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Abstract—Historically, fault diagnosis for integrated circuits
has singularly dealt with reliability concerns. In contrast, a
cryptographic circuit needs to be primarily evaluated concerning
information leakage in the presence of maliciously crafted faults.
While Differential Fault Attacks (DFAs) on symmetric ciphers
have been known for over 20 years, recent developments have
tried to structurally classify the attackers’ capabilities as well
as the properties of countermeasures. Correct realization of
countermeasures should still be manually verified, which is error-
prone and infeasible for even moderate-size real-world designs.
Here, we introduce the concept of Cryptographic Fault Diagnosis,
which revises and shapes the notions of fault diagnosis in
reliability testing to the needs of evaluating cryptographic imple-
mentations. Additionally, we present VerFI, which materializes
the idea of Cryptographic Fault Diagnosis. It is a fully auto-
mated, open-source fault detection tool processing the gate-level
representation of arbitrary cryptographic implementations. By
adjusting the bounds of the underlying adversary model, VerFI
allows us to rapidly examine the desired fault detection/correction
capabilities of the given implementation. Among several case
studies, we demonstrate its application on an implementation of
LED cipher with combined countermeasures against side-channel
analysis and fault-injection attacks (published at CRYPTO 2016).
This experiment revealed general implementation flaws and
undetectable faults leading to successful DFA on the protected
design with full-key recovery.

Index Terms—Fault Diagnosis, Fault Simulation, Verification,
Tool, Differential Fault Attack, DFA, ParTI

I. INTRODUCTION

Current technological trends, e.g., the Internet of Things and
Edge Computing, lead to the deployment of many distributed
computing devices in need of strong cryptography. In this new
scenario of ubiquitous computing, a real-world attacker can eas-
ily obtain physical access to a device. Hence, the need to secure
implementations against both passive physical attacks (side-
channels) and active physical attacks (fault injections) arises.
While many tools for verification of side-channel resistant
implementations exist, ranging from purely formal verification
to more practical evaluations [1]–[6], no automated procedure
has yet been suggested to evaluate the countermeasures against
fault-injection attacks in the literature.

Fault injection countermeasures started by proposing redun-
dancy techniques, either consecutively or in parallel, together
with opportunities to detect (or correct) certain faults [7], [8].
While this is usually referred to as Concurrent Error Detection
(CED), the vast majority of the works focused on Error
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Detecting Codes (EDCs) with parity as the most straightforward
case [9] and linear codes as more sophisticated solutions [10],
[11]. Besides the fact that most of the aforementioned works
provide only ad-hoc solutions, almost none of them consider a
formal description of the adversary’s capabilities. In contrast,
ATP Security [12] provides a formal model and investigates
algorithmic aspects for taper-proof security. Later, Private
Circuits II [13], CAPA [14], M&M [15], and an extension of
a glitch-free multiparty protocol [16] have defined a boundary
for the adversary in order to guarantee the fault detection. A
more precise formalization of the adversary model for fault
injection has only recently been introduced in [17].

Outside the cryptography community, the field of integrated
circuits testing has developed plenty of simulation tools
and analysis techniques to examine the effect of possible
manufacturing failures in a product, also known as reliability
analysis. Testing through simulation has the advantage that
it can be performed in great detail and is potentially very
accurate since it gives realistic emulation of faults and detailed
monitoring of their consequences on the system [18]. Moreover,
practical evaluations of a real product need enormous amount
of time as well as considerable expertise. In addition to this,
a preliminary evaluation is advantageous in order to reduce
costs of the fabrication process. While many fault simulation
tools for reliability analysis of integrated circuits exist, they are
commonly limited to one-bit faults [19], [20], which severely
limit their applicability for cryptographic fault analysis.

Several previous works can assist the automated fault analysis
of a formal cipher description to identify and facilitate potential
fault attacks. Zhang et al. [21] propose a method to automate
Algebraic Faults Attacks (AFA) using SMT solvers, while
more recent works of Khana et al. [22] and Saha et al. [23]
provide frameworks for fault characterization in cryptographic
algorithms tailored to Differential Fault Analysis (DFA) attacks.
These tools can surely facilitate an active attack. However,
assuming a countermeasure to fault-injection attacks where the
adversary’s boundary is defined, no public tools are currently
known to (automatically) examine the security of such an
implementation under the defined adversary model. Apart from
the difficulty of practical evaluations, it is highly challenging
to limit the injected faults based on the assumed fault model.

For this reason, only a reduced number of works propos-
ing countermeasures against Fault Analysis evaluate their
scheme [9], [15], [24]. To this end, the authors had to
undergo an extremely tedious process of manually modifying
the HDL code or the netlist to be able to perform fault
injection in simulation. Hence, the importance of a unified
and automated framework to facilitate the evaluation of fault



resistant implementations is highlighted.
Our Contribution. In this work we try to close this gap by
introducing the concepts of Cryptographic Fault Diagnosis
and providing the corresponding missing tool to automate
it. With bit-level granularity, VerFI operates on the netlist
of a given hardware implementation. It is a fault simulator,
where the user adjusts the specifications and capabilities of
the adversary. Then, utilizing a set of test vectors, the tool
simulates the design while injecting the faults fitting to the
adjusted bounds. The tool reports the fault coverage (rate of
detected cases), and details of the undetected cases, including
location and type of fault, input test vector, and clock cycle(s).
We demonstrate the capabilities of VerFI by assessing the
security of multiple exemplary hardware designs equipped with
fault-injection countermeasures known through public literature.
Most notably, considering ParTI [25] as a combination of
Threshold Implementations (TI) [26] and Binary EDC, using
VerFI we exhibit a design flaw and the cases where bounded
faults are left undetected, which enable a successful full-key-
recovery DFA attack. Additionally, we verify the security
of the schemes CAPA [14], M&M [15], and Impeccable
Circuits [17] by analyzing several implementations, confirming
the theoretical claims of these schemes.

II. PRELIMINARIES

In this section, we give an introduction to reliability testing in
digital electronics and fault simulation, and introduce the most
common fault models used in cryptographic implementations.

