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Abstract. There have been notable improvements in discrete logarithm
computations in finite fields since 2015 and the introduction of the
Tower Number Field Sieve algorithm (TNFS) for extension fields. The
Special TNFS is very efficient in finite fields that are target groups of
pairings on elliptic curves, where the characteristic is special (e.g. sparse).
The key sizes for pairings should be increased, and alternative pairing-
friendly curves can be considered. We revisit the Special variant of TNFS
for pairing-friendly curves. In this case the characteristic is given by a
polynomial of moderate degree (between 4 and 38) and tiny coefficients,
evaluated at an integer (a seed). We present a polynomial selection
with a new practical trade-off between degree and coefficient size. As a
consequence, the security of curves computed by Barbulescu, El Mrabet
and Ghammam in 2019 should be revised: we obtain a smaller estimated
cost of STNFS for all curves except BLS12 and BN. To obtain TNFS-
secure curves, we reconsider the Brezing–Weng generic construction of
families of pairing-friendly curves and estimate the cost of our new Special
TNFS algorithm for these curves. This improves on the work of Fotiadis
and Konstantinou, Fotiadis and Martindale, and Barbulescu, El Mrabet
and Ghammam. We obtain a short-list of interesting families of curves
that are resistant to the Special TNFS algorithm, of embedding degrees
10 to 16 for the 128-bit security level. We conclude that at the 128-bit
security level, BLS-12 and Fotiadis–Konstantinou–Martindale curves with
k = 12 over a 440 to 448-bit prime field seem to be the best choice for
pairing efficiency. We also give hints at the 192-bit security level.

1 Introduction

A cryptographic pairing is a bilinear non-degenerate map from two groups G1

and G2 to a target group GT , where the three groups share a common prime
order r. The first two groups are distinct subgroups of the group of points E(Fpk)
of an elliptic curve E defined over a prime field Fp, and the third group is a
multiplicative subgroup of order r of a finite field Fpk , where k is the minimal
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integer such that r | pk − 1, and is called the embedding degree. Pairing-friendly
curves such that k is small (between 1 and 20 for example) should be designed
on purpose, as the embedding degree is usually very large, of the magnitude of r.

Freeman, Scott and Teske presented a taxonomy of pairing-friendly curves
in [20]. Until 2015, the size of the target finite field Fpk was chosen to be the
same as a prime field Fq offering the desired security, that is, a 3072-bit (or
3200-bit) finite field for a 128-bit security level. The size of Fq is deduced from
the asymptotic complexity of the Number Field Sieve Lp(1/3, c) = exp((c +
o(1))(ln p)1/3(ln ln p)2/3), where c = (64/9)1/3 ≈ 1.923 for general prime fields
and c = (32/9)1/3 ≈ 1.526 for special primes having a very sparse representation.
Barreto–Naehrig (BN) curves became very popular. A BN curve defined over
a prime field has prime order and embedding degree 12, hence choosing p and
r of 256 bits gives 128 bits of security on the curve, and pk is about 3072-bit
long, as desired to match the 128-bit security level in Fpk . But it turned out that
prime fields and extension fields of the same total size q and pk do not offer the
same security. The state of affairs for extension fields is complicated, with many
different cases.

In 2015 and 2016, Barbulescu, Gaudry and Kleinjung, followed by Kim
and Barbulescu and Kim and Jeong [5,26,27] revisited Schirokauer’s Tower
Number Field Sieve algorithm (TNFS) and applied this new setting to finite
fields of composite extension degrees. The asymptotic complexity of this new
algorithm decreased significantly, from LQ(1/3, 2.201) to LQ(1/3, 1.526) and in
particular, below the complexity of a generic DL computation in a prime field,
in LQ(1/3, 1.923). This makes mandatory to revisit the sizes and choices of
pairing-friendly curves.

Fotiadis and Konstantinou [17] revisited the Brezing–Weng method to generate
families of pairing-friendly curves and identified a list of interesting choices of
moderate embedding degrees to match the 128-bit security level. However, they
considered the asymptotic complexity of STNFS to deduce the security offered
by the curves. It gives a first hint on the sizes of finite fields to choose but is
not precise enough. Later Menezes, Sarkar and Singh [29], then Barbulescu and
Duquesne [3] and in 2019 Guillevic and Singh [23] refined the analysis of STNFS
to obtain more precise sizes of finite fields to match a given security level. Fotiadis
and Martindale [18] focused on composite embedding degrees k ∈ {8, 9, 10, 12}
for the 128-bit security level, Guillevic, Masson and Thomé [22] considered a
modification of the Cocks–Pinch method for k ∈ {5, 6, 7, 8}, and Barbulescu,
El Mrabet and Ghammam spanned embedding degrees from 9 to 53.

This is an active topic: the standardisation of pairings is under discussions at
IETF [32] and at ISO for updating the standard on pairing-friendly curves [24].
Particular pairing-friendly curves (e.g. cycles of curves [12]) are also needed in
zero-knowledge proofs and blockchains (ZCash uses a BLS12-381 curve [7,35],
Ethereum a BN-256 curve [15], and Zexe a BLS12-377 curve and a Cocks–Pinch
curve of embedding degree 6 [8, Table 16]).
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Our Contributions

We introduce a practical variant of special polynomial selection for STNFS that
applies to target finite fields of pairing-friendly curves. It does not change the
asymptotic complexity of STNFS but it changes the estimated cost of STNFS as
computed by Barbulescu and Duquesne.

We extend the work of Fotiadis and Konstantinou [17], and identify another
criterion to be resistant to STNFS: the polynomial p(x) defining the field charac-
teristic should have no automorphism. Then we build on the work of Guillevic
and Singh [23] to estimate finely the cost of a discrete logarithm computation
with STNFS. We write a SageMath script to automatically and systematically
compare many polynomial selections, and in particular, change of variables on
p(x). We consider embedding degrees from 9 to 17 at the 128-bit security level.
This is a complement to the work of Fotiadis and Martindale [18], where em-
bedding degrees 8, 9, 10 and 12 are considered at this security level. We also
identify non-optimal parameter choices in the recent preprint of Barbulescu,
El Mrabet and Ghammam [4], resulting in over-estimated cost of STNFS and
under-estimated finite field size. We conclude with a short-list of STNFS-secure
pairing-friendly curves of embedding degrees from 10 to 16. The source code of
this work is available in Python/SageMath at

https://gitlab.inria.fr/tnfs-alpha/alpha/tree/master/sage

The work in [22] showed that a pairing-friendly curve over a non-special prime,
and with a prime embedding degree k = 5, 7 gives a slow pairing computation,
about three times slower than the best candidate: a BLS12-curve over a 446-bit
prime field. Here we estimate that a curve of prime embedding degree k = 11, 13
with a special prime will not provide a competitive pairing computation, despite
a smaller prime p, of 333 bits for k = 11 and 310 bits for k = 13, compared to
a 446-bit prime p for BLS12 curves, but may provide a faster arithmetic in G1

(elliptic curve scalar multiplication over Fp) thanks to a smaller finite field.

Organisation of the paper. In Section 2 we recall briefly the special tower number
field sieve algorithm and the approximation of running-time made in [23]. We
present our variant of special polynomial selection for pairing-friendly curves. In
Section 3 we recall the Brezing–Weng construction for pairing-friendly curves,
then we list the possible curves for the 128-bit security level, and we present
the results of simulation of STNFS for each curve. We select a short-list of nine
secure curves. In Section 4 we roughly estimate the cost of the Miller loop for
an optimal ate pairing computation on the curves of the short-list that do not
appear in previous works. In Section 5 we estimate the cost of STNFS for curves
at the 192-bit security level for k ∈ {14, 15, 20, 21, 27, 28}. This is more complex
than the 128-bit security level. We conclude in Section 6.

2 The Special Tower Number Field Sieve

In this section, we sketch the TNFS algorithm. We refer to [5,26,27,23] for an
extended description of TNFS. The TNFS algorithm falls in the broader Number
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Field Sieve algorithms. To compute a discrete logarithm in a finite field, one first
computes a large amount of precomputed data. A first important ingredient is
the factor base. A finite field Fpk has no factorisation of elements into irreducible
elements or prime elements. However a number field has a ring of integers, and
factorisation of ideals in prime ideals. Equipped with a map from a (sub)ring of
integers of a number field to a finite field, one can factor ideals in prime ideals,
then map each prime factor to the finite field to obtain a factorisation in Fpk .
(There are now well-defined and cheap procedures to handle non-principal ideals
and non-torsion units). The factor base is made of the prime ideals (usually of
degree one) of small norm, bounded by the smoothness bound B. The first step of
the algorithm is defining two non-isomorphic number fields with two irreducible
polynomials f and g, sharing a common irreducible factor ψ of degree k modulo
p (a common root if one targets a prime field Fp), so that one has two maps from
the ring of integers of number fields defined by f and g, to the same finite field
Fpk = Fp[x]/(ψ(x)).

The next step is collecting a large number of relations involving the primes of
the factor base. We will say that an algebraic integer is B-smooth if it factors in
prime ideals of degree one and norm bounded by B (B is an integer). Once enough
relations are collected, taking the logarithm of the multiplicative relations, one
obtains a large set of linear equations whose unknowns are the discrete logarithms
of the prime ideals of the factor base. Solving the system, one obtains the discrete
logarithms of the factor base elements. Finally, to compute the discrete logarithm
of a given target in the finite field, one lifts the target in the number field, and
tries to find a smooth decomposition of this target over the prime ideals whose
logarithms are known.

In the Number Field Sieve setting, two distinct number fields are needed, so
that their ring of integers can be mapped to the finite field Fpk . In the Tower NFS
setting, one consider two extensions of a same number field. Let k be the extension
degree, and k = ηκ where η, κ are integers (η = k and κ = 1 if k is prime). One
chooses an irreducible monic polynomial h(Y ) ∈ Z[Y ], irreducible modulo p, of
degree η and small coefficients. Define the number field Kh = Q[Y ]/(h(Y )), and
let y denotes a root of h in Kh. Let Oh denotes the ring of integers of Kh, and
let Zy be a subring of Oh (we take the same notations as [23]). Let p = (p, h(Y ))
be the unique prime ideal of Oh above p. One selects a pair of polynomials
fy(X), gy(X) so that reduced modulo (p, h(Y )), they share a common irreducible
factor ψy(X) of degree κ. Let Ky,f and Ky,g be the number fields defined above
Kh by fy(X) and gy(X) respectively, and Oy,f , Oy,g their ring of algebraic
integers. Let xy,f be a root of fy(X) in Ky,f and xy,g a root of gy(X) in Ky,g.
We have the following setting (Figure 1) and commutative diagram (Figure 2).

In the relation collection step, one enumerates all a(Y ) = a0 + a1Y + . . .+
aη−1Y

η−1, b(Y ) = b0 + b1Y + . . .+ bη−1Y
η−1 ∈ Z[Y ] such that integers |ai|, |bi|

are bounded by the relation collection bound A. The aim is to compute the norms
of a(y) + b(y)xy,f in Ky,f and a(y) + b(y)xy,g in Ky,g and store the pairs (a, b)
whose norms are B-smooth. Assuming h(Y ), fY (X) are monic, the norm is

Nf = NormKy,f/Q(a(y) + b(y)x) = ResY (ResX(a(Y ) + b(Y )X, fY (X)), h(Y ))
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Q

Kh = Q[Y ]/(h(Y ))

deg h = η

Ky,f = Kh[X]/(fy(X)) Kh[X]/(gy(X)) = Ky,g

deg fy ≥ κ deg gy ≥ κ

Fig. 1. Extensions of number field for TNFS

Zy[X]

Zy[X]/(fy(X)) Zy[X]/(gy(X))

Fpn

mod p mod p

Fig. 2. Commutative diagram for TNFS.

and for a non-monic gy(X) of leading coefficient lc(gy),

Ng = NormKy,g/Q(a(y) + b(y)xy,f )| lc(gy)|n (1)

= ResY (ResX(a(Y ) + b(Y )X, gY (X)), h(Y )) . (2)

The schedule of TNFS can be summarised in four important steps.

