
Sapphire: A Configurable Crypto-Processor for
Post-Quantum Lattice-based Protocols

(Extended Version)
Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. Public key cryptography protocols, such as RSA and elliptic curve cryptography, will be
rendered insecure by Shor’s algorithm when large-scale quantum computers are built. Cryptographers
are working on quantum-resistant algorithms, and lattice-based cryptography has emerged as a
prime candidate. However, high computational complexity of these algorithms makes it challenging
to implement lattice-based protocols on low-power embedded devices. To address this challenge,
we present Sapphire – a lattice cryptography processor with configurable parameters. Efficient
sampling, with a SHA-3-based PRNG, provides two orders of magnitude energy savings; a single-port
RAM-based number theoretic transform memory architecture is proposed, which provides 124k-gate
area savings; while a low-power modular arithmetic unit accelerates polynomial computations. Our
test chip was fabricated in TSMC 40nm low-power CMOS process, with the Sapphire cryptographic
core occupying 0.28 mm2 area consisting of 106k logic gates and 40.25 KB SRAM. Sapphire can be
programmed with custom instructions for polynomial arithmetic and sampling, and it is coupled
with a low-power RISC-V micro-processor to demonstrate NIST Round 2 lattice-based CCA-secure
key encapsulation and signature protocols Frodo, NewHope, qTESLA, CRYSTALS-Kyber and
CRYSTALS-Dilithium, achieving up to an order of magnitude improvement in performance and
energy-efficiency compared to state-of-the-art hardware implementations. All key building blocks
of Sapphire are constant-time and secure against timing and simple power analysis side-channel
attacks. We also discuss how masking-based DPA countermeasures can be implemented on the
Sapphire core without any changes to the hardware.
Keywords: Lattice-based Cryptography · LWE · Ring-LWE · Module-LWE · post-quantum · NIST
Round 2 · Number Theoretic Transform · Sampling · energy-efficient · low-power · constant-time ·
side-channel security · ASIC · hardware implementation

1 Introduction
Modern public key cryptography relies on hard mathematical problems such as integer factorization,
discrete logarithms over finite fields and discrete logarithms over elliptic curve groups. However, these
problems can be solved by a large-scale quantum computer in polynomial time using Shor’s algorithm
[1], thus making today’s public key protocols like RSA and ECC vulnerable to quantum attacks. Given
the rapid advancement in quantum computing technology over the past few years, cryptographers are
developing quantum-secure public key algorithms to protect today’s data from tomorrow’s threats.
Lattice-based cryptography is considered one of the most promising candidates for post-quantum
cryptographic protocols because of its extensive security analysis as well as small public key and
signature sizes.

The National Institute of Standards and Technology (NIST) formally initiated the process of
standardizing post-quantum cryptography in 2016 [2]. The first round of candidates were announced
in late 2017, with lattice-based cryptography accounting for 48% of the public-key encryption and key
encapsulation (PKE/KEM) schemes and 25% of the signature schemes. In early 2019, the candidates
moving on to the second round were announced [3], and lattice-based cryptography accounts for 53% (9
out of 17) and 33% (3 out of 9) of the candidates for PKE/KEM and signature schemes respectively. The
theoretical foundation of several of these lattice-based protocols lies in the learning with errors (LWE)
problem [4] and its variants such as Ring-LWE [5] and Module-LWE [6], and the hardness of LWE has been
well-studied in the presence of both classical and quantum adversaries [7, 8]. This has been accompanied

2 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

by several software and hardware implementations [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] of LWE
and Ring-LWE-based public key encryption and key encapsulation protocols, each supporting specific
lattice parameters chosen for increased performance and efficiency. Existing lattice-based cryptography
implementations, both in software and hardware, have been thoroughly surveyed in [21]. Most of the
hardware implementations focus on FPGA demonstration in order to support reconfigurability of lattice
parameters, which is especially important for a fast evolving field like lattice-based cryptography, while
existing ASIC implementations either lack configurability or have power and area overheads. Some of
the key challenges of implementing lattice-based cryptography in ASICs have been discussed in [22], and
this work presents a solution using a combination of architectural and algorithmic techniques.

Our contributions: In this work, we present Sapphire – a configurable lattice cryptography
processor – which combines low-power modular arithmetic, area-efficient memory architecture and fast
sampling techniques to achieve high energy-efficiency and low cycle count, ideal for securing low-power
embedded systems. The key technical aspects of our work are as follows:

1. A low-power modular arithmetic core, with configurable prime modulus, is used to accelerate
polynomial arithmetic operations; a pseudo-configurable modular multiplier is also implemented,
which provides up to 3× improvement in energy-efficiency.

2. A single-port SRAM-based number theoretic transform (NTT) memory architecture provides
124k-gate area savings without any loss in performance or energy-efficiency.

3. An efficient Keccak core is combined with fast sampling techniques to speed up polynomial
sampling, while supporting a wide variety of discrete distribution parameters.

4. These efficient hardware building blocks are integrated together with an instruction memory and
decoder to build our crypto-processor, which can be programmed with custom instructions for
polynomial sampling and arithmetic.

5. The Sapphire crypto-processor is coupled with an efficient RISC-V micro-processor to demonstrate
several NIST Round 2 lattice-based key encapsulation and signature protocols such as Frodo [23],
NewHope [24], qTESLA [25], CRYSTALS-Kyber [26] and CRYSTALS-Dilithium [27], achieving
more than an order of magnitude improvement in performance and energy-efficiency compared to
state-of-the-art assembly-optimized software and hardware implementations.

6. All the key building blocks, such as NTT, polynomial arithmetic and binomial sampling, are
constant-time and secure against timing and simple power analysis attacks. While our baseline
protocol implementations are not secure against differential power analysis attacks, we discuss how
our crypto-processor can be programmed to implement masking-based countermeasures.

7. Our ASIC implementation was fabricated in the TSMC 40nm low-power CMOS process, and all
protocol-level demonstrations and side-channel measurements were conducted on our test chip.

The rest of the paper is organized as follows: Section 2 provides a brief mathematical background
on LWE and associated computations; in Section 3, we present our implementation of energy-efficient
modular arithmetic along with an area-efficient NTT memory architecture; in Section 4, we describe our
discrete distribution sampler accelerated by a low-power SHA-3 core; Section 5 describes the overall chip
architecture; Section 6 presents detailed measurement results obtained from evaluating lattice-based
protocols on our test chip, comparison with state-of-the-art software and hardware implementations as
well as side-channel analysis; a summary of our key conclusions along with future research directions are
discussed in Section 7.

This is an extended version of our CHES 2019 paper [28] with additional design information,
implementation of Frodo-1344 and preliminary side-channel leakage analysis. Also, several appendices
have been added at the end of the paper to provide supplementary data.

The specifications of CRYSTALS-Kyber were modified in NIST Round 2 after our CHES paper was
originally submitted. So, the rest of this paper (excluding Appendix K) describes our implementation
of Kyber-v1 based on the initial specification with q = 7681. In Appendix K, we have now added our
implementation results of Kyber-v2 based on the updated specification with q = 3329.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 3

2 Background
In this section, we provide a brief introduction to LWE, Ring-LWE and Module-LWE along with the
associated computations. We use bold lower-case symbols to denote vectors and bold upper-case symbols
to denote matrices. The symbol lg is used to denote all logarithms with base 2. The set of all integers is
denoted as Z and the quotient ring of integers modulo q is denoted as Zq. For two n-dimensional vectors
a and b, their inner product is written as 〈a, b〉 =

∑n−1
i=0 ai · bi. The concatenation of two vectors a and

b is written as a || b.

2.1 LWE and Related Lattice Problems
The Learning with Errors (LWE) problem [4] acts as the foundation for several modern lattice-based
cryptography schemes. The LWE problem states that given a polynomial number of samples of the form
(a, 〈a, s〉+ e), it is difficult to determine secret vector s ∈ Znq , where vector a ∈ Znq is sampled uniformly
at random and error e is sampled from the appropriate error distribution χ. Examples of secure LWE
parameters are (n, q) = (640, 215), (n, q) = (976, 216) and (n, q) = (1344, 216) for Frodo [23].

LWE-based cryptosystems involve large matrix operations which are computationally expensive
and also result in large key sizes. To solve this problem, the Ring-LWE problem [5] was proposed,
which uses ideal lattices. Let Rq = Zq[x]/(xn + 1) be the ring of polynomials where n is power of 2.
The Ring-LWE problem states that given samples of the form (a, a · s+ e), it is difficult to determine
the secret polynomial s ∈ Rq, where the polynomial a ∈ Rq is sampled uniformly at random and the
coefficients of the error polynomial e are small samples from the error distribution χ. Examples of secure
Ring-LWE parameters are (n, q) = (512, 12289) and (n, q) = (1024, 12289) for NewHope [24].

Module-LWE [6] provides a middle ground between LWE and Ring-LWE. By using module lattices,
it reduces the algebraic structure present in Ring-LWE and increases security while not compromising
too much on the computational efficiency. The Module-LWE problem states that given samples of the
form (a,aTs + e), it is difficult to determine the secret vector s ∈ Rkq , where the vector a ∈ Rkq is
sampled uniformly at random and the coefficients of the error polynomial e are small samples from
the error distribution χ. Examples of secure Module-LWE parameters are (n, k, q) = (256, 2, 7681),
(n, k, q) = (256, 3, 7681) and (n, k, q) = (256, 4, 7681) for CRYSTALS-Kyber-v1 [26].

2.2 Number Theoretic Transform
While the protocols based on standard lattices (LWE) involve matrix-vector operations modulo q, all
the arithmetic is performed in the ring of polynomials Rq = Zq[x]/(xn + 1) when working with ideal
and module lattices. There are several efficient algorithms for polynomial multiplication [29], and the
Number Theoretic Transform (NTT) is one such technique widely used in lattice-based cryptography.

The NTT is a generalization of the well-known Fast Fourier Transform (FFT) where all the arithmetic
is performed in a finite field instead of complex numbers. Instead of working with powers of the n-th
complex root of unity exp(−2πj/n), NTT uses the n-th primitive root of unity ωn in the ring Zq, that
is, ωn is an element in Zq such that ωnn = 1mod q and ωin 6= 1mod q for i 6= n. In order to have elements
of order n, the modulus q is chosen to be a prime such that q ≡ 1modn. A polynomial a(x) ∈ Rq with
coefficients a(x) = (a0, a1, · · · , an−1) has the NTT representation â(x) = (â0, â1, · · · , ˆan−1), where

âi =
n−1∑
j=0

ajω
ij
n mod q ∀ i ∈ [0, n− 1]

The inverse NTT (INTT) operation converts â(x) = (â0, â1, · · · , ˆan−1) back to a(x) as

ai = 1
n

n−1∑
j=0

âjω
−ij
n mod q ∀ i ∈ [0, n− 1]

Note that the INTT operation is similar to NTT, except that ωn is replaced by ω−1
n mod q and the final

results is divided by n. An iterative in-place version of the NTT algorithm is provided in Algorithm
1 [30, 31]. The PolyBitRev function performs a permutation on the input polynomial a such that
â[i] = PolyBitRev(a)[i] = a[BitRev(i)], where BitRev is formally defined as BitRev(i) =

∑lgn−1
j=0 (((i�

4 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Algorithm 1 Iterative In-Place NTT [30]
Require: Polynomial a(x) ∈ Rq and n-th primitive root of unity ωn ∈ Zq
Ensure: Polynomial â(x) ∈ Rq such that â(x) = NTT(a(x))

1: â← PolyBitRev(a)
2: for (s = 1; s ≤ lgn; s = s+ 1) do
3: m← 2s
4: ωm ← ω

n/m
n

5: for (k = 0; k < n; k = k +m) do
6: ω ← 1
7: for (j = 0; j < m/2; j = j + 1) do
8: t← ω · â[k + j +m/2] mod q
9: u← â[k + j]

10: â[k + j]← u+ t mod q
11: â[k + j +m/2]← u− t mod q
12: ω ← ω · ωm mod q
13: end for
14: end for
15: end for
16: return â

j) & 1)� (lgn−1− i)) (for positive integer i and power-of-two n), that is, bit-wise reversal of the binary
representation of the index i. Since there are lgn stages in the NTT outer loop, with O(n) operations in
each stage, its time complexity is O(n lgn). The factors ω are called the twiddle factors, similar to FFT.

The NTT provides a fast multiplication algorithm in Rq with time complexity O(n lgn) instead of
O(n2) for schoolbook multiplication. Given two polynomials a, b ∈ Rq, their product c = a · b ∈ Rq can
be computed as

c = INTT (NTT(a) � NTT(b))

where � denotes coefficient-wise multiplication of the polynomials. Since the product of a and b, before
reduction modulo f(x) = xn + 1, has 2n coefficients, using the above equation directly to compute
a · b will require padding both a and b with n zeros. To eliminate this overhead, the negative-wrapped
convolution [32] is used, with the additional requirement q ≡ 1mod 2n so that both the n-th and
2n-th primitive roots of unity modulo q exist, respectively denoted as ωn and ψ = √ωnmod q. By
multiplying a and b coefficient-wise by powers of ψ before the NTT computation, and by multiplying
INTT(NTT(a)�NTT(b)) coefficient-wise by powers of ψ−1 mod q, no zero padding is required and the
n-point NTT can be used directly.

Similar to FFT, the NTT inner loop involves butterfly computations. There are two types of butterfly
operations – Cooley-Tukey (CT) and Gentleman-Sande (GS) [33]. The CT butterfly-based NTT requires
inputs in normal order and generates outputs in bit-reversed order, similar to the decimation-in-time
FFT. The GS butterfly-based NTT requires inputs to be in bit-reversed order while the outputs are
generated in normal order, similar to the decimation-in-frequency FFT. Using the same butterfly for
both NTT and INTT requires a bit-reversal permutation. However, the bit-reversal can be avoided by
using CT for NTT and GS for INTT [33].

2.3 Sampling
In lattice-based protocols, the public vectors a are generated from the uniform distribution over Zq
through rejection sampling. The secret vectors s and error terms e are sampled from the distribution χ
typically with zero mean and appropriate standard deviation σ. Accurate sampling of s and e is critical
to the security of these protocols, and the sampling must be constant-time to prevent side-channel leakage
of the secret information. Although the original LWE proof used discrete Gaussian distributions for
sampling the error terms, several lattice-based schemes use binomial, uniform and ternary distributions
for efficiency. A detailed survey of different sampling techniques is available in [21].

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 5

3 Modular Arithmetic and NTT
The core arithmetic and logic unit (ALU) of Sapphire consists of a 24-bit data-path, with modular
operations in Fq for configurable q. In this section, we describe the details of our energy-efficient modular
arithmetic implementation, the ALU design and our area-efficient NTT memory architecture.

3.1 Modular Arithmetic Implementation
The modular arithmetic core consists of a 24-bit adder, a 24-bit subtractor and a 24-bit multiplier along
with associated modular reduction logic. Our modular adder and subtractor designs are shown in Fig. 1,
and the corresponding pseudo-codes are shown in Algorithms 2 and 3. Both designs use a pair of adder
and subtractor, with the sum, carry bit, difference and borrow bit denoted as s, c, d and b respectively.
Modular reduction is performed using conditional subtraction and addition, which are computed in the
same cycle to avoid timing side-channels. The synthesized areas of the adder and the subtractor are
around 550 GE (gate equivalent) each in area.

For modular multiplication, we use a 24-bit multiplier followed by Barrett reduction [34] modulo a
prime q of size up to 24 bits. Barrett reduction does not exploit any special property of the modulus q,
thus making it ideal for supporting configurable moduli. Let z be the 48-bit product to be reduced to
Zq, then Barrett reduction computes zmod q by estimating the quotient bz/qc without performing any
division, as shown in Algorithm 4. Barrett reduction involves two multiplications, one subtraction, one
bit-shift and one conditional subtraction. The value of 1/q is approximated as m/2k, with the error of
approximation being e = 1/q −m/2k, therefore the reduction is valid as long as ze < 1. Since z < q2, k
is set to be the smallest number such that e = 1/q − (b2k/qc/2k) < 1/q2. Typically, k is very close to
2 dlg qe, that is, the bit-size of q2.

In order to understand the trade-offs between flexibility and efficiency in modular multiplication,
we have implemented two different architectures of Barrett reduction logic: (1) with fully configurable
modulus (q can be an arbitrary prime) and (2) with pseudo-configurable modulus (q belongs to a specific
set of primes), as shown in Fig. 2.

Apart from the prime q (which can be up to 24 bits), the fully configurable version requires two

Figure 1: Design of our modular adder and subtractor with configurable modulus q.

