Automated Search for Block Cipher
Differentials: A GPU-Accelerated
Branch-and-Bound Algorithm

Wei-Zhu Yeoh!, Je Sen Teh!, and Jiageng Chen?

! Universiti Sains Malaysia, Malaysia
yeohweizhu@gmail.com , jesen_tehQusm.my
2 Central China Normal University, China,
chinkako@gmail.com

Abstract. In this paper, we propose a GPU-accelerated branch-and-
bound algorithm. The proposed approach substantially increases the
performance of the differential cluster search. We were able to derive
a branch enumeration and evaluation kernel that is 5.95 times faster
than its CPU counterpart. To showcase its practicality, the proposed
algorithm is applied on TRIFLE-BC, a 128-bit block cipher. By incorpo-
rating a meet-in-the-middle approach with the proposed GPU kernel, we
were able to improve the search efficiency (on 20 rounds of TRIFLE-BC)
by approximately 58 times as compared to the CPU-based approach. Dif-
ferentials consisting of up to 50 million individual characteristics can be
constructed for 20 rounds of TRIFLE, leading to slight improvements to
the overall differential probabilities. Even for larger rounds (43 rounds),
the proposed algorithm is still able to construct large clusters of over
500 thousand characteristics. This result depicts the practicality of the
proposed algorithm in constructing large differentials even for a 128-
bit block cipher, which could be used to improve cryptanalytic findings
against other block ciphers in the future. EI

Keywords: Automated search - block cipher - branch-and-bound - crypt-
analysis - differential characteristic - differential cluster - GPU

1 Introduction

Differential cryptanalysis is one of the most widely-known cryptanalytical meth-
ods, resistance to which has become a basic requirement for modern block ciphers
[19]. The success of differential cryptanalysis relies on identifying differential
characteristics that occur with high probability. The search for these character-
istics is a non-trivial task especially for block ciphers with large block sizes and

3 This is a pre-print version of the paper that has been published in Lecture Notes in
Computer Science for ACISP 2020. The final authenticated version is available at
https://doi.org/10.1007/978-3-030-55304-3_9.

2 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

number of rounds. In addition, differential cryptanalysis also takes into consider-
ation differentials (clusters of single characteristics) for a more accurate estimate
of the overall differential probability E| [10].

Recently automated search for differential characteristics has been used in-
stead of manual searching. Matsui [12] proposed a branch-and-bound technique
to search for differential characteristics and linear trails. This technique was used
at that time to study DES. Since then, there were numerous improvements that
have been made to the branch-and-bound algorithm. In [3] an ARX version of the
branch-and-bound searching algorithm was proposed and the algorithm was also
subsequently improved in [6] by the introduction of a sorted partial differential
distribution table. In addition, [5] incorporated a meet-in-the-middle approach
to the differential cluster search, and updated the pruning rules to bound the
number of active of s-boxes to further improve upon the search efficiency.

In [14], a mixed-integer linear programming (MILP) approach was proposed
as an alternative to the branch-and-bound algorithm. The MILP model requires
identifying relevant linear inequalities which are then fed into a MILP solver
which produces the minimal number of active s-boxes for a particular block
cipher. The MILP framework had been extended by [23] to be applicable to bit-
oriented block ciphers. [21] demonstrated the capability of MILP to enumerate
differential characteristics to form differential clusters or linear hulls. However,
the aforementioned method is impractical for identifying differential clusters for
block ciphers with large block sizes and rounds. In addition, none of the related-
works attempt to utilize specialized hardware acceleration to perform the search.

General purpose graphical processing unit (GPGPU) technology that uti-
lizes specialized GPU hardware could be used to improve the efficiency of the
branch-and-bound search. This would alleviate some of the computational load
needed to identify differential clusters for large block ciphers. However, the GPU
requires tasks to be divided into smaller tasks so that the subdivided tasks could
be processed across a large number of processing units simultaneously. The GPU
architecture also has its own array of optimization problems such as memory lim-
itations, work divergence, low number of available subdivided tasks, and many
more. Therefore, any GPU-accelerated searching algorithm needs to be opti-
mized with respect to the architecture of the GPU to obtain a reasonable perfor-
mance boost. Although GPU-accelerated branch-and-bound algorithm had been
studied in [I1] for knapsack, [13] for flow-shop scheduling, and [4] for multiprod-
uct batch plants optimization sub-problems, there exists no prior work that uses
GPU to accelerate the branch-and-bound search for differential cryptanalysis.

Our Contributions. The proposed work is a novel approach leveraging GPU
hardware acceleration for the specific sub-problem of differential cluster search.
It also incorporates the meet-in-the-middle (MITM) technique [5] to further im-
prove its efficiency. The proposed algorithm can achieve a substantial speedup,
up to a factor of approximately 5.95. A comparison based on cloud computing

4 We use the term differential cluster interchangeably with differentials to ensure that
there is a clear distinction between differentials and individual characteristics.

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 3

also indicates that the GPU-based algorithm can save costs by up to 85% as com-
pared to its CPU-based counterpart in enumerating high number of branches.
To showcase the practicality and feasibility of the proposed GPU-accelerated
algorithm, we investigate the differential clustering properties of the 128-bit
block cipher, TRIFLE-BC [I6] as a proof-of-concept. By applying the proposed
GPU-accelerated automatic search for differential clusters, the computational
time needed to construct differential clusters for a large number of rounds of
128-bit TRIFLE-BC was significantly shortened. This effectively allowed us to
identify differentials with the highest probability to date, thus making this work
one of the first successful attempts in implementing an automated differential
search for a block cipher with 128-bit block size at a very large number of
rounds (43 rounds). Previous automated search attempts have focused on block
ciphers with block sizes of 64 bits or less [BJ21]. For literature that involve 128-bit
block ciphers, the number of rounds searched were noticeably lower (typically
<= 20), and are only capable of identifying singular differential characteristics
[2I7]. Although the framework proposed in [22] was able to identify clusters for
SPECK128 and LEA-128, it is not applicable to most ARX ciphers due to its
reliance on the independent addition assumption. Also, it could be noted that
all prior findings could be potentially improved by applying the proposed GPU
framework.
Outline. The rest of this paper is organized as follows: Section 2 introduces the
GPU architecture and CUDA technology, followed by TRIFLE and its cryptan-
alytic results. Section 3 describes the conventional branch-and-bound differen-
tial search and its improved version that serves as the basis for this work. The
GPU-accelerated algorithm is detailed in Section 4, the performance of which
is compared with its CPU-counterpart. Capabilities and limitations of the pro-
posed algorithm are also discussed. Section 5 investigates the differential cluster
effect of TRIFLE-BC. Section 6 concludes the paper.