1. Polynomial selection: choosing h(Y ), fy(X), gy(X) so as to minimise the
integers Nf and Ng;

2. Relation collection: obtaining many a(y) + b(y)X whose absolute norms in
Ky,f and Ky,g w.r.t. Q are B-smooth. The coefficients ai, bi have absolute
value bounded by A, where a(y) = a0 + a1y + . . .+ aiy

η−1, b(y) = b0 + b1y +
. . .+ biy

η−1;
3. Linear algebra: each relation encodes a row of a large sparse matrix. After a

filtering step (preprocessing of the matrix to remove the singletons and small
cliques) the right kernel is computed with the Block–Wiedemann algorithm;

4. Individual discrete logarithm computation: obtain the database of discrete
logarithms of the prime ideals of factor base. Then given a target in Fpn , lift
in one of the number fields, Ky,f or Ky,g, and obtain a smooth decomposi-
tion. Sum the discrete logarithms of the factor base involved in the smooth
decomposition to obtain the logarithm of the target.
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2.1 Estimation of TNFS cost

This is an important concern to know the finite field size needed to match a security
level such as 128 bits. Lenstra and Verheul designed an approach to extrapolate
prime field sizes from the asymptotic complexity of NFS [28]. This complexity is
Lp(1/3, (64/9)1/3). First the unknown o(1) in the formula is removed, in other
words, it is set to zero. Then one considers a recent record computation, for exam-
ple the 768-bit DL computation in 2017 for a prime p768 required the equivalent of
5300 core-years on Intel Xeon E5-2660 at 2.2GHz, i.e. about 276 clock-cycles. Then
one finds a factor δ s.t. δ exp((64/9)1/3(log p768)1/3(log log p768)2/3) = 276: this is
δ ≈ 8.2. Finally, one extrapolates and finds b s.t. δ exp((64/9)1/3(log 2b)1/3(log log 2b)2/3) =
2128, this is b = 2940. It means that a 2940-bit prime field Fp would offer 128 bits
of security. In practice, a 3072-bit prime field is considered safe for the 128-bit
security level.

Unfortunately, this extrapolation trick, which is already debatable for prime
fields, cannot be applied straightforwardly for extension fields, as shown in [29].
There is no record computation available for scaling the formula, of the form
Lpk(1/3, c), with c a constant for the variant of NFS. Moreover the best asymptotic
complexities are met for very specific properties of η, κ (Fig. 1) in terms of pn and
this is [26, Table 4]. For Conjugation-TNFS to obtain c = (48/9)1/3, one reads
κ = (ln pn/(12 ln ln pn))1/3 for instance. For STNFS to obtain c = (32/9)1/3, one
needs p to be d-SNFS, that is p = P (u) and P is a polynomial of degree d and
very small coefficients, with d = ((2/3)1/3 + o(1))(ln pn/(ln ln pn))1/3/κ. But in
practice, n is fixed to a small integer, for example n = 12, and pn ranges (roughly)
from 3072 to 6144 bits. In other words, the optimal case for the parameters
n, η, κ, pn is not necessarily met for a given pn in practice.

The asymptotic formula for c, κ, η, p is obtained as follows. One chooses a
polynomial selection method. The degree of h is η, its coefficient size is negligible,
the degrees of f, g depend on κ and the coefficient sizes of f , g depend on
η, κ, pn. With the Conjugation method, we have (deg f, deg g) = (2κ, κ) and
‖f‖∞ = O(1), ‖g‖∞ = O(

√
p). The integers (resultants) of step 2 are bounded

by a formula based on eq. (1) in η, κ, ‖f‖∞, ‖g‖∞, ‖h‖∞. The Canfield–Erdös–
Pomerance theorem states the proportion of B-smooth integers up to a bound
N . Multiplying the proportion of B-smooth integers of Step 2 by the number of
valid pairs (a(y), b(y)), in other words the volume of the relation collection (this
is ≈ A2κ), one gets the expected total number of relations, at a cost dominated
by the total number of pairs to proceed (A2κ). One wants as many relations as
possible, at a minimal cost. There are ≈ B/ logB primes up to B, and prime
ideals of norm up to B. The square matrix has ≈ 2B/ logB columns, this is the
number of prime ideals in the two factor bases. The linear algebra costs roughly
B2 operations. Then one balances the costs of Step 2 and Step 3 by setting them
equal. Then one minimises the cost, obtaining a formula for the parameters A,B
in terms of the inputs η, κ, pn, and this is [26, Tab. 4].

Menezes, Sarkar and Singh observed that the bound on the size of the norms
is not tight [29]. There are combinatorial factors in η, κ, ‖h‖∞ that are removed in
the asymptotic estimate as they disappear in the o(1), and the size of coefficients
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of h are assumed to tend to 1, but in practice this is not the case. To circumvent
this theoretical limitation, Menezes, Sarkar and Singh reconsidered the steps
of the algorithm. They bounded the size of norms for a given input (denote
the bound N), and optimised the parameters A,B, but for fixed n, η, κ. They
used the first-order term of the Canfield–Erdös–Pomerance asymptotic formula
to estimate the proportion of B-smooth integers of size up to N , that is, u−u

where u = logN/ logB. Later in [3] Barbulescu and Duquesne averaged the size
of norms over a sample of about 26000 random inputs (a, b). They replaced
the Canfield–Erdös–Pomerance asymptotic formula by the Dickman-ρ function
to compute the B-smoothness probability of random integers of bounded size.
Then Guillevic and Singh [23] computed the smoothness bias of the resultants
with respect to integers of the same size (α value of polynomials), simulated
the relation collection of TNFS, and averaged the smoothness probability over
random samples, as a TNFS variant of the Murphy E function. This estimate
should be done for each set of parameters (p(x), u, A,B). Theory meets practice
at this edge: the Murphy-E function was first designed to rank the yield of pairs
of polynomials for a given prime p, smoothness bound B and sieving area A2, and
is based on the Dickman-ρ function. It runs as a brute-force search of promising
pairs of polynomials in Step 1, for record computations.

We build on these two previous works [3,23]. In particular, we model the
relation collection cost as [23, Eq. 6.3] and the linear algebra cost as [23, Eq. 6.5].

Cost of relation collection =
(2A+ 1)2·η · log(log(B))

2 · (# aut(h) gcd(deg(f),deg(g)))
(3)

where A is the bound on the coefficients ai, bi in the relation collection. The
a(y) = a0 + a1y+ . . .+ aη−1y

η−1 and b(y) = b0 + . . .+ bη−1y
η−1 have coefficients

ai, bi in [−A,A], and bη−1 ≥ 0. There are (2A + 1)2η/2 such pairs (a(y), b(y)).
For each pair, one computes the norms Nf , Ng and test for B-smoothness, this
is estimated as costing log logB. The process can be faster for specific choices
of h, fy, gy where automorphisms are available, hence the denominator. We also
model

Cost of Linear Algebra = cnst · wt · (#B ÷ flt)2 (4)

where cnst is a constant representing the cost of a multiplication modulo `, wt
is the weight per row (number of non-zero entries), #B is the total size of the
factor base (f -side and g-side), and flt is the reducing factor of the filtering
step. Following [23], cnst = b`/64c is the machine-word size of `, wt = 200 and
flt = 20.

Remark 1. The arbitrary choice wt = 200 and flt = 20 is not satisfying, in
particular for high security levels. The two parameters would need to increase
slowly with the size of inputs. Barbulescu and Duquesne set an upper bound
flt = log2B [3, Conjecture 1], but compared to recent record computations
made with cado-nfs, it is a bit too much. More work is needed to solve this
issue.
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For each pairing-friendly curve parameters (p(x), u) we run Algorithm 2.1
from [23, Alg. 6.1] to estimate the number of relations obtained for given inputs
A,B. The Dickman-ρ function is denoted by Dρ. We write a SageMath code to
automatically adjust the parameters A,B so that enough relations are obtained
and the cost of linear algebra and relation collection are finely balanced, in order
to minimise the total estimated cost of TNFS.

Algorithm 2.1: Monte-Carlo approximation of Murphy’s E for TNFS [23,
Alg. 6.1] (computes an estimation of the number of relations)
Input: Polynomials fy, gy, h, αf , αg, parameter A ∈ N, smoothness bound B, N ≈ 105

Output: Yield estimate (number of relations)
1 Pfg ← 0
2 for n := 1 to N do

3 (a0, . . . , aη−1)← random tuple in {−A,A}2 deg h

4 (b0, . . . , bη−1)← random tuple in {−A,A}2 deg h−1 × {0, A}
5 if gcd(a0, . . . , aη−1, b0, . . . , bη−1) 6= 1 then
6 continue

7 a(Y )←
∑η−1
i=0 aiY

i; a← a(y)Oh; b(Y )←
∑η−1
i=0 biY

i; b← b(y)Oh
8 if the ideals a, b are not coprime (a + b 6= 1) then
9 continue

10 Nf ← |Res(h,Res(fy, a(Y )− b(Y )X))|
11 Ng ← |Res(h,Res(gy, a(Y )− b(Y )X))|
12 uf ← (lnNf + αf )/ lnB ; pf ← Dρ(uf ) + (1− γ)Dρ(u− 1)/ lnNf
13 ug ← (lnNg + αg)/ lnB ; pg ← Dρ(ug) + (1− γ)Dρ(u− 1)/ lnNg
14 Pfg ← Pfg + pfpg
15 Pfg ← Pfg/N
16 w ← index of group of torsion units of Oh
17 V ← (2A+ 1)2 deg h/(2wζKh(2))
18 return V × Pfg

2.2 Special Polynomial Selection

We refine the special polynomial selection introduced in [5] and present a variant
particularly suited for certain families of pairing-friendly curves that appear in
the recent preprint [4].

Pairing-friendly curves have a special characteristic p, given by a polynomial
p(x) of small degree evaluated at an integer u. For BLS12 curves, we have
p(x) = (x6−2x5+2x3+x+1)/3, and for a 381-bit prime p, u = −(263+262+260+
257 + 248 + 216) [7]. Joux and Pierrot introduced a dedicated polynomial selection
that takes advantage of the polynomial form p = p(u) [25]. The adaptation to
the Tower setting is the following.

Joux–Pierrot polynomial selection for TNFS. Assume there exists an
integer u ≈ p1/d and a polynomial P (U) of degree d and small coefficients
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‖P (U)‖∞ = O(1), such that P (u) = 0 mod p. Select a monic polynomial Sy(X)
of degree κ and small coefficients ‖Sy(X)‖∞ = O(1), such that gy(X) = Sy(X)−u
and fy(X) = P (Sy(X)) are irreducible. Finally select a monic irreducible h(Y ).
Then (h(Y ), fy(X), gy(X)) are STNFS polynomials.

Joux–Pierrot polynomial selection for TNFS with automorphism. We
recall a variant of the Joux–Pierrot method to obtain a pair of polynomials
(fy, gy) admitting an automorphism, when k is not prime. First select an auxiliary
polynomial with automorphism, for example from the list in [16].