Algorithm 2 Modular Addition
Require: x, y ∈ Zq
Ensure: z = x+ y mod q

1: (c, s)← x+ y
2: (b, d)← s− q
3: if c = 1 or b = 0 then
4: z ← d
5: else
6: z ← s
7: end if
8: return z

Algorithm 3 Modular Subtraction
Require: x, y ∈ Zq
Ensure: z = x− y mod q

1: (b, d)← x− y
2: (c, s)← d+ q
3: if b = 1 then
4: z ← s
5: else
6: z ← d
7: end if
8: return z

6 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Algorithm 4 Modular Multiplication with Barrett Reduction [34]
Require: x, y ∈ Zq, m and k such that m = b2k/qc
Ensure: z = x · y mod q

1: z ← x · y
2: t← (z ·m)� k
3: z ← z − (t · q)
4: if z ≥ q then
5: z ← z − q
6: end if
7: return z

Figure 2: Two different single-cycle modular multiplier architectures with (a) fully configurable and (b)
pseudo-configurable modulus for Barrett reduction.

additional inputs m and k such that m = b2k/qc (m and k are allowed to be up to 24 bits and 6 bits
respectively). It consists of total 3 multipliers, as shown in Fig. 2a, the first two being used to compute
z = x · y and z ·m respectively. For obtaining t = (z ·m)� k, the bit-wise shift is implemented purely
using combinational logic (multiplexers) because shifting bits sequentially in registers can be extremely
inefficient in terms of power consumption. We assume that 16 ≤ k ≤ 48 since q is not larger than 24
bits, q is typically not smaller than 8 bits and we know that k ≈ 2 dlg qe. The third multiplier is used to
compute t · q, and a pair of subtractors is used to calculate z − (t · q) and perform the final reduction
step. All the steps are computed in a single cycle to avoid any potential timing side-channels. The
design was synthesized at 100 MHz (with near-zero slack) and occupies around 11k GE area, which
includes the area (around 4k GE) of the 24-bit multiplier used to compute z = x · y.

The pseudo-configurable modular multiplier implements Barrett reduction logic for the following
primes used by NIST Round 1 lattice-based candidates: 7681 (CRYSTALS-Kyber-v1) [26], 12289
(NewHope) [24], 40961 (R.EMBLEM) [35], 65537 (pqNTRUSign) [36], 120833 (Ding Key Exchange)
[37], 133121 / 184321 (LIMA) [38], 8380417 (CRYSTALS-Dilithium) [27], 8058881 (qTESLA v1.0) and
4205569 / 4206593 / 8404993 (qTESLA v2.0) [25]. As shown in Fig. 2b, there is dedicated reduction
block for each of these primes, and the qSEL input is used to select the output of the appropriate

Algorithm 5 Reduction mod 7681
Require: q = 7681, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 8) + (x� 4) + x
2: t← t� 21
3: t← (t� 13)− (t� 9) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm 6 Reduction mod 8380417
Require: q = 8380417, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 23) + (x� 13) + (x� 3)− x
2: t← t� 46
3: t← (t� 23)− (t� 13) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 7

Figure 3: Comparison of modular multiplication energy for the two reduction architectures.

block while the inputs to the other blocks are data-gated to save power. Since the reduction blocks
have the parameters m, k and q coded in digital logic and do not require explicit multipliers, they
involve lesser computation than the fully configurable reduction circuit from Fig. 2a, albeit at the
cost of some additional area and decrease in flexibility. The reduction becomes particularly efficient
when at least one of m and q or both can be written in the form 2l1 ± 2l2 ± · · · ± 1, where l1, l2, · · ·
are not more than four positive integers. For example, we consider the CRYSTALS primes: for
q = 7681 = 213 − 29 + 1 we have k = 21 and m = 273 = 28 + 24 + 1, and for q = 8380417 = 223 − 213 + 1
we have k = 46 and m = 8396807 = 223 + 213 + 23 − 1. Therefore, the multiplications by q and m can
be converted to significantly cheaper bit-shifts and additions / subtractions, as shown in Algorithms 5
and 6. Implementation details and reduction parameters for each customized modular reduction block
are provided in Appendix A. This design also performs modular multiplication in a single cycle. It was
synthesized at 100 MHz (with near-zero slack) and occupies around 19k GE area, including the area of
the 24-bit multiplier.

In Fig. 3, we compare the simulated energy consumption of the fully configurable and pseudo-
configurable modular multiplier architectures for all the primes mentioned earlier. As expected, the
multiplication itself consumes the same energy in both cases, but the modular reduction energy is up
to 6× lower for the pseudo-configurable design. The overall decrease in modular multiplication energy,
considering both multiplication and reduction together, is up to 3×, clearly highlighting the benefit of
the dedicated modular reduction data-paths when working with prime moduli. For reduction modulo
2m (m < 24), e.g., in the case of Frodo, the output of the 24-bit multiplier is simply bit-wise AND-ed
with 2m − 1 implying that the modular reduction energy is negligible.

3.2 Butterfly Unit and ALU
Next, we elaborate how the modular arithmetic units described earlier are integrated together to build the
butterfly module. As discussed in Section 2, NTT computations involve butterfly operations similar to the
Fast Fourier Transform, with the only difference being that all arithmetic is performed modulo q instead
of complex numbers. There are two butterfly configurations – Cooley-Tukey (or DIT) and Gentleman-
Sande (or DIF). In terms of arithmetic, the DIT butterfly computes (a+ ωb mod q, a− ωb mod q) and
the DIF butterfly computes (a+ b mod q, (a− b)ω mod q), where a and b are the inputs to the butterfly
and ω is the twiddle factor. The DIT butterfly requires inputs to be in bit-reversed order and the DIF
butterfly generates outputs in bit-reversed order, thus making DIF and DIT suitable for NTT and
INTT respectively. While software implementations have the flexibility to program both configurations,
hardware designs typically implement either DIT or DIF, thus requiring bit-reversals. To solve this
problem, we have implemented a unified butterfly architecture [39] which can be configured as both
DIT and DIF, as shown in Fig. 4. It consists of two sets of modular adders and subtractors along with
some multiplexing circuitry to select whether the multiplication with ω is performed before or after the
addition and subtraction. Since the critical path of the design is inside the modular multiplier, there is
no impact on system performance. The associated area overhead is also negligible.

The modular arithmetic blocks inside the butterfly are re-used for coefficient-wise polynomial
arithmetic operations as well as for multiplying polynomials with the appropriate powers of ψ and ψ−1

8 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Figure 4: Unified butterfly in Cooley-Tukey and Gentleman-Sande configurations.

during negative-wrapped convolution. Apart from butterfly and arithmetic modulo q, the Sapphire ALU
also supports the following bit-wise operations – AND, OR, XOR, left shift and right shift.

3.3 NTT Memory Architecture
Hardware architectures for polynomial multiplication using NTT consist of memory banks for storing

the polynomials along with the ALU which performs butterfly computations. Since each butterfly needs
to read two inputs and write two outputs all in the same cycle, these memory banks are typically
implemented using dual-port RAMs [9, 41, 31, 19] or four-port RAMs [17]. Although true dual-port
memory is easily available in state-of-the-art commercial FPGAs in the form of block RAMs (BRAMs),
use of dual-port SRAMs in ASIC can pose large area overheads in resource-constrained devices. Compared
to a simple single-port SRAM, a dual-port SRAM has double the number of row and column decoders,
write drivers and read sense amplifiers. Also, the bit-cells in a low-power dual-port SRAM consist of
ten transistors (10T) compared to the usual six transistor (6T) bit-cells in a single-port SRAM [42].
Therefore, the area of a dual-port SRAM can be as much as double the area of a single-port SRAM
with the same number of bits and column muxing. To reduce this area overhead, we implement an
area-efficient NTT memory architecture [39] which uses the constant-geometry FFT data-flow [43] and
consists of single-port SRAMs only.

Algorithm 7 Constant Geometry Out-of-Place NTT [40]
Require: Polynomial a(x) ∈ Rq and n-th primitive root of unity ωn ∈ Zq
Ensure: Polynomial â(x) ∈ Rq such that â(x) = NTT(a(x))

1: a← PolyBitRev(a)
2: for (s = 1; s ≤ lgn; s = s+ 1) do
3: for (j = 0; j < n/2; j = j + 1) do
4: k ← bj/2lg (n−s)c · 2lg (n−s)

5: â[j]← a[2j] + a[2j + 1] · ωkn mod q
6: â[j + n/2]← a[2j]− a[2j + 1] · ωkn mod q
7: end for
8: if s 6= lgn then
9: a← â

10: end if
11: end for
12: return â

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 9

Figure 5: (a) Memory bank construction using single-port SRAMs and (b) proposed area-efficient NTT
architecture using two such memory banks.

Figure 6: Data-flow of our NTT memory architecture in the first two cycles (butterfly inputs are in
yellow and outputs are in green).

The constant geometry NTT is described in Algorithm 7 [40, 41]. Clearly, the coefficients of the
polynomial are accessed in the same order for each stage, thus simplifying the read/write control circuitry.
For constant geometry DIT NTT, the butterfly inputs are a[2j] and a[2j+1] and the outputs are â[j] and
â[j + n/2], while the inputs are a[j] and a[j + n/2] and the outputs are â[2j] and â[2j + 1] for DIF NTT.
However, the constant geometry NTT is inherently out-of-place, therefore requiring storage for both
polynomials a and â. For our hardware implementation, we create two memory banks – left and right –
to store these two polynomials while allowing the butterfly inputs and outputs to ping-pong between
them during each stage of the transform. Although out-of-place NTT requires storage for both the input
and output polynomials, this does not affect the total memory requirements of the crypto-processor
because the total number of polynomials required to be stored during the protocol execution is greater
than two, e.g., four polynomials are involved in any computation of the form b = a · s+ e.

Next, we describe how these memory banks are constructed using single-port SRAMs so that each
butterfly can be computed in a single cycle without causing read/write hazards. As shown in Fig. 5a,
each polynomial is split among four single port SRAMs Mem 0-3 on the basis of the least and most
significant bits (LSB and MSB) of the coefficient index (or address addr). This allows simultaneously
accessing coefficient index pairs of the form (2j, 2j + 1) and (j, j + n/2). Our NTT memory architecture

10 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Figure 7: Memory access patterns for 8-point DIT and DIF NTT using our single-port SRAM-based
memory architecture (R and W denote read and write respectively).

is shown in Fig. 5b, which consists of two such memory banks labelled as LWE Poly Cache. In every
cycle, the butterfly inputs are read from two different single-port SRAMs (out of four SRAMs in the
input memory bank) and the outputs are also written to two different single-port SRAMs (out of four
SRAMs in the output memory bank), thus avoiding hazards. The data flow in the first two cycles of NTT
is shown in Fig. 6, where the input polynomial a is stored in the left bank and the output polynomial â
is stored in the right bank. As the input and output polynomials exchange their memory banks from
one stage to the next, our NTT control circuitry ensures that the same data-flow is maintained. To
illustrate this, the memory access patterns for all three stages of an 8-point NTT are shown in Fig. 7 for
both decimation-in-time and decimation-in-frequency.

The two memory banks consist of four 1024×24-bit single-port SRAMs each (24 KB total). Together
they store 8192 entries, which can be split into four 2048-dimension polynomials or eight 1024-dimension
polynomials or sixteen 512-dimension polynomials or thirty-two 256-dimension polynomials or sixty-four
128-dimension polynomials or one-hundred-twenty-eight 64-dimension polynomials. By constructing
this memory using single-port SRAMs (and some additional read-data multiplexing circuitry), we have
achieved area savings equivalent to 124k GE compared to a dual-port SRAM-based implementation.
This is particularly important since SRAMs account for a large portion of the total hardware area in
ASIC implementations of lattice-based cryptography [17, 44].

In order to allow configurable parameters, our NTT hardware also requires additional storage (labelled
as NTT Constants RAM in Fig. 5) for the pre-computed twiddle factors: ωj2i , ω−j2i mod q for i ∈ [1, lgn]
and j ∈ [0, 2i−1) and ψi, n−1ψ−imod q for i ∈ [0, n). Since n ≤ 2048 and q < 224, this would require
another 24 KB of memory. To reduce this overhead, we exploit the following properties of ω and ψ:
ωn/2 = ω2

n, ω−jn = ωn−jn and ω = ψ2 [31]. Then, it’s sufficient to store only ωjn for j ∈ [0, n/2) and ψi,

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 11

Table 1: Comparison of our NTT performance with state-of-the-art

Design Platform Tech VDD Freq Parameters NTT NTT
(nm) (V) (MHz) Cycles Energy

This work ASIC 40 1.1 72
(n = 256, q = 7681) 1,289 165.98 nJ
(n = 512, q = 12289) 2,826 410.52 nJ
(n = 1024, q = 12289) 6,155 894.28 nJ

Software
[45]

ARM
Cortex-M4 - 3.0 100

(n = 256, q = 7681) 22,031 13.55 µJ
(n = 512, q = 12289) 34,262 21.07 µJ
(n = 1024, q = 12289) 75,006 46.13 µJ

Song et al.
[17] ASIC 40 0.9 300 (n = 256, q = 7681) 160 31 nJ

(n = 512, q = 12289) 492 96 nJ
Nejatollahi
et al. [14] ASIC 45 1.0 100 (n = 512, q = 12289) 2,854 1016.02 nJ

11,053 596.86 nJ

Fritzmann
et al. [44] ASIC 65 1.2 25

(n = 256, q = 7681) 2,056 254.52 nJ
(n = 512, q = 12289) 4,616 549.98 nJ
(n = 1024, q = 12289) 10,248 1205.03 nJ

Roy et al.
[9] FPGA - - 313 (n = 256, q = 7681) 1,691 -

278 (n = 512, q = 12289) 3,443 -
Du et al.
[31] FPGA - - 233 (n = 256, q = 7681) 4,066 -

(n = 512, q = 12289) 8,806 -

n−1ψ−imod q for i ∈ [0, n), thus reducing the twiddle factor memory size by 37.5% down to 15 KB.
Finally, we compare the energy-efficiency and performance of our NTT with state-of-the-art software

and ASIC hardware implementations in Table 1. For the software implementation, we have used
assembly-optimized code for ARM Cortex-M4 from the PQM4 crypto library [45], and measurements
were performed using the NUCLEO-F411RE development board [46]. Total cycle count of our NTT
is (n2 + 1) lgn + (n + 1), including the multiplication of polynomial coefficients with powers of ψ.
All measurements for our NTT implementation were performed on our test chip operating at clock
frequency 72 MHz and nominal supply voltage 1.1 V. Our hardware-accelerated NTT is up to 11×
more energy-efficient than the software implementation, after accounting for voltage scaling. It is
2.5× more energy-efficient compared to the fast NTT design from [14] with similar cycle count, and
1.5× more energy-efficient compared to the slow NTT design from [14] with 4× cycle count. Our
NTT is almost twice as fast as [44], since our memory architecture allows computing one butterfly per
cycle even with single-port SRAMs, while having similar energy consumption. The energy-efficiency
of our NTT implementation is largely due to the careful design of low-power modular arithmetic, as
discussed earlier, which decreases overall modular reduction complexity and simplifies the logic circuitry.
However, our NTT is still about 4× less energy-efficient compared to [17], primarily due to the fact
that [17] uses 16 parallel butterfly units along with dedicated four-port scratch-pad buffers to achieve
higher parallelism and lower energy consumption at the cost of significantly larger chip area (2.05 mm2)
compared to our design (0.28 mm2). As will be discussed in Section 6, sampling accounts for majority
of the computational cost in Ring-LWE and Module-LWE schemes, therefore justifying our choice of
area-efficient NTT architecture at the cost of some energy overhead.

12 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

4 Discrete Distribution Sampler
Hardness of the LWE problem is directly related to statistical properties of the error samples. Therefore,
an accurate and efficient sampler is a critical component of any lattice cryptography implementation.
Sampling accounts for a major portion of the computational overhead in software implementations
of ideal and module lattice-based protocols [47]. A cryptographically secure pseudo-random number
generator (CS-PRNG) is used to generate uniformly random numbers, which are then post-processed to
convert them into samples from different discrete probability distributions. In this section, we describe
our design of energy-efficient CS-PRNG along with fast sampling techniques for configurable distribution
parameters.

4.1 Energy-Efficient CS-PRNG
Some of the standard choices for CS-PRNG are SHA-3 in the SHAKE mode [48], AES in counter mode
[49] and ChaCha20 [50]. In order to identify the most efficient among these, we have compared them in
terms of area, pseudo-random bit generation performance and energy consumption, as shown in Table 2.
Only place-and-route area and measured energy are considered for all analysis, and synthesis area is
reported for reference. For fair comparison, all the three primitives – SHA-3, AES and ChaCha20 – were
implemented as full data path architectures. From Fig. 8, we observe that although all three primitives
have comparable area-energy product, SHA-3 is 2× more energy-efficient than ChaCha20 and 3× more
energy-efficient than AES; and this is largely due to the fact that SHA-3 generates the highest number
of pseudo-random bits per round.