A. Integrated Circuits Testing

The role of reliability testing in digital circuits is to
evaluate the correct functionality of a particular design, thereby
examining whether something went wrong during the design or
the manufacturing process. The role of diagnosis is to ascertain
the underlying reason for a malfunction [27]. Reliability testing
is a crucial part of the circuit design flow, done along different
stages of the design to ensure correct functionality. Multiple
factors can affect the manufacturing process, leading to a
wrong result. Simulation techniques help to anticipate and
determine what failed during the process. Fault simulation has
been extensively used in fault diagnosis to achieve this goal.

B. Fault Simulation

In fault simulation, the fault-free circuit is simulated to get
the correct output given a specific input test vector. Then,
the faulty circuit is simulated with the same input. If the
corresponding outputs are different, it is said that the given
input test vector detects such a fault. Instead, when the effect
of the fault is not propagated to the outputs, it is concluded
that the fault is not observed and hence not detected by the
given test vector. Different fault simulation techniques exist in
the literature, but the most common ones are serial, parallel,
deductive, and concurrent [27]. The advantage of the last two
techniques is that in one input-output pass, it is possible to
asses the effect of every fault, making them highly efficient.
However, in the presence of a significant number of faults,

the memory demand can be immensely high. Fault diagnosis
of digital circuits is most often addressed with single-fault
simulation models due to the impossibility of covering all
possible combinations of multiple faults [19], [20].

There are multiple commercial Electronic Design Automa-
tion (EDA) tools featuring powerful fault simulators, tailored
to address IC testability. The typical workflow of these tools is
to generate a scan circuit by replacing the functional flip-flops
with scan flip-flops and then run an Automatic Test Pattern
Generation (ATPG) tool which only handles the combinational
part of the circuit provided the full scan design. There are
also several works on open-source fault simulators for fault
diagnosis. The first one, known as PROOFS [28], implements a
single stuck-at fault simulator. Subsequent work [29], optimizes
the fault simulation without changes in the fault model. Later,
the work [30] extends this to multiple and single stuck-at faults,
and a subset of Single Event Upset (SEU) limited to registers,
hampering fault injection inside combinatorial circuits.

C. Fault Models in Cryptographic Implementations

Multiple fault models have been described in the literature
concerning fault injection in cryptographic algorithms [17],
[31]–[33]. All of them commonly concentrate on how many
faults are allowed, when those faults should be injected or
their duration, and the type of the fault. Depending on how
many faults are allowed, some fault models distinguish between
single- and multiple-bit fault injections. Regarding the number
of faults, we encounter two different approaches. On the
one hand, countermeasures like duplication or EDCs [25]
limit the number of faults to be injected (usually per cycle)
based on the level of redundancy or the distance of the
underlying code. On the other hand, countermeasures utilizing
Message Authentication Code (MAC) tags, e.g., CAPA [14]
or M&M [15] restrict areas of the circuit to be faulted instead
of limiting the number of injected faults. With respect to the
timing of fault injection, the authors of Impeccable Circuits [17]
introduce the Univariate (M) and Multivariate (M∗) concepts,
in which stuck-at or SEU faults can be injected in a single
clock cycle or in multiple clock cycles respectively.

Usually, previous models either contemplate a uniform or a
biased fault model: in the uniform model the faults follow
a uniform distribution, where each of them has the same
probability of occurring. In contrast, a biased fault model
is characterized by an increased chance of occurrence for
particular faults (specific areas only).

III. CRYPTOGRAPHIC FAULT DIAGNOSIS

In this work, we aim to bring the fault diagnosis knowledge
from reliability testing to the cryptographic setting for the
evaluation of fault countermeasures. We adapt these concepts to
the needs of cryptography to define the notion of Cryptographic
Fault Diagnosis. We compare the goal of testing in IC design
versus the goal of evaluating fault-resistant implementations
of cryptographic algorithms. Furthermore, we introduce a new
fault model to complement the state of the art and provide a
consolidated way of characterizing any fault model.



A. Conventional vs. Cryptographic Fault Diagnosis

The process of reliability testing and evaluation of fault-
resistant cryptographic implementations differ in multiple
concepts:
• The primary goal is the principal difference between

both procedures. While the first one aims at ascertaining
whether a defect occurred during the manufacturing pro-
cess, the second one’s goal is to evaluate the performance
of a countermeasure against fault-injection attacks.

• Detecting a fault in reliability testing means that the
fault propagates to the outputs of the circuit. On the
other hand, in cryptography, a fault is detected when the
integrated countermeasure reacts to a faulty execution, e.g.,
by raising an abort or status signal, or by propagating an
error randomizing the internal state.

• The origin of faults in the first scenario comes from small
defects during the manufacturing process, which makes
these faults purely random and unpredictable. On the
contrary, cryptographic implementations face malicious
users injecting intentional faults, specially crafted to
bypass the security of the system.

• The number of simulated faults also differs. Circuits are
tested with single-bit faults due to the high coverage this
model provides and the impossibility of simulating all
combinations of multiple faults. Conversely, the methods
used to inject malicious faults often target multiple faults
at the same time, e.g., laser fault injection.

• Coverage in testing (associated with a test set) is defined
as the ratio of faults that the test set can detect over the
total number of possible faults in the circuit. The coverage
in a cryptographic implementation is associated with the
underlying countermeasure. It is defined as the ratio of
faults detected over the total number of faults injected.

Given the aforementioned differences, a simulator with a
different testing approach is needed to conduct a successful
cryptographic fault diagnosis using particular fault simulation
methodologies. The result of the test shall give an accurate
assessment of the performance of the countermeasure. The
simulator needs to identify the detection mechanism and to
recognize whether the circuit reacts to the injected fault.
Probably as the most challenging task, the simulator needs to
be highly flexible to be able to emulate all different possible
origins (fault model defined by the user), which represent the
hypothetical attack methodology. Due to the need to simulate
multiple-fault injections, the use of deductive or concurrent
fault simulation becomes impractical when considering a
high number of possible combinations. Hence, we identify
more suitable methodologies, such as serial or parallel fault
simulation. As a final result, meaningful coverage has to be
reported following the type of implemented countermeasure.

B. Consolidating Fault Models

The most extensively used model in fault diagnosis for
digital circuits is the stuck-at-0/1 fault model. These are faults
that occur in the interconnections of Boolean gates, i.e., wires

Fig. 1: Injecting fault on a hierarchical module (H3) from the
inputs in the gate-output fault model MO (left) and in the
gate-input fault model MI (right).

or nets. Additionally, bit-flip faults (SEUs) occurring in the
memory elements, among others, are also used.

