
SIMS : Self-Sovereign Identity Management System with Preserving
Privacy in Blockchain
Jeonghyuk Leea,1, Jungyeon Hwangc, Jaekyung Choib, Hyunok Oha,∗ and Jihye Kimb,∗

aHanyang University, Seoul, Korea
bKookmin University, Seoul, Korea
c Electronics and Telecommunications Research Institute, Daejeon, Korea

ART ICLE INFO
Keywords:
Self Sovereign IdentityManagement Sys-
tem
Blockchain
zk-SNARK
Non-interactive argument of knowledge
Commit
Off-chain

ABSTRACT
Blockchain, which is a useful tool for providing data integrity, has emerged as an alternative to central-
ized servers. Concentrating on the integrity of the blockchain, many applications have been developed.
Specifically, a blockchain can be utilized in proving the user’s identity using its strong integrity. How-
ever, since all data in the blockchain is publicly available, it can cause privacy problems if the user’s
identity is stored in the blockchain unencrypted. Although the encryption of the private information
can diminish privacy problems in the blockchain, it is difficult to transparently utilize encrypted user
information in the blockchain. To provide integrity and privacy of user information simultaneously in
the blockchain, we propose a SIMS (Self-Sovereign Identity Management System) framework based
on a zk-SNARK (zero-knowledge Succinct Non-interactive ARgument of Knowledge). In our pro-
posed SIMS, the user information is employed in a privacy-preserving way due to the zero-knowledge
property of the zk-SNARK. We construct a SIMS scheme and prove its security. We describe appli-
cations of SIMS and demonstrate its practicality through efficient implementations.

1. Introduction
Blockchain Nakamoto et al. (2008);Wood (2014), which

is a useful tool providing data integrity, has emerged as an
alternative to centralized servers. Since its construction is
based on hash chains where a block references a hash value
of the previous block, it is difficult for adversaries to fab-
ricate the previous block value unless malicious users can
break a one-way property of the hash function. By utilizing a
strong integrity of the blockchain, many blockchain applica-
tions have been introduced in cryptocurrencies (Duffield and
Diaz, 2015; Miers et al., 2013; Nakamoto et al., 2008; Pilk-
ington, 2016; Wood, 2014), supply chain applications (Pilk-
ington, 2016), and data storage systems (Kshetri, 2017; Zyskind
et al., 2015).

Identity proving systems with the blockchain are in the
spotlight recently. In these systems, users obtain the infor-
mation credentials from authorized agents such as the gov-
ernment and upload their credentials into the blockhchain.
When an entity such as a service provider has requirements
for its customers, users prove the requirements so that they
can be verified by the blockchain; the blockchain is used as
an transparent infrastructure for identity attestations. In the
identity proving system, privacy protection is the most im-
portant issue since the information in the block is assumed
to be shared (Dhillon et al., 2017). Though Encrypting data
and storing the ciphertext in the blockchain may alleviate
privacy problems, the issue is how to verify a user’s iden-
tity from the encrypted data or how to authorize data access.
Given the decryption key to the verifier, all possible claims

∗Co-corresponding authors
ahoo791@hanyang.ac.kr (J. Lee); videmot@etri.re.kr (J. Hwang);

cjk2889@kookmin.ac.kr (J. Choi); hoh@hanyang.ac.kr (H. Oh);
jihyek@kookmin.ac.kr (J. Kim)

ORCID(s):

can be verified, but users cannot control their privacy any
more. To deal with a privacy-preserving verification prob-
lem, we blend the modern zero-knowledge proof system to
our proposed scheme.
A zero-knowledge proof system. A zero-knowledge proof
system (Campanelli et al.; Costello et al., 2015; Groth, 2010,
2016; Groth et al., 2018; Groth and Maller, 2017; Kosba
et al., 2014; Parno et al., 2013; Rackoff and Simon, 1991)
enables a user to prove validity of a statement/claim without
revealing any additional information.

If the zero-knowledge proof system is adopted in the iden-
tity proving system, each user can prove the validity of a
statement (i.e. the identity) without revealing detailed per-
sonal information. Consider an example that a user wants to
prove that her age is greater than 18 years without reveal-
ing her actual age. The verifier should only learn that the
statement is true but should not learn the user’s actual age.
Recently, zero-knowledge Succinct Non-interactive ARgu-
ments of Knowledge (zk-SNARK), which is a non-interactive
proof system that provides a constant size proof and fast
verification for any general statement, has been actively re-
searched (Campanelli et al.; Costello et al., 2015; Groth, 2016;
Groth et al., 2018; Groth and Maller, 2017; Parno et al.,
2013). Using the zk-SNARK system, a user has complete
control of the way she proves her identity. For instance, when
a bank wants to sell a financial product to customers within
a certain credit-rate range, a customer who wants to buy the
financial product can efficiently provide only her eligibility
to purchase the product without revealing her credit rate to
the bank through the zk-SNARK approach.
Commit & Prove. The zk-SNARK plays a role of proving
the correctness of the identity in the identity proving sys-
tem. When a commitment scheme is combined with the zk-

J. Lee et al.: Page 1 of 13

Figure 1: Basic structure of our proposal

SNARK, it can guarantee that the private identity used in
zk-SNARK is the same as the identity hidden in the com-
mitment. By proving the commitment is constructed from
the private identity and proving that the remaining function
output is computed from the same private identity, she can
convince the verifier that the function execution result on the
identity is correct.

In summary, the blockchain includes a commitment for
each user’s private information, and the commitment is pro-
vided to show the validity of user’s information against the
given function, which is called a commit & prove approach.
The commitment plays a role of a public fingerprint in the
sense that it is used as an input for the public verification for
a specific user.
On-Chain vs. Off-Chain. Blockchain applications can be
divided into two types: on-chain blockchain(Kosba et al.,
2016; Nakamoto et al., 2008; Sasson et al., 2014; Wood,
2014) and off-chain blockchain(Malavolta et al., 2017; Poon
andDryja, 2016). On-chain utilizes the blockchain as storage
for transaction results such as the output of a smart contract
or cryptocurrency trade. On the contrary, off-chain exploits
the blockchain as a storage for fingerprints and the actual
transaction is handled outside of the blockchain Eberhardt
and Heiss (2018). Likewise, in the identity proving system,
the commitment is stored in the blockchain while the private
user information corresponding to the commitment is stored
in a private section outside of the blockchain.
Self-sovereign Identity Management System.

This paper proposes a self-sovereign identity manage-
ment system called SIMS using the commit&prove scheme

and the blockchain as a key building block. The concept of
the self-sovereign identity is that users have a complete con-
trol over how their personal information is kept and usedRouse
(2019); Stokkink and Pouwelse (2018); Tobin andReed (2016).
That is, when the users provide an identity to a verifier, the
given identity can be verified without any intervention of a
third-party who can ensure validity of the identity.

We propose a self-sovereign identity management sys-
tem using commit&prove and the blockchain. Our approach
proceeds as follows.

A user requests an authorized agent to check the user
identity and issue a certificate against the identity. The com-
mitment with its certificate are uploaded in the blockchain.
The commitment in the blockchain is utilized to provewhether
or not the user’s confidential data satisfies a given require-
ment thereby generating a proof. Finally, the proof is ver-
ified using the commitment with a valid certificate in the
blockchain. Therefore, the commitment in the blockchain is
regarded as a digital fingerprint to authenticate the user’s in-
formation.