The basic building block of SHA-3 is the Keccak permutation function [51]. Therefore, our PRNG
consists of a 24-cycle Keccak-f[1600] core [39] which can be configured in different SHA-3 modes and
consumes 2.33 nJ per round at nominal voltage of 1.1 V (and 0.89 nJ per round at 0.68 V). Its 1600-bit
state is processed in parallel, thus avoiding expensive register shifts and multiplexing required in serial
architectures. Fig. 9 shows the overall architecture our discrete distribution sampler with the energy-

Table 2: Comparison of CS-PRNG designs

PRNG Area (kGE) a Cycles/Round No. of PRNG Bits Energy (pJ/bit) b

SHAKE-128
34.5 (23.5) 24

1344 1.67
SHAKE-256 1088 2.07
ChaCha20 21.1 (17.5) 20 512 3.53
AES-128-CTR

15.0 (11.1)
11 128 5.10

AES-256-CTR 15 128 7.56
a Area of placed-and-routed design (post-synthesis area in brackets)
b Energy measured from test chip operating at 1.1 V

Figure 8: Analysis of SHAKE-128, SHAKE-256, AES-128-CTR, AES-256-CTR and ChaCha20 in terms
of energy per bit, bits per cycle and area-energy product.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 13

Figure 9: Architecture of discrete distribution sampler with Keccak-based PRNG core.

efficient SHA-3 core. Pseudo-random bits generated by SHAKE-128 or SHAKE-256 are stored in the
1600-bit Keccak state register, and shifted out 32 bits at a time as required by the sampler. The sampler
then feeds these bits, AND-ed with the appropriate bit mask to truncate them to desired size, to the
post-processing logic to perform one of the following five types of operations – rejection sampling in
[0, q), binomial sampling with standard deviation σ, discrete Gaussian sampling with standard deviation
σ and desired precision up to 32 bits, uniform sampling in [−η, η] for η < q and trinary sampling in
{−1, 0,+1} with specified weights for the +1 and −1 samples.

4.2 Rejection Sampling
The public polynomial a in Ring-LWE and the public vector a in Module-LWE have their coefficients
uniformly drawn from Zq through rejection sampling, where uniformly random numbers of desired bit
size are obtained from the PRNG as candidate samples and only numbers smaller than q are accepted.
The probability that a random number is not accepted is known as the rejection probability.

Table 3: Rejection probabilities for different primes with and without fast sampling

Prime Bit Rej. Prob. Scaling Rej. Prob. Decrease in
Size (w/o. scaling) Factor (w. scaling) Rej. Prob.

7681 13 0.06 1 0.06 -
12289 14 0.25 5 0.06 0.19
40961 16 0.37 3 0.06 0.31
65537 17 0.50 7 0.12 0.38
120833 17 0.08 1 0.08 -
133121 18 0.49 7 0.11 0.38
184321 18 0.30 11 0.03 0.27
8380417 23 ≈ 0 1 ≈ 0 -
8058881 23 0.04 1 0.04 -
4205569 23 0.50 7 0.12 0.38
4206593 23 0.50 7 0.12 0.38
8404993 24 0.50 7 0.12 0.38

For prime q, the rejection probability is calculated as (1− q/2dlg qe). In Table 3, we list the rejection
probabilities for primes mentioned earlier in Section 3. Clearly, different primes have very different
rejection probabilities, often as high as 50%, which can be a bottleneck in lattice-based protocols. To
solve this problem, we refer to [52] where pseudo-random numbers smaller than 5q are accepted for
q = 12289, thus reducing the rejection probability from 25% to 6%. We extend this technique for any
prime q by scaling the rejection bound from q to kq, for appropriate small integer k, so that the rejection
probability is now (1− kq/2dlg kqe). We list these scaling factors for the primes in Table 3 along with
the corresponding decrease in rejection probability.

Although this method reduces rejection rates, the output samples now lie in [0, kq) instead of [0, q).

14 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Table 4: Comparison of rejection sampling with software

Design Platform Tech VDD Freq Parameters Samp. Samp.
(nm) (V) (MHz) Cycles Energy

This work ASIC 40 1.1 72
(n = 256, q = 7681) 461 50.90 nJ
(n = 512, q = 12289) 921 105.74 nJ
(n = 1024, q = 12289) 1,843 211.46 nJ

Software
[45]

ARM
Cortex-M4 - 3.0 100

(n = 256, q = 7681) 60,433 37.17 µJ
(n = 512, q = 12289) 139,153 85.58 µJ
(n = 1024, q = 12289) 284,662 175.07 µJ

Table 5: Comparison of binomial sampling with state-of-the-art

Design Platform Tech VDD Freq Parameters Samp. Samp.
(nm) (V) (MHz) Cycles Energy

This work ASIC 40 1.1 72
(n = 256, k = 4) 505 58.20 nJ
(n = 512, k = 8) 1,009 116.26 nJ
(n = 1024, k = 8) 2,018 232.50 nJ

Software
[45]

ARM
Cortex-M4 - 3.0 100

(n = 256, k = 4) 52,603 32.35 µJ
(n = 512, k = 8) 155,872 95.86 µJ
(n = 1024, k = 8) 319,636 196.58 µJ

Song et al.
[17] ASIC 40 0.9 300 (n = 512, k = 16) 3,704 1.25 µJ

Oder et al.
[13] FPGA - - 125 (n = 1024, k = 16) 33,792 -

In [52], for q = 12289 and k = 5, the accepted samples are reduced to Zq by subtracting q from them up
to four times. Since k is not fixed for our rejection sampler, we employ Barrett reduction [34] for this
purpose. Unlike modular multiplication, where the inputs lie in [0, q2), the inputs here are much smaller;
so the Barrett reduction parameters are also quite small, therefore requiring little additional logic. In
Table 4, we compare our rejection sampler performance (SHAKE-128 used as PRNG) with software
implementation on ARM Cortex-M4 using assembly-optimized Keccak [45].

4.3 Binomial Sampling
For binomial sampling, we take two k-bit chunks from the PRNG and computes the difference of
their Hamming weights, as proposed in [24]. The resulting samples follow a binomial distribution with
standard deviation σ =

√
k/2. We allow configuring k to any value up to 32, thus providing the flexibility

to support different standard deviations.
We compare our binomial sampling performance (SHAKE-256 used as PRNG) with state-of-the-art

software and hardware implementations in Table 5. Our sampler is more than two orders of magnitude
more energy-efficient compared to the software implementation on ARM Cortex-M4 which uses assembly-
optimized Keccak [45]. It is also 14× more efficient than [17] which uses Knuth-Yao sampling [53] for
binomial distributions with ChaCha20 as PRNG.

4.4 Discrete Gaussian Sampling
Our discrete Gaussian sampler implements the inversion method of sampling [54] from a discrete
symmetric zero-mean distribution χ on Z with small support which approximates a rounded continuous
Gaussian distribution, e.g., in Frodo [23] and R.EMBLEM [35]. For a distribution with support
Sχ = {−s, · · · ,−1, 0, 1, · · · , s}, where s is a small positive integer, the probabilities Pr(z) for z ∈
Sχ, such that Pr(z) = Pr(−z) can be derived from the cumulative distribution table (CDT) Tχ =
(Tχ[0], Tχ[1], · · · , Tχ[s]), where 2−r · Tχ[0] = Pr(0)/2− 1 and 2−r · Tχ[z] = Pr(0)/2− 1 +

∑i=z
i=1 Pr(i) for

z ∈ [1, s] for a given precision r. Given random inputs r0 ∈ {0, 1}, r1 ∈ [0, 2r) and the distribution table

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 15

Algorithm 8 Discrete Gaussian Sampling using Inversion Method [23]
Require: Random inputs r0 ∈ {0, 1}, r1 ∈ [0, 2r) and table Tχ = (Tχ[0], · · · , Tχ[s])
Ensure: Sample e ∈ Z from χ

1: e← 0
2: for (z = 0; z < s; z = z + 1) do
3: if r1 > Tχ[z] then
4: e← e+ 1
5: end if
6: end for
7: e← (−1)r0 · e
8: return e

Table 6: Comparison of discrete Gaussian sampling with software

Design Platform Tech VDD Freq Parameters Samp. Samp.
(nm) (V) (MHz) Cycles Energy

This work ASIC 40 1.1 72
(n = 512, σ = 25.0, s = 54) 29,169 1232.71 nJ
(n = 1024, σ = 2.75, s = 11) 15,330 647.86 nJ
(n = 1024, σ = 2.30, s = 10) 14,306 604.58 nJ

Software
[45]

ARM
Cortex-M4 - 3.0 100

(n = 512, σ = 25.0, s = 54) 397,921 244.72 µJ
(n = 1024, σ = 2.75, s = 11) 325,735 200.33 µJ
(n = 1024, σ = 2.30, s = 10) 317,541 195.29 µJ

Tχ, a sample e ∈ Z from χ can be obtained using Algorithm 8 [23].
The sampling must be constant-time in order to eliminate timing side-channels, therefore the algorithm

does a complete loop through the entire table Tχ. The comparison r1 > Tχ[z] must also be implemented
in a constant-time manner. Our implementation adheres to these requirements and uses a 64× 32 RAM
to store the CDT, allowing the parameters s ≤ 64 and r ≤ 32 to be configured according to the choice of
the distribution. In Table 6, we have compared our Gaussian sampler performance (SHAKE-256 used as
PRNG) with software implementation on ARM Cortex-M4 using assembly-optimized Keccak [45], and
we observe up to 40× improvement in energy-efficiency after accounting for voltage scaling. Hardware
architectures for Knuth-Yao sampling have been proposed by [9] and [17], but they are for discrete
Gaussian distributions with larger standard deviation and higher precision, which we do not support.

4.5 Other Distributions
Several lattice-based protocols, such as CRYSTALS-Dilithium [27] and qTESLA [25], require polynomials
to be sampled with coefficients uniformly distributed in the range [−η, η] for a specified bound η < q.
For this, we again use rejection sampling. Unlike rejection sampling from Zq, we do not require any
special techniques since η is typically small or an integer close to a power of two.

Finally, we have also implemented a trinary sampler for polynomials with coefficients from {−1, 0,+1}.
We classify these polynomials into three categories: (1) withm non-zero coefficients, (2) withm0 +1’s and
m1 −1’s, and (3) with coefficients distributed as Pr(x = 1) = Pr(x = −1) = ρ/2 and Pr(x = 0) = 1− ρ
for ρ ∈ {1/2, 1/4, 1/8, · · · , 1/128}. Their implementations are described in Algorithms 9, 10 and 11. For
the first two cases, we start with a zero-polynomial s of size n. Then, uniformly random coefficient
indices ∈ [0, n) are generated, and the corresponding coefficients are replaced with −1 or +1 if they
are zero [25, 36]. For the third case, sampling of the coefficients is based on the observation [55]
that for a uniformly random number x ∈ [0, 2k) we have Pr(x = 0) = 1/2k, Pr(x = 1) = 1/2k and
Pr(x ∈ [2, 2k)) = 1− 1/2k. Therefore, for the appropriate value of k ∈ [1, 7], we can generate samples
from the desired trinary distribution with ρ = 1/2k. For all three algorithms, the symbol ∈R denotes
pseudo-random number generation using the PRNG.

16 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Algorithm 9 Trinary Sampling with m non-zero
coefficients (+1’s and −1’s)
Require: m < n and a PRNG
Ensure: s = (s0, s1, · · · , sn−1)

1: s← (0, 0, · · · , 0) ; i← 0
2: while i < m do
3: pos ∈R [0, n)
4: sign ∈R {0, 1}
5: if spos = 0 then
6: if sign = 0 then
7: spos ← 1
8: else
9: spos ← −1

10: end if
11: i← i+ 1
12: end if
13: end while
14: return s

Algorithm 10 Trinary Sampling with m0 +1’s
and m1 −1’s
Require: m0 +m1 < n and a PRNG
Ensure: s = (s0, s1, · · · , sn−1)

1: s← (0, 0, · · · , 0) ; i← 0
2: while i < m0 do
3: pos ∈R [0, n)
4: if spos = 0 then
5: spos ← +1
6: i← i+ 1
7: end if
8: end while
9: while i < m0 +m1 do

10: pos ∈R [0, n)
11: if spos = 0 then
12: spos ← −1
13: i← i+ 1
14: end if
15: end while
16: return s

Algorithm 11 Trinary Sampling with coefficients from {−1, 0,+1} distributed according to Pr(x =
1) = Pr(x = −1) = ρ/2 and Pr(x = 0) = 1− ρ
Require: k ∈ [1, 7], ρ = 1/2k and a PRNG
Ensure: s = (s0, s1, · · · , sn−1)

1: for (i = 0; i < n; i = i+ 1) do
2: x ∈R [0, 2k)
3: if x = 0 then
4: si ← 1
5: else if x = 1 then
6: si ← −1
7: else
8: si ← 0
9: end if

10: end for
11: return s

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 17

5 Chip Architecture
The top-level architecture of Sapphire is shown in Fig. 10. The efficient building blocks described in
Sections 3 and 4 are integrated with a 1 KB instruction memory and an instruction decoder to form
the core of our crypto-processor. It can be programmed using 32-bit custom instructions to perform
different polynomial arithmetic, transform and sampling operations, as well as simple branching. For
example, the following instructions generate polynomials a, s, e ∈ Rq, and calculate a · s+ e, which is a
typical computation in the Ring-LWE-based scheme NewHope-1024:

config (n = 1024, q = 12289)
sample_a
rej_sample (prng = SHAKE-128, seed = r0, c0 = 0, c1 = 0, poly = 0)
sample_s
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 0, k = 8, poly = 1)
sample_e
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 1, k = 8, poly = 2)
ntt_s
mult_psi (poly = 1)
transform (mode = DIF_NTT, poly_dst = 4, poly_src = 1)
a_mul_s
poly_op (op = MUL, poly_dst = 0, poly_src = 4)
intt_a_mul_s
transform (mode = DIT_INTT, poly_dst = 5, poly_src = 0)
mult_psi_inv (poly = 5)
a_mul_s_plus_e
poly_op (op = ADD, poly_dst = 1, poly_src = 5)

The config instruction is first used to configure the protocol parameters n and q which, in this
example, are the parameters from NewHope-1024. For n = 1024, the polynomial cache is divided into 8
polynomials, which are accessed using the poly argument in all instructions. For sampling, the seed can
be chosen from a pair of 256-bit registers r0 and r1, while two 16-bit registers c0 and c1 are used as

Figure 10: Sapphire lattice crypto-processor top-level architecture.

18 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

counters for sampling multiple polynomials from the same seed. For coefficient-wise operations poly_op,
the poly_src argument indicates the first source polynomial while the poly_dst argument is used to
denote the second source (and destination) polynomial. Similarly, the following set of instructions are
used to generate matrix of polynomials A ∈ R2×2

q and vectors of polynomials s, e ∈ R2
q, and calcu-

late A·s+e, which is a typical computation in the Module-LWE-based scheme CRYSTALS-Kyber-v1-512:

config (n = 256, q = 7681)
sample_s
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 0, k = 3, poly = 4)
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 1, k = 3, poly = 5)
sample_e
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 2, k = 3, poly = 24)
bin_sample (prng = SHAKE-256, seed = r1, c0 = 0, c1 = 3, k = 3, poly = 25)
ntt_s
mult_psi (poly = 4)
transform (mode = DIF_NTT, poly_dst = 16, poly_src = 4)
mult_psi (poly = 5)
transform (mode = DIF_NTT, poly_dst = 17, poly_src = 5)
sample_A0
rej_sample (prng = SHAKE-128, seed = r0, c0 = 0, c1 = 0, poly = 0)
rej_sample (prng = SHAKE-128, seed = r0, c0 = 1, c1 = 0, poly = 1)
A0_mul_s
poly_op (op = MUL, poly_dst = 0, poly_src = 16)
poly_op (op = MUL, poly_dst = 1, poly_src = 17)
init (poly = 20)
poly_op (op = ADD, poly_dst = 20, poly_src = 0)
poly_op (op = ADD, poly_dst = 20, poly_src = 1)
sample_A1
rej_sample (prng = SHAKE-128, seed = r0, c0 = 0, c1 = 1, poly = 0)
rej_sample (prng = SHAKE-128, seed = r0, c0 = 1, c1 = 1, poly = 1)
A1_mul_s
poly_op (op = MUL, poly_dst = 0, poly_src = 16)
poly_op (op = MUL, poly_dst = 1, poly_src = 17)
init (poly = 21)
poly_op (op = ADD, poly_dst = 21, poly_src = 0)
poly_op (op = ADD, poly_dst = 21, poly_src = 1)
intt_A_mul_s
transform (mode = DIT_INTT, poly_dst = 8, poly_src = 20)
mult_psi_inv (poly = 8)
transform (mode = DIT_INTT, poly_dst = 9, poly_src = 21)
mult_psi_inv (poly = 9)
A_mul_s_plus_e
poly_op (op = ADD, poly_dst = 24, poly_src = 8)
poly_op (op = ADD, poly_dst = 25, poly_src = 9)

In this example, parameters from CRYSTALS-Kyber-v1-512 have been used. For n = 256, the
polynomial cache is divided into 32 polynomials, which are again accessed using the poly argument. The
init instruction is used to initialize a specified polynomial with all zero coefficients. The matrix A is
generated one row at a time, following a just-in-time approach [56] instead of generating and storing all
the rows together, to save memory, which becomes especially useful when dealing with larger matrices
such as in CRYSTALS-Kyber-1024 and CRYSTALS-Dilithium-IV. We have written a Perl script to
parse such plain-text programs and convert them into 32-bit binary instructions which can be decoded
by the Sapphire crypto-processor. A complete list of instructions is provided in Appendix B.

We use dedicated clock gates for fine-grained power savings during program execution, and an
interrupt pin is used to indicate completion of the program. Its memory and data registers can be
accessed through a simple memory-mapped interface. Using the same interface, it is also coupled with a

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 19

Figure 11: Chip micrograph and test chip specifications.

