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ABSTRACT
In November 2018, the HomomorphicEncryption.org consortium
published the Homomorphic Encryption Security Standard. The
Standard recommends several sets of Learning with Errors (LWE)
parameters that can be selected by application developers to achieve
a target security level λ ∈ {128, 192, 256}. These parameter sets all
involve a power-of-two dimension n ≤ 215, an error distribution
of standard deviation σ ≈ 3.19, and a secret whose coefficients
are either chosen uniformly in Zq , chosen according to the error
distribution, or chosen uniformly in {−1, 0, 1}. These parameter
sets do not necessarily reflect implementation choices in the most
commonly used homomorphic encryption libraries. For example,
several libraries support dimensions that are not a power of two.
Moreover, all known implementations for bootstrapping for the
CKKS, BFV and BGV schemes use a sparse secret and a large ring
dimension such as n ∈ {216, 217}, and advanced applications such
as logistic regression have used equally large dimensions. This
motivates the community to consider widening the recommended
parameter sets, and the purpose of this paper is to investigate such
possible extensions. We explore the security of possible sparse-
secret LWE parameter sets, taking into account hybrid attacks,
which are often the most competitive in the sparse-secret regime.
We present a conservative analysis of the hybrid decoding and
hybrid dual attacks for parameter sets of varying sparsity, with
the goal of balancing security requirements with bootstrapping
efficiency. We also show how the methodology in the Standard
can be easily adapted to support parameter sets with power-of-two
dimensionn ≥ 216. We conclude with a number of discussion points
to motivate future improvements to the Standard.
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1 INTRODUCTION
Homomorphic Encryption [15, 29, 30] is a powerful tool enabling
computation on encrypted data. Many libraries, implementing a
variety of schemes, are available [28, 33, 39, 42, 43] and there are nu-
merous interesting applications [10], including privacy-preserving
machine learning [36]. The iDash competition [1] runs each year,
challenging participants to produce a privacy-preserving solution
using homomorphic encryption.

Motivated in part by the increasing commercial interest in homo-
morphic encryption, the HomomorphicEncryption.org consortium
have begun an effort to standardise both an API [17] and advice

on secure parameter selection. An important output of the con-
sortium is the Homomorphic Encryption Security Standard [19],
which recommends parameter sets achieving certain target security
levels.

The Homomorphic Encryption Security Standard focuses on
Learning with Errors (LWE) [44] based homomorphic encryption
schemes. Informally, LWE asks an adversary to recover s (resp. e)
from a noisy system of linear equations:

b = As + e mod q

where the entries of the public matrix A ∈ Zm×nq are each drawn
uniformly at random from Zq , the components of the secret vec-
tor s ∈ Znq are drawn from some secret distribution χs, and the
components of the error vector e ∈ Zmq are drawn from some error
distribution χe. Typically, χe is a Discrete Gaussian distribution
with standard deviation σ .

In the original definition, the secret distribution χs is taken to
be the uniform distribution on Znq . However, we can always trans-
form an LWE instance into one where the secret follows the error
distribution [9]. For error distributions such that σ = O (

√
n), there

are reductions from worst-case hard lattice problems to LWE [44].
In this setting, hardness results for a binary secret s ∈ {0, 1}n can
be obtained, at the cost of increasing the dimension [16]. However,
implementations of LWE-based homomorphic encryption schemes
typically choose a much narrower error for which these reduc-
tions would not apply. An early example [31] uses σ = 3.19, which
remains a popular choice today.

A commonly used tool to estimate security of LWE instances
is the LWE Estimator [6]. The Homomorphic Encryption Secu-
rity Standard specifies parameters (n,q,σ ) achieving a security
level λ ∈ {128, 192, 256} according to the LWE Estimator. The
Standard limits its consideration to power-of-two ring dimensions
n ∈ {1024, 2048, ..., 32768} and a fixed Discrete Gaussian error dis-
tribution χe with standard deviation σ = 3.19. For each dimension,
a specific modulus q is not given; rather, a bit-length logq is stan-
dardised, since only the size of q, and not its specific form, affects
security. For a given modulus q, the constraint on the error distribu-
tion can equivalently be expressed as fixing the parameter α = 8

q ,
where α is defined such that σ = αq

√
2π

.
The Standard allows for the secret distribution χs to be uniform

ternary, i.e. s is chosen uniformly at random from the set {−1, 0, 1}n ;
uniform, i.e. s is chosen uniformly at random from the set Znq ; or
error, i.e. each coefficient of s is sampled from the error distribution
χe. All major implementations of homomorphic encryption use a
binary or ternary secret distribution, with coefficients chosen from
{−1, 0, 1}. Moreover, many implementations use a sparse secret, for
which all but a certain Hamming weight h of the coefficients are
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zero. For example, HEAAN [39] uses by default a sparse ternary
secret of Hamming weight h = 64.

