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Abstract

We studied the applicability of differential cryptanalysis to cryptosystems based
on operation of addition modulo 2". We obtained an estimate (accurate up to an
additive constant) of expected value of entropy H,, in rows of DDT of corresponding
mapping. Moreover, the k-th moments of 2/7» are explored. In particular, asymptotic
inequalities that describe the behavior of values E2f» and D2» as n — oo were
obtained. A simple analytical formula for the size of any given equivalence class was
obtained. This formula helped to effectively compute the entropy distribution.

Keywords: modular addition, differential cryptanalysis, entropy of distribution.

1 Introduction

A number of cryptographic schemes use the operation of addition modulo 2" for
some n > 1. Denote Zy the ring modulo N. The first function under consideration is
[ 1 Z%, — Zgyn defined by f(z,y) = = @, y, where &, denotes addition in ring Zgn, i.e.
modulo 2", and @ is bitwise exclusive-OR. We are interested in study of the function
P.(Ax,Af) : Z%, — Ng:

Pu(Ar, Af) = ol {(y) € Z: AT = (@ Ax0)® [(a.0))]

(it is analogous to a special case of the differential probability of addition modulo 2"
studied in [1]).

In this work we study the properties of this operation through the concept of entropy.
The article [2] investigated the function 2" - P,(Ax, Af), but all the results are similar in
these two cases, therefore we will briefly describe what is already known.

The table of values of the function P,(Az,Af) is called a difference distribution
table (DDT). The rows of this table are indexed by Az and columns by Af. In [2] it
has been shown that this table has a special form: the table for addition modulo 2" is



naturally expressed through a similar table for addition modulo 2". That is, if the matrix

for P,(Az, Af) has the form
A|B
Fn = [ C|D ]

then matrix P, has form

2A B B
P 1| ¢ D|C D
1= 9| 0 B[24 B
C D|C D

It was also shown that A = D and B = C. This led to the following recurrent
representation for the matrix P,:

A, | B,
P= | )
where . 4 ‘ B 1 B
2 n—1 n—1 0 n—1
An = —= s Bn =3 : 2
2 l anl ‘ Anfl :| 2 l Bn*1 Anfl :| ( )

Rows of P, with the same but maybe permuted elements are called equivalent (obvi-
ously, equivalent rows have the same entropy). It was shown in [2] that one can associate
a polynomial of degree not greater than 2n with each of equivalence classes. These poly-
nomials can be constructed from the parameters of the corresponding equivalence class.
So one can enumerate all the distinct distributions in time proportional to their number,

that is
24/2m\/n
When considering P,(Az, Af) as a part of a cryptosystem from the point of view

of differential cryptanalysis the following problem arises: for a given (or randomly cho-

sen) Ax it is necessary to determine the minimum cardinality K. of the set of numbers
{Af1,...,Afk,} such that

=0 (23’7007\/5) as n — 0.

K.
Z P,(Ax,Af;) = ¢,
i=1

where ¢, 0 < ¢ < 1, is some fixed constant. The value of K. corresponds to the “degree of
branching”, that is, the coefficient by which the number of considered variants is multiplied
when moving to the next round of the cryptosystem. In practice, it was found that for the
distributions in DDT rows the described value K1 does not exceed 27, where H is the

entropy of this distribution (this is not true in the ngneral case, for arbitrary distributions,
it is enough to consider an example distribution {i, 2%, . 2%} for sufficiently large n).

In this article we obtained an estimate (accurate up to an additive constant) of ex-
pected value of entropy H, in rows of DDT and asymptotic inequalities describing the
behavior of values E277» and D27 as n — oo (for ¢ € N). We also implemented the
equivalence class enumeration algorithm and justified (for some practical values of n) our
assumption concerning closeness of 29» and K. The theoretically estimated values of
moments of 27 also turned out to be close to the real ones.

We also introduced a simple analytical formula for the size of any given equivalence
class was obtained and used it, in particular, to effectively compute the entropy distribu-
tion.



2 Properties of DDT row entropy

By definition the entropy in the i-th row of matrix P, may be found according to the

formula
on_q

Hj = — % Pulij)logy Poliy ), i =0,...,2" = 1.