Fig. 1 shows an example of our scheme. First of all, when
a user wants to upload her identity in the blockchain, the user
generates a commitment of her identity h using her identity
info and random secret value key. To prove a relation be-
tween the user identity info and the commitment h without
revealing the random secret value key, the user sends her
commitment h and identity info to the certificated authority
with a proof �init. When the certificated authority receives
them, it checks the validity of the identity info and gener-
ates a certificate on the commitment. Then the commitment
and its certificate are uploaded to the blockchain by the cer-

J. Lee et al.: Page 2 of 13

tificated authority. Apart from the commitment generation
process, a verifier such as an organization, bank, corpora-
tion, etc. provides information processing function f and its
shared reference string SRSf . The verifier uploads them to
the blockchain. Later, the user proves that her private iden-
tity satisfies a given function by generating a zk-SNARK.
Then the proof is verified with the commitment and the cer-
tificate in the blockchain against the given function.
Our Contributions. We describe our contributions as fol-
lows:

• Defining a notion of self-sovereign identity man-
agement system :Wedefine the concept of self-sovereign
identity management system in the blockchain envi-
ronment.We also define a security notion of self-sovereign
identity management system which can be applied to
any blockchain environment. Our security notion re-
lies on a simulation-based approach that ensures a pri-
vacy property and a soundness property concurrently.

• Constructing an efficient privacy preserving iden-
titymanagement scheme :We provide a self-sovereign
identity management construction SIMSwhich can be
implemented by any zk-SNARKand general blockchain
such as Dhillon et al. (2017); Nakamoto et al. (2008);
Wood (2014).

• Providing a security proof of the security notion :
We prove that the proposed SIMS is secure against the
security model. We simulate an adversary in an ideal
environment where a trusted party who plays the role
of a cryptographic protocol in a real system exists.
Then we show that an adversary in the real protocol
has an ability to forge a function output at most equal
to that of the adversary in the ideal environment.

• Providing practical experimental results :Wedemon-
strate realistic and practical self-sovereign identityman-
agement applications. The proposed applications were
implemented based on (Kosba et al., 2018) as the front-
end, and libsnark (Ben-Sasson et al.) as the back-end.
The experiment result validates the practicality of the
proposed SIMS. Specifically, the proof time of the sim-
ple check function takes only 3.8ms and all applica-
tions have a constant proof size regardless of their proof
time.

We describe the background in section 2. In section 3, we
describe the specific construction. Section 4 presents the se-
curity proof of our construction. We discuss the applications
of our proposal in section 5.1. Section 5 provides experiment
results of our applications. In section 6, we describe related
work of our proposal and we draw a conclusion in section 7.

2. Background
2.1. Notation

LetR be a relation generator that given a security param-
eter � in unary returns a polynomial time decidable relation

R ← R(1�). For (�,w) ∈ R we call � the instance and w
the witness. We defineR� to be the set of possible relations
R(1�) might output.
We write y ← S for sampling y uniformly at random from
the setS.Wewrite y← A(x) for a probabilistic algorithm on
input x returning output y. We use the abbreviation PPT for
probabilistic polynomial time algorithms. For an algorithm
A we define transA to be a list containing all of A’s inputs
and outputs, including random coins. We define a specific
NIZK algorithm in section 2.2 which comes from (Groth and
Maller, 2017).
2.2. Non-interactive Zero-Knowledge Arguments

of Knowledge
Definition 2.1. LetR be a relation generator. A NIZK argu-
ment forR is a quadruple of algorithms (Setup, Prove,Verify,
SimProve), which is complete, zero-knowledge, and knowl-
edge sound and works as follows:

• (srs, �)← Setup(R) : the setup algorithm is a PPT al-
gorithm which takes a relation R ∈ R� as an input
and returns a shared reference string srs and a simu-
lation trapdoor �.

• � ← Prove(srs, �;w) : the prover algorithm is a PPT
algorithm which takes a shared reference string srs
for a relation R and (�,w) ∈ R as inputs and returns
a proof �.

• 0∕1 ← Verify(srs, �, �) : the verifier algorithm is a
deterministic polynomial time algorithm which takes
a shared reference string srs and an instance � and a
proof � as inputs and returns 0 (reject) or 1 (accept).

• � ← SimProve(srs, �, �) : the simulator is a PPT al-
gorithm which takes a shared reference string srs, a
simulation trapdoor � and an instance � as inputs and
returns a proof �.

Perfect Completeness : Perfect completeness says that given
a true statement, a prover with a witness can convince the
verifier.
Definition 2.2. (Setup, Prove,Verify, SimProve) is a perfectly
complete argument system for R if for all � ∈ N for all
R ∈ R� and for all (�,w) ∈ R:

Pr[(srs, �)← Setup(R);� ← Prove(srs, �,w)
∶ Verify(srs, �, �) = 1] = 1

Note that the simulation trapdoor � is kept secret and is not
known to either prover or verifier in normal use of the NIZK
argument, but it enables the simulation of proofs when we
define zero-knowledge below.
Perfect Zero-Knowledge : An argument system has a per-
fect zero-knowledge if it does not leak any information be-
sides the truth of the instance. This is modelled a simulator
that does not know the witness but has some trapdoor infor-
mation that enables it to simulate proofs.

J. Lee et al.: Page 3 of 13

Definition 2.3. For Arg = (Setup, Prove,Verify, SimProve)
an argument system, defineAdvzkArg,A(�) = 2Pr[G

zk
Arg,A(�)]−

1 where the game GzkArg,A(�) is defined as follows.

MAIN GzkArg,A(�)
R ← R(1�)

(srs, �)← Setup(R)
b← {0, 1}

b′ ← AP
b
srs,� (srs)

if b = b′ return 1
return 0 otℎerwise

P 0srs,� (�i, wi)
assert(�i,wi) ∈ R

�i ← Prove(srs, �,w)
return �i

P 1srs,� (�i, wi)
assert(�i,wi) ∈ R

�i ← SimProve(srs, �, �)
return �i

The argument system Arg is perfectly zero knowledge if all
PPT adversaries AdvzkArg,A(�) = 0

Computational Knowledge Soundness : An argument sys-
tem is computationally knowledge sound if whenever some-
body produces a valid argument it is possible to extract a
valid witness from their internal data.
Definition 2.4. For Arg = (Setup, Prove,Verify, SimProve)
an argument system, defineAdvsoundArg,A,�A

(�) = Pr[GsoundArg,A,�A
(�)]

where the game GsoundArg,A,�A
(�) is defined as follows.

MAIN GsoundArg,A,�A
(�)

R ← R(1�)
(srs, �)← Setup(R)
(�, �)← A(srs)
w ← �A(transA)
assert (�,w) ∉ R

return Verify(srs, �, �)

An argument systemArg is computationally knowledge sound
if for any PPT adversary A, there exists a PPT extractor �Asuch that AdvsoundArg,A,�A

(�) ≈ 0.
2.3. Composable zk-SNARK

Our construction has a commitment for a private identity.
To commit the private identity of the prover, hash functions
(e.g. SHA-256, MD5) are usually utilized. However, if the
commitment function is included in the given function by
the verifier, then the function becomes relatively large. That
is, when a prover generates a proof of the given function, the
prover not only computes a proof for processing the function

body but also checks whether the commitment value holds
h=Hash(x) where x is the private identity of the prover. If a
hash function is included, the proving time and srs size in-
crease. To overcome the problem, we use a composable zk-
SNARK (Fiore et al., 2016). The composable zk-SNARK
supports a combined form of the proof where correctness of
function execution is handled by the NIZK while data au-
thentication which is related to a commitment computation
is handled by a specific proof construction which is executed
outside of the proof circuit. Since the proof cost required for
inner encoding which is related to the data authenticity can
be reduced, the proof computation becomes more efficient.
We describe a composable zk-SNARK based on (Fiore et al.,
2016).