An important issue motivating the use of sparse secrets is the
complexity of bootstrapping. For the CKKS scheme [26], bootstrap-
ping can be implemented by evaluating a Chebyshev interpolant
in degree d = O (K + logq), for q the ciphertext modulus, and K
a constant depending on the secret distribution. This evaluation
requires O (

√
d ) ciphertext multiplications [20]. The heuristic argu-

ment of [24] shows that for a sparse ternary secret with Hamming
weighth we haveK = O (

√
h), while for a uniform ternary secret we

haveK = O (
√
n). In the case of the BGV scheme [14], bootstrapping

requires the evaluation of a circuit of depth log (∥s∥1)+ log t , where
∥s∥1 is the 1-norm of the secret and t is the plaintext modulus. This
evaluation requiresO (log3/2 ∥s∥1+log1/2 ∥s∥1 ·log t+log2 t ) cipher-
text multiplications [21]. For the BFV scheme [29], bootstrapping
requires the evaluation of a circuit of depth log (∥s∥1) + log log t
and requires O ((log ∥s∥1 + log t )1/2 log ∥s∥1) ciphertext multiplica-
tions [21]. For sparse ternary secret with Hamming weight h, we
have ∥s∥1 = h, whereas for a uniform ternary secret we expect
∥s∥1 = O (n). Current implementations for bootstrapping in CKKS,
BGV or BFV use sparse secrets for efficiency reasons [21, 24].

Sparse secret distributions are not currently supported in the
Homomorphic Encryption Security Standard. This is likely due to
the loss of security as compared to (e.g.) a uniform ternary secret
for a fixed set of LWE parameters (n,q,σ ). This loss is intuitive,
as we are shrinking the size of the keyspace. Moreover, several
additional attacks are known which can exploit the sparsity of
an LWE secret [3, 25, 35]. At a high level, all of these techniques
combine a combinatorial search in some dimension τ , followed by
solving a lattice problem in dimension (d−τ ). For sparse secrets, this
is typically more efficient than solving the original lattice problem
in dimension d .

Another way in which the recommended parameter sets in the
Homomorphic Encryption Security Standard do not always reflect
implementation choices is in the maximal supported dimension
n = 215. For example, many implementations of bootstrapping,
such as [20, 24, 34], choose ring dimension n = 216. In addition,
advanced applications of homomorphic encryption, such as logistic
regression training [37, 38], have been reported using dimension
n = 216 or n = 217.

1.1 Contribution and structure of paper
The above discussion motivates the homomorphic encryption com-
munity to consider widening the recommended parameter sets
to include parameter sets with a sparse secret, or parameter sets
for larger dimension n > 215, and in this paper we consider such
possible extensions. We stress that our goal is to spark this discus-
sion, and we do not endorse any specific parameter set we present.
In Section 2 we introduce necessary background. In Section 3 we
assess the impact on security and performance of using a sparse
ternary secret of Hamming weight h instead of a uniform ternary
secret, for various choices of h. In Section 4 we show how the
methodology of the Standard could be used to select parameters
with a larger power-of-two dimension n ≥ 216. In Section 5 we
raise a number of points intended to prompt further discussion and
highlight directions for future work.

2 BACKGROUND
Notation.We denote (column) vectors by lower case bold letters,
e.g a. Matrices are denoted by upper case bold letters, e.g A. We
denote the inner product of two vectors a and b of length d as
⟨a, b⟩ =

∑d
i=1 aibi . All logarithms are to the base two, unless stated

otherwise.

2.1 Lattice background
Lattices. A lattice Λ = Λ(B) is a discrete additive subgroup of Rd
generated by a basis B of linearly-independent integer vectors. The
rank of the lattice Λ(B) is defined to be the rank of B. If the rank
equalsd we say thatΛ is full-rank. The volume vol (Λ) of a full-rank
lattice Λ is the absolute value of the determinant of any basis of the
lattice. The ith successive minimum of a lattice, λi (Λ), is the radius
of the smallest ball centred at the origin containing at least i linearly
independent lattice vectors. The Gaussian heuristic states that the

length of a shortest lattice vector λ1 (Λ) ≈
√

d
2π e vol (Λ)

1/d .
Learning with Errors. The homomorphic encryption schemes

considered in this work all base their hardness on the Learning
with Errors problem (LWE).

Definition 2.1 (LWE [44]). Let n,q be positive integers, χ be a
probability distribution on Z and s be a secret vector in Znq . We
denote the LWE Distribution Ls, χ,q as the distribution on Znq × Zq
given by choosing a ∈ Znq uniformly at random, choosing e ∈ Z ac-
cording to χ and considering it as an element of Zq , and outputting
(a, ⟨a, s⟩ + e ) ∈ Znq × Zq .
Search-LWE is the problem of recovering the vector s from a collec-
tion {(ai ,bi )}mi=1 of samples drawn according to Ls, χ,q .
Decision-LWE is the problem of distinguishing whether samples
{(ai ,bi )}mi=1 are drawn from the LWE distribution Ls, χ,q or uni-
formly from Znq × Zq .

Lattice Reduction. To solve the Learning with Errors problem,
we may employ lattice reduction algorithms such as BKZ2.0 [23]
(BKZ). Lattice reduction algorithms take as input a (public) “long”
basis, and output a shorter, more orthogonal, basis which can be
used to find the LWE secret, or distinguish LWE samples from
random. The quality of the lattice reduction is characterised by
the root-Hermite factor δ , defined such that ∥b1∥ = δd · det(Λ)1/d ,
where b1 is the shortest vector in the output basis.

Following the Homomorphic Encryption Security Standard, we
only consider sieving-based cost models for BKZ. More precisely,
BKZ takes as input a (column) lattice basisB and its main subroutine
solves the Shortest Vector Problem (SVP) via a sieving algorithm
on projected sublattices of dimension β , where β is referred to as
the blocksize. In this work, we view BKZ as a black box which runs
in (pre-quantum) time:

TBKZ (β ,d ) = 20.292β+16.4+log(8d )

and, if instantiated with quantum algorithms to solve SVP, runs in
time:

TBKZ (β ,d ) = 20.265β+16.4+log(8d ) .

