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Abstract. FastSwap is a simple and concretely efficient contingent pay-
ment scheme for complex predicates. FastSwap only relies on symmetric
primitives (semantically secure encryption and cryptographic hash func-
tions) and avoids ‘heavy-weight’ primitives such as general ZKP systems.
FastSwap is particularly well-suited for applications where the witness
or predicate is large (on the order of MBs / GBs) or expensive to calcu-
late (e.g. ≥ 230 computation steps or memory). Additionally FastSwap
allows predicates to be implemented using virtually any computational
model (including branching execution), which e.g. enables practitioners
to express the predicate in smart contract languages already familiar to
them, without an expensive transformation to satisfiability of arithmetic
circuits. The cost of this efficiency during honest execution is a loga-
rithmic number of rounds during a dispute resolution in the presence of
a corrupted party. Let the witness be of size |w| and the predicate of
size |P |, where computing P (w) takes n steps. In the honest case the
off-chain communication complexity is |w|+ |P |+ c for a small constant
c, the on-chain communication complexity is c′ for a small constant c′.
In the malicious case the on-chain communication complexity is O(logn)
with small constants. Concretely with suitable optimizations the number
of rounds (on-chain transactions) for a computation of 230 steps can be
brought to 2 in the honest case with an estimated cost of ≈ 2 USD on
the Ethereum blockchain1 and to 14 rounds with an estimated cost of
≈ 4 USD in case of a dispute. It is noted that the corrupted party can
be made to pay the transaction cost in case of dispute.

Keywords: Contingent payments, Concrete efficiency, Fair exchange,
Smart contracts, Provable security, Universal composability, Authenti-
cated data structures.

1 Introduction

1.1 Setting

The setting of FastSwap (and prior work) is one in which there are three parties:

1 At the time of writing, using a gas price of 10 Gwei (1 ETH = 109 Gwei) and
with price of Ethereum at 160 USD/ETH. Assuming a one-time library contract has
already been published.
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The Judge. The judge is an honest party with public state: we assume that
the other parties of the protocol can retrieve the full view2 of the judge at any
time. Associated with the judge is the action which is taken whenever a correct
witness is provided by the prover – for contingency payments this is transfer of
funds from one account to another. The judge is deterministic and our goal is
to limit the storage requirements and execution time of the judge.

The Auditor. The auditor is a (possibly malicious) party, which can contest the
validity of a witness provided by the prover. In contingent payments the auditor
takes the role of the buyer wishing to buy a witness x ∈ I for a predicate
P : I → {0, 1}, such that P (x) = 1.

The Prover. The prover is a (possibly malicious) party, which wishes to convince
the judge that she possesses a witness for the predicate. In contingent payments
the prover takes the role of the seller wishing to sell a witness x ∈ I, while
guaranteeing payment in exchange for x.

A naive protocol would be to have the prover send x directly to the judge,
which then simply verifies P (x) = 1. However, if the description or execution
time of the predicate is long, this collides with our goal of limiting the computa-
tion required by the judge, furthermore, even when both parties are honest this
protocols leaks the witness x to the environment since the state of the judge is
public.

1.2 Prior Work

Zero-Knowledge Contingent Payments (ZKCP). The zero-knowledge con-
tingent payment construction [4] (by Gregory Maxwell) requires a zero-knowledge
proof system able to express the predicate, a semantically secure encryption
scheme (Enc) and a collision resistant hash function (CRH). The original formu-
lation is in terms of a seller (acting as the prover), selling a witness to a predicate
P to the buyer (acting as the auditor) in exchange for financial compensation.
The scheme operates as follows: for a public o, C (chosen by the seller), the seller
proves to the buyer in zero-knowledge that he knows w, k st.

o = CRH(k), P (w) = 1, C = Enc(k,w) (1)

The seller then sends o, C and the proof π to the buyer, who aborts the protocol
in case π is invalid. Otherwise the buyer posts a transaction (acting as the judge)
to the blockchain, which can only be spend by revealing a preimage of o. The
seller claims the funds of the transaction using k, whereby the buyer learns k
and is able to decrypt C to obtain the witness. Variations of this scheme has
been considered[2][10] in applications where supplying π itself leaks information
about the witness, e.g. whenever π itself constitutes a ‘witness’3.

2 State and inputs/outputs
3 An example being Proofs-of-Storage, where a Proof-of-Knowledge for a Proof-of-

Storage on a given challenge is itself a Proof-of-Storage.
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FairSwap. The FairSwap[1] protocol (by Stefan Dziembowski, Lisa Eckey, Se-
bastian Faust) avoids the need for a Zero-Knowledge proof system at the cost
of transmitting the entire encrypted computation trace. Additionally FairSwap
requires that the predicate be computed using a straight-line program. The ex-
ecution model is a computational circuit: an acyclic graph wherein every ver-
tex/gate applies an operation to its children/inputs. The scheme operates by
having the prover evaluate and encrypt the full execution trace (initial inputs
and outputs of every gate), then the prover computes a Merkle commitment to
the encrypted execution trace and sends this to the judge. The encrypted exe-
cution trace is transfered to the auditor, who recomputes the Merkle tree and
verifies that it is consistent with the one held by the judge. Then the decryption
key is sent by the prover to the judge and the auditor decrypts the execution
trace. If any gate is applied incorrectly (or the output of the computation is not
accepting), the auditor can prove Merkle paths to the inputs of the erroneously
applied gate and convince the judge that the prover is malicious. The FairSwap
protocol (as formulated) assumes that the full predicate description is available
to the judge, which makes it best suited for applications where the predicate is
has a small description but potentially a long running time: the example in the
paper being the computation of a Merkle hash which allows the purchasing of
files, where the linear communication complexity of FairSwap in the length of
the trace is optimal. FastSwap is inspired by the FairSwap protocol.

Comparison. FastSwap reduces the communication complexity compared to
FairSwap, additionally FastSwap provides more freedom in the choice of com-
putational model, in particular allowing efficient execution of branching RAM
machines, which enables relatively easy and efficient compilation of existing im-
perative smart contract languages. Note also that generic transformation of a

Name Computational Model Comm. (off-chain) Comm. (on-chain)

ZKCP (zk-SNARK) Arithmetic Circuit O(p + w) O(1), 2 rounds
FairSwap Computational Circuit O(p + w + n) O(p), 2 rounds
FastSwap RAM Machines O(p + w) O(1), 2 rounds

Fig. 1. Complexity of honest execution.

Name Communication (on-chain) Rounds (on-chain)

FairSwap O(logn) O(1)
FastSwap O(logn) O(logn)

Fig. 2. Complexity of dispute resolution.
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program in the RAM model running in n steps, requires a circuit of size n3 log n.
Hence efficient compilation of existing smart contracts to FairSwap (or e.g. ZKCP
with zk-SNARKs) predicates is unlikely, while this is one of the envisioned ap-
plications of FastSwap. One heuristic argument (without rigors game theoretic
backing), as to why we believe the dispute resolution complexity is less crucial
than the honest execution for many real-world applications is that both systems,
FairSwap and FastSwap, allows the judge to discern which party is malicious.
Hence a penalty can be enforced by having both parties deposit collateral with
the judge prior to the swap, which can be seized / send to the honest party in
case of malicious behavior.

1.3 Features of FastSwap

Simple & efficient primitives. The FastSwap protocol does not reply on ‘heavy
weight’ primitives like zero-knowledge proof systems, a central goal of FastSwap
is to provide concrete efficiency for a wide class of very large predicates.

