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ABSTRACT
Developing machine learning models from federated training data,

containing many independent samples, is an important task that

can significantly enhance the potential applicability and predic-

tion power of learned models. Since single users, like hospitals

or individual labs, typically collect data-sets that do not support

accurate learning with high confidence, it is desirable to combine

data from several users without compromising data privacy. In

this paper, we develop a privacy-preserving solution for learning a

linear regression model from data collectively contributed by sev-

eral parties (“data owners”). Our protocol is based on the protocol

of Giacomelli et al. (ACNS 2018) that utilized two non colluding

servers and Linearly Homomorphic Encryption (LHE) to learn reg-

ularized linear regression models. Our methods use a different LHE

scheme that allows us to significantly reduce both the number and

runtime of homomorphic operations, as well as the total runtime

complexity. Another advantage of our protocol is that the underly-

ing LHE scheme is based on a different (and post-quantum secure)

security assumption than Giacomelli et al. Our approach leverages

the Chinese Remainder Theorem, and Single Instruction Multiple

Data representations, to obtain our improved performance. For a

1000 x 40 linear regression task we can learn a model in a total of 3

seconds for the homomorphic operations, compared to more than

100 seconds reported in the literature. Our approach also scales up

to larger feature spaces: we implemented a system that can handle

a 1000 x 100 linear regression task, investing minutes of server

computing time after a more significant offline pre-processing by

the data owners. We intend to incorporate our protocol and imple-

mentations into a comprehensive system that can handle secure

federated learning at larger scales.
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1 INTRODUCTION
The use of machine-learning (ML) models to support inference has

numerous and wide-spread practical implications. Training these

models typically requires large volumes of data to support higher

confidence statistics. A single data-owner however, such as a health

provider clinic or hospital, often has access only to limited data

volumes. This motivates sharing data with other data-owners. Such

data sharing however poses security risks and may be prohibited,

e.g., by regulations or commercial concerns. A vivid field of research

is therefore to develop privacy-preserving ML protocols to enable

statistical analysis on federated data that simultaneously attain

both: (i) Training ML models on large data volumes obtained from

multiple data-owners, while (ii) Preserving the privacy of all data-

owners. This is known to be possible since the seminal study of

secure multi-party computation (MPC) in the 1980’s [9, 24]; with

much recent efforts on achieving efficiency relevant to practice, as

initiated in [1, 7, 10, 13, 15, 17, 18].

Linear-regression is an important and widely-used statistical tool

for modeling the relationship between properties of data instances

®xi ∈ R
d
(features) and an outcome (response) yi ∈ R using a

linear function y′i = ®w · ®xi . Training a regression model, takes

n data instances ( ®xi ,yi ) ∈ R
d+1

and returns a model ®w ∈ Rd

that minimizes the loss function, e.g., the least-square-error (MSE) ®y′ − ®y2
2

. Ridge-regression is a prevalent form of regression that

reduces over-fitting by adding ℓ2-regularization λ ∥ ®w ∥2
2
to the loss

function; See the survey in [16]. Training a ridge regression model,

given (X |y) ∈ Rn×(d+1), boils down to solving a linear-system

A ®w = ®b for A = XTX + λI and ®b = XT ®y.
A privacy-preserving ridge regression (PPRR) is a protocol for

training ridge regression models that reveals no information on

the training data beyond what can be inferred from the outputted
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regression model. A recent line of work initiated by Nikolaenko

et al. [19] presented PPRR protocols in the two-server model [14],

where the training is conducted by two non-colluding servers. Niko-

laenko et al. [19]’s protocol uses Linearly-Homomorphic Encryp-

tion (LHE) and Yao’s garbled circuit protocol. Giacomelli et al. [6]

recently eliminated the need for garbling, and presented a two-

server PPRR protocol using only LHE. This has greatly improved

overall performance, both in terms of computation and communi-

cation. Giacomelli et al. [6] have implemented their protocol using

Paillier encryption scheme as the underling LHE to evaluate its

concrete performance.

1.1 Our Contribution
Our contribution in this work is as follows.

Linear-regression on Packed Encrypted Data (LoPED). We

present a new PPRR-protocol, which we call “Linear-regression
on Packed Encrypted Data (LoPED)”. Our protocol builds on the

method of [6] while modifying the scheme to allow computing on

packed data, leading to substantial speedup. “Packing” is in the

sense of utilizing the Single Instruction Multiple Data (SIMD) [22]

property of RLWE-based schemes [2, 4, 20] to pack hundreds (to

thousands) of plaintext data-values in each ciphertext. Our protocol

is applicable in the two-server model and uses only LHE, as does [6].

To support SIMD operations, which are not supported when using

Paillier encryption [6], we introduce several novel components; See

Section 1.2.

Speedup in online time: analytical results. LoPED affords up

toΘ(d2) speedup over [6] in the number of homomorphic-operations,

where d is the number of features. More precisely, the speedup is

Θ(sl), where sl ≤ d2 is the number of slots packed in each SIMD

ciphertext. Attaining sl ≈ d2 is essentially for free for up to d ≈ 50

features, because parameters settings with 2000 − 3000 slots lead

to essentially no complexity overhead in the time of SIMD homo-

morphic operations (beyond the complexity necessitated by the

security and correctness requirements).

Speedup in online time: experimental results.We implemented

our protocol and ran extensive experiments demonstrating a sub-

stantial speedup in the run-time of homomorphic operations (aka,

LHE-comp); See Table 1 (page 12). For example, for d = 40 features

and n = 1000 data instances, LHE-comp takes 102s (seconds) in [6]

compared to 3s in LoPED (×33-speedup). The overall speedup in

total run-time is from 143s in [6] to 60s in LoPED (×2.4 speedup);

“total time” accounts, on top of LHE-comp, also for the time to pre-

and post-process the cleartext data, including the time to encrypt

and decrypt. Furthermore, while [6] provided run-time results only

up to d = 40 features (102s spent on LHE-comp), we ran experi-

ments up to d = 100 (15s); namely, even when comparing d = 40

in [6] to d = 100 in LoPED, LoPED’s LHE-comp is still ×7 faster.

Security. LoPED is based on a post-quantum secure security as-

sumption, in contrast to the Paillier-based implementation used

in [6]; this is an added benefit of our system. Security is against a

computationally-bounded honest-but-curious adversary that con-

trols at most one of the servers (aka, non-colluding servers) to-

gether with any subset of the data-owners. The security guarantee

is that corrupted parties (data-owners and servers) learn no new

information on the data beyond what is revealed by the output.

The latter holds, in both [6] and LoPED, provided that the ma-

trix A = XTX + λI is invertible in the ring ZN into which A was

embedded (after appropriate scaling) to allow encryption and homo-

morphic operations; otherwise server S2 can distinguish invertible

from non-invertible matrices A. We note that in [6], when using

Paillier-based LHE, N has two prime divisors. In LoPED, when us-

ing RLWE-based LHE together with our CRT representation for the

plaintext (see Section 1.2), N has several prime divisors, roughly 40

in our experiments. Nonetheless, in both cases all prime divisors

are large (40−60 bits long moduli in LoPED), so we expect naturally

occurring matrices A to be invertible.

1.2 Our Techniques
To attain run-time speedup and packed-encryption in LoPED we

present a variant of [6]’s protocol that achieves the following:

(a) Compatibilitywith current implementations ofRLWE-
based LHE. For this purpose we reduce the plaintext size via the
Chinese Remainder Theorem (CRT).

(b) Run-time speedup via computation on packed
cipehrtexts (SIMD). For this purpose, we employ the SIMD

feature available in the RLWE-based LHE schemes. Furthermore,

we use Jiang et al. [12]’s protocol for fast matrix-multiplication

of packed encrypted matrices, which we (straightforwardly)

adapt to our settings where one of the two matrices is given

in plaintext, showing that LHE (instead of full-blown fully

homomorphic encryption) suffices in this case. In addition, we set

the LHE parameters appropriately (when possible) to enforce a

roughly optimal number of packed slots (sl = d2). We also utilize

parallel-computing tailored to our use of CRT. We note that SIMD

is not known to be available in Paillier. Moreover, CRT cannot

be employed to shrink plaintext size in Paillier, because Paillier’s

security requirement enforces a lower-bound on the plaintext

modulus of typically 2048 bit. Next, we elaborate on each of these

components.

CompatibilitywithRLWE-based LHE.Our goal is to use RLWE-

based LHE (rather than Paillier in [6]). The motivation is twofold.

First, to speedup the homomorphic-computation by utilizing the

SIMD feature available in RLWE-based schemes, which is not avail-

able for Paillier. Second, to base security on an alternative assump-

tion (RLWE), which is post-quantum secure.

A main challenge we face is that the plaintext moduli required

by [6] are incompatible with the current implementations of RLWE-

based LHE scheme (e.g., HElib [11] or SEAL [3]). Specifically, for cor-

rectness, [6] requires using plaintext modulus N ∼ 2
d (4ℓ+2 log

2
n)
,

which is thousands of bits long for typical parameter settings; See

Equation 1 (page 5). For example, for d = 40 features, n = 1000

data-instances, and ℓ = 3 decimal-digits of precision, as used in

the experiments of [6], N has roughly 2400 bits. The problem is

that HElib (similarly, SEAL) supports plaintext moduli only up to

62 (similarly, 60) bits long.