When given a basis B of dimension d , we assume that BKZ
outputs a basis following the Geometric Series Assumption.



On the Feasibility and Impact of Standardising Sparse-secret LWE Parameter Sets for Homomorphic Encryption

Definition 2.2 (Geometric Series Assumption (GSA) [45]). Let B =
{b1, b2, . . . , bd } be a basis of some lattice Λ, of quality δ , that is
output by BKZ. Then the lengths ∥b∗i ∥ for (1 ≤ i ≤ d ) of the Gram-
Schmidt vectors of this basis are approximated by ∥b∗i ∥ = α i−1∥b1∥
for some 0 < α < 1.

Using ∥b1∥ = δd · det(Λ)1/d and
∏
∥b∗i ∥ = det(Λ) we can deter-

mine the value α as α ≈ δ−2. We could alternatively use the BKZ
Simulator [22] to estimate output quality, but for homomorphic
encryption-style parameter sets we have β ≪ (m + n) and the
output of the BKZ Simulator is very close to the GSA.

2.2 Small and sparse secret LWE
Definition 2.3 specifies notation for some LWE secret distributions
of interest.

Definition 2.3 (Small Secret Distributions). Let n, q be positive in-
tegers. B− is the probability distribution on Znq where each compo-
nent is independently sampled uniformly at random from {−1, 0, 1}.
B+ is the probability distribution on Znq where each component is
independently sampled uniformly at random from {0, 1}.
B−h is the probability distribution on Znq where components are
sampled uniformly at random from {−1, 0, 1} with the additional
guarantee that exactly h components are non-zero.

The uniform ternary distribution is denoted by B−. The uniform
binary distribution is denoted by B+, and is used in the TFHE
library [28]. The HEAAN library [39] uses B−64, where the choice
h = 64 seems to originate from [31].

Keyspace size. The size of the keyspaceS when the LWE secret
is drawn uniformly at random from Znq is ∥S∥ = qn . When the
secret is drawn from B−, the size of the keyspace is ∥S∥ = 3n .
When the secret is drawn from B−h , we have ∥Sh ∥ =

(n
h

)
· 2h . In

Figure 1, we highlight the size of the keyspace for each h when
n = 1024. In this case, if h = 64 then the size of the keyspace is
≈ 2405, whereas if the secret is is drawn from B− then the size of
the keyspace is ≈ 21623.

Density. Keeping a fixed Hamming weight (e.g. h = 64) for a
variety of ring dimensions means that the density h/n of the secret
decreases as n grows. One approach to scaling sparse secrets is
to fix the density parameter κ = h

n . For example, we could con-
sider κ = 1

16 such that (n,h) ∈ {(1024, 64), (2048, 128), . . . }. This
follows the approach of several submissions to the ongoing NIST
post-quantum standardisation effort: for example, Lizard [27] uses
h = n

8 , i.e. κ =
1
8 . However, for larger ring dimensions used in ho-

momorphic encryption libraries, this approach can lead to a large
Hamming weight h. For example, for n = 32768, choosing κ = 1

16
would require h = 2048.

Another approach is to fix the ratio between the Hamming
weight h of the secret and the security parameter λ, that is fix
the value ζ , where ζ = h

λ . Using this approach, for each target se-
curity level λtarget, we would fix the value of the Hamming weight
h for every ring dimension n = 2k . For example, if ζ = 1, then for
a fixed security level λ we consider secrets of Hamming weight
h = λ. Such an approach means that the (theoretical) complexity
of bootstrapping would remain the same for each dimension n. In
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Figure 1: Example keyspace sizes with n = 1024 for fixed
Hamming weight ternary secrets (black line). The keyspace
sizes of uniform ternary secrets (blue dashed line), and uni-
form binary secrets (green dashed line), are provided for ref-
erence.

this work we consider the second approach, i.e. fixing the value of
ζ = h

λ . We consider ζ ∈ { 12 ,
3
4 , 1,

3
2 }.

2.3 Algorithms for solving LWE
The security of homomorphic encryption parameter sets is typi-
cally determined by considering the best known attacks. That is,
given an LWE parameter set (n,q,σ ) and a corresponding secret
distribution, we set λ to be the logarithm of the running time of the
fastest attack. Several tools are available to estimate the running
time of algorithms for solving LWE, the most popular being the
LWE Estimator of Albrecht et al. [6]. The current version of the
Homomorphic Encryption Security Standard [2] uses the LWE Esti-
mator to determine parameters, based on the running time of three
attacks: usvp, dec and dual. Hybrid attacks [25, 35] are typically
among the most competitive in the case of sparse secrets, although
they are not currently supported by the LWE Estimator.

Estimates for the primal decoding attack dec [40, 41] reported by
the LWEEstimator do not assume state-of-the-art techniques, hence
may be inaccurate and are often not competitive. More precisely, the
Estimator currently assumes the decoding attack is implemented
with the Nearest Planes algorithm [40] as opposed to the more
efficient pruned enumeration [41]. For this reason, we do not report
dec estimates in this work. We note that an accurate evaluation of
security against dec should be performed before standardising any
homomorphic encryption parameter sets.

In the remainder of this section we describe the four attacks that
we consider as part of this work, namely usvp, hybrid-dec, dual and



Benjamin R. Curtis and Rachel Player

hybrid-dual. We do not expect other algorithms for LWE (e.g. [11])
to be competitive in our setting.