– κ = 2: ct(X) = X2 − tX + 1, σ : X 7→ 1/X; ct(X) = X2 + t, σ : X 7→ −X;
– κ = 3: ct(X) = X3 − tX2 − (t+ 3)X − 1, σ : X 7→ −(X + 1)/X;
– κ = 4: ct(X) = X4 − tX3 − 6X2 + tX + 1, σ : X 7→ −(X + 1)/(X − 1);
– κ = 6: ct(X) = X6 − 2tX5 − (5t+ 15)X4 − 20X3 + 5tX2 + (2t+ 6)X + 1,
σ : X 7→ −(2X + 1)/(X − 1).

If gcd(κ, η) = 1, define fy(X) = ResU (cU (X), P (U)) and gy(X) = cu(X). If
gcd(κ, η) > 1, define fy(X) = ResU (cUy(X), P (U)) and gy(X) = cuy(X), or
alternatively, fy(X) = ResU (cU+y(X), P (U)) and gy(X) = cu+y(X). If fy, gy
are irreducible, select a monic irreducible h(Y ). Then (h(Y ), fy(X), gy(X)) are
STNFS polynomials.

Example 1 ([23, Table 7]). To minimise the size of norms and the total estimated
cost of STNFS for BLS12-381 curves, one chooses h of degree 6, and fy, gy share
a common irreducible factor of degree 2 modulo (p, h(Y )). The prime p of BLS12
curves satisfies p = P (u)/3, where P (x) = x6−2x5+2x3+x+1. The polynomials
selected in [23, Table 7] are h = Y 6 − Y 2 + 1, fy = ResU (P (U), X2 − UY ) =
X12 − 2yX10 + 2y3X6 + y5X2 + y2 − 1 mod h(Y ) and gy = X2 − uy = X2 +
15132376222941642752y.

Improvements on the Joux–Pierrot method. The pairing-friendly curves
of Section 3 are defined over prime fields whose characteristic has a polynomial
form p = p(u) for an integer seed u, where p(x) has very small coefficients and
degree from 4 (BN curves) to 46 (Construction 6.7 for k = 9, Table 2). We
observed that when the degree of p(x) is larger than 12, the average size of norms
obtained with Algorithm 2.1 is not satisfying. In other words, for a same size of
finite field Fpk but different families of curves with p(x) of very different degrees,
one obtain very different estimated costs of STNFS. We explain in the following
our method to obtain a lower estimated cost of STNFS when the degree of p(x)
is too large and the Joux–Pierrot method does not give good enough results.

In [5, §5.2] and in the SageMath script provided with [4], one observes that
when it is possible, the degree of the polynomial P is divided by two without
increasing the size of the coefficients. We name it Variant 1.

Variant 1 (Even polynomial p(x)) When p(x) is an even polynomial (that
is, with only even degree monomials, and one has p(x) = p(−x)), then one

9



defines P (x) such that P (x2) = p(x), and P has degree deg(p(x))/2. The pair of
polynomials (for TNFS) (P (x), x− u2) satisfies Resx(P (x), x− u2) = P (u2) =
p(u) = p as desired.

We adapt this technique to palindrome polynomials (also mentioned in [5, §5.2]).

Variant 2 (Palindrome polynomial p(x)) When p(x) = p(1/x)xdeg p(x), then
we define P (x) to be the minimal polynomial of α + 1/α in the number field
defined by p(x), K = Q[x]/(p(x)) = Q(α). Then P (x) has degree deg(p(x))/2
and small coefficients (as long as p(x) has small coefficients). The pair of poly-
nomials (for TNFS) is (P (x), ux− (u2 + 1)), and Resx(P (x), ux− (u2 + 1)) =
udegPP (u+ 1/u) ≡ 0 mod p(u) as desired.

Variant 3 (Polynomial p(x) with automorphism) More generally when there
is an automorphism available for p(x), say σ, of order two i.e. σ2(a) = a, then
we define P (x) to be the minimal polynomial of a+ σ(a) (the trace of the auto-
morphism is invariant). Then P (x) has degree deg(p(x))/2 and small coefficients
(as long as p(x) has small coefficients). The second polynomial for TNFS is
x − (u + σ(u)). If a + σ(a) does not have a good expression (a fraction of lin-
ear polynomials in a), then one computes a half-extended GCD of p(x) and
x + σ(x) to obtain x + σ(x) = s1(x)/s2(x). If the degrees of s1 and s2 are
small, one can define s2(u)x− s1(x) as the second polynomial for NFS. We have

Resx(P (x), s2(u)x− s1(u)) = sdegP2 (u)P (u+ σ(u)) ≡ 0 mod p(u).

These three variants already allow more possibility of trade-off between f and g
in terms of degrees and coefficient size: one divides the degree of f by two and
increases the coefficient size of g by a factor two (‖gy‖∞ ≈ u2 instead of u).

Variant 4 When p(x) has tiny coefficients and a high degree, it might be worth

doing the following transformation, knowing the seed u. Write p(x) =
∑d
i=0 pix

i

where d = deg p(x) and pi are tiny integer coefficients. Then for an integer l in
the range 2 ≤ l ≤ d/2, define

P (x) =

d∑
i=0

piu
i mod lxbi/lc .

Then P (x) has degree bd/lc (the floor integer of the number d/l) and coefficients at
most ul−1, and P (ul) = p(u). The pair of polynomials (for TNFS) is (P (x), x−ul),
and Resx(P (x), x− ul) = P (ul) ≡ 0 mod p(u) as desired.

This is possible to combine Variant 4 with one of Variants 1, 2 or 3. With
these alternative pairs of polynomials, we can have more balanced size of norms,
hence a higher smoothness probability, and a lower DL cost estimation. Our
results are given in the right-most column of Table 3 page 18. It has direct impact
on many curves of embedding degrees 9, 10, 11, 13, 14, 17, in particular, the
curves whose polynomial p(x) has a high degree.
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Example 2. Let us consider a curve of embedding degree k = 13, discriminant
D = 3, following Construction 6.6. The polynomial defining the characteristic is
p(x) = (x28+x27+x26+x15−2x14+x13+x2−2x+1)/3. It has no automorphism.
We define P (x) = (u+ 1)x9 + u2x8 + x5 + u(1− 2u)x4 + u2 − 2u+ 1 such that
P (u3) = 3p(u), and u is a seed for a particular curve. A degree 13 irreducible
polynomial h(Y ) and the pair (f, g) = (P (x), x− u3) can be used for polynomial
selection with STNFS.

Example 3. Consider a curve of embedding degree 17, named Construction 6.6
in Section 3. It has p(x) = (x36 + x35 + x34 + x19 + 4x18 + x17 + x2 + x+ 1)/3
and automorphism σ : x 7→ 1/x. Variant 2 gives P (x) = x18 + x17 − 17x16 −
17x15 + 119x14 + 119x13− 442x12− 442x11 + 935x10 + 935x9− 1122x8− 1122x7 +
714x6 + 714x5−204x4−204x3 + 17x2 + 18x+ 4 such that P (x+ 1/x)x18 = 3p(x).
Applying Variant 4, we obtain P (x) = u(x9 +(v−17)x8−(17v−119)x7 +(119v−
442)x6− (442v− 935)x5 + (935v− 1122)x4− (1122v− 714)x3 + (714v− 204)x2−
(204v − 17)x+ 18v + 4), where v = (u+ 1/u) = (u2 + 1)/u (we multiply by u to
get integer coefficients). The pair (P (x), u2x− (u2 + 1)2) can be used for STNFS.
Since deg p(x) = 36, the seed u will be very small, and the coefficients of P in u2

are small.

3 Complete Families of Pairing-Friendly Curves

We will apply our new special polynomial selection to paring-friendly curves whose
parameters are given by polynomials, such as BN and BLS12 curves. We recall the
generic Brezing–Weng construction of families of pairing-friendly curves. A family
will be encoded by three parameters: the embedding degree k, the discriminant
D, and a choice e0 to compute the trace. It allows to capture all cyclotomic
constructions of pairing-friendly curves with three parameters. The BN curves,
KSS curves [20, §6.2] and Fotiadis–Konstantinou and Fotiadis–Martindale curves
[17,18] do not fall in the cyclotomic framework because r(x) is not a cyclotomic
polynomial.

3.1 Brezing–Weng constructions of pairing-friendly curves

A set of the complete families presented in the Freeman, Scott and Teske paper
[20] are special instances of the generic Brezing–Weng construction [9] that we
recall in Algorithm 3.1. In this framework, r(x) is chosen to be a cyclotomic
polynomial, and we name it a cyclotomic construction. For BN curves, r(x) is
one factor of an Aurifeuillean factorisation of a cyclotomic polynomial. For KSS
curves, r(x) is a minimal polynomial of an algebraic element of a cyclotomic
field. Freeman, Scott and Teske [20] obtain complete families that correspond to
specific choices of trace in Algorithm 3.1. We recall the BLS construction [6], with
D = 3 in Table 1. The construction is generalised in [20] as Construction 6.6, and
gives polynomial families for any k such that 18 - k, and D = 3. Constructions 6.6
and BLS give the same polynomials for k = 24, for other embedding degrees, only
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Algorithm 3.1: Cyclo(k,D, e0) – Cyclotomic construction of pairing-friendly
curves

1 if D = 1 then m← 4/ gcd(4, k)
2 else if D = 2 then m← 8/ gcd(8, k)
3 else if D = 3 then m← 3/ gcd(3, k)
4 else m← 1
5 rx ← Φkm(x); K ← Q[x]/(r(x)); ζkm ← a root of rx in K
6 if −D is not a square mod rx then return ⊥
7 if gcd(e0, k) 6= 1 then return ⊥
8 tx ← xme0 + 1 mod rx

9 yx ← a polynomial in x mapping to ((tx(ζkm)− 2)
√
−D/D) in K

10 px ← (t2x +Dy2x)/4
11 if px is not irreducible then return ⊥
12 if px does not represent primes then return ⊥
13 return (px, rx, tx, yx, D)

the ρ-value is the same. The BLS construction gives a very simple Miller loop of
ate pairing, of length x = t− 1 (without extra Frobenius and line computation),
which is optimal. Constructions 6.2, 6.3 and 6.4 in [20] are polynomial families
with D = 1 and k = 1 mod 2, k = 2 mod 4 and k = 4 mod 8 respectively. We
report the construction number from [20] in Table 2.

Unfortunately, [4] does not consider cyclotomic methods with small discrimi-
nants other than 1, 2 and 3. In [9, p.137], Brezing and Weng give alternatives such
as D = 5 for k = 10. Recently, Fotiadis and Konstantinou used the Brezing–Weng
method with small discriminants D to generate other pairing-friendly curves
whose ρ-value is slightly larger but that are more resistant to TNFS [17]. For
k = 10, Fotiadis and Konstantinou list alternatives with D = 5 and D = 15, for
k = 11, with D = 11, for k = 13, with D = 13. For smaller embedding degrees,
between 5 and 8, the ρ value is larger than 2. We refer to [22] for TNFS-resistant
curves in this case with a modification of the Cocks–Pinch method.

3.2 Reducing the possibilities

For BLS12 and BN curves, the finite field size identified as secure for 128 bits of
security is about 12× 448 = 5376. The arithmetic on these curves is already very
well optimised. Hence we decided to reduce the investigation of other families of
curves to those where pk is smaller than 5376 bits.