Before describing the composable zk-SNARK, we ex-
tend a notion of the NIZK algorithm to verify the two differ-
ent proofs separately. One is related to commitment called
an offline verification, the other is related to function execu-
tion called an online verification. We adopt the definition of
online/offline verification from (Fiore et al., 2016).
The verification algorithm of many NIZK constructions can
be split into offline and online computations. FormanyNIZK,
there exists algorithms (Online,Off line) such that:
VerifyNIZK(srs, �, �) = Online(srs,Off line(srs, x), v, �)

The offline phase can be seen as the computation of one or
more commitment cx(cx = Off line(srs, x)), some of which
may be computed by the prover, and possibly never opened
by the verifier. In this work, we consider schemes where the
Off line computations consist purely ofmulti-exponentiations
in G1 over the instance � , followed by online computations
that accept or reject the proof. We assume that X = ℤp as
a domain of a x and Off line(srs, x) =∏

F xii from X to G1,where the group element (F1, F2, ..., Fn) ∈ G1n are part of
the keys.

An intuition of the composable zk-SNARK is that parts
of the proof which are related to data authentication are gen-
erated before the proof generation phase, and the parts of the
proof that are related to the function execution are generated
later in the proof circuit. We call the proof generation phase
executed outside the proof circuit as XP algorithm. XP algo-
rithm is defined as follows.
SetupXP(1�) samples Hi

$
← G1 for i ∈ [1, n] and returns

pp = (G�,H) whereH = (H1, ...,Hn).
HashXP(pp, (x1, ..., xn)) returns �x ←∏

i∈[1,n]H
xi
i

KeyGenXP(pp, F) samples u, v,w $
← ℤp and computes U

← gu2, V ← gv2 ,W ← gw2 ; samples Ri
$
← G1 and computes

Ti ← Hu
i R

v
i F

w
i for i ∈ [1, n]; and returns EKF = (F , T ,R)and VKF = (U, V ,W) where R = (R1, ..., Rn) and T =

(T1, ..., Tn).
ProveXP(EKF, (x1, ..., xn), cx) computes Tx ←

∏

i∈[1,n] T
xi
i

J. Lee et al.: Page 4 of 13

and Rx ←∏

i∈[1,n]R
xi
i ; and returns Φx = (Tx, Rx).

(implicitly we require that cx = ∏

i∈[1,n] F
xi
i , though the cxpart of the instance is not used in the computation of the

proof.)
VerifyXP(VKF, �x, cx,Φx) parses Φx = (Tx, Rx) and returns

e(Tx, g2)
?
= e(�x, U)e(Rx, V)e(cx,W).

Through theXP algorithm, a proof computation required
for the data authenticity such as a commitment verification
process can be extracted from the proof circuit. Parts of the
proof computation which are not related to the function ex-
ecution can be computed in advance since the commitment
algorithm Hash in XP has a specific form that is exponentia-
tion of the group element and can be materials of the proof.
Specifically, the evaluation key EKF has a group elementH
which is a base of the commitment and a proof can be com-
puted by only some exponential computation.

We describe a composable zk-SNARK which supports
a general function using a combination of the XP and the
NIZK in Fiore et al. (2016). In this approach, a proof for the
commitment is constructed using the XP and a proof for a
function execution is generated using the NIZK algorithm.
And we assume that XP algorithm can supports any NIZK
algorithm if XP and NIZK algorithm have the same public
parameters such as the same bilinear group setting.
Composable zk-SNARK is defined as follows.

Setup(1�) runs SetupXP(1�) and returns its public parameters
pp.
Hash(pp, x) returns �x ∶= HashXP(pp, x)
KeyGen(pp,R) takes a relation R and runs

(EKNIZK,VKNIZK)← SetupNIZK(R)Let F=∶ (F1, F2, ..., Fn) be the offline element inVKNIZK
(EKXP,VKXP)← KeygenXP(pp, F)return srs ∶= (EKNIZK,VKNIZK,EKXP,VKXP)

Prove(srs, �;w) parses srs then runs
cx ← Off lineNIZK(srs, x) where � = (x, v)
�NIZK = ProveNIZK(srsNIZK, �;w)
�XP = ProveXP(srsXP, x, cx)return � ∶= (cx, �NIZK, �XP)

Verify(srs, �x, v, �) parses srs as (EKNIZK,VKNIZK,EKXP,VKXP),
� as (cx, �NIZK, �XP) and returns
OnlineNIZK(srs, cx, v, �NIZK) ∧ VerifyXP(srs, �x, cx, �XP)

As described above, the composable zk-SNARK has a proof
which is a combined form. In the Prove, the prover creates
the final proof by combining cx that is related to the functionI/O, �NIZK which is the proof of the function’s witness, and

the proof of the commit calculation �XP. In the Verify, the
verifier verifies �NIZK and �XP respectively. Since �XP and
cx can be generated by a pre-computation, the composable
zk-SNARK can reduce the proof generation cost.
2.4. Definition

The proposed SIMS supposes three entities. these enti-
ties are as follows.

• Prover : It is a user holding a private identity. And it
provides Verif ier with a function output that is com-
puted from the private identity.

• CA (Certificated Authority) : It is the authorized agent
that provides the authenticity of user’s private identity.
It registers the commitment of the private identity with
its certificate in the blockchain. CA can be a govern-
ment department which manages the private identity
that requires validity or an organization that issues cer-
tificates for an individual.

• Verif ier : It verifies whether the function output which
is provided from Prover satisfies the requested func-
tion.

Our scheme consists of five algorithms as follows.
• Init(info, key, srsinit) : It is an initialization algorithm

for registering a private identity. Prover takes its pri-
vate identity info, random secret value key, shared ref-
erence string srsinit as inputs. It computes a commit-
ment of the private user identity h then generates its
proof �init. It returns h, info, �init.

• Register(L, h, info, �init, srsinit) : CA takes a blockchain
L, a commitment of user’s private identity h, user’s
private identity info, a proof �init , shared reference
string srsinit as inputs. It computes a certificate on com-
mitment h, then uploads the commitment h, certificate
cert in the blockchain L. Only the commitment of the
private identity is available to the public while the pri-
vate identity info is kept in user’s private section.

• Setup(f) : Verif ier takes a function f as an input. It
computes srs for f and then returns srs.

• Prove(info, key, h, f , srs) : Prover takes a private iden-
tity info, secret randomvalue key, commitment h, func-
tion f , shared reference string srs as inputs. It returns
function output out and its proof �.

• Verify(�, h, out,f , srs) : Verif ier takes a proof �, com-
mitment h, function output out, shared reference string
srs as inputs. It verifies � then returns 0 (reject) or
1(accept).

2.5. Security model
We define a security model of the privacy preserving

self-sovereign identity management scheme in this section.