Figure 12: Chip architecture with Sapphire crypto-core and RISC-V micro-processor.

low-power RISC-V micro-processor [57], as shown in Fig. 12, with 32 KB instruction memory and 64
KB data memory, which implements the RV32IM instruction set [58] and has Dhrystone performance
similar to ARM Cortex-M0. When executing cryptographic workloads in the Sapphire core, the RISC-V
core can be clock-gated using the wait-for-interrupt (wfi) instruction. The processor is woken up by a
dedicated interrupt from the Sapphire core, which is raised when the cryptographic operation is complete.
Using the memory-mapped interface ensures that the cryptographic core can be accessed through simple
load and store instructions, without requiring any custom instructions or changes to the compilation
toolchain. While the cryptographic core is used to accelerate all lattice cryptography computations, the
RISC-V processor is used for scheduling the cryptographic workloads as well as for compression and
decompression of public keys and ciphertexts. The Keccak-f[1600] core inside Sapphire can be accessed
standalone through RISC-V software, and is used to accelerate SHA-3 hashing and extendable output
functions according to the requirements of the protocol.

Our test chip was fabricated in the TSMC 40nm LP CMOS process, and the chip micrograph is
shown in Fig. 11 with the key design components highlighted. The final placed-and-routed design of our

20 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Sapphire core consists of 106k logic gates (76 kGE for synthesized design) and 40.25 KB SRAM, with a
total area of 0.28 mm2 (logic and memory combined). Our test chip supports supply voltage scaling
from 0.68 V to 1.1 V. Although one of our key design objectives was to demonstrate a configurable
lattice cryptography processor, our architecture can be easily scaled for more specific parameter sets.
For example, in order to accelerate only NewHope-512 (n = 512, q = 12289), size of the polynomial cache
can be reduced to 6.5 KB (= 8× 512× 13 bits) and the pre-computed NTT constants can be hard-coded
in logic or stored in a 2.03 KB ROM (= 2.5 × 512 × 13 bits) instead of the 15 KB SRAM. Also, the
modular arithmetic logic in the ALU can be simplified significantly to work with a single prime only.

We use the on-chip software-configurable clock gates (shown in Fig. 10) to accurately measure power
consumption of different sub-modules inside the Sapphire core, e.g., sampling, NTT, arithmetic, etc. For
example, the following instructions are executed to measure the average power consumption of NTT
over 1000 executions:

clock_config (keccak = GATE, ntt = UNGATE, sampler = GATE)
c0 = 0
loop: mult_psi (poly = 0)

transform (mode = DIF_NTT, poly_dst = 4, poly_src = 0)
c0 = c0 + 1
flag = compare (c0, 1000)
if (flag == -1) goto loop

The clock_config instruction is used to control the clock gates, e.g., the PRNG and sampler clocks
are gated when measuring NTT power (the RISC-V core is clock-gated using wfi as explained earlier).
A simple loop is implemented using labels, comparison and conditional jump instructions, similar to
assembly programs in general-purpose micro-controllers (please refer to Appendix B for details of our
custom instructions). One of the chip GPIO pins is kept high during the execution of this program to
indicate the measurement window, and the power consumption is measured using a source meter. This
still includes leakage power from the rest of the chip, but it is only a small fraction of the total power
compared to the dynamic power of the operation being measured. Similarly, power consumption of the
RISC-V core is measured by clock-gating the Sapphire cryptographic core through software. Finally,
leakage power of the chip is measured by externally gating the clock signal being supplied to the chip,
so that all logic inside the chip is inactive.

The RISC-V processor consumes 45 µW/MHz at 1.1 V (18 µW/MHz at 0.68 V) when running the
Dhrystone 2.1 benchmark. Power consumption of the cryptographic core is a strong function of the
protocols being executed along with the associated parameters. Average power consumption of the
lattice crypto-processor was measured to be around 8 mW at 1.1 V and 72 MHz (520 µW at 0.68 V and
12 MHz). Total leakage power of the chip was measured to be 391 µW at 1.1 V (70 µW at 0.68 V).
Since our chip operates on a single power domain, it is not possible to measure leakage power of different
components of the chip. We report the individual module-wise leakage and dynamic power consumption,
as obtained from post-place-and-route simulations of our design operating at 1.1 V and 72 MHz, in the
table below:

Module Pleak (µW) Pdyn (µW) Ptot (µW)
Butterfly + ALU 18.28 9210.04 9228.32
LWE Polynomial Cache 120.28 1660.18 1780.46
NTT Constants RAM 76.50 661.61 738.11
Keccak Core + Sampler 41.15 1053.58 1094.73
RISC-V Processor + Memory 320.15 2745.68 3065.83

Before moving on to the protocol implementations and measurements, we summarize some key
architectural design techniques we have used to achieve energy-efficiency:

• We have employed increased parallelism in the modular arithmetic and CS-PRNG modules in the
form of single-cycle butterfly computation and 1600-bit 24-cycle Keccak data-path respectively.
This reduces cycle count as well as data movement and control circuitry, thus decreasing overall
energy consumption.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 21

• Based on overall computational complexity, we know that additions are much cheaper than
multiplications. Therefore, we have exploited special properties of prime q and parameter m,
wherever possible, during Barrett reduction to convert expensive multiplications into cheaper
bit-shifts and additions / subtractions.

• Reading data from registers involves much smaller energy consumption compared to reading from
SRAMs. We have used registers for storing PRNG seeds, temporary values and the Keccak state,
and SRAMs are used to store only the polynomials. This significantly reduces overall energy
consumption, especially for the Keccak core.

• Software-controlled clock gates (explicitly inserted in RTL, apart from tool-inserted clock gates)
for the sampler, PRNG and NTT allow fine-grained dynamic power savings by gating inactive
modules as required during program execution.

• The crypto-processor internal memory is efficiently utilized to store polynomials during protocol
execution, thus avoiding access to the main processor’s data memory as much as possible and
reducing energy consumption.

6 Protocol Implementations and Measurement Results
To measure the efficiency of our design, we have implemented the following NIST Round 2 lattice-based
cryptography protocols on our test chip:

Algorithm Lattice Prob. NIST Sec. Parameter Set
CCA-KEM Algorithms

NewHope Ring-LWE
1 NewHope-512
5 NewHope-1024

CRYSTALS-Kyber Module-LWE
1 Kyber-512
3 Kyber-768
5 Kyber-1024

Frodo LWE
1 Frodo-640
3 Frodo-976
5 Frodo-1344

Signature Algorithms

qTESLA Ring-LWE
1 qTESLA-I
3 qTESLA-III-size
3 qTESLA-III-speed

CRYSTALS-Dilithium Module-LWE
1 Dilithium-II
2 Dilithium-III
3 Dilithium-IV

where NIST security levels 1-6 indicate brute-force security matching or exceeding that of AES-128,
SHA3-256, AES-192, SHA3-384, AES-256 and SHA3-512 respectively. Fig. 13 shows our test board
and measurement setup. The test chip is housed in a QFN64 socket soldered to the board, an Opal
Kelly XEM7001 FPGA development board is used to interface with the chip, and a Keithley 2602A
source meter supplies power to the chip. Both the FPGA and the source meter are controlled from a
host computer through USB and GPIB interfaces respectively. The FPGA is used to transfer programs
from the host computer to the instruction memory of our test chip. Also, a small ring-oscillator-based
true random number generator [59] implemented on the FPGA is connected to our test chip through
GPIO pins for providing fresh random inputs to the randombytes function which is part of the NIST
API. All lattice cryptography programs are written using custom instructions and compiled with our
script, while all RISC-V software is written in C and compiled using the riscv-gcc toolchain.

22 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Figure 13: Measurement setup with our test chip.

6.1 Protocol Implementations and Evaluation Results

Next, we describe some key aspects of our protocol implementations along with timing and energy
profiling results. All polynomial arithmetic, transforms and sampling operations are accelerated using
custom programs running in the Sapphire core, and all SHA-3 computations utilize the Keccak core
inside Sapphire. The RISC-V processor is used only to read / write data and programs from / to the
cryptographic core (both when executing polynomial computations and when utilizing the fast Keccak
core for SHA-3 operations), generate initial randomness using the randombytes function, encode /
decode messages and compress / decompress public keys and ciphertexts. For polynomials which need to
be read from the polynomial cache and encoded (or decoded and written to the polynomial cache), we
directly post-process the outputs (or pre-process the inputs) of the crypto-processor’s internal memory,
instead of first storing the data in intermediate temporary arrays and then processing them. This saves
around 10-20% cycles in overall protocol run-time. Also, the internal clock gates are strategically enabled
and disabled during program execution using the clock_config instruction (please refer to Appendix B
for details of our custom instructions) to reduce overall energy consumption.

For the NewHope and CRYSTALS-Kyber key exchange schemes, each of the CPA-secure public key
encryption functions – CPA-PKE.KeyGen, CPA-PKE.Encrypt and CPA-PKE.Decrypt – has been written
entirely (excluding the encoding and decoding operations) using Sapphire custom instructions with each
of the corresponding programs fitting completely in its 1 KB instruction memory. The CCA-secure key
encapsulation functions – CCA-KEM.KeyGen, CCA-KEM.Encaps and CCA-KEM.Decaps – involve calls
to SHA-3 and the CPA-PKE functions (according to the Fujisaki-Okamoto transform [60]), which are
implemented in software. Since the signature schemes qTESLA and CRYSTALS-Dilithium both involve
probabilistic rejection of intermediate values, the associated polynomial computations are split into
multiple custom programs instead of one each for the KeyGen, Sign and Verify functions. These blocks of
code are scheduled using RISC-V software, which also handles encoding and decoding operations. The
only exception is the KeyGen step in qTESLA, where high-precision discrete Gaussian sampling using
large CDT tables is implemented in software, with the SHA-3 functions accelerated in hardware.

Since Module-LWE algorithms involve working with vectors or matrices of polynomials, it is par-
ticularly important to ensure that these polynomials fit inside the crypto-processor memory as much
as possible (because reads and writes to the internal memory through software are not cheap). When
multiplying the public matrix A with the secret vector s, the matrix A is generated through rejection
sampling, one row at a time, following the just-in-time approach from [56]. This reduces memory
footprint so that the entire computation can fit in the polynomial cache.

In Table 7, we compare cycle count and energy consumption of our implementations of the Ring-LWE
and Module-LWE CPA-PKE schemes with assembly-optimized software on ARM Cortex-M4 micro-
processor (from PQM4 [45]), with average cycle counts for 100 executions. The energy consumption of
our test chip has been measured at 1.1 V and 72 MHz, while the energy consumption of the Cortex-M4
processor is estimated from cycle counts using average power (61.5 mW or 615 pJ/cycle at 3.0 V
and 100 MHz) measured on NUCLEO-F411RE operating at 100 MHz. The cycle count and energy

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 23

Table 7: Measured energy and performance of public key encryption schemes

Protocol Cortex-M4 [45] This work †

Cycles Energy (µJ) Cycles Power (mW) Energy (µJ)
NewHope-512-CPA-PKE

KeyGen - - 18,667 7.15 1.85
Encrypt - - 53,499 7.79 5.79
Decrypt - - 29,099 6.81 2.77

NewHope-1024-CPA-PKE
KeyGen 1,179,353 725.30 38,012 7.39 3.90
Encrypt 1,663,023 1022.76 106,611 8.10 12.00
Decrypt 194,439 119.58 56,061 9.31 7.26

CRYSTALS-Kyber-v1-512-CPA-PKE
KeyGen 609,923 375.10 46,187 7.61 4.90
Encrypt 721,925 443.98 66,851 8.33 7.74
Decrypt 95,894 58.97 32,198 7.67 3.45

CRYSTALS-Kyber-v1-768-CPA-PKE
KeyGen 1,001,328 615.82 72,245 7.40 7.43
Encrypt 1,116,540 686.67 94,440 7.87 10.31
Decrypt 129,560 79.68 40,202 7.75 4.34

CRYSTALS-Kyber-v1-1024-CPA-PKE
KeyGen 1,610,114 990.22 100,453 7.95 11.09
Encrypt 1,747,687 1074.83 124,142 7.94 13.70
Decrypt 162,204 99.76 48,205 8.42 5.65
† Includes program execution and read/write from/to crypto-processor

Figure 14: Configurations of the Sapphire polynomial cache for Ring-LWE and Module-LWE schemes.

consumption for our implementation include program execution as well as the additional overhead of
writing inputs to and reading outputs from the Sapphire cryptographic core. For both NewHope and
CRYSTALS-Kyber, we observe up to an order of magnitude improvement in energy-efficiency compared
to state-of-the-art software, after accounting for voltage scaling. Fig. 14 shows how configurability of
the Sapphire polynomial cache is utilized to support different ring dimensions.

Although our lattice crypto-processor architecture primarily targets Ring-LWE and Module-LWE
schemes, we also implement the LWE-based Frodo KEM protocol to demonstrate its flexibility. Since
LWE-based algorithms require large matrix multiplications, the arithmetic operations dominate total
computation cost unlike Ring-LWE and Module-LWE where sampling is the most expensive operation.
Since the matrix dimensions are not powers of two, we tile the rows or columns so that we can use the
crypto-processor’s power-of-two-sized array operations effectively, as shown in Fig. 15. For Frodo-640,
we split each 640-element array into two arrays of size 512 and 128. For Frodo-976, we simply use arrays

24 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Figure 15: Tiling of n× n square matrices for Frodo-640, Frodo-976 and Frodo-1344.

of size 1024 with the last 48 elements zeroed out or ignored, as applicable. For Frodo-1344, we use
arrays of size 1536, formed by splitting them into two arrays of size 1024 and 512, with the last 192
elements (of the 512-dimension array) zeroed out or ignored, as applicable. Clearly, the polynomial
cache is split and accessed in non-uniform sizes for both Frodo-640 and Frodo-1344. However, this tiling
scheme makes our version of Frodo incompatible with the reference software implementation.

Frodo involves three large matrix multiplications: AS, S′A and S′B, where A, S, S′ and B have
dimensions n× n, n× n̄, m̄× n and n× n̄ respectively with n ∈ {640, 976, 1344} and m̄ = n̄ = 8. We
ensure that S′ is stored in row-major form and B is stored in column-major form, which simplifies
calculating S′B using the schoolbook matrix multiplication technique. The poly_op instruction is used
to coefficient-wise multiply a row of the multiplier matrix with a column of the multiplicand matrix,
and the sum_elems instruction computes the sum of its elements to generate one element of the output
matrix (please refer to Appendix B for details of our custom instructions). For calculating the matrix
AS, we generate A in row-major form (using rejection sampling, with zero chance of rejection since q is
a power of two) and S in column major form (using CDT-based discrete Gaussian sampling) so that
the same techniques still work. For n ∈ {640, 976}, the matrix S is generated two columns at a time to
reduce the number of outer loop iterations, as illustrated in the pseudo-code below:

#if (n == 1344)
for (j = 0; j < nbar; j = j + 1) {
#else
for (j = 0; j < nbar/2; j = j + 2) {
#endif

cdt_sample (prng = SHAKE-256, seed = r1, ..., poly = 0)
#if (n != 1344)
cdt_sample (prng = SHAKE-256, seed = r1, ..., poly = 1)
#endif
for (i = 0; i < n; i = i + 1) {

rej_sample (prng = SHAKE-128, seed = r0, ..., poly = 4)
#if (n != 1344)
poly_copy (poly_dst = 5, poly_src = 4)
#endif
poly_op (op = MUL, poly_dst = 4, poly_src = 0)
AS[i][j] = sum_elems (poly = 4)
#if (n != 1344)

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 25

poly_op (op = MUL, poly_dst = 5, poly_src = 1)
AS[i][j+1] = sum_elems (poly = 5)
#endif

}
}

Since both matrices S′ and A are generated on-the-fly in row-major fashion, this makes calculat-
ing S′A a bit complicated. We multiply each element of the i-th row of A with the i-th element of
the j-th row of S′ to generate a partial sum. These i partial sums are incrementally added together to
compute the j-th row of the output matrix S′A. For n ∈ {640, 976}, we generate S two columns at a
time to reduce the number of outer loop iterations. The corresponding pseudo-code is shown below:

#if (n == 1344)
for (j = 0; j < nbar; j = j + 1) {
#else
for (j = 0; j < nbar/2; j = j + 2) {
#endif

cdt_sample (prng = SHAKE-256, seed = r1, ..., poly = 0)
init (poly = 6)
#if (n != 1344)
cdt_sample (prng = SHAKE-256, seed = r1, ..., poly = 1)
init (poly = 7)
#endif
for (i = 0; i < n; i = i + 1) {

rej_sample (prng = SHAKE-128, seed = r0, ..., poly = 4)
reg = (poly = 0)[i]
poly_op (op = CONST_MUL, poly_dst = 2, poly_src = 4)
poly_op (op = ADD, poly_dst = 6, poly_src = 2)
#if (n != 1344)
reg = (poly = 1)[i]
poly_op (op = CONST_MUL, poly_dst = 3, poly_src = 4)
poly_op (op = ADD, poly_dst = 7, poly_src = 3)
#endif

}
}

where the reg = (poly)[i] instruction is used to save the i-th element of the array in the 24-bit
internal register reg, the init (poly) instruction creates an array of zeros and the CONST_MUL operation
multiplies each element of an array with the value stored in reg (please refer to Appendix B for details
of our instructions). The AS + E and S′A + E′ computations (shown in Fig. 16) require 10.9M and
9.9M cycles respectively for Frodo-640, 25.3M and 23.2M cycles respectively for Frodo-976, and 67.1M
and 62.7M cycles respectively for Frodo-1344, and constitute majority of the total cycle count. This is
quite different from the Ring-LWE and Module-LWE schemes, where polynomial sampling accounts for
60-70% of the total computation cost. Please note that memory usage of Frodo-1344-CCA-KEM-Decaps
exceeds the 64 KB processor data memory on our test chip; hence it was evaluated only in simulation,
with power consumption extrapolated from measured power for Frodo-640 and Frodo-976.