The minimum size of r is 256 bits to ensure the security on the curve, and
the size of p is given by the ρ-value defined as the ratio between the degree of
p(x) and r(x). We choose the sharp constraint (at the 128-bit security level)

3072 ≤ 256ρk ≤ 5376 (5)

to reduce the number of families to consider. If ρ = 1 we obtain the upper bound
k ≤ 21, and if ρ = 2 then we obtain the lower bound k ≥ 6. We obtain candidates
with 9 ≤ k ≤ 17, in Table 2 page 15.
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Table 1. Polynomials of the BLS families for k = 3i and k = 2i · 3 (for example
k ∈ {6, 9, 12, 24, 27, 48}). In practice, it is very popular for k = 12.

k = 3i

r(x) = Φ3i(x)/3 = (x2·3
i−1

+ x3
i−1

+ 1)/3
t(x) = x+ 1
c(x) = (x− 1)2

y(x) = (x− 1)(2x3
i−1

+ 1)/3

p(x) = (t2(x) + 3y2(x))/4 = (x2 + x+ 1 + (x− 1)2x3
i−1

(x3
i−1

+ 1))/3

k = 2i · 3
r(x) = Φ2i·3(x) = (x2

i

− x2
i−1

+ 1)
t(x) = x+ 1
c(x) = (x− 1)2/3

y(x) = (x− 1)(2x2
i−1

− 1)/3

p(x) = (t2(x) + 3y2(x))/4 = (x2 + x+ 1 + (x− 1)2x2
i−1

(x2
i−1

− 1))/3

Small embedding degrees up to 8. Embedding degree 1 is considered in [10]. Em-
bedding degrees 2 and 3 are obtained with supersingular curves [21, § IX.13 p.204].
Embedding degrees 3, 4, and 6 are obtained with MNT curves. Embedding de-
grees 5 to 8 were compared in [22]. We focus on embedding degrees 9 to 17 for
the 128-bit security level.

Embedding degree 9. There are three families of pairing-friendly curves of em-
bedding degree k = 9, discriminant D = 3 and ρ = 4/3. We focus on D = 3 to
have a twist of order three since 3 | k. Alternatives are D = 1 and ρ = 11/6,
D = 2 and ρ = 23/12. Another family with D = 3 is given in [33, §4.4] from the
Aurifeuillean factorisation of Φ9(−3x2).

Embedding degree 10. We will consider three additional families for k = 10: with
D = 1 and trace t = x18 + 1 mod r(x) (in [9, p.137] and [20, Construction 6.5]),
withD = 5, r(x) = Φ20(x) and t = x18+1 mod r(x) ([17, Table 2 and Example 5]),
and with D = 15, r(x) = Φ30(x) and t(x) = x3 + 1 [17, Table 2]. With D = 3, no
cyclotomic construction is valid, we consider the ρ = 2 option in [4]. With D = 2,
the construction is not interesting: the polynomial p(x) has degree 30 and the
choices of seeds u are very limited. There were no choice of u to get a pair of
primes (p, r) such that r is 256-bit long or more, and p is at most 512-bit long.

Embedding degree 11. With D = 1, r(x) = Φ44(x) and t(x) = x24 + 1 mod r(x),
the family has ρ = 1.3, this is Construction 6.2 in [4]. The other possibilities
of t(x) = x4e0 + 1 mod r(x) are e0 ∈ {1, 2, 7}. We discard e0 = 2 since no seed
u was found so that pk ≤ 5376. With D = 3, e0 = 4 is Construction 6.6, and
e0 ∈ {8, 1} gives two other valid families of curves. With D = 11, we obtain two
families of curves with e0 ∈ {4, 8} (e0 = 8 appears in [17, Table 4]).
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Embedding degree 12. For embedding degree 12, we concentrate on D = 3 to
maximise the twist. The BLS12 and BN curves are the most popular curves
of embedding degree 12, and recently Fotiadis and Martindale highlighted a
competitive Fotiadis–Konstantinou (FK) curve of embedding degree 12 and
discriminant D = 3 [17,18]. Curves of discriminant D = 1 have a twist of degree
4. Construction 6.4 from [20] produces a family with ρ = 2, the size of p is not
suited. Applying the Brezing–Weng method, we do not obtain other families
(p(x) does not produce primes). With D = 2 there is one family of curves and
ρ = 7/4. Note that in this case, only a quadratic twist is available, the pairing
computation will be slower compared to BLS12 curves with D = 3 and sextic
twists.

Embedding degree 13. Since −13 is not a square in Q(ζ13), we concentrate on
D = 1 with r(x) = Φ4×13(x) and D = 3 with r(x) = Φ3×13(x). For D = 1,
the trace is x4e0 + 1 where e0 ∈ {1, 7} give valid families of curves, and e0 = 7
corresponds to Construction 6.2. For D = 3, the trace is t(x) = x3e0 + 1 and
e0 = 9 corresponds to Construction 6.6. We also consider e0 ∈ {1, 2, 10}.

Embedding degree 14. We concentrate on Construction 6.3 and 6.6. The other
choices of e0 in the Brezing–Weng construction do not produce families of curves
satisfying the bounds on the size of pk. In particular, D = −7 produces an
alternative family whose ρ-value is too large.

Embedding degree 17. In addition to Construction 6.2 and 6.6, we consider D = 3
and trace t(x) = x3×12 + 1 mod r(x) where r(x) = Φ3×17. Actually because of
the very large degree of p(x) (36 and 38), it was not possible to find a seed u so
that pk is smaller than 5376 bits. However for a comparison to [4], we include
the three families of curves in our security estimate.

Other embedding degrees. For embedding degree 16 we take the KSS-16 curves,
these are (6.11) in [20]. Embedding degrees 15 and above 17 do not satisfy the
conditions (5), however we include k = 15 to compare to [4].

For 9 ≤ k ≤ 17, we list in Table 2 the available families satisfying Equation (5).
Moreover we will later restrict to D = 3 when 3 | k and D = 1 when 4 | k to
ensure the higher degree of twist.

3.3 Security estimate for the finite field

The next step is to determine the size of the finite field Fpk to ensure the required
security w.r.t. a DL computation with any variant of the NFS algorithm.

Refinement of Barbulescu–El Mrabet–Ghammam results. In the preprint
[4], Barbulescu, El Mrabet and Ghammam presented a consequent list of pairing-
friendly curves of embedding degrees 6 to 53 for the three common security levels
of 128, 192 and 256 bits. There were about 150 distinct curves. We compare the
curves of [4] that are listed in Table 2.
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Table 2. Pairing-friendly Constructions for 9 ≤ k ≤ 17 such that 3072 ≤ 256ρk ≤ 5376.
Parameters m and e0 match Algorithm 3.1. The value 256ρ is an approximation of the
minimal bit-size of p required to ensure r to be of 256 bits, so that the curve E(Fp)
offers 128 bits of security. We include k = 12 Construction 6.4, and k = 15 although
256ρk is too large, for they are refereed in Tables 3 and 4.

k Construction D m e0 ρ
deg
p(x)

σp(x) d256ρe d256ρke

9 Cyclo (BLS) 3 1 1 1.33 = 4/3 8 x4−x3−1
x2+x

342 3072

9 Cyclo 3 1 4 1.33 = 4/3 8 1/x 342 3072

9 Cyclo (6.6) 3 1 7 1.33 = 4/3 8 x4+x3+x2+x−1
1−x2 342 3072

9 Cyclo (6.2) 1 4 5 1.83 = 11/6 22 −x 470 4224
9 Cyclo (6.7) 2 8 1 1.92 = 23/12 46 −x 491 4416
9 Cyclo (FM10) 3 1 5 2.00 = 2 12 Id 512 4608

10 Cyclo (6.5) 1 2 9 1.50 = 3/2 12 −x 384 3840
10 Cyclo (6.3) (FM13) 1 2 1 1.75 = 7/4 14 −x 448 4480
10 Cyclo (FM16) 2 4 9 1.88 = 15/8 30 −x 480 4800
10 (Cyclo) 6.6 3 3 1 2.00 = 2 16 Id 512 5120
10 Cyclo (FM14) 5 2 9 1.75 = 7/4 14 −x 448 4480
10 Cyclo (FM15) 15 3 1 1.75 = 7/4 14 Id 448 4480

11 Cyclo (6.2) 1 4 6 1.30 = 13/10 26 −x 333 3661
11 Cyclo 1 4 1 1.50 = 3/2 30 −x 384 4224
11 Cyclo 1 4 7 1.70 = 17/10 34 −x 436 4788
11 Cyclo (6.6) 3 3 4 1.20 = 6/5 24 1/x 308 3380
11 Cyclo 3 3 8 1.30 = 13/10 26 Id 333 3661
11 Cyclo 3 3 1 1.40 = 7/5 28 Id 359 3943
11 Cyclo 11 1 4 1.60 = 8/5 16 Id 410 4506
11 Cyclo 11 1 8 1.60 = 8/5 16 1/x 410 4506

12 BN (6.8) 3 1 1 1.00 = 1 4 1/(6x) 256 3072
12 Cyclo (BLS) 3 1 1 1.50 = 3/2 6 Id 384 4608
12 FK12 (FM17) 3 1 – 1.50 = 3/2 6 Id 384 4608
12 FM19 3 1 – 1.50 = 3/2 6 Id 384 4608
12 FM20 3 1 – 1.50 = 3/2 6 Id 384 4608
12 Cyclo (6.7) (FM18) 2 2 1 1.75 = 7/4 14 −x 448 5376
12 (Cyclo) 6.4 1 1 1 2.00 = 2 8 −1/x 512 6144

13 Cyclo (6.2) 1 4 7 1.25 = 5/4 30 −x 320 4160
13 Cyclo 1 4 1 1.42 = 17/12 34 −x 363 4715
13 Cyclo (6.6) 3 3 9 1.17 = 7/6 28 Id 299 3883
13 Cyclo 3 3 1 1.33 = 4/3 32 Id 342 4438
13 Cyclo 3 3 10 1.42 = 17/12 34 Id 363 4715
13 Cyclo 3 3 2 1.58 = 19/12 38 Id 406 5270

14 Cyclo (6.3) 1 2 1 1.50 = 3/2 18 −x 384 5376
14 Cyclo (6.6) 3 3 5 1.33 = 4/3 16 Id 342 4779

15 Cyclo (BLS) 3 1 1 1.50 = 3/2 12 Id 384 5760
15 Cyclo (6.6) 3 1 11 1.50 = 3/2 12 Id 384 5760

16 KSS16 (6.11) 1 – – 1.25 = 5/4 10 Id 320 5120

17 Cyclo (6.2) 1 4 9 1.18 = 19/16 38 −x 304 5168
17 Cyclo (6.6) 3 3 6 1.12 = 9/8 36 1/x 288 4896
17 Cyclo 3 3 12 1.19 = 19/16 38 Id 304 5168
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We obtain lower DL cost estimates in the embedding field of these curves,
except for k = 9 construction LZZW (that we set in the BLS framework). Some-
times the cost for STNFS is not given in [4], we give our estimate. We investigated
these differences by running the scripts provided with [4] and developing a second
implementation based on the SageMath code available with [23,22]. We develop
the following improvements.

1. Given pk as input, for each possible integer factorisation k = ηκ with η > 1, we
generate many irreducible polynomials h of degree η and pairs of polynomials
(fy, gy).

2. For each set of polynomials (h, fy, gy), the code iterates and adjusts auto-
matically the parameters A, B (sieving bound, smoothness bound) in order
to find the best combination that balances the costs of relation collection
and linear algebra, so that the total cost is minimised. When plugging these
values into the former scripts and adding a tiny offset if needed, one obtains
the new results.

