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Abstract

An exciting new development in differential privacy is the shuffled model, in which an anonymous channel
enables non-interactive, differentially private protocols with error much smaller than what is possible in the local
model, while relying on weaker trust assumptions than in the central model. In this paper, we study basic counting
problems in the shuffled model and establish separations between the error that can be achieved in the single-
message shuffled model and in the shuffled model with multiple messages per user.

For the problem of frequency estimation for n users and a domain of size B, we obtain:
• A nearly tight lower bound of Ω̃pminp 4

?
n,
?
Bqq on the error in the single-message shuffled model. This

implies that the protocols obtained from the amplification via shuffling work of Erlingsson et al. (SODA
2019) and Balle et al. (Crypto 2019) are essentially optimal for single-message protocols. A key ingredient
in the proof is a lower bound on the error of locally-private frequency estimation in the low-privacy (aka
high ε) regime. For this we develop new techniques to extend the results of Duchi et al. (FOCS 2013; JASA
2018) and Bassily & Smith (STOC 2015), whose techniques were restricted to the high-privacy case.

• Protocols in the multi-message shuffled model with polyplogB, log nq bits of communication per user and
poly logB error, which provide an exponential improvement on the error compared to what is possible
with single-message algorithms. This implies protocols with similar error and communication guarantees
for several well-studied problems such as heavy hitters, d-dimensional range counting, M-estimation of the
median and quantiles, and more generally sparse non-adaptive statistical query algorithms.

For the related selection problem on a domain of size B, we prove:
• A nearly tight lower bound of ΩpBq on the number of users in the single-message shuffled model. This

significantly improves on the ΩpB1{17q lower bound obtained by Cheu et al. (Eurocrypt 2019), and when
combined with their Õp

?
Bq-error multi-message protocol, implies the first separation between single-

message and multi-message protocols for this problem.
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1 Introduction

With increased public awareness and the introduction of stricter regulation of how personally identifiable data may be
stored and used, user privacy has become an issue of paramount importance in a wide range of practical applications.
While many formal notions of privacy have been proposed (see, e.g., [LLV07]), differential privacy (DP) [DMNS06,
DKM`06] has emerged as the gold standard due to its broad applicability and nice features such as composition and
post-processing (see, e.g., [DR`14b, Vad17] for a comprehensive overview). A primary goal of DP is to enable
processing of users’ data in a way that (i) does not reveal substantial information about the data of any single user,
and (ii) allows the accurate computation of functions of the users’ inputs. The theory of DP studies what trade-offs
between privacy and accuracy are feasible for desired families of functions.

Most work on DP has been in the central (a.k.a. curator) setup, where numerous private algorithms with small
error have been devised (see, e.g., [BLR08, DNR`09, DR14a]). The premise of the central model is that a curator
can access the raw user data before releasing a differentially private output. In distributed applications, this requires
users to transfer their raw data to the curator — a strong limitation in cases where users would expect the entity
running the curator (e.g., a government agency or a technology company) to gain little information about their data.

To overcome this limitation, recent work has studied the local model of DP [KLN`08] (also [War65]), where
each individual message sent by a user is required to be private. Indeed, several large-scale deployments of DP
in practice, at companies such as Apple [Gre16, App17], Google [EPK14, Sha14], and Microsoft [DKY17], have
used local DP. While estimates in the local model require weaker trust assumptions than in the central model, they
inevitably suffer from significant error. For many types of queries, the estimation error is provably larger than the
error incurred in the central model by a factor growing with the square root of the number of users.

Shuffled Privacy Model. The aforementioned trade-offs have motivated the study of the shuffled model of privacy
as a middle ground between the central and local models. While a similar setup was first studied in cryptography in
the work of Ishai et al. [IKOS06] on cryptography from anonymity, the shuffled model was first proposed for privacy-
preserving protocols by Bittau et al. [BEM`17] in their Encode-Shuffle-Analyze architecture. In the shuffled setting,
each user sends one or more messages to the analyzer using an anonymous channel that does not reveal where each
message comes from. This kind of anonymization is a common procedure in data collection and is easy to explain to
regulatory agencies and users. The anonymous channel is equivalent to all user messages being randomly shuffled
(i.e., permuted) before being operated on by the analyzer, leading to the model illustrated in Figure 1; see Section 2.2
for a formal description of the shuffled model. In this work, we treat the shuffler as a black box, but note that various
efficient cryptographic implementations of the shuffler have been considered, including onion routing, mixnets,
third-party servers, and secure hardware (see, e.g., [IKOS06, BEM`17]). A comprehensive overview of recent work
on anonymous communication can be found on Free Haven’s Selected Papers in Anonymity website1.

1https://www.freehaven.net/anonbib/

Figure 1: Computation in the shuffled model consists of local randomization of inputs in the first stage, followed by a shuffle
of all outputs of the local randomizers, after which the shuffled output is passed on to an analyzer.

1
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The DP properties of the shuffled model were first analytically studied, independently, in the works of Erlingsson
et al. [EFM`19] and Cheu et al. [CSU`19]. Protocols within the shuffled model are non-interactive and fall into
two categories: single-message protocols, in which each user sends one message (as in the local model), and multi-
message protocols, in which a user can send more than one message. In both variants, the messages sent by all users
are shuffled before being passed to the analyzer. The goal is to design private protocols in the shuffled model with
as small error and total communication as possible. An example of the power of the shuffled model was established
by Erlingsson et al. [EFM`19] and extended by Balle et al. [BBGN19c], who showed that every local DP algorithm
directly yields a single-message protocol in the shuffled model with significantly better privacy.

1.1 Results

In this work, we study several basic problems related to counting in the shuffled model of DP. In these problems,
each of n users holds an element from a domain of size B. We consider the problems of frequency estimation,
variable selection, heavy hitters, median, and range counting and study whether it is possible to obtain pε, δq-DP2 in
the shuffled model with accuracy close to what is possible in the central model, while keeping communication low.

The frequency estimation problem (a.k.a. histograms or frequency oracles) is at the core of all the problems
we study. In the simplest version, each of n users gets an element of a domain rBs :“ t1, . . . , Bu and the goal is
to estimate the number of users holding element j, for any query element j P rBs. Frequency estimation has been
extensively studied in DP where in the central model, the smallest possible error is Θpminplogp1{δq{ε, logpBq{ε, nqq
(see, e.g., [Vad17, Section 7.1]). By contrast, in the local model of DP, the smallest possible error is known to be
Θpminp

a

n logpBq{ε, nq under the assumption that δ ă 1{n [BS15].
In the high-level exposition of our results given below, we let n and B be any positive integers, ε ą 0 be any

constant, and δ ą 0 be inverse polynomial in n. This assumption on ε and δ covers a regime of parameters that
is relevant in practice. We will also make use of tilde notation (e.g., Õ, Θ̃) to indicate the possible suppression of
multiplicative factors that are polynomial in logB and log n.

Single-Message Bounds for Frequency Estimation. For the frequency estimation problem, we show the follow-
ing results in the shuffled model where each user sends a single message.

Theorem 1.1 (Informal version of Theorems 3.1 & 3.4). The optimal error of private frequency estimation in the
single-message shuffled model is Θ̃pminp 4

?
n,
?
Bqq.

The main contribution of Theorem 1.1 is the lower bound. To prove this result, we obtain improved bounds
on the error needed for frequency estimation in local DP in the weak privacy regime where ε is around lnn. The
upper bound in Theorem 1.1 follows by combining the recent result of Balle et al. [BBGN19c] (building on the
earlier result of Erlingsson et al. [EFM`19]) with RAPPOR [EPK14] and B-ary randomized response [War65] (see
Section 1.2 and Appendix A for more details).

Theorem 1.1 implies that in order for a single-message differentially private protocol to get error opnq one needs
to have n “ ω

´

logB
log logB

¯

users; see Corollary 3.2. This improves on a result of Cheu et al. [CSU`19, Corollary 32],

which gives a lower bound of n “ ωplog1{17Bq for this task.

Single-Message Bounds for Selection. It turns out that the techniques that we develop to prove the lower bound
in Theorem 1.1 can be used to get a nearly tight ΩpBq lower bound on the number of users necessary to solve the
selection problem. In the selection problem3, each user i P rns is given an arbitrary subset of rBs, represented by
the indicator vector xi P t0, 1uB , and the goal is for the analyzer to output an index j˚ P rBs such that

ÿ

iPrns

xi,j˚ ě max
jPrBs

ÿ

iPrns

xi,j ´
n

10
. (1)

2Formally stated in Definition 2.1.
3Sometimes also referred to as variable selection.
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In other words, the analyzer’s output should be the index of a domain element that is held by an approximately
maximal number of users. The choice of the constant 10 in (1) is arbitrary; any constant larger than 1 may be used.

The selection problem has been studied in several previous works on differential privacy, and it has many ap-
plications to machine learning, hypothesis testing and approximation algorithms (see [DJW13, SU17, Ull18] and
the references therein). Our work improves an ΩpB1{17q lower bound in the single-message shuffled model due to
Cheu et al. [CSU`19]. For ε “ 1, the exponential mechanism [MT07] implies an pε, 0q-DP algorithm for selection
with n “ OplogBq users in the central model, whereas in the local model, it is known that any pε, 0q-DP algorithm
for selection requires n “ ΩpB logBq users [Ull18]. Variants of the selection problem appear in several natural
statistical tasks such as feature selection and hypothesis testing (see, e.g., [SU17] and the references therein).

Theorem 1.2 (Informal version of Theorem 3.22). For any single-message differentially private protocol in the
shuffled model that solves the selection problem given in Equation (1), the number n of users should be ΩpBq.

The lower bound in Theorem 1.2 nearly matches the OpB logBq upper bound on the required number of users
that holds even in the local model (and hence in the single-message shuffled model) and that uses the B-randomized
response [War65, Ull18]. Cheu et al. [CSU`19] have previously obtained a multi-message protocol for selection
with Op

?
Bq users, and combined with this result Theorem 1.2 yields the first separation between single-message

and multi-message protocols for selection.

Multi-Message Protocols for Frequency Estimation. We next present (non-interactive) multi-message protocols
in the shuffled model of DP for frequency estimation with only polylogarithmic error and communication. This is
in strong contrast with what is possible for any protocol in the single-message shuffled setup where Theorem 1.1
implies that the error has to grow polynomially with minpn,Bq, even with unbounded communication. In addition
to error and communication, a parameter of interest is the query time, which is the time to estimate the frequency of
any element j P rBs from the data structure constructed by the analyzer.