In Tables 8 and 9, we have compared cycle count and energy consumption of assembly-optimized
Cortex-M4 software [45] with our hardware-accelerated implementation on our test chip operating at 1.1
V and 72 MHz, with average cycle counts for 100 executions. Clearly, our design achieves up to an order
of magnitude improvement in energy-efficiency and performance compared to state-of-the-art software.
We note that Module-LWE schemes, although a bit slower compared to Ring-LWE, offer parameters
with better scalability in terms of security and efficiency compared to Ring-LWE schemes. Among the
key encapsulation schemes, NewHope and CRYSTALS-Kyber are two orders of magnitude more efficient
than Frodo, owing to the inherent structure in ideal and module lattices where the key operation is
polynomial multiplication as opposed to matrix multiplication in standard lattices. Among the digital
signature schemes evaluated, qTESLA allows faster signature generation and verification compared to

26 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

CRYSTALS-Dilithium. However, our implementation of the key generation step in qTESLA is quite
expensive since it uses CDT-based discrete Gaussian sampling with large tables and high precision.
This is not a big concern since signature key-pairs are generated infrequently; also, more specialized
hardware can be added to support such distribution parameters, albeit at the cost of logic area. Details
of program code size and data memory usage for all these hardware-accelerated protocol implementations
are available in Appendix C.

In Fig. 17, we plot the measured energy consumption of the Ring-LWE and Module-LWE-based
CCA-KEM-Encaps and Sign algorithms at different post-quantum security levels, as implemented on our
test chip operating at 1.1 V and 72 MHz. Due to the configurability of our lattice crypto-processor, we
are able to implement all these different modes and achieve energy scalability through efficiency versus
security trade-offs.

Figure 16: Computation of the matrices B = AS + E and B′ = S′A + E′ in Frodo KEM, where the
matrices S, E are generated two columns at a time and S′, E′ are generated two rows at a time.

Figure 17: Energy consumption of Ring-LWE and Module-LWE-based (a) CCA-KEM-Encaps and (b)
Sign algorithms at different post-quantum security levels.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 27

Table 8: Measured energy and performance of key encapsulation schemes

Protocol Cortex-M4 [45] This work

Cycles Energy Cycles Power Energy

(µJ) (mW) (µJ)

NewHope-512-CCA-KEM

KeyGen - - 52,063 6.04 4.37

Encaps - - 136,077 5.30 10.02

Decaps - - 142,295 5.80 11.46

NewHope-1024-CCA-KEM

KeyGen 1,243,729 764.89 97,969 6.13 8.35

Encaps 1,963,184 1207.34 236,812 5.05 16.59

Decaps 1,978,982 1217.07 258,872 5.89 21.17

CRYSTALS-Kyber-v1-512-CCA-KEM

KeyGen 726,921 447.06 74,519 5.77 5.97

Encaps 987,864 607.54 131,698 5.12 9.37

Decaps 1,018,946 626.65 142,309 5.69 11.25

CRYSTALS-Kyber-v1-768-CCA-KEM

KeyGen 1,200,291 738.18 111,525 5.28 8.19

Encaps 1,446,284 889.46 177,540 5.19 12.80

Decaps 1,477,365 908.58 190,579 5.86 15.52

CRYSTALS-Kyber-v1-1024-CCA-KEM

KeyGen 1,771,729 1089.61 148,547 5.95 12.27

Encaps 2,142,912 1317.89 223,469 5.25 16.3

Decaps 2,188,917 1346.18 240,977 5.91 19.76

Frodo-640-CCA-KEM

KeyGen 81,293,476 49995.49 11,453,942 6.65 1057.65

Encaps 86,178,252 52999.62 11,609,668 7.01 1129.95

Decaps 87,170,982 53610.15 12,035,513 6.88 1150.83

Frodo-976-CCA-KEM

KeyGen - - 26,005,326 6.70 2420.97

Encaps - - 29,749,417 7.05 2912.95

Decaps - - 30,421,175 6.94 2932.13

Frodo-1344-CCA-KEM

KeyGen - - 67,994,170 6.75 6374.45

Encaps - - 71,501,358 7.10 7050.83

Decaps - - 72,526,695 7.00 7051.21

28 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Table 9: Measured energy and performance of digital signature schemes

Protocol Cortex-M4 [45] This work

Cycles Energy Cycles Power Energy

(µJ) (mW) (µJ)

qTESLA-I

KeyGen 17,545,901 10790.73 4,846,949 7.89 531.55

Sign 6,317,445 3885.23 168,273 9.99 23.34

Verify 1,059,370 651.51 38,922 7.99 4.32

qTESLA-III-size

KeyGen 58,227,852 35810.13 11,479,190 7.71 1229.18

Sign 19,869,370 12219.66 348,429 9.97 48.23

Verify 2,297,530 1412.98 69,154 7.59 7.27

qTESLA-III-speed

KeyGen 30,720,411 18893.05 11,898,241 7.64 1262.39

Sign 11,987,079 7372.05 317,083 9.97 43.91

Verify 2,225,296 1368.56 67,712 7.30 6.86

CRYSTALS-Dilithium-I

KeyGen - - 95,202 6.82 9.00

Sign - - 376,392 6.77 35.41

Verify - - 142,576 7.73 15.31

CRYSTALS-Dilithium-II

KeyGen - - 130,022 7.24 13.08

Sign - - 514,246 7.68 54.82

Verify - - 184,933 7.49 19.23

CRYSTALS-Dilithium-III

KeyGen 2,322,955 1428.62 167,433 7.36 17.11

Sign 9,978,000 6136.47 634,763 7.40 65.26

Verify 2,322,765 1428.50 229,481 7.41 23.63

CRYSTALS-Dilithium-IV

KeyGen - - 223,272 6.89 21.38

Sign - - 815,636 6.93 78.53

Verify - - 276,221 7.44 28.55

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 29

Table 10: Comparison of our design with state-of-the-art hardware

Design Platform Tech VDD Freq Protocol Area Cycles Energy
(nm) (V) (MHz) (kGE) (µJ)

This work ASIC 40 1.1 72

NewHope-512-CCA-KEM-Encaps

106

136,077 10.02
NewHope-1024-CPA-PKE-Encrypt 106,611 12.00

Kyber-512-CCA-KEM-Encaps 131,698 9.37
Kyber-768-CPA-PKE-Encrypt 94,440 10.31
Kyber-768-CCA-KEM-Encaps 177,540 12.80
Frodo-640-CCA-KEM-Encaps 11,609,668 1129.95

Dilithium-II-Sign 514,246 54.82

Basu et al.
[20] † ASIC 65 1.2

169 NewHope-512-CCA-KEM-Encaps 1273 307,847 69.42
200 Kyber-512-CCA-KEM-Encaps 1341 31,669 6.21
158 Dilithium-II-Sign 1603 155,166 50.42

Albrecht
et al. [18] SLE 78 - - 50 Kyber-768-CPA-PKE-Encrypt - 4,747,291 -

Kyber-768-CCA-KEM-Encaps 5,117,996
Oder et al.
[13] FPGA - - 117 NewHope-1024-Simple-Encrypt - 179,292 -

Howe et al.
[16] FPGA - - 167 Frodo-640-CCA-KEM-Encaps - 3,317,760 -

Fritzmann
et al. [61] FPGA - - - NewHope-1024-CPA-PKE-Encrypt - 589,285 -

Hutter
et al. [62] † ASIC 130 1.2 1 Curve25519-ECDHE 50 1,622,354 113.56

Banerjee
et al. [57] ASIC 65 1.2 20 NIST-P256-ECDHE 149 680,000 24.07

NIST-P256-ECDSA-Sign 180,000 6.48
† Only post-synthesis area and energy consumption reported

In Table 10, we compare our design with existing hardware-accelerated implementations of NIST
Round 2 lattice-based protocols. Our crypto-processor is significantly smaller than the multiple designs
generated using high-level synthesis in [20], and is also more flexible and energy-efficient. Our Kyber
implementation is faster than [18] which uses RSA, AES and SHA hardware accelerators on the SLE
78 security controller platform to accelerate lattice cryptography. Efficiency of our design is greater
than or comparable to state-of-the-art FPGA implementations of Ring-LWE [13, 61]. Notably, [61]
also uses a RISC-V processor with NTT and SHA accelerators to implement the NewHope protocol.
However, our implementation of Frodo, which re-purposes the Ring/Module-LWE hardware for LWE
computations, is not as efficient as the dedicated LWE accelerator in [16]. Finally, we also compare our
design with state-of-the-art pre-quantum elliptic curve cryptography hardware [57, 62], and we observe
our implementation of CCA-secure lattice-based key encapsulation using NewHope-512 to be around 5×
more efficient compared to elliptic curve Diffie-Hellman key exchange using the NIST P-256 curve at
comparable pre-quantum security level.

6.2 Side-Channel Analysis
Side-channel security is an important aspect of all public-key cryptography implementations and lattice-
based cryptography is not an exception. In order to prevent information leakage through timing side
channels, the most important requirement is to ensure that the timing and memory access patterns of
underlying computations are independent of the secret data being computed upon. In our implementation,
this is achieved either by making the computations constant-time, e.g., binomial sampling, discrete
Gaussian sampling, NTT and polynomial arithmetic, or by using rejection sampling, e.g, sampling
numbers from [0, q) or [−η, η] or probabilistic rejection during signature schemes. Since our cryptographic
core and RISC-V processor both have a single-level memory hierarchy, the possibility of cache timing
attacks is also eliminated.

30 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Figure 18: Measured power waveforms for different polynomial sampling, transform and arithmetic
operations along with histograms of energy consumption for 10,000 measurements for each operation,
obtained from our test chip operating at 1.1 V and 12 MHz.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 31

Figure 19: Power side-channel measurement setup.

Our power side-channel measurement setup is shown in Fig. 19. Our test board has an 18 Ω resistor
connected in series between the power supply and the VDD pin of our test chip. The voltage across
this resistor, proportional to the chip’s current draw, is magnified using a non-inverting differential
amplifier (consists of an AD8001 op-amp chip, with 6 dB flat gain up to 100 MHz, in the non-inverting
configuration with resistors of appropriate sizes) and then observed through a 2.5 GS/s Tektronix
MDO3024 mixed domain oscilloscope.

The execution times of binomial sampling, discrete Gaussian sampling, NTT, polynomial coefficient-
wise multiplication and addition (with n = 1024 and q = 12289) were measured for 10,000 random
executions to verify that these computations are indeed constant-time. The corresponding power
waveforms and energy consumption histograms, measured from our test chip operating at 1.1 V and 12
MHz, are shown in Fig. 18.

Typical simple power analysis (SPA) attacks on lattice cryptography implementations exploit
information leakage through conditional branching or data-dependent execution times during the
modular arithmetic computations in NTT or polynomial coefficient-wise multiplication [63, 64, 65]. As
explained in Fig. 18, our implementation of polynomial arithmetic is constant-time. To quantitatively
evaluate SPA resistance of our design, we perform a difference-of-means test [66, 65, 67] on three
polynomial operations – NTT, coefficient-wise multiplication and coefficient-wise addition – which are
traditionally used as attack points. In this test, we try to differentiate two sets of measurements – those
with a particular coefficient (‘0’-th coefficient in our case) in the input polynomial set to 0 (denoted
as set ‘0’ or S0) versus the same coefficient set to q − 1 (denoted as set ‘1’ or S1) – by comparing
their means separately for each point in the mean power trace. The difference-of-means is calculated
for increasing number of measurements and plotted as a function of the number of traces N . The
corresponding 99.99% confidence interval for having a zero difference of means between these two sets is
calculated as tc ·

√
(σ2

0 + σ2
1)/N , where σ0 and σ1 are the standard deviations of the two sets S0 and S1

respectively and tc is the critical t-statistic for N − 1 degrees of freedom and cumulative probability
= 1−(1−0.9999)/2 = 0.99995. As long as the absolute difference-of-means is smaller than the confidence
interval, it is a strong indicator that the sets S0 and S1 are indistinguishable.

32 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Figure 20: Difference-of-means test for polynomial NTT with representative power traces from set S0
(top left) and S1 (top right), difference waveform (bottom left) and difference of means versus number of
traces with 99.99% confidence interval (bottom right).

Figure 21: Difference-of-means test for polynomial coefficient-wise multiplication with representative
power traces from set S0 (top left) and S1 (top right), difference waveform (bottom left) and difference
of means versus number of traces with 99.99% confidence interval (bottom right).

Figure 22: Difference-of-means test for polynomial coefficient-wise addition with representative power
traces from set S0 (top left) and S1 (top right), difference waveform (bottom left) and difference of
means versus number of traces with 99.99% confidence interval (bottom right).

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 33

In Fig. 20, 21 and 22, we provide preliminary difference-of-means test results, over 1000 traces, for
three polynomial operations (with n = 1024 and q = 12289) as measured from our test chip operating at
1.1 V and 10 MHz. Sampling rate of the oscilloscope was set to 500 MS/s for NTT and 2.5 GS/s for
coefficient-wise multiplication and addition. The red lines denote measured difference-of-means, and
the dashed lines mark the 99.99% confidence interval for ideal zero difference-of-means. These results
validate that our design is secure against SPA side-channel attacks.

The protocol implementations discussed earlier do not have any explicit countermeasures against
differential power analysis (DPA) attacks. Although DPA attacks can be mitigated by using ephemeral
keys, it is still important to analyze how these protocols can be made DPA-secure. Masking-based
countermeasures have been proposed in [68, 69, 47] for Ring-LWE encryption. Since our crypto-processor
is programmable, such masked protocols can be implemented using the right mix of software and
hardware acceleration. For example, we consider NewHope-CPA-PKE and discuss how the masked
decryption algorithm, inspired by [68, 69, 47], can be implemented using our hardware. A simplified
version of the CPA-PKE scheme, excluding any key / ciphertext compression / decompression and
encoding / decoding and implementation-specific details, is provided below:

function NewHope-CPA-PKE.KeyGen(seed):
Sample â, s, e ∈ Rq
b̂← â� ŝ+ ê
return (pk = (â, b̂), sk = ŝ)

function NewHope-CPA-PKE.Encrypt(pk, coin, µ ∈ {0, · · · , 255}32):
Sample s′, e′, e′′ ∈ Rq
û← â� ŝ′ + ê′

v ← Encode(µ) ∈ Rq
v′ ← b · s′ + e′′ + v
return c = (û, v′)

function NewHope-CPA-PKE.Decrypt(sk, c):
v′′ ← v′ − u · s
µ← Decode(v′′) ∈ {0, · · · , 255}32

return µ

where µ is the 32-byte message to be encrypted, x̂ is the NTT representation of polynomial x ∈ Rq, �
denotes coefficient-wise multiplication (in the transform domain) and · denotes polynomial multiplication
in Rq. The Encode function converts message µ into a polynomial in Rq. To allow robustness against
errors, each bit of the 256-bit message is encoded into bn/256c coefficients. For example, for n = 1024,
the i-th, (256 + i)-th, (512 + i)-th and (768 + i)-th coefficients are set to 0 or bq/2c depending on
whether the i-th bit in µ is 0 or 1 respectively, for i ∈ {0, · · · , 255}. The Decode function maps bn/256c

Figure 23: Power trace for the NewHope-1024-CPA-PKE.Decrypt algorithm, measured from our test
chip operating at 1.1 V and 12 MHz.

34 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

coefficients of a polynomial back to the original message bit. For example, for n = 1024, it takes the i-th,
(256 + i)-th, (512 + i)-th and (768 + i)-th coefficients (each in the range {0, · · · , q − 1}, subtracts bq/2c
from each of them, accumulates their absolute values, and finally sets the i-th message bit to 0 if the
sum is larger than q or to 1 otherwise, for i ∈ {0, · · · , 255}. Further details about these functions are
available in the NewHope specification document [24]. The Decrypt algorithm requires one polynomial
coefficient-wise multiplication û� ŝ, one inverse NTT (including multiplication with n−1ψ−i) to compute
u ·s, and one polynomial coefficient-wise subtraction v′−u ·s. Fig. 23 shows the corresponding measured
power waveform for n = 1024.

