets the result Rw = {idw1 , idw2 , . . . , idwcw , tagw}.
Later, if some other keyword w′ is searched, the cloud can return the same result and
will pass the integrity checking.

4.2 A generic verifiable SSE scheme without client storage

Since, it is desirable to outsource the data as well as tags to the cloud, the above
result shows that checking integrity in the above way can not be considered. It is easy
to see that the scheme with checking integrity of the result identifiers are not enough
because there is no binding of the keyword with the tags. Here, we present a generic
idea that makes any SSE scheme verifiable.

Scheme Description Let Σs = (KeyGen, Build, SearchToken, Search) be a re-
sult revealing static SSE scheme. We present a VSSE scheme Ψs=(VKeyGen, VBuild,
VSearchToken, VSearch) for static database as follows.

Let H be a one-way hash function and a key K′ is chosen at random. For
each keyword w ∈ W, a key kw = H(K′, w) is generated. kw is then used to
bind the keyword with corresponding tag tagw = H(kw||idw1 ||idw2 || . . . ||idwcw). Fi-
nally, for each keyword w, {idw1 , idw2 , . . . , idwcw , tagw} is encrypted at build phase.
Thus, while performing search with a keyword w, as search result, the owner receives
{id′w1 , id′w2 , . . . , id′wcw , tag

′
w}. The owner accepts it if the regenerated tag tag′w from the

received identifiers matched with the received one.
So, the main idea of the scheme is that instead of generating tags only with iden-

tifiers, they are bound with kw which is dependent on w and can be computed by
the owner only. After search, if the cloud returns incorrect set of document identifiers
then the tag won’t get matched. The scheme is shown in Fig. 2.

Note that, for static case, computing tag is enough to validate a result. Since,
one-way hash computation is very efficient and requires small amount of resource, we
do not consider any external authority like auditor for verifiability. So, the scheme is
privately verifiable.

Cost for verifiability The cloud storage is increased by |W| tags. However,
depending on the scheme the actual increment might be less than |W| tags but still it
is asymptotically O(|W|). The communication cost for verification is only increased

9

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

Ψs.VKeyGen(1λ)

1. KΣs ← Σs.KeyGen(1λ)

2. K ′ $←− {0, 1}λ

3. Return KΨs
= (K ′,KΣs

)

Ψs.VBuild(DB,KΨs)

1. (K ′,KΣs)← KΨs

2. for each w ∈ W

(a) kw ← H(K ′||w)

(b) tagw ←
H(kw||idw1 ||idw2 || . . . ||idwcw)

(c) DB′(w)← DB(w) ∪ {tagw}

3. DB′ ← ∪w∈WDB′(w)

4. (γ,DB)← Σs.Build(DB′,KΣs)

5. Return (γ,DB)

Ψs.VSearchToken(w,KΣs)

1. τΣs
← Σs.SearchToken(w,KΣs

)

2. Return τΣs

Ψs.VSearch(γ, τΣs
)

1. (K ′,KΣs)← KΨs

2. τΣs
← Σs.SearchToken(w,KΣs

)

3. Rw ← Σs.Search(γ, τΣs
)

4. kw ← H(K ′||w)

5. {id′w1 , id′w2 , . . . , id′wcw , tag
′
w} ←

Rw

6. tagw ←
H(kw||id′w1 ||id′w2 || . . . ||id′wcw)

7. Accept Rw if tag′w = tagw

Figure 2: Algorithm for generic verifiable SSE scheme Ψs

by one tag from cloud the owner. If we consider computation, to verify a search result,
the owner only has to compute a hash value which is very little.

Soundness In case the cloud does not want to perform search properly, then it
can not get the identifiers and corresponding tag. So, it has to send either random
identifiers or identifiers corresponding to other searched keyword. In both case, It
cannot be passed verifiability test to the owner.

Confidentiality The confidentiality of our proposed scheme follows from the se-
curity of the embedded SSE scheme.