J. Lee et al.: Page 5 of 13

The securitymodel follows the simulation based definition (Gar-
man et al., 2016). We assume an ideal world functionality
where any adversary cannot fabricate function output and
distinguish a commitment, and then we show that the prob-
ability of an adversary compromising a real world execu-
tion is at most equal to the probability of an adversary com-
promising an ideal world execution at best. To correlate the
adversary in the real world execution with the adversary in
the ideal world execution, we show that output of the adver-
sary in the ideal world execution is computationally indistin-
guishable from the output of the adversary in the real world
execution. And we prove that the ideal world execution and
the real world execution computationally have same distri-
butions.
We define the ideal world execution which uses the ideal
functionality interacting with a trusted party TP that plays
a role of our cryptographic constructions in the real execu-
tion.

Ideal world execution Ideal: The ideal world attacker,
S, selects some subset of the P1,… , Pn parties to corrupt
and informs the TP. While the attacker controlled parties be-
have arbitrarily, the honest ones follow a set of strategies Σ.
All parties then interact via messages passed to and from
each subject implementing the ideal functionality outlined
in Algorithm 3.

Real world execution Real : The real world attacker A
controls a subset of the parties P1,… , Pn interacting with
the real functionality. The honest parties execute the com-
mands output by the strategy Σ using the real functionality
while the attacker controlled parties can behave arbitrarily.
We assume that all parties can interact with a trusted append
only blockchain.
Definition 2.5. We say that real functionality SIMS securely
emulates the ideal functionality provided by TP if for all
probabilistic polynomial-time real world adversariesA and
all honest party strategies Σ, there exists a simulator S such
that for any ppt distinguisher d:

P[d(IdealTP,S,(�) = 1] − P[d(RealSIMS,A,(�)) = 1] ≤ negl(�)

Theorem 1. SIMS satisfies with Definition 2.5 given the
existence of Non-interactive Zero-Knowledge Argument of
Knowledge, statistically hiding and computationally binding
commitments.

A detailed proof of Theorem 1 is described in section 4.

3. Construction
We describe a specific construction of our SIMS in this

section.
Algorithm 1 explains the proposed SIMS in details. As-

sume that NIZK = (SetupNIZK, ProveNIZK,VerifyNIZK) is a
non-interactive zero-knowledge scheme that supports a se-
quence of relations R.

In Init, Prover takes a private identity info, random value
key for randomizing commitment of the private identity and

Algorithm 1 SIMS
PublicSetup(⋅)

Rinit = {(�,w)|� = (info, h), h = Hash(info||key)}
srsinit ← SetupNIZK(Rinit)return srsinit

Init(info, key, srsinit)
h ← Hash(info||key)
�init ← ProveNIZK(srsinit, �init;winit)

where �init = (info, h)
sends (info, h, �init) to CA

Register(L, info, h, �init, srsinit)
b ← VerifyNIZK(srsinit, �init, �init)

where �init = (info, h)
if b = 1 then

computes certificate of h cert
else

abort
end if
records (h, cert) to the blockchain L

Setup(f)
R={

(�,w)|� = (h, out) , out = f (info), h = Hash(info||key)}
srs ← SetupNIZK(R)return srs

Prove(info, key, h,f , srs)
out ← f (info)
� ← ProveNIZK(srs, �;w)

where � = (h, out) and w = (info, key)
return (out, �)

Verify(�, h, out, srs)
b ← VerifyNIZK(srs, �, �) where � = (h, out)return b

shared reference string srsinit as inputs. Prover computes a
commitment h for the private identity info and random secret
value key. Then, Prover runsNIZK prove algorithm ProveNIZKto prove correctness of commitment h and acquires a proof
�init. Prover sends (info, h, �init) to CA. We assume that a se-
cret random value that is used to generate a commitment h is
not revealed to anyone including CA. Only Prover has a se-
cret value key, which restricts informationmanagement priv-
ilege to Prover. However, for the validity of the private in-
formation info, it needs to be certified from the certificated
authority. Thus, Prover shares (info, h) with CA to certify
the private identity info without revealing secret value key.
To prove a relation between the private identity info and the
commitment h, Prover provides the NIZK proof �init to CA.In Register, CA takes a blockchain L, prover’s private
identity info, commitment h, proof�init, shared reference string
srsinit as inputs. It first verifies a proof �init that proves a state-ment where the commitment h is computed from the private
identity info. If it is verified, CA computes a certificate of
the commitment h cert. Finally CA records (h, cert) to the

J. Lee et al.: Page 6 of 13

blockchain L. We suppose that the certificate can be gener-
ated by a signature scheme which satisfies a security prop-
erty of unforgeability against chosen-message attacks and
cert can be publicly verifiable. Only the commitment of the
private identity is revealed to the public and the private iden-
tity info is not available publicly.

In Setup, Verif ier takes a function f as an input. It con-
structs a new circuit containing the given fuction f and a
commit relationHashwhere a relationR= {(�,w)|� = (h, out),
out = f (info), h = Hash(info||key)}. Then it calls NIZK
setup algorithm SetupNIZK for relation R, receives srs, and
returns srs.

In Prove, Prover takes the commitment h, private iden-
tity info, random value key, function f , and shared reference
string srs as inputs. It executes a function f with providing
info to obtain result out. And then, it calls a NIZK prove al-
gorithm ProveNIZK with input (h, out) and witness (info, key)and acquires a proof �.

Verif ier takes a proof �, commitment h, function output
out, shared reference string srs, as inputs in Verify. It first
checks a validity of the commitment, and calls VerifyNIZKwhich is a proof verification algorithm to guarantee that the
function input and output are correct, and returns the result.

We present the proposed SIMS in detail with the com-
mitment described in section 2.3. Using the commit-and-
prove scheme in (Fiore et al., 2016), we can reduce the over-
head of the commitment generation in the proof generation.
Specifically, we construct a commitment value h using XP
algorithm in section 2.3. Since we generate a partial proof
for commitment relation outside of the proving process, we
can prove the commitment relation by applying some ex-
ponential operation. We construct a proof for information
processing function f and a proof for the commitment, re-
spectively. InVerify, the proof verification process is divided
into two processes, which are the verification for the func-
tion correctness and commitment correctness as described
in section 2.3.