Similar to the encryption scheme studied in [69], we note that NewHope-CPA-PKE is also additively
homomorphic, that is, if c1 = (û1, v

′
1) and c2 = (û2, v

′
2) are the ciphertexts corresponding to messages µ1

and µ2 respectively, under the same key-pair, then (û1 + û2, v
′
1 + v′2) will be the ciphertext corresponding

to µ1⊕µ2. Following the works of [68, 69, 47], this property can be exploited to randomize the decryption
algorithm (as a first-order DPA countermeasure) as explained below:

1. Generate a secret random message µr
2. Encrypt µr to its corresponding ciphertext cr = (ûr, v′r)
3. Compute cm = (û+ ûr, v

′ + v′r), where c = (û, v′) is the original ciphertext
4. Decrypt masked ciphertext cm to obtain µm = µ⊕ µr, where µ is the original message
5. Recover original message µ = µm ⊕ µr

Therefore, the masked decryption now requires generation of a random message along with invocations
of both the Encrypt and Decrypt functions. As explained earlier, these functions can be implemented
entirely using Sapphire custom programs, so the masking involves minimal software overheads. Referring
to the cycle counts and energy consumption of NewHope-1024-CPA-PKE in Table 7, we note that
the masked decryption is about 3× less efficient compared to the unmasked version, both in terms of
energy and performance. Since µr is independent from the original message µ, the ciphertext cr can be
pre-computed offline in order to reduce online computation time and energy consumption. As explained
in [69], this technique does not require any modifications to the Decode function. However, addition of
ciphertexts increases the noise in them, thus increasing the decryption failure rate. Each of the two
polynomials in the ciphertext contains one noise term whose coefficients are derived from the zero-mean
binomial distribution with support [−k, k] and standard deviation σ =

√
k/2 (k = 8 for NewHope).

When two such ciphertexts are added, the resulting noise distribution (still binomial) now has support
[−2k, 2k] with standard deviation σ =

√
2k/2 =

√
k, that is, the noise variance is doubled. For k = 16,

which is also used in NewHope-Simple, the decryption failure probability will go up from 2−216 [24] to
2−60 [70]. As discussed in [69], standard deviation of the error distribution can be decreased to allow
correct decryptions at the cost of a minor deterioration in security. So, one possibility is to set k = 4 in
the unmasked scheme (so that k = 8 for masked decryption and failure probability remains 2−216). The
corresponding decrease in security level is from 289 bits to 268 bits, as obtained from the LWE hardness
estimator [71] using the following Sage module:

load("https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py")
n = 1024; q = 12289; stddev = sqrt(4/2); alpha = sqrt(2*pi)*stddev/q
_ = estimate_lwe(n, alpha, q, reduction_cost_model=BKZ.sieve)

Typically, a non-specific fixed vs. random t-test [72] is performed to statistically quantify information
leakage from a cryptographic algorithm implementation in software or hardware. For the non-specific
t-test, the power traces are divided into two sets Q0 (with fixed input) and Q1 (with random input) of
sizes N0 and N1 respectively, where N0 +N1 = N is the total number of measurements. Let µ0, µ1 and
σ2

0 , σ2
1 be the means and standard variances of the sets Q0, Q1 respectively. Then, the t-test statistic is

given by:
t = µ0 − µ1√

σ2
0

N0
+ σ2

1
N1

For the leakage test, t-values are determined for each N , for increasing number N of power traces, and
plotted as a function of N , with |t| > 4.5 indicating information leakage. Further details about this
leakage assessment methodology are available in [72]. The masking scheme in [69] was evaluated using

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 35

Figure 24: Leakage tests for (a) unmasked and (b) masked NewHope-1024-CPA-PKE.Decrypt, measured
from our test chip, with red dotted line indicating the |t| = 4.5 threshold.

correlation power analysis with 5,000 traces. In Fig. 24, we show preliminary t-test results for unmasked
and masked NewHope-1024-CPA-PKE.Decrypt, over 10,000 measurements each, as obtained from our
test chip. While the absolute t-value crosses 4.5 around 9,000 traces in the unmasked case, it remains
well below 4.5 for the masked implementation. However, as mentioned in [69], this masking technique
does not provide theoretical first order security since the secret key is not masked. Therefore, detailed
analysis with many more traces is required, which will be performed in the future.

7 Conclusion and Future Work
In this work, we have presented a configurable lattice cryptography processor supporting different
parameters for NIST Round 2 lattice-based key encapsulation and digital signature protocols such as
NewHope, qTESLA, CRYSTALS-Kyber, CRYSTALS-Dilithium and Frodo. Efficient modular arithmetic,
sampling and NTT memory architectures together provide an order of magnitude improvement in
performance and energy-efficiency compared to state-of-the-art software and hardware implementations.
Our ASIC implementation was fabricated in a 40nm low-power CMOS process and all measurement results
are obtained from our test chip operating at 1.1 V and 72 MHz. Our protocol implementations are secure
against timing and simple power analysis attacks, and we also discuss how masking countermeasures
against differential power analysis can be implemented using the programmability of our crypto-processor.

Since our design supports configurable lattice parameters, it will be interesting to explore other
lattice-based protocols such as Saber [73] and Round5 [74], which are based on the LWR (learning
with rounding) problem [75]. More concrete analysis of DPA-secure masked implementations, for
CPA-PKE, CCA-KEM and signature schemes, along with leakage tests and impact on performance and
energy-efficiency, will also be performed in the future. Finally, non-lattice-based post-quantum protocols
can also be implemented on our platform, using a mix of hardware acceleration and software, since they
can still benefit from our efficient implementation of modular arithmetic and SHA-3 computations.

Acknowledgements
The authors would like to thank Texas Instruments for funding this work, the TSMC University Shuttle
Program for chip fabrication support, and Bluespec, Xilinx, Cadence, Synopsys and Mentor Graphics
for providing CAD tools.

36 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

References
[1] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

Quantum Computer,” SIAM Journal of Computing, vol. 26, pp. 1484–1509, Oct. 1997.

[2] L. Chen, S. Jordan, Y. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on
Post-Quantum Cryptography,” Tech. Rep. 8105, National Institute of Standards and Technology,
Apr. 2016.

[3] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, C. Miller, D. Moody, R. Peralta,
R. Perlner, A. Robinson, D. Smith-Tone, and Y. Liu, “Status Report on the First Round of the
NIST Post-Quantum Cryptography Standardization Process,” Tech. Rep. 8240, National Institute
of Standards and Technology, Jan. 2019.

[4] O. Regev, “On Lattices, Learning with Errors, Random Linear Codes, and Cryptography,” in
Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing (STOC),
pp. 84–93, May 2005.

[5] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and Learning with Errors over
Rings,” Journal of the ACM, vol. 60, pp. 43:1–43:35, Nov. 2013.

[6] A. Langlois and D. Stehle, “Worst-case to Average-case Reductions for Module Lattices,” Designs,
Codes and Cryptography, vol. 75, pp. 565–599, Jun. 2015.

[7] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehle, “Classical Hardness of Learning
with Errors,” in Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing
(STOC), pp. 575–584, Jun. 2013.

[8] O. Regev, “Quantum Computation and Lattice Problems,” SIAM Journal of Computing, vol. 33,
pp. 738–760, Mar. 2004.

[9] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede, “Compact Ring-LWE
Cryptoprocessor,” in Cryptographic Hardware and Embedded Systems – CHES 2014, pp. 371–391,
Sep. 2014.

[10] R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Efficient Software Implementation of
Ring-LWE Encryption,” in 2015 Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 339–344, Mar. 2015.

[11] E. Alkim, P. Jakubeit, and P. Schwabe, “NewHope on ARM Cortex-M,” in Security, Privacy, and
Applied Cryptography Engineering – SPACE 2016, pp. 332–349, Dec. 2016.

[12] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M. Cheng, and B.-Y. Yang, “High
Performance Post-Quantum Key Exchange on FPGAs.” Cryptology ePrint Archive, Report 2017/690,
2017. https://eprint.iacr.org/2017/690.

[13] T. Oder and T. Guneysu, “Implementing the NewHope-Simple Key Exchange on low-cost FP-
GAs,” in International Conference on Cryptology and Information Security in Latin America, –
LATINCRYPT 2017, pp. 371–391, Sep. 2017.

[14] H. Nejatollahi, N. Dutt, I. Banerjee, and R. Cammarota, “Domain-specific Accelerators for Ideal
Lattice-based Public Key Protocols.” Cryptology ePrint Archive, Report 2018/608, 2018. https:
//eprint.iacr.org/2018/608.

[15] J. W. Bos, S. Friedberger, M. Martinoli, E. Oswald, and M. Stam, “Fly, you fool! Faster Frodo
for the ARM Cortex-M4.” Cryptology ePrint Archive, Report 2018/1116, 2018. https://eprint.
iacr.org/2018/1116.

[16] J. Howe, T. Oder, M. Krausz, and T. Guneysu, “Standard Lattice-Based Key Encapsulation
on Embedded Devices,” IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2018, pp. 372–393, Aug. 2018.

https://eprint.iacr.org/2017/690
https://eprint.iacr.org/2018/608
https://eprint.iacr.org/2018/608
https://eprint.iacr.org/2018/1116
https://eprint.iacr.org/2018/1116

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 37

[17] S. Song, W. Tang, T. Chen, and Z. Zhang, “LEIA: A 2.05mm2 140mW Lattice Encryption Instruction
Accelerator in 40nm CMOS,” in 2018 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4,
Apr. 2018.

[18] M. Albrecht, C. Hanser, A. Holler, T. Poppelmann, F. Virdia, and A. Wallner, “Implementing
RLWE-based Schemes Using an RSA Co-Processor,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2019, pp. 169–208, Nov. 2018.

[19] D. Liu, C. Zhang, H. Lin, Y. Chen, and M. Zhang, “A Resource-Efficient and Side-Channel Secure
Hardware Implementation of Ring-LWE Cryptographic Processor,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 66, pp. 1474–1483, Apr. 2019.

[20] K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST Post-Quantum Cryptography - A Hardware
Evaluation Study.” Cryptology ePrint Archive, Report 2019/047, 2019. https://eprint.iacr.
org/2019/047.

[21] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cammarota, “Post-Quantum
Lattice-Based Cryptography Implementations: A Survey,” ACM Computing Surveys, vol. 51,
pp. 129:1–129:41, Jan. 2019.

[22] T. Oder, T. Guneysu, F. Valencia, A. Khalid, M. O’Neill, and F. Regazzoni, “Lattice-based
Cryptography: From Reconfigurable Hardware to ASIC,” in 2016 International Symposium on
Integrated Circuits (ISIC), pp. 1–4, Dec. 2016.

[23] M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia, P. Longa, I. Mironov,
V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila, “FrodoKEM: Learning With Er-
rors Key Encapsulation – Algorithm Specifications And Supporting Documentation,” tech. rep.,
National Institute of Standards and Technology, 2019. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions.

[24] T. Poppelmann, E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, P. Schwabe, D. Stebila,
M. R. Albrecht, E. Orsini, V. Osheter, K. G. Paterson, G. Peer, and N. P. Smart, “NewHope –
Algorithm Specifications And Supporting Documentation,” tech. rep., National Institute of Stan-
dards and Technology, 2019. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-2-Submissions.

[25] N. Bindel, S. Akleylek, E. Alkim, P. S. L. M. Barreto, J. Buchmann, E. Eaton, G. Gutoski, J. Kramer,
P. Longa, H. Polat, J. E. Ricardini, and G. Zanon, “Lattice-based Digital Signature Scheme
qTESLA – Submission to NIST’s Post-Quantum Project,” tech. rep., National Institute of Stan-
dards and Technology, 2019. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-2-Submissions.

[26] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, G. Seiler, and D. Stehle, “CRYSTALS-Kyber – Algorithm Specifications And Sup-
porting Documentation,” tech. rep., National Institute of Standards and Technology, 2019.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions.

[27] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, and D. Stehle,
“CRYSTALS-Dilithium – Algorithm Specifications And Supporting Documentation,” tech. rep.,
National Institute of Standards and Technology, 2019. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions.

[28] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A Configurable Crypto-Processor
for Post-Quantum Lattice-based Protocols,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2019, pp. 17–61, Aug. 2019.

[29] D. J. Bernstein, “Fast Multiplication and its Applications,” Algorithmic Number Theory, vol. 44,
pp. 325–384, 2008.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. The MIT
Press, 3rd ed., 2009.

https://eprint.iacr.org/2019/047
https://eprint.iacr.org/2019/047
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions

38 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

[31] C. Du and G. Bai, “Towards Efficient Polynomial Multiplication for Lattice-based Cryptography,”
in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1178–1181, May
2016.

[32] R. R. Howell, Algorithms: A Top-Down Approach. Draft, 2012. http://people.cs.ksu.edu/
~rhowell/algorithms-text.

[33] P. Longa and M. Naehrig, “Speeding up the Number Theoretic Transform for Faster Ideal Lattice-
Based Cryptography.” Cryptology ePrint Archive, Report 2016/504, 2016. https://eprint.iacr.
org/2016/504.

[34] P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a
Standard Digital Signal Processor,” in Advances in Cryptology – CRYPTO 86, pp. 311–323, Aug.
1986.

[35] M. Seo, J. H. Park, D. H. Lee, S. Kim, and S.-J. Lee, “EMBLEM and R.EMBLEM – Error-
blocked Multi-Bit LWE-based Encapsulation Mechanism,” tech. rep., National Institute of Stan-
dards and Technology, 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions.

[36] C. Chen, J. Hoffstein, W. Whyte, and Z. Zhang, “NIST PQ Submission: pqNTRUSign – A Modular
Lattice Signature Scheme,” tech. rep., National Institute of Standards and Technology, 2017.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

[37] J. Ding, T. Takagi, X. Gao, and Y. Wang, “Ding Key Exchange,” tech. rep., Na-
tional Institute of Standards and Technology, 2017. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions.

[38] M. R. Albrecht, Y. Lindell, E. Orsini, V. Osheter, K. G. Paterson, G. Peer, and N. P. Smart, “LIMA
— A PQC Encryption Scheme,” tech. rep., National Institute of Standards and Technology, 2017.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

[39] U. Banerjee, A. Pathak, and A. P. Chandrakasan, “An Energy-Efficient Configurable Lattice
Cryptography Processor for the Quantum-Secure Internet of Things,” in 2019 IEEE International
Solid-State Circuits Conference (ISSCC), pp. 46–48, Feb. 2019.

[40] J. M. Pollard, “The Fast Fourier Transform in a Finite Field,” Mathematics of Computation, vol. 25,
pp. 365–374, May 1971.

[41] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung, D. Pao, and I. Verbauwhede,
“High-Speed Polynomial Multiplication Architecture for Ring-LWE and SHE Cryptosystems,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 62, pp. 157–166, Jan. 2015.

[42] H. Noguchi, S. Okumura, Y. Iguchi, H. Fujiwara, Y. Morita, K. Nii, H. Kawaguchi, and M. Yoshimoto,
“Which is the Best Dual-Port SRAM in 45-nm Process Technology? — 8T, 10T Single End, and
10T Differential —,” in 2008 IEEE International Conference on Integrated Circuit Design and
Technology and Tutorial, pp. 55–58, Jun. 2008.

[43] M. C. Pease, “An Adaptation of the Fast Fourier Transform for Parallel Processing,” Journal of the
ACM, vol. 15, pp. 252–264, Apr. 1968.

[44] T. Fritzmann and J. Sepúlveda, “Efficient and Flexible Low-Power NTT for Lattice-Based Cryptog-
raphy,” in 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pp. 141–150, May 2019.

[45] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “PQM4: Post-quantum crypto
library for the ARM Cortex-M4,” 2018. https://github.com/mupq/pqm4.

[46] STMicroelectronics, “NUCLEO-F411RE Development Board.” https://os.mbed.com/platforms/
ST-Nucleo-F411RE.

http://people.cs.ksu.edu/~rhowell/algorithms-text
http://people.cs.ksu.edu/~rhowell/algorithms-text
https://eprint.iacr.org/2016/504
https://eprint.iacr.org/2016/504
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://github.com/mupq/pqm4
https://os.mbed.com/platforms/ST-Nucleo-F411RE
https://os.mbed.com/platforms/ST-Nucleo-F411RE

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 39

[47] T. Oder, T. Schneider, T. Poppelmann, and T. Guneysu, “Practical CCA2-Secure and Masked
Ring-LWE Implementation,” IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2018, pp. 142–174, Feb. 2018.

[48] NIST, “SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions,” Tech. Rep.
FIPS PUB 202, National Institute of Standards and Technology, Aug. 2015.

[49] NIST, “Advanced Encryption Standard (AES),” Tech. Rep. FIPS PUB 197, National Institute of
Standards and Technology, Nov. 2001.

[50] D. J. Bernstein, “ChaCha, a variant of Salsa20,” Jan. 2008. https://cr.yp.to/chacha/
chacha-20080128.pdf.

[51] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak Specifications,” 2009.

[52] S. Gueron and F. Schlieker, “Speeding up R-LWE Post-Quantum Key Exchange.” Cryptology ePrint
Archive, Report 2016/467, 2016. https://eprint.iacr.org/2016/467.

[53] D. E. Knuth and A. C. Yao, Algorithms and Complexity: New Directions and Recent Results,
ch. The Complexity of Non-Uniform Random Number Generation. Academic Press, 1976.