5 Our Proposed Forward Secure Publicly Veri-
fiable DSSE scheme

In this section, we propose a simple generic dynamic SSE scheme which is forward
secure as well as verifiable. Let Σf = (KeyGen, Build, Search, SearchToken, Update,
UpdateToken) be a result revealing forward secure dynamic SSE scheme.

It is to be noted that any forward private SSE scheme stores the present state
of the database at client side. Corresponding to each keyword, most of them stores
the number of documents containing it. Let C = {cw : w ∈ W} be the list of such
numbers.

Since, it considers any forward secure scheme Σf , it only adds an additional en-
crypted data structure to make the scheme verifiable. The algorithms of Our proposed
scheme are given in Figure 3. They are divided into three phases– initialization, search
and update.

10

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

4 F. Author et al.

Ψf .VKeyGen(1λ)

1. KΣf ← Σf .KeyGen(1λ)

2. (sk, pk)← S.Setup(1λ)
3. Ks ← {0, 1}λ
4. Kt ← {0, 1}λ
5. Return KΨf = (Kt,Ks, sk, pk,KΣf)

Ψf .VBuild(DB,KΨf)

1. Tsig ← empty list of size |W|
2. for w ∈ W

(a) sw ← F (Ks, w); tagw ←
F (Kt, w)

(b) for i = 1 to cw(= |DB(w)|)
i. rwi ← R(sw||i);

ii. mw
i ← rwi .id

w
i mod q

iii. σwi ← S.Sign(sk,mw
i)

iv. poswi ← F (tagw, id
w
i ||i)

v. Tsig[pos
w
i]← σwi

3. (γ,DB)← Σf .Build(DB,KΣf)

4. Return (γ,DB, Tsig) to the cloud

Ψf .VSearchToken(w,KΨf)

1. (Kt,Ks, sk, pk,KΣf)← KΨf

2. τΣf ← Σf .SearchToken(w,KΣf)
3. tagw ← F (Kt, w);

4. τ
Ψf
s ← (τΣf , tagw)

5. Return τ
Ψf
s to cloud

Ψf .VSearch(γ, τ
Ψf
s)

Cloud:

1. Receive τΨf = (τΣf , tagw) from
Owner

2. {id′w1 , . . . , id′wc′w} ← Σf .Search(γ, τΣf)

3. for i = 1 to c′w
(a) poswi ← F (tagw, id

′w
i ||i)

(b) σ′
i ← Tsig[pos

w
i];

4. σ′ ←
∏c′w
i=1 σ

′
i

5. Rw ← {id′w1 , id′w2 , . . . , id′wc′w}
6. pfc ← σ′

7. Return pfc to auditor and Rw to
Owner

Owner:

1. Receives Rw
2. cw ← C[w]
3. If cw 6= c′w Return reject bit.
4. sw ← F (Ks, w)
5. for i = 1 to cw do

(a) rwi ← R(sw||i)
(b) mw

i ← id′wi .r
w
i mod q

6. m =
∑cw
i=1m

w
i mod q

7. Send pfo = m to the auditor

Auditor:
1. Receives pfo = m from owner and

pfc = σ′ from cloud
2. bv ← S.Verify(pk,m, σ′)
3. If bv = failure, Return reject

Ψf .VUpdateToken(KΨf , w, id)

1. τu ← Σf .UpdateToken(KΣf , w, id)
2. Return τu

Ψf .VUpdate(Ttag, γ, τu)

Owner:
1. {w1, w2, . . . , wnid} ∈ id
2. for i = 1 to nid

(a) τu ← Ψf .VUpdateToken(KΨf , wi, id)
∀i ∈ [cw]

(b) bv ← Σf .Update(γ, τu)
(c) if bv 6= succsess Return

3. for i = 1 to nid
(a) tagwi ← F (Kt, wi)
(b) cwi ← C[wi]
(c) sw ← F (Ks, w);
(d) r ← R(sw||(cwi + 1))
(e) m← id.r mod q
(f) σi ← S.Sign(sk,m)
(g) posi ← F (tagwi , id||(cwi + 1))
(h) C[w] = C[w] + 1