Algorithm 2 describes a specific construction of opti-
mized SIMS. In Init, Prover takes a public parameter for
the commitment pp, private identity info, secret value key,
shared reference string srsinit as inputs. To use XP algorithmfor the commitment generation, it uses the public parameter
pp from SetupXP. After that, it runsHashXP taking pp, info||keyas inputs and acquires commitment value h. Instead of apply-
ing commitment algorithms such as SHA-256, MD5, etc.,
we adopt HashXP algorithm whose commitment form is sim-
ilar to pederson commitment (Di Crescenzo et al., 2001). To
prove correctness of the commitment, it runs Off lineNIZKand gets the partial proof of I/O parts cxinit . Then it runs
ProveNIZK algorithm and takes a proof for thewitness�NIZKinit .It operates ProveXP and gets a proof for the commitment
computation �XPinit . Finally, it sends the private identity info,the commitment h and all the proofs (�init = cxinit , �XPinit , �NIZKinit)to CA. Though its construction is similar to proof generation
parts of the commitment in Prove algorithm, it has a differ-
ence in the sense that the proof in the Init algorithm reveals
the private identity infowhile a proof in the Prove algorithm

Algorithm 2 SIMS optimization
PublicSetup(⋅)

pp ← SetupXP(1�)
Rinit = {(�init,winit)|�init = (info, h)}
srsNIZKinit ← Setup(Rinit)
srsXPinit ← KeygenXP(pp, srsNIZKinit)
srsinit = (srsNIZKinit , srsXPinit)return (pp, srsinit)

Init(pp, info, key, srsinit)
h ← HashXP(pp, info||key)
cxinit ← Off lineNIZK(srsNIZKinit , info||key)
�NIZKinit ← ProveNIZK(srsNIZKinit , �init)

where �init = (info, h)
�XPinit ← ProveXP(srsXPinit , info||key)
�init = (cxinit , �XPinit , �NIZKinit)sends (info, h, �init) to CA

Register(L, info, h, �init, srsinit)
b ← OnlineNIZK(srsNIZKinit , cxinit , h, �NIZKinit) ∧

VerifyXP(srsXPinit , h, cxinit , �XPinit)
if b = 1 then

computes a certificate of h cert
else

abort
end if
records (h, cert) to the blockchain L

Setup(f)
RNIZK = {

(�,w)|� = (h, out) , out = f (info)}
srsNIZK ← SetupNIZK(RNIZK)
srsXP ← KeyGenXP(pp, srsNIZK)
srs = (srsNIZK, srsXP)return srs

Prove(info, key, h,f , srs)
out ← f (info)
cx ← Off lineNIZK(srsNIZK, info||key)
�NIZK ← ProveNIZK(srsNIZK, �)

where � = (info, key, out)
�XP ← ProveXP(srsXP, info||key)
� = (cx, �XP, �NIZK)return (out, �)

Verify(�, h, out, srs)
b ← OnlineNIZK(srsNIZK,cx, out, �NIZK) ∧

VerifyXP(srsXP, h,cx, �XP)return b

does not reveal the private identity.
In Register, CA takes a blockchain L, private identity

info, its commitment h, proof �init, shared reference string
srsinit as inputs. It first verifies the proof �init taking input
srsinit. If the proof is verified, it generates a certificate of h
and records it to the blockchain L with its certificate cert.

Setup algorithm generates the shared reference string for
information processing and the commitment respectively. To

J. Lee et al.: Page 7 of 13

prove function and commitment correctness, we generate ap-
propriate strings of srsNIZK and srsXP by performing SetupNIZKand KeyGenXP.In Prove, Prover takes inputs same as proving algorithm
in Algorithm 1. Prove computes a information processing
function f and acquires its output out. Then it generates a
proof for input and output values in commitment relation.
To obtain the partial proof which includes I/O parts, it runs
Off lineNIZK taking a shared reference string in NIZK algo-
rithm then gets cx = ∏

i∈[1,n] F
xi
i where {xi}i∈[1,n] consistof info||key. After computing a proof for I/O parts, it con-

structs a proof for actual function execution parts. It runs
ProveNIZK by taking shared reference string for function exe-cution srsNIZK, combination of information and randomvalue
(info||key) as inputs and gets �NIZK which proves correct-
ness of function output out. Then it takes �XP which proves
commitment correctness from ProveXP by taking shared ref-erence string srsXP combination of information and random
value info||key. It sets � to (cx, �XP, �NIZK), and returns (out, �).In Verify, Verif ier takes inputs similar to the verification al-
gorithm in Algorithm 1. To verify proofs which represent
function correctness and commitment correctness, it runs
verification algorithmsOnlineNIZK and VerifyXP.OnlineNIZKtakes srsNIZK, a proof for I/O parts cx, function output out,
proof of the function execution �NIZK as inputs. VerifyXPtakes srsXP, commitment value h, cx, �XP which proves com-
mitment correctness as inputs. Then Verif ier takes both of
verification results.

4. Security analysis
4.1. Simulation-based definition for our scheme

Proof outline: We prove Theorem 1 in section 2.5. Be-
fore describing the specific proof, we assume that the adver-
sary cannot forge a function output and cannot distinguish a
commitment in the ideal functionality (Garman et al., 2016).
Wewill show that the adversary has an ability to forge a func-
tion output at most equal to that of an adversary in the ideal
functionality and all of the distributions in real execution are
computationally equal to the ideal functionality. That is, if
an attack in the ideal functionality is impossible, we can en-
sure that the adversary in our scheme cannot forge a function
output or distinguish the commitments. To show that the ad-
versary of the ideal functionality and the real functionality
have a same distribution, we first show that the adversary in
the ideal functionality can be generated using an adversary
in the real functionality. Then, we prove that the output of an
adversary in the ideal functionality is same as the real adver-
sary output. Finally, the simulation for an output of the real
execution can be performed by assuming that distributions
of the ideal world is computationally equal to distribution of
the real world rather than receiving embedded values from
the assumption.

In this approach, we define our system in terms of the
ideal functionality implemented by a trusted party TP, which
plays a role of our cryptographic protocol in the real system.
In the ideal-world experiment, a collection of parties interact
with the trusted party according to a specific interface. In the

real-world experiment, the parties interact with each other
using our protocol. We now define the experiments.
Algorithm 3 Ideal world functionality
TPsetup

TP creates PublicTable to store h, cert
TP creates PrivateTable to store h and info

Init(info)
Prover sends info to TP
if info ∈ PrivateTable then

Obtain (info, h) from PrivateTable
else

TP generates unique random value h, and inserts
(info, h) in PrivateTable

end if
TP returns h to Prover

Register(PublicTable, info, h)
CA takes (info, h) from Prover
CA sends (info, h) to TP
if info ∈ PrivateTable ∧ h ∈ PublicTable then

CA computes a certificate of h cert
else

abort
end if
CA sends (h, cert) to TP
if cert is verified then

TP stores (h, cert) in PublicTable
else

abort
end if

Prove(PublicTable, h, info, f)
if h∉ PublicTable then abort
end if
Prover obtains (h, cert) from PublicTable
Prover runs f (info) and gets function output out
Prover sends (f ,info,out) to TP
if info ∉ PrivateTable then abort
end if
TP gets (info, h) from PrivateTable
if f (info) ≠ out then abort
end if
TP notifies (f , h, out) to all parties

Algorithm 3 describes the ideal world functionalitywhere
all of the entities can interact with the trusted party TPwhich
proves correctness of the data instead of the cryptographic
protocol.

TPsetup is a process where the trusted party TP sets two
tables. Both tables are only allowed to append data. It is im-
possible to delete data and modify data in each table. While
PublicTable is exposed to the public, PrivateTable is only
available to TP(Trusted Party). In Init, Prover takes its pri-
vate identity info as inputs. It first sends info toTP andTP checks
if info is in PrivateTable. If it is in PrivateTable, TP obtains
(info,h) from PrivateTable; otherwise, TP generates unique
random value h and stores (info,h) in PrivateTable. After sav-

J. Lee et al.: Page 8 of 13

ing them, TP returns h to Prover. Prover sends (info, h) to
CA.

In Register, CA takes (info, h) as inputs. Then CA sends
(info, h) to CA and CA checks whether info is in the Pri-
vateTable and h is in the PublicTable respectively. If both of
them are in the table respectively, CA constructs its certifi-
cate cert of h and sends h,cert) to TP. Then, the TP checks
correctness of the certificate cert and saves (h,cert) in Pub-
licTable.