J=0

For convenience we denote

277.7171 ' 2n7171
DAL, Bi= D) Baling)
=0 §=0
and
2n71_1 - 27L71_1 A
D G Bu= D B
i=0 i=0
Lemma 1.

; Himed2™ 4 1, if ie[2rh2n—1] U327 2n 1],
Hn+1 =

HriszdTl 4 5Tz‘lm0dQ"7 Zf = [0727171 _ 1] U [2”73 . 27171 _ 1]

Proof. From (1) and (2) it is clear that for i € [2"71 2" — 1] U [3- 271, 27! — 1] the i-th
row has the form 1 [a b a b] and thus the entropy can be written as

2" 1 .. .o 21 .o
i Pn Z7.] Pn Z7] . . Pﬂ Zh]
Hy . =-2 Z %) log, (. ) == Z P (i, 7)1, logs ) =

J=0 2 2 j=0 2
on_1 9n_1
= — Z P,(i,7) logy P, (i Z P,(i,j)log, 2 = H™42" 4 1,
Jj=0 7=0

On the other hand, for ¢« € [0,2"! — 1] U [2",3 - 27! — 1] we have the row of form
5[2a b 0 b] and thus

n—1l1 2n—1 .. .
; - - Pai, ) Palis )
Hi == Y, Pu(i,j)log, Pu(i,j) =2+ > — T logy U =
j*O j:2n—1
an—l_1 2m—1 2n—1
=— > Pu(i,f)log, Pu(i,j) — >, Pali,j)logy, Pu(i,j) + Do Puliyj) =
j:() j:2n—1 j:2n—1
_ HimodZ" _i_ﬂimon"'
O]
Lemma 2. For everyn > 1 holds EH, 1 = %—i—g—ﬁ—l—---—l—%—i—%.
Proof. Taking into account the previous lemma, we can write:
ntl_q 1 2n—l_1 _ _ 1 2n—1 _
EHp.1 = 2n+1 Z n-‘rl = Z (Hiz + /8717,) + 2_n Z (H:z + 1) =
=0 j=on—1
1 2n—1 an—l_ 3 1
- Hz _ JoL - = ooy Z
2" < + Z b + nt 2n * 2
It remains to “unroll” this equality and note that H; = 0 and $; = 0. O
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Lemma 3. For every n > 1 holds 8, = 5 - 2"7'(1 — 4'™").
Proof. Obviously, o!, + 8. =1, so a,, + 8, = 2", From (2) it follows that
Qp
/871+1 = ﬂn + 7
From the last two equalities it follows that

Bn-i-l = 2n_2 + %

Unrolling this equality we come to

Ba
2

- 1 Op—1 _ _ anl
= 9on 2 _< L ) = 9on 2 on 4 Fn—t
+3 Bn-1+ 5 + +

21 ()
27" =
1—2-2

5n+l = 2n72 +

1
—9on2 yon4 4 :§-2n(1—47n).

Theorem 1. EH, = 2n+ O(1) as n — .

Proof. Let us substitute values obtained in Lemma 3 into the representation of EH,
obtained in Lemma 2:

1 1 2
EHn+1=g+6(1—41*”)+---+ (1—4*1)=g+%+§(1—41*”)=§n+0(1).

So EH, = 2(n—1) + O(1) = 2n + O(1). O
Now we will consider the g-th moment of a random variable 27

2" —1 2m—1

1 1
E 2Hn q — EQan - 2qen,i — €n,i
( ) 2n 'L'ZO = o
where e, ; is the entropy in ¢-th row of matrix P, and () denotes 27. To avoid multilevel

exponentiation we will use the notation Q(z) = Q*.
Corollary 1. E2¢» = ) (Q%”)

Proof. Tt is sufficient to use the inequality of arithmetic and geometric means and the
result of Theorem 1:

271
H 9en.i — 9E(aHn) _ 9fan | Q1) =Q (Q%”) .
k=1

Lemma 4. Fori=0,...,2" ' —1

= {0’ S ®)

2~ (n=1-llogz1l) " therwise.