2 Preliminaries

In this section, background information on GPU architecture, CUDA and TRI-
FLE are provided to aid readers’ understanding of the remaining sections of this

paper.

2.1 GPU architecture and CUDA

A graphics processing unit (GPU) is specialized hardware designed for highly
multithreaded and parallelized data processing workflow. The primary function
of a GPU is to manipulate computer graphics and perform image processing.
However, the massively parallel processing architecture of GPUs has also enabled
them to outperform central processing units (CPUs) in other non-graphical pro-
cessing algorithms that involve a massive amount of data. With the introduction
of the Compute Unified Device Architecture (CUDA) in 2006 by NVIDIA, the

4 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

parallel processing power of GPUs becomes readily available for solving many
other computationally complex problems.

CUDA is a general-purpose parallel computing platform and application pro-
gramming interface (API) designed by NVIDIA for NVIDIA GPU cards. GPUs
are based on the single instruction, multiple threads (SIMT) execution model
whereby multiple distinct threads perform the same operation on multiple data
concurrently. By dedicating more transistors to data processing (arithmetic logic
unit, ALU) and consequently de-emphasizing data caching and flow control,
parallel computation becomes more efficient. The aforementioned structure is
schematically illustrated in Figure[l] This unique property of GPUs allows them
to efficiently solve data-parallel computational problems that are arithmetic-
heavy but with lower memory access frequency.

ALU | ALU

ALU | ALU
Cache
DRAM DRAM
CPU GPU

Fig. 1: Structural differences between CPU and GPU.

CUDA threads run on a separate physical device (GPU) to accelerate par-
allel tasks given by the co-running host program (CPU) as illustrated by Figure
2l The host and device analogy will be used throughout the paper. A kernel is
a CUDA device function that will be executed in parallel by different CUDA
threads on the device. A single kernel consists of a single grid that may hold a
maximum of 231 — 1 number of blocks, whereas each block can contain a maxi-
mum of 210 threads. When a kernel is launched, the blocks that reside within the
kernel are assigned to idle streaming multiprocessors (SM). The multiprocessors
execute parallel threads within the assigned block in groups of 32 called warps.
A warp executes one common instruction at a time. If threads of a warp diverge
due to conditional instruction, each branch path will be executed in different
warp cycles. Therefore, the use of conditional branches should be minimized to
maximize the multiprocessors’ efficiency. Since an SM executes a warp of 32
threads at a time, it is advisable to choose the number of threads per block to
be a multiple of 32 to optimize GPU utilization.

CUDA threads are able to read data from multiple types of memory during
their execution. Each thread has its own local memory. Threads reside within the
same thread block can access a shared memory space called the shared memory.
There are three types of memory visible to all threads namely global memory,

Host Program
Sequential
Execution

Host Code

Device Kernel

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm

Host

2

,

Host-Device
Communication

Device Kernel

Grid

Block

5%

Block

%50

Block

%

Block

B

'

Device-Host
Communication

Host Code Host

' 2

Fig. 2: Heterogeneous programming architecture of a typical GPU-accelerated
algorithm. (Note that serial host code executes on the CPU while parallel
device code executes on the GPU)

read-only constant memory, and read-only texture memory. Global memory is
the slowest memory and requires read/write to be coalesced in 32, 64, or 128-
byte memory to achieve maximum efficiency. Constant memory is optimized for
broadcasting, whereby the maximum efficiency is reached when all threads of
the same warp request the same memory address . Texture memory is optimized
for 2D spatial locality [20], whereby threads of the same warp reading memory
locations that are close to each other will lead to maximum efficiency . Since the
different memory types are better suited for different tasks, the memory access
pattern of a CUDA program should also be optimized accordingly to maximize
efficiency.

The CUDA model maintains separate memory spaces for host and device
memory. To alleviate the complexity of memory management, unified memory
may be used to unify the host and device memory spaces. Unified managed mem-
ory provides a single coherent memory address visible to both CPU and GPU.
If a large amount of memory transfer is needed and the transfer happens often,
it is advised to pin down the memory to avoid the cost of the transfer between
page-able and pinned memory. Pinned memory also enables the asynchronous
(non-blocking) execution of kernel and data transfer.

6 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

This section has only covered information that are relevant to the proposed
work. There are a lot more features left unexplored such as concurrent kernel
launches, asynchronous execution, and multi-device execution. For a more de-
tailed guide and reference in optimizing for CUDA, refer to [19].

2.2 TRIFLE

Notation. The following mathematical notations will be used throughout the
paper:

— {0,1}* denotes the set of all strings.

— {0,1}™ denotes the set of strings of length n.

— |M| denotes the length (number of bits) in string M.

— M;||M> denotes concatenation of string M; and string Ms.

— & denotes field addition and ® field multiplication.

— OZP(X) applies an optional 10* padding on n bits. If | X | < n, then OZP(X)
= 0"~ IXI=1 1| X. If | X| = n, then OZP(X) = X.

— | X is an integer floor function that produces an integer i closest to X such
that i < X.

— >>> denotes bitwise right rotations.

— Wit (X) denotes the number of 1 bits in a given binary string X while
Whibbie(X) denotes the number of non-zero 4-bit values in a binary string
X.

— AS is used to represent the number of active s-boxes.

