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Abstract

McEliece and Niederreiter cryptosystems are robust and versatile cryptosystems.
These cryptosystems work with any linear error-correcting codes. They are popular
these days because they can be quantum-secure. In this paper, we study the Nieder-
reiter cryptosystem using quasi-cyclic codes. We prove, if these quasi-cyclic codes
satisfy certain conditions, the corresponding Niederreiter cryptosystem is resistant to
the hidden subgroup problem using quantum Fourier sampling. Our proof requires
the classification of finite simple groups.
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1 Introduction

In last couple of decades, modern view of the theory of computer science has taken huge
leap due to advances in quantum computing. First significant impact of quantum com-
puting was in 1995 with Shor’s factoring algorithm [27]. This quantum algorithm could
factorize numbers in polynomial time. This breaks RSA. Soon this algorithm was extended
for the discrete logarithm problem. This triggered post-quantum cryptography.

All the algorithms mentioned above, the factoring algorithm, solving the discrete al-
gorithm problem are instances of the hidden subgroup problem. Roughly speaking, hidden
subgroup problem is an instance where a function hides a subgroup and our task is to
recover the subgroup. Quantum computing gives a solution to this problem via quan-
tum Fourier sampling (QFS) when the parent group is commutative. So far, not much
progress has been made in the hidden subgroup problem for non-commutative groups. In
this paper, we look at one such cryptosystem, a code based Niederreiter cryptosystem
using quasi-cyclic codes.

The idea of (in)effectiveness of QFS was introduced by Kempe and Shalev [18], where
they characterized subgroups in permutation groups that can be distinguished from the
identity subgroup via a quantum Fourier sampling. This idea gave way of showing that
some subgroups can not be distinguished from the identity subgroup and hence a hidden
subgroup problem can not be solved by QFS. Dinh et. al. [7], used this to show that
McEliece and Niederreiter cryptosystems resist QFS for goppa codes followed by Kapshikar
and Mahalanobis [16]. We prove similar result for a large class of quasi-cyclic codes (QCC).
Our main theorem is the following:

Theorem A (Main Theorem). For quasi-cyclic codes, which satisfy conditions (i) - (v)
in Section 4.1, the corresponding Niederreiter cryptosystems resists quantum Fourier sam-
pling attack.

Our proof can be divided up into 3 parts. Let H be the parity-check matrix of size
k×n to be used in the Niederreiter cryptosystem. We write H = [I|C], where C is a block
matrix with each block a circulant matrix of size p over a proper extension of F2 for some
prime p.

A) First we show that for any codes, the hidden subgroup problem over (GLk(F2)× Sn)2o
Z2 can be broken down into GLk(F2) and Sn with an additional overhead in terms
of the size of the hidden subgroup. Note that this decomposition into individual
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components is true for any error correcting code. It can be useful for other codes as
well.

B) In the second part we use the structure of quasi-cyclic codes to find some important
bounds. Here we also show, for our codes, the hidden subgroup is contained in
Sk × Sn.

C) We finish by combining the above arguments with some important results from the
theory of permutation groups to show that the hidden subgroup can not be dis-
tinguished from the identity subgroup. Hence the Niederreiter cryptosystem thus
constructed will be resistant to quantum Fourier sampling. This part uses the clas-
sification of finite simple groups.

1.1 A quick survey

Niederreiter or McEliece cryptosystems were not so popular. The main reason for this is
large key sizes and in some cases low transmission rates. Various attempts were made to
decrease key sizes. Many of them were later broken down with one or the other attack but
the original McEliece and Niederreiter cryptosystem is still believed to be secure. Balsdi
and Chairaluce [3] suggested implementation of QC-LDPC codes for McEliece cryptosys-
tem. Later similar construction based on QC-MDPC [23] was also recommended. Guo
et. al. [12] presented a reaction attack on QC-MDPC. Later similar attack was also pre-
sented on QC-LDPC [9]. Other than these, there are other notable attempts by Monico
et. al. [2,24] including a recent work by Li et. al. [21]. For more information on the use of
quasi-cyclic LDPC matrices in code based cryptosystem we refer to [1] and NIST round
1 proposals. Other than these, there are broadly two major general classical attacks on
code based cryptography which fall under ISD (information set decoding). One of them is
based on Stern’s strategy [28] which was later improved by Bernstein et. al. [5] and other
attack is due to Lee and Brickell [20]. For more on code based cryptography and attacks
on it, we refer the reader to two NIST submissions for post-quantum cryptography [4,30].

1.2 Structure of the paper

In Section 2, we introduce briefly the standard method for quantum Fourier sampling and
associated hidden subgroup problem along with a result by Kempe and Shalev [17, 18].
In the following section, we briefly talk about code based cryptosystems and in particular
the Niederreiter cryptosystem. We also mention the main quantum attack the scrambler-
permutation attack and its connection to the hidden subgroup problem which is a main
objective of this paper. Then we move to the main contribution of this paper – proof of
Theorem A. This paper is based on the work of Kempe and Shalev [17,18]. Similar work
was also done by Dinh et al. [7] and Kapshikar and Mahalanobis [16].

2 The hidden subgroup problem

One of the unifying theme in quantum computing is the hidden subgroup problem. Most of
the practical algorithms that offer exponential speedup in quantum computer science can
be modeled in this form. Popular examples are, factoring integers by Shor’s algorithm,
the discrete logarithm problem and others [13].