Constant communication in the honest case. The communication complexity
during honest execution is the size of the program, the size of the witness and a
small constant. The communication complexity is independent of the length of
the execution for the predicate.

Logarithmic communication for dispute resolution. In case of a malicious prover
or auditor, dispute resolution for an execution trace of n steps is completed
within O(log n) rounds and O(log n) communication with small constants.

Flexible execution model. Previous work require that the predicate is imple-
mented via straight-line program, FastSwap additionally supports efficient branch-
ing execution and RAM machines. One possible application is to enable efficient
compilation of existing smart contract languages to predicates for contingent
payments.

Efficient for large program descriptions. The program description of the pred-
icate need only be available to the prover and auditor, this allows executing
program with large descriptions. This also allows deployment of a generic ‘in-
terpreter & dispute resolution‘ judge contract, which can be reused for selling
different witnesses to different predicates by different parties.

2 Notation

Symbols enclosed in angle brackets 〈·〉 represents unique symbols (‘atoms’), e.g.
〈Identifier〉 is simply a symbol recognized by all participants in the protocol.
The length of a bit string s is denoted by |s|. Throughout the article κ will
denote a security parameter.
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3 Primitives

3.1 Symmetric Encryption

Definition 1 (Symmetric Key Encryption). A symmetric encryption schemes
is a family two algorithms running on 1κ (omitted for brevity):

– A PPT algorithm, which samples uniformly from the key space k
$← Kκ

– A PPT algorithm ‘encryption’ Enc : Kκ ×M→ Cκ
– A PPT algorithm ‘decryption’ Dec : Kκ × Cκ →M

Satisfying perfect completeness:

∀m ∈M : 1 = P[Dec(k,Enc(k,m)) = m : k
$← Kκ]

Definition 2 (One-Time Semantic Security). A family of symmetric en-
cryption schemes (Definition 1) is said to be one-time semantically secure if for
all pairs of PPT algorithms (A1, A2), there exists a negligible function negl st.

1/2 + negl(κ) ≥ P[b′ = b ∧ |m1| = |m2| : (m1,m2)← A1(1κ),

b
$← {0, 1}, k $← Kκ, b′ ← A2(1k,Enc(k,mb))]

Note that unlike the ordinary IND-CPA definition, we do not require the en-
cryption scheme to be indistinguishable across multiple encryption queries. In
particular Enc : Kκ ×M→ C can be deterministic.

3.2 Collision Resistant Hashes

Definition 3 (Cryptographic Hash). A family of cryptographic hash func-
tions consists of an efficient deterministic algorithm running on 1κ:

– A polynomial time algorithm ‘hash‘ CRH : {0, 1}∗ → Hκ

Where ∀h ∈ Hκ : |h| = κ

Definition 4 (Collision Resistantance). A hash function family (Definition
3) is said to be collision resistant if for every PPT algorithm A, there exists a
negligible function negl st.

negl(κ) ≥ P[m 6= m′ ∧ CRH(m) = CRH(m′) : (m,m′)← A(1κ)]



6 Mathias Hall-Andersen

3.3 Binding & Hiding Commitments

Definition 5 (Commitment). A commitment scheme is a family of two effi-
cient algorithms running on 1κ (omitted for brevity):

– A PPT algorithm ‘commit‘ Comm : Rκ ×M→ Cκ
– A PPT algorithm ‘open‘ Open : Rκ ×M× Cκ → {0, 1}

Satisfying perfect completeness:

∀m ∈M : 1 = P[Open(r,m, c) = 1 : r
$← Rκ, c← Comm(r,m)]

Definition 6 (Computationally Binding Commitment). A commitment
scheme (Definition 5) is said to be computationally binding if for all PPT algo-
rithm A there exists a negligible function negl st.

negl(κ) ≥ P[m1 6= m2 ∧ Open(r1,m1, c) = 1 ∧ Open(r2,m2, c) = 1 :

(c, r1, r2,m1,m2)← A(1κ)]

Definition 7 (Computationally Hiding Commitment). A commitment scheme
(Definition 5) is said to be computationally hiding if for all pairs of PPT algo-
rithms (A1, A2) there exists a negligible function negl st.

1/2 + negl(κ) ≥ P[b′ = b : (m1,m2)← A1(1κ),

b
$← {0, 1}, r $← Rκ, b′ ← A2(1k,Comm(r,mb))]

4 Authenticated Computation Structures

Definition 8 (Authenticated Data Structure). An authenticated data struc-
ture scheme consists of a set of possible states Sκ, a set of tags Tκ, a set of possible
operations O, a set of results R, a set of descriptions of initial states I and four
deterministic polynomial time algorithms:

– Initial : I → S. Construct an initial state from a description.
– Tag : S → Tκ. Compute a succinct ‘tag’ of the state.
– Apply : S × O → S × R × Pκ. Apply an operation to the state, optionally

yielding a result. Produce a proof of correct application of the operation,
which can be verified using only the tags of the original and resulting state.

– Verify : Tκ×Tκ×O×R×Pκ → {1, 0}. Verifies the execution of an operation
on the state corresponding to the tag of the previous state and tag of the
resulting state after application of the operation.
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Satisfying perfect completeness:

S ∈ S, O ∈ O :Verify(T, T ′, R,O, π) = 1 where

(S′, R, π)← Apply(S,O)

T ← Tag(S), T ′ ← Tag(S′)

Computation is formulated in terms of ‘Authenticated Computation Structures‘,
which can be seen as an authenticated data structure scheme, wherein the op-
eration is uniquely defined by the current state of the data structure and an
immutable ‘environment’.

Definition 9 (Authenticated Computation Structure). An authenticated
computation structure scheme consists of an input space I containing descrip-
tions of of initial computations states, a space of possible computation structures
S, a space of possible ‘environments’ E, a set of ‘tag‘ values Tκ, a set of proofs
Pκ and five deterministic polynomial time algorithms:

– Initial : I → S. Construct an initial state from a description.
– Tag : S → Tκ. Produce a succinct tag corresponding to the structure.
– Step : E × S → S. Progresses the computation by ‘a single step’.
– Prove : E × S → Pκ. Produce a succinct proof of correct execution.
– Verify : E × Tκ × Tκ × Pκ → {1, 0}. Verify the execution of a step.

Satisfying perfect completeness:

e ∈ E , S ∈ S :Verify(e, T, T ′, π) = 1 where

S′ ← Step(e, S), π ← Prove(e, S),

T ← Tag(S), T ′ ← Tag(S′)

i.e. verification succeeds for every pair of successive computation structures.

The primitive is directly related to authenticated data structures (Defintion 8)
and can be generically constructed from such schemes by defining a function
Operation : S → O×Pκ which takes the state of the data structure and returns
the next operation to apply and a proof, then deriving an implementation of
the algorithms above in the obvious way. A concrete example of this pattern is
provided in Section 7. The motivation for adding the environment argument is to
permit I to contain input encrypted under a key contained in the environment,
such that I leaks at most the length of the input.

Definition 10 (Computational Integrity). An authenticated computation
structure scheme is said to provide computational integrity, if for every PPT
algorithm A, there exists a negligible function negl such that:

negl(κ) ≥ P[T ′ 6= Tag(Step(e, S)) ∧ Verify(e, T, T ′, π) = 1 :

(e, S, T ′, π)← A(1κ), T ← Tag(S)]
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Note that computational integrity (Definition 10) implies in particular that
Tag : S → Tκ is a collision resistant hash function (Definition 4). For later
convience we define some simple functions which are derieved from an authenti-
cated computational structure scheme:

Definition 11 (Terminate : E × S → N+). Terminate repeatedly applies Step
and returns the number of steps before an accepting or rejecting state is reached.
Formally, with the patterns being matched by preference from top to bottom:

Terminate(e, S) := 1 where S ∈ {〈Accept〉, 〈Reject〉}
Terminate(e, S) := 1 + Terminate(e, S′) where S′ ← Step(e, S)

Where 〈Accept〉 and 〈Reject〉 is uniquely recognized accepting and rejecting ter-
minal states respectively.