3. We implement the improvements of the Special setting described in the
variants 1-4: automorphisms and changes of variables on p(x) to minimise
the average size of norms.

4. We compute the joint average size of norms and smoothness probabilities
for Ky,f and Ky,g simultaneously. This allows to compute the ratio of non-
coprime ideals a(y)O, b(y)O and validates the formula 1/ζKh

(2).

We obtain the results of Tables 3, 4 and 5. In Table 3, we reproduce the
results of Barbulescu, El Mrabet and Ghammam [4, §3.4]. We hereafter make
the following remarks.

Remark 2.

– We do not consider even embedding degrees k with Construction 6.2. As
explained in [20], 6.2 is valid for odd embedding degrees, 6.3 is for k = 2 mod 4,
and 6.4 for k = 4 mod 8. Hence we do not report even k with 6.2 in Table 3.

– For k = 10 and construction 6.3, we obtained a lower DL cost with η = 10
instead of η = 5. We obtained 2122 instead of 2134.

– For all curves but BN and BLS12, we obtain a lower estimated cost with
optimised parameters A,B and § 2.1.

– When the degree of p(x) is large, we apply one of the variants using auto-
morphisms 1, 2 or 3 if applicable, so that degP = deg p(x)/2. We compared
without the polynomial variants and observed a lower DL cost estimate with
variants 1 or 2 when the degree of p(x) is more than 12. Note that the
variant 2 is commented in the Python script of [4] for k = 17(6.6).

– We observed that when the degree of P is more than 12 (after applying
variants 1, 2 or 3 if applicable), applying our improvement 4 reduces further
the estimated complexity of STNFS. We obtained the smallest cost with P
of degree between 4 and 12. This case is reported in the right-most column
of Tables 3 and 4. The curves involved with this improvement are k = 9(6.7),
k = 10(6.6), k = 11(6.2), k = 13(6.2) and k = 13(6.6), k = 14(6.6) and
k = 17(6.2), k = 17(6.6).
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Moreover, we applied our work to the parameter seeds of [4]. The previous
remarks apply: we do not consider the seeds of even k with Construction 6.2
([4, Table 10]). We identified five seeds that produce insecure curves because the
STNFS estimated cost in Fpk is below 2128: these are k = 9 BLS (denoted LZZW
in [4, Table 23]), k = 9 (6.2), k = 10 (6.3), k = 11 (6.2) and k = 11 (6.6). Our
DL security estimate is given in bold coloured font in Table 4.

For k = 10 (6.3), the size of u is smaller than the minimum size recommended
in [4, §3.4] (p(u) is 433-bit long instead of 446, and r(u) is 249-bit long, smaller
than 256 bits). For k13(6.2), the minimum size recommended in [4, §3.4] is p(u)
of 329 bits, but the seed produces a 599-bit prime p. The security is much larger
than 2128. These two cases are reported in italic coloured font in Table 4.

Our results. In Table 5 we present our estimations of STNFS security. For
each curve family in Table 2, we first generate seeds and parameters so that r is
at least a 256-bit prime. Then we run our estimation of STNFS, trying many
combinations of degrees of h(Y ) and of P (x). When the cost is smaller than
2128, we increase the size of the seed u and generate larger parameters r(u) and
p(u). We report the minimum size of p so that r is at least 256-bit long, and the
security in Fpk is at least 2128.

For each embedding degree k, we highlight in coloured background the family
that has no automorphism available in p(x) so that the variants 1, 2 and 3 do not
apply, and so that p(u) has minimal possible size. We eliminate the embedding
degree k = 17. Since p(x) has large degree of 36 or 38, it was not possible to
find a seed u so that p(u) and r(u) are prime, and pk(u) is less than 5376 bits
(constrain of Eq. (5)). We eliminate embedding degree k = 9: the curves whose
p(x) has no automorphism do not satisfy pk(u) ≤ 5376.

There are eleven highlighted families in Table 5. The families of Fotiadis and
Martindale [18] with k = 12 and D = 3 (denoted FM17, FM19 and FM20) have
very similar properties and like in [18], we only include FM17 in our final short
list (for the same bitsize of p(u), FM17 produces r(u) one bit larger than FM19
and four bits larger than FM20).

We are left with a final short-list of nine STNFS-secure pairing-friendly
curves that we summarise in Table 6. We give the polynomials p(x), r(x), t(x) as
Curves 1, 2, 3, 4, 5. We add the modified Cocks–Pinch curve with k = 8 from
[22] as it looks quite promising in terms of pairing efficiency [1].

Remark 3. The curves listed below all admit a fast endomorphism from the
complex multiplication, because their discriminant −D is small. For curves
with −D = −4 and j-invariant 1728, the endomorphism is (x, y) 7→ (−x, iy),
where i2 = −1 (in short Weierstrass representation). The curves are ordinary,
p ≡ 1 mod 4, and there exists i ∈ Fp such that i2 = −1 mod p. More precisely,
we can easily precompute i. The characteristic p has form p = (t2 + y2)/4 where t
is the trace, and t2− 4p = −y2. Then

√
−1 ≡ t/y mod p. The endomorphism has

characteristic polynomial x2 + 1, and eigenvalue
√
−1 mod r, where r | p+ 1− t

and r is prime. Writing p+1−t = ((t−2)2+y2)/4, one has
√
−1 ≡ (t−2)/y mod r.

This is explained in details in [34]. When the cofactor c of the elliptic curve such

17



Table 3. Pairing-friendly Constructions for 9 ≤ k ≤ 17 from Table 2 and their security
estimate in [4], with η = deg h, n = ηκ (see Fig. 2). In several cases the data in [4] was
missing or unexpected (it seems that the parameters A,B were not enough optimised).
The polynomial P (xi) equals 3p(x) for D = 3, 4p(x) for D = 1, 8p(x) for D = 2, p(x)
for BN, and P (x+ 1) = 980p(x) for KSS16.

k
Construc-

D,m,e0
deg p pk r

η
poly deg DL cost new deg DL

tion p(x) bits bits bits P P [4] §2.1 params P cost

9 Cyclo (BLS) 3,1,1 8 591 5314 443 9 P (x) 8 128 128
9 Cyclo (6.6) 3,1,7 8 535 4810 401 9 P (x) 8 129 122
9 Cyclo (6.2) 1,4,5 22 484 4356 266 9 P (x2) 11 134 116
9 Cyclo (6.7) 2,8,1 46 520 4672 273 9 P (x2) 23 266 220 P (u4) 11 140

10 Cyclo (6.3) 1,2,1 14 446 4460 256 5 P (x2) 7 134 133 η=10 7 121
10 (Cyclo) 6.6 3,3,1 16 511 5104 256 10 P (x) 16 166 152 P (u2) 8 150

11 Cyclo (6.2) 1,4,6 26 337 3698 189 11 P (x2) 13 173 118
11 Cyclo (6.6) 3,3,4 24 311 3421 78 11 P (x) 24 ∅ 232 P(x+1/x) 12 114

12 BN (6.8) 3,–,– 4 462 5534 462 6 P (x) 4 128 135
12 Cyclo (BLS) 3,1,1 6 461 5525 308 6 P (x) 6 128 135
12 Cyclo (6.7) 2,2,1 14 445 5340 256 12 P (x2) 7 148 134
12 (Cyclo) 6.4 1,1,1 8 510 6120 256 12 P (x) 8 ∅ 138

13 Cyclo (6.2) 1,4,7 30 329 4265 218 13 P (x2) 15 325 143 P (u4) 7 140
13 Cyclo (6.6) 3,3,9 28 309 4009 218 13 P (x) 28 ∅ 288 P (u3) 9 140

14 Cyclo (6.3) 1,2,1 18 394 5516 264 14 P (x2) 9 148 132
14 Cyclo (6.6) 3,3,5 16 351 4906 264 14 P (x) 16 175 151 P (u2) 8 151

15 Cyclo (BLS) 3,1,1 12 383 5745 257 15 P (x) 12 286 138
15 Cyclo (6.6) 3,1,11 12 383 5736 256 15 P (x) 12 175 138

16 KSS16 (6.11) 1,–,– 10 331 5281 257 16 P (x+1) 10 154 140

17 Cyclo (6.2) 1,4,9 38 304 5153 135 17 P (x2) 19 254 189 P (u4) 9 153
17 Cyclo (6.6) 3,3,6 36 348 5914 249 17 P(x+1/x) 18 ∅ 186 P((u+1/u)2) 9 168

that r · c = p+ 1− t is larger (not just 1 or 2 for example), and the curve has
parameters of polynomial form, one can reduce the lattice spanned by the rows
(r(x), 0) and (y(x), t(x)− 2) to obtain a short basis. The Magma language for
example allows lattice reduction over polynomials.

For curves with −D = −3, the endomorphism is (x, y) 7→ (ωx, y), where
ω ∈ Fp is a third root of unity, such that ω2 + ω + 1 = 0. The endomorphism
has characteristic polynomial x2 + x + 1 and eigenvalue λ mod r such that
λ2 +λ+ 1 = 0 mod r. We can easily precompute ω and λ. Since p = (t2 + 3y2)/4,
then

√
−3 ≡ t/y mod p, and ω ≡ (−1 +

√
−3)/2 ≡ (−y+ t)/(2y) mod p. We also

have
√
−3 ≡ (t− 2)/y mod r. The eigenvalue is λ ≡ (−1 +

√
−3)/2 ≡ (−y + t−

2)/(2y) mod r. Since the square roots are given up to sign, in practice one obtains
equality up to sign ([±λ](xp, yP ) = (ωxP , yP ) or [±λ](xP , yP ) = (ω2xP , yP )),
that is, a practical adjustment is required.

We give a polynomial form of low degree for β =
√
−D mod p and λ =√

−D mod r for the curves below.
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Table 4. Seeds provided in [3,4,19]. No seed is given for k = 9, k = 10 with 6.6, k = 17.
The seeds for k = 12, 16 are from [3].

k curve ref seed u
p(u)
bits

pk(u)
bits

r(u)
bits

η,
special
poly

DL
cost

9 BLS [4, T.23] 274 + 235 − 222 + 2 591 5314 443 9 P (x) 128
9 BLS [19, §8.1] 270 + 259 + 246 + 241 + 1 559 5026 419 9 P (x) 125
9 6.2 [4, T.6] −1+23+24+25+29+210+222 483 4339 265 9 P (x2) 116
9 6.7 [4, T.19] −1−24+26+29+211=0xa2f 520 4672 273 9 P (u4) 140

10 6.3 [4, T.7] 1+23−25+210+213+231 433 4321 249 10 P (x2) 120

11 6.2 [4, T.6] −1 + 28 + 214 363 3993 281 11 P (x2) 122
11 6.6 [4, T.16] 24+26+27+29+210+214 338 3718 283 11 P (x+1/x) 118

12 BN [3] 2114 + 2101 − 214 − 1 462 5535 462 6 P (x) 135
12 BLS [3] −277 + 250 + 233 461 5525 308 6 P (x) 134
12 6.7 [4, T.18] 1 + 214 + 217 + 232 446 5341 257 12 P (x2) 134
12 6.4 [4, T.8] 1+2+23+28+29+211+264 511 6121 257 12 P (x) 138

13 6.2 [4, T.6] 1+2+23+24+28+210+214+220 599 7784 481 13 P (x2) 162
13 6.6 [4, T.16] 24+27+210+211+213 =0x2c90 376 4886 324 13 P (u3) 152