Proof. Let us prove by induction. For n = 1 the proposition is obvious as By = [ 0 ]
Now let’s suppose that it is also true for 8¢ ;, i =0,...,2" 2 — 1 and let us prove it for
.
For 2% < i < 2" —1 from (2) we get . = 3 as the sum in any row of matrix
| Bu-1| An—y | is 1. This agrees with (3) as [logyi] = n — 2.
For 0 <4 < 2" 2 —1 from (2) we have
1

ﬁ; ~ 9 71'171‘

and by the inductive hypothesis we come to (3). ]

Remark. The vector of values 3. has the following form:

0 1 1 1 1 11 11 1
72n_1,2n_2,2n_2’...,8,...78,4,...,4’2,...,2 .
—_— — —_— — ) —
1 2 on—4 on—3 on—2

For convenience we extend the definition (3) for 2"~ < i < 2" — 1. Then according
to Lemma 1,

¢ mod 271 i mod 272 i mod 4
€ni = Pn-1 n—2 +oeet 52 :
Moreover, obviously, e;g = €11 = 0. For k € {0,...,n — 2} let us introduce sets

Zy={ieZ: 2" <ig< 2 -1},

The set Z;, consists of integers which binary representation has the form 0...01 #-.-=.
—
k n—k—1

Let us denote w, = >~ ' Q(en;). Then

2" —1 n—1 k
-/ d2n7C
=Y )= 3 S (B e ) o1
=0 k=01ieZy c=1

k
P W) Qen—pi) + 1=

k=0 c=0 ez, k=0
Obviously,
E(27)! = <, 4
Thus we need to investigate the following recurrence relation:
n—1
flin) =3 f'(0)- Q2 -2 + 2, (5)
=1

First, we compare it with the similar relation:

Fy= S (0 Q2 — 27 n > 2 o
f1) =2

Let us denote A(n) = f'(n) — f(n).



Lemma 5. A(n) < f(n).
Proof. Let us prove by induction. Obviously,
0=A(1) < f(1) =2.

Suppose the proposition is true for all £ < n (i.e. A(f) < f(¢)) and write down

1) = 70 + 02— 2 ) F().
An+1) = Zn] A() + Q2 — 2 "HA(L) + 2.

~
Il
N

For n > 2 we have Q(2 —27""3) > 1, from which and the inductive hypothesis follows:

An+1) < i fO+92 -2 A1) +2 <

n

< zn] FO+0+2< ) f(O+QR—2" N f(1) = f(n+1),

(=2
and it is the required inequality. O

With the use of Lemma 5 we estimate f'(n) as

f(n) < f'(n) = f(n) + A(n) < 2f(n),

and will work with homogeneous equation (6).
Let us note that coefficients Q(2 — 277++1) = Q2-27"""*" are bounded from above by
the number Q(2). Then let us consider the next family of recurrence relations:

A= S 0@t R0+ 0@ S R

l=n—k

fe(1) =2,

solutions to which bound f(n) from above. Denote

Fifn) = Y lt). )

Then
Fy(n) — Fy(n —1) = nz_] Q2 — 27" (B () — Fy(0 = 1)) + Q(2) Fy(n — k — 1), .
F(1) =2

Note that this recurrence relation has constant “length” and can be solved using well-
known methods. Let us first find the form of the characteristic polynomial corresponding



to this relation:

n—1
AL k= Z ()\ffnJrkJrl _ )\anJrk)Q(z _ 2fn+é+1) + Q(2) _

{=n—Fk
n—1 n—1

_ Z Nkl Q(2 . 27n+f+1) _ Z Ntk Q(2 . 27n+8+1) + Q(2) _
l=n—k l=n—k
n—1 n—2

_ Z )\E—n+k+1 Q(2 _ 2—n+£+1) _ Z /\Z—n+l~c+1 Q(2 _ 2—n+é+2) + Q(2) _
l=n—k l=n—k—1

_ Q(l))\k+1—1 _ Q(2 o 2—k—1+2)+

n—2
B3 AT Q- 2 ) S Q2 -2 ) 1 Q(2)
l=n—k

Thus the final form of the characteristic polynomial is

]/'\Ik()\) _ )\k—i-l . (1 + Q(l))/\k . 2 Q(Q) (Q(_Q—k+€+1) . Q(_2—k+€+2)) /\£+1_

—9Q(2) (1—Q9(—27"1).