Definition 12 (StepN : E × S × N+ → S). StepN applies Step a specified
number of times and returns the resulting state. Formally, with the patterns
being matched by preference from top to bottom:

StepN(e, S, 1) := S

StepN(e, S, ∗) := S where S ∈ {〈Accept〉, 〈Reject〉}
StepN(e, S, n) := StepN(e, S′, n− 1) where S′ ← Step(e, S)

Where 〈Accept〉 and 〈Reject〉 is uniquely recognized accepting and rejecting ter-
minal states respectively. One can think of StepN as returning the n’th step of
the computation right-padded by the final accepting/rejecting state.

5 Ideal Functionalities

We formulate the behavior of FastSwap using the universal composability (UC)
framework with the style and notation of Cramer, et al. [8]. The FSwap func-
tionality captures the desired behavior of a contingent exchange protocol:

Agent FSwap

FSwap
Swap.inprover

Swap.outprover

Swap.outauditor

Swap.inauditor

Swap.infl

Swap.action

Swap.leak
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Initialization: set can abort← 1

– Wait for one of three messages on Swap.infl.
� 〈Auditor〉: Mark the prover as corrupted, by ignoring any message

on Swap.inauditor. Whenever a message of the form (〈Send〉,m) is
received on Swap.infl act as if m was received on Swap.inauditor.
Whenever a message m is output on Swap.outauditor, also output
m on Swap.leak

� 〈Prover〉: Mark the prover as corrupted, by ignoring any message
on Swap.inprover. Whenever a message of the form (〈Send〉,m) is
received on Swap.infl act as if m was received on Swap.inprover.
Whenever a message m is output on Swap.outprover, also output
m on Swap.leak

� 〈Honest〉. Indicating no corruption.
Ignore any subsequent corruption messages.

– Any time, on input 〈Abort〉 on Swap.infl, Swap.inauditor or
Swap.inprover and if can abort = 1, then abort the protocol:
• Output ⊥ on Swap.outprover.
• Output ⊥ on Swap.outauditor.
• Output ⊥ on Swap.leak.
• Ignore any further messages on any in port.

– On input P on Swap.inauditor:
• Store P .
• Output P on Swap.outprover.
• Output |P | on Swap.leak.

– On input w on Swap.inprover:
• Store w.
• Output |w| on Swap.leak.

– On input 〈Swap〉 on Swap.inprover, when both P , w has been set:
• Set can abort← 0.
• Output w on Swap.outauditor.
• If either party is corrupted leak the entire state of the function-

ality on Swap.leak: every message sent and received by the func-
tionality.

– On input 〈Action〉 on Swap.infl, when can abort = 0:
• Interpret P as a description of a computable function.

Output P (w) on Swap.action and Swap.leak.

The FSwap functionality leaks its entire state after can abort = 0 whenever
a corrupted party is present. Intuitively we can accept to leak the witness to
the world in case of corruption after the protocol cannot be aborted, since after
can abort = 0 the corrupted party will posses the witness and could publish
this (outside the scope of the protocol) regardless. Hiding of the witness must
only be ensured as long as can abort = 1 or whenever both parties are honest.
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The separation of the 〈Swap〉 and 〈Action〉 messages, enables the implemen-
tation to run some ‘dispute’ protocol in case one of the parties is corrupted,
before delivering the output on Swap.action. The leaked state after 〈Swap〉 can
be used to simulate the leakage of this ‘dispute’ protocol.

The FClock functionality models n monotonically increasing clocks, where
the drift between any pair of clocks is bounded by a constant ∆:

Agent FClock(n,∆)

FClockClock.out1 Clock.out2

Clock.infl

Clock.out3

Initialization. Set t← 0, For i ∈ [1, n], set ti ← t, output ti on Clock.outi.

– On input 〈Clock〉 on Clock.infl. Set t ← t + 1. For i ∈ [1, n], set
ti ← max{ti, t−∆}. For i ∈ [1, n] output ti on Clock.outi.

– On input (〈Update〉, t′i) on Clock.infl. If ti < t′i ≤ t, set ti ← t′i and
output ti on Clock.outi. Otherwise ignore the message.

This formulation allows instantiation of the functionality using a blockchain
which offers ‘finality’ guarantees; ensuring that the view of the honest parties
cannot be rolled back past finalized blocks. Furthermore, one needs to assume
that the view of any node is at most ∆ blocks behind the most recently finalized
block.

The FChannel functionality models an authenticated and encrypted channel
between the prover and auditor, which guarantees in-order delivery of messages:

Agent FChannel

Initialization: create two empty lists: set Mprover ← ε,Mauditor ← ε.

– Wait for one of three messages on Channel.infl
� (〈Corrupt〉, p) : p ∈ {〈Prover〉, 〈Auditor〉}: Mark the party p as

corrupted and allow control of the ports of p as follows:
∗ By ignoring any message on Channel.inp.
∗ Whenever a message of the form (〈Send〉,m) is received on
Channel.infl act as if m was received on Channel.inp.
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∗ Whenever a message of the form (〈Recv〉,m) is received on
Channel.infl output m on Channel.outp.

∗ Whenever a message m is output on Channel.outp output m
on Channel.leak instead of Channel.outp.

� 〈Honest〉. Indicating no corruption.
Ignore any subsequent corruption messages.

– On input m on Channel.inprover:
• Push m to the back of Mauditor

• Output (〈Auditor〉, |m|) on Channel.leak.
– On input m on Channel.inauditor:
• Push m to the back of Mprover

• Output (〈Prover〉, |m|) on Channel.leak.
– On input (〈Deliver〉, p) on Channel.infl:
• If Mp is not empty, pop the front-most element m and output m

on Channel.inp.

The judge is instantiated with a description D of its transition function,
which both parties must agree upon. Whenever the judge receives input, this
is provided to all parties and leaked, reflecting that the state of the judge is
completely public. The judge furthermore has access to a clock functionality
and an ‘action’ port, which will later correspond to the action port of the FSwap
functionality:

Agent FJudge

FJudge
Judge.inprover

Judge.outprover

Judge.outauditor

Judge.inauditor

Judge.outclock Judge.inclock

Judge.action

– Wait for one of three messages:
� 〈Auditor〉: Mark the prover as corrupted, by ignoring any

message on Judge.inauditor. Whenever a message of the form
(〈Send〉,m) is received on Judge.infl act as if m was received
on Judge.inauditor.
� 〈Prover〉: Mark the prover as corrupted, by ignoring any

message on Judge.inprover. Whenever a message of the form
(〈Send〉,m) is received on Judge.infl act as if m was received
on Judge.inprover.
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� 〈Honest〉. Indicating no corruption.
Ignore any subsequent corruption messages.

– Whenever tnew is received on Judge.inclock, store t← tnew.
– On input D on Judge.inauditor: output D on Judge.leak, output D

on Judge.outauditor, store D.
– On input D′ on Judge.inprover: if D 6= D′, output ⊥ on

Judge.outprover, output ⊥ on Judge.outauditor and abort the proto-
col, by ignoring any subsequent messages on all in ports. Otherwise
set S ← ε and begin processing input messages.