Definition 2.1 (Hidden Subgroup Problem). Let G be a group and H be a (unknown)
subgroup of G. We are given a function f from G such that f(g1) = f(g2) whenever
g1H = g2H. The function in this case is said to be separating cosets of the subgroup H.
The hidden subgroup problem is to find a set of generators of H.

The hidden subgroup problem is easy to solve when the group G is abelian but for
non-commutative groups it is far from realized. Efforts to solve the hidden subgroup
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problem can be broadly characterized into two categories. One of which is based on a
generalization of quantum Fourier sampling from abelian to non-abelian groups [14, 26].
The second direction is on some particular non-abelian black-box groups where instead of
doing quantum Fourier transform over the group, it is done on the abelian group [15,29].
Apart from this, some strong structural results are available in the non-commutative case,
see Vazirani [10]. In this paper, we follow the first approach and our indistinguishability
depends on the quantum Fourier transforms on non-abelian groups. The function for
the Fourier transform is given by an irreducible representation over the field of complex
numbers. Thus our Fourier transforms are matrix valued. In the case of abelian groups,
the Fourier transforms were scalar valued.

2.1 Quantum Fourier Sampling

The algorithms based on QFS were developed based on the standard method by Simons
and Shor [27]. We roughly sketch the process. The quantum Fourier sampling is based on
a unitary transformation defined as follows:

Definition 2.2 (QFT). A quantum Fourier transform takes an element of the group
algebra C[G] to the representation basis or the Fourier basis for group G.

QFT (g) =
1√
|G|

∑
ρ,i,j

√
dρρ(g)i,j(ρ, i, j)

where ρ is an irreducible representation of G and dρ is its dimension.

The standard method for QFS is the following: initialise the state in superposition of all
states in the first register and |0〉 in the second register. Apply f (where f(x, 0) = (x, f(x))).
This is followed by measurement on the second register which puts the state of the first
register in a random left coset of a subgroup H i.e., |gH〉 =

∑
h∈H |gh〉 for a random

g. Finally QFT along with the measurement in the Fourier basis, gives the probability
distribution as

PgH (ρ, i, j) =
|dρ|
|G| |H|

∣∣∣∣∣∑
h∈H

ρ(gh)i,j

∣∣∣∣∣
2

. (1)

As we have chosen g randomly and uniformly, PH = 1
|G|
∑

g PgH. To solve the hidden

subgroup problem, one finds H in poly(log(|G|)) time. To distinguish H from the identity
subgroup 〈e〉, it is necessary that L1-distance between PH,P〈e〉 is greater than some inverse
polynomial in log(|G|). Thus one says that H is distinguishable from 〈e〉 if there exists
a constant c such that DH := ‖PH − P〈e〉‖1 ≥ (log |G|)−c. Otherwise, we say that H is
not distinguishable from 〈e〉. So, if for all constants c, H and 〈e〉 have L1-distance smaller
then (log(|G|))−c, we say that H is not distinguishable from the identity subgroup. For
more on this we refer to Kempe and Shalev [18]. It is well known that

DH ≤
∑
i

|Ci ∩H||Ci|−
1
2 =

∑
h∈H,h 6=e

|hG|−
1
2 (2)

where Ci is a non-identity conjugacy class of G and hG denotes conjugacy class of h in G.
So, by showing DH is less than every inverse polynomial in log(|G|) one can show that,

QFS can not successfully reveal the hidden subgroup H. This is how we proceed in this
paper, building on the work on Kempe and Shalev [18].

3 Code based cryptosystems

There is a natural association between coding theory and cryptography because coding
theory is a source of many computationally hard problems. More importantly, it is one
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of the promising areas in post-quantum cryptography as the underlying structures is non-
commutative. As mentioned earlier, Shor-like algorithms, that are based on QFS are very
effective over abelian groups. So, cryptosystems based on non-commutative groups are
thought to be potential candidates for post-quantum cryptography.

One of the earliest cryptosystems based on error correcting codes was by McEliece [22].
A similar cryptosystem was proposed by Niederreiter [25]. Later, a signature scheme
based upon Niederreiter systems was also presented. Our cryptosystem is a Niederreiter
cryptosystem, based on quasi-cyclic codes.

3.1 Niederreiter cryptosystems

Let H be a k × n parity-check matrix for a [n, n − k] linear code C with a fast decoding
algorithm. Let e be the number of errors that C can correct.
Private Key: (A0,H,B0) where A0 ∈ GLk(F2) and B0 is a permutation matrix of size n.
Public Key: H′ = A0HB0.
Encryption:

Let X be a n-bit plaintext with weight at most e. The corresponding ciphertext Y of
k-bits is obtained by calculating Y = H′XT.

Decryption:

Compute y = A−1
0 Y. Thus y = HB0XT.

Using Gaussian elimination find a z with weight at most e and HzT = y. Since y =
HB0XT, H

(
zT −B0XT

)
= 0. Hence we have z −XBT

0 ∈ C.

Now use fast decoding on z with H to get XBT
0 and recover X .

3.1.1 Scrambler-Permutation Attack

Scrambler-permutation attacks are defined as, given H and H′, find A and B. Note
that any A,B that satisfying H′ = AHB breaks the system. Quantum computers, in
principle, can exploit this attack. This follows from the fact that scrambler-permutation
attacks can be reduced to a hidden subgroup problem. As we saw in previous sections,
hidden subgroup problem is important because quantum computers have an advantage
over classical computers for this class of problems over abelian groups.

To illustrate the reduction to hidden subgroup problem, we first define a problem that
is very close to the hidden subgroup problem.