To address this challenge, we use the Chinese Remainder Theo-

rem (CRT).

Plaintext Shrinkage via ChineseRemainder Theorem (CRT).
We employ CRT to shrink plaintext space up-to exponentially

smaller than in [6]: reducing ring size from roughly N ∼



2
d (4ℓ+2 log

2
n)

in [6] to to as low as pi ∼ d(4ℓ + 2 log2 n) in LoPED,

albeit using t = log
2
N rings Zp1 , . . . ,Zpt . For example, with pa-

rameters d = 40, n = 1000, ℓ = 10, we can reduce the moduli

magnitudes from roughly 2
2400

to 2400; equivalently, from 2400

bits to 12 bits. This reduction in plaintext size makes the plaintext

compatible for encryption in HElib (similarly, SEAL) LHE imple-

mentations.

However, our transition to CRT representation raises several

new issues that we need to address, as explained next.

Correctness. First, to ensure correctness, we must recon-

struct the integer model ®w from its CRT representation (CRT-

reconstruction); this is both straightforward and highly efficient,

as the output ®w is in plaintext.

Complexity. Second, complexity involves a trade-off between

the number of rings and their sizes, because we require

∏
i pi ≥ N

where pi are the moduli in the CRT representation. As an imple-

mentation choice we choose the size to fully utilize our parallel

computing resources: withM cores, we choose pi ∼ N 1/M
condi-

tioned on pi < 2
62

for HElib compatibility (otherwise we reduce the

size further, and assign several primes to each core). For example,

using 40 cores we can reduce N ∼ 2
2400

to N 1/40 = 2
60
, and assign

a single prime pi to each core for parallel computation.

Security. Third, for security, [6] require that A is invertible in

ZN (otherwise server S2 can distinguish invertible from singular

matrices A). We make the same requirement in LoPED which, in

particular, implies thatA is invertible in Zpi for all used CRTmoduli

pi . Assuming a uniform distribution for the analyzed data, the

invertibility requirement holds with high probability. See Sections 3

for further details.

Computing on Packed Encrypted Data. Once we attain com-

patibility with HElib, the key component for attaining the run-time

speedup is using SIMD to pack up to d2 slots in each ciphertext.

This results in speedup by a factor of Θ(sl), where sl ≤ d2 is the
number slots for plaintext packing in each ciphertext.

It is important to note however that naively employing SIMD

throughout the computation might not improve efficiency, since

operations involving computations on different slots (e.g., matrix

multiplication, see below) incur a high overhead that might actually

harm efficiency. To address this, we carefully design the various

steps in our protocol to be tailored for SIMD computation; this

involves two main components as described next; See details in

Section 5.

First, as a key component we utilize Jiang et al. [12]’s algorithm

for fast multiplication of packed matrices. Specifically, [12] shows

how to compute the product of two encrypted d ×d matrices A and

B, where: (a) each encrypted matrix is packed in only d ciphertexts

(rather thand2 with entry-by-entry encryption); and (b) the product
requires only d homomorphic-multiplications and d homomorphic-

additions (rather than Θ(d3) homomorphic-operations in the natu-

ral matrix-product algorithm). In our protocol only one of the two

matrices is encrypted, while the other is known to server S1 in the

clear. Thus, only LHE (and not fully homomorphic encryption) is

needed in our use of the algorithm of [12]. SIMD allows to reduce

the number of homomorphic operations in the matrix-product step

by a factor of up to d2.

Second, we carefully choose packed representations for all vec-

tors involved in our protocol to make them compatible with the

matrix representation of [12], and to support efficient operations of

vector-addition and matrix-vector multiplication throughout our

protocol.

Parallel computing utilization. The CRT-representation is par-

ticularly compatible with parallel computing: we simply run parallel

executions of our protocol on the different plaintext modulipi . Com-

bining cleartext results is via the well-known CRT-reconstruction

algorithm [21], which is highly efficient since it simply computes a

linear combination of the results (over the integers) with known

integer coefficients.

2 PRELIMINARIES

Notation. We use upper-case letters (e.g., X ) to denote matrices,

and vector notation (e.g., ®v) to denote vectors. For a matrix X , we
useXi to denote its i’th row, and we useX

T
to denote the transpose

of X . We use boldface letters (e.g., A for a matrix and
®b for a vector)

to denote ciphertexts. For natural d,N ∈ N, we use GL (d,ZN ) to
denote the group of all invertible d ×d matrices with entries in ZN .

We use ≈ to denote computational indistinguishability, namely if

R,R′ are random variables then R ≈ R′ denotes they are compu-

tationally indistinguishable. We use negl (σ ) to denote a function

which is negligible in σ . We use the standard notion of computa-

tional indistinguishability (e.g., from [8]). We use PPT as shorthand

for Probabilistic Polynomial Time.

Linear-Homomorphic Encryption (LHE) LHE is a public-key

encryption scheme that allows one to perform linear operations
“under the hood” of the encryption, without knowledge of the secret

decryption key. We assume that during key generation, one can

choose the plaintext space by specifying an N ∈ N, so that homo-

morphic operations are performed modulo N . This is captured by

incorporating the plaintext modulus N explicitly into the syntax of

the scheme.

Definition 1. A Linearly-Homomorphic Encryption (LHE) scheme

E = (KG, Enc,Dec, Eval) consists of four algorithms where KG, Enc
and Eval are PPT algorithms, and Dec is (deterministic) polynomial

time. The algorithms have the following syntax:

• KG (1σ ,N ) takes as input a security parameter σ , and an

N ∈ N. It outputs a pair of public and secret encryption

keys (pk, sk). We assume without loss of generality that pk
includes N in its description.

• Enc (pk,msg) takes as input a public key pk, and a message

msg ∈ ZN , and outputs a ciphertext c.
• Dec (sk, c) takes as input a secret decryption key sk, and a

ciphertext c, and outputs a plaintext message msg′.
• Eval (pk,C, c1, . . . , ck ) takes as input a public key pk, a cir-
cuit C : ZkN → Z

l
N for some l,k ∈ N, and k ciphertexts

c1, . . . , ck , and outputs l ciphertexts
(
c′
1
, . . . , c′l

)
.

The algorithms are required to satisfy the following semantic

properties.



• Correctness. For every natural N , every security parameter

σ , and every message msg ∈ Zp :

Pr

msg = msg′ :
(pk, sk) ← KG (1σ ,N )

c ← Enc (pk,msg)
msg = Dec (sk, c)

 = 1 − negl (σ )

where the probability is over the randomness of KG and Enc.
• LHE Correctness. For every natural N , every security param-

eter σ , every k, l ∈ N, every circuitC : ZkN → Z
l
N consisting

only of addition and multiplication by constant gates, and

every msg
1
, . . . ,msgk ∈ ZN , the following probability is at

least 1 − negl (σ ):

Pr

msg = msg′ :

(pk, sk) ← KG (1σ ,N )
∀i ∈ [k], ci ← Enc

(
pk,msgi

)
c ← Eval (pk,C, (c1, . . . , ck ))

msg = Dec (sk, c)


where msg′ = C

(
msg

1
, . . . ,msgl

)
, and the probability is

over the randomness of KG, Enc and Eval.
• Semantic security. For every σ ,N , and every msg ∈ ZN ,

the joint distribution of pk (i.e., a public key randomly

generated by KG) and c ← Enc (pk,msg) is computation-

ally indistinguishable from the joint distribution of pk and
c0 ← Enc (pk, 0).

Remark on encrypting long messages. Though we define LHE

schemes as encrypting a single ring element, we also consider LHE

schemes encrypting vectors or matrices of ring elements, namely

Enc might take as input a vector or matrix of ring elements, and

Dec might take as input a vector or matrix of ciphertexts (each

encrypting a field element). See Section 5 for further details.

Remark on Semantic Security Under Evaluations. We note

that semantic security (as defined in Definition 1) is preserved

under homomorphic evaluation (this follows from a standard hybrid

argument). Specifically, semantic security implies that for every

σ ,N , every k, l ∈ N, every msg
1
, . . . ,msgk ∈ ZN , and every C :

ZkN → Z
l
N which contains only addition and multiplication by

constant gates, the following distributions are computationally

indistinguishable:

• Sample (pk, sk) ← KG (1σ ,N ), and c ←

Enc
(
pk,C

(
msg

1
, . . . ,msgk

) )
.
1
Output (pk, c).

• Sample (pk, sk) ← KG (1σ ,N ), and for every i ∈ [k], ci ←
Enc

(
pk,msgi

)
. Sample c← Eval (pk,C, c1, . . . , ck ). Output

(pk, c).

3 PROBLEM STATEMENT

The Setting. We consider a setting in which m Data Owners
DO1, . . . ,DOm hold private sensitive data, consisting of the labeled

examples for a learning algorithm, and wish to execute a ridge

regression algorithm (described in Figure 1) on their joint data.