4. pos← {pos1, pos2, . . . , posnid}
5. σ ← {σ1, σ2, . . . , σnid}
6. send τ

Ψf
u = (pos, σ) to cloud

Cloud:
1. {pos1, pos2, . . . , posnid} ← pos
2. {σ1, σ2, . . . , σnid} ← σ
3. Tsig[posi]← σi, ∀i ∈ [nid]

Figure 3: Generic verifiable dynamic SSE scheme Ψf without extra client
storage

11

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

Initialization phase: In this phase, secret and public keys are generated by the owner
and thereafter the encrypted searchable structure is built. During key generation, three
types of keys are generated– KΣf for the Σf ; (sk, pk) for the bilinear signature scheme;
and two random strings Ks,Kt for seed and tag generation respectively.

Thereafter, a signature table Tsig is generated, before building the secure index γ
and encrypted database DB, to store the signature corresponding to each keyword-
document pair. For each pair (w, idwi), the position poswi = F (tagw, id

w
i ||i) is generated

with a HMAC F . The position is actually act as key of a key-value pair for a dictionary.
The document identifier is bounded with poswi together with tagw = F (Kt, w). The
tagw is fixed for a keyword and is given to the server to find poswi . The signature σwi
for the same pair is also bounded with random number rwi which can only be generated
from PRG R with the seed sw. Then (σwi , pos

w
i) pair is added in the table Tsig as

key-value pair. After the building process, the owner outsources γ, DB and Tsig to
the cloud.

Search Phase: In this phase, the owner first generates a search token τΣf to search
on Σf . Then, it regenerates tagw and the seed sw and then, sends them to the cloud.

The cloud performs search operation according to Σf and use the result identifiers
{id1, id2, . . . idc′w} to gets the position in Tsig corresponding to each pair. It is not able
to generate the positions if it does not search for the document identifiers. It collects
the signatures stored in those positions, multiplies them and sends multiplication result
to the auditor as its part pfc of the proof. It sends the search result to the owner.

The owner first generates random numbers {r1, r2, . . . rc′w} and regenerates aggre-

gate message m =
∑i=c′w
i=1 ri.id

w
i mod q of the identifiers and sends m to the auditor

as pfo, owner’s part of the proof. After receiving pfc and pfo, the auditor only com-
putes S.Verify(pk,m, σ′). It outputs accept if signature verification returns success.
We can see that the no information about the search results is leaked to the auditor
during verification.

Update Phase: In our scheme, while adding a document, instead of being up-
dated only a keyword-document pair, we assume that all such pairs corresponding
to the document is added. To add a document with identifier id and keyword set
{w1, w2, . . . , wnid}, the owner generates the position and the corresponding signature
for each containing keyword. The cloud gets them from the owner and adds them in
the table Tsig.

Correctness For correctness it is enough to check the following.

ê(H(m), pk) = ê(gm, gα) = ê(gα
∑
mi , g) = ê(

∏
gαmi , g) = ê(

∏
σi, g) = ê(σ, g)

Cost for verifiability We achieve, forward privacy as well as public verifiability
without client storage in Ψf . This increases the cloud-storage by O(N), where N is
the number of document-keyword pairs. The proof has two parts one from the client
and another from the owner. For a keyword w, the sizes of them are one group element
and one random λ-bit string only. Thus Auditor receives one element from both. The
owner has to compute Rw integer multiplication and addition, and then has to send
one element.

Forward privacy We can see that while adding a document, it only adds some
keyword-document pair, in the form of key-value pairs. So, During addition, the cloud
server is adding key-value pairs in the dictionary. From these pairs, it can not guess
the keywords present in it. Again, when it perform searches, it gets about the key
(i.e., position on the table) only when it gets the identifiers. The one possibility to
get the newly added key-value pair linked with the previous is if the added document
gives the identifier of it. Since, the one-way function H ′ gives the document-name of
the adding document, the cloud server can not linked it with the previously searched
keywords.

12

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

5.1 Security

The security of the scheme is shown in two parts– confidentiality and soundness.