Definition 3.1 (Hidden shift problem). Let f0, f1 be two functions from group G to some
set X such that: there is a g0 such that for all g, f0(g) = f1(g0g). The hidden shift problem
is to find one such g0.

One can frame the scrambler-permutation attack as a hidden shift problem over G =
GLk (F2)× Sn where f0(A,B) = A−1HB and f1(A,B) = A−1H′B. Moreover, it is known
that for any non-commutative group G, a hidden shift problem can be reduced to a
hidden subgroup problem on G2 o Z2 where the action of 1 on (x, y) is (y, x). In this
paper we are interested in the particular case of G = GLk(F2) × Sn. For that we refer
to Dinh et. al. [7, Proposition 3], we use their notations for important subgroups for easy
reference. The hidden subgroup is

K =
(
(H0, s

−1H0s), 0
)
∪
(
(H0s, s

−1H0), 1
)

(3)

where H0 = {(A,P ) ∈ GLk(F2) × Sn : A−1HP = H}. Note that from now on wards we
will use H for H0.

Thus to break a Niederreiter cryptosystem using QFS, one needs to solve a hidden
subgroup problem over G2 oZ2 for the hidden subgroup K. From our previous discussion
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it follows, if one shows that K is indistinguishable from the identity subgroup, then QFS
can not solve the required hidden subgroup problem. For an understanding of indistin-
guishability we refer to Kempe and Shalev [18].

4 Niederreiter cryptosystems and Quasi-Cyclic Codes

In this section we describe our Niederreiter cryptosystem which uses quasi-cyclic error
correcting codes (QCC). Quasi-cyclic codes are a generalization of cyclic codes, codes
where code-words are closed under right shifts. Since quasi-cyclic codes are a generalization
of cyclic codes they can be expressed as nice algebraic objects. For more on QCC we
refer Gulliver [11] and for algebraic structures of these codes to the work of Lally and
Fitzpatrick [19].

An important underlying structure of a QCC is circulant matrices. Circulant matrices
are a building block of quasi-cyclic codes.

Definition 4.1. Circulant matrix: An n × n matrix C ′ over a field F is called circulant
if every row, except for the first row, is a circular right shift of the row above that.

A typical example of a circulant matrix is
c0 c1 · · · cn−1

cn−1 c0 · · · cn−2
...

...
. . .

...
c1 c2 · · · c0

.

It is known that a circulant matrix can be represented by its first row, as a polynomial
of degree n− 1 over the ring F [x]/(xn − 1). In this paper, we define the multiplicity of a
field element a in C ′ as the number of times it appear in the first row of C ′. Multiplicity
can be zero. For more on circulant matrices we refer to Davis [6].

4.1 Conditions on the parity-check matrix

We need some terminology before we can describe our requirements on parity-check ma-
trices of a quasi-cyclic codes. These condition are easy to generate and a large class of
block circulant matrices satisfy these conditions.

Definition 4.2 (Permutation equivalent rows and columns). Let ci, cj be two column
matrices, we say columns ci and cj are permutation equivalent if there is a permutation
σ ∈ Sk such that σ(ci) = cj. The permutation group acts on the indices of the columns.
Similarly, if there is a permutation τ ∈ Sn such that τ(ri) = rj, we say that rows ri and
rj are permutation equivalent.

In short, two columns are permutation equivalent if one of them can can be reordered
to get the other column. We now describe the quasi-cyclic code for our cryptosystem. We
do this by stating conditions on the systematic parity-check matrixH for a error-correcting
code over F2η . The dimension of H is m1p ×m2p, where m1 < m2 are positive integers
and p a prime. Furthermore, H is of the form [I|C] where I is an identity matrix of size
m1p × (m2 − m1)p and C is a block-circulant matrix. Each block in C, is a circulant
matrix Cij where i = 1, 2, . . . ,m1 and j = 1, 2, . . . , (m2 −m1) and is of size the prime p.
It is well known that C =

∑
iEi,j ⊗Ci,j where Eij is the matrix of same size as C with 1

in the (i j) position and zero everywhere else.

i) Circulant matrices Cij with all entries the same is forbidden. That means, Ci,j is
such that the polynomial corresponding to the circulant matrix Ci,j is not a

∑
k µ

k

for any a in the field.
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ii) For each j there is at least one i where Ci,j contain an element from an proper
extension of F2. This condition is equivalent to saying that each column of C contains
at least one element from some non-trivial extension of F2.

iii) Any two rows ri, rj in C are permutation equivalent only when

⌊
i

p

⌋
=

⌊
j

p

⌋
where

0 ≤ i, j ≤ m1p. Similarly, two columns ci, cj are permutation equivalent only when⌊
i

p

⌋
=

⌊
j

p

⌋
where 0 ≤ i, j ≤ m2p .

Note that if

⌊
i

p

⌋
=

⌊
j

p

⌋
then rows ri, rj and columns ci, cj are permutation equiva-

lent because Ci,j is a circulant matrix. So this condition simply says that apart from
these permutation equivalences, there are no other permutation equivalence between
columns or rows.

iv) There exists at least one Ci,j for which corresponding polynomial is not a
∑

k 6=k0 µ
k+

bµk0 , which is a matrix with two distinct entries a, b where a has multiplicity p− 1
and b has multiplicity one.

v) The prime p > 30.