Following [14], we focus on the two-server model in which the data-

owners are aided by two non-colluding servers S1 and S2 that assist
in executing the protocol.

1
See remark above about encrypting multiple field elements at once.

Naive Solutions. Of course, the hospitals could share their pri-

vate data, and compute the prediction model based on the aggre-

gated dataset. However, as discussed in Section 1, privacy, business

(and even legal) concerns generally forbid this kind of transparent

data-sharing arrangement. On the other hand, each hospital could

compute a model based only on its own dataset (ignoring the data

collected by other hospitals). In this case, all data is trivially kept

private, but we expect the resulting models to be less accurate.

Privacy-preserving Ridge Regression is a vivid research area in

which protocols for computing prediction models simultaneously

(i) make use of all available data (thus optimizing their statisti-

cal power), and (ii) preserve data privacy. The participation of the

servers reduces the number of communication rounds, and the com-

putational burden on the data owners, which are usually incurred

by protocols executed between the data owners alone.

3.1 Security and Threat Model
Our goal is to guarantee correctness of the output, and privacy of the

inputs, in the presence of a passive (so-called “honest-but-curious”),

computationally-bounded adversary that corrupts a subset of the

data owners and at most one server. More specifically, all parties

(even corrupted ones) follow the protocol and are restricted to

performing PPT computations, but the corrupted parties collude

and try to infer as much information as possible from their view

of the interaction. Roughly, the security guarantee is that parties

(data-owners and servers) learn nothing about the data beyond

what is explicitly revealed by the protocol. This explicitly-revealed

information is called the “leakage profile”, and in our protocols it

consists of the shared parameters n,d, ℓ, λ, and the output model ®w
(see Figure 1). More formally, we consider k-privacy in the passive

setting, for inputs X such that A = XTX + λI is invertible in ZN .

(As noted in Section 1, this happens with overwhelming probability

for naturally-occurring A’s.)

Terminology. Let Π be anm + 2-party protocol executed between

PPT data owners DO1, . . . ,DOm and PPT servers S1,S2. We as-

sume every pair of parties share a secure point-to-point channel,

and all parties share a broadcast channel. We also restrict our

attention to protocols in which all parties obtain the same out-

put, and only the data owners have inputs. For inputs x1, . . . , xm
of DO1, . . . ,DOm , we use Π (x1, . . . , xm ) to denote the random

variable describing the output in a random execution of Π (the

probability is over the randomness of all participating parties, in-
cluding the servers). For every party P ∈ {DO1, . . . ,DOm,S1,S2},
the view of P in Π, denoted ViewΠ

P (x1, . . . , xm ), is the random

variable consisting of the input and randomness of P , as well

as the messages P received from the other parties in a random

execution of Π with inputs x1, . . . , xl . (We note that the mes-

sages sent by a passively-corrupted P can be efficiently computed

given its view and the description of the protocol.) For a subset

I ⊆ {DO1, . . . ,DOm,S1,S2} of parties, we use ViewΠ
I (x1, . . . , xm )

as shorthand for

(
ViewΠ

P (x1, . . . , xm )
)
P ∈I

. We say a subset I ⊆

{DO1, . . . ,DOm,S1,S2} is k-permissible if it contains at most k
data owners, and at most one of the servers.

Security notion.We consider standard passive (computational) se-

curity (see, e.g., [8]), adapted to the setting of non-colluding servers.



Parties: Data-Owners DO1, . . . , DOm and two-servers S1, S2.

Shared Parameters: Number of data instances n; number of features d ; precision ℓ, where all values in R are normalized to [−1, 1]

with a precision of ℓ digits; and regularization parameter λ ∈ [0, 1].

Input: A data-matrix X ∈ Rn×d and a response-vector ®y ∈ Rn×1, where the input (X | ®y) is horizontally-partitioned between the

data-owners matrices. That is, each data owner DOj holds a subset Ij ⊆ {1, . . . , n } of the rows (data instances) of (X | ®y), and the Ij ’s
are pairwise disjoint.

Output: A model ®w ∈ Rd s.t. ®w = argmin
®w ′∈Rd

{
∥X · ®w ′ − ®y ∥2

2
+ λ ∥ ®w ′ ∥2

2

}
.

Leakage Profile: n, d , ℓ, λ, and ®w .

Figure 1: Ridge-Regression over federated data (horizontal sharing)

Specifically, following [6] we define correctness with respect to a

subset of inputs (where there is no correctness guarantee for inputs

not in T ), and only require efficient simulateability of k-permissible

sets. Formally,

Definition 2 (k-privacy). Letm,k ∈ N, let σ be a security param-

eter, let D,R be an arbitrary domain and range, let f : Dm → R,

and let T ⊆ Dm
. We say that an m-party protocol Π realizes f

with k-privacy for inputs in T if:

(1) There exists a negligible function negl (σ ) : N → N such

that for all inputs (x1, . . . , xm ) ∈ T ,

Pr [Π (x1, . . . , xm ) = f (x1, . . . , xm )] = 1 − negl (σ )

where the probability is over the randomness of the parties.

(2) For every k-permissible I there exists a PPT simulator Sim
such that for every (x1, . . . , xm ) ∈ T :

ViewΠ
I (x1, . . . , xm ) ≈ Sim

( (
x j

)
DOj ∈I

)
.

3.2 Prior State-of-the-Art: PPRR via LHE [6]
The prior state-of-the-art for PPRR in the two-server model is the

protocol of Giacomelli et al. [6] that operates on parametersn,d, ℓ, λ
as in Figure 1, and with a choice of plaintext ring ZN where:

N > 2d(d − 1)
d−1
2 10

4ℓd (n2 + λ)2d (1)

At a high level, the protocol of [6] operates as follows. During a

setup phase, S2 generates LHE encryption keys (pk, sk), and pub-

lishes the public key pk. Then, the protocol trains a ridge-regression
model on input (X | ®y) ∈ Rn×(d+1) which is horizontally-partitioned

between multiple Data Owners as follows. First, each Data Owner

computes her share of the d × d matrix A = XTX + λI , scaled to

integer values embedded in ZN , encrypts this share with the LHE

scheme, and sends the ciphertexts to S1. ®b = XT · ®y is similarly

computed from the contributions of the different Data Owners. Sec-

ond, S1 combines all shares to obtain an entry-by-entry encryption

A of A, which is assumed to be invertible in Zd×dN . Then, S1 masks

A “under-the-hood” using the homomorphic properties of the LHE

scheme. More specifically, using the LHE S1 computes an encryp-

tion C of A ·R, where R ∈ GL (d,ZN ) is a random invertible matrix.

A masked version of
®b is similarly computed “under-the-hood”,

where the resulting masked, encrypted, vector ®v is an encryption

of ®v = ®b +A · ®r for a uniformly random r ∈ ZdN . The server S1 then

sendsC, ®v toS2. Third,S2 uses the secret decryption key to decrypt
and solves the linear-systemC · ®w∗ = ®v mod N to obtain a masked

model ®w∗ that it sends to S1. Finally, S1 removes the masking to

obtain the model ®w ′ = R · ®w∗ − ®r ∈ ZdN . The output model ®w ∈ Qd

is then obtained from ®w ′ using rational reconstruction [5, 23].2 After
recovering ®w , S1 broadcasts it to all parties.

Remark on correctness and the choice ofN . The protocol of [6]
performs all intermediate computations (in particular, the computa-

tions performed by the ridge regression algorithm) over the ring ZN
instead of over R. The outcome obtained through this computation

is correct in R when there are no “overflows” in the computation

over ZN . As shown in [6], this holds for N chosen as in Equation 1,

for which both the rational reconstruction, and the computation of

C−1 through C−1 = adj (C) /det (C) (where adj (C), det (C) are the
adjoint and determinant of C , respectively) over ZN is equivalent

to computing over R.

4 OUR PRIVACY-PRESERVING
RIDGE-REGRESSION PROTOCOL

In this section we describe our PPRR protocol, which we call LoPED.

As discussed in Section 1, it is a variant of the PPRR protocol of [6]

with added support for RLWE-based LHE schemes, and improved

performance (in terms of runtimes). These properties are obtained

by combining the CRT representation (which reduces the plaintext

space to one supported by current implementations of RLWE-based

LHEs), with SIMD operations (to improve the complexity of homo-

morphic operations).

Overview. LoPED is a multi-party computation protocol which

employs an LHE scheme E = (KG, Enc,Dec, Eval) as a building

block. It is executed betweenm data owners DO1, . . . ,DOm , and

two servers S1,S2, and operates in three phases. The Setup phase

establishes cryptographic keys to be used during the execution.

During the Input Uploading phase, each data owner uploads its (en-

crypted) data to the servers by sending a single message to S1. The

Learning phase is an interactive protocol between the servers (with
no involvement of the data owners) whose outcome is the (public)

model output by the learning algorithm, which is then sent to all

data owners. Throughout the protocol, each of the servers has its

own designated role: S1 combines and masks the (encrypted) data

contributed by the data owners; whereas S2 holds the decryption

keys and executes the learning algorithm on the un-encrypted, but

masked, inputs. We now provide more details on each phase and

the roles of all parties.