In Prove, Prover checks whether h is in PublicTable or
not. If h is in PublicTable, Prover obtains (h,cert) from Pub-
licTable. Then Prover runs f (info) and gets its output out.
Prover sends function f , information info, and function out-
put out to TP. TP checks if info is in PrivateTable, and vali-
dates if f (info) = out. If it is correct thenTP notifies (f ,h,out)
to all parties.

We now present the process where the adversary in the
ideal functionality gives output same as the adversary in the
real execution. we define A′ as an adversary which tries to
forge a function output in the ideal execution. And we define
A as an adversary which interacts with the real functionality.
A′ runs A internally and interacts with the ideal functional-
ity.

When A outputs �real where �real is a proof of A, A′

first verifies the proof as in the real protocol. If the proof
is verified, it runs the knowledge extractor on �real to ob-
tain (info, key). The simulator makes sure that (info,h) is in
PrivateTable and h in PublicTable. If they are not in the ta-
bles, A′ calls Init and Register to store info in PrivateTable,
and h in PublicTable. A′ runs Prove to obtain function out-
put out. A′ outputs (f , h, out) with a simulated proof �ideal.Similarly, A′ generates a simulated proof which proves cor-
rectness of commitment in Init phase using the knowledge
extractor ofAwhich extracts key as a witness. We now show
that the output of the ideal world experiment is computation-
ally indistinguishable from the output of the real world ex-
periment via a series of hybrid games.
1. G0 : This is a real execution experiment.
2. G1 : In this game, we replace all the proofs by honest par-
ties with simulated proofs. By Lemma 1 we show that if the
proof system is computationally knowledge-sound, then G1
≈ G0.
3. G2 : In this game, we run the knowledge extractor when
encountered by the function output of any corrupted parties,
and abort if the knowledge extractor fails. By Lemma 2 we
show that if the proof extractor fails with negligible proba-
bility, then G2 ≈ G1.
4. G3 : In this game, we replace all the commitments in the
blockchain by unique random value. By Lemma 3 we show
that if commitmentH is secure commitment schemes, then
G3 ≈ G2.
Note that G3 represents the ideal world simulation. By sum-

mation over the previous hybrid games we show that G3 ≈
G0. We conclude our proof sketch by presenting the support-
ing lemmas.
Lemma 1. For all PPT adversaries A, if NIZK exists, then
the advantage of distinguishingG0 andG1 isAG1−AG0 ≤ �
where � is the simulation failure rate.

Proof. The simulator operates in the same manner, but we
simulate proofs for honest parties. By definition, � for func-
tion output is NIZK which has efficient simulator, so we re-
call that the simulator will fail with at most negligible prob-
ability. Therefore � is negligible.
Lemma 2. For all PPT adversaries A, if extractable NIZK
exists, then the advantage of distinguishing G1 and G2 is
AG2 −AG1 ≤ � where � is the extraction failure rate.

Proof. The simulator operates in the same manner, but we
extract when given the output of corrupted parties. By def-
inition, � for function output is NIZK which has a knowl-
edge extractor. Intuitively, we can see that the extractor will
fail with at most negligible probability. Therefore, our proof
� has a knowledge extractor that succeed with probability
1 − �.
Lemma 3. For all PPT adversariesA, the advantage of dis-
tinguishing G2 and G3 is AG3 − AG2 ≤ � where � is negli-
gible.

Proof. The simulator continues to operate in the same man-
ner as orginally described, but we now replace the comm-
mitment h with commitments to randomly chosen value. By
constructionH is a statistically hiding commitment scheme
and therefore the probability that an adversary can detect this
substituion is negligible.

5. Experiment
In this section, we propose SIMS applications and show

the performance and the key size for each application. Recall
that we assume the off-chain blockchain approach in which
only the commitment of the private identity is in the public
blockchain.
5.1. Applications
5.1.1. Minor Check

MinorCheck function as shown in Algorithm 4 checks
whether a user is minor or not without revealing the age. The
function includes an "if-statement". An organization creates
MinorCheck function and generates srs for NIZK for the
function. After a user receives the function and srs, he/she
evaluates the function with providing his/her own age and
obtains an output value of True or False with NIZK proof
�. The function output is True then the user is minor and
the fact is proven using proof � and a commitment of the
real age in a blockchain. Note that although everyone can
read any content in the blockchain, no actual age information

J. Lee et al.: Page 9 of 13

Table 1
Experiment environment

OS Ubuntu 16.04 LTS 64bit
CPU Intel(R) Core(TM) i5-4670 CPU @

3.40GHz Quad Core
Memory DDR4 24GB

Table 2
Application informaion summary

Minor Check Address Check Transcript
Check

Experience
Check

Number of "if-
statement"

1 100 100 3

Number of inputs 1 (32 bit int) 100 (256 bit string) 100 (32 bit
int)

3 (32 bit int)
+ 3 (2048 bit
int)

is leaked but the randomized commitment is only available,
which is used to validate the NIZK proof.
Algorithm 4Minor check
MinorCheck(int age)
if age < 19 then

return True
else

return False
end if

5.1.2. Address check
FunctionAddressCheck inAlgorithm 5 is similar to func-

tion MinorCheck but it includes more "if-statements". The
function includes 100 "if-statements". User’s address which
is a secret information and addresslist which contains ad-
dress candidates are given. In the function, it checks whether
the user address belongs to addresslist. If it is true then the
address is returned; otherwise a null string is returned.
Algorithm 5 Address check
AddressCheck(string user_adress[],string addresslist[])
for i in range (0,len(addresslist)) do

if user_address[0]==addresslist[i] then
return user_address[0]

end if
end for
return ⊥

5.1.3. Transcript check
Another application is a transcript check system.As shown

in Algorithm 6, it receives the number of subjects, scores of
the subjects, and aminimum score constraint for each subject
denoted as limit. In the function, it checks whether all sub-
jects’ score is no less than the given minimum score. In the
evaluation, the number of subjects is given as 100. Note that

compared with function AddressCheck in which only equal-
ity check is performed, function TranscriptCheck includes
"greater than or equal to" operations.
Algorithm 6 Transcript check
TranscriptCheck(int subjectNum,int score[],int limit[])

PassNum=0
for i in range(0,subjectNum) do

if score[i] ≥ limit[i] then
PassNum++

end if
end for
if PassNum==subjecNum then

return True
else return False
end if

5.1.4. Working history check
In case of a working history check application, we as-

sume that each company records the working history for an
employee and generates its signature. The working history
and the signature are transferred to an agent who uploads the
data in the blockchain. Algorithm 7 shows a function which
checks that every working history is valid by checking a sig-
nature for eachworking history in a company and all working
experiences meet a given requirement. Note that we assume
that all verification keys are known in the function. For a
signature scheme, we adopt (Fischlin, 2003) in evaluation.