– On input m on Judge.inauditor: output (m, t) on Judge.leak, out-
put (m, t) on Judge.outauditor, output (m, t) on Judge.outprover, up-
date the state (S, r) ← D(S, 〈Auditor〉,m, t), if r 6= ε output r on
Judge.action.

– On input m on Judge.inprover: output (m, t) on Judge.leak, out-
put (m, t) on Judge.outauditor, output (m, t) on Judge.outprover, up-
date the state (S, r) ← D(S, 〈Prover〉,m, t), if r 6= ε output r on
Judge.action.

The FastSwap functionality enables the two parties to agree on the initial
state of a authenticated computation scheme, then allows the prover to input an
environment. If repeated application of Step on the initial state with the given
environment terminates in an accepting state the functionality outputs 1 on
FastSwap.action, otherwise the functionality outputs 0. When both parties are
honest the functionality leaks only the environment and the accepting/rejecting
outcome of the computation, in particular it does not leak the initial state:

Agent FFastSwap

FSwap
FastSwap.inprover

FastSwap.outprover

FastSwap.outauditor

FastSwap.inauditor

FastSwap.infl

FastSwap.action

FastSwap.leak

Initialization: set can abort← 1

– Wait for one of three messages on FastSwap.infl.
� 〈Auditor〉: Mark the prover as corrupted, by ignoring any mes-

sage on FastSwap.inauditor. Whenever a message of the form
(〈Send〉,m) is received on FastSwap.infl act as if m was re-
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ceived on FastSwap.inauditor. Whenever a message m is output
on FastSwap.outauditor, also output m on FastSwap.leak

� 〈Prover〉: Mark the prover as corrupted, by ignoring any mes-
sage on FastSwap.inprover. Whenever a message of the form
(〈Send〉,m) is received on FastSwap.infl act as if m was re-
ceived on FastSwap.inprover. Whenever a message m is output
on FastSwap.out, also output m on FastSwap.leak

� 〈Honest〉. Indicating no corruption.
Ignore any subsequent corruption messages.

– Any time, on input 〈Abort〉 on FastSwap.infl, FastSwap.inauditor or
FastSwap.inprover and if can abort = 1, then abort the protocol:
• Output ⊥ on FastSwap.outprover.
• Output ⊥ on FastSwap.outauditor.
• Output ⊥ on FastSwap.leak.
• Ignore any further messages on any in port.

– On input I ′ on FastSwap.inauditor:
• Store I ′.
• If the prover is corrupted, output I ′ on FastSwap.leak.
• Output 〈Input〉 on FastSwap.leak

– On input I on FastSwap.inprover, when I ′ has been set:
• Compute S ← Initial(I).
• Compute S′ ← Initial(I ′).
• If S 6= S′ then abort the protocol (as if 〈Abort〉 was received).

– On input e on FastSwap.proverin:
• Set can abort← 0
• Output e on FastSwap.outauditor.
• Output e on FastSwap.leak.
• If either party is corrupted leak the entire state of the function-

ality on FastSwap.leak: every message sent and received by the
functionality.

– On input 〈Action〉 on FastSwap.infl, when can abort = 0:
• Compute n← Terminate(e, S).

• Output StepN(e, S, n)
?
= 〈Accept〉 on FastSwap.action and

FastSwap.leak.

We implement the FSwap functionality using: FFastSwap , FChannel, a se-
mantically secure encryption scheme (Definition 2)4 and a sufficiently expressive
authenticated computational structure scheme (Definition 9):

The authenticated computational structure scheme must allow expression of
the Dec : Kκ × Cκ → M function as well as the set of predicates. The set of
environments for the computational structure scheme must contain Kκ. Further-

4 For which we require a computable description, hence the application of the IND-
CPA encryption scheme is non-blackbox.
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more we assume that input descriptions I can be provided in the form (P,W )
where P is the description of a predicate and W is the input to the predicate,
st.: repeated application of the Step : E × S → S functions computes P (e,W ),
where e ∈ E is the environment. We can therefore transform the problem in
FSwap of evaluating the predicate P on w, into the problem of repeatedly ap-
plying the Step function to the initial state described by I = (P ◦ Dec(e, ·),W )
where W ← Enc(e, w), with e ∈ Kκ provided as the environment of the Step
function. Intuitively this enables us to swap a constant size key in place of the
actual witness, which additionally provides semantic hiding of the witness from
the auditor while the protocol can still be aborted and from the environment in
case of honest execution.

Protocol ΠSwap : implement FSwap from FFastSwap and FChannel

FFastSwap

FChannel

Prover Auditor

Prover.in

Prover.out Auditor.out

Auditor.in

� Respect the abort of FFastSwap:
• Any time on input ⊥ on FastSwap.outauditor:

Output ⊥ on Auditor.out.
• Any time on input 〈Abort〉 on Auditor.in:

Output 〈Abort〉 on FastSwap.inauditor.
Act analogously for the prover.
� Any time on input 〈Action〉 on Swap.infl:
• Output 〈Action〉 on FastSwap.infl.

– Auditor. On input P on Auditor.in:
• Output P on Channel.inauditor

– Prover. On input P ′ on Channel.outprover:
• Store P ′.
• Output P ′ on Prover.out.

– Prover. On input w on Prover.in:

• Sample k
$← Kκ.

• Compute E ← Enc(k,w).
• Define I = (P ′ ◦ Dec, E).
• Output E on Channel.inprover.
• Output I on FastSwap.inprover.

– Auditor. On input E′ on Channel.outauditor:
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• Define I ′ = (P ◦ Dec, E′)
• Output I ′ on FastSwap.inauditor.

– Prover. On input 〈Swap〉 on Prover.in:
• Output k on FastSwap.inprover

– Auditor. On input k on FastSwap.outauditor.
• Output Dec(k,E′) on Auditor.out

Simulator SSwap: simulate ΠSwap using FSwap

FSwap

Simulator

Channel.leak, Channel.infl FastSwap.leak, FastSwap.infl

Auditor.in/Swap.inauditorProver.in/Swap.inprover

Simulated FChannel

Prover.out/Swap.outprover Auditor.out/Swap.outauditor

Swap.leakSwap.infl

FastSwap.action/Swap.action

Respect the abort: any time, on input 〈Abort〉 on FastSwap.infl,
FastSwap.inauditor or FastSwap.inprover: Output 〈Abort〉 on Swap.infl,
Swap.inauditor or Swap.inprover respectively. On ⊥ on Swap.leak, output
⊥ on FastSwap.leak

Wait for the corruption pattern for both FFastSwap and FChannel (the
class of environments is assumed corruption respecting: corrupting the
same parties for every functionality):

Case 1. Neither party is corrupted:

– On input |P | on Swap.leak:
• Simulate sending 0|P | on Channel.inauditor.

– On input |w| on Swap.leak:

• Sample k
$← Kκ.

• Compute E ← Enc(k, 0|w|).
• Simulate sending E on Channel.inprover.

– On simulated input E on Channel.inauditor:
• Output 〈Input〉 on FastSwap.leak.

– On input 〈Action〉 on FastSwap.infl:
• Output 〈Action〉 on Swap.infl.

– On P (w) on Swap.leak:
• Output k on FastSwap.leak (as ‘e’).
• Output P (w) on FastSwap.leak.
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Case 2. Auditor is corrupted, Prover is honest:
(Note: not simulatable without random oracles, see proof section.)

– On input P on Swap.leak:
• Simulate sending P on Channel.inauditor.

– On simulated input P ′ on Channel.outprover.
• Store P ′

– On input |w| on Swap.leak:

• Sample k
$← Kκ.