2
We use the term “rational reconstruction” to refer to the Lagrange-Gauss algorithm

which allows one to recover a rational q = r/s from its representation q′ = r · s−1 ∈
ZN for sufficiently large N (in particular, this holds for N which satisfies Equation 1).



The Setup Phase (Figure 2) consists of S2 generating encryption

keys for the LHE scheme, and publishing the public keys. Since

we use the CRT to represent messages, representing a message in

ZN using a list of messages in Zp1 , . . . ,Zpt such that N =
∏t

i=1 pi ,
independent encryption keys are needed for each modulus pi . (In
contrast, in [6] operations are performed directly in ZN , and so S2

generates a single pair (pk, sk) of encryption keys.)

The Input Uploading Phase (Figure 2). Recall from Figure 1 that

we assume the input is horizontally partitioned between the data

owners. That is, letX ∈ Rn×d , ®y ∈ Rn×1 denote the data matrix and

response vector, respectively, then there exists a partition I1, . . . , Im
of [n] such that DOj holds X

j = XIj =
(
Xk : k ∈ Ij

)
(recall that

Xk denotes the k’th row of X ) and ®y j = ®yIj = (yk )k ∈Ij . These

inputs are scaled and embedded into ZN for a large enough N (for

the requirements on N , see Equation 1). For every 1 ≤ j ≤ m, let

Aj =
∑
k ∈Ij

(
X
j
k

)T
· X

j
k ∈ Z

d×d
N , and

®b j =
∑
k ∈Ij X

j
k · ®y

j
k ∈ Z

d
N .

Each DOj locally computes Aj , ®b j from his local inputs, computes

Aj ,pi =
(
Aj

mod pi
)

and
®b j ,pi =

(
®b j mod pi

)
and sends encryptions of Aj ,pi , ®b j ,pi , i ∈ [t] to S1.

The Learning Phase (Figure 3). In this phase, S1 combines and

masks (under the hood of the encryption) the data contributed by

all data owners, and S2 performs the learning over the masked data.

Following [6, 19], we combine the data to obtain A = XTX + λI
(where λ is the regularization parameter from Figure 1, and I is the

identity matrix), and
®b = XT ®y, by summing the contributions of

all data owners in the following way. Recall that at the end of the

previous phase, S1 obtained A
1, . . . ,Am and

®b1, . . . , ®bm . We have:

A =
m∑
j=1

Aj + λI and b =
m∑
j=1

bj .

Since we use the CRT representation, instead of computing A, ®b

we need to compute Api = A mod pi and ®b
pi = ®b mod pi for

every i ∈ [t]. Towards that end, S1 uses the linear-homomorphism

of the LHE scheme to compute Api , ®bpi from the Aj ,pi , ®b j ,pi ’s (see
Step 1 in Figure 3).

Our masking method is similar to [6] (described in Section 3.2),

with the modification that we need to guarantee compatibility with

the CRT representation. Specifically, similar to [6], S1 chooses a

random invertible R ∈ Zd×dN , and a random ®r ∈ ZdN , and computes

C = A · R and ®v = ®b + A · ®r . However, since for every i ∈ [t],

operations on Api , ®bpi are performed in Zpi , masking is performed

with Rpi = R mod pi and ®r
pi = ®r mod pi , namely the masked

data matrix is Cpi = Api · Rpi mod pi , and the masked response

vector is ®vpi = ®bpi + Api · ®rpi mod pi (see Step 3a in Figure 3).

Cpi , ®vpi are computed by S1 using the linear-homomorphism of

the LHE scheme, and sent to S2. S2 decrypts these ciphertexts

to obtain Cpi , ®vpi , i ∈ [t], and uses CRT reconstruction [21] to

recover C, ®v . Using these, S2 solves the linear system C · ®w = ®v by

computing C−1 = adj (C) /det (C) (where adj (C) , det (C) denote
the adjoint and determinant of C , respectively) to obtain a masked

model ®w∗, which it sends to S1. S1 can now unmask the output

model as ®w = R · ®w∗ − ®r . This gives a model in ZdN , from which

the corresponding model in Qd is reconstructed using rational

reconstruction [5, 23] (see discussion in Section 3.2).

SIMD operations. Our protocols can use any LHE scheme. In

particular, we describe in Section 5 how to incorporate SIMD opera-

tions (when supported by the underlying LHE, as is the case for the

LHE scheme used in our experiments) into our protocols. We note

that for compatibility with these SIMD operations, the data should

be encoded (in a “SIMD-friendly” encoding) before it is encrypted

(see, e.g., Step 3a in Figure 3). As described in Section 5, we consider

four different encodings (type-L, type-R, type-M and type-A).

4.1 The Security Guarantee of LoPED
We now formalize the security guarantee of our PPRR protocol

LoPED . For a natural N , and λ ≥ 0, let TInv,N ,λ denote the subset

of Rn×d × Rn×1 consisting of all (X , ®y) for which A = XTX + λI

is invertible in Zd×dN . Similar to [6], we only consider security for

inputs in TInv,N ,λ , where λ and N are as defined in Figure 2.

Theorem 3 (LoPED Security). LoPED ism-private for inputs in
TInv,N ,λ for any λ ≥ 0 and any N ∈ N that satisfies Equation 1.

The proof will use the following Lemma from [6, Lemma 1].

Lemma 4 (Lemma 1 from [6]). Let N ,d ∈ N, and let A ∈
GL (d,ZN ) and ®b ∈ ZdN . Then the random variable defined by picking
a random R ← GL (d,ZN ) and a random ®r ← ZdN and outputting(
A · R, ®b +A · ®r

)
is uniformly distributed over GL (d,ZN ) × ZdN .

Proof of Theorem 3. Correctness when all parties are honest

follows immediately from the description of the protocol, the cor-

rectness of the rational reconstruction algorithm for N that satisfies

Equation 1, and the correctness of the CRT reconstruction.

As for privacy, let I ⊆ [m] denote the subset of corrupted data

owners, and we consider three cases. First, assume that S1 is cor-

rupted. The simulator Sim, given the inputs

{(
X j , ®y j

)}
j ∈I of the

corrupted data owners, and the model ®w ∈ Qd , operates as follows.

• During setup, Sim honestly generates encryption keys(
pki , ski

)
, i ∈ [t].

• During the input-uploading phase, for every honest DOj and

every i ∈ [t], it generates a random encryption Aj ,pki ←

Enc
(
pki , Id

)
where Id denotes the type-L encoding of the

d × d identity matrix, and
®b
j ,pi
← Enc

(
pki , ®0

d
)
where ®0d

denotes the type-A encoding of the length-d all-zeros vector.

Let c =
{(
Aj ,pi , ®b

j ,pi
)}

j<I ,i ∈[t ]
.

• During the learning phase, Sim picks R ← GL (d,ZN ) and
®r ← ZdN , uses ®w to determine the corresponding model

®w ′ ∈ ZdN , and sets ®w∗ = R−1 · ( ®w ′ + ®r ).

• Outputs

({(
X j , ®y j

)}
j ∈I , ®w,

{
pki

}
i ∈[t ] , c,R, ®r , ®w

∗
)
.

Notice that R, ®r are identically distributed in the real execution and

the simulation, and so is ®w∗ since it is uniquely determined by ®w ′,R
and ®r . Therefore, the only difference between the simulated and real

views are the encryptionsAj ,pi , ®b
j ,pi

of the honestDOj ’s. However,

by the semantic security of the LHE scheme, the simulated and real

ciphertexts are computationally indistinguishable.



The Setup Phase
Shared parameters: an LHE scheme E = (KG, Enc, Dec, Eval), a security parameter σ , the number of data ownersm, a CRT parameter t , and t
distinct primes p1, . . . , pt such that

∏
i pi = N for N satisfying Equation 1.

Input: the parties have no private inputs.

Output: encryption keys

{(
pki , ski

)}
i∈[t ] for S2, public keys

{
pki

}
i∈[t ] for all other parties.

Steps:
(1) For every 1 ≤ i ≤ t , S2 generates encryption keys

(
pki , ski

)
← KG (1σ , pi ).

(2) S2 publishes pk1, . . . , pkt .

The Input-Uploading Phase
Shared parameters: E = (KG, Enc, Dec, Eval), σ ,m, t , and p1, . . . , pt as above. In addition, dimensions n × d of the input-matrix, and positive

input sizes n1, n2, . . . , nm > 0 such that

∑m
j=1 nj = n.

Input from previous phase: all parties take as input public encryption keys

{
pki

}
i∈[t ]. The input of S2 additionally includes the corresponding

secret decryption keys {ski }i∈[t ].
Input: for every j ∈ [m], the input of data owner DOj includes a matrix X j ∈ Rnj×d , and a vector ®y j ∈ Rnj .

Output for the next phase: the output of S1 is, for every i ∈ [t ] and every j ∈ [m], the encryptions Aj ,pi , ®b
j ,pi

of a matrix Aj ,pi ∈ Zd×dpi and a

vector
®b j ,pi ∈ Zdpi , respectively. The other parties have no output. (We note that Aj ,pi =

(
X j )T · X j

mod pi , and ®b j ,pi =
(
X j )T · ®y mod pi .)