Theorem 1.3 (Informal version of Theorems 4.1 & 4.2). There is a private-coin (resp., public-coin) multi-message
protocol in the shuffled model for frequency estimation with error Õp1q, total communication of Õp1q bits per user,
and query time Õpnq (resp., Õp1q).

Combining Theorems 1.1 and 1.3 yields the first separation between single-message and multi-message protocols
for frequency estimation. Moreover, Theorem 1.3 can be used to obtain multi-message protocols with small error
and small communication for several other widely studied problems (e.g., heavy hitters, range counting, and median
and quantiles estimation), discussed in Section 1.4. Finally, Theorem 1.3 implies the following consequence for
statistical query (SQ) algorithms with respect to a distribution D on X (see Appendix B for the basic definitions).
We say that a non-adaptive SQ algorithmA making at most B queries q : X Ñ t0, 1u is k-sparse if for each x P X ,
the Hamming weight of the output of the queries is at most k. Then, under the assumption that users’ data is drawn
i.i.d. from D, the algorithm A can be efficiently simulated in the shuffled model as follows:

Corollary 1.4 (Informal version of Corollary B.1). For any non-adaptive k-sparse SQ algorithm A with B queries
and β ą 0, there is a (private-coin) shuffled model protocol satisfying pε, δq-DP whose output has total variation dis-
tance at most β from that of A, such that the number of users is n ď Õ

`

k
ετ `

1
τ2

˘

, and the per-user communication

is Õ
´

k2

ε2

¯

, where Õp¨q hides logarithmic factors in B,n, 1{δ, 1{ε, and 1{β.

Corollary 1.4 improves upon the simulation of non-adaptive SQ algorithms in the local model [KLN`08], for
which the number of users must grow as k

ε2τ2
as opposed to 1

τ2
` k

ετ in the shuffled model. We emphasize that
the main novelty of Corollary 1.4 is in the regime that k2{ε2 ! B; in particular, though prior work on low-
communication private summation in the shuffled model [CSU`19, GMPV19, BBGN20] implies an algorithm for
simulating A with roughly the same bound on the number of users n as in Corollary 1.4 and communication ΩpBq,
it was unknown whether the communication could be reduced to have logarithmic dependence on B, as in Corollary
1.4.

3



Local Local + shuffle Shuffled,
single-message

Shuffled,
multi-message Central

Expected max. error Õp
?
nq Ω̃p

?
nq Õpminp 4

?
n,
?
Bqq Ω̃pminp 4

?
n,
?
Bqq Θ̃p1q Θ̃p1q

Communication
per user

Θp1q any
OpBq (err 4

?
n)

Õp1q (err
?
B)

any Θ̃p1q n.a.

References [BNST17] [BS15] [War65, EPK14, BBGN19c] Theorems 3.4 & 3.1 Theorem 4.1 [MT07, SU17]

Table 1: Upper and lower bounds on expected maximum error (over all B queries, where the sum of all frequencies is n)
for frequency estimation in different models of DP. The bounds are stated for fixed, positive privacy parameters ε and δ, and
Θ̃{Õ{Ω̃ asymptotic notation suppresses factors that are polylogarithmic in B and n. The communication per user is in terms of
the total number of bits sent. In all upper bounds, the protocol is symmetric with respect to the users, and no public randomness
is needed. References are to the first results we are aware of that imply the stated bounds.

1.2 Overview of Single-Message Lower Bounds

We start by giving an overview of the lower bound of Ω̃pmintn1{4,
?
Buq in Theorem 1.1 on the error of any single-

message frequency estimation protocol. We first focus on the case where n ď B2 and thus mintn1{4,
?
Bu “ n1{4.

The main component of the proof in this case is a lower bound of Ω̃pn1{4q for frequency estimation for pεL, δLq-local
DP protocols4 when εL “ lnpnq ` Op1q. While lower bounds for local DP frequency estimation were previously
obtained in the seminal works of Bassily and Smith [BS15] and Duchi, Jordan and Wainwright [DJW18], two critical
reasons make them less useful for our purposes: (i) their dependence on εL is sub-optimal when εL “ ωp1q (i.e.,
low error regime) and (ii) they only apply to the case where δL “ 0 (i.e., pure privacy).5 We prove new error bounds
in the low error and approximate privacy regime in order to obtain our essentially tight lower bound in Theorem 1.1
for single-message shuffled protocols. We discuss these and outline the proof next.

Let R be an pεL, δLq-locally differentially private randomizer. The general approach [BS15, DJW18] is to show
that if V is a random variable drawn uniformly at random from rBs and if X is a random variable that is equal to
V with probability parameter α P p0, 1q, and is drawn uniformly at random from rBs otherwise, then the mutual
information between V and the local randomizer output RpXq satisfies

IpV ;RpXqq ď
logB

4n
. (2)

Once (2) is established, the chain rule of mutual information implies that IpV ;RpX1q, . . . , RpXnqq ď
logB

4 , where
X1, . . . , Xn are independent and identically distributed given V . Fano’s inequality [CT91] then implies that the
probability that any analyzer receiving RpX1q, . . . , RpXnq correctly guesses V is at most 1{4; on the other hand,
an Ωpαnq-accurate analyzer must be able to determine V with high probability since its frequency in the dataset
X1, . . . , Xn is roughly αn, greater than the frequency of all other v P rBs. This approach thus yields a lower bound
of Ωpαnq on frequency estimation.

To prove the desired Ω̃pn1{4q lower bound using this approach, it turns out we need a bound of the form

IpV ;RpXqq ď Õpα4neεLq, (3)

where both δL ą 0 and εL “ ωp1q. (We will in fact choose α “ Θ̃pn´3{4q and εL “ lnpnq ` Op1q; as we will
discuss later, (3) is essentially tight in this regime.)

Limitations of Previous Approaches We first state the existing upper bounds on IpV ;RpXqq, which only use the
privacy of the local randomizer. Bassily and Smith [BS15, Claim 5.4] showed an upper bound of IpV ;RpXqq ď

Opε2
Lα

2q with εL “ Op1q and δL “ op1{pn log nqq, which thus satisfies (2) with α “ Θ
´
b

logB
ε2Ln

¯

. For δL “ 0,

4Note that we use the subscripts in εL and δL to distinguish the privacy parameters of the local model from the ε and δ parameters (without
a subscript) of the shuffled model.

5As we discuss in Remark 3.1, generic reductions [CSU`19, BNS18] showing that one can efficiently simulate an approximately differ-
entially private protocol (i.e., with δL ą 0) with a pure differentially private protocol (i.e., with δL “ 0) are insufficient to obtain tight lower
bounds.

4



Duchi et al. [DJW18] generalized this result to the case εL ě 1, proving that6 IpV ;RpXqq ď Opα2e2εLq. Both of
these bounds are weaker than (3) for the above setting of α and εL.

However, proving the mutual information bound in (3) turns out to be impossible if we only use the privacy of the
local randomizers! In fact, the bound can be shown to be false if all we assume about R is that it is pεL, δLq-locally
differentially private for some εL « lnn and δL “ n´Op1q. For instance, it is violated if one takes R to be RRR,
the local randomizer of the B-randomized response [War65]. Consider for example the regime where B ď n ď B2,
and the setting where RRRpvq is equal to v with probability 1 ´ B{n, and is uniformly random over rBs with
the remaining probability of B{n. In this case, the local randomizer RRRp¨q is plnpnq ` Op1q, 0q-differentially
private. A simple calculation shows that IpV ;RRRpXqq “ Θ̃pαq. Whenever α ! 1{

?
n, which is the regime we

have to consider in order to obtain any non-trivial lower bound7 in the single-message shuffled model, it holds that
α " α4n expplnpnqq, thus contradicting (3) (see Remark 3.4). The insight derived from this counterexample is
actually crucial, as we describe in our new technique next.

Mutual Information Bound from Privacy and Accuracy Departing from previous work, we manage to prove the
stronger bound (3) as follows. Inspecting the counterexample based on the B-randomized response outlined above,
we first observe that any analyzer in this case must have error at least Ωp

?
Bq, which is larger than αn, the error that

would be ruled out by the subsequent application of Fano’s inequality! This led us to appeal to accuracy, in addition
to privacy, when proving the mutual information upper bound. We thus leverage the additional available property
that the local randomizer R can be combined with an analyzer A in such a way that the mapping px1, . . . , xnq ÞÑ
ApRpx1q, . . . , Rpxnqq computes the frequencies of elements of every dataset px1, . . . , xnq accurately, i.e., to within
an error of Opαnq. At a high level, our approach for proving the bound in (3) then proceeds by:

(i) Proving a structural property satisfied by the randomizer corresponding to any accurate frequency estimation
protocol. Namely, we show in Lemma 3.15 that if there is an accurate analyzer, the total variation distance
between the output of the local randomizer on any given input, and its output on a uniform input, is close to 1.

(ii) Using the pεL, δLq-DP property of the randomizer along with the structural property in (i) in order to upper-
bound the mutual information IpV ;RpXqq.

We believe that the application of the structural property in (i) to proving bounds of the form (3) is of independent
interest. As we further discuss below, this property is, in particular, used (together with privacy of R) to argue that
for most inputs v P rBs, the local randomizer output Rpvq is unlikely to equal a message that is much less likely
occur when the input is uniformly random than when it is v. Note that it is somewhat counter-intuitive that accuracy
is used in the proof of this fact, as one way to achieve very accurate protocols is to ensure that Rpvq is equal to a
message which is unlikely when the input is any u ‰ v. We now outline the proofs of (i) and (ii) in more detail.

The gist of the proof of (i) is an anti-concentration statement. Let v be a fixed element of rBs and let X be a
random variable uniformly distributed on rBs. Assume that the total variation distance ∆pRpvq, RpXqq is not close
to 1, and that a small fraction of the users have input v while the rest have uniformly random inputs. Let Z denote
the range of the local randomizer R. First, we consider the special case where Z is t0, 1u. Then the distribution of
the shuffled outputs of the users with v as their input is in bijection with a binomial random variable with parameter
p :“ PrRpvq “ 1s, and the same is true for the distribution of the shuffled outputs of the users with uniform random
inputs X (with parameter q :“ PrRpXq “ 1s). Then, we use the anti-concentration properties of binomial random
variables in order to argue that if |p´q| “ ∆pRpvq, RpXqq is too small, then with nontrivial probability the shuffled
outputs of the users with input v will be indistinguishable from the shuffled outputs of the users with uniform random
inputs. This is then used to contradict the supposed accuracy of the analyzer. To deal with the general case where
the range Z is any finite set, we repeatedly apply the data processing inequality for total variation distance in order
to reduce to the binary case (Lemma 3.20). The full proof appears in Lemma 3.15.