• Compute E ← Enc(k, 0|w|).
• Simulate sending E on Channel.inprover.

– On simulated input E′ on Channel.inauditor:
• Output 〈Input〉 on FastSwap.leak.

– On w,P (w) on Swap.leak:
• Reprogram Dec using the RO, such that Dec(k,E) = w.
• Output k on FastSwap.leak (as ‘e’).
• Output w,P (w) on FastSwap.leak.

– On input 〈Action〉 on FastSwap.infl:
• Output 〈Action〉 on Swap.infl.

Case 3. Auditor is honest, Prover is corrupted:

– On input P on Swap.leak:
• Simulate sending P on Channel.inauditor.

– On simulated input P ′ on Channel.outprover.
• Store P ′

– On input w on Swap.leak:

• Sample k
$← Kκ.

• Compute E ← Enc(k,w).
• Simulate sending E on Channel.inprover.

– On simulated input E′ on Channel.inauditor:
• Output 〈Input〉 on FastSwap.leak.

– On w,P (w) on Swap.leak:
• Output k on FastSwap.leak (as ‘e’).
• Output w,P (w) on FastSwap.leak.

– On input 〈Action〉 on FastSwap.infl:
• Output 〈Action〉 on Swap.infl.

Lemma 1 (ΠSwap ♦ FFastSwap ♦ FChannel ≥comp FSwap). ΠSwap implements
FSwap using FFastSwap and FChannel with respect to all computationally bounded
(PPT) environments.

Proof. By case analysis on the corruption pattern of the environment:

Case 1. Neither party is corrupted:
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Consider the hybrid HSwap which is equal to SSwap, except where w is extracted
from FSwap and E is derived as E ← Enc(k,w). The difference in the distri-
butions is the leakage on FastSwap.leak: SSwap leaks E′ ← Enc(k, 0|w|), since
|0|w|| = |w| the distributions must be computationally indistinguishable by the
assumption that Enc : Kκ ×M→ Cκ is a CPA secure encryption scheme (Defi-
nition 2).

Case 2. Auditor is corrupted, Prover is honest:

We assume that Enc,Dec is non-commiting and implemented using a random
oracle (e.g. using a construction from [7]). Consider again a hybrid Hw which is
equal to SSwap, except where w is extracted from FSwap and E is replaced with
Ew ← Enc(k,w) since |0|w|| = |w|, Ew and E must be computationally indistin-
guishable by the assumption that Enc : Kκ×M→ Cκ is a CPA secure encryption

scheme (Definition 2). Furthermore since k
$← Kκ the probability that the envi-

ronment has queried the oracle on any of the queries made during Dec(k,E) prior
to receiving k is negligible, hence reprogramming is successful with overwhelming
probability. Hence Hw and SSwap are computationally indistinguishable.

A simulatable alternative in the standard model is to deploy non-committing
encryption without random oracles, however this significantly impedes efficiency
since k must have the same size as the witness and hence the communication
with the judge would be linear in the size of the witness.

Case 3. Auditor is honest, Prover is corrupted:

Since a corrupted prover leaks the secret witness of the protocol (before can abort

← 0), this simulation is trivial and the distributions are equal.

The inability to simulate this protocol in the standard model whenever |k| <
|w| is inherent to the structure of the scheme: When the auditor is corrupt
we need to output to the environment a message E which is indistinguishable
from an encryption of the witness, however since the prover is honest only |w|
is leaked, hence E must be uncorrelated with w. Later we must output k to
the environment st. Dec(k,E) = w (except with negligible probability), however
this implies communication at rates greater than channel capacity: since E is
uncorrelated with the message w it could be sampled the receiver directly, then
w is transmitted by sending k.

In practical terms this means that the auditor can obtain an encryption of
the witness and then abort the protocol without paying. We note that the prior
works mentioned earlier (would) also require such non-commiting encryption to
achieve simulation security. This is due to the similarity between all these scheme
of exchanging a decryption key which enables decryption of the witness, which
has been encrypted and exchanged ‘off-chain’ priorly.
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6 The FastSwap Protocol

6.1 Protocol

The protocol is parameterized by a timeout ∆action. The judge maintains a
timer Daction, when Daction expires the judge outputs the current value of the
result variable on the action port as the output of the protocol5. To simplify
the description we assume that the transition function of the judge is sent to the
judge functionality by both players at the start of the protocol and that upon
receiving ⊥ the honest party aborts the protocol. This allows us to treat the
judge as a third party in the protocol.

The overall idea of FastSwap is to have both parties agree on a commitment
of the initial state, with both parties knowing the opening of the commitment. In
case of contingent payments the auditor/buyer would then deposit funds at the
judge. Subsequently the prover reveals the environment by sending it directly
to the judge, at this point a unique6 execution trace is now defined by the
environment and the initial state inside the commitment. In the honest case,
where the trace is accepting, the auditor simply lets the timer Daction expire,
after which the action is assumed complete:

FastSwap : Honest Execution

– Auditor:
• Sample R′

$← Rκ.
• Compute S′1 ← Initial(I ′).
• Compute T ′1 ← Tag(S′1).
• Compute C ′ ← Comm(R′, T ′1).
• Send R′ to the prover.
• Send C ′ to the judge.

– Judge:
• Receive C ′ from the auditor.
• Set result← 0.
• Start Daction with timeout ∆action.

– Prover:
• Receive R from the prover.
• Compute S1 ← Initial(I).
• Compute T1 ← Tag(S1).
• Compute C ← Comm(R, T1).

5 In blockchain applications for contingency payments, the judge contract can be con-
verted into a wallet contract after the expiry of Daction where result denotes which
party is allowed to withdraw the funds.

6 By ‘unique’, we mean that neither party can break the binding property of the
commitment scheme and Tag function, hence can only posses one such trace. Since
the state is significantly larger than the commitments it is clearly not unique in the
strict sense.
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• If C 6= C ′ (from the judge) abort the protocol.
• Send e to the judge.

– Judge:
• Receive e from the prover.
• Set result← 1.
• Reset Daction with timeout ∆action.

– Auditor:
• Compute m← Terminate(e, S′1).
• Compute S′m ← StepN(e, S′1,m).
• If S′m = 〈Accept〉 terminate the protocol.

Otherwise proceed to dispute resolution (see below).

The intuition for the dispute resolution protocol is to maintain two pointers
l and r into the computation trace of the prover. The pointer l will always point
to a computation step that both parties agree on (initially S1, the state inside
the commitment). The pointer r (when defined), will point to a computation
step where Sr 6= S′r. We then search for the greatest value of l and the smallest
value of r, by using an interactive binary search mediated by the judge to ensure
message delivery. Eventually r − l = 1 and the prover uses the authenticated
computation structure scheme to show correct transition from Sl to Sr, with a
succinct proof:

FastSwap : Dispute Resolution

– Auditor:
• Send 〈Dispute〉 to the judge.

– Judge:
• Set result← 0
• Set l← 1, r ← ⊥. Define m = (r − l)/2 (initially m = ⊥).
• Reset Daction with timeout ∆action

– While r = ⊥ or r − l > 1:
• Prover:
∗ If r = ⊥ (first iteration):
· Compute n← Terminate(e, S1).
· Locally set r ← n.
· Send n to the judge.

∗ Compute Sm ← StepN(e, S1,m)a.
∗ Compute Tm ← Tag(Sm).
∗ Send Tm to the judge.