Soundness The cloud server can cheat the owner in three ways by sending–

1. Incorrect number of identifiers– but it is not possible as the owner keeps the
number of identifiers.

2. Same size result of other keywords– m is generated with a random numbers
which can be generated only with the searched keyword and signatures are
bound with that. So, the signature verification will be failed.

3. Result with some altered identifiers– since signatures are bounded with keywords
and the random number, altering any will change m and similarly the signature
verification will be failed.

Thus the owner always will get the correct set of document identifiers.

5.1.1 Confidentiality

Let LΣf = (LΣf

bld,L
Σf

srch,L
Σf

updt) the leakage function of Σf . Let LΨf = (LΨf

bld ,L
Ψf

srch,L
Ψf

updt)
be the leakage function of Ψf , given as follows.

LΨf

bld(DB) = {LΣf

bld(DB), |Tsig|}

LΨf

srch(w) = {LΣf

srch(w), {(idwi , poswi , σwi) : i = 1, 2, . . . , cw}}

LΨf

updt(f) = {id, {(LΣf

updt(wi, id), poswi , σwi) : i = 1, 2, . . . , nid}}

We show that Ψ is LΨf -secure against adaptive dynamic chosen-keyword attacks in
the random oracle model, in the following theorem.

Theorem 1. If F is a PRF, R is a PRG and Σf is LΣf -secure, then Ψf is LΨf -secure
against adaptive dynamic chosen-keyword attacks.

Proof. To prove the above theorem, it is sufficient to show that there exists a simulator
SimΣf such that ∀ PPT adversary A, the output of RealA(λ) and IdealA,SimΣf

(λ) are

computationally indistinguishable.
We construct such a simulator SimΣf which adaptively simulates the extra data

structure Tsig and query tokens. Let SimΣf be the simulator of the Σf . We simulate
the algorithms in Figure 4.

Since, in each entry, the signature generated in Tsig is of the form gαmr and

corresponding entry in T̃sig is of the form gαr
′
, where r is pseudo-random (as R is so)

and r′ is randomly taken, we can say that power of g in both are indistinguishable.
Hence, Tsig and T̃sig are indistinguishable.

Besides, the indistinguishability of τ̃
Ψf
u , τ̃

Ψf
s with respect to τ

Ψf
s , τ

Ψf
u respectively

follows from the pseudo-randomness of F .

5.2 Deletion Support

Ψf can be extended to deletion support by duplicating it. Together with Ψf for
addition, a duplicate Ψ′f can be kept for deleted files. During search, the auditor
verifies both separately. The client gets result from both Ψf and Ψ′f , accepts only if
both are verified and gets the final result calculating the difference.

13

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE scheme 3

Simulating F We simulate R with a table RO.
Given (x, y), If RO[(x, y)] = ⊥, then do
RO[(x, y)] ← {0, 1}λ and return RO[(x, y)], else
return the existing value RO[(x, y)].

Simulating Build Leakage function is given by

LΨf

bld(DB) = {LΣf

bld(DB), |Tsig|}. Let Sbld be re-
turned by the simulator SimΣf

. Let us consider

a table T̃tag. For each keyword w it stores a ran-

dom λ-bit string. On input w, it returns t̃agw ←
T̃tag(w). SimΨf

keeps an extra table T̃ ′sig such that
it indicates whether the entry is queried or not.
The simulation is done as follows.

1. Take empty tables T̃sig and T̃ ′sig
2. For each i = 1 to i = |Tsig| do

(a) posi
$←− {0, 1}λ; r′i

$←− {0, 1}λ

(b) vali
$←− gr′i

(c) T̃sig[posi]← vali
(d) T̃ ′sig[posi]← 0

3. SimulateΣf with Sbld ← SimΣf
(DB)(LΣf

bld(DB))

4. return (Sbld, T̃sig) and keeps T̃ ′sig

Simulating Search token Leakage function for a

queried keyword w is given by LΨf

srch(w) =

{LΣf

srch(w), {(idwi) : i = 1, 2, . . . , cw}}.
We keep a table RO where (t̃agw, id, i) is the

key and pos is the value. Given search leakage cor-
responding to the keyword w, SimΨf

does the fol-
lowing things.