Primal uSVP. The primal uSVP attack (usvp) [7, 13] solves
search LWE by finding a unique shortest vector in the lattice Λ(B)
where

B =


In 0 0
−A qIm b
0 0 1


.

Lattice reduction is performed on the basis B to find the unique
shortest vector (s, e, 1) in Λ(B). The blocksize β is chosen using
the success condition from [7], which was experimentally verified
in [5], in order to guarantee the success of the attack. This algorithm
has a combinatorial variant, in which τ components of s are guessed
as zero, and lattice reduction is performed in dimension (d − τ ).
The complexity of the usvp attack is therefore determined as

min
β,τ ,d

TBKZ (β,d )

pτ
.

In this paper, we estimate complexity of this combinatorial variant
of usvp using the LWE estimator1.

Hybrid decoding. The hybrid decoding attack (hybrid-dec) was
proposed by Howgrave-Graham [35] as an efficient attack on NTRU,
and can also be applied in the LWE setting [18, 32]. Given an LWE
sample (A,As + e) ∈ Zm×nq × Zmq , the main idea of hybrid-dec is
as follows. We split s into a guessing part and a decoding part as
s = (sд , sl ) ∈ Zrq × Zn−rq , and split A = (A1 | |A2) with A1 ∈ Zm×rq

and A2 ∈ Z
m×(n−r )
q . It can be verified that the lattice with basis

M =
(

Ir 0
−A1 M′

)
, whereM′ =

(
In−r 0
−A2 qIm

)
,

contains a lattice point which is separated by (sl , e) from the point
(0, b). Denote w = (wд ,wl ) where wд = sд and wl = (sl , e). We
can see that for some x ∈ Zm ,

w =
(

Ir 0
−A1 M′

)
·

(
wд
x

)
=

(
wд

−A1sд +M′x

)
=

(
wд
wl

)
Hence −A1sд is close to the lattice Λ(M′), the offset being the short
vector wl . If we can guess wд correctly, we can hope to recover wl
as the output of Babai’s Nearest Plane algorithm [12]. The guessing
part is sped up using a meet-in-the-middle process. Such a meet-
in-the-middle procedure also carries a probability of failure, which
we denote pmitm.

A recent analysis of the hybrid decoding attack can be found
in Wunderer’s thesis [47]. Wunderer’s analysis of hybrid-dec can
be applied to sparse-secret LWE parameter sets typically used in
homomorphic encryption2. However, in this paper, estimates of
hybrid-dec are obtained using a more conservative analysis than
Wunderer’s, generated using custom code3. We use a conservative
analysis as we focus only on parameter selection for security: this
approach mitigates against future improvements to attacks. Of
course, a more accurate estimation of the attack complexity might
be preferred in practice to ensure the smallest possible dimension
n can be chosen to maximise efficiency while retaining security.
1All estimates produced using the LWE Estimator in this document were obtained
with commit 3019847.
2Code and a preprint detailing the application are available at https://github.com/
rachelplayer/LatRedHybrid
3The code is available at https://github.com/bencrts/hybridattack

Our analysis for hybrid-dec is given under the following assump-
tions:
• The output basis-shape of lattice reduction is given by the
Geometric Series Assumption [45].
• The (heuristic) success probability of Babai’s Nearest Plane
algorithm follows the analysis in [47] and is given by:

pbabai ≈
∏

1≤i≤d

*
,
1 −

2
B ( d−12 ,

1
2 )

∫ 1

min(ri ,1)
(1 − t2) (d−3)/2 dt+

-
where d is the dimension of the lattice under consideration;
ri = ∥b∗i ∥/2∥v∥, where ∥v∥ is the (expected) norm of the
target vector; and B (·, ·) denotes the Beta function.
• The cost of running Babai’s Nearest Plane algorithm in a
lattice of dimension d is given by Tbabai = d2

21.06 .
• The meet-in-the-middle search phase provides a square-root
speed-up compared to an exhaustive search.
• The associated meet-in-the-middle probability is set to be
pmitm = 1, thus providing an explicit underestimate of secu-
rity.
• The meet-in-the-middle search phase has access to unlimited
memory.

Under these assumptions, the cost of hybrid-dec is given by:

min
β,τ ,d,t

TBKZ (β ,d − τ ) +
d2

21.06 ∥
∑t
i=0 Si ∥

p ·
∑t
i=0 pi

where β is the BKZ blocksize, d − τ is the dimension of the lattice
reduction, τ is the guessing dimension (i.e. the number of guessed
components of the secret), and t is the maximal Hamming weight
considered in the search space which is a union of sets Si , each
containing all length τ ternary vectors of Hamming weight i .

Dual. The dual attack (dual) [3] on small secret LWE instances
involves searching for short vectors (w, v) in the dual lattice

Λ⊤ (A) = {(x, y) ∈ Zm × Zn | y · A ≡ x mod q}.

Such a short vector (w, v) can then be used to distinguish LWE
from random. If b is an LWE sample, then

w · b = w · (A · s + e) = ⟨v, s⟩ + ⟨w, e⟩ mod q

which is short, since both s and e are short; whereas if b is uniformly
random then so isw ·b. In the case of a sparse secret, combinatorial
techniques can be leveraged to improve the attack [3]. In this paper,
we estimate complexity of dual using the LWE estimator, which
supports the small and sparse secret dual variants described in [3].