— P. represents the probability of a differential cluster and P; is the probability
of a single differential trail.

— AX is an XOR difference, AU, is the i*" nibble value inside AX, and AAU;
is the i'" active nibble value (non-zero difference) inside AX.

Description. TRIFLE is a round-1 candidate of the lightweight encryption
standardization effort by NIST [I7]. It is a 128-bit block cipher-based authen-
ticated encryption scheme. It receives an encryption key K € {0,1}'28, nonce
N € {0,1}'28 associated data A € {0,1}* and message M € {0,1}* as inputs,
and produces an encrypted ciphertext C' € {0, 1}‘M | and an authentication tag
T € {0,1}1%8 as outputs. The corresponding verification and decryption scheme
receives a key, nonce, associated data, ciphertext and a tag as inputs, and pro-
duces the decrypted plaintext if the authentication tag is valid. The underly-
ing block cipher, TRIFLE-BC is a 50-round 128-bit SPN block cipher. Each
round of TRIFLE-BC consists of four consecutive functions namely SubNibbles,
BitPermutation, AddRoundKey, and AddRoundConstant. For a more detailed
TRIFLE specification, refer to [16].

Differential properties of TRIFLE-BC. By analyzing the differential distri-
bution table of TRIFLE’s s-box, it was found that each AU that has a hamming
weight of a single bit (Wp;; = 1) can be differentially mapped back to AV with

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 7

Wit = 1. These 1-bit to 1-bit differential relationships (1 — 8,2 — 1,4 —
2,and 8 — 4) hold with a probability of 273. The 1-bit AV will be permuted
and propagated to the next round to become yet another AU with Wy, = 1
due to the nature of bitwise permutation that shuffles bits without affecting the
total number of active bits in the block cipher.

Therefore, for any n arbitrary rounds of TRIFLE, there exists a differential
characteristic AX (Xo, X1, ..., X31) = AY (Yy, Y1, ..., Y31) such that Wy (X)) =
1 where 0 < i < 32,0 < j < n and P(AX — AY) = 273", Moreover, there
exist 4 differentials AU — AV (7 - 4,B — 2,D — 1l,and E — 8) where
Wit (AU) > 1, Wyt (AV) = 1 and P(AU — AV) = 272, This set of differ-
entials can be used to improve the first round of the aforementioned single-bit
differential characteristics to increase the probability to 273"+ for any n arbi-
trary rounds. Since there also exists a AV for every AU with Wy (AU) = 1
such that P(AU — AV) = 272, these differential relationships can be used at
the final round. Thus, the single-bit differential characteristics with improved
first and final rounds that have a probability of 273"%2 exist for any n arbi-
trary rounds of TRIFLE provided that n > 3. In fact, there are exactly 128
(128 different starting bit position) such characteristics for every round. These
observations have also been discussed in [8] and [I§].

Based on the aforementioned improved single-bit differential characteristics,
a key recovery strategy had been discussed in [§] that recovers the key for 11
rounds of TRIFLE with a time complexity and data complexity of 2104 and
263 respectively. The authors proposed using a 42-round improved single-bit
differential in their key recovery strategy on TRIFLE-BC. However, the authors
made an error of using the 41-round (2*3(41”2 = 27121 differential probability
in their calculation instead of 42 (2-3(42)+2 = 2-124) Therefore, the differential
attack of TRIFLE-BC in [§] should able to recover the secret key of a 43-round
TRIFLE-BC (instead of 44 rounds) with the time and data complexity of 2126,

The differential discussed in this subsection only considers the probability of
a single characteristic. The differential probability can be potentially improved
by incorporating probability gains from the clustering effect (also referred to
as the differential effect) shown in [I5], whereby multiple differential character-
istics with the same AX — AY are considered for the probability of a given
differential.

3 Automatic search for differential

Matsui proposed a branch-and-bound algorithm [I2] for searching linear paths
and differential characteristics. The algorithm had been used on DES to find the
best characteristic at the time. The algorithm relied on pruning bad branches
that have lower probability than the best one found so far, B,,. The initial value
of B,, also helps break off bad branches in the early parts of the algorithm. Thus,
when B,, approaches the real value of the best probability, B, where B,, < By,
the search speed is improved as well. The algorithm also used the knowledge of
B,,_; computed from round 0 to round 7 to estimate the probability of the current

8 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

branch being searched. It will effectively cut off branches with probabilities that
are estimated to be worse than B,,.

Since then, several improvements have been made to Matsui’s algorithm. A
cluster search algorithm such as [5] improved upon Matsui’s algorithm by search-
ing for differential clusters after identifying a main differential characteristic. The
differential cluster search includes all differential characteristics that share the
same input AX and output AY differences but with different intermediary dif-
ferences. This led to differentials with improved probability for block ciphers
such as LBlock and TWINE [5]. It is also worth noting that [5] used the number
of active s-boxes as part of the pruning rules to eliminate bad branches. There
were also other researchers [36] that use a type of automatic search known as
the threshold search for ARX ciphers.

A combination of the number of active s-boxes and the differential proba-
bility threshold will be used as the pruning rules for the proposed GPU-based
automatic search. The combination of both allows for greater flexibility during
the search, and also effectively filters branches quickly if configured correctly.
This CPU-based recursive algorithm is described in Algorithm Eﬂ

4 GPU-accelerated automatic search for differential
characteristics and their clusters

To facilitate the differential search for block ciphers with a large block size and
number of rounds, the processing power of GPUs can be leveraged to provide a
substantial performance boost to the conventional branch-and-bound searching
algorithm. The proposed GPU-accelerated algorithm is a variant of a depth-first
search whereby the algorithm will first visit nodes (possible branches) in succes-
sive rounds before backtracking to visit other nodes. The difference is that once
a node is visited, all of its corresponding child branches are enumerated. This
enables the task of enumeration for the relevant child branches, and subsequently
the evaluation of the pruning rules to be parallelized and solved by the GPU.
All this can be performed while keeping the memory footprint to a manageable
range by enumerating one branch at a time rather than all possible branches of
a particular depth at once (breadth-first search). The exception exists for the
final round of the search whereby all of the branches are visited and evaluated
simultaneously. The behaviour of the modified depth-first search algorithm is
illustrated in Figure [3]