In Algorithm 7, we assume that the function receives
a working history value expi which denotes the number of
working years and its signature �i. We assume its signature
is constructed by RSA method(Fischlin, 2003) and the sig-
nature becomes a witness, not an input value. To verify the
signature it performs exponentiation according to public key
vki. Since we assume that the signature is a witness, its ver-
ification needs a commitment operation in the proof circuit.
After comparing the commitment value, it checks whether
expi satisfies a condition such as the minimum number of

J. Lee et al.: Page 10 of 13

Table 3
Experiment result time

Minor Check Address Check Transcript
Check

Experience
Check

KeyGenNIZK 0.0129s 5.8479s 0.0501s 26.4016s
ProveNIZK 0.0038s 1.9121s 0.0181s 9.2734s
VerifyNIZK 0.0011s 0.0014s 0.0011s 0.0011s
SetupXP 0.0005s 3.2997s 0.0131s 0.0259s
KeyGenXP 0.0031s 12.8704s 0.0528s 0.1045s
ProveXP 0.0001s 0.1282s 0.0005s 0.0061s
VerifyXP 0.0016s 0.0016s 0.0016s 0.0016s
KeyGenSIMS 0.0165s 22.0819s 0.1163s 26.5351s
ProveSIMS 0.0038s 2.0402s 0.0186s 9.2795s
VerifySIMS 0.0027s 0.0030s 0.0027s 0.0027s

Table 4
Experiment result size

Minor Check Address Check Transcript
Check

Experience
Check

EKNIZK 6.6805KB 13350KB 52.463KB 62919KB
VKNIZK 0.2722KB 1007.1KB 4.1273KB 8.0603KB
ProofNIZK 0.1244KB 0.1244KB 0.1244KB 0.1244KB
PPXP 0.1245KB 804.94KB 3.2062KB 6.3501KB
EKXP 0.3970KB 2616.8KB 10.415KB 20.636KB
VKXP 0.3728KB 0.3728KB 0.3728KB 0.3728KB
ProofXP 64B 64B 64B 64B
srsSIMS 8.0270KB 17780KB 70.585KB 62955KB
ProofSIMS 0.1866KB 0.1866KB 0.1866KB 0.1866KB

Algorithm 7Working history check
ExperienceCheck(int exp1,int_N �1,. . . ,int expn,int_N �n)

for i in range(1,n) do
if �ivki ≠ H(expi) mod N then

return False
if expi ≤ exp_consti thenreturn False
end if

end if
end for
return True

working years.
5.2. Evaluation

We now describe the experiment results of the applica-
tions. We conduct four types of experiments which are a mi-
nor check, an address check, a transcript check, and a work-
ing history check. Each function consists of an "if-statement",
100 "if-statements" with equality check, 100 "if-statements"
with "greater than or equal to statements", and signature ver-
ifications, respectively. We perform the experiment on an
Ubuntu 16.04 LTS 64bit environmentwith a Intel(R) Core(TM)
i5-4670CPU@3.40GHzQuadCore CPU environment, DDR4
24GB memory. We adopt (Groth, 2016), and (Fiore et al.,
2016) schemes for proof generation NIZK, and for a commit
and prove scheme XP, respectively. Note that SIMS encom-

passes NIZK and XP. We utilze jsnark (Kosba) which uses
libsnark (Ben-Sasson) as its submodule to generate SNARK
circuits for applications.

Table 2 summarizes the function body and the input data
for each application. Function MinorCheck includes a single
"if-statement" and takes one 32 bit integer value as an in-
put. Function AddressCheck consists of 100 "if-statements"
with equality check and 100 256-bit string type input val-
ues. Function TranscriptCheck contains 100 "if-statements"
with "greater than or equal to" statements, and takes 100
integer type input values. Function ExperienceCheck has 3
"if-statements" and exponentiation operations where n = 3.
It takes three 32-bit integer type exp’s and 2048-bit integer
type �’s. Note that in the function, vki = 216 + 1 = 65537and modularN = 2048.

Table 3 represents the performance results for each ap-
plication. Since function MinorCheck includes a single "if-
statement", the performances of key generation, prove, and
verify are high. Particularly, the proof time is only 3.8ms.
On the other hand, the key generation and the proof time are
large in function ExperienceCheck due to the signature veri-
fication. In function TranscriptCheck, the proof time denoted
as ProveSIMS increases by 6 times compared with function
MinorCheck.

Though functions AddressCheck and TranscriptCheck
contain 100 "if-statement" and 100 inputs equivalently, the
proof time and the key generation time in function Address-
Check become slow by 200 times compared with function

J. Lee et al.: Page 11 of 13

TranscriptCheck since the input data type size is 256 bit in
function AddressCheck while it is 32 bit in function Tran-
scriptCheck.

Table 4 presents the key (or shared reference string) size
for each function. As the function becomes complicate, the
evaluation key size becomes large. In addition, as input size
increases, the verification key size increases. The proof size
remains as constant (0.1866KB) regardless of applications.

6. Related Work
This section discusses various zk-SNARK schemes and

privacy preserving blockchain approaches.
Since QSP (Quadratic Span Program) and QAP (Quadratic
Arithmetic Program) have been introduced by (Johansson
and Nguyen, 2013), zk-SNARK obtained constant proof size
and verification. Parno et al. propose aQAP-based zk-SNARK
which can be used in arbitrary functions (Parno et al., 2013)
and provide a first practical implemntation of zk-SNARK.
(Groth, 2016) reduces the proof size from 8 group elements
to 3 group elements and the number of pairing operations
needed to verify the proof from 11 to 3. The SE-SNARK
scheme(Groth and Maller, 2017) establishes a concept of
simulation-extractable SNARK with a similar notion to the
Signatures of Knowledge (Chase and Lysyanskaya, 2006).
Though it can prevent a malleability attack, it provides an ef-
ficient proof size of (Groth, 2016). As another zk-SNARK
issue, zk-SNARK with updatable and universal srs (Groth
et al., 2018) resolves a problem where a shared reference
string requires trusted setup by allowing users to update srs
independently.

By utilizing the short proof sizes and the short verifi-
cation times, zk-SNARK can be used for anonymous cryp-
tocurrencies such as (Garman et al., 2016; Kosba et al., 2016;
Miers et al., 2013; Sasson et al., 2014) to conceal the trans-
action value. Many blockchains such as (Nakamoto et al.,
2008;Wood, 2014) reveal actual transaction values in a block.
On the other hand, Zcash, one of the privacy preserving cryp-
tocurrencies (Sasson et al., 2014), enables to hide both value
and address in the transaction. Using the zk-SNARK such as
(Groth, 2016; Parno et al., 2013), and a commitment scheme,
it is possible for a user to trust all contents of the transaction
even though transactions are totally hidden. Zcash (Sasson
et al., 2014) has a similarity with our proposal in that a user
hides a secret value and then proves the correctness of the
processed value. However, while (Sasson et al., 2014) con-
siders only balance equation and completeness of the com-
mitment, our approach supports various functions to process
secret information. Garman et al. apply a policy to a transac-
tion and ensure the confidentiality of the transaction concur-
rently (Garman et al., 2016). In addition, the scheme proves
a security of the decentralized anonymous payments. In case
of Zcash (Sasson et al., 2014), its security proof is based on
game-based notion, on the other hand, (Garman et al., 2016)
uses a ideal functionality notion. Hawk(Kosba et al., 2016)
proposed constructs a privacy preserving smart contract. Al-
though Hawk is similar to our scheme since it supports gen-

eral functions, it does not cover the ID management. Hawk
concentrates on the transaction case where multiple users are
involved.