• Judge:
∗ If r = ⊥ (first iteration), set r ← n.
∗ Store Tm.
∗ Set result← 1
∗ Reset Daction with timeout ∆action
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• Auditor:
∗ Compute S′m ← StepN(e, S′1,m)
∗ If Tm = Tag(S′m), send 〈Left〉 to the judge.
∗ Otherwise, send 〈Right〉 to the judge.

• Judge:
∗ If received 〈Left〉, set l← m, set Tl ← Tm.
∗ If received 〈Right〉, set r ← m, set Tr ← Tm.
∗ Set result← 0
∗ Reset Daction with timeout ∆action

– Prover:
• Compute Sl ← StepN(e, S1, l).
• Compute πl 7→r ← Prove(e, Sl).
• If l = 1, send (πl 7→r, R, T1) to the judge.

Otherwise send πl 7→r to the judge.
– Judge:
• Set result← 1.
• If l = 1 and Open(R, T1, C

′) = 0, set result← 0.
• If r = n and Tr 6= Tag(〈Accept〉), set result← 0
• If Verify(e, Tl, Tr, πl 7→r) = 0, set result← 0.

a Note that m is defined at this point.

The dispute resolution protocol additionally guarantees that if the output is
1, the auditor is corrupted, if the output is 0, the prover must be corrupted. This
allows the judge to optionally trigger penal action towards the dishonest party
(e.g. in a smart contract environment, this might be seizing collateral added to
the contract during the start of the protocol) in the cases where the dispute
resolution protocol is triggered.

6.2 Security Proof

We simulate ΠFastSwap using FFastSwap as follows:

Simulator SFastSwap: simulate ΠFastSwap using FFastSwap

FFastSwap

Channel.infl, Channel.leak

Auditor.in/FastSwap.inauditorProver.in/FastSwap.inprover

Simulated FChannel

Prover.out/FastSwap.outprover Auditor.out/FastSwap.outauditor

FastSwap.leakFastSwap.infl

Judge.infl, Judge.leak

Judge.action/FastSwap.action

Simulated FJudgeSimulated FClock

Clock.infl
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Case 1. Neither party is corrupted:

– On input 〈Input〉 on FastSwap.leak:

• Sample R′
$← Rκ.

• Compute C ′ ← Comm(R′, ε).
• Simulate output R′ on Channel.inauditor.
• Simulate output C ′ on Judge.inauditor.

– On input e on FastSwap.leak:
• Wait for simulated input R on Channel.outprover.
• Simulate output e on Judge.inprover.

– On expiry of Daction (inside judge simulation):
• Output 〈Action〉 on FastSwap.infl.
• Output 1 on Judge.leak.

Case 2. Auditor is corrupted, prover is honest:

– On input I ′ (auditors initial state) on FastSwap.leak:

• Sample R′
$← Rκ.

• Compute S′1 ← Initial(I ′).
• Compute T ′1 ← Tag(S′1).
• Compute C ′ ← Comm(R′, T ′1).
• Simulate output R′ on Channel.inauditor.
• Simulate output C ′ on Judge.inauditor.

– On e, SFastSwap on FastSwap.leak (SFastSwap is the leaked state):
• Store SFastSwap.
• Simulate output e on Judge.inprover.

– On 〈Dispute〉 on Judge.leak.
• Simulate the dispute resolution protocol using SFastSwap, by

observing the messages from the corrupted auditor using
Judge.leak and simulating the messages on Judge.inprover of
the honest prover according to the dispute resolution protocol.

– On expiry of Daction:
• Output 〈Action〉 on FastSwap.infl.
• Obtain res on FastSwap.leak: output res on Judge.leak.

Case 3. Auditor is honest, prover is corrupted:

Due to FFastSwap leaking the auditors initial state when the prover is
corrupted the simulation is very similar to the case of a corrupted auditor:

– On input I ′ (auditors initial state) on FastSwap.leak:

• Sample R
$← Rκ.

• Compute S′1 ← Initial(I ′).
• Compute T ′1 ← Tag(S′1).
• Compute C ′ ← Comm(R, T ′1).
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• Simulate output R on Channel.inprover.
• Simulate output C on Judge.inauditor.

– On e, SFastSwap on FastSwap.leak (SFastSwap is the leaked state):
• Store SFastSwap.
• Output e on Judge.leak.

– On 〈Dispute〉 on Judge.leak.
• Simulate the dispute resolution protocol using SFastSwap, by

observing the messages from the corrupted auditor using
Judge.leak and simulating the messages on Judge.inprover of
the honest auditor according to the dispute resolution protocol.

– On expiry of Daction:
• Output 〈Action〉 on FastSwap.infl.
• Obtain res on FastSwap.leak: output res on Judge.leak.

Lemma 2 (ΠFastSwap♦FJudge♦FChannel♦FClock ≥comp FFastSwap). ΠFastSwap

implements FFastSwap using FJudge, FChannel and FClock with respect to all
computationally bounded (PPT) environments.

Proof. By case analysis on the corruption pattern:

Case 1. Neither party is corrupted:

The prover posses a valid witness and 〈Dispute〉 is not sent to the judge by the
auditor. Hence the leakage in the real execution is comprised solely of the leakage
in the honest execution part of the protocol. The output on FastSwap.action is
always 1, if neither party aborts and the output 1 on Judge.leak is consistent
with the final value of result outputted on Judge.action in the real execution.

Case 2. Auditor is corrupted, prover is honest:

The leakage from the simulation of the honest part of the protocol has exactly the
same distribution as the real protocol. We therefore focuses on the simulation of
the dispute resolution (recall that we obtain the entire state of FFastSwap), in
particular that the leakage is consistent with the output on FastSwap.action.

Since the prover is honest it follows that 〈Accept〉 = StepN(e, S1, n) where
n ← Terminate(e, S1). Except with negligible probability S1 = S′1 by computa-
tional integrity of the authenticated computation scheme (Definition 10) and
binding of the commitment scheme (Definition 6). We claim an invariant of the
loop in the protocol:

l < r ≤ n and Tl = Tag(Sl) and Tr = Tag(Sr)

This is immediately obvious from inspection of the dispute protocol. Upon termi-
nation of the loop r − l = 1 and Verify(e, Tl, Tr, πl 7→r) = 1 with probability 1 (by
completeness of the authenticated computation scheme), furthermore whenever
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r = n, we have Sr = 〈Accept〉 hence Tr = Tag(〈Accept〉) also with probabil-
ity 1. Therefore the simulated judge always outputs 1, which is consistent with
FastSwap.action.

Case 3. Auditor is honest, prover is corrupted:

The leakage from the simulation of the honest part of the protocol has exactly the
same distribution as the real protocol. We therefore focuses on the simulation of
the dispute resolution (recall that we obtain the entire state of FFastSwap), in
particular that the leakage is consistent with the output on FastSwap.action.

Since the auditor is honest it follows that 〈Accept〉 6= StepN(e, S′1,m) where
m ← Terminate(e, S′1), hence the judge should output 0. We first establishes
an invariant of the loop in the protocol: Tl = Tag(S′l) and at least one of the
following holds:

♦ l < r ≤ n and Tr 6= Tag(S′r)
♦ l < r = n and Tr 6= Tag(〈Accept〉)

The invariant holds initially where r = n and l = 1, since T1 = Tag(S′1) is
established during the honest part of the protocol and ∀i ∈ [1, n] : S′i 6= 〈Accept〉
(otherwise 〈Accept〉 = StepN(e, S′1,m) as well). During the protocol the corrupted
auditor provides Tw with l < w < r and the invariant is maintained:

– If Tw = Tag(S′w), then l← w.
Hence Tl = Tag(S′l) is maintained and r, Tr is unchanged.