Equipped with the property in (i), we now outline the proof of the mutual information bound in (ii). Denote by
• Tv the set of messages much more likely to occur when the input is v than when it is uniform,
• Yv the set of messages less likely to occur when the input is v than when it is uniform.

6This bound is not stated explicitly in [DJW18], though [DJW18, Lemma 7] proves a similar result whose proof can readily be modified
appropriately.

7i.e., any stronger lower bound than what holds even in the local model

5



Note that the union TvYYv is not the entire range Z of messages; in particular, it does not include messages that are
a bit more likely to occur when the input is v than when it is uniform.8 On a high level, it turns out that the mutual
information IpV ;RpXqq will be large, i.e., RpXq will reveal a significant amount of information about V , if either
of the following events occurs:

(a) There are too many inputs v P rBs such that the mass PrRpXq P Yvs is small. Intuitively, for such v, the local
randomizerR fails to “hide” the fact that a uniform inputX is v given thatX indeed equals v andRpXq P Yv.

(b) There are too many inputs v P rBs such that the mass PrRpvq P Tvs is large. Such inputs make it too likely
that X “ v given that RpXq P Tv, which makes it more likely in turn that V “ v.

We first note that the total variation distance ∆pRpvq, RpXqq is upper-bounded by PrRpXq P Yvs. On the other
hand, the accuracy of the protocol along with property (i) imply that ∆pRpvq, RpXqq is close to 1. By putting these
together, we can conclude that event (a) does not occur (see Lemma 3.15 for more details).

To prove that event (b) does not occur, we use the pεL, δLq-DP guarantee of the local randomizer R. Namely,
we will use the inequality PrRpvq P Ss ď eεL ¨ PrRpXq P Ss ` δ for various subsets S of Z . Unfortunately,
setting S “ Tv does not lead to a good enough upper bound on PrRpvq P Tvs; indeed, for the local randomizer
R “ RRR corresponding to the B-ary randomized response, we will have Tv “ tvu for n " B, and so PrRpvq P
Tvs “ 1 ´ B{n « 1 for any v. Thus, to establish (b), we need to additionally use the accuracy of the analyzer A
(i.e., property (i) above), together with a careful double-counting argument to enumerate the probabilities that Rpvq
belongs to subsets of Tv of different granularity (with respect to the likelihood of occurrence under input v versus a
uniform input). For the details, we refer the reader to Section 3.3 and Lemma 3.14.

Having established the above lower bound for locally differentially private estimation in the low-privacy regime,
the final step is to apply a lemma of Cheu et al. [CSU`19] (restated as Lemma 3.5 below), stating that any lower
bound for pε` lnpnq, δq-locally differentially private protocols implies a lower bound for pε, δq-differentially private
protocols in the single-message shuffled model (i.e., we take εL “ ε ` lnpnq). Moreover, for εL “ lnpnq ` Op1q
and α “ Θ̃pn´3{4q, we observe that (3) implies (2), and thus a lower bound of Ω̃pαnq “ Ω̃pn1{4q for frequency
estimation in the single-message shuffled model follows. Finally, we point out that while the above outline focused
on the case where n ď B2, it turns out that this is essentially without loss of generality as the other case where
n ą B2 can be reduced to the former (see Lemma 3.10).

Tightness of Lower Bounds The lower bounds sketched above are nearly tight. The upper bound of Theorem 1.1
follows from combining existing results showing that the single-message shuffled model provides privacy ampli-
fication of locally differentially private protocols [EFM`19, BBGN19c], with known locally differentially private
protocols for frequency estimation [War65, EPK14, DJW18, BBGN19c]. In particular, as recently shown by Balle
et al. [BBGN19c], a pure pεL, 0q-differentially private local randomizer yields a protocol in the shuffled model that

is
ˆ

O

ˆ

eεL
b

logp1{δq
n

˙

, δ

˙

-differentially private and that has the same level of accuracy.9 Then:

• When combined with RAPPOR [EPK14, DJW18], we get an upper bound of Õpn1{4q on the error.
• When combined with the B-randomized response [War65, ASZ19], we get an error upper bound of Õp

?
Bq.

The full details appear in Appendix A. Put together, these imply that the minimum in our lower bound in Theorem 1.1
is tight (up to logarithmic factors). It also follows that the mutual information bound in Equation (3) is tight (up to
logarithmic factors) for εL “ lnpnq ` Op1q and α “ n´3{4 (which is the parameter settings corresponding to the
single-message shuffled model); indeed, a stronger bound in Equation (3) would lead to larger lower bounds in the
single-message shuffled model thereby contradicting the upper bounds discussed in this paragraph.

Lower Bound for Selection: Sharp Bound on Level-1 Weight of Probability Ratio Functions We now outline
the proof of the nearly tight lower bound on the number of users required to solve the selection problem in the

8For clarity of exposition in this overview, we refrain from quantifying the likelihoods in each of these cases; for more details on this, we
refer the reader to Section 3.3.

9Note that we cannot use the earlier amplification by shuffling result of [EFM`19], since it is only stated for εL “ Op1q whereas we need
to amplify a much less private local protocol, having an εL close to lnn.

6



single-message shuffled model (Theorem 1.2). The main component of the proof in this case is a lower bound of
ΩpBq users for selection for pεL, δLq-local DP protocols when εL “ lnpnq `Op1q.

In the case of local pεL, 0q-DP (i.e., pure) protocols, Ullman [Ull18] proved a lower bound n “ Ω
´

B logB
pexppεLq´1q2

¯

.
There are two different reasons why this lower bound is not sufficient for our purposes:

1. It does not rule out DP protocols with δL ą 0 (i.e., approximate protocols), which are necessary to consider
for our application to the shuffled model.

2. For the low privacy setting of εL “ lnpnq ` Op1q, the bound simplifies to n “ Ω̃pB{n2q, i.e., n “ Ω̃pB1{3q,
weaker than what we desire.

To prove our near-optimal lower bound, we remedy both of the aforementioned limitations by allowing positive
values of δL and achieving a better dependence on εL. As in the proof of frequency estimation, we reduce proving
Theorem 1.2 to the task of showing the following mutual information upper bound:

IppL, Jq;RpXL,Jqq ď Õ

ˆ

1

B

˙

`OpδLpB ` nqq, (4)

where L is a uniform random bit, J is a uniform random coordinate in rBs, and XL,J is uniform over the subcube
tx P t0, 1uB : xJ “ Lu. Indeed, once (4) holds and δL ă op1{pBnqq, the chain rule implies that the mutual
information between all users’ messages and the pair pL, Jq is at most O

´

n lnpBq
B

¯

. It follows by Fano’s inequality
that if n “ opBq, no analyzer can determine the pair pL, Jq with high probability (which any protocol for selection
must be able to do).

For any message z in the range of R, define the Boolean function fzpxq :“ PrRpxq“zs
PrRpXL,J q“zs where x P t0, 1uB . Let

W1rf s denote the level-1 Fourier weight of a Boolean function f . To prove inequalities of the form (4), the prior
work of Ullman [Ull18] shows that IppL, Jq;RpXL,Jqq is determined by W1rfzs, up to normalization constants. In
the case where δL “ 0 and εL “ lnpnq `Op1q, fz P r0, eεLs, and by Parseval’s identity W1rfzs ď Ope2εLq for any
message z, leading to

IppL, Jq;RpXL,Jqq ď O

ˆ

e2εL

B

˙

. (5)

Unfortunately, for our choice of εL “ lnpnq `Op1q, (5) is weaker than (4).
To show (4), we depart from the previous approach in the following ways:

(a) We show that the functions fz take values in r0, OpeεLqs for most inputs x; this uses the pεL, δLq-local DP of
the local randomizer R.

(b) Using the Level-1 inequality from the analysis of Boolean functions [O’D14] (see Theorem 3.26 below), we
upper bound W1rgzs by OpεLq, where gz is the truncation of fz defined by gzpxq “ fzpxq if fzpxq ď Opnq,
and gzpxq “ 0 otherwise.

(c) We bound IppL, Jq;RpXL,Jqq by W1rgzs, using the fact fz is sufficiently close to its truncation gz .
The above line of reasoning, formalized in Section 3.5, allows us to show

IppL, Jq;RpXL,Jqq ď O
´εL
B
` δ ¨ pB ` eεLq

¯

,

which is sufficient to establish that (4) holds.
Having proved a lower bound on the error of any pε ` lnn, δq-local DP protocol for selection with ε “ Op1q,

the final step in the proof is to apply a lemma of [CSU`19] to deduce the desired lower bound in the single-message
shuffled model.

1.3 Overview of Multi-Message Protocols

An important consequence of our lower bound in Theorem 1.1 is that one cannot achieve an error of Õp1q using
single-message protocols. This in particular rules out any approach that uses the following natural two-step recipe
for getting a private protocol in the shuffled model with accuracy better than in the local model:

1. Run any known locally differentially private protocol with a setting of parameters that enables high-accuracy
estimation at the analyzer, but exhibits low privacy locally.
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2. Randomly shuffle the messages obtained when each user runs step 1 on their input, and use the privacy
amplification by shuffling bounds [EFM`19, BBGN19c] to improve the privacy guarantees.

Thus, shuffled versions of the B-randomized response [War65, ASZ19], RAPPOR [EPK14, DJW18, ASZ19], the
Bassily–Smith protocol [BS15], TreeHist and Bitstogram [BNST17], and the Hadamard response protocol [ASZ19,
AS19], will still incur an error of Ωpminp 4

?
n,
?
Bqq.

Moreover, although the single-message protocol of Cheu et al. [CSU`19] for binary aggregation (as well as
the multi-message protocols given in [GPV19, BBGN19a, GMPV19, BBGN19b] for the more general task of real-
valued aggregation) can be applied to the one-hot encodings of each user’s input to obtain a multi-message protocol
for frequency estimation with error Õp1q, the communication per user would be ΩpBq bits, which is clearly unde-
sirable.