To define a unified fault model for cryptographic imple-
mentations, we benefit from the extensive theory on how
faults are modeled in reliability testing, in addition to the fault
models already presented in previous section. To encapsulate
all possible fault models, we propose a characterization given
at four different levels, going from more general notions to
narrower properties of the model. The proposed fault model is
structured as follows:

1) Gate-input & -output fault models: We model faults
to occur within the Boolean components (gates), rather than
on the wires since most of the malicious attacks result in a
faulty operation on these components. Given the great variety
of fault attacks, with very different effects and accuracy, we
model faults in Boolean components as gate-output faults (MO)
where faults occur solely on the output wires, or as gate-input
faults (MI) where faults may occur on any input and the
output. The gate-input fault model (analogous to the wire
model used in IC testing) is a stronger model due to the finer
granularity in the injection. The crucial difference between the
two fault models is that with MI , the attacker is given the
ability to hit particular branches of fan-outs going into different
components, directly affecting their inputs. On the other hand,
in MO, the gate driving the stem of such fan-out should be
targeted, propagating the fault to all fan-out branches. Fig. 1
illustrates this concept.

Conventional fault injection mechanisms used against crypto-
graphic devices, e.g., clock or voltage glitches, are best modeled
as gate-output faults. Furthermore, most of the scenarios
consider the faults to happen solely at the output of the gates.

Nevertheless, more advanced techniques could be used to
inject more precise faults, and thus, they are best modeled
as gate-input faults. These techniques include Electromigra-
tion [34], EM glitch, or very accurate laser beams (laser cutter),
which can affect input wires of a gate [35]. With highly accurate
tools such as Scanning Electron Microscope (SEM) or Focused
Ion Beam (FIB), the attacker might be able to inject intra-gate
faults, getting a CMOS network to stuck-at open/close state.
As reported in [36], [37], the most accurate way of modeling
these faults is gate-input faults.

2) Uniform & Biased fault models: We represent a uniform
fault model as MU and a biased fault model as MB. In
the case of cryptographic implementations, MU is less often
utilized. The faults are maliciously injected by an attacker, who
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Fig. 2: VerFI’s framework.

targets the (most) vulnerable parts of the design, e.g., utilizing
a localized laser beam.

3) Univariate & Multivariate models and number of faults:
Mt represents a univariate fault model limiting the number of
faults to t in a single clock cycle.M∗t represents a multivariate
fault model allowing at most t number of faults per cycle.

4) Type: The type of faults are typically SEU or SA0/1:

• Single Event Upset (SEU) is a non-permanent error that
affects memory elements (registers) in a digital circuit,
causing a bit to flip. Single Event Transient (SET) faults
are similar errors that affect the combinational logic, which
could turn into an SEU if propagated until a sequential
logic (memory) unit. We refer to a non-propagated SET
as an ineffective fault. For the sake of clarity, throughout
the remaining of this work, we treat every bit-flip as a
SEU. This type of fault is the one that most realistically
models the effect of DFA [38], [39].

• Stuck-at-0 (SA0) and Stuck-at-1 (SA1) are the most
common type of faults used in fault modeling theory.
They represent a wire stuck to ground or Vdd, respectively.
Contrary to this, in the cryptography settings, these kinds
of faults are only used to model different fault attacks, like
Safe-Error Attacks (SEAs) [40], or Statistical Ineffective
Fault Attack (SIFA) [41].

IV. VERFI

In this section, we present the details of our Verification Tool
for Fault Injection (VerFI1). We first introduce the framework
and its functionalities. Then, we explain the fault simulator in
detail, the relevance of the input test vectors, and the evaluation
results. Finally, we explain how the tool can be used to address
SIFA resistance and to evaluate infective countermeasures.

A. Framework

VerFI is an open-source tool designed to analyze the coverage
of implementations of fault-injection countermeasures at the
gate level, achieving an early assessment in the design flow.
The tool receives an RTL-level design (Verilog or VHDL) or
directly a Verilog netlist and generates the analysis result. Fig. 2
illustrates VerFI’s framework. The execution of the program
takes place in two steps, starting with a preprocessing of the
RTL files to continue with the actual evaluation of the design.

1Our tool can be found in: https://github.com/vmarribas/VerMFi

a) Preprocessing: In the first stage, the tool automates
the synthesis of the given RTL to create a netlist, which is
parsed to produce the fault configuration files. These files
allow the user to define a personalized fault injection. The tool
can work with two different synthesizers, either Synopsys
or Yosys [42], offering the option of a full open-source
framework. Both Synopsys and Yosys are fully automated
within VerFI’s framework, which builds the corresponding .tcl
file for each design, specifying the right constraints to make
sure no components are optimized away by the synthesizer.
This is crucial for fault countermeasures, which often use
redundancy for protection. If needed, the integration of different
synthesizers, e.g., Cadence Genus, is straight forward as long
as the synthesis result is a Verilog netlist.

b) Evaluation: The second part of the program receives
one of the fault configuration files describing the injection,
together with an optional file with the input test vectors
provided by the user. The tool employs an event-driven
technique to simulate the circuit and determines the values of
all primary outputs (including the status signals, e.g., a signal
indicating the detection of a fault). During the experiment, the
same fault simulations are performed for every input. The tool
reports the coverage for every test vector and a final overall
result with the total number of faults and the average coverage
for the whole set of inputs. The tool reports all the non-detected
faults per input test vector with the corresponding faulty output,
as well as the ineffective faults.

c) VerFI’s functionalities: The tool is designed to have
high flexibility, allowing the users to define their fault model
and evaluate their designs accordingly. The principal purpose
of VerFI is to evaluate fault-injection countermeasures, but its
functionality is not limited to this task. The user can mount
simulated fault attacks over the actual netlist using the outputs
generated by the fault simulations without the need to deploy
the design on FPGA or ASIC. Nonetheless, the tool does not
automate any attack; it only provides the means to perform
them. Attacks like DFA, AFA [43], SEA [44] or SIFA, can
make use of the results of VerFI to facilitate the key-recovery
process. The user has full freedom to emulate different kinds
of attacks and fault models.