Thehybrid dual attack.The dual attackwas recently improved
by Cheon et al. [25], who add a meet-in-the-middle step to the com-
binatorial search, giving rise to a hybrid dual attack (hybrid-dual).
It is shown in [25] that when fixing a maximal memory of 280, the
hybrid dual attack outperforms the dual attack for certain homo-
morphic encryption parameter sets with a sparse ternary secret.
Cheon et al. [25] provide a script4 that can be used to estimate the
security of a given parameter set against the hybrid dual attack.

In this paper, we instead use a more conservative analysis for
the hybrid dual attack. We estimate complexity of hybrid-dual by
assuming a square-root speed-up over Albrecht’s variant [3] to
account for the meet-in-the-middle procedure. In addition, to align
4The script is available at https://github.com/swanhong/HybridLWEAttack.

3019847
https://github.com/rachelplayer/LatRedHybrid
https://github.com/rachelplayer/LatRedHybrid
https://github.com/swanhong/HybridLWEAttack
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with our hybrid-dec estimates, we assume that any probabilities
associated to the meet-in-the-middle phase are set to one, thus
providing an explicit underestimate of security.

In Figure 2 we show a comparison of the four attacks discussed
above, under our assumptions, for parameter sets of varying spar-
sity. We note that as the secret becomes more dense, hybrid attacks
are less effective compared to the dual and usvp attacks.
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Figure 2: A comparison of the usvp, dual, hybrid-dual and
hybrid-dec attacks, for the parameter set n = 1024,q = 240
and σ ≈ 3.2 with a sparse ternary secret with a variety of
Hamming weights h ∈ {64, 128, 256, 512}.

2.4 Currently recommended parameters
In Table 1 we reproduce the LWE parameter sets (n, logq,α ) that
are recommended in the current version of the Homomorphic En-
cryption Security Standard [2] to achieve target security level λ for
λ ∈ {128, 192, 256} for power-of-two ring dimensions between 1024
and 32768 and for a secret having coefficients chosen uniformly in
{−1, 0, 1}. Table 1 reports the estimated cost of running the usvp [8],
dec [40] and dual [3] attacks on these parameter sets under a sieving
cost model for BKZ according to the LWE Estimator [6].

n logq α usvp dec dual λtarget
1024 27 8/q 131.6 160.2 138.7

128

2048 54 8/q 129.7 144.4 134.2
4096 109 8/q 128.1 134.9 129.9
8192 218 8/q 128.5 131.5 129.2
16384 438 8/q 128.1 129.9 129.0
32768 881 8/q 128.5 129.1 128.5
1024 19 8/q 193.0 259.5 207.7

192

2048 37 8/q 197.5 233.0 207.8
4096 75 8/q 194.7 212.2 198.5
8192 152 8/q 192.2 200.4 194.6
16384 305 8/q 192.1 196.2 193.2
32768 611 8/q 192.7 194.2 193.7
1024 14 8/q 265.6 406.4 293.8

256

2048 29 8/q 259.1 321.7 273.5
4096 58 8/q 260.4 292.6 270.1
8192 118 8/q 256.7 270.4 260.6
16384 237 8/q 256.9 264.2 259.8
32768 476 8/q 256.4 260.2 258.2

Table 1: Currently standardised LWE parameters at the 128-
, 192- and 256-bit security level for a uniform ternary se-
cret specified in [2, Table 1] and estimates of their security
against usvp, dec, and dual attacks under the BKZ cost model
T (β ,d ) = 20.292β+16.4+log(8d ) , where β is the blocksize and d is
the lattice dimension. The best performing attack for each
parameter set is highlighted in bold.

3 STANDARDISING SPARSE SECRETS
Ternary secrets with coefficients chosen from {−1, 0, 1}, are ubiqui-
tous in current implementations of homomorphic encryption. The
TFHE library [28], whose bootstrapping process requires a binary
secret, is the only major exception. Some implementations use a
uniform ternary distribution, while others use a sparse ternary
secret, for which all but a certain Hamming weight h of the coeffi-
cients are zero. For example, the HEAAN [39] library uses a sparse
ternary secret of Hamming weight h = 64. All known methods
for bootstrapping for the CKKS, BFV and BGV schemes use sparse
secrets [20, 21, 24]. Concretely, a sparse secret of Hamming weight
h = 128 is used in [21], while h = 64 is used in [24].

It may be desirable to extend the Homomorphic Encryption
Security Standard to include parameter sets with such secret distri-
butions. In this section, we consider the feasibility and impact of
including sparse ternary secret distributions parameter sets in the
Standard.

3.1 Using sparse secrets with existing
recommended parameter sets

As a starting point, we give a rough idea of the impact of using a
sparse ternary secret of Hamming weight h = 128 for the sets of
parameters (n, logq,α ) as recommended in [2, Table 1] for uniform
ternary secret (see also Table 1). In Table 2 we report the concrete
security of the parameter sets (n, logq,α ,h) with a sparse ternary
secret of Hamming weight h = 128. For consistency, we used the
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same sieving cost model T (β ,d ) = 20.292β+16.4+log(8d ) (known as
BKZ.sieve in the LWE Estimator) as was used to generate [2, Table
1].