Remark: Condition (iii) can be alternatively stated as there exists a ∈ F2η , such that,

the multiplicity of a in ri is not the same as in rj where

⌊
i

p

⌋
6=
⌊
j

p

⌋
. Equivalence of

these two conditions follows directly as two rows are permutation equivalent if and only
if one of them can be reordered to the other. Note that this equivalent condition of
permutation equivalence is helpful in finding suitable C. This is because, if two rows
are permutation equivalent, one can just count multiplicities rather that going through all
possible permutations or, in other words, suitably create the rows so that the multiplicities
are different. This says that there are a lot of such block-circulant matrices C.

4.2 From K to H

Recall from Equation (3), G = GLk(F2) × Sn and we are trying to solve the hidden
subgroup problem in the group G2 o Z2. The subgroup in this case is K = K0

⋃
K1

where K0 =
((

H, s−1Hs
)
, 0
)

and K1 =
((

Hs, s−1H
)
, 1
)
. Note that H replaces H0 in

Equation (3), K1 is not a subgroup and the union is disjoint.
In this section, we reduce distinguishability of K, DK to the subgroup H. If we directly

apply Equation (2), our optimization should be over (GLk(F2)× Sn)2 o Z2. We reduce
it to H, a subgroup of GLk(F2) × Sn. Then the later bound can be trivially decomposed
into individual components GLk(F2) and Sn. Apart from getting rid of the Z2 component
it also serves one more, the most important purpose for further optimization. The bound
that we develop are in terms of H. It has no shift term s. It is part of a subgroup H and
has connections and structural properties that we exploit for our optimization.

Back to some more notations. Let xG denote the conjugacy class of x in G and CG(x)
denotes the centralizer of x in G. Here the group acts on itself by conjugation. We abuse
the notation slightly and use e for the identity element in a group. It should be clear from
the context which group we are referring to.

From [17, Proposition 1 (2)] we know that

DK ≤
∑

k∈K,k 6=e
|kG2oZ2 |

− 1
2 ≤

∑
k0∈K0,k0 6=e

|kG2oZ2
0 |

− 1
2 +

∑
k1∈K1

|kG2oZ2
1 |

− 1
2 .

Let S0 be the sum over K0 and S1 be the sum over K1 in the above expression.
We present an upper bound for DK by restricting our action on S0 and S1. First we

start with S1. By the orbit-stabilizer property S1 can be rewritten as
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S1 =
∑
k1∈K1

|CG2oZ2
(k1)|

1
2

|G2 o Z2|
1
2

≤ |K1|
max
k1∈K1

|CG2oZ2
(k1)|

1
2

|G2 o Z2|
1
2

. (4)

Now we compute an upper bound of CG2oZ2
(k1). Let us define sets G0, G1, two disjoint

subsets of the group G.

G0 = {((A0, P0) (A1, P1) , 0) : A0, A1 ∈ GLk(F2), P0, P1 ∈ Sn}

and

G1 = {((A0, P0) (A1, P1) , 1) : A0, A1 ∈ GLk(F2), P0, P1 ∈ Sn}.

Clearly G2 o Z2 is a disjoint union of G0 and G1. Then |CG2oZ2
(k1)| = |CG0(k1)| +

|CG1(k1)|. For g0 ∈ G0 one can show the following: if g0 = ((A0, P0) , (A1, P1) , 0) is an
element of CG0(k1) with k1 =

((
h1s, s

−1h2

)
, 1
)
, h1s (A1, P1) = (A0, P0)h1s. This result

is a simple calculation using the fact that k1 commutes with g0.

After fixing (A0, P0) and h1, there is at most one choice available for (A1, P1). Thus

|CG0(k1)| ≤ |H||GLk (F2)× Sn|. (5)

Similarly, writing a particular commuting equation for k1 to g1 we get, h1s (A1, P1) =
(A0, P0) s−1h2. In this case,

|CG1(k1)| ≤ |H|2||GLk (F2)× Sn|. (6)

Combining Equations (5) and (6), we get |CG2oZ2
(k1)| =

(
|H|2 + |H|

)
|GLk (F2)× Sn|.

Putting together above calculations along with |K1| = |H|2, we get

S1 = |H|2
 (

|H|2 + |H|
) 1

2

|GLk (F2)× Sn|
1
2

 . (7)

Similar computation for g0 ∈ CG0(k0) leads us to two conditions:

i) h1(A0, P0) = (A0, P0)h1 i.e., (A0, P0) ∈ CG(h1)

ii) s−1h2s(A1, P1) = (A1, P1) s−1h2s i.e., s (A1, P1) s−1 ∈ CG(h2).

Thus, there is an upper bound of CG0(k0) by |CG(h1) · CG(h2)|. Hence,

|CG0(k0)|
|G2 o Z2|

≤ |CG(h1) · CG(h2)|
|G2 o Z2|

≤ |G|min(|CG(h1)|, |CG(h2)|)
|G2 o Z2|

. (8)

Similar calculation for CG1(k0) gives us the following two conditions:

i) s (A1, P1) (A0, P0)s−1 ∈ CG(h2).

ii) (A1, P1)(A0, P0) ∈ CG(h1).

Thus, there is an upper bound of |CG1(k0)| by |G|min(CG(h1), CG(h2)). Hence,

|CG1(k0)|
|G2 o Z2|

≤ |G|min(|CG(h1)|, |CG(h2)|)
|G2 o Z2|

. (9)

Combining Equations (8) and (9), we get

|CG2oZ2
(k0)|

|G2 o Z2|
=
|CG0(k0)|
|G2 o Z2|

+
|CG1(k0)|
|G2 o Z2|

≤ min(|CG(h1)|, |CG(h2)|)
|G|

.
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Thus,

S0 =
∑
k0 6=e

(
|CG2oZ2

(k0)|
|G2 o Z2|

) 1
2

≤
∑

(h1,h2) 6=(e,e)

(
min(|CG(h1)|, |CG(h2)|)

|G|

) 1
2

≤
∑
h6=e
|H|
(
|CG(h)|
|G|

) 1
2

.