B. VerFI’s Fault Simulator

We describe the main parts of the fault simulator, including
how faults are modeled, the fault injection mechanisms that
allow the user to emulate any combination of the fault models
presented in Sect. III-B, and how simulation is performed.

1) State-of-the-art EDA tools: There are several commercial
tools already featuring powerful fault simulators, tailored to
address IC testability. Apart from their expensive licenses, these
tools require extensive training. Furthermore, the methodology
they use (ATPG on the scan version of the circuit) does not
provide the complete simulation of the design, which would
be necessary for several countermeasures to decide whether a
malicious fault is detected. Moreover, their reliability models
are not suitable to analyze maliciously crafted faults.



Additionally, we aim to design a fully open-source tool that
is accessible to everyone willing to have an initial assessment of
their design. VerFI extends the faults covered in [30], accepting
SEUs in every component of the circuit and allowing the user
to specify when exactly the fault(s) should be injected, to fully
comply with the fault models discussed in Sect. III-B.

2) Fault: As already mentioned before, we model errors in
the circuit as gate-faults. We define a class fault, which has
three attributes: active, cycle, and type. These three attributes
respectively define whether the fault should be injected or not,
at which cycle, and the type of the fault.

A fault object is appended to every cell (comb. or seq.),
which is triggered when the cell is evaluated, modifying its
output (or not) according to the fault type. We noticed that
several fault attacks need a fault to be injected at the input
of a non-linear function of the cipher. Hence, at the inputs
of hierarchical sub-modules, we insert buffer gates, to each
of which a fault is appended as well. These buffers enable
the possibility of injecting faults at such input signals, thereby
optionally activating the gate-input fault model (see Sect. III-B).

Since most of the countermeasures need to keep a strict
hierarchy to avoid undesirable circuit optimizations when
synthesized, it suffices to consider faults at inputs of sub-
modules to deal with the gate-input fault model. The current
version of the tool offers the possibility of injecting gate-input
faults only at inputs of sub-modules, not at the inputs of every
single cell. This is advantageous due to the lower number of
faults that have to be considered. In future work, we will add
an option to consider the gate-input fault model at every single
cell of the circuit. This would lead to a significant increase in
analysis complexity as many more faults should be simulated.

3) Injection Mechanism: The fault injection mechanism is
the most delicate feature as it determines the fault model used
for the evaluation. It has to be flexible to adapt to as many
scenarios as possible, and allow the users to test their designs
with the fault model of their choice. To this end, the execution
of the tool is split into two steps, preprocessing and evaluation.

The user is provided with two fault configuration files in
which the applicable options can be specified. Each file defines
a different kind of fault injection mechanism, either hierarchical
or component-wise. In both of them, the user defines the number
of fault simulations Ns that the tool has to perform, and the
number of faults Nf to inject per simulation. In the hierarchical
injection, the user should additionally define the maximum
number of faults per clock cycle Nt. For every module, the
user should decide whether or not certain module should be
faulted, whether to use the gate-input model, when to inject
the fault, and which kind (SEU or SA0/1).

a) Hierarchical Injection: The first file drafts the hier-
archical structure of the design with the respective module
names, from which the tool stores all the cells from the modules
enabled to be faulty and in which cycle(s). A set of faults is
created as F = {f1, . . . , fNe

}, where fi is the identifier of the
ith cell enabled to be faulty, and Ne the number of such cells.
The tool selects up to Nf random faults of F per injection
I and repeats this for up to Ns times. The user can perfectly

delimit the areas where the faults should be injected, with
equal probability. This delimitation allows either a uniform or
biased fault model. Moreover, this also allows the evaluation
of designs where just certain parts of the circuit are protected.

b) Component-wise Injection: The second file details
every module’s gates and (optionally) its inputs, allowing the
user to precisely decide where to fault. This functionality is
meant to test very particular faults, usually to be used after
a more generic test with the hierarchical injection, ideal for
launching an actual attack, or just debugging. Similarly to the
previous modality, the tool collects and stores all faults into
F . On the one hand, if Nf = Ne, the tool performs a single
simulation activating all such faults. On the other hand, if
Ne > Nf , then the tool simulates all possible combinations of
Nf faults in the set F . If they exceed a user-defined threshold,
the injection is done at random performing a max. of Ns fault
simulations. Otherwise, Ns is ignored.

c) Word-wise Injection: The user can also define the faults
to be injected in a word-wise fashion, e.g., byte- or nibble-wise
faults. The idea is to enable fault injection into the components
driving all wires of the targeted bus. In this case, the tool
can inject a random offset ∆ into the targeted bus (SEU), or
randomly set/reset some bits of the selected word (SA0/1).
Depending on how the hierarchy of the circuit is designed, it
would suffice to enable the fault flag of the blocks treating
such buses, or, otherwise, a more careful selection can be made
with the component-wise injection.

4) Simulation: The synthesized netlist is parsed to build a
structural representation of the circuit, with wires, pins, and
gates modeled as objects interconnected with each other. With
this structural representation, we implement an event-driven
simulator similar to the one described in algorithm 2 of [30]. To
emulate the sequential behavior of the circuit and the concept
of time provided by the clock, a simple scheduler in the form
of a while-loop is implemented, where each iteration is a clock
cycle. The simulation finishes when a particular done signal
(as a primary output of the circuit) is set to ‘1/0’, or when the
loop exceeds the number of iterations requested by the user.

Faults are processed at the right iteration (cycle), activated or
deactivated according to the specified clock cycle(s). The tool
can simulate either round-based and serial implementations, or
merely isolated pipelines.

Our goal is not to design the most efficient general pur-
pose fault simulator, but to design a robust fault evaluation
framework tailored to cryptographic implementations, which
blends the concepts of fault diagnosis and fault evaluation in
cryptographic algorithms. Thus, we start with a serial fault
simulator, which simulates one by one the given fault injections,
i.e., one injection per simulation.

a) Performance optimizations: It is possible to signif-
icantly enhance the performance of the current version by
implementing parallel fault simulation. The idea is to transform
the current bit-wise operations to operate on 256-bit words by
utilizing AVX2, where each bit of the word would correspond
to a different fault simulation, allowing us to perform 256
fault simulations simultaneously (default to 64-bit words). This



is already planned and devised as future work. Note that the
extension of the current version of VerFI to support parallel
fault simulation would only enhance it performance-wise. Its
applicability and the supported models remain unchanged.