It can be seen from Table 2 that introducing a sparse secret of
Hamming weight h = 128 results in a noticeable security loss. Con-
sidering only dual and usvp attacks, the security drops by up to 10
bits at the target 128-bit security level, up to 25 bits at the target 192-
bit security level, and up to 50 bits at the target 256-bit security level.
Considering also the hybrid attacks hybrid-dec and hybrid-dual,
we see that these are the most effective attacks according to our
conservative analysis. The security drops by approximately 25 bits
at the target 128-bit security level, by approximately 50 bits at the
target 192-bit security level, and by approximately 85 bits at the
target 256-bit security level.

One of the main arguments not to standardise sparse secrets is
the wider range of attacks that can apply. Moreover, cryptanalysis
in the space is very fast-moving: indeed, the hybrid-dual attack due
to Cheon et al. [25] was only announced in June 2019. This serves
to remind us that further away we move from LWE as originally
defined, the greater the potential for more efficient attacks.

3.2 Sparsity vs. performance trade-off
In Table 3 we illustrate the effect of using a sparse ternary secret
with various Hammingweightsh on the bit size logq of the required
modulus q to achieve security with n = 2048 and σ = 3.19 fixed.
For comparison, we also note the bit size logQ which is currently
recommended to achieve target security level λ for the same n,σ
with a uniform ternary secret.

n logq α h usvp dual hybrid-dec hybrid-dual λtarget
1024 27 8/q 128 124.9 127.8 111.5 106.2

1282048 54 8/q 128 125.0 122.0 108.9 103.9
4096 109 8/q 128 124.9 117.9 108.3 103.0
8192 218 8/q 128 126.4 117.2 110.0 103.9
1024 19 8/q 128 178.2 178.8 146.2 141.8

1922048 37 8/q 128 186.5 173.8 143.6 141.7
4096 75 8/q 128 186.6 165.2 143.7 139.2
8192 152 8/q 128 186.4 167.5 143.6 138.6
1024 14 8/q 128 235.5 238.5 181.5 176.6

2562048 29 8/q 128 231.9 217.3 170.7 168.4
4096 58 8/q 128 234.3 210.2 170.0 167.5
8192 118 8/q 128 232.8 207.9 170.6 172.1

Table 2: Impact of using a sparse ternary secret of Hamming
weight h = 128, using the currently standardised LWE pa-
rameter sets at the target 128-, 192- and 256-bit security level
for a uniform ternary secret specified in [2, Table 1]. An
estimate of the security of each parameter set against usvp,
dual, hybrid-dec and hybrid-dual attacks under the BKZ cost
model T (β ,d ) = 20.292β+16.4+log(8d ) is presented, where β is
the blocksize and d is the dimension. A conservative anal-
ysis for both the hybrid-dec and hybrid-dual attacks is used
which assumes a square-root speed-up in the search space,
and ignores any meet-in-the-middle probabilities. The best
performing attack for each parameter set is highlighted in
bold.

A smaller modulus q may impact on practical performance of
the schemes. For example, in a levelled setting, we need to ensure
that q is large enough to support the full computation to ensure
correct decryption. The lower q required by introducing a sparse
secret may necessitate moving to a higher dimension n to support
the computation, which in turn will be slower.

h n λ logq logQ
128 2048 128 41 54

192 24 37
256 15 29

256 2048 128 48 54
192 31 37
256 22 29

512 2048 128 52 54
192 35 37
256 26 29

⌈
2n
3
⌋

2048 128 54 54
192 37 37
256 28 29

Table 3: Bit size logq of moduli required to provide target
security level λ, for λ ∈ {128, 192, 256}, for various secret den-
sities. For comparison, the bit size logQ recommended for a
uniform ternary secret and the same n, σ , λ is also given.

We note that the LWE Estimator treats uniform ternary secrets
as fixed weight ternary secrets with Hamming weight h =

⌈
2n
3
⌋
.

For security level λ = 256, the currently standardised modulus for
uniform ternary secrets is log(Q ) = 29. In Table 3, we see that under
our conservative analysis of the hybrid-dec and hybrid-dual attack,
a smaller modulus of size log(q) = 28 is required in order to attain
security level λ = 256 for a fixed weight ternary secret of Hamming
weight h =

⌈
2n
3
⌋
. Under a less conservative analysis, the currently

standardised parameters for uniform ternary secrets would all attain
their required security levels. However, this example highlights the
need to consider hybrid attacks even in the uniform ternary case,
as future improvements could affect the currently standardised
parameters.

3.3 Sparsity as a proportion of target security:
an exploration of choices for ζ

In Table 4 we present an exploration of possible choices for the value
ζ = h

λ , illustrating the reduction in bitsize logq of the modulus q
required to retain the desired level of security when using a sparse
ternary secret compared to a uniform ternary secret. Table 4 uses
the cost model T (β,d ) = 20.292β+16.4+log(8d ) (that is, BKZ.sieve in
the LWE Estimator) and considers the following attacks: usvp, dual,
hybrid-dec, and hybrid-dual. We provide as a point of comparison
logQ , the bit size of the modulus Q currently recommended in [2]
for the given parameters (n,σ = 3.19) with uniform ternary secret
at target security level λ.
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Table 4 indicates that a choice such as ζ = 1, i.e. a Hamming
weight h = λ for target security level λ, gives a reasonable trade-
off between performance and security. In this case, we can retain
secure parameters with at most a 27% drop in the bitsize of modulus
logq compared to that recommended at target security level λ for
the same (n,σ = 3.19) and uniform ternary secret. This choice
corresponds to a sparse ternary secret with Hamming weight h ∈
{128, 192, 256} depending on the desired security level, which allows
for practicable bootstrapping. We consider parameter sets with
ζ = 1 as an example in Section 4.