Recall that the main idea behind (shuffled) randomized response is for each user to send their input with some
probability, and random noise with the remaining probability. Similarly, the main idea behind (shuffled) Hadamard
response is for each user to send a uniformly random index from the support of the Hadamard codeword correspond-
ing to their input with some probability, and a random index from the entire universe with the remaining probability.
In both protocols, the user is sending a message that either depends on their input or is noise; this restriction turns
out to be a significant limitation. Our main insight is that multiple messages allows users to simultaneously send
both types of messages, leading to a sweet spot with exponentially smaller error or communication.

Our protocols. We design a multi-message version of the private-coin Hadamard response of Acharya et al. [ASZ19,
AS19] where each user sends a small subset of indices sampled uniformly at random from the support of the
Hadamard codeword corresponding to their input, and in addition sends a small subset of indices sampled uniformly
at random from the entire universe rBs. To get accurate results it is crucial that a subset of indices is sampled, as
opposed to just a single index (as in the local model protocol of [ASZ19, AS19]). We show that in the regime where
the number of indices sampled from inside the support of the Hadamard codeword and the number of noise indices
sent by each user are both logarithmic, the resulting multi-message algorithm is private in the shuffled model, and it
has polylogarithmic error and communication per user (see Theorem 4.1, Lemmas 4.4, 4.5, and 4.6 for more details).

A limitation of our private-coin algorithm outlined above is that the time for the analyzer to answer a single
query is Õpnq. This might be a drawback in applications where the analyzer is CPU-limited or where it is supposed
to produce real-time answers. In the presence of public randomness, we design an algorithm that remedies this limi-
tation, having error, communication per user, and query time all equal to Õp1q. Furthermore, the frequency estimates
of this algorithm have one-sided error, and never underestimate the frequency of an element. This algorithm is based
on a multi-message version of randomized response combined in a delicate manner with the Count Min data struc-
ture [CM05a] (for more details, see Section 4.2). Previous work [BS15, BNST17] on DP have used Count Sketch
[CCFC02], which is a close variant of Count Min, to go from frequency estimation to heavy hitters. In contrast, our
use of Count Min has the purpose of reducing the amount of communication per user.

1.4 Applications

Heavy Hitters. Another algorithmic task that is closely related to frequency estimation is computing the heavy
hitters in a dataset distributed across n users, where the goal of the analyzer is to (approximately) retrieve the
identities and counts of all elements that appear at least τ times, for a given threshold τ . It is well-known that in
the central DP model, it is possible to compute τ -heavy hitters for any τ “ Θ̃p1q whereas in the local DP model, it
is possible to compute τ -heavy hitters if and only if τ “ Θ̃p

?
nq. By combining with known reductions (e.g., from

Bassily et al. [BNST17]), our multi-message protocols for frequency estimation yield multi-message protocols for
computing the τ -heavy hitters with τ “ Θ̃p1q and total communication of Θ̃p1q bits per user (for more details, see
Appendix D).

Range Counting. In range counting, each of the n users is associated with a point in rBsd and the goal of the
analyzer is to answer arbitrary queries of the form: given a rectangular box in rBsd, how many of the points lie
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in it?10 This is a basic algorithmic primitive that captures an important family of database queries and is useful in
geographic applications. This problem has been well-studied in the central model of DP, where Chan et al. [CSS11]
obtained an upper bound of plogBqOpdq on the error (see Section 1.5 for more related work). It has also been studied
in the local DP model [CKS19]; in this case, the error has to be at least Ωp

?
nq even for d “ 1.

We obtain private protocols for range counting in the multi-message shuffled model with exponentially smaller
error than what is possible in the local model (for a wide range of parameters). Specifically, we give a private-coin
multi-message protocol with plogBqOpdq messages per user each of length Oplog nq bits, error plogBqOpdq, and
query time Õpn logdBq. Moreover, we obtain a public-coin protocol with similar communication and error but with
a much smaller query time of ÕplogdBq (see Section 5 for more details).

We now briefly outline the main ideas behind our multi-message protocols for range counting. We first argue
that even for d “ 2, the total number of queries is ΘpB2q and the number of possible queries to which a user
positively contributes is also ΘpB2q. Thus, direct applications of DP algorithms for aggregation or for frequency
estimation would result in polynomial error and polynomial communication per user. Instead, we combine our
multi-message protocol for frequency estimation (Theorem 1.3) with a communication-efficient implementation, in
the multi-message shuffled model, of the space-partitioning data structure used in the central model protocol of Chan
et al. [CSS11]. The idea is to use a collection B of OpB logdBq d-dimensional rectangles in rBsd (so-called dyadic
intervals) with the property that an arbitrary rectangle can be formed as the disjoint union of OplogdBq rectangles
from B. Furthermore, each point in rBsd is contained in OplogdBq rectangles from B. This means that it suffices to
release a private count of the number of points inside each rectangle in B— a frequency estimation task where each
user input contributes to OplogdBq buckets. To turn this into a protocol with small maximum communication in
the shuffled model, we develop an approach analogous to the matrix mechanism [LHR`10, LM12]. We argue that
the transformation of the aforementioned central model algorithm for range counting into a private protocol in the
multi-message shuffled model with small communication and error is non-trivial and relies on the specific protocol
structure. In fact, the state-of-the-art range counting algorithm of Dwork et al. [DNRR15] in the central model does
not seem to transfer to the shuffled model.

M-Estimation of Median. A very basic statistic of any dataset of real numbers is its median. For simplicity,
suppose our dataset consists of real numbers lying in r0, 1s. It is well-known that there is no DP algorithm for
estimating the value of the median of such a dataset with error op1q (i.e., outputting a real number whose absolute
distance to the true median is op1q) [Vad17, Section 3]. This is because the median of a dataset can be highly
sensitive to a single data point when there are not many individual data points near the median. Thus in the context
of DP, one has to settle for weaker notions of median estimation. One such notion is M-estimation, which amounts to
finding a value x̃ that approximately minimizes

ř

i |xi´ x̃| (recall that the median is the minimizer of this objective).
This notion has been studied in previous work on DP including by [Lei11, DJW18] (for more on related work, see
Section 1.5 below). Our private range counting protocol described above yields a multi-message protocol with
communication Õp1q per user and that M -estimates the median up to error Õp1q, i.e., outputs a value y P r0, 1s
such that

ř

i |xi ´ y| ď minx̃
ř

i |xi ´ x̃| ` Õp1q (see Theorem E.1 in Appendix E). Beyond M -estimation of the
median, our work implies private multi-message protocols for estimating quantiles with Õp1q error and Õp1q bits of
communication per user (see Appendix E for more details).

1.5 Related Work

Shuffled Privacy Model. Following the proposal of the Encode-Shuffle-Analyze architecture by Bittau et al.
[BEM`17], several recent works have sought to formalize the trade-offs in the shuffled model with respect to
standard local and central DP [EFM`19, BBGN19c] as well as devise private schemes in this model for tasks
such as secure aggregation [CSU`19, BBGN19c, GPV19, BBGN19a, GMPV19, BBGN19b]. In particular, for the
task of real aggregation, Balle et al. [BBGN19c] showed that in the single-message shuffled model, the optimal

10We formally define range queries as a special case of counting queries in Section 5.
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error is Θpn1{6q (which is better than the error in the local model which is known to be Θpn1{2q).11 By con-
trast, recent follow-up work gave multi-message protocols for the same task with error and communication of Õp1q
[GPV19, BBGN19a, GMPV19, BBGN19b]12. Our work is largely motivated by the aforementioned body of works
demonstrating the power of the shuffled model, namely, its ability to enable private protocols with lower error than
in the local model while placing less trust in a central server or curator.

Wang et al. [WXD`19] recently designed an extension of the shuffled model and analyzed its trust properties and
privacy-utility tradeoffs. They studied the basic task of frequency estimation, and benchmarked several algorithms,
including one based on single-message shuffling. However, they did not consider improvements through multi-
message protocols, such as the ones we propose in this work. Very recently, Erlingsson et al. [EFM`20] studied
multi-message (“report fragmenting”) protocols for frequency estimation in a practical shuffled model setup. Though
they make use of a sketching technique, like we do, their methods cannot be parameterized to have communication
and error polylogarithmic in n andB (which our Theorem 1.3 achieves). This is a result of using an estimator (based
on computing a mean) that does not yield high-probability guarantees.

Private Frequency Estimation, Heavy Hitters, and Median. Frequency estimation and its extensions (consid-
ered below) has been extensively studied in concrete computational models including data structures, sketching,
streaming, and communication complexity, (e.g., [MG82, CCFC02, EV03, CM05a, CM05b, CH08, MP80, MRL98,
GK`01, GGI`02, YZ13, KLL16]). Heavy hitters and frequency estimation have also been studied extensively in the
standard models of DP, e.g., [War65, HKR12, BS15, BNST17, WBLJ17, BNS18, AS19]. The other problems we
consider in the shuffled model, namely, range counting, M-estimation of the median, and quantiles, have been well-
studied in the literature on data structures and sketching [CY20] as well as in the context of DP in the central and
local models. Dwork and Lei [DL09] initiated work on establishing a connection between DP and robust statistics,
and gave private estimators for several problems including the median, using the paradigm of propose-test-release.
Subsequently, Lei [Lei11] provided an approach in the central DP model for privately releasing a wide class of
M-estimators (including the median) that are statistically consistent. While such M-estimators can also be obtained
indirectly from non-interactive release of the density function [WZ10], the aforementioned approach exhibits an im-
proved rate of convergence. Furthermore, motivated by risk bounds under privacy constraints, Duchi et al. [DJW18]
provided private versions of information-theoretic bounds for minimax risk of M-estimation of the median.

Frequency estimation can be viewed as the problem of distribution estimation in the `8 norm where the distri-
bution to be estimated is the empirical distribution of a dataset px1, . . . , xnq. Some works [YB17, KBR16] have
established tight lower bounds for locally differentially private distribution estimation in the weak privacy setting
with loss instead given by either `1 or `22. However, their techniques proceed by using Assouad’s method [DJW18]
and are quite different from the approach we use for the `8 norm in the proof of Theorem 1.1 (specifically, in the
proof of Theorem 3.3).

We also note that an anti-concentration lemma qualitatively similar to our Lemma 3.15 was used by Chan et
al. [CSS12, Lemma 3] to prove lower bounds on private aggregation, but they operated in a multi-party setting
with communication limited by a sparse communication graph. After the initial release of this paper, Ghazi et
al. [GGK`20] proved a similar anti-concentration lemma to establish a lower bound on private summation for
protocols with short messages. The lemmas in both of these papers do not apply to the more general case of
frequency estimation with an arbitrary number B of buckets, as is the case throughout this paper.