We will denote @, the coefficient of \*. Let yi,...,yr 1 be the roots of this polynomial.
It is known [3] that the solution to the equation (8) has form

~

Fy(n) =hyt +--- + %Hyﬁﬂ (9)

for some constant ;.

On the other hand, coefficients Q(2 — 27"¢*1) decrease with growth of ¢ and reach
the minimum value on the interval £ € [1,n — k — 1] at the point £ = n — k — 1, where the
coefficient is Q(2 — 27%). From this considerations we obtain a new family of recurrences
limiting the original one from below:

fr(n) = Z Q(2— 2™ () + Q2 — 27F) 2 fi0),
-
Just as it was done above we introduce
Fi(n) = Zzllﬁw). (10)
Thus
Fy(n) — Fy(n—1) = ni Q2 — 27 (Fu(f) — Fu(f — 1)) + Q2 — 27" Fy(n — k — 1),
F(1) =2 o

(11)



In this case the characteristic polynomial has the following form:

ﬁk()\) _ )\k+1 . (1 + Q(l)))\k . 2 Q(Q) (Q(_27k+é+1) . Q(_27k+£+2)) )\€+1_ (12)
—Q(2) (Q(-27") — Q(-27")) . (13)

We will denote @, the coefficient of A*. The solution to the equation (11) has the following
form:

Fe(n) = Yyl + -+ Tes1Ypers (14)
where vy, ..., yp+1 are the roots of Flk()\) and ¥; are some constants.

Consider the following family of polynomials (¢ € [0, 1]):
U (A) = N = (L4+ QN —t- G N = =t &y (15)

and the similar one for ¢; (denote it @;(\)). We will prove the following lemmas describing
these families (note that @; = @; for i > 1).

Lemma 6. For every t € |0, 1] the polynomials uy(\) and G (N):
(a) have no root in the annulus 1 < |\ <2, if Q = 2;
- Q ;
(b) have no root A such that |\ = % + 1, if Q > 2.

Proof. We prove the case (a) by contradiction. Assume that u;(\) has a root A such that
1 < |A| < 2. Then taking absolute values in both parts in the equality

ML B Nt Gy = 3AF
and applying the triangle inequality, we get
At G g AP 4+ B = 3IAF

Then
AP =3I+t Br1) = =t Graf A 2= =t &y

Since the branches of the parabola y(|A|) = |A\|?> — 3|\| + ¢ - §y_1 are directed upwards, it
reaches its maximum on one of the boundaries of the considered segment. In our case

y(1) =y(2) = =241 G-

That is,
NN (=24t Pruer) = —t - Gra| A2 = =t Dy

Dividing by [A[*~1 we get
22—t Gy — b Pea| AT = — 1 ol ATE

Noting that simultaneously ¢ < 1 by premise and |[A|™! < 1 in the considered annulus, we
arrive at:
2<Pr 1+ Prat o+ Qo (16)

At the same time it is easy to prove that for ) = 2

Ck—1+ P2+ -+ o = 2,



so we have come the contradiction with (16). The same line of reasoning works for ;(\)
except that instead of the last equality we get strict inequality.

We turn to the case (b): @ = 4. If under this condition there is a root such that
Al = ¢ + 1, then

k+1 k—1 k
(%Jrl) +(§+1) -t-gBk1+---+t-@0>(Q+1)-(%+1) .

As far as max p; = @1 = Q% — @ and t < 1 then

(%+1)k+1—(62+1)<%+1)k+%(Qg—Q) <%+1)k>0

(v/Q —2)?% <0,

which contradicts @ > 4. Absolutely the same arguments work for ;(\). O

or

Lemma 7. None of the derivatives of 4,;(\) and i, (\) have a root X such that |\ = $ +1.

Proof. We firstly note that polynomials @;(\) and () differ only in the constant term,
which implies equality of derivatives

A9 =8P (\) for all s > 1. (17)

So we will prove the lemma only for u;(\).