However, if the total number of possible child branches for a particular differ-
ence pattern is too low, then it will cause the GPU kernel to have low efficiency
due to low occupancy (insufficient tasks to be distributed across multiproces-
sors). In the proposed algorithm for TRIFLE, this scenario occurs when the
number of active s-boxes for a particular difference is < 4. To alleviate this
problem, differences with a low number of possible branches are instead enu-
merated and evaluated by the CPU-variant procedure. The GPU kernel and its

5 All algorithms are described in Appendix 1.

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 9

CPU-variant are discussed in Subsection The complete algorithm for the
proposed GPU-accelerated branch-and-bound differential cluster search without
enumeration kernels and method details is provided in Algorithm [2] Note that
the correctness of the proposed algorithm has been verified by comparing the
results of Algorithms [1] and

Enumerated
........ but not yet
visited path

Fig. 3: The searching strategy for the proposed algorithm.

4.1 Enumeration using GPU Kernel and CPU

The GPU kernel has been optimized for TRIFLE’s structure which has a con-
stant branching number of 7 for AV. This means that VAU that goes through
the TRIFLE’s s-box, there are precisely 7 possible choices of AV. Despite this
specific customization used, the kernel can be generalized to any SPN block ci-
pher while still retaining a similar efficiency by estimating the correct number
of branches and assigning workload among the threads accordingly.

The configuration of the proposed GPU architecture will utilize 1D blocks
for each kernel launch. Since each block within a grid contains its own block
threads, each thread is assigned a unique thread ID based on its position in a
given grid. This thread ID assignment facilitates the process of work distribution
and reduction. For TRIFLE, the number of possible branches of AX; is 74%.
When AS, = 4, there are 2401 tasks to be distributed. 19 blocks (> 9 SMs
in NVIDIA GTX-1060) are declared for a grid and each block contains 128
threads (32]|128) totalling up to 2432 threads (excess threads are terminated
during runtime immediately).

Let NBy, NBy, N B3, N B4 be the number of possible branches, and I, I, I3,
I be the n™ numbered branches in the four active AU branches respectively.

10 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Thread ID, T; can also be computed as

1 2 3
ID(I, 15, I3,1s) = (I x NBo) + (I x [[NB:) + (Is x [[NB:) + (I x [[NB:), (1)

=0 =0 =0

where NBy = 1. The work assignment (the branch taken by each individual
thread) is done by computing ID~(T;). For AS; > 4, the work assignment will
still occur for the first four active AU branches, but the remaining active AU
branches are exhaustively enumerated by each working thread individually. The
last round follows the same logic of Algorithm [I| whereby after a branch (now a
trail) is enumerated, AY,, == AY is checked, then P; is incremented accordingly.
To avoid race conditions, each thread has its own probability accumulator, P;.
The final cluster probability, P, = Zile’"” P; + P, is computed in the host
procedure where Py is the host probability accumulator.

Special attention needs to be given to memory management. All of the nec-
essary device memory allocation and host memory pinning are done during pro-
gram initialization. Both the allocated memory and pinned memory are reused
whenever possible since allocation and de-allocation of the memory are expen-
sive and will impact the overall efficiency of the proposed algorithm. DDT and
permutation lookup tables are specifically loaded into the shared memory each
time the kernel is launched because the improved latency of the shared memory
will ease the frequent access of the DDT and permutation table. The complete
algorithm for the kernel is summarized in Algorithm [4

The GPU kernel can only be used when there is a large number of branches
to maintain high GPU utilization. For AS < 3, a CPU-version of enumeration
method is used instead. The CPU-version follows the general logic of the GPU
kernel without parallelized processing. The complete CPU enumeration method
is shown in Algorithm

4.2 Meet-in-the-middle searching approach

The meet-in-the-middle (MITM) approach described in [5] is used to further
improve the efficiency of the search. Since the number of branches grows ex-
ponentially as the number of rounds increases, the search for large number of
rounds could be completed much quicker if the number of rounds to search is
split between « rounds and S rounds instead of searching directly for (o + f)
rounds.

The steps involved in the MITM approach starts off by dividing the search
into forward a rounds and backward § rounds. For the forward search, the pro-
posed algorithm mentioned in Algorithm [2]is used. The difference is that during
the a'? (final) round, instead of evaluating AY,,, the AY,, and its probability is
accumulated in an array for matching purposes. Since the amount of informa-
tion needed to store all of the possible permutations of 128-bit data far exceeds
the practical memory storage option currently available, an encoding method
is used to index into the array. The encoding is computed by using the format
of [Posaav,, AAV;, Posaav,.,, AAViy1, Posaav,,,, AAVii2]. The total number

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 11

of nibbles to be stored is currently limited to a maximum of 3 (12 bits). Since
each nibble requires 5 bits to represent its nibble position, thus the total num-
ber of bits needed to represent 3 nibbles among 32 possible nibble positions is
27 bits. This amounts to an array size of 134217728 that requires 1.07 GB of
memory when using a 64-bit double-precision floating point format to store the
probability.

Meanwhile, the backward search requires the computation of a reversed DDT
and the corresponding reversed permutation table. During the 5 (final) round,
AYp is encoded using the same method described earlier to index into the storage
array to check for matching trails. Matching trails contribute toward the final
cluster probability P.. The MITM approach detailed in this section is illustrated
in Figure [

Backward

Fig. 4: Meet-in-the-middle approach.

4.3 Performance comparison of GPU and CPU-based automatic
search for differential algorithms

The CPU and GPU algorithms are implemented using C++ and CUDA/C re-
spectively. The performance results are obtained by running the implementations
on a single Linux desktop computer with Intel 6t* generation Skylake Core i5-
6600K CPU clocked at 3.5 GHz, NVIDIA Pascal GeForce GTX-1060 with 3 GB
memory, and 16 GB of RAM.