1. If T̃tag[w] is null, i.e, the keyword is searched
first time
(a) t̃agw

$←− {0, 1}λ
(b) T̃tag[w]← t̃agw
Else
(a) t̃agw ← T̃tag[w]

2. If RO[(t̃agw, id
w
i , i)] is not null,

(a) posi ← RO[(t̃agw, id
w
i , i)]

Else
(a) posi ← a random posi such that

T̃ ′sig[posi] = 0

(b) RO[(t̃agw, id
w
i , i)]← posi

(c) T̃ ′sig[posi]← 1

3. Simulate Σf with τ̃Σf
← SimΣf

(LΣf

srch(w))

4. return τ̃
Ψf
s = (τ̃Σf

, t̃agw)

Simulating Update token Leakage function to add
a document f with identifier id containing key-
word set {w1, w2, . . . , wnw} is given by

LΨf

updt(f) = {H ′(id), {(LΣf

updt(wi, id)) : i =
1, 2, . . . , nid}}.

1. For each keyword wi ∈ f
(a) τ̃ iu ← SimΣf

(LΣf

updt(w, id))

(b) If T̃tag[wi] is null, i.e, the keyword is
searched first time

i. t̃agwi

$←− {0, 1}λ

ii. T̃tag[wi]← t̃agw
Else

i. t̃agwi
← T̃tag[wi]

(c) cwi
← C[wi] + 1

(d) If RO[(t̃agwi
, id, (cwi

+ 1))] is not null,

i. p̃osi ← RO[(t̃agwi
, id, (cv + 1))]

Else
i. p̃osi ← a random posi such that

T̃sig[posi] is null

ii. RO[(t̃agwi
, id, (cwi

+ 1))]← p̃osi
iii. T̃ ′sig[posi]← 1

(e) σ̃i
$←− G

2. p̃os← {p̃os1, p̃os2, . . . , p̃osnid
}

3. σ̃ ← {σ̃1, σ̃2, . . . , σ̃nid
}

4. Return τ̃
Ψf
u = (p̃os, σ̃)

Figure 4: Simulation of build, search token and update token

14

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

6 Comparison with existing schemes

Our generic VSSE Ψs requires only one hash-value computation to verify a search
which is optimal. Again, during building, the owner requires 2|W| extra hash-value
computation twice of the optimal. We can take that much computation to protect the
scheme from malicious server without any extra client storage.

Table 2: Comparison of verifiable dynamic SSE schemes
Scheme Forward Public Extra Storage Extra Computation Extra Communication
Name privacy verifiability owner cloud owner cloud auditor owner auditor

Yoneyama and Kimura [24] X × O(|W|) O(|W|log|DB|) O(|Rw|) O(|Rw|) – O(1) –
Bost and Fouque [3] × × O(|W|) O(|W|) O(|Rw|) O(1) – O(1) –

Miao et al. [13] × X O(|W|) O(N + |W|) O(|Rw|) O(|Rw|) – O(1) –
Zhu et al. [27] × × O(1) O(1) O(|Rw|) O(|Rw|+N) – O(|Rw|) –
Jiang et al. [9] × X O(1) O(|W|) O(log |W|) O(|Rw|+N) – O(1) –

Ψf X X O(1) O(N) O(|Rw|) O(|Rw|) O(1) O(1) O(1)

Where N is the #keyword-doc pairs. Here extra storage is calculated over all
storage, extra communication and computation are for a single search.

We have compared our verifiable DSSE scheme Ψf with verifiable dynamic schemes
by Yoneyama and Kimura [24], Bost and Fouque [3], Miao et al. [13], Zhu et al. [27] and
Jiang et al. [9]. The comparison is shown in Table 2. From the table, it can be observed
that Ψf is very efficient with respect to low resource owner. Extra computation needed
by the owner, to verify the search, is only |Rw| multiplication which very less from the
others. The owner also does not require any extra storage than the built in forward
secure DSSE scheme.