[54] J. Follath, “Gaussian Sampling in Lattice Based Cryptography,” Tatra Mountains Mathematical
Publications, vol. 60, pp. 1–23, Sep. 2014.

[55] J. H. Cheon, S. Park, J. Lee, D. Kim, Y. Song, S. Hong, D. Kim, J. Kim, S.-M. Hong, A. Yun,
J. Kim, H. Park, E. Choi, K. Kim, J.-S. Kim, and J. Lee, “Lizard Public Key Encryption,” tech.
rep., National Institute of Standards and Technology, 2017. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions.

[56] A. Karmakar, J. M. Bermudo Mera, S. S. Roy, and I. Verbauwhede, “Saber on ARM,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol. 2018, pp. 243–266, Aug. 2018.

[57] U. Banerjee, C. Juvekar, A. Wright, Arvind, and A. P. Chandrakasan, “An Energy-Efficient
Reconfigurable DTLS Cryptographic Engine for End-to-End Security in IoT Applications,” in 2018
IEEE International Solid-State Circuits Conference (ISSCC), pp. 42–44, Feb. 2018.

[58] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V Instruction Set Manual,”
2014.

[59] M. Dichtl and J. D. Golic, “High-Speed True Random Number Generation with Logic Gates Only,”
in Cryptographic Hardware and Embedded Systems - CHES 2007, pp. 45–62, Sep. 2007.

[60] E. Fujisaki and T. Okamoto, Tatsuaki, “Secure Integration of Asymmetric and Symmetric Encryption
Schemes,” Journal of Cryptology, vol. 26, pp. 80–101, Jan. 2013.

[61] T. Fritzmann, U. Sharif, D. Müller-Gritschneder, C. Reinbrecht, U. Schlichtmann, and J. Sepulveda,
“Towards Reliable and Secure Post-Quantum Co-Processors based on RISC-V,” in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1148–1153, Mar. 2019.

[62] M. Hutter, J. Schilling, P. Schwabe, and W. Wieser, “Nacl’s crypto_box in hardware,” in Crypto-
graphic Hardware and Embedded Systems – CHES 2015, pp. 81–101, Sep. 2015.

[63] A. Park and D. Han, “Chosen Ciphertext Simple Power Analysis on Software 8-bit Implementation of
Ring-LWE Encryption,” in 2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST),
pp. 1–6, Dec 2016.

[64] R. Primas, P. Pessl, and S. Mangard, “Single-Trace Side-Channel Attacks on Masked Lattice-Based
Encryption,” in Cryptographic Hardware and Embedded Systems – CHES 2017, pp. 513–533, Sep.
2017.

[65] A. Aysu, M. Orshansky, and M. Tiwari, “Binary Ring-LWE Hardware with Power Side-Channel
Countermeasures,” in 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 1253–1258, Mar. 2018.

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://eprint.iacr.org/2016/467
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

40 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

[66] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to Differential Power Analysis,” Journal
of Cryptographic Engineering, vol. 1, pp. 5–27, Apr. 2011.

[67] S. Ebrahimi, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, “Post-Quantum Cryptoprocessors
Optimized for Edge and Resource-Constrained Devices in IoT,” IEEE Internet of Things Journal,
vol. 6, pp. 5500–5507, Jun. 2019.

[68] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “A Masked Ring-LWE Implementation,”
in Cryptographic Hardware and Embedded Systems – CHES 2015, pp. 683–702, Sep. 2015.

[69] O. Reparaz, R. d. S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Additively homomorphic ring-lwe
masking,” in Post-Quantum Cryptography, pp. 233–244, Feb. 2016.

[70] E. Alkim, L. Ducas, T. Poppelmann, and P. Schwabe, “NewHope without Reconciliation.” Cryptology
ePrint Archive, Report 2016/1157, 2016. https://eprint.iacr.org/2016/1157.

[71] M. R. Albrecht, R. Player, and S. Scott, “On the Concrete Hardness of Learning with Errors,”
Journal of Mathematical Cryptology, vol. 9, p. 169–203, Oct. 2015.

[72] T. Schneider and A. Moradi, “Leakage Assessment Methodology,” in Cryptographic Hardware and
Embedded Systems – CHES 2015, pp. 495–513, Sep. 2015.

[73] J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “SABER: Mod-LWR based KEM,” tech.
rep., National Institute of Standards and Technology, 2019. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions.

[74] O. Garcia-Morchon, Z. Zhang, S. Bhattacharya, R. Rietman, L. Tolhuizen, J.-L. Torre-Arce, H. Baan,
M.-J. O. Saarinen, S. Fluhrer, T. Laarhoven, and R. Player, “Round5: KEM and PKE based on
(Ring) Learning with Rounding,” tech. rep., National Institute of Standards and Technology, 2019.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions.

[75] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom Functions and Lattices,” in Advances in
Cryptology – EUROCRYPT 2012, pp. 719–737, Apr. 2012.

[76] C. De Canniere and B. Preneel, “TRIVIUM Specifications,” eSTREAM, ECRYPT Stream Cipher
Project, 2006.

[77] S. Zhou, H. Xue, D. Zhang, K. Wang, X. Lu, B. Li, and J. He, “Preprocess-then-NTT Technique
and its Applications to Kyber and NewHope,” in Information Security and Cryptology – Inscrypt
2018, pp. 117–137, Dec. 2018.

https://eprint.iacr.org/2016/1157
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 41

Appendix A Modular Reduction Parameters
As mentioned in Section 3, our modular multiplier with pseudo-configurable prime modulus uses efficient
Barrett reduction, with the parameters m, k and q coded in digital logic, for a set of chosen primes.
These parameters and the corresponding reduction implementations are detailed here. Please note that
m and q are written in the form 2l1 ± 2l2 ± · · · ± 1 only when the number of such integers l1, l2, · · · is
less than 5.

Algorithm Reduction mod 7681
Require: q = 213 − 29 + 1,m = 273 = 28 + 24 + 1, k = 21, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 8) + (x� 4) + x
2: t← t� 21
3: t← (t� 13)− (t� 9) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 12289
Require: q = 213 + 212 + 1,m = 10921, k = 27, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 10921 · x
2: t← t� 27
3: t← (t� 13) + (t� 12) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 40961
Require: q = 215 + 213 + 1,m = 52427, k = 31, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 52427 · x
2: t← t� 31
3: t← (t� 15) + (t� 13) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

42 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Algorithm Reduction mod 120833
Require: q = 217 − 214 + 213 − 211 + 1,m = 71089, k = 33, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 71089 · x
2: t← t� 33
3: t← (t� 17)− (t� 14) + (t� 13)− (t� 11) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 133121
Require: q = 217 + 211 + 1,m = 64527 = 216 − 210 + 24 − 1, k = 33, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 16)− (x� 10) + (x� 4)− x
2: t← t� 33
3: t← (t� 17) + (t� 11) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 184321
Require: q = 217 + 215 + 214 + 212 + 1,m = 46603, k = 33, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 46603 · x
2: t← t� 33
3: t← (t� 17) + (t� 15) + (t� 14) + (t� 12) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 8380417
Require: q = 223 − 213 + 1,m = 8396807 = 223 + 213 + 23 − 1, k = 46, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 23) + (x� 13) + (x� 3)− x
2: t← t� 46
3: t← (t� 23)− (t� 13) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 43

Algorithm Reduction mod 8058881
Require: q = 8058881,m = 8731825, k = 46, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 8731825 · x
2: t← t� 46
3: t← 8058881 · t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 4205569
Require: q = 222 + 213 + 211 + 210 + 1,m = 4183069, k = 44, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 4183069 · x
2: t← t� 44
3: t← (t� 22) + (t� 13) + (t� 11) + (t� 10) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 4206593
Require: q = 222 + 213 + 212 + 1,m = 2091025 = 221 − 213 + 211 + 24 + 1, k = 43, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 21)− (x� 13) + (x� 11) + (x� 4) + x
2: t← t� 43
3: t← (t� 22) + (t� 13) + (t� 12) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

Algorithm Reduction mod 8404993
Require: q = 223 + 214 + 1,m = 4186127 = 222 − 213 + 24 − 1, k = 45, x ∈ [0, q2)
Ensure: z = x mod q

1: t← (x� 22)− (x� 13) + (x� 4)− x
2: t← t� 45
3: t← (t� 23) + (t� 14) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

44 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

For the prime q = 65537 = 216 + 1, we employ an easier reduction technique owing to the special
structure of q. Any integer x ∈ [0, q2) can be written as x = x2232 + x1216 + x0 where x0 and x1 are
16-bit numbers and x2 ∈ {0, 1}. Since 216 ≡ −1mod q, we have x ≡ x0 − x1 + x2 mod q, which must be
followed by a conditional addition to bring back the result to [0, q).

Algorithm Reduction mod 65537
Require: q = 216 + 1, x = x2232 + x1216 + x0 ∈ [0, q2)
Ensure: z = x mod q

1: z ← x0 − x1 + x2
2: if z < 0 then
3: z ← z + q
4: end if
5: return z

Appendix B Custom Instruction Set Summary
In this section, we briefly describe all the custom instructions supported by our crypto-processor. Apart
from the polynomials stored in its memory and the 256-bit seed registers r0 and r1, these are the core
internal registers that can also be manipulated:

• 24-bit temporary registers reg and tmp

• 16-bit counter registers c0 and c1

• 2-bit flag register to store comparison results (-1, 0 or +1)

Following is the list of instructions along with short descriptions:

Configuration: set parameters and clock gates
config (n, q)

clock_config (keccak, ntt, sampler)

Register Operations: register assignments and arithmetic
c0 = #VAL / c0 + #VAL / c0 - #VAL

c1 = #VAL / c1 + #VAL / c1 - #VAL

reg = #VAL / tmp

tmp = #VAL / tmp (OP) reg

where #VAL can be any unsigned integer of appropriate size, and (OP) is one of the
following operations: {ADD, SUB, MUL, AND, OR, XOR, RSHIFT, LSHIFT}

Register-Polynomial Operations: register and polynomial interactions
reg = max_elems (poly)

reg = sum_elems (poly)

reg = (poly)[#VAL] / (poly)[c0] / (poly)[c1]

(poly)[#VAL] / (poly)[c0] / (poly)[c1] = reg

Transforms: number theoretic transform and related computations
transform (mode, poly_dst, poly_src)

mult_psi (poly) / mult_psi_inv (poly)

where mode is one of the following: {DIF_NTT, DIF_INTT, DIT_NTT, DIT_INTT}

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 45

Sampling: polynomial sampling from various distributions
bin_sample (prng, seed, c0, c1, k, poly)

cdt_sample (prng, seed, c0, c1, r, s, poly)

rej_sample (prng, seed, c0, c1, poly)

uni_sample (prng, seed, c0, c1, eta, bitlen, poly)

tri_sample_1 (prng, seed, c0, c1, m, poly)

tri_sample_2 (prng, seed, c0, c1, m0, m1, poly)

tri_sample_3 (prng, seed, c0, c1, rho, poly)

where prng can be SHAKE-128 or SHAKE-256, seed can be r0 or r1, and k, r, s,
eta, bitlen, m, m0, m1, rho are the distribution parameters
Polynomial Computations: polynomial initialization and other operations
init (poly)

poly_copy (poly_dst, poly_src)

poly_op (op, poly_dst, poly_src)

shift_poly (ring, poly_dst, poly_src)

where op can be one of the following: {ADD, SUB, MUL, BITREV, CONST_ADD,
CONST_SUB, CONST_MUL, CONST_AND, CONST_OR, CONST_XOR, CONST_RSHIFT,
CONST_LSHIFT}, and ring can be either x^N+1 or x^N-1

Comparison and Branching: simple branching operations
flag = eq_check (poly, poly)

flag = inf_norm_check (poly, bound)

flag = compare (reg / tmp / c0 / c1, #VAL)

if (flag == / != -1 / 0 / +1) goto <label>

where the flag register stores -1, 0 and +1 for the register comparison result being
“lesser than”, “equal to” and “greater than” respectively, and it stores 1 or 0 depending
on whether the equality check and infinity norm check has passed or failed respectively
SHA-3 Computations: hashing operations
sha3_init

sha3_256_absorb (poly)

sha3_512_absorb (poly)

sha3_256_absorb (r0 / r1)

sha3_512_absorb (r0 / r1)

r0 / r1 = sha3_256_digest

r0 || r1 = sha3_512_digest

where the seed registers are used to store the hash outputs – either r0 or r1 for
SHA-3-256, and both r0 and r1 together for SHA-3-512

46 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Table 11: Code size and data memory usage of hardware-accelerated protocol implementations

Appendix C Memory Usage
Details of program code size (in KB) and processor data memory usage (in bytes) for our hardware-
accelerated CCA-secure KEM and digital signature protocol implementations on the test chip (memory
usage of the RISC-V processor only, excluding dedicated instruction and data memory of cryptographic
accelerator) are listed in Table 11. Code sizes for all the protocols vary between 9 KB and 16 KB, while
there is a large variation in memory usage among different protocols and also among sub-algorithms in
the same protocol. Notably, KeyGen for qTesla requires significantly more memory than Sign and Verify
due to the expensive Gaussian sampling process. Also, the Encaps and Decaps memory usage of Frodo is
much higher than Ring-LWE and Module-LWE key encapsulation protocols due to additional storage
required for large matrices.

Appendix D Benefit of Hardware-Accelerated Keccak
The Keccak-based SHA-3 and SHAKE functions are integral to all the lattice-based protocols evaluated
in this work, and the most expensive sampling operations require SHAKE-128 or SHAKE-256 as the
CS-PRNG. Since SHA-3 is a standard cryptographic primitive, embedded devices are likely to have
hardware acceleration support for Keccak. Therefore, we analyze the performance gains achieved through
hardware acceleration of the Keccak round function as opposed to executing it in software. We compare
full software implementations of the protocols running on the RISC-V processor with partially accelerated
implementations where the Keccak round function is executed in hardware and rest of the computations
in software. The results are summarized in Tables 12 and 13. We observe up to 2× and 1.5× reduction
in cycle count for key encapsulation and signature algorithms respectively, as shown in Fig. 25 and 26.
There is also a reduction of about 5 KB in code size and 200 bytes in data memory usage. Since the
software implementations of Frodo require data memory greater than 64 KB, their cycle counts were
measured in simulation only.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 47

Table 12: Improvements in performance of CCA-KEM protocols with efficient Keccak core

Figure 25: Comparison of cycle counts of (a) NewHope, (b) CRYSTALS-Kyber-v1 and (c) Frodo
CCA-KEM-Encaps with and without hardware-accelerated Keccak.

48 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Table 13: Improvements in performance of Sign protocols with efficient Keccak core

Figure 26: Comparison of cycle counts of (a) qTesla and (b) CRYSTALS-Dilithium Sign with and
without hardware-accelerated Keccak.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 49

Appendix E NewHope and Kyber-v1 CPA-PKE
As described in Section 6, the CPA-secure public key encryption functions – CPA-PKE.KeyGen, CPA-
PKE.Encrypt and CPA-PKE.Decrypt – can be written entirely (excluding the encoding and decoding
operations) using Sapphire custom instruction programs. In Fig. 27 and 28, we provide detailed cycle
counts of our CPA-PKE implementations, with each function split into five sections:

• decode: decoding / decompression of inputs
• write: writing inputs to the accelerator
• imem: cryptographic computation involving polynomial sampling and arithmetic
• read: reading outputs from the accelerator
• encode: encoding / compression of outputs

Here, we analyze three different implementations of the CPA-PKE schemes:

• only S/W: software-only version on RISC-V (reference code without assembly optimizations)
• pre-opt H/W: hardware-accelerated imem section with encoding and decoding in software
• opt H/W: hardware-accelerated imem section with optimized encoding and decoding in software

Compared to pre-opt H/W, in opt H/W we directly process the inputs and outputs of the accelerator’s
internal memory, instead of first storing the data in intermediate temporary arrays and then processing
them. This provides 10-20% reduction in cycle count, as shown in Fig. 27 and 28. Also, we can
see that the cycle count for the imem section, which is the core cryptographic computation (apart
from encoding / decoding), is reduced by 50 − 100× when using the Sapphire accelerator compared

Figure 27: Details of cycle count and memory usage in NewHope CPA-PKE schemes.

50 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Figure 28: Details of cycle count and memory usage in Kyber-v1 CPA-PKE schemes.

to software-only implementation, thus highlighting the efficiency of our design. However, the overall
performance improvement is not as large, due to the additional overheads of processing the data, which
is done entirely in software. Instead of the current memory-mapped interface, using a direct memory
access (DMA) path between the processor core and the accelerator can help reduce these overheads
further, which will be explored in future work.