12 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

A fixed problem set which satisfies a specific Wippie (AX) criteria has been
computed on both the GPU-accelerated kernel and CPU-enumeration method.
The results obtained (including the time spent on memory transfer) are recorded
in Table [I] and is an average of a hundred instances. These results show the po-
tential of the performance improvement of the GPU-accelerated functions which
can be up to a factor of 5.95 over the CPU-enumeration method. Also, if the
GPU possesses higher on-chip memory whereby the necessary computing differ-
ential caches are able to fit, it is possible for the proposed algorithm to reach a
speedup of up to 27.07 as shown in Table [2| A similar experiment is performed
for a series of Google VM Cloud-based CPU and GPU. The performance results
indicate that for AS = 8, the cost reduction is estimated to be around 16% to
85% of the original cost compared to the reference XEON CPU. These results
depict the potential of the proposed algorithm in terms of cost-saving for large
numbers of active s-boxes.

A series of practical tests of the proposed algorithm is performed on various
rounds of TRIFLE-BC. The results are recorded in Table @ and these results are
bounded by PROB_BOUND = P; x 272! and are an average of ten instances.
It can be seen that although the algorithm depict a speed-up of 5.95, as the
number of rounds increases, the performance also increases and stabilizes at
approximately 2.5. This result is obtained because the computation is not GPU-
accelerated when the number of active s-boxes is between 1 and 3. It can also
be noted that the MITM approach greatly increases the performance of the
searching algorithm over the traditional recursive method for up to a factor of
approximately 58 at round 20.

Table 1: Search time (us) comparison of CPU and GPU kernel enumeration.

Whibbie (AX) |GPU-Accel[CPU-Enum| Speedup

4 35.5 173.7 4.89
5 141.2 716.6 5.08
6 861.4 4589.0 5.33
7 5974.9 32200.4 5.39
8 41561.5 247393.0 5.95

4.4 Limitations and capabilities of the proposed algorithm.

The proposed algorithm presented in this paper is not without its limitations.
Firstly, the kernel is only utilized when AS of AX is > 4. It should be theo-
retically possible to bundle several small work units into a large compiled work
unit to be sent to kernel for processing. The added benefit of this is the higher
performance gains for cases of AS_BOUN D < 8, which could achieve a speedup
equivalent to using AS_BOUN D = 8. Doing so will definitely incur more over-
head. Thus, the feasibility of such an idea may be studied in future work.

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 13

Table 2: Search time (us) comparison of CPU and GPU kernel enumeration
(without output memory synchronization).

Whibeie (AX) |GPU-Accel[CPU-Enum| Speedup

4 34.2 173.7 5.08
5 70.3 716.6 10.19
6 286.9 4589.0 16.00
7 1656.7 322004 19.44
8 9140.1 247393.0 27.07

Table 3: Cloud computing cost (USD) comparison without memory
synchronization for AX; — AX, 1 for Wi (AX) = 8.

Device Time(us) Cost/Month Core Equivalent Cost%
Xeon Skylake 2.0 GHz* 506 703.0 27.46 1 100
Tesla T4 8531.6 255.50 60 16
Tesla P100 8080.4 1065.80 63 62
Tesla V100 6528.0 1810.40 78 85

This method also requires a large amount of memory especially as compared
to a recursive version of the algorithm shown in Algorithm [1} The dependency
on the GPU hardware requires some tweaking on the number of blocks and the
number of threads per block so that the GPU utilization could be maximized.
Currently, the proposed algorithm requires some customization to be applicable
to other SPN block ciphers. Its feasibility for other types of block ciphers such
as ARX and Feistel will be investigated in future work. Further work is also
needed to generalize the proposed algorithm for SPN block ciphers with minimal
modifications.

With that said, the proposed algorithm is able to use GPU hardware to
shorten the searching runtime drastically. This enables the automated search to
be conducted for block ciphers with large block sizes (128-bit) for a large number
of rounds (> 30). This has yet to be attempted in previous works. The possibility
of distributing the workload of the proposed algorithm across a grid or grids of
CPU-GPU computing nodes makes it possible to enhance the efficiency of the
search even further. For example, by enumerating all the second or third level
branches in a breadth-first manner, these branches can be divided into individual
work items that can be distributed across CPU-GPU computing nodes. This also
requires the modification of the proposed algorithm to be able to utilize more
CPU cores to better utilize the available computing resources. In addition, the
algorithm can be easily adapted to search for linear hulls.

5 Differential clustering effect of TRIFLE-BC

The proposed algorithm has been used to study the differential cluster effect
in TRIFLE-BC. The 128 improved single-bit differences propagation trails de-

14

Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Table 4: Search time (ms) of various rounds of TRIFLE-BC.

Round(s) IMITM-GPU-Accell[GPU-Accel| CPU-Enum|

5 1135.9 661.5

10 2197.3 8644.5 19564.6
15 8795.6 62928.7 156725.0
20 15675.2 363274.2 908978.1

Table 5: Differential for 20-round TRIFLE-BC

AX

AY Py P,

of Trails

0000 0000 0000 0000
00b0 0000 0000 0000

0000 0000 0000 0000 2~ °% 27°7-97
0000 0001 0000 0001

50901814

0000 0000 0000 0000
0000 d000 0000 0000

0000 0100 0000 0100 2~ °% 27°7-97
0000 0000 0000 0000

39432495

0000 0000 0000 0000
0000 0000 0700 0000

0000 0000 0000 0000 2~ °% 27°7-97
0000 0002 0000 0002

51377914

0000 0000 0000 0000 2~°% 2=°7-996 30372009
0000 0400 0000 0400

0000 0000 0000 0000
0000 0b0O0O 0000 0000

scribed in Subsection 2.2]are clustered using the proposed algorithm. The cluster
search was conducted for 43-round TRIFLE-BC using AS_BOUND = 4 and
PROB_BOUND = P, x 2721, A equivalent search is conducted for 20-round
TRIFLE-BC using AS_.BOUND = 4 and PROB_.BOUND = P, x 2731, A
slightly higher bound is used here in an attempt to cluster more differential
trails. The time required to complete the search is two days using the desktop
computer described in Subsection [4.3