C. Input Test Vectors

The inputs to the circuit is another variable that influences
the total space of possible fault simulations, together with the
fault location and the time. The impact of different inputs
on the coverage is considerable, since, for example, a single-
bit fault could be classified as non-detected for a particular
input, while for a different input the fault might not propagate
and thus classified as ineffective. Hence, in order to have a
meaningful result, the more inputs provided to the evaluation,
the higher the confidence. Since it is impractical to evaluate all
possible inputs exhaustively, VerFI gives the user two options
to specify the inputs for the experiment:
• The user can specify the number of different inputs for

simulation, and the tool would choose them at random.
• The user can provide a file with a list of input test vectors.

For every input to simulate, the tool performs the same
experiment, i.e., the same fault injections.

D. Evaluation

The primary goal of designing VerFI is to verify countermea-
sures against fault attacks on cryptographic implementations.
The tool accepts two forms of detection mechanisms: if the
circuit detects a fault, it either triggers a abort signal or sets the
full output to zero to avoid revealing any information about the
faulty output (methodology proposed in [17]). Hence, the faults
are classified into three different groups, based on whether the
cipheterxt output (ct) is faulty (Of ) or not (O), and on the
abort signal A:

1) Detected (FD): the design detects the injected fault using
any of the aforementioned detection mechanisms, i.e.,
ct =? & A = 1 or ct = 0.

2) Non-Detected (FN ): the countermeasure does not detect
the injected fault, and a faulty output is provided, i.e.,
ct = Of & A = 0.

3) Ineffective (FI ): the injected fault is not propagated to
the output. In this case, the design does not detect the
fault, but the output does not differ from the correct one,
i.e., ct = O & A = 0.

The tool provides separated results for the coverage of
effective faults and ineffective faults since the user could choose
to protect against the first kind of faults but not the second.
Thus, the detection coverage, given in Eqn. (1) does not take
into account the ineffective faults. The subsequent section
describes a verification procedure in case of SIFA attacks.

C =
FD

FD + FN
(1)

E. Statistical Ineffective Fault Attack

Statistical Ineffective Fault Attack (SIFA) [41] exploits
ineffective faults, which lead to a non-uniform distribution
on intermediate values enabling a key-recovery attack.

SIFA is fundamentally based on the fact that both effective
(detected and non-detected) and ineffective faults appear. Hence,
an algorithmic countermeasure to thwart SIFA could be an
error correction mechanism, which prevents effective faults
from appearing given a particular attacker model. Thereby,
error correction can prevent the root cause of SIFA.

In order to check for full protection against SIFA, we can
compute a coverage that depends on the effective and ineffective
faults (see in SIFA paper, page 16). To provide full protection
against SIFA, 100% of the injected faults would have to be
ineffective. The fact of having 100% ineffective faults would
break the requirement: “require that there is some dependency
between the observation of an ineffective fault induction and
the faulted intermediate value x” [41]. As a metric to address
how possible is a SIFA attack, we use the Fault Ineffectivity
Rate (π), defined in [41] as follows:

π =
FI

FD + FN
. (2)

The ineffectivity rate refers to the probability of an ineffective
fault to occur. An ideal SIFA would have a high ineffectivity
rate. Nevertheless, if π →∞ (FD+FN = 0) we can say that a
SIFA attack is not possible.2 Additionally, if π = 0 (FI = 0), it
means SIFA is also prevented. In this case, the countermeasure
is designed to ensure that every fault is effective [45].

Countermeasures at the protocol level are also a viable
alternative. Although VerFI has been primarily designed to
analyze algorithmic countermeasures, a protocol based on
limiting the number of queries (N ) can be evaluated with
our tool by computing the likelihood of a successful SIFA
attack given π and N .

F. Infective Countermeasures

During the simulation of any particular fault, VerFI treats
the design as a black box, only processing inputs and outputs
of the top entity to control the simulation and check the fault
detection, respectively. Despite parsing and emulating the actual
netlist, the tool does not know what the functionality of every
component or wire is - it has no semantic information.

Regular infective countermeasures do not provide any status
signal for fault detection; they merely propagate the error
infecting the state of the computation. Hence, the attacker
only sees garbage output. The problem of most infective
countermeasures is that a rightful user is unaware if the output is
correct or random junk. Our tool suffers from the same problem
since it is difficult to decide if the output is an exploitable
faulty output or merely random.

This issue can be resolved with little intervention by the
user, who may annotate a signal in the netlist by just adding
the comment //Check bits:<signalname> to assert whether the
infection was triggered or not. Thus, if the output is incorrect
and the assertion flag was triggered, the tool knows that the
fault was detected, and the output is just a random string.

2The designer should not insert any kind of detection mechanism that may
give the attacker information between effective and ineffective faults.



V. CASE STUDIES

In order to test the functionality of the tool, we evaluate
multiple implementations secured against either combined or
fault attacks from the literature. This includes implementa-
tions of CAPA [14], M&M [15], the original ParTI LED
implementation [25], and different Impeccable Circuits [17]
implementations of Midori [46]. For all of them, VerFI could
find interesting results.

A. CAPA and M&M

CAPA is an algorithm-level combined countermeasure
against SCA and fault-injection attacks in the tile-probe-
and-fault model. It evolves from SPDZ [47], a Multi-Party
Computation (MPC) protocol providing protection in the
presence of both passive and active adversaries.

Additionally, we evaluate a design implementing infective
countermeasures. As most of these countermeasures in the
literature are broken, we chose the recently published M&M
scheme. It evolves from CAPA, relaxing the attacker model to
obtain a more practical scheme, where masking and information
theoretic mac tags are combined. We perform the experiments
on the original code for the full AES M&M V2 implementation
(k = 8, m = 1), provided by the authors, and emulate a similar
evaluation as performed in [15]. This experiment demonstrates
the applicability of VerFI to analyze infective countermeasures.

B. ParTI

LED [48] is an AES-like block cipher. To achieve fault
tolerance ParTI [25] applies an Error-Detection Code to each
nibble of the state. More precisely, each nibble is encoded with
eight bits allowing two completely separated computations to
take place, which we call the data path, illustrated on the right,
and the parity path, illustrated on the left in Fig. 3. The error
check can detect any error that is local to only one path of
the computation and any error of Hamming weight of up to
3 overall 8 bits of each codeword. This property comes from
the underlying extended Hamming code applied in ParTI [25].