14 6.3 [4, T.7] 1−22+26+29−212−215−219+222 391 5464 262 14 P (x2) 131
14 6.6 [4, T.15] −1+26+27+29+210+213+217+222 352 4917 265 14 P (u2) 150

15 BLS [19, §8.1] 22 + 25 + 219 + 231 371 5557 249 15 P (x) 137
15 BLS [4, T.23] 2 + 210 + 216 + 219 + 232 383 5737 257 15 P (x) 138
15 6.6 [4, T.14] 1 + 22 + 212 + 216 + 232 383 5737 257 15 P (x) 138

16 KSS [3] −234+227−223+220−211+1 330 5280 257 16 P (x+1) 140

Curve 1. A pairing-friendly curve y2 = x3 + ax + b with the Brezing–Weng
method, k = 10, D = 15, m = 3, e0 = 1, ρ = 7/4 = 1.75 ([17, Table 2]).
r = Φ30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1
p = (4x14 + 4x13 + x12 − 12x11 − 12x10 − 7x9 + 11x8

+ 17x7 + 15x6 − 3x5 − 11x4 + x3 − 2x2 + 3x+ 6)/15
t = x3 + 1 ; y = (x− 1)(4x6 + 6x5 + 6x4 − 3x2 − 5x− 3)/15
u = 1, 3, 6, 13 mod 15 ; c = (x− 1)(2x2 + x+ 2)(2x2 + 3x+ 3)/15

The Hilbert class polynomial is H(−15) = x2 + 191025x − 121287375 of dis-
criminant 5(33 · 5 · 72 · 13)2. For a root j0 = 135(−1415± 637

√
5)/2 of H(−15)

modulo p, one has a = −3j0/(j0− 1728), b = 2j0/(j0− 1728). A simplified pair is
(a, b) = (−3(245± 416

√
5), 154(±416 + 49

√
5)). Moreover if ω = j0/(j0− 1728) =

52/112 ± 25 · 5 · 13
√

5/(72112) is a square modulo p, one can have a′ = −3,
b′ = b/ω3/2. If the curve y2 = x3 +ax+ b is the quadratic twist (of order p+ 1 + t
instead of p+ 1− t), then y2 = x3 + aν2x+ bν3 is the curve we want, where ν is
a non-square modulo p.

The short eigenvalue of the endomorphism for GLV (see [34]) is λ =
√
−15 ≡

2x7−2x5−4x4−2x3−2x2 +4x+3 ≡ (2x4 +x3−4x2 +x+2)/(x3−x) mod r(x).
Note that the square root is defined up to sign. We also have

√
−15 ≡ (−64x13−

24x12 + 8x11 + 250x10 + 92x9 + 32x8 − 448x7 − 226x6 − 146x5 + 398x4 + 222x3 +
32x2 − 42x − 159)/45 mod p(x). The endomorphism can be obtained from a
3-isogeny and a 5-isogeny. There are two 3-isogenies and two 5-isogenies, one
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Table 5. Pairing-friendly Constructions for 9 ≤ k ≤ 17 from Table 2 and our new
security estimate. For k = 17, r is a prime divisor of r(u) but r(u) itself is not prime,
there is a cofactor (mark ∗). For many families with k = 11 and k = 13, it was not
possible to find a seed u such that r is 256-bit long (+) because r(x) has a high degree.

k Construction, D,m,e0
deg
p(x)

p
bits

pk

bits
r

bits
η §2.2

deg
P
‖P‖ P DL

cost

9 Cyclo (BLS) 3,1,1 8 608 5472 456 9 8 1 P (x)=3p(x) 130
9 Cyclo (6.6) 3,1,7 8 608 5472 456 9 8 1 P (x)=3p(x) 130
9 Cyclo (6.2) 1,4,5 22 640 5752 350 9 (1) 11 1 P (x2)=4p(x) 130
9 Cyclo (6.7) 2,8,1 46 520 4672 273+ 9 (1+4) 11 u2 P (u4)=8p(u) 140
9 Cyclo (FM10) 3,1,5 12 608 5472 304 9 12 1 P (x)=3p(x) 133

10 Cyclo (6.5) 1,2,9 12 480 4800 322 5 (1) 6 1 P (x2)=3p(x) 128
10 Cyclo (6.3,FM13) 1,2,1 14 512 5120 294 10 (1) 7 1 P (x2)=4p(x) 129
10 Cyclo (FM16) 2,4,9 30 488 4871 262+ 10 (1) 15 1 P (x2)=8p(x) 141
10 (Cyclo) 6.6 3,3,1 16 511 5104 256 10 (4) 8 u P (u2)=3p(u) 145
10 Cyclo (FM14) 5,2,9 14 480 4800 276 10 (1) 7 1 P (x2)=20p(x) 128
10 Cyclo (FM15) 15,3,1 14 446 4460 256 10 14 1 P (x)=15p(x) 133

11 Cyclo (6.2) 1,4,6 26 414 4554 320 11 (1) 13 1 P (x2)=4p(x) 130
11 Cyclo 1,4,1 30 391 4297 262+ 11 (1+4) 7 u2 P (u4)=4p(u) 136
11 Cyclo 1,4,7 34 444 4876 262+ 11 (1+4) 8 u2 P (u4)=4p(u) 146
11 Cyclo (6.6) 3,3,4 24 446 4899 373 11 (2) 12 1 x12P (x+1/x)=3p(x) 128
11 Cyclo 3,3,8 26 333 3663 258+ 11 (4) 8 u2 P (u3)=3p(u) 131
11 Cyclo 3,3,1 28 355 3901 255+ 11 (4) 9 u2 P (u3)=3p(u) 135
11 Cyclo 3,3,1 28 373 4101 268+ 11 (4) 9 u2 P (u3)=3p(u) 139
11 Cyclo 11,1,4 16 411 4521 256 11 (4) 8 u P (u2)=11p(u) 145
11 Cyclo 11,1,8 16 480 5280 298 11 (2) 8 1 x8P (x+1/x)=11p(x) 130

12 BN (6.8) 3,–,– 4 446 5376 446 6 4 1 P (x)=p(x) 132
12 Cyclo (BLS) 3,1,1 6 446 5376 299 6 6 1 P (x)=3p(x) 132
12 FK12 (FM17) 3,–,– 6 446 5352 296 6 6 1 P (6x+2)=108p(x) 136
12 FM19 3,–,– 6 446 5352 295 6 6 1 P (x)=225p(x) 135
12 FM20 3,–,– 6 446 5352 292 6 6 1 P (x+3)=1425p(x) 137
12 Cyclo (6.7,FM18) 2,2,1 14 445 5329 256 12 (1) 7 1 P (x2)=8p(x) 134
12 (Cyclo) 6.4 1,1,1 8 509 6097 256 12 8 1 P (x)=4p(x) 138

13 Cyclo (6.2) 1,4,7 30 339 4396 256∗ 13 (1+4) 7 u2 P (u4)=4p(u) 142
13 Cyclo 1,4,1 34 380 4931 270+ 13 (1+4) 8 u2 P (u4)=4p(u) 141
13 Cyclo (6.6) 3,3,9 28 310 4027 267+ 13 (4) 9 u2 P (u3)=3p(u) 140
13 Cyclo 3,3,1 32 348 4512 262+ 13 (4) 10 u2 P (u3)=3p(u) 139
13 Cyclo 3,3,10 34 388 5037 275+ 13 (4) 8 u2 P (u4)=3p(u) 144
13 Cyclo 3,3,2 38 403 5233 256 13 (4) 6 u2 P (u6)=3p(u) 150

14 Cyclo (6.3) 1,2,1 18 382 5376 256 14 (1) 9 1 P (x2)=4p(x) 130
14 Cyclo (6.6) 3,3,5 16 340 4755 256 14 (4) 8 u P (u2)=3p(u) 148

15 Cyclo (BLS) 3,1,1 12 381 5715 256 15 12 1 P (x)=3p(x) 137
15 Cyclo (6.6) 3,1,11 12 381 5715 256 15 12 1 P (x)=3p(x) 137

16 KSS16 (6.11) 1,–,– 10 330 5280 256 16 10 1 P (x)=980p(x−1) 140

17 Cyclo (6.2) 1,4,9 38 382 6494 262∗ 17 (1+4) 9 u2 P (u4)=4p(u) 167
17 Cyclo (6.2) 1,4,9 38 359 6087 254∗ 17 (1+4) 9 u2 P (u4)=4p(u) 164
17 Cyclo (6.6) 3,3,6 36 374 6358 281∗ 17 (2+4) 9 u2

P((u+1/u)2)u36=3p(u) 172
17 Cyclo 3,3,12 38 337 5718 255∗ 17 (4) 9 u3 P (u4)=3p(u) 165
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Table 6. Our short-list of pairing-friendly curves at the 128-bit security level.

k
Construc-
tion

D,m,e0
deg
p(x)

seed u
p

bits
pk

bits
r

bits
DL cost
in Fpk

6 Cocks–Pinch 3,–,– 4 2128 − 2124 − 269[22] 672 4028 256 128 [22]
8 Cocks–Pinch 1,–,– 8 264 − 254 + 237 + 232 − 4[22] 544 4349 256 131 [22]

10 Cyclo(FM15)15,3,1 14 232 − 226 − 217 + 210 − 1, a = −3 446 4460 256 133
11 Cyclo 3,3,8 26 −213+210−28−25−23−2=−0x1d2a, b=13 333 3663 258+ 131
11 Cyclo 11,1,4 16 −226 + 221 + 219 − 211 − 29 − 1, a = 2 412 4522 256 145
12 BN (6.8) 3,–,– 4 2110 + 236 + 1, b = 257 [31] 446 5376 446 132 [23]
12 Cyclo (BLS) 3,1,1 6 −(274+273+263+257+250+217+1), b=1 [22,23] 446 5376 299 132[23]
12 FK12 (FM17)3,–,– 6 −272 − 271 − 236, b = −2 [18, §4(b)] 446 5352 296 136
13 Cyclo (6.6) 3,3,9 28 211 + 28 − 26 − 24 = 0x8b0, b = −17 310 4027 267+ 140
14 Cyclo (6.6) 3,3,5 16 221 + 219 + 210 − 26, b = −4 340 4755 256 148
16 KSS16 (6.11) 1,–,– 10 −234+227−223+220−211+1, a=1 [3] 330 5280 257 140 [23]
16 KSS16 (6.11) 1,–,– 10 234−230+226+223+214−25+1, a=1 330 5268 256 140

combination gives an endomorphism (we were able to check it on a numerical
example in Magma, and obtained the eigenvalue −λ(u)).

Curve 2. A pairing-friendly curve y2 = x3 + b with the Brezing–Weng method,
k = 11, D = 3, m = 3, e0 = 8, ρ = 13/10 = 1.30. Since D = 3, a = 0.
r = Φ33(x) = x20 − x19 + x17 − x16 + x14 − x13 + x11 − x10 + x9 − x7 + x6

−x4 + x3 − x+ 1
p = (x26 + x24 + x22 + x15 − 2x13 + x11 + x4 − 2x2 + 1)/3
t = x3×8 + 1 mod r = −x13 − x2 + 1 ; y = (x13 + 2x11 − x2 + 1)/3
u = 1, 2 mod 3 ; c = (x2 − x+ 1)(x2 + x+ 1)2/3

The eigenvalue of the endomorphism (x, y) 7→ (ωx, y) is λ ≡ (−1 +
√
−3)/2 ≡ x11

≡ (x10−x9+x7−x6+x4−x3+x−1)/(x9−x8+x6−x5+x3−x2+1) mod r(x), and
ω ≡ (−1+

√
−3)/2 ≡ (2x25−x24+5x23+7x21−x20+8x19+x18+7x17−x16+8x15+

3x14+6x13−2x12+6x11−x10−2x9+x8+2x7−x6−2x5+x4+4x3−2x2−3x−1)/5.