– If Tw 6= Tag(S′w), then r ← w.
Hence Tr 6= Tag(S′r) is established and l, Tl is unchanged.

Upon termination of the loop: r − l = 1, Tl = Tag(S′l) and:

– If r = n and Tr 6= Tag(〈Accept〉), the output is always 0.
– If Tr 6= Tag(S′r), then Verify(e, Tl, Tr, πl 7→r) = 0 except with only negligible

probability, by computational integrity (Definition 10) of the authenticated
computation scheme. Hence the output is 0.

7 Instantiation of FastSwap

In this section we propose a simple ‘Ethereum-like’ instantiation of the FastSwap
protocol, based on an authenticated Patricia trie over a sparse memory space.
The state is a tuple (pc, I,Rreg, S) consisting of:

– An instruction pointer pc ∈ N+ pointing to a cell.
– An optional word-sized instruction I (which might be ε).
– A register bank Rreg containing word-sized registers r1, . . . , rn.
– An authenticated data structure S over a memory space of M words.
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The memory space is provided by simply ameliorating a Patricia trie7 with a
superimposed Merkle tree (see e.g. [6] appendix D for details), which allows prov-
ing memory lookups by providing at most 2 · log(M) hashes of size κ, where M
is the size of the memory space. We let ProvePatricia,VerifyPatricia,ApplyPatricia
be the associated algorithms of the authenticated Patricia trie. We let Rreg[ri]
denote the looking up the value of the register ri and Rreg[ri ← v] denote a new
register bank, where the value v is assigned to the register ri.

Tag function. We define Tag((pc, I,Rreg, S)) = CRH((TagPatricia(S), pc, I,Rreg)).
Meaning the full register bank, Merkle root, current instruction and program
counter is provided during the verification.

Step function. For efficiency and simplicity reasons the instantiation limits
the number of operations on the memory space during every step to at most
one, this is done by using a ‘2-cycle’ register machine, where every instruction in
the instruction set takes two applications of Step to execute. The Step function
operates as follows, with the state being matched occurring on the left:

Step(e, (pc, ε,Rreg, S)) := (pc, I,Rreg, S)

where (∗, I, ∗)← ApplyPatricia(S, load(pc))

Step(e, (pc, load(i, j),Rreg, S)) := (pc+ 1, ε,Rreg[ri ←M ], S)

where (∗,M, ∗)← ApplyPatricia(S, load(Rreg[rj ]))
Step(e, (pc, store(i, j),Rreg, S)) := (pc+ 1, ε,Rreg, S′)

where (S′, ∗, ∗)← ApplyPatricia(S, store(Rreg[ri],Rreg[rj ]))
Step(e, (pc, jump(i, j),Rreg, S)) := (∆, ε,Rreg, S)

where if Rreg[rj ] > 0 then ∆ = Rreg[ri] else ∆ = (pc+ 1)

Step(e, (pc,mult(i, j),Rreg, S)) := (pc+ 1, ε,Rreg[ri ← a · b], S)

where a = Rreg[ri], b = Rreg[rj ]
Step(e, (pc, add(i, j),Rreg, S)) := (pc+ 1, ε,Rreg[ri ← a+ b], S)

where a = Rreg[ri], b = Rreg[rj ]
Step(e, (pc, env(i),Rreg, S)) := (pc+ 1, ε,Rreg[ri ← e], S)

Additionally there are two predefined values of pc corresponding to an accepting
and a rejecting state. If either of these addresses are reached, Step replaces the
state with some predefined canonical 〈Accept〉 or 〈Reject〉 state not otherwise
reachable, regardless of the contents of the register bank or memory space:

Step(e, (pcaccept, ε,Rreg, S)) := 〈Accept〉
Step(e, (pcreject, ε,Rreg, S)) := 〈Reject〉

The Step function can always be made complete by mapping any non-conforming
state to 〈Reject〉.
7 Radix tree with a radix of 2.



FastSwap 25

Prove function. The prove function outputs the register bank and a proof for
the authenticated Patricia trie in case of a memory operation:

Prove(e, (pc, ε,Rreg, S)) := (ε, pc,Rreg,TagPatricia(S), I, πlookup)

where (∗, I, πlookup)← ApplyPatricia(S, lookup(pc))

Prove(e, (pc, load(i, j),Rreg, S)) := (load(i, j), pc,Rreg,TagPatricia(S), R, πlookup)

where (∗, R, πlookup)← ApplyPatricia(S, lookup(Rreg[rj ]))

Prove(e, (pc, store(i, j),Rreg, S)) := (store(i, j), pc,Rreg,TagPatricia(S),TagPatricia(S′), πstore)

where (S′, ∗, πstore)← ApplyPatricia(S, store(Rreg[ri],Rreg[rj ]))

Prove(e, (pc, jump(i, j),Rreg, S)) := (jump(i, j), pc,Rreg,TagPatricia(S))

Prove(e, (pc,mult(i, j),Rreg, S)) := (mult(i, j), pc,Rreg,TagPatricia(S))

Prove(e, (pc, add(i, j),Rreg, S)) := (add(i, j), pc,Rreg,TagPatricia(S))

Prove(e, (pc, env(i),Rreg, S)) := (env(i), pc,Rreg,TagPatricia(S))

Verify function. The verify function follows the approach of computing the
resulting tag from the proof directly. Then verifies that the proof corresponds to
the current tag and that the new tag is equal to the one provided:

Verify(e, T, T ′, π) := T = Tbefore ∧ T ′ = Tafter ∧ Validate(e, π) = 1

where Tafter ← TagAfter(e, π), Tbefore ← TagBefore(e, π)

With TagBefore extracting the ‘previous’ tag from the proof:

TagBefore(e, (ε, pc,Rreg, T, I, πlookup)) := CRH((T, pc, ε,Rreg))
TagBefore(e, (load(i, j), pc,Rreg, T,R, πlookup)) := CRH((T, pc, load(i, j),Rreg))
TagBefore(e, (store(i, j), pc,Rreg, T, T ′, πstore)) := CRH((T, pc, store(i, j),Rreg))
TagBefore(e, (jump(i, j), pc,Rreg, T )) := CRH((T, pc, jump(i, j),Rreg))
TagBefore(e, (mult(i, j), pc,Rreg, T )) := CRH((T, pc,mult(i, j),Rreg))
TagBefore(e, (add(i, j), pc,Rreg, T )) := CRH((T, pc, add(i, j),Rreg))
TagBefore(e, (env(i), pc,Rreg, T )) := CRH((T, pc, env(i),Rreg))

With TagAfter extracting the ‘resulting’ tag from the proof, by simulating the
step function using the data provided in the proof string:

TagAfter(e, (ε, pc,Rreg, T, I, πlookup)) := CRH((T, pc, I,Rreg))
TagAfter(e, (load(i, j), pc,Rreg, T,R, πlookup)) := CRH((T, pc+ 1, ε,Rreg[ri ← R]))
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TagAfter(e, (store(i, j), pc,Rreg, T, T ′, πstore)) := CRH((T ′, pc+ 1, ε,Rreg))
TagAfter(e, (jump(i, j), pc,Rreg, T, πstore)) :=

CRH((T, if Rreg[rj ] > 0 then Rreg[ri] else pc+ 1, ε,Rreg))
TagAfter(e, (mult(i, j), pc,Rreg, T, πstore)) := CRH((T, pc+ 1, ε,Rreg[ri ← ri · rj ]))
TagAfter(e, (add(i, j), pc,Rreg, T, πstore)) := CRH((T, pc+ 1, ε,Rreg[ri ← ri + rj ]))

TagAfter(e, (env(i), pc,Rreg, T, πstore)) := CRH((T, pc+ 1, ε,Rreg[ri ← e]))

With Validate : E × Pκ → {1, 0} validating the memory operations by apply-
ing the verification of the authenticated data structure used to emulate a large
memory space:

Validate(e, (ε, pc,Rreg, T, I, πlookup)) := VerifyPatricia(T, T, lookup(pc), I, πlookup)

Validate(e, (load(i, j), pc,Rreg, T,R, πlookup)) :=

VerifyPatricia(T, T, lookup(Rreg[rj ]), R, πlookup)
Validate(e, (store(i, j), pc,Rreg, T, T ′, πstore)) :=

VerifyPatricia(T, T ′, store(Rreg[ri],Rreg[rj ]), ε, πstore)
Validate(e, ∗) := 1

8 Concrete Efficiency Considerations

In this section we cover a few simple optimizations which are of less theoretical
interest, but can improve the concrete efficiency of FastSwap greatly. This section
is aimed at potential implementors.