Since the differential probabilities are similar, we select only 4 differentials
with 3 being the best probability and 1 differential being the differential de-
scribed in [§] to show in Table [5 and Table [6] We found that the effect of clus-
tering these paths do not significantly improve the probability. However, large
differential clusters could be enumerated, consisting of up to 51 and 0.5 million
trails for 20-round and 43-round TRIFLE-BC respectively. The differential used
in [§] for a key recovery attack against TRIFLE can be improved slightly from
9—58 o 9—57.996

The improved efficiency of the searching algorithm allows for practical iden-
tification of large clusters. Although the large clusters found in TRIFLE did
not contribute to significant improvements in terms of differential probability,
this may not be the case for other block ciphers, especially block ciphers with
smaller block size. When the block size is larger, the differential probability is
distributed into more trails, whereby the number of possible trails is a factor
of 264 more than lightweight block ciphers. Meanwhile, when the block size is
smaller, the probability of each trail is, by comparison, much larger. Thus, the
proposed searching algorithm can be used to more accurately determine the se-

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 15

Table 6: Differential for 43-round TRIFLE-BC

AX

AY

0000 0000 0000 b0OO
0000 0000 0000 0000

0000 0000 0010 0000
0010 0000 0000 0000

0000 0000 0000 0000
b000 0000 0000 0000

0000 0002 0000 0002
0000 0000 0000 0000

0000 0000 0000 0000
0007 0000 0000 0000

0020 0000 0020 0000
0000 0000 0000 0000

0000 0000 0000 0000
0000 0b00O 0000 0000

0000 0000 0000 0000
0000 0400 0000 0400

Py P, # of Trails
9127 9= 126931 5 /355
5127 9=TZ6.93T seio00
9127 9= 126931 sgia=0
5—127 5=126.995 331035

curity margin of these ciphers, and also provide a detailed look at their clustering
effects.

6 Conclusion

In this work, a new GPU-accelerated branch-and-bound algorithm for differen-
tial cluster search of block ciphers has been proposed. Rather than just a direct
application of GPUs to the problem, we implicitly partitioned the difference
branches into chunk sizes which corresponds to a individual thread in the GPU
kernel. The implicit partitioning allows the thread to acquire its work unit in
a fixed amount of step without thread divergence and synchronization mecha-
nisms to maximize the GPU core utilization. The proposed algorithm can achieve
a tremendous speedup especially when enumerating large amount of branches.
The speedup enables the search for large differential clusters for block ciphers
with a large block size over a large number of rounds. Aided by the proposed
GPU framework, we provide a detailed look at the clustering effect of the au-
thenticated cipher TRIFLE, which also served to showcase the practically of
the proposed framework. We were able to construct large clusters consisting of
hundreds of thousands to millions of individual differential characteristics, even
for a large number of rounds of TRIFLE’s underlying 128-bit block cipher. The
GPU-accelerated algorithm can be adapted to suit other SPN block ciphers by
changing the permutation and differential distribution table, and customizing
the kernel thread number based on the GPU hardware capability. However for
other block cipher structures such as Feistel and ARX, more work still has to be
done with respect to the feasibility of the proposed approach. The proposed ap-
proach can also be extended to utilize a grid of CPU-GPU computing nodes in a
real-world environment for an even higher efficiency gains. In addition, it can be
easily adapted to search for linear hulls. Last but not least, the GPU framework
described in this paper can be used to provide a more accurate security bound
on differential cryptanalysis for block ciphers.

16 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Acknowledgement

This work is supported in part by the Ministry of Education Malaysia under the
Fundamental Research Grant Scheme project no. FRGS/1/2019/ICT05/USM/02/1,
the National Natural Science Foundation of China under grant no. 61702212, and
the Fundamental Research Funds for the Central Universities under grant no.
CCNU19TS017.

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 17

References

10.

Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
Small Present. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and
Embedded Systems — CHES 2017, vol. 10529, pp. 321-345. Springer International
Publishing, Cham (2017). |https://doi.org/10.1007/978-3-319-66787-4_16, http://
link.springer.com/10.1007/978-3-319-66787-4_16

Biryukov, A., Nikoli¢, I.: Automatic Search for Related-Key Differential Character-
istics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and
Others. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F.,
Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M.,
Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Gilbert, H. (eds.) Advances
in Cryptology — EUROCRYPT 2010, vol. 6110, pp. 322-344. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_17,
http://link.springer.com/10.1007/978-3-642-13190-5_17

Biryukov, A., Velichkov, V.: Automatic Search for Differential Trails in ARX Ci-
phers. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F.,
Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan,
M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Benaloh, J. (eds.)
Topics in Cryptology — CT-RSA 2014, vol. 8366, pp. 227-250. Springer Inter-
national Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_12,
http://link.springer.com/10.1007/978-3-319-04852-9_12

Borisenko, A., Haidl, M., Gorlatch, S.: A GPU parallelization of branch-and-
bound for multiproduct batch plants optimization. The Journal of Supercom-
puting 73(2), 639-651 (Feb 2017). lhttps://doi.org/10.1007/s11227-016-1784-x,
http://link.springer.com/10.1007/s11227-016-1784-x

Chen, J., Miyaji, A., Su, C., Teh, J.: Improved Differential Characteristic Search-
ing Methods. In: 2015 IEEE 2nd International Conference on Cyber Secu-
rity and Cloud Computing. pp. 500-508. IEEE, New York, NY, USA (Nov
2015). https://doi.org/10.1109/CSCloud.2015.42, http://ieeexplore.ieee.org/
document/7371529/

Chen, K., Tang, X., Xu, P., Guo, M., Qiu, W., Gong, Z.: An Im-
proved Automatic Search Method for Diffierential Trails in TEA Ci-
pher. International Journal of Network Security 18(4), 644-649 (Jul 2016).
https://doi.org/10.6633/IJNS.201607.18(4).05