Curve 3. A pairing-friendly curve y2 = x3 + ax + b with the Brezing–Weng
method, k = 11, D = 11, m = 1, e0 = 4, ρ = 8/5 = 1.6.
r = Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1
p = (x16 + 2x15 + x14 − x12 − 3x11 − x5 + 9x4 − x3 + x+ 3)/11
t = x4 + 1 ; y = (2x8 + 2x7 − x4 − 2x3 + 2x2 − 2x− 1)/11
u = 1 mod 11 ; c = (x− 1)2(x4 + 3x3 + 4x2 + 4x+ 3)

The j-invariant of a curve of discriminant −11 is −32768 = −215, and (a, b) =
(−264, 1694). Moreover if 22 is a square modulo p, one can define (a′, b′) =
(−3, 7

√
22/24). The endomorphism can be obtained from a 11-isogeny. The

eigenvalue is λ ≡
√
−11 ≡ 2x9 + 2x5 + 2x4 + 2x3 + 2x+ 1 ≡ (2x5 + x4 − 2x3 +

2x2 − x− 2)/(x4 + x) mod r(x).

Curve 4. A pairing-friendly curve y2 = x3 + b with the Brezing–Weng method,
k = 13, D = 3, m = 3, e0 = 9 (this is (6.6)), ρ = 7/6 = 1.17. Since D = 3, a = 0.
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r = Φ39(x) = x24 − x23 + x21 − x20 + x18 − x17 + x15 − x14 + x12 − x10 + x9

− x7 + x6 − x4 + x3 − x+ 1
p = (x28 + x27 + x26 + x15 − 2x14 + x13 + x2 − 2x+ 1)/3
t = (x3×9 + 1) mod r = −x14 − x+ 1 ; y = (x14 + 2x13 − x+ 1)/3
u = 1 mod 3 ; c = (x2 + x+ 1)2/3

The endomorphism is (x, y) 7→ (ωx, y) where ω ≡ (−1 +
√
−3)/2 ≡ x26 + x25 +

2x24 + x23 + 2x22 + x21 + 2x20 + x19 + 2x18 + x17 + 2x16 + x15 + 2x14 + x13 −
x12 + x11 − x10 + x9 − x8 + x7 − x6 + x5 − x4 + x3 − x2 + x− 1 mod p(x). The
eigenvalue is λ ≡ (−1 +

√
−3)/2 ≡ x13 ≡ (x11 − x10 + x8 − x7 + x5 − x4 + x2 −

x)/(x12 − x11 + x9 − x8 + x6 − x5 + x3 − x2 + 1) mod r(x).

Curve 5. A pairing-friendly curve y2 = x3 + b with the Brezing–Weng method,
k = 14, D = 3, m = 3, e0 = 5 (this is (6.6)), ρ = 4/3 = 1.33. Since D = 3, a = 0.
r = Φ42(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x+ 1
p = (x16 + x15 + x14 − x9 + 2x8 − x7 + x2 − 2x+ 1)/3
t = (x3×5 + 1) mod r = x8 − x+ 1 ; y = (x8 + 2x7 + x− 1)/3
u = 1 mod 3 ; c = (x2 − x+ 1)(x2 + x+ 1)/3

The endomorphism is (x, y) 7→ (ωx, y) where ω ≡ (−1+
√
−3)/2 ≡ (2x15 +3x14 +

5x13 + 4x12 + 5x11 + 4x10 + 5x9 + 2x8 + 5x7− x6 + x5− x4 + x3− x2 + 3x− 4)/3
modp(x). The eigenvalue is λ ≡ (−1 +

√
−3)/2 ≡ x13 ≡ (x5 +x4−x2−x)/(x6−

x4 − x3 + x+ 1) mod r(x).

4 Optimal Ate Pairing Computation: Miller Loop

We leave to future work the final exponentiation and we focus on the Miller
loop, sketched in Alg. 4.1. We compare the curves of Table 6 to [22, Table 10]
and summarise the costs in Table 8. Let mk denotes a multiplication in Fpk ,
m a multiplication in Fp, sk a square in Fpk and s a square in Fp. For curves
y2 = x3 + b with j-invariant 0 (a = 0), we give the counts from [13]. For prime
embedding degrees (k = 11, 13), we apply the formulas from [22, Table 7].

Algorithm 4.1: MillerFunction(u, P,Q)
Input: E,Fp,Fpk , P ∈ E(Fp)[r], Q ∈ E(Fpk )[r] in affine coord., πp(Q) = [p]Q, u ∈ N.
Result: f = fu,Q(P )

1 f ← 1; R← Q;
2 for b from the second most significant bit of u to the least do
3 `← `R,R(P ); R← [2]R ; DoubleLine
4 v ← v[2]R(P ) ; VerticalLine
5 f ← f2 · `/v; Update1
6 if b = 1 then
7 `← `R,Q(P ); R← R+Q ; AddLine
8 v ← vR+Q(P ) ; VerticalLine
9 f ← f · `/v ; Update2

10 return f ;
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Table 7. Miller loop cost in Weierstrass model from [11,13,22].

k curve
DoubleLine
AddLine

Vertical
Line

Update1
Update2

reference

any k y2 = x3 + ax+ b
5mk + 6sk + 2km

10mk + 3sk
km

4mk + 2sk
4mk

[22, Alg. 3,4,5]

any k y2 = x3 + b
5mk + 5sk + 2km

10mk + 3sk
km

4mk + 2sk
4mk

[22, Alg. 3,4,5]

2 | k y2 = x3 + b
quadratic twist

2mk/2 + 7sk/2 + km
10mk/2 + 2sk/2 + km

0
mk + sk

mk
[13, §5,Tab.3]

2 | k y2 = x3 − 3x+ b
quadratic twist

6mk/2 + 4sk/2 + km
10mk/2 + 3sk/2 + km

0
mk + sk

mk
[11]

The cost of a Miller function fu,Q(P ) for optimal ate pairing computation
is given by Eq. (6), where nbits is the bitlength and HW2-NAF is the Hamming
weight in 2-non-adjacent form, and ik an inversion in Fpk .

CostMillerFunction = (nbits(2-NAF(u))− 1) (CostDoubleLine + CostVerticalLine)

+ (nbits(2-NAF(u))− 2)CostUpdate1

+ (HW2-NAF(u)− 1)(CostAddLine + CostVerticalLine + CostUpdate2)

+ (if there is no twist)ik. (6)

The Miller loop is a product of Miller functions fm,Q(P ), lines `R,S(P ) and
verticals vR(P ). In all our cases the Miller loop has length of the form upi+u2pj+pl

with i, j, l positive integers and is computed as

fp
i

u,Q(P )fp
j

u2,Q(P )`πi
p(uQ),πj

p(u2Q)(P )/vπi
p(uQ)+πj

p(u2Q)(P )`πi
p(uQ)+πj

p(u2Q),πl
p(Q)(P ) .

The vertical vπi
p(uQ)+πj

p(u2Q)+πl
p(Q)(P ) can be removed as the point is at infinity.

We can optimise with fu2,Q(P ) = fuu,Q(P )fu,uQ(P ). We first compute fu,Q(P ),
then we start a second Miller iteration over u from f = fu,Q(P ) instead of f = 1
and with the point uQ instead of Q. Computing uQ in affine coordinates from
Jacobian coordinates costs ik + sk + 3mk. The exponentiation fuu,Q is almost
free: the squares are shared with the computation of fu,uQ(P ). It costs one
more multiplication mk in addition steps. The computations πip(uQ), πlp(Q) cost

2fk because uQ is in affine coordinates, while πjp(u
2Q) costs 3fk, with u2Q in
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projective coordinates. A general formula is

CostMillerLoop = (nbits(2-NAF(u))− 1)(CostDoubleLine + CostVerticalLine)

+ (nbits(2-NAF(u))− 2)CostUpdate1

+ (HW2-NAF(u)− 1)(CostAddLine + CostVerticalLine + CostUpdate2)

+ ik + sk + 3mk (we computed fu,Q(P ) and [u]Q in affine coordinates)

+ (nbits(u)− 1)(CostDoubleLine + CostVerticalLine + CostUpdate1)

+ (HW(u)− 1)(CostAddLine + CostVerticalLine + CostUpdate2 + mk)

+ (1 or 2)fk + mk (we computed fp
i

u,Q(P )fp
j

u2,Q(P ) and [u2]Q)

+ (4 or 5)fk + 2(CostAddLine + CostUpdate2) + CostVerticalLine + ik (7)

If HW2-NAF(u) � HW(u) then one can replace u by the form 2-NAF(u) and
HW(u) by HW2-NAF(u) in the second Miller loop to save addition steps, at a
cost of one extra inversion ik.

A Tate pairing has Miller loop fr,P (Q). The curve arithmetic is in the base
field Fp instead of Fpk , but the Miller loop has length log2 r bits, this is at least
256 bits. The estimated cost has the same formula given in eq. (6) but with
2-NAF(r) instead of u.

4.1 Prime Embedding Degrees 11 and 13.

Curve 2 (k = 11, D = 3, a = 0, p of 333 bits, u = -0x1d2a). The optimal
ate Miller loop has length u+ u2p5 + p6. The formula is

fu,Q(P )fp
5

u2,Q(P )`uQ,π5
p(u

2Q)/vuQ+π5
p(u

2Q)`uQ+π5
p(u

2Q),π6
p(Q)

(we omit vuQ+π5
p(u

2Q)+π6
p(Q)(P ) because uQ+ π5

p(u2Q) + π6
p(Q) = O). The seed

u = -0x1d2a is 13-bit long and has Hamming weight 7, and 2-NAF(u) is 14-bit
long and has Hamming weight 6. Since D = 3, we have a = 0. No twist is
available. From eq. (7) with (1 + 5)fk for Frobenius, we obtain 87km + 413mk +
213sk + 6fk + 2ik. A schoolbook implementation of multiplication and squaring
would give mk = k2m = 121m and sk = k(k − 1)m = 110m. A Frobenius power
in Fp11 costs 10m, assuming p = 1 mod 11 and some precomputations. We obtain
the upper bound 74420m + 2ik. An optimised Karatsuba multiplication in Fpk
would require at least klog2 3m, that is, 45m. Assuming that sk ≈ mk ≈ 45m,
we obtain the lower bound 29187m + 2ik.

For the Tate pairing, from Eq. (6) with r = Φ33(u), 2-NAF(r) of 258 bits and
Hamming weight 86, we obtain 1026km+1364mk+512sk+2477m+1540s+ik, it
is roughly 235127m+1540s+ ik with schoolbook mk, sk, and 98183m+1540s+ ik
with optimised Karatsuba-like mk, sk.

Curve 3 (k = 11, D = 11, a = 2, p of 412 bits, u = -0x3d80a01). The
optimal ate Miller loop has length u− p3. The formula is

fu,Q(P )`uQ,−π3
p(Q)(P )
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(we omit vuQ−π3
p(Q)(P ) because uQ − π3

p(Q) = O). We have u of 26 bits and

Hamming weight 9, 2-NAF(u) of 27 bits and HW2-NAF(u) = 6, and a = 2. No
twist is available. We obtain from Eq. (6) with in addition 2fk + CostAddLine +
CostUpdate2, the cost 83km + 314mk + 224sk + 3fk + ik. With the upper bound
mk = k2m and sk = k(k− 1)m, the count is 63577m + ik. With the lower bound
m11 = s11 = 45m, the count is 25153m + ik.