In Fig. 27 and 28, we also show portions of the Sapphire polynomial cache that are used during
execution of each CPA-PKE function. For Kyber-v1, NewHope-512 and NewHope-1024, the cache is split
into 32, 16 and 8 polynomials respectively, and the specific polynomials in use are shown in red. Clearly,
our choice of 8192-element polynomial cache is just enough for NewHope-1024 and Kyber-v1-1024.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 51

Table 14: Cycle count and power consumption for sampling operations

Operation CS-PRNG Cycle Count Avg. Power
Rejection Sampling SHAKE-128 ≈ d(d 29

42 · ne+ n)/(1− Prej)e 7.43 mW

Binomial Sampling SHAKE-256 d 33
34 · ne+ n for k ∈ (0, 16] 8.30 mW
d 33

17 · ne+ n for k ∈ (16, 32]
Gaussian Sampling SHAKE-256 d 33

34 · ne+ (s+ 3) · n 3.04 mW
Uniform Sampling SHAKE-256 ≈ d(d 33

34 · ne+ n) · 2dlg 2ηe/(2η + 1)e 8.33 mW
Trinary Sampling (1) SHAKE-256 ≥ d 33

34 ·me+ 2m+ n 4.01 mW
Trinary Sampling (2) SHAKE-256 ≥ d 33

34 ·m0e+ d 33
34 ·m1e+ 2m0 + 2m1 + n 3.99 mW

Trinary Sampling (3) SHAKE-256 d 33
34 · ne+ n 7.47 mW

Table 15: Cycle count and power consumption for polynomial arithmetic operations

Operation Cycle Count Avg. Power
Number Theoretic Transform (n2 + 1) · lgn+ n+ 1 11.40 mW
Coefficient-wise Multiplication n+ 1 9.50 mW
Coefficient-wise Addition n+ 1 6.38 mW

Appendix F Sampling and Polynomial Arithmetic
We provide cycle count formulas and average power consumption of our lattice-crypto processor (measured
from test chip operating at 1.1 V and 72 MHz) for sampling and polynomial arithmetic in Tables 14
and 15. Here, n is the polynomial size, Prej denotes rejection probability and k, s, η, m, m0, m1 are
distribution parameters (please refer to Section 4 for details). In Fig. 29, we also analyze the variation in
power consumption of polynomial arithmetic modulo different primes. While polynomial coefficient-wise
addition has roughly the same power consumption (≈ 6 mW) irrespective of the value of q, polynomial
NTT and coefficient-wise multiplication have varying power consumption depending on the bit-size of q
and efficiency of modular reduction, as discussed in Section 3.

All polynomial arithmetic is performed in the ring Rq = Zq[x]/(xn + 1). The NTT cycle count
includes pre-multiplication by powers of ψ. For sampling operations, pseudo-random bits are read from
the 1600-bit Keccak state 32 bits (half-lane) at a time, except binomial sampling with k > 16 where
bits are read 64 bits (full-lane) at a time. Although this leads to wastage of random bits, it greatly
simplifies the control circuitry required to fetch bits from the Keccak state register, thus leading to overall
energy-efficiency of the lattice-crypto accelerator. Depending on whether SHAKE-128 or SHAKE-256 is
used, the number of state bits that can be used per round is 1344 and 1088 respectively. Average cycle
counts for rejection sampling of coefficients in Zq and uniform sampling of coefficients in [−η, η] (which
involves rejection sampling in [0, 2η] followed by subtracting η from the result) are calculated in terms
of their rejection probabilities. Only lower bounds are provided for cycle counts of trinary sampling (1)
and (2) with specified number(s) of non-zero coefficients.

Figure 29: Power consumption of polynomial arithmetic operations for different prime moduli.

52 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Figure 30: Trivium one-bit-per-cycle hardware architecture.

Appendix G Trivium as PRNG
Apart from the standard PRNGs based on AES, SHA-3 and ChaCha20, our test chip also implements a
very efficient PRNG based on the Trivium stream cipher [76]. The internal state of Trivium consists of
288 flip-flops, and a straight-forward hardware implementation, requiring only 3 AND gates and 11 XOR
gates, generates one bit per cycle, as shown in Fig. 30. However, each state bit of Trivium is designed to
remain unchanged for at least 64 iterations after it has been modified. Therefore, the hardware can
be parallelized to generate 64 bits per cycle at the cost of additional logic area. Our Trivium-based
PRNG employs this 64-bit parallel design and occupies 8.4 kGE area (post place-and-route). It has
energy consumption of 26 pJ at 1.1 V (10 pJ at 0.68 V), thus making it 4× more energy-efficient (and
also 4× smaller) compared to the SHAKE-128-based PRNG described in Section 4. Therefore, Trivium
can potentially be used as the PRNG for polynomial sampling, with huge gains in energy-efficiency, in
applications where the use of non-NIST primitives is allowed.

Appendix H Voltage Scaling
Fig. 31 shows the effect of supply voltage scaling (0.7-1.1 V) on leakage current, average active current
and maximum operating frequency of our test chip.

Figure 31: Effects of supply voltage scaling as measured from our test chip - (a) leakage current (b)
average active current and maximum frequency.

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 53

Appendix I FPGA Validation Results
To verify the functionality of our lattice cryptography accelerator, it was also synthesized and implemented
using Xilinx Vivado 2018.1 on the Artix XC7A200T-1 FPGA, and evaluated on the Digilent Nexys Video
board. The maximum clock frequency was 25 MHz, and the final area utilization results are presented
below, and our design was small enough to fit in the XC7A35T device as well (slices are shared between
different modules, so the sum of slices occupied by each module is larger than the total number of slices
occupied by the accelerator). Please note that this FPGA implementation was only for validating the
functionality of our ASIC design. The RTL used for our ASIC design was directly ported to the Vivado
tool without any FPGA-specific modifications or optimizations.

Module Slices LUTs FFs BRAMs DSPs
Butterfly Unit + ALU 957 2,983 0 0 11
LWE Polynomial Cache 2,335 3,917 8 8 0
NTT Constants RAM 367 790 8 5 0
Keccak-f[1600] Core 1,716 5,784 1,605 0 0
Discrete Distribution Sampler 334 784 47 0.5 0
Instruction Decoder + IMEM 190 435 1 0.5 0
Sapphire (Total) 4,173 14,975 2,539 14 11

Utilization on XC7A200T 12.48% 11.19% 0.95% 3.84% 1.49%
Utilization on XC7A35T 80.25% 45.00% 6.10% 28.00% 12.22%

Appendix J Power Consumption Simulator
A Python-based open-source cycle-accurate simulator for the Sapphire lattice-crypto processor is
provided in https://github.com/banerjeeutsav/sapphire_sim which can be used to profile the
performance of Ring-LWE and Module-LWE algorithms. This allows quick evaluation of lattice-based
protocols with varying parameter choices but without any hardware design effort, which is especially
important for a fast evolving field such as lattice-based cryptography. The simulator not only reports
accurate cycle counts and execution times but also macro-operation-level power and average energy
consumption modelled using measurements from the Sapphire test chip at various operating conditions.
Detailed description of the custom instructions, simulation options and example code are provided in
https://github.com/banerjeeutsav/sapphire_sim/blob/master/documentation.pdf.

Appendix K Implementation of Kyber-v2 CCA-KEM
The specifications of CRYSTALS-Kyber CCA-KEM [26] were modified during NIST Round 2. Imple-
mentation of the initial version, which we call Kyber-v1, was described previously in this paper. Here,
we provide the implementation results of the modified version, which we call Kyber-v2. The changes
from Kyber-v1 to Kyber-v2 are summarized below:

• No public key compression
• Prime q changed from 7681 to 3329
• Binomial distribution noise parameter changed from η ∈ {3, 4, 5} to η = 2
• Definition of NTT, rejection sampling of public matrix and ciphertext compression parameters du
and dv updated for the new prime

• Public key represented in the NTT domain
• Final shared key derived using SHAKE-256 instead of SHA3-256

From an implementation perspective, the most important change is in prime q and consequently the
definition of NTT. For Kyber-v2, we have q ≡ 1modn but q 6≡ 1mod 2n , that is, Z∗q contains primitive

https://github.com/banerjeeutsav/sapphire_sim
https://github.com/banerjeeutsav/sapphire_sim/blob/master/documentation.pdf

54 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

256-th roots of unity but not primitive 512-th roots. So, the NTT now decomposes a ring element
a ∈ Zq[x]/(x256 + 1) as (amodx2− ζ, · · · , amodx2− ζ255) instead of (amodx− ζ, · · · , amodx− ζ511),
where {ζ, ζ3, · · · , ζ253, ζ255} is the set of all the 256-th primitive roots of unity. In other words, each ring
element is decomposed into 128 polynomials of degree 2 modulo q instead of 256 polynomials of degree 1
modulo q. Therefore, polynomial multiplication in the ring now requires extension field arithmetic. Our
Sapphire crypto-core does not natively support this modified NTT representation. To solve this, we
employ the “Preprocess-then-NTT” technique from [77], specifically 1-Round-Preprocess-then-NTT or
1PtNTT. Next, we briefly describe this technique and how it is used for polynomial multiplication.

Following [77], the 1PtNTT technique first divides polynomial f(x) ∈ Zq[x]/(x256 + 1) with 256
coefficients into two smaller polynomials feven(y) ∈ Zq[y]/(y128 + 1) and fodd(y) ∈ Zq[y]/(y128 + 1) with
128 coefficients each, where feven and fodd respectively contain the even and odd coefficients of f and
y = x2, that is, f(x) = feven(x2) + x · fodd(x2). The 1PtNTT and 1PtNTT−1 operations are defined as:

f̂ = 1PtNTT (f) = (NTT (feven),NTT (fodd)) = (f̂even, f̂odd)

f = 1PtNTT−1 (f̂) = (NTT−1 (f̂even),NTT−1 (f̂odd)) = (feven, fodd)

where NTT refers to the traditional 128-point number theoretic transform (which is supported by our
hardware architecture). Let p(x) = f(x) · g(x) ∈ Zq[x]/(x256 + 1) be the product of the two polynomials,
then p(x) = peven(x2) + x · podd(x2) where

peven(y) = feven(y) · geven(y) + fodd(y) · (y · godd(y)) ∈ Zq[y]/(y128 + 1)

podd(y) = fodd(y) · geven(y) + feven(y) · godd(y) ∈ Zq[y]/(y128 + 1)

Then, the equation p = 1PtNTT−1 (1PtNTT (f) ./ 1PtNTT (g)) is used for polynomial multiplication
in the 1PtNTT domain, where

1PtNTT (f) ./ 1PtNTT (g) = (NTT (feven) � NTT (geven) + NTT (fodd) � NTT (−−→godd),
NTT (fodd) � NTT (geven) + NTT (feven) � NTT (godd))

and −−→godd ≡ y · godd(y) ∈ Zq[y]/(y128 + 1) and � denotes coefficient-wise multiplication of polynomials.
For further details, please refer to [77]. The following table summarizes the basic operation counts
(NTT128 / NTT256 denote traditional 128/256-point NTT, −→128 denotes 128-point polynomial circular
left shift computation, +128 / +256 denote 128/256-point polynomial addition, �128 / �256 denote
128/256-point coefficient-wise multiplication) for polynomial forward / inverse transform and polynomial
multiplication in Kyber-v1 and Kyber-v2 using NTT and 1PtNTT respectively:

NTT128 NTT256 −→128 +128 +256 �128 �256

Kyber-v1
NTT / NTT−1 - 1 - - - - -
NTT-based PolyMul - - - - - - 1

Kyber-v2
1PtNTT / 1PtNTT−1 2 - - - - - -
1PtNTT-basedPolyMul 1 - 1 2 - 4 -

Clearly, 1PtNTT-based polynomial multiplication is more computationally expensive than the NTT-based
approach; the difference was theoretically estimated by [77] to be 10-20%.

Next, we describe how we implement 1PtNTT-based polynomial arithmetic for Kyber-v2 on our
Sapphire lattice crypto-processor. The polynomial cache is split into 64 polynomials of n = 128 elements
each, and a scaling factor of 19 is used for fast rejection sampling (rejection probability reduced from
0.19 to 0.03). As an example, for polynomials f, g ∈ Z3329[x]/(x256 + 1), the following set of instructions
compute p = f · g where f̂ = (f̂even, f̂odd) is already available in the transform domain (f̂even, f̂odd,
geven, godd, peven, podd stored in locations 0, 32, 1, 33, 32, 36 respectively in the polynomial cache) and
the shift_poly instruction (see Appendix B) is used to compute −−→godd:

config (n = 128, q = 3329)
1ptntt_g = (ntt_g_even, ntt_g_odd) and ntt_shift_g_odd
shift_poly (ring = x^N+1, poly_dst = 31, poly_src = 33)

Utsav Banerjee, Tenzin S. Ukyab and Anantha P. Chandrakasan 55

mult_psi (poly = 1)
transform (mode = DIF_NTT, poly_dst = 34, poly_src = 1)
mult_psi (poly = 33)
transform (mode = DIF_NTT, poly_dst = 2, poly_src = 33)
mult_psi (poly = 31)
transform (mode = DIF_NTT, poly_dst = 35, poly_src = 31)
poly_copy (poly_dst = 3, poly_src = 35)
f_mul_g
poly_copy (poly_dst = 36, poly_src = 0)
poly_copy (poly_dst = 4, poly_src = 32)
poly_op (op = MUL, poly_dst = 0, poly_src = 34)
poly_op (op = MUL, poly_dst = 32, poly_src = 3)
poly_op (op = ADD, poly_dst = 0, poly_src = 32)
poly_op (op = MUL, poly_dst = 4, poly_src = 34)
poly_op (op = MUL, poly_dst = 36, poly_src = 2)
poly_op (op = ADD, poly_dst = 4, poly_src = 36)
1ptnttinv_f_mul_g
transform (mode = DIT_INTT, poly_dst = 32, poly_src = 0)
mult_psi_inv (poly = 32)
transform (mode = DIT_INTT, poly_dst = 36, poly_src = 4)
mult_psi_inv (poly = 36)

Apart from the additional computations tabulated earlier, our implementation also involves poly_copy
operations which require a small but finite number of cycles. Overall, our 1PtNTT-based implementation
requires 4, 176− 2, 835 = 1, 341 additional cycles compared to our NTT-based implementation. However,
NTT (geven), NTT (godd) and NTT (−−→godd) computed above are not over-written so that they can be used
for multiple such polynomial multiplications as required in Module-LWE. Therefore, the computation
of NTT (geven), NTT (godd) and NTT (−−→godd) gets amortized over all polynomial multiplications, and
the number of additional cycles per polynomial multiplication is effectively 2, 006− 1, 546 = 460 after
excluding the computation of NTT (g) / 1PtNTT (g). There are k2, k2 + k and k such polynomial
multiplications in Kyber-CPA-PKE KeyGen, Encrypt and Decrypt respectively, thus leading to additional
cycle counts in our CCA-KEM implementation.

The cycle counts, power and energy consumption (at 1.1 V and 72 MHz) of our hardware-accelerated
Kyber-v2 CCA-KEM implementation are tabulated below. Compared to Kyber-v1 (see Table 8), the
power consumption is slightly higher because we had to use the fully configurable modular multiplier
instead of the pseudo-configurable one. Note that the cycle count of KeyGen is significantly lower due to
the absence of public key compression, while the cycle counts of Encaps and Decaps are slightly higher
due to the additional 1PtNTT-related computations described earlier.

Protocol Cycle Count Power (mW) Energy (µJ)
CRYSTALS-Kyber-v2-512-CCA-KEM

KeyGen 54,861 6.02 4.59
Encaps 134,965 5.43 10.18
Decaps 146,068 5.95 12.07

CRYSTALS-Kyber-v2-768-CCA-KEM
KeyGen 84,110 6.1 7.13
Encaps 184,080 5.52 14.11
Decaps 198,011 6.05 16.64

CRYSTALS-Kyber-v2-1024-CCA-KEM
KeyGen 116,841 6.21 10.08
Encaps 236,886 5.65 18.59
Decaps 256,828 6.12 21.83

56 Sapphire: A Configurable Lattice Crypto-Processor (Extended Version)

Although not implemented in the pseudo-configurable modular multiplier in our chip, modular
reduction with q = 3329 can be constructed in a future implementation as shown below:

Algorithm Reduction mod 3329
Require: q = 211 + 210 + 28 + 1,m = 5039, k = 24, x ∈ [0, q2)
Ensure: z = x mod q

1: t← 5039 · x
2: t← t� 24
3: t← (t� 11) + (t� 10) + (t� 8) + t
4: z ← x− t
5: if z ≥ q then
6: z ← z − q
7: end if
8: return z

	Introduction
	Background
	LWE and Related Lattice Problems
	Number Theoretic Transform
	Sampling

	Modular Arithmetic and NTT
	Modular Arithmetic Implementation
	Butterfly Unit and ALU
	NTT Memory Architecture

	Discrete Distribution Sampler
	Energy-Efficient CS-PRNG
	Rejection Sampling
	Binomial Sampling
	Discrete Gaussian Sampling
	Other Distributions

	Chip Architecture
	Protocol Implementations and Measurement Results
	Protocol Implementations and Evaluation Results
	Side-Channel Analysis

	Conclusion and Future Work
	Modular Reduction Parameters
	Custom Instruction Set Summary
	Memory Usage
	Benefit of Hardware-Accelerated Keccak
	NewHope and Kyber-v1 CPA-PKE
	Sampling and Polynomial Arithmetic
	Trivium as PRNG
	Voltage Scaling
	FPGA Validation Results
	Power Consumption Simulator
	Implementation of Kyber-v2 CCA-KEM