(10)
Again, from orbit-stabilizer theorem,

S0 ≤ |H|
∑
h6=e
|hG|−

1
2 (11)

and thus we have achieved our goal for this section of writing DK in terms H. In particular,
this can be done by putting multiplicative overhead for |H| and an additive term given by
Equation (7).

DK ≤ |H|
∑
h6=e
|hG|−

1
2 + |H|2

 (
|H|2 + |H|

) 1
2

|GLk (F2)× Sn|
1
2

 . (12)

5 Size and minimal degree of H

Note that in the previous section, we have boiled down the indistinguishability of K to
conjugacy classes of H. Similar to the work of Kempe and Shalev [18], minimal degree
and size of the subgroup play an important role in showing indistinguishability of K. In
this section, we give an upper bound on the size of H and the lower bound on minimal
degrees.

Before that, we recall some well known definitions.

Definition 5.1. For any group G ≤ G1 ×G2 we define Πi(G) as projection of the group
G on Gi for i = 1, 2.

Definition 5.2. Let Mk,n be the ring of k × n matrix. Then there is a natural group
action of Sk × Sn on Mk,n given by (P1, P2)M = P−1

1 MP2. Let Stab(C) be the stabilizer
of C. Furthermore, TC := Π1(Stab(C)).

The main theorem for this section is the following:

Theorem 5.1. Let H be defined by Equation (3) for codes following conditions from
Section 4.1 then

(i) |H| ≤ p2

(ii) The minimal degree of Π1(H) ≥ p− 1 and the minimal degree of Π2(H) ≥ p− 1.

To prove the above theorem, the key lemma needed is following:

(weak) Subgroup Decomposition Lemma. Let H be a parity-check matrix such that
it satisfies conditions from Section 4.1 then TC ↪→ Sp×Sp×· · ·×Sp×AGL(Fp)×Sp×· · ·Sp.
The direct product is taken m1−1 terms of Sp and one term of affine general linear group.

This establishes upper and lower bounds on the size and the minimal degree of TC
respectively. Later, we will translate this to that of H. We prove the above theorem by a
series of lemmas.

Lemma 5.2. Let (A,P ) ∈ H then

A = P1

P = A−1 ⊕ P2 = P−1
1 ⊕ P2.
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where P1 ∈ Sk and P2 ∈ Sn−k. Moreover, P1CP2 = C and for each P1 there is an unique
P2. It then follows, TC = Π1(H) and |TC | = |H|.

Proof. Let (A,P ) ∈ H then by definition we have

[I|C] = A[I|C]P = [A|AC]P.

Since action of right multiplication by P is equivalent to reordering of columns we
infer that [A|AC] and [I|C] have same columns possibly reordered. By construction (in
particular condition (ii) in Section 4.1), C and the identity matrix I have no common
columns as every column of C contains an element from proper extension. As C and I
have distinct columns; A should have same columns as the identity matrix I. So by the
action of multiplication by P first k columns must go to themselves, in other words, first
k columns make up a permutation matrix of size k. Hence P is block diagonal matrix,
having a block of size k and n − k where each of the blocks is a permutation matrix of
size k and n − k respectively, we get P = σk ⊕ σn−k. Now Aσk = I gives A = P1 and
P = A−1 ⊕ P2 where P1 = σk

−1 and P2 = σn−k. It is easy to see from the fact H = [I|C]
that P1CP2 = C.

Clearly, TC = Π1(H) as TC being a subgroup, it is closed under inverse. Now, to show
uniqueness of P2 for every P1, it suffices to prove for every P1 there is at most one P2.
This follows from P1CP2 = C because no two columns of C are identical and so no two
columns of P1C are identical. Now P2 should reorder the columns to give back C which
can be done at most in one way. Hence, for every P1 there is at most one corresponding
P2.

Now we move to find an upper bound for the size of H by embedding it into direct
product of m1 affine general linear group over Fp.

Lemma 5.3. If (P,Q) ∈ Stab(C) then P =
∑

iEi,i ⊗ Pi and Q =
∑

j Ej,j ⊗Qj where Pi
and Qj are permutation matrices of size p.

Proof. Note that the lemma simply says that all P ∈ Π1(Stab(C)) and allQ ∈ Π2(Stab(C))
are block diagonal matrices with blocks of size p. We prove the decomposition of Q, similar
result for P can be achieved by similar arguments.

Suppose there exists a Q ∈ Π2(Stab(C)) that can not be decomposed into the block

diagonal form. Then there is some i,j such that Q(i) = j and

⌊
j

p

⌋
6=
⌊
i

p

⌋
(corresponding

to off block diagonal entry at P2(i, j)). Now by condition (iii) on C, ci and cj are not
permutation equivalent. And thus ith column of CQ and ith column of C are not permu-
tation equivalent. Thus for any P , the ith column of PCQ can not be equal to ith column
of C. Thus for any permutation P , PCQ 6= C. Which leads to a contradiction.

Lemma 5.4. The group TC ↪→ TC1r1
× TC2r2

× TC3r3
× · · · × TCm1rm1

for all ri ∈
{1, 2, · · · ,m2 −m1}.