Range Counting. Range counting queries have also been an important subject of study in several areas including
database systems and algorithms (see [Cor11] and the references therein). Early works on differentially private
frequency estimation , e.g., [Dwo06, HLM12], apply naturally to range counting, though the approach of summing
up frequencies yields large errors for queries with large ranges.

11Although the single-message real summation protocol of Balle et al. [BBGN19c] uses the B-ary randomized response, when combined
with their lower bound on single-message protocols, it does not imply any lower bound on single-message frequency estimation protocols.
The reason is that their upper bound doe not use the `8 error bound for the B-ary randomized response as a black box.

12A basic primitive in these protocols is a “split-and-mix” procedure that goes back to the work of Ishai et al. [IKOS06].
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For d “ 1, Dwork et al. [DNPR10] obtained an upper bound of O
´

log2B
ε

¯

and a lower bound of ΩplogBq

for obtaining pε, 0q-DP. Chan et al. [CSS11] extended the analysis to d-dimensional range counting queries in the
central model, for which they obtained an upper bound of roughly plogBqOpdq. Meanwhile, a lower bound of
Muthukrishnan and Nikolov [MN12] showed that for n « B, the error is lower bounded by Ω

`

plog nqd´Op1q
˘

.
Since then, the best-known upper bound on the error for general d-dimensional range counting has been plogB `
logpnqOpdqq{ε [DNRR15], obtained using ideas from [DNPR10, CSS11] along with a k-d tree-like data structure.
We note that for the special case of d “ 1, it is known how to get a much better dependence on B in the central
model, namely, exponential in log˚B [BNS13, BNSV15].

Xiao et al. [XWG10] showed how to obtain private range count queries by using Haar wavelets, while Hay et
al. [HRMS10] formalized the method of maintaining a hierarchical representation of data; the aforementioned two
works were compared and refined by Qardaji et al. [QYL13]. Cormode et al. [CKS19] showed how to translate many
of the previous ideas to the local model of DP. We also note that the matrix mechanism of Li et al. [LHR`10, LM12]
also applies to the problem of range counting queries. An alternate line of work for tackling multi-dimensional
range counting that relied on developing private versions of k-d trees and quadtrees was presented by Cormode et
al. [CPS`12].

Secure Multi-Party Computation. If we allow user interaction in the computation of the queries, then there
is a rich theory, within cryptography, of secure multi-party computation (SMPC) that allows fpx1, . . . , xnq to be
computed without revealing anything about xi except what can be inferred from fpx1, . . . , xnq itself (see, e.g., the
book of Cramer et al. [CDN15]). Kilian et al. [KMSZ08] studied SMPC protocols for heavy hitters, obtaining near-
linear communication complexity with a multi-round protocol. In contrast, all results in this paper are about non-
interactive (single-round) protocols in the shuffled-model (in the multi-message setting, all messages are generated
at once). Though generic SMPC protocols can be turned into differentially private protocols (see, e.g., Section 10.2
in [Vad17] and the references therein), they almost always use multiple rounds, and often have large overheads
compared to the cost of computing fpx1, . . . , xnq in a non-private setting.

1.6 Organization

We start with some notation and background in Section 2. In Section 3, we prove our lower bounds for single-
message protocols in the shuffled model; corresponding upper bounds can be found in Appendix A. In Section 4,
we present and analyze our multi-message protocols for frequency estimation (with missing proofs in Appendix C).
In Section 5, we give our multi-message protocols for range counting. We conclude with some interesting open
questions in Section 6. The proof of Corollary 1.4 is given in Appendix B. The reduction from frequency estimation
to heavy hitters appears in Appendix D. The reduction from range counting to M-estimation of the median and
quantiles is given in Appendix E.

2 Preliminaries

Notation. For any positive integer B, let rBs “ t1, 2, . . . , Bu. For any set Y , we denote by Y˚ the set consisting
of sequences of elements of Y , i.e., Y˚ “

Ť

ně0 Yn. Suppose S is a multiset whose elements are drawn from a set
X . With a slight abuse of notation, we will write S Ă X and for x P X , we write mSpxq to denote the multiplicity
of x in S. For an element x P X and a non-negative integer k, let k ˆ txu denote the multiset with k copies of x
(e.g., 3 ˆ txu “ tx, x, xu). For a positive real number a, we use logpaq to denote the logarithm base 2 of a, and
lnpaq to denote the natural logarithm of a. Let Binpn, pq denote the binomial distribution with parameters n ą 0
and p P p0, 1q.

2.1 Differential Privacy

We now introduce the basics of differential privacy that we will need. Fix a finite set X , the space of reports of
users. A dataset is an element of X ˚, namely a tuple consisting of elements of X . Let histpXq P N|X | be the
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histogram of X: for any x P X , the xth component of histpXq is the number of occurrences of x in the dataset X .
We will consider datasets X,X 1 to be equivalent if they have the same histogram (i.e., the ordering of the elements
x1, . . . , xn does not matter). For a multiset S whose elements are in X , we will also write histpSq to denote the
histogram of S (so that the xth component is the number of copies of x in S).

Let n P N, and consider a dataset X “ px1, . . . , xnq P X n. For an element x P X , let fXpxq “
histpXqx

n be the
frequency of x in X , namely the fraction of elements of X which are equal to x. Two datasets X,X 1 are said to be
neighboring if they differ in a single element, meaning that we can write (up to equivalence)X “ px1, . . . , xn´1, xnq
and X 1 “ px1, . . . , xn´1, x

1
nq. In this case, we write X „ X 1. Let Z be a set; we now define the differential privacy

of a randomized function P : X n Ñ Z:

Definition 2.1 (Differential privacy [DMNS06, DKM`06]). A randomized algorithm P : X n Ñ Z is pε, δq-
differentially private if for every pair of neighboring datasets X „ X 1 and for every set S Ă Z , we have

PrP pXq P Ss ď eε ¨ PrP pX 1q P Ss ` δ,

where the probabilities are taken over the randomness in P . Here, ε ě 0, δ P r0, 1s.

We will use the following compositional property of differential privacy.

Lemma 2.1 (Post-processing, e.g., [DR14a]). If P is pε, δq-differentially private, then for every randomized function
A, the composed function A ˝ P is pε, δq-differentially private.

2.2 Shuffled Model

We briefly review the shuffled model of differential privacy [BEM`17, EFM`19, CSU`19]. The input to the model
is a dataset px1, . . . , xnq P X n, where item xi P X is held by user i. A protocol in the shuffled model is the
composition of three algorithms:
• The local randomizer R : X Ñ Y˚ takes as input the data of one user, xi P X , and outputs a sequence
pyi,1, . . . , yi,miq of messages; here mi is a positive integer.
• The shuffler S : Y˚ Ñ Y˚ takes as input a sequence of elements of Y , say py1, . . . , ymq, and outputs a random

permutation, i.e., the sequence pyπp1q, . . . , yπpmqq, where π P Sm is a uniformly random permutation on rms.
The input to the shuffler will be the concatenation of the outputs of the local randomizers.
• The analyzer A : Y˚ Ñ Z takes as input a sequence of elements of Y (which will be taken to be the output of

the shuffler) and outputs an answer in Z which is taken to be the output of the protocol P .
We will write P “ pR,S,Aq to denote the protocol whose components are given by R, S, and A. The main
distinction between the shuffled and local model is the introduction of the shuffler S between the local randomizer
and the analyzer. Similar to the local model, in the shuffled model the analyzer is untrusted; hence privacy must be
guaranteed with respect to the input to the analyzer, i.e., the output of the shuffler. Formally, we have:

Definition 2.2 (Differential privacy in the shuffled model, [EFM`19, CSU`19]). A protocol P “ pR,S,Aq is
pε, δq-differentially private if, for any dataset X “ px1, . . . , xnq, the algorithm

px1, . . . , xnq ÞÑ SpRpx1q, . . . , Rpxnqq

is pε, δq-differentially private.

Notice that the output of SpRpx1q, . . . , Rpxnqq can be simulated by an algorithm that takes as input the multiset
consisting of the union of the elements of Rpx1q, . . . , Rpxnq (which we denote as

Ť

iRpxiq, with a slight abuse of
notation) and outputs a uniformly random permutation of them. Thus, by Lemma 2.1, it can be assumed without
loss of generality for privacy analyses that the shuffler simply outputs the multiset

Ť

iRpxiq. For the purpose
of analyzing accuracy of the protocol P “ pR,S,Aq, we define its output on the dataset X “ px1, . . . , xnq to
be P pXq :“ ApSpRpx1q, . . . , Rpxnqqq. We also remark that the case of local differential privacy, formalized in
Definition 2.3, is a special case of the shuffled model where the shuffler S is replaced by the identity function.
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Definition 2.3 (Local differential privacy [KLN`08]). A protocol P “ pR,Aq is pε, δq-differentially private in
the local model (or pε, δq-locally differentially private) if the function x ÞÑ Rpxq is pε, δq-differentially private in
the sense of Definition 2.1. We say that the output of the protocol P on an input dataset X “ px1, . . . , xnq is
P pXq :“ ApRpx1q, . . . , Rpxnqq.

3 Single-Message Lower and Upper Bounds

In this section, we prove Theorem 1.1, which determines (up to polylogarithmic factors) the accuracy of frequency
estimation in the single-message shuffled model. Using similar techniques, we also prove Theorem 1.2, which
establishes a tight (up to polylogarithmic factors) lower bound on the number of users required to solve the selection
problem in the single-message shuffled model. Our theorems give tight versions (see Corollary 3.2) of Corollaries 30
and 32 of [CSU`19], which were each off from the respective optimal bounds by a polynomial of degree 17. We
will use the following definition throughout this section:

Definition 3.1 (pα, βq-accuracy). Let Z be a finite set, let B P N, and let ev P t0, 1uB be the binary indicator
vector with pevqj “ 1 if and only if j “ v. We say that a (randomized) protocol P : rBsn Ñ r0, 1sB for frequency
estimation is pα, βq-accurate if for each dataset X “ px1, . . . , xnq P rBs

n, we have that

PP

«

max
jPrBs

ˇ

ˇ

ˇ

ˇ

ˇ

P pXqj ´
1

n

n
ÿ

i“1

pexiqj

ˇ

ˇ

ˇ

ˇ

ˇ

ď α

ff

ě 1´ β.