7 Conclusion

Throughout, we have seen that we have successfully presented a privately verifiable
SSE scheme and a publicly verifiable DSSE scheme. Both of them are simple and
easy to implement. Moreover, the VDSSE scheme achieves forward secrecy. In both
of the scheme we have achieved our target to make efficient for low-resource owner.
Due to low computational and communication cost, we do need any auditor for VSSE.
However, presence of an auditor, who verifies the search result, reduces workload of
the owner. Our proposed schemes are only for single keyword search queries. There
are many other complex queries too. As a future work, one can design complex queried
verifiable DSSE scheme. On the other hand, while designing, keeping them forward
secret is also a challenging direction of research.

Acknowledgment

We would like to give special thanks to Shaikh Mamun Hoque who carefully reviewed
the draft and gave valuable comments toward improvement of the paper.

References

[1] Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva. Publicly
verifiable conjunctive keyword search in outsourced databases. In 2015 IEEE
Conference on Communications and Network Security, CNS 2015, Florence, Italy,
September 28-30, 2015, pages 619–627, 2015.

[2] Raphael Bost.
∑

oϕoς: Forward secure searchable encryption. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 1143–1154, 2016.

15

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

[3] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. Verifiable dynamic
symmetric searchable encryption: Optimality and forward security. IACR Cryp-
tology ePrint Archive, 2016:62, 2016.

[4] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward pri-
vate searchable encryption from constrained cryptographic primitives. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages
1465–1482, 2017.

[5] Qi Chai and Guang Gong. Verifiable symmetric searchable encryption for semi-
honest-but-curious cloud servers. In Proceedings of IEEE International Confer-
ence on Communications, ICC 2012, Ottawa, ON, Canada, June 10-15, 2012,
pages 917–922, 2012.

[6] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure.
In Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, pages 577–594, 2010.

[7] Rong Cheng, Jingbo Yan, Chaowen Guan, Fangguo Zhang, and Kui Ren. Veri-
fiable searchable symmetric encryption from indistinguishability obfuscation. In
Proceedings of the 10th ACM Symposium on Information, Computer and Commu-
nications Security, ASIA CCS ’15, Singapore, April 14-17, 2015, pages 621–626,
2015.

[8] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient constructions. In
Proceedings of the 13th ACM Conference on Computer and Communications Se-
curity, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages
79–88, 2006.

[9] Shunrong Jiang, Xiaoyan Zhu, Linke Guo, and Jianqing Liu. Publicly verifiable
boolean query over outsourced encrypted data. In 2015 IEEE Global Commu-
nications Conference, GLOBECOM 2015, San Diego, CA, USA, December 6-10,
2015, pages 1–6, 2015.

[10] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable
symmetric encryption. In the ACM Conference on Computer and Communica-
tions Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 965–976,
2012.

[11] Yuxi Li, Fucai Zhou, Yuhai Qin, Muqing Lin, and Zifeng Xu. Integrity-verifiable
conjunctive keyword searchable encryption in cloud storage. Int. J. Inf. Sec.,
17(5):549–568, 2018.

[12] Zheli Liu, Tong Li, Ping Li, Chunfu Jia, and Jin Li. Verifiable searchable en-
cryption with aggregate keys for data sharing system. Future Generation Comp.
Syst., 78:778–788, 2018.

[13] Meixia Miao, Jianfeng Wang, Sheng Wen, and Jianfeng Ma. Publicly verifiable
database scheme with efficient keyword search. Inf. Sci., 475:18–28, 2019.

[14] Yinbin Miao, Jianfeng Ma, Ximeng Liu, Qi Jiang, Junwei Zhang, Limin Shen,
and Zhiquan Liu. VCKSM: verifiable conjunctive keyword search over mobile
e-health cloud in shared multi-owner settings. Pervasive and Mobile Computing,
40:205–219, 2017.

[15] Yinbin Miao, Jianfeng Ma, Ximeng Liu, Junwei Zhang, and Zhiquan Liu. VKSE-
MO: verifiable keyword search over encrypted data in multi-owner settings. SCI-
ENCE CHINA Information Sciences, 60(12):122105:1–122105:15, 2017.