Both the parity path on the left and the data path on
the right are split into a three-share TI to ensure first-order
SCA resistance. This requires the cubic SBox to be split into
quadratic functions G and F . Similarly, the parity path contains
corresponding quadratic functions R and Q.

We had access to the original implementation of ParTI LED
benchmarked in [25]. An initial evaluation with VerFI allowed
us to spot an implementation mistake. The majority of the faults
injected at the last two clock cycles of the computation were
non-detected since the check resolution happened one or two
cycles after the output was released. The checking mechanism
presented in [25] needs a careful unsharing that takes two cycles
to complete, as shown in Fig. 4. This mechanism does not
entail a problem during the computation. However, if the output
is issued (triggering a done signal) right after the computation
of the last round (as it was the case), then the check for this
round does not have enough time to finish. The authors have
been notified and have provided an updated implementation.

Fig. 3: Structure of LED protected with ParTI, taken from [25].

Fig. 4: Computation and unmasking of the error check vector
in ParTI for first-order security, taken from [25].

Fig. 5: Implementation of round-based Midori for a small
degree of redundancy, taken from [17].

We conducted further analysis on the corrected implemen-
tation, finding several non-detected faults within the fault
model mentioned above. We manage to bypass the checking
mechanism with 2-bit faults, i.e., of Hamming weight 2. They
are injected either at the same clock cycle (univariate Mt=2)
or in subsequent clock cycles (multivariate M∗t=1). The non-
linearity of the SBox further propagates the faults, affecting
more bits than the initially faulted, and producing a valid
codeword that does not trigger the error detection. These
findings confirm the suspicions raised in [17] since the given
implementation of ParTI does not fulfill any of the properties
proposed in that same work. With such non-detected faults,
we can launch a DFA attack on the protected implementation.
The details of the attack are given in Sect. VI.

C. Impeccable Circuits

A methodology that enables the secure and practical imple-
mentation of code-based CED schemes in the presence of fault
propagation is suggested in [17].

In order to evaluate the soundness of the fault models
considered in [17], we target Impeccable Circuits implemen-
tations of Midori [46] and a toy cipher. The authors have
considered the gate-output fault model MO in their analyses,



and designed the schemes accordingly. Utilizing VerFI, we
subject the implementation to a stronger adversary model, i.e.,
gate-input fault model MI . Using this model, we were able
to bypass the checking mechanism of several implementations.
Fig. 5 presents the scheme of a round-based Midori protected
with a small degree of redundancy. The implementation is
carefully designed by using the independence property and
taking care of the fault propagation, as well as placing the
checks accordingly. In this case, the only block susceptible
to propagate a fault is the SBox. No-fault injected in any
of the gates inside the SBox would propagate further to
create a valid codeword. The check is placed right before,
so no previously injected fault would reach the inputs of the
SBox. This investigation confirms the consistency of the claim
of Impeccable Circuits based on its underlying MO model.
Instead, by injecting a fault at the input of the SBox (MI), the
faults are further propagated to get a valid codeword, bypassing
the checks, similarly to what happened in the case of the ParTI
LED. This experiment practically illustrates how, by injecting
faults at the gate inputs, we achieve a more powerful adversary.

VI. DFA ON PARTI LED

We recall DFA and apply it to an implementation of LED
protected by ParTI to achieve full key recovery.

A. Differential Fault Analysis

In a DFA [39] for a given plaintext and a specific fault
model, the attacker can observe both the correct and faulty
ciphertexts ctc and ctf respectively. Given the pair of both
outputs, the attacker guesses parts of the key and reverses the
cipher computation up to the point of fault injection to check
whether the difference computed corresponds to the considered
fault model. Thereby the attacker can reduce the total number
of key candidates with each (ctc, ctf ) pair until very few or
even one unique key candidate remains. Due to the diffusion
properties of secure block ciphers, the attack is usually limited
to the penultimate or last round to avoid guessing the entire key
which would be computationally infeasible. In the following,
we limit ourselves to adversaries who can inject toggle (SEU)
faults in a bounded number of individual bits.

B. Attack

We formulate criteria for faults to remain undetected by
ParTI and subsequently describe two different DFA attacks
leading to a full key recovery by exploiting undetected faults.

a) Undetected Faults: Due to the non-linearity of the
SBox stages, a fault limited to few bits at their input may be
propagated into a fault affecting more bits at the time of the
check. Note that we stay within the gate-output fault model.
Based on Fig. 3, faults injected into the ADDROUNDKEY, can
represent faults at the input of G. Similarly, the faults injected
either at the G module or the registers placed between F and
G would translate in faults at the input of F . The masking
countermeasure within ParTI separates both data and parity
paths into three shares. This neither helps nor hinders the DFA
as the fault can just be injected into an arbitrary share. Since

TABLE I: All undetected Two Bit Faults in each Nibble of
ParTI-LED: ∆J denotes the input fault of operation J .

∆G ∆F ∆R ∆Q # non-detected # ineffective
2 0 0 2 2 14
4 0 0 2 2 14
0 8 8 0 8 8
1 0 0 4 8 8
8 0 0 4 8 8
1 0 0 8 8 8

the ADDROUNDKEY blocks are only connected to the first
share of G (resp. R), the adversary is limited to inject faults
on this share in order to achieve a fault at the input of G. In
Table I, we summarize all faults of Hamming weight two that
lead to undetected faults at the time of the check. All presented
fault locations have been found with our tool VerFI.