Proof. By the decomposition above, it follows that for every i, j, we have PCi,jQ = Ci,j .

PCQ = (ΣkEkk ⊗ Pk)(Σi,jEi,j ⊗ Ci,j)(ΣlEl,l ⊗Ql)
= Σi,j,k,l(EkkEi,jEll ⊗ PkCi,jQl)

= Σi,j(Ei,j ⊗ PiCi,jQj).

The canonical map sending P → (P1, P2, P3, . . . , Pm1) gives the required inclusion.

Remark 5.1. Note that until now, we have used conditions ii) and iii). So, for any C
satisfying those conditions, Lemma 5.4 is valid.

To move further we need a theorem from the theory of permutation groups [8, Section
3.5]. The proof of this theorem requires the classification of finite simple groups.
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Theorem 5.5. Any transitive subgroup of degree prime p must be one of the following:

(a) The symmetric group Sp or the alternating group Ap.

(b) A subgroup of the affine group on p letters AGL(Fp).

(c) One of the Mathieu groups M11 or M23 of degree 11 or 23, respectively.

(d) A projective group G with PSLd(q) ≤ G ≤ PΓLd(q) of degree p = qd−1

q−1 .

Now we apply this theorem on a particular choice of TCiri . The idea here is to choose
a ri for each i, such that, TCiri as described in the Lemma 5.4 can not be (a), (c) or (d).
Note that TCiri are transitive because they contain the cycle (1 2 3 . . . p), only choice left
is a subgroup of the affine group.

Lemma 5.6. Let C ′ be a circulant matrix of size p over a field F described by condition
iv) of Section 4.1 (that is C ′ is neither a

∑
k x

k nor bxk0 +
∑

i 6=k0 ax
i) then TC′ is neither

Sp nor Ap.

Proof. Consider group Zp×Sp acting on the set of polynomials from the ring F [x]/(xp−1).
We want to compute a lower bound for the orbit of this action for a polynomial from the
circulant matrix. The action is as follows:

(u, P )

(
p−1∑
i=0

aix
i

)
7→
∑
i

a(P−1(i))x
ixu

Notice that if P ∈ TC′ then P should take the first column of C ′, denoted by c′ to some
column of C ′, say column c′′. Since C ′ is a circulant matrix, c′ =

∑
j c
′
jx
j for c′j ∈ F . Now

the polynomial for the column c′′ is c′xk mod (xp − 1) for some k in Zp. Thus (−k, P ) is
in the stabilizer of c′ in the above action.

Now for C ′ satisfying condition (iv), the orbit of c′, the first column of C ′ is at least
3p. This can be seen in the following way:

First notice that if c is any column matrix of size p that is permutation equivalent to
c′ then c is in the orbit of c′. Thus every possible reordering of c′ is also in the orbit. Let
mf denote the number of times of occurrence of f in c′. Then the number of such possible

re-orderings is given by p!∏
f∈c′ mf ! . This is less than 3p only in cases where the number of

occurrences are of the form ma = p,mb = 0 for all b 6= a or mb = 1,ma = p − 1,mc = 0
for all c 6= a, b which are precisely the cases forbidden by condition (iv).

Thus

|TC′ | ≤
∣∣Stab(c′)

∣∣ =
p!p

|orbit(c′)|
≤ p!p

3p
=
p!

3
.

Thus, TC′ is neither Sp nor Ap.

Lemma 5.7. The group TC′ for a circulant matrix C ′ of size a prime p ≥ 30 is a subgroup
of the affine group.

Proof. Since TC′ can not be Sp or Ap, the other possible groups are either Matheiu groups
M11,M23 or a subgroups of PΓLd(q). These groups can not have an element of order p
for p ≥ 30. But the map x 7→ x + 1 is the cycle (1 2 3 . . . p) and is an element of order p
in TC′ . Thus TC′ must be a subgroup of the affine group.

So, the required decomposition TC ↪→ Sp × Sp × . . . × Sp × AGL(Fp) × Sp × . . . × Sp
follows. Now we are in a position to reach the main theorem using condition (i).

Lemma 5.8. If a circulant matrix C ′ of size a prime p over a field F that follows condition
(i), that is its polynomial representation is other than a

∑
i x

i then no two columns of C ′

are identical.

10



Proof. Let g(x) denote the polynomial for circulant C ′ such that two columns that are
identical. Then for some k1 6= k2, xk1g(x) = xk2g(x). Consider group action of Zp on ring
F [x]
xp−1 . Now (k2 − k1) ∈ Stab(g(x)). As only non-identity of subgroup of Zp is itself we get
that Stab(g(x)) is whole of Zp which is possible only for circulant matrices of polynomials
a
∑

k x
k.

One can similarly prove that for such C ′ no two rows are identical.

Lemma 5.9. Let Cij be matrices as in condition (i). For all i, j we have, for every P
there is at most one solution Q such that PCi,jQ = Ci,j. Similarly, for each Q there is at
most one P such that PCi,jQ = Ci,j.

Proof. Since no two columns of Ci,j are identical after action of P , no two columns of
PCi,j are identical and then there is unique Q that can reorder columns to get back Ci,j .
Similar row argument proves the unique P .

Lemma 5.10. Let P1, P2 ∈ Tc under decomposition P1 = (P11, P12, . . . P1m1) and P2 =
(P21, P22, . . . , P2m2). Then for any i, P1i 6= P2i.