Suppose that there exists A, || = % + 1, such that ﬁgs)()\) = 0. Then similarly to
Lemma 6 we get:

k+1—s k—1—s
(k+1)5-(%+1) +(k—1)s-(%+1) APp—1 + -+

—s k—s
+05-<%+1) 1Py = (Q+1)k3-(§+1)

(here 2% denotes z(z — 1) ... (z — s + 1)). As noted above, max3; = Q2 — Q, so

(k= 1)5Q% — Q) - %(% + 1)H > (Q+ 1)kt (% + 1)IH (k1) (% + 1)k+1_5,

therefore,

(k:—s)(k:—s—i—l)(Qg—Q)-%2k(k—s—i—1)(Q+1)—k(k+1)(%+1>.

This inequality can be viewed as

a(Q, s)k* +b(Q, s)k + ¢(Q, s) = 0.

a(Q,s) <0, if Q # 4,
a(Q, s) = 0, otherwise.

Moreover, in the case of Q = 4, it is true that b(@,s) < 0. Thus, there exists a certain
number £ starting from which this inequality will not be satisfied. O]
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Lemma 8. The polynomials ii,(\) and ii,(\) have exactly one root X such that |\| > % +1.

Proof. For the considered polynomials it is known [4] that their roots are continuous
functions of variable t. As

Go(A) = To(A) = N7 — (1 + Q)N

these two polynomials have 0 as a root of multiplicity & and (1+@Q) as a root of multiplicity
one.

By Lemma 6, @;(\) and 4, (A\) do not have roots in the annulus 1 < |A| < 2 (for
Q) = 2) or the circle |\| = % + 1 (for @ = 4). Thus, all curves corresponding to the first
k roots do not leave the circle |A\| < 1 (for @ = 2) and the circle |\| < % + 1 (for Q = 4).
The curve corresponding to the last root does not leave the sets [\ > 2 and || > £ + 1

respectively. O]
Note that Hy(Q + 1) < 0 since

HOQ+D)=Q+1)""" —@Q+1)-(Q+1)" =& 1-(Q+ 1) —-s =y,

and @; > 0, i € [0,k — 1]. On the other hand, p; < Q>—Qforie [0,k — 1], so

H(3Q) = 3Q)"! — (Q + DBQ)" — Gt - (B3Q)F " — -+ — G >
> (3Q)"! —(Q + DB — (2 — Q) 3(5@3 T >
> 3(32@_) : (6@2 0% —40 — 1) ;;Q_) (5Q°—4Q ~1) > 0

for Q > 2. Absolutely similar statements are true for Hy(Q + 1) and Hk(?)Q)

Hence by the intermediate value theorem both functions Hy(\) and Hy(\) have a real
root on the segment [@ + 1,3Q] which can be found by halving the segment. In this case,
for n steps the root can be found with an accuracy O(27").

Then equalities (9) and (14) take form:

ﬁ’k(n) = Wy + pr(n), (18)
ﬁ’k(n) = YUy + pr(n), (19)

where §j,, Jx are maximum (by the absolute value) roots of polynomials Hy(\) and Hj()\)
respectively (they are real, positive and lie inside [Q + 1,3@Q)] as we have proved). 7 and
Fk are some real positive constants. Next, we note that if Q = 2 then pg(n) = O(1) and
pr(n) = 0O(1) as n — . If @ = 4 then

wn=0((3+1)). wm=o((3+1))

The case () = 2 is illustrated on Fig. 1.

Lemma 9. The difference 4. — Ui tends to zero as k — oo.

10



Re

Figure 1: Trajectories traversed by roots of ﬁg)()\) with ¢ from 0 to 1; the round mark
corresponds to t = 0, the square mark corresponds tot = 1

Proof. Using Lemma 7, similarly to the proof of Lemma 8§, it can be shown that the first

100

34

-100

Figure 2: The plot of the function H5(\)
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and second derivatives of the functions ﬁ[k()\) and [;Tk()\) have exactly one root, whose
module exceeds % + 1. We denote them by y; and y respectively (by (17) these values
are the same for }AIk and Pvlk)

Since the function Hy()\) can take negative values, minH,(\) < 0 and
arg min ﬁk(A) < Jk. At the same time arg min }vfk()\) = y;.. Thus y, < ¥.