Once a faulty nibble passes the error check, there is no
further possibility of detection in a later round as the EDC
operates on each nibble individually. Hence, the described
faults can be injected in an arbitrary round without detection.

b) Attacking Individual Nibbles: As LED is structurally
very similar to AES, we can adapt the DFA demonstrated
by Giraud [49] for key recovery. Since LED performs the
MIXCOLUMNS (MC) operation in the final round as well,
we assume that the attacker computes equivalent keys k′

corresponding to the actual cipher key via the relation

MC−1(ct⊕ k) = MC−1(ct)⊕ k′, with k = MC(k′),

where ct stands for ciphertext. For the sake of brevity, from
here on, we refer to the elements before the last MC operation
as ciphertexts while retaining the prime for clarity

ct′c = MC−1(ctc) and ct′f = MC−1(ctf ),

with ctc and ctf the correct and faulty ciphertexts, respectively.
We describe the attack corresponding to the third row of

Table I. For each nibble i, the attacker injects a non-detected
fault (∆F ,∆R) into the input of F and R and determines the
output. If the ciphertext is faulty, he guesses one nibble of
the key and computes back to the time of injection, thereby
obtaining a distinguisher along the data path:

∆F
?
= F−1(ct′f,i ⊕ kg′i)⊕ F−1(ct′c,i ⊕ kg′i).

Similarly, he can obtain a distinguisher along the parity path.
However, both distinguishers cannot be used jointly, as the MC
operation differs from the PMC operation, thereby affecting
the reference of all variables denoted with a prime.

The attacker must obtain at least two pairs to reduce the
number of key guesses kg for one nibble to a unique one.
Note that obtaining all 16 nibbles only derives the last half of
all LED key bits (for 128-bit key). The same attack can be
performed one step earlier to recover the other half of the key.
Thus, the attacker needs to obtain a minimum of 64 correct
and faulty ciphertext pairs to achieve a full key recovery (for
simplicity, we restrict our analysis to an attacker who does not
use computational power to obtain remaining key parts).



c) Attacking Column-wise: In the following, we demon-
strate how to reduce the number of pairs to perform the attack.
Mounting the previous attack one round earlier within the final
step, it affects an entire column of the ciphertext. Hence, the
attacker can gain information about four key nibbles at once.
For the sake of simplicity, we ignore the SHIFTROWS operation
and refer to the nibbles in one column with the indices 0,. . . ,3.
The adversary computes back an entire round and some part
of the non-linear operation:

yd0,1,2,3(ct′) = MC−14 (S−14 (ct′0,1,2,3))

zd0,1,2,3(ct′) = F−14 (yd0,1,2,3(ct′)),

where MC4 corresponds to mixing one column, and F4 to the
parallel application of the non-linear function to four nibbles.

Without loss of generality, we assume an injection of fault
∆F into the first nibble, then the distinguisher is

(∆F , 0, 0, 0)
?
= zd0,1,2,3(ct′c)⊕ zd0,1,2,3(ct′f ).

Further, it is even possible to find a distinguisher without
knowledge of F4 and exact knowledge of the injected fault by
considering the equations

0
?

6= yd0(ct′c)⊕ yd0(ct′f ), 0
?
= ydi(ct

′
c)⊕ ydi(ct′f ),

for i = 1, 2, 3. This needs, on average, two pairs of (ctc, ctf )
to determine a unique key guess for four nibbles. Hence, the
adversary can extract each half of the key with only eight such
pairs (resp. 16 pairs in total to extract the full key). We verified
the feasibility of this attack by using VerFI to generate the 16
necessary pairs and determining the correct key accordingly.

VII. RESULTS

In this section, we present the analysis results reported by
VerFI for several state-of-the-art fault-resistant hardware imple-
mentations, and the tool’s performance. All implementations
are provided by the respective authors of the analyzed works.

A. Evaluation

We report the practical coverage obtained using VerFI
for implementations of ciphers protected by ParTI, CAPA,
Impeccable Circuits, and M&M (cf. Tab. II). We analyzed
all designs within the fault model proposed in their original
work, except for the examples in rows 11 and 12, which we
investigated in a stronger fault model (MI instead of MO).

We simulated the CAPA designs within the gate-input fault
model MI , and without a restriction on the places to inject
the fault (MU ). We inject 1, 8, and 24 faults in separate
experiments (row 1, 2, and 3, respectively, Tab. II). In the first
case, the observed coverage is very close to the theoretical
claim (exhaustive search unfeasible). When a higher number
of faults are injected, the coverage increases due to a higher
probability of the detection mechanism being triggered. It is
interesting to see how the injection of a single fault in this
model is more harmful than the injection of multiple faults. We
perform an additional experiment (row 4), this time within the
model MI ∩MB, where we targeted exclusively one variable

(ε) of the multiplication and its respective tag (τ ε). This analysis
entails a total of 16 locations, which we exhaustively check for
combinations of a different number of faults, ranging from 3
to 10. The number of simulations increases from 560 to 12870.
The result is the average of the eight experiments, achieving
a coverage extremely close to the theoretical one. Since we
target value and tag of a single variable, the resulting coverage
is the probability of forging a correct tag.

Designs protected with ParTI are analyzed within the model
MO ∩MB, with up to two-bit faults injected in each case,
excluding the control datapath and the error check. ParTI fails to
provide the promised full coverage. Nevertheless, the coverage
is still comparably high, ranging between 0.994 and 0.9977.
In the first experiment (row 5), the attack focuses on a single
share of the first stage of the SBox, for both datapaths. In the
second experiment (row 6), we additionally allowed the second
stage of the SBox to be faulty in the subsequent clock cycle.

We evaluated several implementations protected with Impec-
cable Circuits, including a full Midori encryption function and
a toy cipher. The experiments are conducted under the model
MO ∩MB, restricting the number of faults per clock cycle to
t (rows 7 - 14). The tool reports full coverage for all of them,
as claimed by the respective authors. Note that this time, the
faults could be injected at data processing, the control logic,
and error check modules. Additionally, we investigated two
implementations further within the MI model (rows 11 and
12). Although a high level of coverage is achieved, the designs
do not provide full coverage against such an adversary model.
This result does not contradict their security guarantees since
protection under this model is never claimed.

Finally, we present the experiments for M&M AES (rows 15,
16, 17 Tab. II). The first two experiments inject respectively one
and eight faults, focused on the most sensitive modules, and
the last two rounds of the computation. In the last experiment,
we perform a component-wise injection, selecting similar
components as in [15], and performing different injections of 1,
2, 4, 8, and 12 number of faults. The resulting coverage of this
experiment is the average of the result of every injection. Since
the security claims of this scheme include that alpha is never
repeated for more than one computation, every experiment
is performed with a single fault simulation for each input (#
Simuls = 1) to comply with this requirement. We observe
that all non-detected faults for the first experiment (row 15)
occur when α = 0, which happens with probability 2−8. The
coverage obtained with VerFI is exceptionally close to this
probability. We obtain full coverage in the second experiment
(row 16) since injecting multiple random faults increases the
chance of one triggering the infection mechanism. The final
experiment (row 17) also reports a coverage very close to the
theoretical one. Even though this attacker is more potent since
specific points of attack are chosen, it is still not better than
guessing alpha.