ElSheikh, M., Abdelkhalek, A., Youssef, A.M.: On MILP-Based Automatic Search
for Differential Trails Through Modular Additions with Application to Bel-
T. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) Progress in Cryptology —
AFRICACRYPT 2019, vol. 11627, pp. 273-296. Springer International Publish-
ing, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_14, http://link.
springer.com/10.1007/978-3-030-23696-0_14

Fukang, L., Takanori, I.: Iterative Differential Characteristic of TRIFLE-BC
(2019), https://eprint.iacr.org/2019/727.pdf

Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. Cryp-
tographic Hardware and Embedded Systems — CHES 2011 pp. 326-341 (2011)
Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Crypt-
analysis. In: Davies, D.W. (ed.) Advances in Cryptology — EUROCRYPT
'91, vol. 547, pp. 17-38. Springer Berlin Heidelberg, Berlin, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6_2, http://link.springer.com/10.1007/
3-540-46416-6_2

https://doi.org/10.1007/978-3-319-66787-4_16
http://link.springer.com/10.1007/978-3-319-66787-4_16
http://link.springer.com/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-642-13190-5_17
http://link.springer.com/10.1007/978-3-642-13190-5_17
https://doi.org/10.1007/978-3-319-04852-9_12
http://link.springer.com/10.1007/978-3-319-04852-9_12
https://doi.org/10.1007/s11227-016-1784-x
http://link.springer.com/10.1007/s11227-016-1784-x
https://doi.org/10.1109/CSCloud.2015.42
http://ieeexplore.ieee.org/document/7371529/
http://ieeexplore.ieee.org/document/7371529/
https://doi.org/10.6633/IJNS.201607.18(4).05
https://doi.org/10.1007/978-3-030-23696-0_14
http://link.springer.com/10.1007/978-3-030-23696-0_14
http://link.springer.com/10.1007/978-3-030-23696-0_14
https://eprint.iacr.org/2019/727.pdf
https://doi.org/10.1007/3-540-46416-6_2
http://link.springer.com/10.1007/3-540-46416-6_2
http://link.springer.com/10.1007/3-540-46416-6_2

18

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Lalami, M.E., El-Baz, D.: GPU Implementation of the Branch and Bound Method
for Knapsack Problems. In: 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum. pp. 1769-1777. IEEE,
Shanghai, China (May 2012). https://doi.org/10.1109/IPDPSW.2012.219} http:
//ieeexplore.ieee.org/document/6270853/

Matsui, M.: On correlation between the order of S-boxes and the strength of
DES. In: Goos, G., Hartmanis, J., van Leeuwen, J., De Santis, A. (eds.) Advances
in Cryptology — EUROCRYPT’94, vol. 950, pp. 366-375. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1995). https://doi.org/10.1007/BFb0053451, http:
//1link.springer.com/10.1007/BFb0053451

Melab, N., Chakroun, I., Mezmaz, M., Tuyttens, D.: A GPU-accelerated
Branch-and-Bound Algorithm for the Flow-Shop Scheduling Problem. In: 2012
IEEE International Conference on Cluster Computing. pp. 10-17. IEEE, Bei-
jing, China (Sep 2012). https://doi.org/10.1109/CLUSTER.2012.18, http://
ieeexplore.ieee.org/document/6337851/

Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis
Using Mixed-Integer Linear Programming. In: Wu, C.K., Yung, M., Lin, D. (eds.)
Information Security and Cryptology, vol. 7537, pp. 57-76. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2012). |https://doi.org/10.1007/978-3-642-34704-7_5,
http://link.springer.com/10.1007/978-3-642-34704-7_5

Nicky, M., Bart, P.: Towards Finding Optimal Differential Characteristics for
ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013),
https://eprint.iacr.org/2013/328

Nilanjan, D., Ashrujit, G., Debdeep, M., Sikhar, P., Stjepan, P., Ra-
jat, S.: TRIFLE (Mar 2019), https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
NIST: Lightweight Cryptography, Round-1 Candidates (Apr 2019), https://csrc.
nist.gov/projects/lightweight-cryptography/round-1-candidates

NIST: Round 1 Lightweight Cryptography | Official Comments - TRIFLE (2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/official-comments/TRIFLE-official-comment .pdf
NVIDIA: CUDA C Programming Guide Version 9.0 (Oct 2019), https://docs.
nvidia.com/cuda/cuda-c-programming-guide/

Padua, D. (ed.): Encyclopedia of Parallel Computing. Springer US, Boston, MA
(2011). https://doi.org/10.1007/978-0-387-09766-4, http://link.springer.com/
10.1007/978-0-387-09766-4

Siwei, S., Lei, H., Meiqin, W., Peng, W., Kexin, Q., Xiaoshuang, M., Danping, S.,
Ling, S., Kai, F.: Towards Finding the Best Characteristics of Some Bit-oriented
Block Ciphers and Automatic Enumeration of (Related-key) Differential and Lin-
ear Characteristics with Predefined Properties (2014)

Song, L., Huang, Z., Yang, Q.: Automatic Differential Analysis of ARX Block
Ciphers with Application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.)
Information Security and Privacy, vol. 9723, pp. 379-394. Springer International
Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_24, http://
link.springer.com/10.1007/978-3-319-40367-0_24

Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic Security Evaluation of Block
Ciphers with S-bP Structures Against Related-Key Differential Attacks. In: Lin,
D., Xu, S., Yung, M. (eds.) Information Security and Cryptology, vol. 8567, pp. 39—
51. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-
3-319-12087-4_3| http://link.springer.com/10.1007/978-3-319-12087-4_3

https://doi.org/10.1109/IPDPSW.2012.219
http://ieeexplore.ieee.org/document/6270853/
http://ieeexplore.ieee.org/document/6270853/
https://doi.org/10.1007/BFb0053451
http://link.springer.com/10.1007/BFb0053451
http://link.springer.com/10.1007/BFb0053451
https://doi.org/10.1109/CLUSTER.2012.18
http://ieeexplore.ieee.org/document/6337851/
http://ieeexplore.ieee.org/document/6337851/
https://doi.org/10.1007/978-3-642-34704-7_5
http://link.springer.com/10.1007/978-3-642-34704-7_5
https://eprint.iacr.org/2013/328
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://doi.org/10.1007/978-0-387-09766-4
http://link.springer.com/10.1007/978-0-387-09766-4
http://link.springer.com/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-3-319-40367-0_24
http://link.springer.com/10.1007/978-3-319-40367-0_24
http://link.springer.com/10.1007/978-3-319-40367-0_24
https://doi.org/10.1007/978-3-319-12087-4_3
https://doi.org/10.1007/978-3-319-12087-4_3
http://link.springer.com/10.1007/978-3-319-12087-4_3

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 19

Appendix 1 CPU and GPU-accelerated Algorithm for
Differential Cluster Search

Algorithm 1 Differential characteristics (cluster) searching algorithm with con-
straints on probability and number of active s-boxes.

Input: Input difference AX and output difference AY.
Output: Probability P, of AX — AY cluster.
Adjustable Parameters:
1. AS_.BOUND : Maximum of number of active sboxes for AY.
2. PROB_BOUND : Maximum probability of AX — AY.
3. Pas : Estimated probability of a nibble AU — AV.
procedure CLUSTER_SEARCH_ROUND_ (1 <4 < n)
for each candidate AY; do
pi PI"(AXZ', AY;)
ASit1 Whisie (AY5)
if AS;11 < AS_BOUND then
Dit1 (PAS)A_SH'l
pr ¢+ (Pas)" ™7}
if [p1, ..., pi, Dit1,pr] > PROB_BOUND then
call procedure CLUSTER_-SEARCH_ROUND_(¢ + 1)
end if
end if
end for
end procedure

procedure CLUSTER_SEARCH_ROUND_n
for each candidate AY,, do
if AY,, == AY then
pn < Pr(AX,, AY,)
P.«+ P.+ [ph ,pn}
end if
end for
end procedure

20 Wei-Zhu Yeoh, Je Sen Teh, and Jiageng Chen

Algorithm 2 GPU-accelerated differential (cluster) searching algorithm.

procedure CLUSTER_SEARCH
call procedure CLUSTER_SEARCH_ROUND_0
Pe— (X151 P) + Py

end procedure

procedure CLUSTER_SEARCH_ROUND_¢ (1 < ¢ < n)
ASi < Whibbe (AX)
if AS; > 3 then
call procedure ENUMERATION_DEVICE_:
else
call procedure ENUMERATION_HOST
end if
for each computed AY/ do
if (AYionaition)! == TRUE then
if i+ 1< N then
call procedure CLUSTER_-SEARCH_ROUND_(¢ + 1)
else
if ASH_l > 3 and AS; > 3 then
call procedure ENUMERATION_DEVICE_n
else
call procedure ENUMERATION_HOST_n
end if
end if
end if
end for
end procedure

Algorithm 3 Host (CPU) enumeration and evaluation method.

procedure ENUMERATION_HOST_i (1 < ¢ < n)
for each candidate (AAVy, AAV,, ..., AAVas_Bounp) do
if ¢ # n then
(Ayvcondi“on)fundidute,indez . FALSE
ASi+1 — Wnibble (AY;)
if AS;11 < AS_BOUND then
Dit1 (PAS)A_S“A
pr 4= (Pas)" "1
if [p1, ..., pi, Di+1,pr] > PROB_BOUND then
(Aycondition)gandidate,indew « TRUE
end if
end if
else if AY; == AY then
P <+ P, +p;
end if
end for
end procedure

Automated Search for BC Differentials: A GPU-Accelerated BnB Algorithm 21

Algorithm 4 Device (GPU) enumeration and evaluation method.
Input: Input Difference AX.
Output: Enumerated branches, its evaluation result and probabilities P;.
Adjustable Parameters:
1. AS_.BOUND : Maximum of number of active s-boxes for AY.
2. PROB_BOUND : Maximum probability of AX — AY.
3. Pas : Estimated probability of a nibble AU — AV.
Assumption:
1. Non-active nibble (s-boxes) will have a difference value of zero. Thus, an attempt
to differentially substitute it will yield 0 — 0 with a probability of 1.
procedure ENUMERATION_DEVICE ¢ (1 < i < n)
synchronize necessary information with device memory (asynchronously)
call KERNFEL_i (asynchronously)
synchronize device information with host memory (asynchronously)
cuda stream synchronized (wait for device to complete its computation)
end procedure

procedure KERNEL_i (1 <1i<n)
copy permutation table, sorted DDT (Descending Frequency), and branch size
table
to shared memory
T; < (blockIdz.xz x blockDim.x 4 threadldz.x)
//Work assignment
Value < T;, Divide_Value < 1
for each active nibble values, AAU; where 1 <7 <4 do
I; < |Value/Divide_Value| mod N B;
AAV; + sorted DDT[AAU;]|I]
update p;
Divide_Value <+ Divide_Value X N B;
end for
//Enumerating all remaining branches if AS_. BOUND > 4
//Note that the for loop will still be entered even if AUs =0
for each candidate (AAVs, AAV, ..., AAVas_pounp) do
if i #n then
global of fset + (H?:SI’BOUND NB; x T; + candidate_index)
(A)/Conditian)global,offset « FALSE
ASit1 + Waibbie (AY)
if ASZ'+1 § AS_BOUND then
pit1 = (Pag)*5itt
pr (Pas)" !
if [plz -~-7pi7pi+l7pr] > PROB_BOUND then
(Ayrcondition)?lObalioffset «— TRUFE
end if
end if
else if AY; == AY then
P+ P+ pi
end if
end for
end procedure

	Automated Search for Block Cipher Differentials: A GPU-Accelerated Branch-and-Bound Algorithm