Steps:

(1) Data Representation: for every 1 ≤ j ≤ m, DOj scales its inputs X j , ®y j to have entries in ZN . Then, DOj computes Aj =
∑nj
k=1

(
X j
k

)T
· X j

k

(recall that X j
k denotes the k ’th row of X j

), and
®b j =

∑nj
k=1 X

j
k · ®y

j
k .

(2) Data Encryption: for every 1 ≤ j ≤ m and every 1 ≤ i ≤ t , DOj encodes Aj ,pi as a type-L matrix Aj ,pi ,⋆ (see SIMD encoding in Section 5.2.1),

and encodes
®b j ,pi as a type-A vector

®b j ,pi ,⋆ (see SIMD encoding in Section 5.2.2). Then, DOj generates encryptions Aj ,pi ← Enc
(
pki , A

j ,pi ,⋆
)

and
®b
j ,pi
← Enc

(
pki , ®b

j ,pi ,⋆
)
, and sends

{(
Aj ,pi , ®b

j ,pi
)}
j∈[m],i∈[t ]

to S1.

Figure 2: LoPED Setup and Input Uploading Phases.

The Learning Phase
Shared parameters: E = (KG, Enc, Dec, Eval), σ ,m, t , n, d , p1, . . . , pt as in Figure 2. In addition, a regularization parameter λ.
Inputs from previous phase: all parties take as input public encryption keys

{
pki

}
i∈[t ]. The input of S2 additionally includes the corresponding

secret decryption keys {ski }i∈[t ]. The input of S1 includes, for every i ∈ [t ] and every j ∈ [m], ciphertexts Aj ,pi , ®b
j ,pi

of Aj ,pi ∈ Zd×dpi , ®b j ,pi ∈ Zd .
Output: all parties obtain a model ®w ∈ Qd .
Steps:
(1) Data Merging: for every 1 ≤ i ≤ t , S1 computes Api ← Eval

(
pki , Addλ ,A

1,pi , . . . ,Am,pi
)
, and

®b
pi
← Eval

(
pki , Add, ®b

1,pi
, . . . , ®b

m,pi
)

(see Notation 8 in Section 5). (We note that if X denotes the matrix obtained by concatenating the rows of all X j
, and ®y is the vector obtained by

concatenating all the ®y j ’s, then Api = XT · X + λI mod pi where I denotes the identity matrix, and
®bpi = XT · ®y mod pi .)

(2) Randomness Generation: S1 picks a random invertible d × d matrix R ← GL (d , ZN ), and a random vector ®r ← ZdN .

(3) for every 1 ≤ i ≤ t : (the computation steps for each of the pi ’s can be done in parallel)

(a) Data Masking: S1 computes Rpi = R mod pi and ®rpi = ®r mod pi . Then, S1 encodes Rpi as a type-R matrix (see SIMD encoding in

Section 5.2.1), and encodes ®rpi as a type-M vector (see SIMD encoding in Section 5.2.2). Next, S1 computesCpi ← Eval
(
pki ,MatMult,Api , Rpi

)
(see Notation 6 in Section 5.2.1), ®zpi ← Eval

(
pki ,MatMult,Api , ®rpi

)
, and ®vpi ← Eval

(
pki , VecAdd, ®b

pi
, ®zpi

)
(see Notation 7 in Section 5.2.2).

Finally, S1 sends Cpi , ®vpi , i ∈ [t ] to S2. (We note that Cpi encrypts Api · Rpi , and ®vpi encrypts ®bpi + Api · ®rpi .)
(b) Decrypting Masked Data: S2 decrypts Cpi = Dec

(
pki , C

pi
)
and ®vpi = Dec

(
pki , ®v

pi )
.

(4) Masked learning: S2 uses the CRT reconstruction [21] to reconstruct C , ®v from {(Cpi , ®vpi )}i∈[t ]. Then, S2 computes the masked model

®w∗ = C−1 · ®v (C−1 is computed as C−1 = adj (C) /det (C), where adj (C) , det (C) denote the adjoint and determinant of C , respectively), and sends

®w∗ to S1.
(5) Unmasking: S1 computes ®w ′ = R · ®w∗ − ®r , recovers from it the model ®w ∈ Qd using rational reconstruction [5, 23] in each coordinate, and sends

®w to all parties.

Figure 3: LoPED Learning Phase.

Second, assume that S2 is corrupt. The simulator Sim, given the

inputs

{(
X j , ®y j

)}
j ∈I of the corrupted data owners, and the model

®w ∈ Qd , operates as follows.

• During setup, Sim honestly generates encryption keys(
pki , ski

)
, i ∈ [t].

• During the input-uploading, the corrupted parties do not

receive any messages, so there is nothing to simulate.

• During the learning phase, Sim picks a random C ←

GL (d,ZN ), and a random ®v ← ZdN . Then, for every i ∈ [t],

it computes Cpi = C mod pi and ®v
pi = ®v mod pi . Next,

it encrypts Cpi ← Enc
(
pki ,C

pi
)
and ®vpi ← Enc

(
pki , ®v

pi
)



• Outputs

({(
X j , ®y j

)}
j ∈I , ®w,

{(
pki , ski

)
,
(
Cpi , ®vpi

)}
i ∈[t ]

)
.

The only difference between the simulated and real views is the

choice of the Cpi ’s and the ®vpi ’s, which in the real view are gener-

ated from the Api ’s and ®bpi ’s, whereas in the simulation they are

chosen at random. However, these are identically distributed by

Lemma 4 since A ∈ GL (d,ZN ) when (X , ®y) ∈ TInv,N ,λ .

Third, assume that both servers are honest. Since the servers

have no input, and the output is public, simulatability follows imme-

diately from simulatability when one of the servers is corrupted. �

4.2 Complexity of LoPED
We state the complexity of LoPED, focusing on the homomorphic

operations, which is where LoPED deviates from the prior-art [6];

see Section 5 for the proof.

Theorem 5 (Complexity). Let d,m, ℓ,n ∈ N be as in Figure 1.
Then:
(1) Step 1 (data merging) in Figure 3 requires O(t ·m · d ⌈d

2

sl ⌉) homo-
morphic operations.
(2) Step 3a (data masking) in Figure 3 requires O(t · d ⌈d

2

sl ⌉) homo-
morphic operations.
where sl is the number of values packed in a ciphertext and t =

O(d log(d · n · λ · 2ℓ)).

5 INCORPORATING SIMD INTO LOPED
In this section, we describe how we incorporate SIMD computa-

tions into our protocol to improve efficiency. We start with some

background on SIMD.

5.1 Background on SIMD
Encryption scheme and implementation supporting Single Instruc-

tion Multiple Data (SIMD) include: the RLWE-based schemes of

Brakerski-Gentry-Vaikuntanathan [2] and Fan-Vercauteren [4] (of-

ten referred to as BGV/FV) and their implementations in HElib [11]

and SEAL [3] libraries. These schemes allow “packing” multiple

messages in different “slots” in a single ciphertext. We denote the

packing parameter, namely the number of messages packed in

one ciphertext as sl, and the different slots in the ciphertext by

c = (c(1), . . . , c(sl)). Operations on packed ciphertexts are done

in a SIMD (Single Instruction Multiple Data) manner. For exam-

ple, a SIMD multiplication, denoted by c = a ⊙ b, is defined by

c(i) = a(i) · b(i), for i = 1, . . . , sl.
It is important to note that naively employing SIMD throughout

the computation might not improve efficiency, since operations

involving computations on different slots (e.g., matrix multiplica-

tion, see below) incur a high overhead that might actually harm

efficiency.

5.2 Incorporating SIMD into LoPED
Our design of LoPED is tailored to efficient use of SIMD, in the sense

that we design all computations to apply only on values in the same

SIMD slots (“element-wise” computation). Namely, when applying

an instruction, say ⊙, on packed ciphertexts c = (c(1), . . . , c(sl))
and c’ = (c’(1), . . . , c’(sl)), the computation produces the ciphertext

c” = (c(1) ⊙ c’(1), . . . , c(sl) ⊙ c’(sl)). In this section we specify

the details of the SIMD packing we use to attain the goal that all

computations are element-wise.

First recall the operations homomorphically evaluated in LoPED:

(1) Adding vectors (Step 1, Figure 3).

(2) Adding matrices (Step 1, Figure 3).

(3) Matrix by matrix multiplication (Step 3a, Figure 3).

(4) Matrix by vector multiplication (Step 3a, Figure 3).

Out of these operations, the most expensive one is operation

number 3 (matrix-by-matrix multiplication), and we therefore fo-

cus on optimizing it. Towards that end, we use the SIMD matrix

multiplication scheme described in [12]. We combine this with new

representations for vectors which we introduce, and new protocols

which we design for efficiently performing the other operations

described above.

We now describe how matrices and vectors are represented, and

how the aforementioned operations are performed.