B. Performance

VerFI is fully implemented in C++ for high performance. As
it is based on the propagation of signal changes, the execution



TABLE II: Performance evaluation of different fault and combined countermeasures from the literature, including fault model,
number of simulations, inputs and faults, injections cycles, and coverage.

Design Fault model # Simuls # Inputs # Faults Cycle(s) Ctheory Ctool
I/O U /B Mt/M∗t Type (Total)

CAPA [14] 3 shares 8-bit multiplier (k=1)
1 Idem MI MU M1 SEU 100 500k 1 1,2,3(3) 0.99609 0.9973
2 Idem MI MU M∗8 SEU 100 500k 8 1,2,3(3) 0.99609 0.9997
3 Idem MI MU M∗24 SEU 100 500k 24 1,2,3(3) 0.99609 1
4 Idem MI MB M∗3→10 SEU 560 → 12870 20 3 → 10 1,2,3(3) 0.99609 0.99625

ParTI [25]
5 Idem MO MB M2 SEU 1k 4 2 93(98) 1 0.994
6 Idem MO MB M∗1 SEU 10k 4 2 93.94(98) 1 0.9977

Impeccable Circuits [17] with code of length n, dimension k, and distance d as [n, k, d]
7 Toy Cipher [5,4,2] MO MB M1 SEU 120 10 1 14(16) 1 1
8 Toy Cipher [6,4,2] MO MB M∗1 SEU 42k 10 2 >9(16) 1 1
9 Toy Cipher [7,4,3] MO MB M∗2 SEU 100k 10 4 >9(16) 1 1

10 Toy Cipher [8,4,4] MO MB M∗3 SEU 150k 10 6 >9(16) 1 1
11 Toy Cipher [5,4,2] MI MB M1 SEU 20 3 1 13(16) - 0.79
12 Toy Cipher [8,4,4] MI MB M∗2 SEU 1.4M 3 2 >9(16) - 0.999979
13 Midori Enc [8,4,4] MO MB M3 SEU 200k 10 3 14(18) 1 1
14 Midori Enc [8,4,4] MO MB M∗3 SEU 400k 10 6 >12(18) 1 1

AES M&M V2 [15] 2 shares (d=1), and single alpha (k=1)
15 Idem MI MB M1 SEU 1 10k 1 >199(254) 0.99609 0.9957
16 Idem MI MB M∗8 SEU 1 10k 8 >199(254) 0.99609 1
17 Idem MI MB M1,2,4,8,12 SEU 1 5k 1,2,4,8,12 225(254) 0.99609 0.9959

(a) Toggles vs. Time (b) Faults vs. Time (c) Faults vs. Toggles

Fig. 6: Evolution of VerFI’s execution time with respect to the number of toggles and the number of faults per injection.

time is independent of a designs area and proportional to the
number of toggles during simulation (Fig. 6a). Noticeably, the
number of total simulations proportionally increases execution
time, while a different number of faults injected per simulation
(Nf ) does not significantly alter the execution time for SEU
and SA0 faults (Fig. 6b). Similarly, the number of toggles
remains indifferent to the total number of faults (Fig. 6c).

Finally, we address the number of simulations for exhaustive
checking. Given Ne as the total number of cells enabled to be
faulty in a particular cycle and Nf as the number of faults per
injection, the number of simulations to exhaustively check all
combinations is given by the rapidly growing term

(
Ne

Nf

)
.

VIII. CONCLUSION

In this work, we have introduced the concept of Crypto-
graphic Fault Diagnosis, a structured revision of fault diagnosis
concepts known from reliability testing according to their
relevance to cryptographic implementations, and a consolidated
characterization of cryptographic fault models. To facilitate the
practical application of our theory, we introduced VerFI, the first

evaluation tool for cryptographic fault analysis working directly
on the gate-level netlist of hardware designs. Our C++ tool
is open-source, easy to use, and extensible. It is applicable to
evaluate both detection- and infection-based countermeasures.
VerFI can even asses an implementation’s susceptibility to
ineffective fault attacks, e.g., SIFA. It automates the evaluation
of fault-protected implementations in the presence of a wide
range of adversaries. We demonstrated the value and usability
of VerFI by identifying implementation flaws in an instance of
LED protected by ParTI [25] and performing a practical attack
on a flawless implementation leading to a full-key recovery in
the presence of adversaries covered by ParTI. Furthermore, we
gave an accurate security indication for CAPA [14], designs
protected with Impeccable Circuits [17], and M&M [15]
according to their theoretical claims.

VerFI can be used jointly with state-of-the-art fault analysis
tools [23] to first identify potentially-exploitable parts of
a cipher, and then check the corresponding components in
relevant clock cycles. Finally, we argue that our contribution



is an essential tool for the verification of fault-protected
implementations as it replaces manual changes of HDL-files
with a fully-automated, high-speed evaluation workflow.
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[47] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, ser.
Lecture Notes in Computer Science, R. Safavi-Naini and R. Canetti,
Eds., vol. 7417. Springer, 2012, pp. 643–662. [Online]. Available:
https://doi.org/10.1007/978-3-642-32009-5\ 38

[48] J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw, “The LED
block cipher,” in Cryptographic Hardware and Embedded Systems -
CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings, ser. Lecture Notes in Computer Science,
B. Preneel and T. Takagi, Eds., vol. 6917. Springer, 2011, pp. 326–341.
[Online]. Available: https://doi.org/10.1007/978-3-642-23951-9\ 22

[49] C. Giraud, “DFA on AES,” in Advanced Encryption Standard -
AES, 4th International Conference, AES 2004, Bonn, Germany, May
10-12, 2004, Revised Selected and Invited Papers, ser. Lecture Notes
in Computer Science, H. Dobbertin, V. Rijmen, and A. Sowa,
Eds., vol. 3373. Springer, 2004, pp. 27–41. [Online]. Available:
https://doi.org/10.1007/11506447\ 4