Often we will either have P “ pR,Aq for a local randomizer R and an analyzer A (corresponding to the local
model) or P “ pR,S,Aq (corresponding to the shuffled model). In such a case, we will slightly abuse notation and
refer to the local randomizer R : rBs Ñ Z as pα, βq-accurate if there exists an analyzer A : Zn Ñ r0, 1sB such
that the corresponding local or shuffled-model protocol is pα, βq-accurate.

Theorem 3.1 establishes lower bounds on the (additive) error of frequency estimation in the single-message
differentially-private shuffled model.

Theorem 3.1 (Lower bound for single-message differentially private frequency estimation). There is a sufficiently
small constant c ą 0 such that the following holds: Suppose n,B P N with n ě 1{c, and 0 ă δ ă c{n. Any
pε, δq-differentially private n-user single-message shuffled model protocol that is pα, 1{4q-accurate satisfies:

α ě

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Ω

ˆ

logB

n log logB

˙

for logB
c log logB ď n ď plog2Bqplog logBq, (“Small-sample”) (6)

Ω

ˆ

1

n3{4 4
?

log n

˙

for plog2Bqplog logBq ď n ď B2

logB , (“Intermediate-sample”) (7)

Ω

˜ ?
B

n
?

logB

¸

for n ą B2

logB . (“Large-sample”) (8)

Note that the lower bound on the additive error α is divided into 3 cases, which we call the small-sample
regime (6), the intermediate-sample regime (7), and the large-sample regime (8). While the division into separate
regimes makes our bounds more technical to state, we point out that this seems necessary in light of the very
different protocols that achieve near-optimality in the various regimes (as discussed in Section 1.2 and Appendix B).
Moreover, the bound for the low-sample regime of Theorem 3.1 is established in Lemma 3.11, while the bounds
for the intermediate-sample and large-sample regimes of Theorem 3.1 are established in Corollary 3.13 and Lemma
3.19, respectively. We note that the proof of the intermediate-sample regime (7) is the most technically involved and
constitutes the bulk of the proof of Theorem 3.1.

Furthermore, we observe that the lower bounds (6), (7), and (8) also hold, up to constant factors, for the expected
error ER

“

maxjPrBs
ˇ

ˇP pXqj ´
1
n

řn
i“1pexiqj

ˇ

ˇ

‰

of P on a dataset X . This follows as an immediate consequence of
Theorem 3.1 and Markov’s inequality.

In the course of proving Theorem 3.1 in the small-sample regime (i.e., (6)), we shall see that the constants can be
chosen in such a way so as to establish Corollary 3.2 below (in particular, Corollary 3.2 follows from Lemma 3.9):
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Corollary 3.2 (Lower bound for constant-error frequency estimation). Let c be the constant of Theorem 3.1. If
P is a p1, δq-differentially private protocol for frequency estimation in the shuffled model with δ ă c{n which is
p1{10, 1{10q-accurate, then n ě Ω

´

logB
log logB

¯

.

Corollary 3.2 improves upon Corollary 32 of [CSU`19], both in the lower bound on the error (which was
Ωplog1{17Bq in [CSU`19]) and on the dependence on δ (which was δ ă Opn´8q in [CSU`19]).

The primary component of the proof of Theorem 3.1 is a lower bound on the additive error of pεL, δLq-locally
differentially private protocols P “ pR,Aq, when both εL " 1 (the low-privacy setting) and δL ą 0 simultaneously
hold (see Lemma 3.5). In particular, we prove the following:

Theorem 3.3 (Lower bound for locally differentially private frequency estimation). There is a sufficiently small
constant c ą 0 such that the following holds. Suppose n,B P N with n ě 1{c, and that εL, δL ą 0 with
δL ă cmint1{pn log nq, expp´εLqu. Any pεL, δLq-locally differentially private protocol that is pα, 1{4q-accurate
satisfies:

α ě

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Ω

ˆ

lnB

nεL

˙

for n ě lnB
cεL

, (“Small-sample”) (9)

Ω̃

ˆ

1
?
n ¨ exppεL{4q

˙

for n ě plnBq exppεL{2q
and 2

3 ¨lnpnq ď εL`lnp1`εLq`
1
c ď 2 lnpBq, (“Intermediate-sample”) (10)

Ω̃

ˆ

1

n2{3

˙

for ln3{2
pBq ď n ď B3 and εL ď 2

3 ¨ lnpnq, (“Intermediate-sample”) (11)

Ω̃

˜?
B

n

¸

for n ě B2 and εL ď 2 lnpBq, (“Large-sample”) (12)

Ω̃

ˆ

B

n

˙

for n ě B3 and εL ď 2 lnpBq. (“Large-sample”) (13)

Again, the lower bound is divided into cases—the bound for low-sample regime of Theorem 3.3 (namely, (9)) is
established in Lemma 3.11, while the bounds for the intermediate-sample (namely, (10) and (11)) and large-sample
(namely, (12) and (13)) regimes are established in Lemma 3.12 and Lemma 3.18, respectively.

It turns out that Theorem 3.1 is tight in each of the three regimes (small-sample, intermediate-sample, and large-
sample), up to polylogarithmic factors in B and n, as shown by Theorem 3.4:

Theorem 3.4 (Upper bound for single-message shuffled DP frequency estimation). Fix B,n P N, δ “ n´Op1q, and
ε ď 1 that satisfies ε “ ωpln2pnq{mint

?
B,
?
nuq. For n P N, there is a shuffled model protocol P “ pR,S,Aq so

that for any X “ px1, . . . , xnq P rBs
n, the frequency estimates P pXq P r0, 1sB produced by P satisfy

E

«

max
jPrBs

ˇ

ˇ

ˇ

ˇ

ˇ

P pXqj ´
1

n

n
ÿ

i“1

pexiqj

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

O

ˆ

logB

n

˙

for n ď ε2 log2B
log3 logB

, (14)

O

˜

ln3{4pnq
?

logB

n3{4
?
ε

¸

for ε2 log2B
log3 logB

ď n ď B2, (15)

O

˜

a

B lnpnq lnpBq

nε

¸

for n ą B2. (16)

The proof of Theorem 3.4 follows by combining existing protocols for locally differentially private frequency
estimation with the privacy amplification result of [BBGN19c]. For completeness, we provide the proof in Ap-
pendix A.

The remainder of this section is organized as follows. In Section 3.1 we collect some tools that will be used in
the proofs of our error lower bounds. In Section 3.2 we establish Theorem 3.1 in the small-sample regime (i.e., (6)).
In Sections 3.3 and 3.4 we establish Theorem 3.1 in the intermediate and large-sample regimes (i.e., (7) and (8).
Finally, in Section 3.5 we show how similar techniques used to prove Theorem 3.1 lead to a tight lower bound on
the selection problem (Theorem 3.22).
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Remark 3.1. Before proceeding with the proof of Theorem 3.3 (and thus Theorem 3.1), we briefly explain why the
approach of [CSU`19], which establishes a weak variant of Theorem 3.3, cannot obtain the tight bounds that we are
able to achieve here. Recall that this approach used:

(i) in a black-box manner, known lower bounds of Bassily and Smith [BS15] and Duchi et al. [DJW18] on the
error of “pure” pεL, 0q-locally differentially private frequency estimation protocols, together with

(ii) a result of Bun et al. [BNS18] stating that by modifying an pεL, δLq-locally differentially private protocol, one
can produce an p8εL, 0q-locally differentially private protocol without significant loss in accuracy.

It seems to be quite challenging to get tight bounds in the single-message shuffled model using this two-step
technique. This is because when εL « lnn, the error lower bounds for pεL, 0q-differentially private frequency
estimation in the local model decay as expp´aεLq for some constant a. Suppose that for some constant C ě 1, one
could show that by modifying any pεL, δLq-locally differentially private protocol one could obtain a pCεL, 0q-locally
differentially private protocol without a large loss in accuracy (for instance, Bun et al. [BNS18] achieves C “ 8.)
Then the resulting error lower bound for shuffled-model protocols would decay as expp´aC lnnq “ n´aC . This
bound will necessarily be off by a polynomial in n unless we can determine the optimal constant C. The proof for
C “ 8 [BNS18, CSU`19] is already quite involved, and in order for this approach to guarantee tight bounds in the
single-message setup, we would need to achieve C “ 1, i.e., turn any pεL, δLq-locally differentially private protocol
into one with δL “ 0 and essentially no increase in εL whatsoever.

3.1 Preliminaries for Lower Bounds

In this section we collect some useful definitions and lemmas. Throughout this section, we will use the following
notational convention:

Definition 3.2 (Notation px,S). For a fixed local randomizer R : X Ñ Z (which will be clear from the context), and
for x P X ,S Ă Z, z P Z , we will write px,S :“ PRrRpxq P Ss and px,z :“ PRrRpxq “ zs, where the probability is
over the randomness of R.

Moreover, we will additionally write Px to denote the distribution on Z given by Rpxq. In particular, the density
of Px at z P Z is px,z .

We say that a local randomizer R : X Ñ Z is pε, δq-differentially private in the n-user shuffled model if the
composed protocol px1, . . . , xnq ÞÑ SpRpx1q, . . . , Rpxnqq is pε, δq-differentially private. Lemma 3.5 establishes
that a protocol R that is pε, δq-differentially private in the shuffled model is in fact pε` lnn, δq-differentially private
in the local model of differential privacy, which means that the function x ÞÑ Rpxq is itself pε`lnn, δq-differentially
private.

Lemma 3.5 (Theorem 6.2, [CSU`19]). Suppose X ,Z are finite sets. If R : X Ñ Z is pε, δq-differentially private
in the n-user single-message shuffled model, then R is pε` lnn, δq-locally differentially private.

(That is, for all x, y P X , and for all S Ă Z , we have

py,S ď px,S ¨ e
εn` δ.

Recall py,S “ PrRpyq P Ss, px,S “ PrRpxq P Ss per Definition 3.2.)

As discussed in Section 1, to prove Theorem 3.1 (as well as Theorem 3.22), we use similar ideas to those in the
the results of [DJW18, BS15] to directly derive a lower bound on the error of locally private frequency estimation
in the low and approximate privacy setting (i.e., for pεL, δLq-locally differentially private protocols with εL « lnn
and δL ą 0). By Lemma 3.5, doing so suffices to derive a lower bound for frequency estimation in the single-
message shuffled model. Our lower bounds for local-model protocols, on their own, may be of independent interest.
The locally private frequency estimation lower bounds of [DJW18, BS15], as well as our proof, rely on Fano’s
inequality, which we recall as Lemma 3.6 below.