5.2.1 Matrix Encoding and Matrix-by-Matrix Multiplication. As
noted above, we use the scheme of [12] for efficient matrix multi-

plication using SIMD, and therefore use their encoding of matrices.

Jiang et al. [12] differentiate between matrices that are multiplied

from the left and matrices that are multiplied from the right, and

use different encodings for each. Let L and R be two d × d matri-

ces, where we wish to compute A = L · R. We now describe the

encodings of L and R.

Type-L and type-R encoding, andType-Nnotation.Wedenote

the encoding of the matrix L, which appears as the left matrix in the

product, as a type-L encoding. It consists of d rotations L1, . . . , Ld
of L, where each Li is a d × d matrix that is computed from L by

rotating its rows. Similarly, we denote the encoding of the matrix

R, which appears as the right matrix in the product, as a type-R
encoding. It consists of d rotations R1, . . . ,Rd , where each Ri is a
d × d matrix obtained from R by rotating its columns (see Figure 4

for an example). We call “Type-N” a matrix that is encoded in its

N ative form, i.e., with no rotations just taking the original matrix,

when we want to emphasize it is not in Type-L or Type-R.

We note that though the matrix encoding effectively results in

holding d copies of the matrix, these copies can be packed into

a smaller number of ciphertexts, resulting in improved overhead

(running time and RAM requirements). Specifically, as we show

below that the naive matrix representation requires d2 ciphertexts,

whereas our representation requires d · ⌈d
2

sl ⌉ ciphertexts (which

improves over d2 when sl > d).

Matrix-by-matrixmultiplication. The type-L and type-R encod-

ing allow for efficient multiplication where operations require only

element-wise computation. Indeed, the product A = L · R can be

decomposed asA =
∑d
i=1Ai , whereAi = Li ⊙Ri is the d ×d matrix

obtained by computing the element-wise product of the rotations

Li and Ri , namely (Ai )c ,l = (Li )c ,l · (Ri )c ,l , for 1 ≤ c, l ≤ d . An
example for d = 3 is given in Figure 4. We refer the interested

reader to [12] for further details.

In our protocol, we multiply an encrypted matrix with a public

matrix (see Step 3a in Figure 3). This is done using the Eval algorithm
of the underlying LHE scheme, where Eval is used to evaluate the

following circuit.



( a0 a1 a2
a3 a4 a5
a6 a7 a8

)
︸                   ︷︷                   ︸

L

·

( b0 b1 b2
b3 b4 b5
b6 b7 b8

)
︸                   ︷︷                   ︸

R

=

( a0 a1 a2
a4 a5 a3
a8 a6 a7

)
︸                   ︷︷                   ︸

L
1

⊙

( b0 b4 b8
b3 b7 b2
b6 b1 b5

)
︸                   ︷︷                   ︸

R
1

+

( a1 a2 a0
a5 a3 a4
a6 a7 a8

)
︸                   ︷︷                   ︸

L
2

⊙

( b3 b7 b2
b6 b1 b5
b0 b4 b8

)
︸                   ︷︷                   ︸

R
2

+

( a2 a0 a1
a3 a4 a5
a7 a8 a6

)
︸                   ︷︷                   ︸

L
3

⊙

( b6 b1 b5
b0 b4 b8
b3 b7 b2

)
︸                   ︷︷                   ︸

R
3

Figure 4: Matrix-by-matrix multiplication example

Notation 6 (Matrix-by-Matrix multiplication circuit). Let
N ,d ∈ N, let R ∈ Zd×dN be a fixed matrix, and let (R1, . . . ,Rd ) be

its type-R encoding. The circuit CMatMult,R :

(
Zd×dN

)d
→ Zd×dN

on input a type-L encoding (L1, . . . , Ld ) of a matrix L, outputs the
product A = L · R computed as follows. For every 1 ≤ i ≤ d , and for
every 1 ≤ c, l ≤ d , compute (Ai )c ,l = (Li )c ,l · (Ri )c ,l , and output∑d
i=1Ai . The output matrix A is in native form (Type-N).
For an LHE scheme E = (KG, Enc,Dec, Eval), a public key pk, an

encryption L of a type-L encoding of a matrix L, and a type-R encoding
of a public matrixR, we use Eval (pk,MatMult, L,R) to denote running
Eval on input the circuit CMatMult,R and the ciphertext L.

Improved Efficiency through Serialization. Following [12], we
improve efficiency (and overcome the overhead introduced by hold-

ing multiple rotated copies of each matrix) by packing multiple

matrix entries into a single ciphertext. This is done by first repre-

senting (“serializing”) the d × d matrix as a vector of length d2.
We describe a specific serialization method which optimizes

the complexity of the four aforementioned operations we care

about (whereas [12] do not specify the exact serialization method,

since it was of no importance to them). Specifically, we serialize

a d × d matrix A by copying its columns from left to right, where

the entries in each column are copied from top to bottom. That

is, the entry Ac ,l of A appears as the ((c − 1)d + l)’th entry of the

serialized A. The serialized matrix (padded with zeros if needed)

can then be encrypted into a ciphertext (packed into slots). See

Figure 5 for an example. Since we use serialization to represent all

matrices in our protocol, we use “type-L” (“type-R”, respectively)

encoding to denote the serialized representation of the type-L (type-

R, respectively) encoded matrix.

We now explain why serialization improves efficiency, when

combined with packing. Let sl denote the number of slots in a sin-

gle ciphertext, then encrypting a d × d matrix naively requires d2

ciphertexts (one for each entry), whereas using serialization and

packing as described above, we only need d ⌈d
2

sl ⌉ ciphertexts. Thus,

( a0 a1 a2
a3 a4 a5
a6 a7 a8

)
⇒

(
a0 a3 a6 a1 a4 a7 a2 a5 a8

)
⇒

[
a0 a3 a6 a1

] [
a4 a7 a2 a5

] [
a8 0 0 0

]
Figure 5: Serialization and packed encryption example. The 3×3ma-
trix is serialized in the first line; and packed into ciphertexts, each
with 4 slots, in the second line.

( v0 0 0

v1 0 0

v2 0 0

) (
v0 v1 v2 0

)
type-M encoding type-A encoding

Figure 6: type-M (left) and type-A (right) encoding example for a
3-dimensional vector v = (v0, v1, v2) with sl = 4. The type-M en-
coding is then mapped to a type-R matrix encoding as described in
Section 5.2.1.

computing the product of two d ×d matrices requires d ⌈d
2

sl ⌉ cipher-

text multiplications, as opposed to d3 in the naive implementation.

Consequently, the number of homomorphic operations computed

in LoPED is Θ(d · ⌈d
2

sl ⌉) (cf. Θ(d
3) in [6]). Furthermore, the number

of communicated ciphertexts, for each i ∈ [t], is ⌈d
2

sl ⌉ (cf. d
2
in [6]).

5.2.2 Vector Representation. In this sectionwe describe ourmethod

of representing vectors, which complements the matrix representa-

tion of [12], and supports efficient operations on vectors (which are

needed by our protocol). We describe two different encodings for

vectors, where each is used to optimize the complexity of a differ-

ent operation. Our first encoding, which we call type-M, allows for

efficient matrix-vector multiplication. The second encoding, which

we call type-A, allows for efficient vector additions.

Looking ahead, our protocol (See Step 3a in Figure 3) computes

®b + A · ®r , where A is a d × d matrix and ®r , ®b are d-dimensional

vectors. To compute the matrix-vector multiplicationA· ®r , we define
the type-M encoding of a vector to be consistent with our matrix

representation. Specifically, We first map ®r into a d × d matrix,

whose first column is ®r and the rest are zero-columns. This matrix

is then encoded as a type-R encoding for matrices, as described

in Section 5.2.1. The type-A encoding of a vector
®b pads

®b with

zeros to have length divisible by sl (such that, when encrypted,
®b

can be packed). See Figure 6 for an example of type-M and type-A

encodings.

We note that though addition can be performed on type-M en-

codings, it is less efficient than adding two type-A encodings. For

example, when sl = d , adding two type-M vectors requires d op-

erations, but adding two type-A encodings requires only a single

operation. We additionally note that operations combining both

type-M and type-A encodings are expensive.

5.2.3 Incorporating SIMD into our protocol. We now describe how

we incorporate SIMD into our protocol. Recall that the ciphertext

operations performed by our protocol are data encryption (Step 2,

Figure 2), data merging (Step 1, Figure 3), and masking (Step 3a,

Figure 3).



Data Encryption (Figure 2, Step 2 of the input uploading
phase). In the input uploading phase of our protocol each data

ownerDOj holds an input matrixX j
of sizenj ×d , and a vector ®y

j
of

length nj . DOj then computes a d ×d matrixAj =
∑nj
k=1

(
X
j
k

)T
·X

j
k

(recall that X
j
k denotes the k’th row of X j

), and
®b j =

∑nj
k=1 X

j
k · ®y

j
k .

Aj
is then encoded as a type-L matrix, and

®b j is encoded as a type-A
vector.

Data Merging (Figure 3, Step 1). To merge the contributions

A1, . . . ,Am from them data owners, S1 computes

A =
m∑
i=1

Ai and b =
m∑
i=1

bi .