Proof. Suppose there exists i0 such that P1i0 = P2i0 . Now for any j, P1i0Ci0jQ1j =
P2i0Ci0jQ2j = Ci0j for some permutation matrices Q1j , Q2j . By Lemma 5.9 on C ′ = Ci0j
there is an unique solution Q, we get Q1j = Q2j . Again applying Lemma 5.9 on Cij there
is an unique solution P and we get P1i = P2i for any i. Thus we have proved that if for
some i0, P1i0 = P2i0

then for all i, P1i = P2i making P1 = P2.

Note, this means that there is an injective mapping from the group TC to the group
TCiri for any component in the above decomposition. In particular, if we choose Ciri as a
matrix satisfying condition (iv) then that corresponding component is the affine general
linear group. Thus we get that |TC | ≤ |TC′ | ≤ p2.

Corollary 5.11. The minimal degree of Π1(H) and Π2(H) is at least p− 1.

Proof. Clearly, from TC = Π1(H) in lemma 5.2, we get the minimal degree of Π1(H) to
be at least p − 1. Because, non-identity elements of TC must be non-identity in affine
component of the direct product decomposition (by Lemma 5.10). Moreover, non-identity
elements of an affine group can not fix more than one element. So, the minimal degree
of TC = Π1(H) is at least p− 1. For minimal degree of Π2(H) we show that the minimal
degree of Π2(H) is at least as large as that of Π1(H). Note that, if P1 ⊕ P2 ∈ Π2(H) is a
non-identity element then P1 6= I. This follows from the uniqueness of P2 in Lemma 5.2.
Now, the non-identity element P1 has support of at least the size of the minimal degree
of Π1(H) as it is also an element of Π1(H).

Thus minimal degree of Π2(H) is greater than or equal the minimal degree of Π1(H) ≥
p− 1.

6 Subgroup K is indistinguishable

In this section, we club the results from last section on bounds on projectors of H into
Equation (3) to show that K is indistinguishable. Recall that G = GLk (F2) × Sn and
H = {(A,P ) : AHP = H}. Now from the discussion in previous section, we know that A
is a permutation matrix.

Let h = (σ1, σ2) ∈ H. Then

|hG|−
1
2 =
|CG(h)|

1
2

|G|
1
2

=

(
CGLk(F2)(σ1)

|GLk(F2)|

) 1
2
(
CSn(σ2)

|Sn|

) 1
2

= |σGLk(F2)
1 |

− 1
2 |σSn

2 |
− 1

2 ≤ |σSk
1 |
− 1

2 |σSn
2 |
− 1

2 .
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The last inequality follows because the conjugacy class of h in a permutation group is
a subset of a conjugacy class in the general linear group. Also note, if h is not the identity
in H then σ1 6= I and σ2 6= I by the uniqueness property in Lemma 5.2.

From Equation (12) we have,∑
h6=e
|hG|−

1
2 ≤

∑
σ1,σ2 6=e

|σSk
1 |
− 1

2 |σSn
2 |
− 1

2 =
∑

σ1∈Π1(H)\e

|σSk
1 |
− 1

2
∑

σ2∈Π2(H)\e

|σSn
2 |
− 1

2 (13)

We present this for sum over σ1. Similar result can be obtained for σ2.

Let Γt denote the set of elements of Sk of support t. Then from a well-known the-
orem [17, Theorem B] it follows that there exists an absolute constants b, ε such that if

Π1(H) has minimal degree greater than δ ≥ b then |Γt| ≤ k
−εδ
2

(
k
t

) 1
2 (t!)

1
4 .

From another well known theorem [17, Lemma 8], we know that if C is a conjugacy

class of elements of support t inside Sk. Then |C| ≥ c
(
k
t

)√
t!t−

1
2 where c is some positive

absolute constant.

Therefore, ∑
σ1∈Γt

|σSk
1 |
− 1

2 ≤ c−
1
2 |Γt|

(
k

t

)
(k!)−

1
4 k

1
4 .

This gives, ∑
σ1∈Π1(H)\e

|σSk
1 |
− 1

2 =
k∑
t=δ

∑
σ1∈Γt

|σSk
1 |
− 1

2

≤
k∑
t=δ

c−
1
2 |Γt|

(
k

t

)
(k!)−

1
4 k

1
4

Substituting, ∑
σ1∈Π1(H)\e

|σSk
1 |
− 1

2 ≤
k∑
t=δ

c−
1
2k−εδk

1
4 ≤ akk−εδk

5
4

for some constant ak ≥ 0. Similarly we can get an upper bound for the other sum. Thus,
we have∑

σ1∈Π1(H)\e |σ
Sk
1 |
− 1

2 ≤ akk−εδ1k
5
4

∑
σ1∈Π1(H)\e |σ

Sn
1 |
− 1

2 ≤ ann−εδ2n
5
4

where δ1, δ2 are minimal degrees of Π1(H) and Π2(H). Putting this in Equation (13), we
get ∑

h6=e
|hG|−

1
2 ≤ akank−εδ1k

5
4n−εδ2n

5
4 . (14)

Proof of Theorem A. To prove K is indistinguishable, we need to show that DK ≤(
log(|G2 o Z2|)

)−c
for every positive constant c.