W3C (Sporny) (Reed) proposes an identity management
scheme. It allows users to prove their identity using a ver-
ifiable claim. The user receives the verifiable claim, which
proves a specific claim from a certificated agent with its sig-
nature. Then the user combines multiple verifiable claims
into a verifiable presentation, which includes user’s signa-
ture. The verifiable presentation is given to the verifier, and
the verifier checks the verifiable presentation using a verifi-
cation key in the blockchain. However, the approach inW3C
has a limitation that the certificate authority should issue all
possible claims in advance. In addition, it is difficult to gen-
erate an arbitrary presentation including "OR" and "NOT"
operations in the approach while our SIMS allows to gener-
ate a proof for a circuit including any operation.

7. Conclusion
We propose a self-sovereign identity management sys-

tem called SIMS in the blockchain environment. Using the
proposed SIMS, each user has the self sovereignty to utilize
personal information with preserving privacy. We define a
security notion of SIMS and prove the security. Furthermore,
we show various applications of SIMS such as minor check,
address check, transcript check, and working history proof
with experiment results including proof time, fast verifica-
tion time, and key/proof size.

References
Ben-Sasson, E., . libsnark. https://github.com/scipr-lab/libsnark.
Ben-Sasson, E., Chiesa, A., Genkin, D., Kfir, S., Tromer, E., Virza, M., .

libsnark (2014).
Campanelli, M., Fiore, D., Querol, A., . Legosnark: Modular design and

composition of succinct zero-knowledge proofs .
Chase, M., Lysyanskaya, A., 2006. On signatures of knowledge, in: Annual

International Cryptology Conference, Springer. pp. 78–96.
Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig,

M., Parno, B., Zahur, S., 2015. Geppetto: Versatile verifiable compu-
tation, in: 2015 IEEE Symposium on Security and Privacy, IEEE. pp.
253–270.

Dhillon, V., Metcalf, D., Hooper, M., 2017. The hyperledger project, in:
Blockchain enabled applications. Springer, pp. 139–149.

Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A., 2001. Efficient
and non-interactive non-malleable commitment, in: International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Springer. pp. 40–59.

Duffield, E., Diaz, D., 2015. Dash: A privacycentric cryptocurrency.
Eberhardt, J., Heiss, J., 2018. Off-chaining models and approaches to off-

chain computations, in: Proceedings of the 2nd Workshop on Scalable
and Resilient Infrastructures for Distributed Ledgers, ACM. pp. 7–12.

Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno,
B., 2016. Hash first, argue later: Adaptive verifiable computations on
outsourced data, in: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ACM. pp. 1304–1316.

Fischlin, M., 2003. The cramer-shoup strong-rsa signature scheme revis-
ited, in: International Workshop on Public Key Cryptography, Springer.
pp. 116–129.

Garman, C., Green, M., Miers, I., 2016. Accountable privacy for decen-
tralized anonymous payments, in: International Conference on Financial
Cryptography and Data Security, Springer. pp. 81–98.

J. Lee et al.: Page 12 of 13

https://github.com/scipr-lab/libsnark

Groth, J., 2010. Short pairing-based non-interactive zero-knowledge argu-
ments, in: International Conference on the Theory and Application of
Cryptology and Information Security, Springer. pp. 321–340.

Groth, J., 2016. On the size of pairing-based non-interactive arguments,
in: Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer. pp. 305–326.

Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I., 2018. Up-
datable and universal common reference strings with applications to zk-
snarks, in: Annual International Cryptology Conference, Springer. pp.
698–728.

Groth, J., Maller, M., 2017. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable snarks, in: Annual International
Cryptology Conference, Springer. pp. 581–612.

Johansson, T., Nguyen, P.Q., 2013. Advances in Cryptology–
EUROCRYPT 2013: 32nd Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013, Proceedings. volume 7881. Springer.

Kosba, A., . jsnark: A java library for building snarks,” oblivm.com/jsnark.
https://github.com/akosba/jsnark/blob/master/README.md.

Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C., 2016. Hawk: The
blockchain model of cryptography and privacy-preserving smart con-
tracts, in: 2016 IEEE symposium on security and privacy (SP), IEEE.
pp. 839–858.

Kosba, A., Papamanthou, C., Shi, E., 2018. xjsnark: a framework for effi-
cient verifiable computation, in: 2018 IEEE Symposium on Security and
Privacy (SP), IEEE. pp. 944–961.

Kosba, A.E., Papadopoulos, D., Papamanthou, C., Sayed, M.F., Shi, E.,
Triandopoulos, N., 2014. {TRUESET}: Faster verifiable set compu-
tations, in: 23rd {USENIX} Security Symposium ({USENIX} Security
14), pp. 765–780.

Kshetri, N., 2017. Can blockchain strengthen the internet of things? IT
professional 19, 68–72.

Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S., 2017.
Concurrency and privacy with payment-channel networks, in: Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, ACM. pp. 455–471.

Miers, I., Garman, C., Green,M., Rubin, A.D., 2013. Zerocoin: Anonymous
distributed e-cash from bitcoin, in: 2013 IEEE Symposium on Security
and Privacy, IEEE. pp. 397–411.

Nakamoto, S., et al., 2008. Bitcoin: A peer-to-peer electronic cash system .
Parno, B., Howell, J., Gentry, C., Raykova, M., 2013. Pinocchio: Nearly

practical verifiable computation, in: 2013 IEEE Symposium on Security
and Privacy, IEEE. pp. 238–252.

Pilkington, M., 2016. 11 blockchain technology: principles and applica-
tions. Research handbook on digital transformations 225.

Poon, J., Dryja, T., 2016. The bitcoin lightning network: Scalable off-chain
instant payments.

Rackoff, C., Simon, D.R., 1991. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack, in: Annual International Cryp-
tology Conference, Springer. pp. 433–444.

Reed, D., . decentralizedIdentifier. https://w3c-ccg.github.io/did-spec/.
Rouse, M., 2019. self-sovereign identity. https://searchsecurity.

techtarget.com/definition/self-sovereign-identity.
Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,

Virza, M., 2014. Zerocash: Decentralized anonymous payments from
bitcoin, in: 2014 IEEE Symposium on Security and Privacy, IEEE. pp.
459–474.

Sporny, M., . verifiable credential. https://www.w3.org/TR/2019/

CR-vc-data-model-20190725/#zero-knowledge-proofs.
Stokkink, Q., Pouwelse, J., 2018. Deployment of a blockchain-based self-

sovereign identity, in: 2018 IEEE International Conference on Inter-
net of Things (iThings) and IEEE Green Computing and Communica-
tions (GreenCom) and IEEECyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData), IEEE. pp. 1336–1342.

Tobin, A., Reed, D., 2016. The inevitable rise of self-sovereign identity.
The Sovrin Foundation 29.

Wood, G., 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 1–32.

Zyskind, G., Nathan, O., et al., 2015. Decentralizing privacy: Using
blockchain to protect personal data, in: 2015 IEEE Security and Privacy
Workshops, IEEE. pp. 180–184.

J. Lee et al.: Page 13 of 13

https://github.com/akosba/jsnark/blob/master/README.md
https://w3c-ccg.github.io/did-spec/
https://searchsecurity.techtarget.com/definition/self-sovereign-identity
https://searchsecurity.techtarget.com/definition/self-sovereign-identity
https://www.w3.org/TR/2019/CR-vc-data-model-20190725/#zero-knowledge-proofs
https://www.w3.org/TR/2019/CR-vc-data-model-20190725/#zero-knowledge-proofs