Since the additions are done on ciphertexts with sl slots each, then
computing A requires (m − 1)⌈d

2

sl ⌉ operations, and computing
®b

requires (m − 1)⌈dsl ⌉ operations.

Masking A (Figure 3, Step 3a). To mask A, S1 draws a random
invertible matrix R ← GL (d,ZN ), and computes C = A · R, where
both A and R are d × d matrices. Recall that A =

∑m
j=1Aj where

each Aj is a type-L encoding, so A is also type-L. Since R is known

to S1 in plaintext form, S1 can encode it as a type-R matrix, and

then compute C = A · R using the matrix multiplication algorithm

described in Section 5.2.1. Using the analysis of Section 5.2.1, this

step requires ⌈d
2

sl ⌉ operations.

Masking b (Figure 3, Step 3a). To mask
®b, S1 draws a random

®r ← ZdN , and computes ®v = ®b +A · ®r . Recall that ®b =
∑m
j=1
®b j where

each
®b j is a type-A vector, so

®b is also type-A. To be consistent

with the encoding of A, ®b, and the definition of ®v , S1 encodes ®r as a
type-M vector.

An important observation is that when A is type-L encoded and

®r is type-M encoded, then A · ®r can be added to the type-A encoded

®b, as we explain next. Let ®r∗ denote the type-M encoding of r , i.e.,
the serialized matrix whose first column is ®r and the rest are zero-

columns. Then the first column of A · ®r∗ is A · ®r , and the rest are

zero-columns. SinceA · ®r∗ is also serialized, it is a vector whose first
entries correspond to A · ®r (the first column of A · ®r∗), followed by

zeros. Thus, if the encryption of A · ®r∗ contains more ciphertexts

than the encryption of
®b, the extra ciphertexts in A · ®r∗ can be

discarded. Then,
®b can be added to (the possibly truncated) A · ®r∗

to get ®v = ®b +A · ®r . See Figure 7 for an example.

Recall that in our protocol (Figure 3) A, ®b are encrypted, i.e., S2

computes
®b + A · ®r (see Step 3a in Figure 3). Since ®r is represented

as a type-M vector, the product A · ®r can be computed by applying

the Eval algorithm of the underlying LHE scheme to the circuit

of Notation 6. We now describe the circuit used to compute the

addition of two vectors.

Notation 7 (Vector addition circuit). Let sl,N ,n,n′ ∈ N
such that n ≤ n′. The circuit CVecAdd : (ZslN )

n × (ZslN )
n′ → (ZslN )

n

on input two vectors ®b, ®b ′ packed as vectors of length-sl sub-vectors
operates as follows. First, it truncates ®b ′ to have length n by discarding
the n′ − n last vectors. Denote the truncated vector by ®b ′′ (notice that
if n = n′ then ®b ′ = ®b ′′). Then, it outputs the sum ®b + ®b ′′.

For an LHE scheme E = (KG, Enc,Dec, Eval), a public key pk, and
encryptions ®b, ®b

′
of vectors in (ZslN )

n, (ZslN )
n′ (respectively), we use

Eval
(
pk,VecAdd, ®b, ®b

′
)
to denote running the Eval algorithm on input

the circuit CVecAdd and the ciphertexts ®b, ®b
′
.

The following notation is used in the description of our protocol

in Figure 3.

Notation 8. Let N ,d,m ∈ N, and λ ≥ 0. The circuit CAdd,λ :(
Zd×dN

)m
→ Zd×dN on input m type-L encodings of matrices

A1, . . . ,Am ∈ Z
d×d
N , outputs the sum

∑m
j=1Aj + λI mod N . The

circuit CAdd :

(
ZdN

)m
→ ZdN on inputm type-A encodings of vec-

tors ®b1, . . . , ®bm ∈ ZdN , outputs the sum
∑m
j=1
®bj mod N . For an

LHE scheme E = (KG, Enc,Dec, Eval), a public key pk, and encryp-
tions A1, . . . ,Am of type-L encoding of matrices A1, . . . ,Am , we use
Eval (pk,Addλ,A1, . . . ,Am ) to denote running the Eval algorithm on
input the circuit CAdd,λ and the ciphertexts A1, . . . ,Am . For encryp-
tions ®b1, . . . , ®bm of type-A encoding of vectors ®b1, . . . , ®bm , we use

Eval
(
pk,Add, ®b1, . . . , ®bm

)
to denote running the Eval algorithm on

input the circuit CAdd and the ciphertexts ®b1, . . . , ®bm .

Proof of Theorem 5. From Equation 1, logN = O(d logd + ℓ ·

d + d log(n2 + λ)) = O(d log(d · n · λ · 2ℓ)). Since pi ≤ 2
62

for every

i ∈ [t] (i.e., is constant) then t = O(logN ). As discussed above,

computing A, ®b (multiplying two matrices, resp.) requires O(m ·

d ⌈d
2

sl ⌉) (O(d ⌈
d2

sl ⌉), resp.) homomorphic operations. The bounds

follow because each operation is performed on t copies. �

6 EXPERIMENTAL RESULTS
We implemented our protocol and ran extensive performance bench-

mark, which we compare against [6]. We note that the machine-

learning accuracy is identical to that of [6], because we implement

the same functionality and with same precision. Performance dif-

ference emanates from using different LHE (RLWE-based rather

than Paillier), with our protocol modifications to enable employ-

ing the SIMD property of the LHE. In this section we describe our

experiments.

6.1 Settings
We tested our protocol with parameter settings similar to [6]:

Parties.We ran experiments with 2 servers andm = 10 data owners

with horizontally-partitioned data, where each data owner holds

10% of the rows in the data matrix.

Hardware. We assigned M = 40 cores for each data owner and

server. The cores we usedwere Xeon E5-2630 v4 running in 2.20GHz.

Such CPUs are standard in servers and personal computers.

Software.We implemented the protocol in C++, building on top of

HElib [11] for the LHE implementation, with security parameter set

to 80-bit as in [6]. We stress that we used HElib only as an LHE (and

not as fully-homomorphic encryption), i.e., only to add ciphertexts

and multiply ciphertexts by plaintexts.

HElib supports plaintext spaces Zpr , where p is prime, r ≥ 1 is

an integer, and pr < 2
62
; as well as packing (SIMD) of sl plaintext



( a0 a1 a2
a3 a4 a5
a6 a7 a8

)
·

( r0 0 0

r1 0 0

r2 0 0

)
=

( a0 a1 a2
a4 a5 a3
a8 a6 a7

)
⊙

( r0 0 0

r1 0 0

r2 0 0

)
+

( a1 a2 a0
a5 a3 a4
a6 a7 a8

)
⊙

( r1 0 0

r2 0 0

r0 0 0

)
+

( a2 a0 a1
a3 a4 a5
a7 a8 a6

)
⊙

( r2 0 0

r0 0 0

r1 0 0

)
(
(Ar )0 0 0

(Ar )1 0 0

(Ar )2 0 0

)
⇒

(
(Ar )0 (Ar )1 (Ar )2 0 0 0 0 0 0

)
⇒

[
(Ar )0 (Ar )1 (Ar )2 0

] [
0 0 0 0

] [
0 0 0 0

]
⇒

[
(Ar )0 (Ar )1 (Ar )2 0

]
Figure 7: Example of multiplying a type-L encoding by a type-M encoding (top) and truncated serialized output encoding (bottom).

values (aka “slots”) in each ciphertext. The number of slots, sl,
is determined in HElib during key-generation, and depends on

parameters including the plaintext modulus pr and the security

parameter. For our experiments, we changed the code of HElib to

enforce sl to be as large as a lower-bound value of our choice (e.g.,

d2), thus gaining some control over the value of sl.

Data and parameters. The data matrix and response vector were

X ∈ [0, 1)n×d and ®y ∈ [0, 1)n with precision of ℓ = 3 decimal digits.

We scaled all values by 1000, and embedded the resulting integers

in the HElib plaintext space we used. We ran experiments with

m = 10 data owners, n = 1000 data-instances, d = 10, 20, 30, 40

features, ℓ = 3, and M = 40 cores. These choices of m, ℓ,n,d,M
are as in [6]. In addition, we test our system on d = 100 features

(whereas [6] only retport run-times up to d = 40). For d ≤ 40,

we used t = 40 primes in the CRT representation of plaintexts

(t = 106 when d = 100); each core was allocated one ring from the

CRT representation (2 − 3 rings when d = 100), and executed the

computation in that ring.

6.2 Experiments and Results

Correctness. We first experimentally validated the correctness of

our implementation by comparing the output model in our protocol

to the model computed by ridge-regression on the same data in

plaintext. All our experiments returned identical models.

Run-time. A main objective was to measure the run-time per-

formance when focusing on steps where the LHE choice affects

run-time, because this is where our protocol differs from [6]. In

contrast, steps computing on plaintext are identical to those of [6],

and hence we expect identical run-times. We therefore report a

fine-grained measurement, reporting the run-time of each step, and

focus not only on the total run-time but also on the total time for

homomorphic operations (LHE op.); See Table 1, last two columns,

where G vs. L in the 2nd column indicate whether the run-time is

as reported in [6] (G) vs. as we measured for LoPED (L). Each row

indicates run-time on different values of d = 10, 20, 30, 40, 100. (For

d = 100 [6] did not report run-times.)