Carrying out similar reasoning, but considering H()) instead of Hy()\), it is easy to
show that y; < y;. Then starting with some number k the following inequalities are held
(see Fig. 2 for Q) = 2):

5+1<y2<y2<§k<§k<3@

Therefore functions Hj(\) and Hy()\) are convex functions on [v}., Uk], so for any
5 € [0, 1] holds the convexity inequality:

ﬁfk(5y§€ +(1=0)y) < SHy(yp) + (1 — ) Hy(G)-

Note that o
i = Oy + (1= ) for 6 = 2=,
Y — Yg

therefore, finally we get the following chain of inequalities:

He@) < 0H@) + (= O HG) = Z—DHw) < oM (QH),

where at the last inequality we used the fact that H, (y},) is the minimum value of function

ﬁk on the ray [% +1, —|—oo) and also that g —y;, < % — 1. For function v, introduced in

Lemma 7 the equality ﬁlk(yvk) = —u obviously holds. Then we finally get:

(—% + 1)I/k

Uk — Uk < —= .
Hiy(% +1)

It remains to show that the right part of the last inequality tends to zero at k — oo.
This follows from the tendency of v to zero and also from the fact that

k+1 k k
ﬁk<§+1)=<§+1) — (1+Q)<%+1> —@k_1<%+1> — = =

k k
:_%(%4_1) —@kl(%—{—1> — s — g — —00 as k — 0.

Now we can estimate the value of E2n,

Theorem 2. For all ¢ > 0 and all g € N there exist real positive numbers z, Z, ¢; and ¢
such that |Z — Z| < € and

3" < B2 < 05" g5 — 0.

12



Proof. According to Lemma 8 polynomials ﬁk()\) and Pv[k()\) have exactly one root greater
than (% +1). From (7) and (18) (also (10) and (19)) it follows that

Fe(n) = Fy(n) — Fu(n — 1) ~ 3@ — DI~ = 3400,

~ ~ ~

fr(n) = Fi(n) — F(n — 1) ~ (0 — 177" = M100-

At the same time,

~

fu(n) < f(n) < fu(n),
SO
YeUx < f(n) < 0k,

Tk < f1(n) < 290 = Al -

Finally,
~ ~/ i’\jg H, o~ g’]’f’b n
clznzfyk-%SEQq "$'yk-2—n=cgz ,
moreover, Lemma 9 guarantees that z and Z can be made arbitrarily close. O]

Let us use the result of Theorem 2. Chose ¢ = 1072°, Then such 7, and ¥ exist that
[Jx — Ur| < &, that is they are both equal to § with the specified accuracy. This value will
correspond to Z = §. Moreover, value log, J — 1 is interesting as

cl2n~(log2 g—1-¢) « EQqH" < ey - 2n-(log2 ﬂfl-ﬁ—a).

~

Y

~

z

log, y — 1

3.30921306134212177240

5.80027271324371478340

10.53733221939675028493
19.61999911051941379160
32 | 37.19179236569642652549
64 | 71.45569997172021204310
128 | 138.69767829225482267831
256 | 271.32073664755570805747
012 | 533.89365096936984102274

5 0 s O

1.65460653067106088620
2.90013635662185739172
0.26866610969837514246
9.80999955525970689580
18.59589618284821326274
35.72784998586010602155
69.34883914612741133915
135.66036832377785402874
266.94682548468492051137

0.72648818154049951037
1.53612073348070167305
2.39743775493525848727
3.29425307103935297681
4.21691237160283720288
5.15897719358341460680
6.11579982787398693748
7.08385550468282259524
8.06040858243800754807

Table 1: Approximate values associated with EQ for different values of Q

Now we can evaluate the variance of the value 217:
D2 = E(27)° — (B2f)? = B2 — (R2!)?,
It is easy to observe from this table that (]E2H")2 = 0(]E22H"). Thus, the variance
D2 can be estimated by the second moment:

Cll . 2(1.536175)n < ]D)QH" < cl2 . 2(1.5361+5)n'

Finally we estimate the probability of deviating from the expectation E2#». We use
Chebyshev’s inequality:
P(|2" — B2 > ) < =

a?