From Equation (12), it suffices to prove that,

log

|H|∑
h6=e
|hG|−

1
2 +
|H|
(
|H|+ |H|2

) 1
2

|G|
1
2

 ≤ log(∆c)

log

|H|∑
h6=e
|hG|−

1
2 +
|H|
(
|H|+ |H|2

) 1
2

|G|
1
2

 ≤ log

2 max

|H|∑
h6=e
|hG|−

1
2 ,
|H|
(
|H|+ |H|2

) 1
2

|G|
1
2
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= log(2) + log

max

|H|∑
h6=e
|hG|−

1
2 ,
|H|
(
|H|+ |H|2

) 1
2

|G|
1
2




Putting |H| ≤ p2, δ1, δ2 ≥ p− 1 and Equation (14) one can verify that above term is less
than log(∆c) for large enough p.

This completes our proof of indistinguishability of the subgroup K, making the cryp-
tosystem resistant to hidden subgroup attacks.

7 A variation

In this section we show indistinguishability of the hidden subgroup for a class of quasi-
cyclic codes that is slightly different from the one defined by conditions in Section 4.1.
This serves two purposes. One, it shows that the class of quasi-cyclic codes can be further
extended and two, it shows robustness and adaptability of our proof.

In particular, we show a way to relax condition i) from Section 4.1. We replace two
conditions, which are the following:

i′) The integer m1 = o(p), where p is a prime.

iv′) For every i there exists a j such that the polynomial for Ci,j is neither a
∑

i x
i nor

bxk0 + a
∑

i 6=k0 x
i .

Note the trade-off between conditions i) and iv) from our previous set. Condition i) is
relaxed from for all i, j to at least one j for every i; whereas condition iv) was needed for
at least one i, j and now it is tightened to at least one j for every i. Conditions ii) and
iii) carry forward as they were while condition i′) is required to ensure that the size of |H|
does not blow-up. As before, we need a key lemma.

(strong) Subgroup Decomposition Lemma. Let H = [I|C] be a parity-check matrix,
such that, it satisfies conditions i′), ii), iii), iv′) and v) then TC ↪→ AGL(Fp)×AGL(Fp)×
. . .×AGL(Fp). Direct product is taken m1 times.

Proof. First note that since conditions ii) and iii) are still satisfied, (ref. Remark 5.1)
Lemma 5.4 holds. Moreover for each i, we can choose Ciri = Cij that satisfies condition
(iv′), in particular, matrices other than given by a

∑
k x

k or bxk0 +
∑

i 6=k0 ax
i. Now for

these matrices TCiri is neither Sp or Ap. Now by similar argument to Lemma 5.7 we get
that every TCiri must be a subgroup of the affine group and we get the required subgroup
decomposition.

This gives an upper bound on the size of H, as |H| = |TC | ≤ p2m1 , and the minimal
degree of Π1 (H) is bounded by p − 1 since at least one of the components must be a
non-identity for a non-identity element of TC . This makes minimal degree at least p− 1.
Now the minimal degree of Π2 (H) is greater than or equal to Π1 (H) by reasoning similar
to Corollary 5.11.

Now putting these bounds of |H| ≤ p2m1 and minimal degree of Π2 (H) greater than
minimal degree of Π1 (H) ≥ p − 1, one can see that with an additional condition (i′)
m1 = o(p), the subgroup K is indistinguishable from the identity subgroup.

8 Conclusion

Niederreiter cryptosystems using quasi-cyclic codes are popular these days. The main
reason behind this interest is quantum-security. This makes it a good candidate for post-
quantum cryptography. This is evident from the NIST submissions [4, 30].
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Historically speaking, post-quantum cryptography grew out of Shor’s algorithm to
factor integers which was later generalized to the discrete logarithm problem. These
algorithms use the hidden subgroup problem in finite abelian groups. This hidden sub-
group problem has a natural analog, the scrambler-permutation problem, in the non-
commutative situation using characters of irreducible representations of the group. If this
hidden subgroup is indistinguishable by the quantum Fourier sampling then we can not
solve the corresponding scrambler-permutation problem. This makes Niederreiter cryp-
tosystem quantum secure. The idea behind the hidden subgroup problem for Niederreiter
cryptosystem was put forward by Dinh et. al. [7] and the idea of distinguishability of
subgroups was put forward by Kempe and Shalev [18].

We prove that for a Niederreiter cryptosystem using quasi-cyclic codes, satisfying cer-
tain conditions, the corresponding hidden subgroup is indistinguishable from the identity
subgroup by quantum Fourier sampling. This analysis is particularly relevant for the
recent NIST submissions in post-quantum cryptography [4, 30].
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[9] Tomáš Fabšič, Viliam Hromada, Paul Stankovski, Pavol Zajac, Qian Guo, and
Thomas Johansson. A reaction attack on the QC-LDPC McEliece cryptosystem.
In International Workshop on Post-Quantum Cryptography, pages 51–68. Springer,
2017.

14



[10] Michelangelo Grigni, Leonard Schulman, Monica Vazirani, and Umesh Vazirani.
Quantum mechanical algorithms for the nonabelian hidden subgroup problem. In
Proceedings of the thirty-third annual ACM symposium on theory of computing, pages
68–74. ACM, 2001.

[11] Thomas A. Gulliver. Construction of quasi-cyclic codes. PhD thesis, University of
Victoria, 1989.

[12] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on MDPC
with CCA security using decoding errors. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 789–815. Springer,
2016.

[13] Sean Hallgrean, Alexander Russell, and Amnon Ta-Shma. The hidden subgroup
problem and quantum computation using group representation. SIAM Journal of
Computation, 32(4):916–934, 2003.

[14] Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. Normal subgroup recon-
struction and quantum computation using group representations. In Proceedings of
the Thirty-second Annual ACM Symposium on Theory of Computing, STOC ’00,
pages 627–635, New York, NY, USA, 2000. ACM.
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