A Tate pairing would cost more than the previous curve since a = 2 instead
of a = 0, with this time r = Φ11(u)/11 of 256 bits, 2-NAF(r) of 257 bits, and
HW2-NAF(r) = 87. The estimated cost is 1026km + 1364mk + 510sk + 2738m +
1794s+ ik, upper bound 235168m+ 1794s+ ik, lower bound 98354m+ 1794s+ ik.

Curve 4 (k = 13, D = 3, (6.6), a = 0, p of 310 bits, u = 0x8b0). The
optimal ate Miller loop has length u2 + up+ p2, giving

fu2,Q(P )fpu,Q(P )`u2Q,π(uQ)(P )/vu2Q+π(uQ)`u2Q+πp(uQ),π2
p(Q)

(we omit vu2Q+πp(uQ)+π2
p(Q)(P )). We have u and 2-NAF(u) of 12 bits and Ham-

ming weight 4, and a = 0, but no twist is available. From eq. 7 with (1 + 4)fk, we
obtain 73km + 313mk + 177sk + 5fk + 2ik. With the schoolbook upper bound
m13 = k2m = 169m and s13 = k(k − 1)m = 156m, the count is 81518m + 2ik.
With the Karatsuba-like lower bound m13 = s13 = 13log2 3m = 59m, the count
is 29919m + ik. For Tate from Eq. 6 with 2-NAF(r) of 268 bits and Hamming
weight 90, the cost is 1068km + 1420mk + 532sk + 2581m + 1602s + ik, upper
bound 339437m + 1602s + ik and lower bound 131633m + 1602s + ik.

4.2 Even embedding degrees 10 and 14.

The vertical lines can be removed, thanks to the quadratic twist, because the
x-coordinates are in a proper subfield Fpk/2 . The optimisation of line and tangent
computation focused on curves with twists of degrees 3, 4 and 6 in [13]. We refer
to the former papers [11,2] for pairing formulas on curves with quadratic twists
only. The count is

CostMillerLoop = (nbits(u)− 1)CostDoubleLine + (nbits(u)− 2)CostUpdate1

+ (HW(u)− 1)(CostAddLine + CostUpdate2)

+ ik/2 + sk/2 + 3mk/2 (we computed fu,Q(P ) and [u]Q in affine coord.)

+ (nbits(u)− 1)(CostDoubleLine + CostUpdate1)

+ (HW(u)− 1)(CostAddLine + CostUpdate2 + mk)

+ (1 or 2)fk + mk (we computed (fp
i

u,Q(P )fp
j

u2,Q(P )) and [u2]Q)

+ (2 or 3)fk/2 + CostAddLine + CostUpdate2 (8)

Curve 1 (k = 10, D = 15, a = −3, p of 446 bits, u = 0xfbfe03ff). The
optimal ate Miller loop has length u− p2 + u2p3. The formula is

fu,Q(P )fp
3

u2,Q(P )`uQ,π3
p(u

2Q)(P )
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and we removed the line `uQ+π3
p(u

2Q),π2
p(Q)(P ) as it is a vertical. Computing

π3
p(u

2Q) costs 3fk/2. We have u of 32 bits, HW(u) = 24, 2-NAF(u) of 33 bits,
HW2-NAF(u) = 5, a = −3, and a quadratic twist is available. We write u in 2-NAF
form for both Miller functions, it costs one extra inversion ik and allows to save
27 addition steps in the second Miller function, and obtain 72km+76mk+62sk+
fk + 525mk/2 + 280sk/2 + 3fk/2 + ik + ik/2. We have mk/2 = m5, a schoolbook
implementation of a multiplication in Fp5 would need m5 = k2m = 25m, and a
square s5 = k(k− 1)m = 20m, then with a quadratic extension, Fp10 would have
m10 = 3m5 = 75m (with Karatsuba) and s10 = 2m5 = 50m. The total count
would be 32648m + ik + ik/2. With optimised Karatsuba-like formulas [30], we
would have the lower bound m5 = s5 = 13m, and m10 = 39m, s10 = 26m, and
the final count would be 15784m + ik + ik/2.

Curve 5 (k = 14, D = 3, (6.6), a = 0, p of 340 bits, u = 0x2803c0).
The optimal ate Miller loop has length u2 + up+ p2. The Miller loop formula is

fu2,Q(P )fpu,Q(P )`u2Q,πp(uQ)(P )

We removed the line `u2Q+πp(uQ),π2
p(Q) as it is a vertical. We have u of 22 bits,

HW(u) = 6, 2-NAF(u) of 22 bits, HW2-NAF(u) = 4, a = 0, and a quadratic twist
is available. Computing πp(uQ) costs 2fk/2. We obtain from eq. (8) 51km+56mk+
41sk + fk + 177mk/2 + 313sk/2 + 2fk/2 + ik/2. From [30], we consider the lower
(Karatsuba) bound m7 = s7 = 22m, and m14 = 3m7 = 66m, s14 = 2m7 = 44m.
We obtain 17020m + i7, where m is a multiplication in Fp of 340 bits. With
2-NAF(u) for the second Miller function, the cost is 49km + 52mk + 41sk + fk +
157mk/2 + 309sk/2 + 2fk/2 + ik + ik/2, upper bound 39037m + ik + ik/2, lower
bound 16200m + ik + ik/2.

4.3 Comparison

The five curves of Sec. 4.1 and 4.2 are compared to BN, BLS12, FK12 and
KSS16 curves, and modified Cocks-Pinch curves in Table 8. The curves of even
embedding degrees k = 10, 14 are not competitive by a factor two compared
to KSS16 curves (over a 339-bit field, Miller loop in 7691m) and BLS12, FK12
curves (over a 446-bit field, Miller loop in 7805m and 7853m resp.), because
they have only a quadratic twist, whereas KSS16 curves have a quartic twist and
BLS12, FK12 curves have a sextic twist. The curves of prime embedding degrees
k = 11, 13 are not competitive by a factor four compared to the same curves,
because no twist is available.

5 Overview of the 192-bit security level

At the 192-bit security level, we would like to set the constrain

7168 ≤ 384ρk ≤ 14336 . (9)
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Table 8. Count for Miller loop cost from [22] for Cocks–Pinch and BN, BLS12, KSS16,
and from [18] for FK12 (a.k.a. FM17).

Curve bits p Miller loop final exp. total

Cocks–Pinch k = 6 672 4601m 3871m 8472m
Cocks–Pinch k = 8 544 4502m 7056m 11558m

BN 446 11620m 5349m 16969m
BLS12 446 7805m 7723m 15528m
FK12 (FM17) 446 7853m 8002m 15855m
KSS16 339 7691m 18235m 25926m

k = 11, D = 3, a = 0 333 29187m +2i11
k = 11, D = 11, a = 2 412 25153m +i11
k = 13, D = 3, a = 0 310 29919m +2i13
k = 10, D = 15, a = −3 446 15784m +i10 + i5
k = 14, D = 3, a = 0 340 16200m +i14 + i7

With ρ = 1 we obtain k ≤ 37, and with ρ = 2 we obtain k ≥ 10. Curves
like Fotiadis–Konstantinou with exactly ρ = 2 satisfy (9) for 10 ≤ k ≤ 18. No
cyclotomic family of embedding degree above 32 satisfying (9) was found. For BN,
BLS12, BLS24, KSS16, KSS18, we reproduce in Table 9 the results of Guillevic
and Singh [23]: BN with a 1022-bit p, BLS12 with a 1150-bit p, KSS16 with a
766-bit prime p, KSS18 with a 638-bit prime p, BLS24 with a 509-bit prime p.
We list in Table 10 seed ranges for k ∈ {14, 15, 20, 21, 27, 28}. We also refer to
[18] for alternative curves with ρ = 2. We leave to future work a complete study
of pairing-friendly curves at the 192-bit security level.

Table 9. Seeds at the 192-bit security level from [23].

k curve r bits p bits pk bits seed u DL cost

12 BN 1022 1022 12255 −2254 + 233 + 26 191
12 BLS12 768 1150 13799 −2192 + 2188 − 2115 − 2110 − 244 − 1 193
16 KSS16 605 766 12255 278 − 276 − 228 + 214 + 27 + 1 194
18 KSS18 474 638 11477 280 + 277 + 276 − 261 − 253 − 214 193
24 BLS24 409 509 12202 −251 − 228 + 211 − 1 [14] 193

6 Conclusion

Because of the Special Tower Number Field Sieve algorithm, the security of
pairing-friendly curves should be reconsidered. We presented a new variant of
STNFS for pairing-friendly curves constructed with the Brezing–Weng method,
where the characteristic has a polynomial form. It does not apply to the modified
Cocks–Pinch curves of [22]. We refine the analysis of Barbulescu, El Mrabet and
Ghammam and present an updated short-list of secure pairing-friendly curves at
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Table 10. Seeds at the 192-bit security level for k ∈ {14, 15, 20, 21, 27, 28}. For k = 14, 15
the range of u is such that p is 928-bit long (a smaller p of 920 to 928 bits is possible).
For k = 20, u is s.t. r is 448-bit long. For k = 21, 27, 28, u is s.t. r is 384-bit long.

k curve D,m,e0 r bits p bits pk bits seed u DL cost

14
Cyclo 1,2,1
(6.3)

620 928
12979–
12992

u ≥ 0xc382fe8f05eaf

u ≤ 0xcb2ff529e85b5
194

15
Cyclo 3,1,1
(BLS-15)

620 928
13906–
13920

u ≤ -0x29b3f997f573d609c26f

u ≥ -0x2c2ecd2df12c9d54ec07

u ≥ 0x29b3f997f573d6097e04

u ≤ 0x2c2ecd2df12c9d52b8c9

193

20
Cyclo 1,1,1
(6.4)

448 669–670
13371–
13400

u ≥ 0xeac0c6e7dd29e3

u ≤ 0xffffffffffd1ed
192

21
Cyclo 3,1,1
(BLS-21)

384 510–511
10691–
10719

-0xf1a1c083 ≥ u ≥ -0xffff6fd1

0xf1a1ddd7 ≤ u ≤ 0xffffccc1
195

27
Cyclo 3,1,1
(BLS-27)

384 426–427
11496–
11524

-0x29487b ≥ u ≥ -0x2ac5ea

0x2955f1 ≤ u ≤ 0x2ac66d
212

28
Cyclo 1,1,1
(6.2)

384 510
14243–
14280

0xf1a202f1 ≤ u ≤ 0xffffd341 208

the 128-bit security level. For embedding degrees from 10 to 16, we obtain curves
so that the size of pk is at least 3663 bits (k = 11) and at most 5376 bits (for
BLS12 curves). The estimated cost of a DL computation with STNFS for these
finite fields is between 2128 and 2148. The fastest pairings are obtained with a
BLS12 curve or a Fotiadis–Konstantinou–Martindale curve of embedding degree
12, discriminant 3 and twist of degree 6 over a 446-bit prime. The additional
curves of this paper have embedding degrees 10, 11, 13 and 14 and a twist of
degree 2 for even embedding degrees. It was not sure by how much a prime
embedding degree k allows to reduce the total size of pk: for k = 11 the smallest
possible p is 333 bit long, and for k = 13 p is 310 bit long. Although p is smaller
than 446 bits, no twist is available with a prime embedding degree. For this reason,
the efficiency of pairings on prime embedding degree curves is not competitive
compared to BLS12 and FK12 curves.
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