13



Choose a = v"vID2H» v > 1 then

1
]P’(‘QH” — k2% | > v"\/]D)QHn) < —-—0asn— oo

V2

Thus with probability tending to one
2fn < E2fn 4 ¢y D2Hn

or, for example,
oHn _ (20.76807n) A4S 7 —> o0,

0.5

0.0
1 2 3 4 5 6 7 2 4

Figure 3: Distribution of 2H32/K% and 2H64/K%.

For n = 64 theoretical expectation E2/" is approximately 9,92 - 10'® and computed
one is 5,38-10%3. So real value is only 1,8 times smaller than calculated one. On Fig. 3 one
can see that K% (i) < 2Hn for n = 32 and n = 64. So at least in these cases our hypothesis

is true. Besides, the relation 2H3L/K% (1) is small.

3 Equivalence classes’ sizes

It turns out that there is a simple analytical formula for the size of any given equiv-
alence class.

Let n-bit number i = (a, 104, 2, 3,...,Q) be the number of (2" x 2") - matrix
row and i’ = (v, 9,0, 3,..., Q).

Theorem 1. For each number i’ the row of DDT-matriz with this number belongs to the
equivalence class of size

_ L s—1oa (&) Cr—1
Pi = 2 CYK Cs—l s—1—cy * " 08—1—01—"'—Cr—2’
where
(a) K is the number of 1’s in binary representation of ¢,

(b) s is the number of groups of 0’s and 1’s in ',

(¢) c1,¢Ca,. .. is the number of 0’s of size 1,2,. ...
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Proof. Row distributions of the second half of the DDT-matrix fully duplicate distribu-
tions of the first half, so it is enough to compose a formula for the first part and multiply
it by two.

Since the last group of 0’s is fixed, we need to position n —1— K — ¥/, 0’s. In addition,
before the last group of 0’s we strictly have to put at least one 1, in order to separate it.
So we need to find place for only K — 1 1’s.

Let us consider a model problem. We associate with each 1 a white ball

ORNO

and each group /4, ...,0,_1 a black one.

It is required to find the number of variants to locate K — 1 white ball and s — 1 black
ball so that between two black ones there is at least one white.

Let us imagine that the goal is to place s — 1 partition in a box with K — 1 elements.
We can put a partition on one of K places (between elements and on the sides), but in
the way the elements are always separated from each other. So the number of variants is
st

Now let us note that in fact black balls are multicolour balls where each colour
corresponds to a specific length of a group of 0’s:

,t=1,...,m

¢; = color; = [{4; | ;=i,j=1,...,s—1}

Thus, in order to get all possible distribution of balls, that is, all possible row numbers
included in one equivalence class, it remains to calculate the number of representations
of s — 1 black ball through colored ones, provided that a set of colored balls is given.

It can be proved by induction that the number of representations of black balls through
colored ones is:

c1 co Ccr—l
s—1%Ys—1—¢c1 *** Ys—1—c1——Cp_2"

You can split black balls into balls of the same color in a unique way. Now let the
formula be true for black balls partitioning into balls of » — 1 colours. Let us consider
that the number of balls of colours 1,...,7 — 1 equals respectively ¢, ...,c._,. Then the
number of variants is

CCIT—Q

c cl
C’slflcvsz—lfc’1 T Y s—l=c——cl g
Now let (r —1)-th colour be actually a union of (r — 1)-th and r-th colour. In other words,
d=c,dy=cy...,c_5=1cr9,¢ | =c—1+c.. Then the number of variants to partition

. . Cr—
s—1—ci—--—c¢_pintwocolouris C7 . . .. O
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Figure 4: Distribution of Hs, and Hgy

Usually one needs 2(23") operations to calculate H, (to get the DDT-table and
then consistently by definition calculate entropy). For example, for n = 32 it is 2% bit
operations or approximately 6.4 - 10'® seconds and for n = 64 it is 2'92 operations or
4-10* seconds. But using our short representation of an equivalence class and the ability
to enumerate all classes in time proportional to their number the problem can be solved
on a laptop in 0.1 and 62 seconds for n = 32 and n = 64 respectively. Distributions for
these cases are shown on Fig. 4.
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