16

FSPVDsse Laltu Sardar and Sushmita Ruj December 24, 2019

[16] Yinbin Miao, Jianfeng Ma, Fushan Wei, Zhiquan Liu, Xu An Wang, and Cunbo
Lu. VCSE: verifiable conjunctive keywords search over encrypted data without
secure-channel. Peer-to-Peer Networking and Applications, 10(4):995–1007, 2017.

[17] Wakaha Ogata and Kaoru Kurosawa. Efficient no-dictionary verifiable searchable
symmetric encryption. In Financial Cryptography and Data Security - 21st Inter-
national Conference, FC 2017, Sliema, Malta, April 3-7, 2017, Revised Selected
Papers, pages 498–516, 2017.

[18] Azam Soleimanian and Shahram Khazaei. Publicly verifiable searchable symmet-
ric encryption based on efficient cryptographic components. Des. Codes Cryptog-
raphy, 87(1):123–147, 2019.

[19] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet
Vo, and Surya Nepal. Practical backward-secure searchable encryption from sym-
metric puncturable encryption. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 763–780, 2018.

[20] Wenhai Sun, Xuefeng Liu, Wenjing Lou, Y. Thomas Hou, and Hui Li. Catch you
if you lie to me: Efficient verifiable conjunctive keyword search over large dynamic
encrypted cloud data. In 2015 IEEE Conference on Computer Communications,
INFOCOM 2015, Kowloon, Hong Kong, April 26 - May 1, 2015, pages 2110–2118,
2015.

[21] Peter van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter H. Hartel, and Willem
Jonker. Computationally efficient searchable symmetric encryption. In Secure
Data Management, 7th VLDB Workshop, SDM 2010, Singapore, September 17,
2010. Proceedings, pages 87–100, 2010.

[22] Jianfeng Wang, Xiaofeng Chen, Shifeng Sun, Joseph K. Liu, Man Ho Au, and
Zhi-Hui Zhan. Towards efficient verifiable conjunctive keyword search for large
encrypted database. In Computer Security - 23rd European Symposium on Re-
search in Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7,
2018, Proceedings, Part II, pages 83–100, 2018.

[23] Cheng Xu, Ce Zhang, and Jianliang Xu. vchain: Enabling verifiable boolean
range queries over blockchain databases. CoRR, abs/1812.02386, 2018.

[24] Kazuki Yoneyama and Shogo Kimura. Verifiable and forward secure dynamic
searchable symmetric encryption with storage efficiency. In Information and
Communications Security - 19th International Conference, ICICS 2017, Beijing,
China, December 6-8, 2017, Proceedings, pages 489–501, 2017.

[25] Rui Zhang, Rui Xue, Ting Yu, and Ling Liu. PVSAE: A public verifiable search-
able encryption service framework for outsourced encrypted data. In IEEE In-
ternational Conference on Web Services, ICWS 2016, San Francisco, CA, USA,
June 27 - July 2, 2016, pages 428–435, 2016.

[26] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries
are belong to us: The power of file-injection attacks on searchable encryption.
In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., pages 707–720, 2016.

[27] Xiaoyu Zhu, Qin Liu, and Guojun Wang. A novel verifiable and dynamic fuzzy
keyword search scheme over encrypted data in cloud computing. In 2016 IEEE
Trustcom/BigDataSE/ISPA, Tianjin, China, August 23-26, 2016, pages 845–851,
2016.

17

	Introduction
	Our Contribution
	Organization

	Related Works
	Preliminaries
	Cryptographic Tools
	Bilinear Map
	Bilinear Hash
	Bilinear Signature (BLS)

	System Model
	Design Goals
	Definitions
	Verifiable Dynamic Searchable Symmetric Encryption (VDSSE)
	Security Definitions
	Confidentiality
	Soundness

	Verifiable SSE with static data
	Issues with the existing verifiable SSE schemes
	A generic verifiable SSE scheme without client storage

	Our Proposed Forward Secure Publicly Verifiable DSSE scheme
	Security
	Confidentiality

	Deletion Support

	Comparison with existing schemes
	Conclusion