For random variables X,Y distributed on a finite set X , let IpX;Y q denote the mutual information between
X,Y . We refer the reader to [CT91] for more background on basic information theory.
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Lemma 3.6 (Fano’s inequality). Suppose Z,Z 1 are jointly distributed random variables on a finite set Z . Then

PrZ “ Z 1s ď
IpZ;Z 1q ` 1

log |Z|
.

Additionally, it will be useful to phrase some of our arguments in terms of the hockey stick divergence between
distributions:

Definition 3.3 (Hockey stick divergence). Suppose D,F are probability distributions on a space X that are abso-
lutely continuous with respect to some measure G on X ; let the densities of D,F with respect to G be given by d, f .
For any ρ ě 1, the hockey stick divergence of order ρ between D,F is defined as:

DρpD||F q :“

ż

X
rdpxq ´ ρ ¨ fpxqs` dGpxq,

where ras` “ maxta, 0u for a P R.

The total variation distance ∆pD,F q between two distributions D,F on a set X is defined as

sup
SĎX

|DpSq ´ F pSq| .

Note that for ρ “ 1 the hockey stick divergence of order ρ is the total variation distance, i.e., D1pD||F q “
D1pF ||Dq “ ∆pD,F q. The following fact is well-known:

Fact 3.7 (Characterization of hockey stick divergence). Using the notation of Definition 3.3, we have:

DρpD||F q “ sup
SPX

pDpSq ´ ρ ¨ F pSqq .

For a boolean function f : t0, 1uB Ñ R, the Fourier transform of f is given by the function f̂pSq :“

Ex„Unifpt0,1uBq

”

fpxq ¨ p´1q
řB
j“1 xj ¨1rjPSs

ı

, where S Ď rBs is any subset. The Fourier weight at degree 1 of such

a function is defined by W1rf s :“
ř

jPrBs f̂ptjuq
2. We refer the reader to [O’D14] for further background on the

Fourier analysis of boolean functions.

3.2 Small-Sample Regime

In this section we establish Theorem 3.1 in the case that n ď log2B (i.e., we prove (6)). As we noted following
Lemma 3.5, we will prove a slightly more general statement, allowing R to be any pε ` lnn, δq-locally differen-
tially private randomizer for some ε ą 0. Similar results are known [DJW18, BS15]; however, the work of [BS15]
only applies to the case that R is pεL, δLq-locally differentially private with εL “ Op1q, and [DJW18] only con-
sider pεL, 0q-locally differentially private protocols. Moreover, their dependence on the privacy parameter εL is not
tight: in particular, for the “small-sample regime” of n ď Oplog2Bq that we consider in this section, the bounds
of [DJW18] decay as e´2εL , whereas we will be able to derive bounds scaling as 1{εL. We will then apply this
bound with εL “ ε ` lnn being the privacy parameter of the locally differentially private protocol furnished by
Lemma 3.5.

The proof of the error lower bound relies on the following Lemma 3.8, which bounds the mutual information
between a uniformly random index V P rBs, and RpV q. It improves upon analogous results in [DJW18, BS15], for
which the dependence on εL is peεL ´ 1q2, when εL is large.

Lemma 3.8 (Mutual information upper bound for small-sample regime). Fix n P N. Let R be an pεL, δLq-
differentially private local randomizer (in the sense of Definition 2.1). Let V „ rBs be chosen uniformly at random.
Then

IpV ;RpV qq ď 2δL ¨ logB ` 1` εL log e.
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Proof. For v P X , following Definition 3.2, let Pv denote the distribution of Rpvq, i.e., the distribution of the output
of the local randomizer when it gets an input of v. Let P̄ :“ 1

B

ř

vPrBs Pv. Notice that the distribution of RpV q,
where V „ rBs is uniform, is Pv. It follows that

IpV ;RpV qq “
1

B

ÿ

vPrBs

ÿ

zPZ
PrRpvq “ zs ¨ log

ˆ

PRrRpvq “ zs

PV„rBs,RrRpV q “ zs

˙

“
1

B

ÿ

vPrBs

KLpPv||P̄ q. (17)

We now upper bound KLpPv||P̄ q for each v P rBs. We first claim that for any v0 P rBs,

pZ„Rpv0q

«

log

˜

pv0,Z
1
B

ř

jPrBs pj,Z

¸

ą 1` εL log e

ff

ď 2δL. (18)

To see that (18) holds, let S :“

"

z P Z :
pv0,z

1
B

ř

jPrBs pj,Z
ą 2eεL

*

. If (18) does not hold, then pv0,S ą 2δL and

pv0,S ą p2e
εLq ¨ 1

B

ř

jPrBs pj,S . On the other hand, we have from pεL, δLq-differential privacy of R that

pv0,S ď

¨

˝

1

B

ÿ

jPrBs

pj,S

˛

‚¨ eεL ` δL.

The above equation is a contradiction in light of the fact that for positive real numbers a, b, a` b ď maxt2a, 2bu.

Notice that for any z P Z, v P rBs, it is the case that log

ˆ

pv,z
1
B

ř

jPrBs pj,z

˙

ď logB. It follows that (18) implies that

KLpPv0 ||P̄ q ď 2δL ¨ logB ` 1` εL log e.

The statement of Lemma 3.8 follows from the above equation and (17).

Lemma 3.9, together with Lemma 3.5, establishes Corollary 3.2: in particular, by Lemma 3.5, any single-
message shuffled-model pε, δq-differentially private protocol P yields a local-model pε` lnn, δq-differentially pri-
vate protocol with the same accuracy. Thus we may set εL “ lnn` ε in Lemma 3.9, so that n ě ΩplogpBq{εLq “
ΩplogpBq{ log nq becomes n ě ΩplogpBq{ log logpBqq). Lemma 3.9 is also used in the proof of (6) of Theorem
3.1. The proof is by a standard application of Fano’s inequality [DJW18, BS15].

Lemma 3.9 (Sample-complexity lower bound for constant-error frequency estimation). Suppose δL ă 1{p4nq, 0 ă
εL ă logpBq{20, and P “ pR,Aq is a local-model protocol that satisfies pεL, δLq-local differential privacy and
p1{3, 1{2q-accuracy. Then n ą logB

20εL
.

Proof. Suppose for the purpose of contradiction that n ď logB
20εL

.
Let D be the distribution on pt0, 1uBqn that is uniform over all tuples pev, ev, . . . , evq, for v P rBs (recall that ev

is the unit vector for component v, i.e., the vector with a 1 in the vth component).
Consider any sample X “ px1, . . . , xnq in the support of D, so that x1 “ ¨ ¨ ¨ “ xn “ ev for some v P rBs. If

the error maxjPrBs
ˇ

ˇP pXqj ´
1
n

řn
i“1pexiqj

ˇ

ˇ is strictly less than 1{2, then the function

fpx̂1, . . . , x̂jq :“ arg max
jPrBs

x̂j
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will satisfy fpx̂1, . . . , x̂jq “ v. It follows that

PX„D,R

«

max
jPrBs

ˇ

ˇ

ˇ

ˇ

ˇ

x̂j ´
1

n

n
ÿ

i“1

pexiqj

ˇ

ˇ

ˇ

ˇ

ˇ

ă 1{2

ff

ď PX„D,R rfpApRpx1q, . . . , Rpxnqqq “ V s

ď
IpfpApRpx1q, . . . , Rpxnqqq;V q ` 1

logB
(19)

ď
IppRpx1q, . . . , Rpxnqq;V q ` 1

logB

ď
n ¨ IpRpV q;V q ` 1

logB
(20)

ď
n ¨ p2δL logB ` 1` εL log eq ` 1

logB
(21)

ď 2δLn`
5nεL
logB

(22)

ă 1{2 (23)

where (19) follows by Fano’s inequality and the random variable V is so that x1 “ ¨ ¨ ¨ “ xn “ eV and V is uniform
over rBs). Moreover, (21) follows from Lemma 3.8 (and the fact that V is uniform over rBs), (20) follows from the
chain rule for mutual information, and (22), (23) follow from our assumptions on n,B, δL, εL. We now arrive at the
desired contradiction to the p1{3, 1{2q-accuracy of P .

The next lemma is an adaptation to the local model of a standard result [SU16, Fact 2.3], stating that the optimal
error of a differentially private frequency estimation protocol decays at most inverse linearly in the number of users n.

Lemma 3.10 (Inverse-linear dependence of error on n). Suppose P “ pR,Aq is an pεL, δLq-locally differentially
private algorithm (Definition 2.3) for n-user frequency estimation on rBs that satisfies pα, βq-accuracy.

Let n ě n1 ě t2αn{cu for any c ď 2αn. Then there is an pεL, δLq-differentially private protocol P 1 “ pR1, A1q
for n1-user frequency estimation on rBs that satisfies pc, βq-accuracy.

Proof. The algorithm P 1 is given as follows: we have R1 “ R. The analyzer A1, on input pz1, . . . , zn1q P Zn
1

,
generates n ´ n1 i.i.d. copies of Rpe1q, which we denote by zn1`1, . . . , zn. (Recall e1 “ p1, 0, . . . , 0q.) Then
A1 computes the vector v :“ Apz1, . . . , znq P r0, 1s

B , and outputs v1, where v1j “
n
n1 ¨ vj for j ą 1, and v11 “

n
n1 ¨

´

v1 ´
n´n1

n

¯

.

To see that P 1 satisfies pc, βq accuracy, let’s fix any input dataset X “ px1, . . . , xn1q. Let xj “ 1 for j ą n1,
and set X 1 “ px1, . . . , xn1 , xn1`1, . . . , xnq. The pα, βq-accuracy of P gives that with probability at least 1 ´ β,
maxjPrBs

ˇ

ˇP pX 1qj ´
1
n

řn
i“1pxiqj

ˇ

ˇ ď α. In such an event, we have that

max
jPrBs

ˇ

ˇ

ˇ

ˇ

ˇ

n1v1j
n
´

1

n

n1
ÿ

i“1

pxiqj

ˇ

ˇ

ˇ

ˇ

ˇ

ď α.

Multiplying the above by n{n1 and noting that n{n1 ď c{α gives that P 1 satisfies pc, βq-accuracy.

A technique similar to the one used in Lemma 3.10 can be used to show that the dependence of the error on ε
must be Ωp1{εq in the central model [SU16, Fact 2.3]. However, doing so requires each user’s input to be duplicated
a total of Θp1{εq times, and it is not clear how to implement such a transformation in the local model. (In the
multi-message shuffled model, though, such a transformation can be done and one would recover the Ωp1{εq lower
bound.)