n λ logq (ζ =
1
2 ) logq (ζ =

3
4 ) logq (ζ =1) logq (ζ =

3
2 ) logQ

1024 128 14 19 21 23 27
192 9 13 14 16 19
256 7 10 11 12 14

2048 128 27 37 41 46 54
192 19 26 29 32 37
256 15 19 22 24 29

4096 128 55 74 83 92 109
192 37 52 57 64 75
256 30 39 44 49 58

8192 128 111 148 171 186 218
192 84 100 114 130 152
256 60 79 89 98 118

16384 128 223 300 342 377 438
192 157 201 232 265 305
256 115 161 176 202 237

32768 128 496 619 699 767 881
192 350 411 479 523 611
256 263 313 361 408 476

Table 4: The reduction in bitsize logq of the modulus q
required to retain the desired level of security against
dual, usvp, hybrid-dual and hybrid-dec when using a sparse
ternary secret compared to a uniform ternary secret (which
has recommended bitsize logQ). The cost model T (β ,d ) =
20.292β+16.4+log(8d ) is used. A conservative analysis for both
the hybrid-dual and hybrid-dec attacks is used which assumes
a square-root speed-up in the search space, and ignores any
meet-in-the-middle probabilities.

4 STANDARDISING LARGER DIMENSIONS
With current progress in applied homomorphic encryption it is
becoming necessary to work in dimensions larger than n = 215, the
largest dimension currently standardised. Several recent papers [20,
24, 34, 37] have reported implementations in dimension n = 216,
and an implementation in dimension n = 217 was reported in [38].
A natural extension of the current standard would therefore be to
standardise parameter sets for dimension n = 2k for some k ≥ 16,
since power-of-two n remain the most widely used in practice.
Moreover, power-of-two n enable convenient coefficient-wise error
sampling andwould require no change to the currently standardised

λ n logq usvp dual

128 65536 1782 128.3 128.4
192 65536 1242 192.5 192.0
256 65536 963 256.7 257.7

Table 5: Required bit size logq of moduli required to attain
target security level λ, with λ ∈ {128, 192, 256}, for dimen-
sion n = 65536, for a uniform ternary secret distribution.
An estimate of the security of each parameter set against
the usvp and dual attacks under the sieving-based cost model
T (β ,d ) = 20.292β+16.4+log(8d ) is presented. The best perform-
ing attack for each parameter set is highlighted in bold.

error distribution, while other choices for n would make the choice
of error distribution more complex.5

For n = 216, it is straightforward to apply the methodology in
the current Homomorphic Encryption Security Standard [2] to use
the LWE Estimator to find an appropriate logq to meet security
requirements for fixed σ = 3.19 and a currently standardised secret
distribution.We present the results of such an analysis for a uniform
ternary secret distribution in Table 5, which gives an estimate of the
security of the proposed parameter sets (n = 216,σ = 3.19, logq)
against the usvp and dual attacks under a sieving lattice reduction
cost model. Since we use the current methodology of the Homo-
morphic Encryption Security Standard to generate Table 5, we do
not consider hybrid attacks.6 We also omit dec estimates in Table 5
(as in the rest of this paper) as these are known to be inaccurate.

For n ≥ 217 a larger power of two, the same methodology works
in theory, although it can become cumbersome: the LWE estimator
can take hours to run for each such large input parameter set, and
we must run it for every candidate modulus q. To find a suitable q
achieving target security λ for higher values ofn, we can extrapolate
using the data we already have using the apparent linear relation-
ship between n and logq. That is, n/ logq is essentially constant for
a fixed target security level. This means we can easily extrapolate
entries for larger values of n, without having to explicitly run the
LWE estimator many times. Such an extrapolation could help to
identify a good place to start the search for logq, and then the
security of an identified parameter set can be confirmed using the
LWE estimator.

4.1 Extrapolating Sparse Secrets
We illustrate in Figure 3 such an extrapolation for a sparse ternary
secret of fixedHammingweighth = λ (i.e. ζ = 1).When considering
pre-quantum estimates, we can represent log(q) as a linear function
of n by extrapolation from our data:

lgqsieveλ=128 (n) = 0.021370n − 3.601989

lgqsieveλ=192 (n) = 0.014630n − 3.139303

lgqsieveλ=256 (n) = 0.011007n − 1.184080
5We note that the current Homomorphic Encryption Security Standard [2] already
states that extension to general cyclotomic rings is eventually envisaged, and this will
lead to standardising n and σ of a different form.
6We note that our script for estimating the cost of the hybrid decoding attack requires
more memory than we have available when attempting to run in dimension n = 216 .
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These linear models were found using the find_fit function in
SageMath [46]. For readability, we round the coefficients to six
decimal places in each case.
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Figure 3: Extrapolation to n = 65536 and n = 131072 using
the data from Table 4 for the value ζ = 1. We consider the
lattice reduction cost model TBKZ (β,d ) = 20.292β+16.4+log(8d )
and extrapolate using the Sage function find_fit. The solid
lines represents data points and the dashed lines represent
extrapolation.

As an example, in the case of ζ = 1 and λ = 128, for n = 65536
we have

lgqsieveλ=128 (65536) = 1396

and for a security level of λ = 256, we have:

lgqsieveλ=256 (65536) = 720.