In Table 1, columns 3–10, we report the run-time in the individual

steps: Key Generation (Figure 2, Setup Phase, Step 1); Local Com-

putation by data owner (Figure 2, Input-Uploading Phase, Step 1);

Encrypt (Figure 2, Input-Uploading Phase, Step 2); Merge (Figure 3,

Step 1); Mask (Figure 3, Step 3a); Decrypt (Figure 3, Step 3b); Solve

(Figure 3, Step 4); Unmask (Figure 3, Step 5). We note that [6] re-

ported only the cumulative time for “Local Computation” together

with “Encrypt”, and “Decrypt” together with “Solve”; we present

their reported times in the rightmost of these two steps. We empha-

sis in bold the faster run-time for each step (except for the Decrypt

and Solve steps where [6] reported the cumulative times so we were

unable to determine which protocol was faster).

The results demonstrate the speedup gained by LoPED in the

homomorphic operations. For example, ford = 40, the masking step

in [6] took 100.94 seconds, while LoPED took only 2.91 seconds,

which is faster by a factor of ×35. The local-computations and

encryption steps, on the other hand, were faster for [6] with 26.13

seconds, compared to 34.39 seconds in LoPED. The overall time for

the LHE operation was 143.08 seconds for [6] and 60.21 seconds

for LoPED. The results support our analytical results, showing that

our use of SIMD reduced the number of LHE operations in matrix

multiplication (the dominating component in the homomorphic

operations) from d3 to d · ⌈d
2

sl ⌉ operations. A graph comparing

the run-time on LHE operations in [6] vs. LoPED, and showing

substantial speedup in LoPED, is given in Figure 8.

Communications bandwidth. Packing also reduces the number

of communicated ciphertexts from each data owner and from S1

from d2 to d · ⌈d2/sl⌉. In contrast, our CRT representation increases

the number of communicated ciphertexts, because each plaintext

value is encrypted in t distinct plaintext rings Zpi , resulting in ×t
increase in the number of transmitted ciphertexts. Additionally,

ciphertexts in HElib are larger than Paillier. In our experiments,

for example, for d = 40 the data owners need to communicate

177MB to S1 (cf. less than 1MB in [6]). We note that the increase

in communication in LoPED stems from the use of both CRT and

the (less communication-efficient) HElib, which are unavoidable

when using current RLWE-based LHE schemes implementations.

In certain scenarios the increase in communication is offset by the

advantages of basing security on alternative (and post-quantum

secure) security assumptions, and attaining considerably faster

homomorphic computation runtime as in LoPED.

6.3 System Configuration Optimization
For correctness, arithmetic operations in our protocol require a

large ring of size N , as specified in Equation 1 (page 5). For ex-

ample, N > 2
2501

when d = 40; see Table 2. Since HElib does not



d L/G Key Local Encrypt Merge Mask Decrypt Solve Unmask LHE Total

Gen. Comp. op. Processing

10

G 0.21 (*) 1.1 0.03 1.21 (**) 0.56 0.04 1.24 2.94
L 10.68 0.02 5.25 0.01 0.11 0.18 same same 0.12 6.16

20

G 0.32 (*) 3.88 0.12 7.96 (**) 2.15 0.14 8.08 14.25

L 10.58 0.08 9.86 0.02 0.41 1.07 same same 0.43 13.74

30

G 0.18 (*) 8.34 0.26 24.76 (**) 4.8 0.29 25.02 38.45

L 13.22 0.19 19.71 0.05 1.10 3.05 same same 1.15 29.18

40

G 0.38 (*) 26.13 0.62 100.94 (**) 14.72 0.67 101.56 143.08

L 19.81 0.36 34.03 0.11 2.91 7.42 same same 3.01 60.21
100 L 188.88 10,298.72 0.51 11.14 3.75 0.01

Table 1: . Running times on n = 1000, ℓ = 3,M = 40,m = 10 and d = 10, 20, 30, 40, 100 (rows) of LoPED (L) vs. [6] (G). Solve and Unmask steps operate on plaintexts
and are identical to those of [6]; we indicate this by writing “same”. The one-but-last column reports the total time of homomorphic computations (LHE op.), i.e.,
the time to Merge and Mask. The last column reports the total time of all operations other than Key Gen (which occurs offline during Setup). Boldface indicates
the faster time. All values are in seconds. [6] reported cumulative time of: (*) Local Comp. and Encrypt; (**) Decrypt and Solve.

Figure 8: Run-time of LHE operations (y-axis, in seconds), on increasing
number of features d = 10, 20, 30, 40, 100 (x -axis), in [6] (red solid line) and
LoPED (dashed blue line).

support plaintext rings larger than 2
62
, we used CRT to compute our

protocol over smaller rings Zp1 , i ∈ [t]s.t.
∏

pi = N ; See Section 4.

We next discuss how we set the lower-bound on the number of

slots sl, and howwe chose t andp1, . . . ,pt . We stress that the config-

uration is pre-computed in an offline stage of our HElib parameter

configuration, and does not affect the run-time of our protocol. The

optimal configuration does not depend on the data, but only on the

parameters N , d and the number of coresM available to each server.

Our recommended configurations for various N ,d,M values will

be published in our open-source library upon paper publication.

Our configuration was chosen to optimize run-time of S1 and S2;

albeit our code can compute offline configuration parameters for

other objectives (e.g. data owners’ running time).

Our configuration for d ≤ 40 is computed as follow (see discus-

sion on d > 40 below). First we set t = 40 to be the number of

available cores, and set d2 to be the lower-bound we enforce on the

number of slots sl of roughly d2. Second, we computed the bit-size

of t primes s.t.

∏
pi > N for N at least as large as Equation 1; see

Table 2 for some examples. Specifically, the bit-size of the primes pi
is computed to be in the range [

40
√
N , 2 40
√
N ]. Third, we executed an

exploration of the complexity of homomorphic operations for the

above setting of t , |p | and the lower-bound on sl. The exploration
is done by sampling various primes p of the specified bit-size, and

d log
2
N log

2
pi LHE op.(sec)

10 616 16 0.21

20 1241 32 0.89

30 1870 47 2.04

40 2501 62 4.76

Table 2: Ring-size shrinkage examples from log
2
N bits (2nd col.) to log

2
pi

bits (3rd col.), and time (in seconds) of a linearly-homomorphic-operation on
our packed ciphertexts in ring Zpi (4th col.), for parameters: d = 10, 20, 30, 40
(rows), and n = 1000, ℓ = 3, t = 40.

configuring HElib with p as the plaintext ring and the specified

lower-bound on the number of slots. This results in various param-

eter settings. We tested the run-time of homomorphic operations

for each, and chose the 40 best candidates.

Figure 9 illustrates our experimental results on d = 30, showing

that setting sl ≈ d2 is indeed desired. Specifically, Figure 9 shows

the run-time of homomorphic operations (y-axis) as a function of

the number of slots sl (x-axis). It shows that run-time decreases

rapidly as sl grows, attaining its minimum essentially at sl = d2

(and very close to the minimum already with sl roughly d2/3).
For d > 40 we deviate from the above in two ways. First, t = 40

primes no longer suffice when restricted to primes of bit-size up

to 62 as in HElib. Instead, we set t to be the smallest multiple of

the number of available cores so that 2
t√N ≤ 62. Second, setting

sl ≥ d2 is no longer effective, because such a large sl adversely
affects the ciphertext size and time for homomorphic operations.

Instead we perform the explorations with various sl values of up to

a few thousands. Out of the explored values we choose, as before,

the t best for our configuration.

7 CONCLUSIONS
We presented a new protocol, LoPED, for privacy-preserving ridge-

regression on packed encrypted data. The protocol works in the

two-server model, and uses only Linearly Homomorphic Encryp-

tion (LHE). The protocol builds on [6], while introducing new com-

ponents to allow computing on packed encrypted data in a Single In-

struction Multiple Data (SIMD) fashion, to gain substantial speedup

of the homomorphic computation. Analytically, the speedup is by

a factor of up to Θ(d2) in the number of homomorphic operations.

We implemented our protocol, with LHE as implemented in the

HElib [11] implementation of the BGV [2] encryption with SV [22]



Figure 9: Run-time of LHE operations (y-axis in seconds) on d = 30 and
increasing number of slots sl (x -axis).

SIMD optimization. We ran extensive experiments, demonstrating

run-time speedup in the homomorphic operations. For example,

×33 speedup in run-time of homomorphic computation on d = 40

features andn = 1000 data-instances; and×2.4 speedup in total time.

We note that the total time accounts, on top of the homomorphic

operations, also for computations on plaintext where LoPED is

identical to [6], and for the time to encrypt and decrypt; since much

of the total time is identical to [6] we expect lesser speedup, as

indeed is the case.

In future work we intend to further improve performance and en-

capsulate our methods to develop an efficient and operable system

to support federated privacy-preserving linear regression.
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