Reusing the judge. Often deploying the code of a smart contract has significant
cost of its own. However, note that the functionality of the judge does not depend
on the predicate, but only on the authenticated computation structure scheme.
Hence the code can reused between swaps or separated into a library which can
be shared my multiple independent contracts.

High-level execution language. Rather than applying the Step function of the
authenticated computation structure directly the prover and auditor can exe-
cute a more efficient higher level language where each instruction decomposes
into a sequence of simpler low-level instructions from authenticated computation
structure scheme. In case of a dispute the offending high-level instruction must
be unpacked into its lower-level instructions and dispute resolution carried out
at the lower layer. For instance this enables the use of hardware acceleration for
cryptographic primitives in the high-level language while using a function call
to a naive implementation in the low-level language.

‘Just-In-Time’ authenticated data structures. Rather than apply operations di-
rectly to the authenticated data structure used in the authenticated computation
structure, concrete efficiency can often be gained by representing the data more
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efficiently during applications of the Step function and only ameliorate the data
structure with the authentication data at states revealed during dispute res-
olution. An example of this is executing a higher level language, where each
instruction corresponds to a long sequence of instructions on the For instance,
when the memory space is represented as a Patricia trie, then when calling dur-
ing Prove and Tag a Merkle tree is temporarily imposed over the data structure.
This enables application of authenticated data structures which would other-
wise inhibit concrete efficiency, e.g. RSA or CDH based vector commitments [5],
which would only have to be computed over logarithmically many snapshots of
the vector representing the memory space in case of dispute, rather than updated
at every step of the computation during the honest execution.

Reduce computational complexity during dispute resolution. Rather than naively
recomputing Sw from S1 during dispute resolution, resulting in n log n compu-
tation steps, this can easily be reduced to n steps, by simply storing the state
Sl corresponding to the left pointer and computing Sw from Sl whenever l < w
and from S1 otherwise.

Efficient language. Language designers are likely to want a language close to
the that of the underlaying smart contract language in which the verifier is
implemented. This is due to the verifier essentially being an interpreter for the
source language, the size of which is directly proportional to the cost of deploying
the judge contract. Additionally high-level instructions of the underlaying smart
contract language (like signature verification and cryptographic hash function
evaluation) can be provided in the source language. Application of such high-
level functions might greatly simply the implementation of the decryption of the
witness inside the predicate.

Send multiple tags during dispute resolution. The number of rounds during dis-
pute resolution can be reduced by a constant log2 c, by having the prover send
2 tags Tw1

, . . . , Twc
, then having the auditor send the index of the last match l

and first mismatch r. For a computation of 230 steps, letting c = 25, this reduces
the number of interactions with the judge during dispute from 62 to 14.

Limit storage in the judge contract. The previous optimization introduces a
significantly increased storage requirement on the judge (e.g. 32 hashes stored
every iteration during dispute resolution). Some smart contract execution envi-
ronments, in particular the Ethereum virtual machine, sets the price of storage
very high (20000 ‘gas’ per 256 bits[6]8), compared to the price of memory (e.g.
call arguments) or computation. In particular the cost of:

– Sending 32 words of 256 bits to the contract is ≈ 100 gas[6].
– Computing a Merkle tree over 32 words of 256 bits is ≈ 3000 gas[6]9.
– Storing 32 words is 640000 gas[6].

8 Of which 15000 can be recouped by later clearing the memory.
9 Using 64 invocations of the SHA3 instruction.



28 Mathias Hall-Andersen

Hence it is significantly cheaper10 to have the judge compute a Merkle tree over
the arguments (tags) and store the root. Then having the auditor prove a path
to the (at most) two leafs which corresponds to updated l and r values. This is
possible because every input to the judge, not only its current state, is public
and therefore available to the auditor.

9 Further Research

9.1 Constructions of authenticated computation structures.

Unlike authenticated data structures where a proof must prove the correct ex-
ecution of a full operation, the proofs for authenticated computation structures
need only prove a single step of computation which can be arbitrarily small. In
some cases this might enable significantly more efficienct proofs than those for
authenticated data structures under the same cryptographic assumptions:

In Section 7, we have described a concrete instantiation wherein the map
lookup is a single instruction in the language. For our concrete instantiation
this results in proofs of size logM , with M being the size of the memory space.
Alternatively low level operations for walking the authenticated data structure
can be provided by the language and smaller atomic steps in the lookup can be
proved instead. As a simple example consider lookups (load instructions) in the
authenticated Patricia trie of Section 7, but where the state additionally contains
a cryptographic hash digest for an ‘authenticated’ node inside the Patricia tree.
Hence the proof becomes an instance of:

– An instruction pointer pc.
– An instruction I (which might be ε)
– A finite number of fixed-sized registers r1, . . . , rn.
– A tag for an authenticated Patricia tree T .
– A node pointer Hnode.

Whenever I 6= load(i, j), the verifier operates as in Section 7. Whenever I =
load(i, j) and Hnode = ε, the verifier checks that Hnode ← T in the subsequent
tag. Whenever I = load(i, j) and Hnode 6= ε, the proof additionally consists of a
node in the Patricia tree, Node(prefix, len,Hleft, Hright), and the verifier checks
that Hnode = CRH(Node(prefix, len,Hleft, Hright)) and that Hnode ← Hleft or
Hnode ← Hright in the subsequent tag, depending on whether the lookup in
the tree progresses left/right based on rj [len]. When the leaf is reached, verify
it similarly, set I ← ε, set Hnode ← ε. For updates, where the new hash is
propagated up though the tree, a similar process must be repeated in the opposite
direction, then T ← Hnode at the leaf. Using this approach, the proof size can
be made constant in M while the number of rounds during dispute grows by at
most log logM times.

10 Our estimates for c = 25 is a 80 - 90 % ‘gas’ saving
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9.2 Mitigating ‘griefing’

A significant practical problem (which all current contingent payment solutions
suffer from) is that of ‘griefing’, wherein a party can impose a financial loss
on the other without suffering a similar cost: one party (usually the prover)
contacts the other (usually the auditor) to initiate the transaction which incurs
some significant cost (usually the deployment of a smart contract), the initiating
party then aborts the protocol.

One possible road to mitigating the ‘griefing’ problem is to create a one-
time ‘super contract’, where parties wishing to use contingent payments deposits
funds. The seller can now interact with the buyer off chain, by having him sign
messages which can be sent to the contract in case of a dispute. However a niave
implementation of such a scheme would suffer from attacks where the buyer
sells himself a witnesses during the interaction with the seller, hence moving the
funds out of the contract before a dispute is triggered.
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