5 DISCUSSION
We conclude with a number of points for discussion which arise
from our work, and highlight some natural directions for future
work.

Should the Standard be based on implementation choices?
Historically, the parameter sets in the standard have been based on
implementation choices. For example, the choice of standard devi-
ation σ = 3.19, appearing in all currently standardised parameter
sets, originates in an early implementation [31]. This narrow error
distribution already deviates from the regime of provably secure
LWE instances, and using a sparse secret would introduce a further
nonstandard aspect. An important issue for the community to con-
sider is whether any standardised parameter sets should be driven
by implementation progress, or if instead implementors should be
encouraged to select parameters for which we have strong confi-
dence in their security.

Should we standardise sparse-secret parameter sets? If we
do decide to choose parameters based on implementation choices,
then from the point of view of current bootstrapping approaches it
would make sense to standardise a parameter set including a sparse
secret. If the community does wish to standardise sparse-secret
parameter sets, a natural question would be to decide if there is an
appropriate sparseness that balances performance (e.g. efficiency of
bootstrapping in practice) with security. For example, what would
be an appropriate choice of ζ and how would this be justified?

On the other hand, it is clear that cryptanalysis of sparse-secret
LWE is fast-paced, illustrated by the very recent hybrid-dual at-
tack [25]. It is plausible that further attacks on sparse-secret LWE
variants will be discovered in the short-term. Moreover, increas-
ing the number of standardised LWE variants would spread out
cryptanalytic efforts, making it hard to get higher confidence in the
concrete security of any version of LWE.

In this paper, we estimated the cost of running hybrid attacks
using a conservative analysis. This is reasonable in the context of
setting secure parameters and can mitigate against the threat of
ongoing cryptanalytic improvements. However, such a conservative
analysis may lead to choosing a larger dimension n than is needed,
and hence lower efficiency. If sparse secrets were standardised, a
more realistic analysis such as that presented by Wunderer [47]
may be preferable.7

Improving the LWE Estimator. The methodology in the cur-
rent Standard relies on the LWE Estimator [6], but we note that the
Estimator has a number of limitations. In this paper we excluded
dec estimates output from the Estimator as these are known to
be inaccurate: however, any standardised parameter sets should
be shown to be secure against a state-of-the-art primal decoding
attack.

More generally, it is cumbersome to recommend parameter sets
which are not easily verified by the Estimator, such as those with
binary secrets8, as in [28], and those vulnerable to hybrid attacks.
We note that the security of the uniform ternary secret parameter
sets recommended in [2] remain unaffected when also considering
hybrid-dec.

The code to estimate hybrid-dual used in [25] seems to be based
on the Estimator and therefore may not be too difficult to integrate,
although it currently only supports sparse secret distributions. Im-
proving the Estimator to add support for binary secrets and hybrid
attacks would be beneficial to the community and equally so for the
Estimator itself, as it provides an opportunity for additional code
review. In summary, an important direction for the community is
improving the LWE Estimator.

Should we alter the methodology used in the Standard?
At present, sets of LWE parameters themselves are standardised.
Their security is assured using estimates of relevant attacks output
by the LWE Estimator. Perhaps it would be better to standardise
the process itself. That is, the community could standardise the
process of using the Estimator (or another tool) to verify estimated
security of parameters. Then, implementors could select any set
of parameters appropriate to their needs, demonstrate they were

7A preprint detailing the application of Wunderer’s analysis to the homomorphic
encryption setting is available at https://github.com/rachelplayer/LatRedHybrid
8Combinatorial techniques are not currently supported for a binary secret distribution,
leading to an overestimation of security.

https://github.com/rachelplayer/LatRedHybrid
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σ n logq usvp dual hybrid-dec hybrid-dual

3.2 4096 109 128.1 129.9 131.3 128.7
32 4096 111 129.6 132.6 133.1 129.3
320 4096 115 128.7 130.5 132.6 129.6
3200 4096 119 128.1 130.2 131.3 129.0

Table 6: Bit size logq of moduli required to attain a target
security level of λ = 128 for a fixed dimension n = 4096,
a fixed uniform ternary secret distribution, and varying σ .
An estimate of the security of each parameter set against
the usvp, dual, hybrid-dec, and hybrid-dual attacks under the
sieving-based cost model T (β ,d ) = 20.292β+16.4+log(8d ) is also
given. The best performing attack for each parameter set is
highlighted in bold.

secure according to the Estimator, and the parameters would be
deemed secure according to the Standard. Of course, this would
involve agreeing an appropriate BKZ cost model (for which there
is generally a lack of consensus [4]), and a list of relevant attacks
(which may in turn involve incorporating those attacks into the
Estimator).

Should we standardise different values of σ? The choice of
the standard deviation σ of the error distribution has an impact on
both the security of the underlying LWE problem as well as the
noise growth as homomorphic operations are performed9. In the
current Homomorphic Encryption Standard, the standard deviation
is fixed at σ ≈ 3.19, i.e. α = 8

q . The choice of σ ≈ 3.19 appears to be
somewhat arbitrary, originating in an early implementation [31].
Nevertheless, it remains a popular choice in many (though not
all [28]) current implementations.

A natural way to extend the standard would be to consider other
choices of σ which balance security and noise growth. As a starting
point, in Table 6 we present the bitsize of modulus logq that would
be required to attain security level λ = 128 for a fixed dimension
n = 4096 and a uniform random ternary secret, when varying
σ ∈ {3.2, 32, 320, 3200}.
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