Finally we may establish (6); for ease of the reader we state it as a separate lemma:
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Lemma 3.11 (Proof of Theorems 3.1 and 3.3 in small-sample regime; i.e., (6) & (9)). There is a sufficiently small
positive constant c so that the following holds. Suppose n,B P N and εL, δL ě 0 with n ě logB{pεLcq, 0 ă
δL ă c{n, and 0 ď εL ď logB. Then there is no protocol for n-user frequency estimation on rBs that satisfies
pεL, δLq-local differential privacy and

´

c logB
nεL

, 1{2
¯

-accuracy.

For n ě logB
c log logB , δ ă c{n, ε ď log n, there is no protocol for n-user frequency estimation on rBs that satisfies

pε, δq-differential privacy in the single-message shuffled model and
´

c logB
n log logB , 1{2

¯

-accuracy.

Proof. Suppose that the statement of the lemma did not hold for some protocol P . By Lemma 3.10 with α “ c logB
nεL

and n1 “
Y

8c logB
εL

]

there is an pεL, δLq-locally differentially private protocol P 1 “ pR1, A1q for n1-user frequency
estimation that is p1{4, 1{2q-accurate. As long as c ă 1{160 we have a contradiction by Lemma 3.9.

The second statement of the lemma follows by applying Lemma 3.5 and taking εL “ ε` lnn.

3.3 Intermediate-Sample and Large-Sample Regimes

In this section we prove Theorem 3.1 in the intermediate and large-sample regimes (i.e., (7) and (8)), which is the
most technical part of the proof of Theorem 3.1. As we did in the small-sample regime, we in fact prove a more
general statement giving a lower bound on the accuracy of all locally differentially private protocols in the low and
approximate-privacy setting:

Lemma 3.12 (Proof of Theorem 3.3 in the intermediate-sample regime; i.e., (10) & (11)). There is a sufficiently
small positive constant c such that the following holds. Suppose lnB ą 1{c56,

1

c
`max

"

lnn

3
,
εL ` lnp1` εLq

2

*

ď lnB ď min

#

n2{3,
n

a

exppεLqp1` εLq

+

, (24)

and

δL ď min

$

&

%

e´εL ,
1

2 4

b

n2pln2Bq exppεLqp1` εLq
,

1

2pln1{3Bqn2{3

,

.

-

. (25)

Then there is no protocol for n-user frequency estimation that is pεL, δLq-locally differentially private and
pα, 1{4q-accurate for

α “ c ¨min

#

1
4
a

n2 exppεLqp1` εLq
,
ln1{7B

n2{3

+

.

Remark 3.2. The term ln1{7B in the definition of α above can be replaced by lnζ B for any constant ζ ă 1{6.
Moreover, the requirement that lnB is greater than the (very large) constant 1{c56 can easily be reduced to 1{c6

(with no change in c) by replacing this term ln1{7B with 1.

By Lemma 3.5 the following is a corollary of Lemma 3.12, establishing Theorem 3.1 in the intermediate-sample
regime:

Corollary 3.13 (Proof of Theorem 3.1 in intermediate-sample regime; i.e., (7)). For a sufficiently small positive
constant c ă 1, if logB ě 1{c,

1

c
¨ log2B ¨ log logB ď n ď

cB2

logB
, (26)

δ ď c{n and ε ď 1, there is no protocol for n-user frequency estimation in the single-message shuffled model that is
pε, δq-differentially private and

´

c
n3{4 4

?
logn

, 1{4
¯

-accurate.
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Remark 3.3. Notice that the bounds on n in the inequality (7) do not involve c, unlike those in (26). To ensure
that (7) holds for log2B

c log logB ě n ě plog2Bqplog logBq, note that (6) holds for all n ě logB
c log logB (Lemma 3.11) and

increase the constant in the Ωp¨q in (7) by a factor of at most 1{c. To ensure that (7) holds for cB2

logB ď n ď B2

logB ,
we use the reduction to locally differentially private protocols given by Lemma 3.5, and then note that a locally
differentially private protocol which is pα, βq-accurate for n1 users implies a locally differentially private protocol
with the same privacy parameters and which is pαn1{n, βq-accurate for n ď n1 users by simulating the presence of
n1 ´ n fake users who hold a fixed and known item. (This latter reduction also requires increasing the constant in
the Ωp¨q in (7) by a factor of at most 1{c.)

Finally we note that similar reductions hold for the proof of Theorem 3.3 using Lemma 3.12 as well.

Proof of Corollary 3.13. By Lemma 3.5, it suffices to show that there is no protocol for n-user frequency estima-
tion in the local model that is p1 ` lnn, δq-differentially private and

´

c
n3{4 4

?
logn

, 1{4
¯

-accurate. We now apply
Lemma 3.12 with εL “ 1 ` lnn and δL “ δ. The left-hand side of (24) holds (though perhaps with a differ-
ent constant c than the one used here) since n ď cB2

logB and c ă 1, and the right-hand side of (24) holds since
cn ě log2B ¨ log logB (as long as c is sufficiently small). Moreover, (25) holds as long as

δ ď
1

2 ¨ penq3{4 ¨ p1` lnpenqq1{4 ¨ plog1{2Bq
,

which is guaranteed by δ ď c{n and cn ě log2B log logB for sufficiently small c. As 1
4
?
n2 exppεLqp1`εLq

ă n´2{3

for our choice of εL, Lemma 3.12 now yields the desired result.

The hard distribution used to prove Theorem 3.1 in the small-sample regime set each user’s data Xi P rBs to be
equal to some fixed V P rBs (Lemma 3.9). At a high level, to prove Lemma 3.12, we must adapt this argument to
allow us to gain a more fine-grained control over the accuracy of protocols. We do so using the same distribution as
in previous works [DJW18, BS15]: in particular, each user’s Xi is now only equal to V with some small probability
(which is roughly the target accuracy α) and otherwise is uniformly random. Formally, we make the following
definition: For each v P rBs and γ P p0, 1q, define a distribution of X P rBs, denoted by X „ Dv,γ , as

X “

#

v w.p. γ
UnifprBsq w.p. 1´ γ,

where UnifprBsq denotes the uniform distribution on rBs. Let D̄γ denote the joint distribution of pV,Xq, where
V „ UnifprBsq and X „ DV,γ . (Note that the marginal distribution of X under D̄γ is the mixture distribution
DV,γ “

1
B

ř

vPrBsDv,γ , which is just the uniform distribution on rBs.) Analogously to Lemma 3.8, we wish to
derive an upper bound on IpV ;RpXqq when pV,Xq „ D̄γ . It is known that if R is pεL, δLq-differentially private
and εL “ Op1q, then IpV ;RpXqq ď Opγ2ε2

L ` ÕpδL{pεLγqqq [BS15], and that for any εL ě 0, if R is pεL, 0q-
differentially private, then IpV ;RpXqq ď Opγ2peεL ´ 1q2q [DJW18].

Remark 3.4. Suppose we attempt to prove Lemma 3.12 following this strategy, at least when 1
4
?
n2 exppεLqp1`εLq

ă

n´2{3, which is the regime we encounter for single-message shuffled-model protocols. To do so, it is natural to
try to improve the upper bound of Duchi et al. [DJW18] of IpV ;RpXqq ď Opγ2 expp2εLqq to IpV ;RpXqq ď
Õpγ2 exppεL{2qq, which turns out to be sufficient to establish Lemma 3.12. However, this is actually false, as
can be seen by the local randomizer RRR : rBs Ñ rBs of B-randomized response [War65] (see also Appendix
A). In particular, suppose we take εL “ plnnq ` Op1q, n ą 10B, and γ ! expp´εL{2q “ Θp

a

1{nq; it is in
fact necessary to treat these settings of the parameters to prove (7). For these parameters it is easy to check that
IpV ;RRRpXqq “ Θpγ logBq " γ2 ¨ exppεL{2q. Thus it may seem that one cannot derive tight bounds by upper
bounding IpV ;RpXqq when pV,Xq „ D̄γ .

It is, however, possible to salvage the technique outlined in Remark 3.4: the crucial observation is that the
best-possible additive error of any single-message shuffled-model protocol where each user uses RRR is Θ̃p

?
B{nq.
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When ε “ Op1q ` lnn (as we will have when applying Lemma 3.5), it is the case that
?
B{n ą 1

4
?
n2 exppεLqp1`εLq

when n ă ÕpB2q. Therefore, there is still hope to prove a lower bound of Ω̃

ˆ

1
4
?
n2 exppεLqp1`εLq

˙

on the additive

error when ε “ Op1q ` lnn and n ď ÕpB2q if we additionally assume that the additive error of any local-model
protocol using R is bounded above by 1

4
?
n2 exppεLqp1`εLq

. This is indeed what we manage to do in Lemma 3.14

below:

Lemma 3.14 (Mutual information upper bound for intermediate-sample regime). There is a sufficiently large pos-
itive constant C such that the following holds. Suppose n, α, β, γ, δ, ε ě 0, pV,Xq „ D̄γ and R : rBs Ñ Z is
an pα, 1{4q-accurate local randomizer with C maxt1{n, 1{

?
nBu ď α ď γ, and Cα2n ď 1 which is pεL, δLq-

differentially private for n-user frequency estimation in the local model with δL ď min
!

γ
logB , e

´εL
)

. Then

IpV ;RpXqq ď C ¨
`

γ2α2neεL ¨ p1` εLq ` γα
2n` γ2

˘

. (27)

Typically the term γ2α2neεLp1 ` εLq is the dominating one on the right-hand side of (27). In particular, in the
application of Lemma 3.14 to establish (7), we will have γ “ Θ̃pn´3{4q, α “ Θ̃pn´3{4q and εL “ lnpnq `Op1q, so
that γ2α2neεLp1` εLq “ Θ̃p1{nq, whereas γα2n “ Θ̃pn´5{4q and γ2 “ Θ̃pn´3{2q.

Remark 3.5. The statement of Lemma 3.14 still holds if R is only assumed to be pα, βq-accurate for any constant
β ă 1{2.

We postpone the proof of Lemma 3.14 for now and assuming it, prove Lemma 3.12.

Proof of Lemma 3.12. Let a “ 200 and c ă 1 be a sufficiently small positive constant, to be specified later. Let

α “ min

"

c
4
?
n2 exppεLqp1`εLq

, c ln1{7B
n2{3

*

be the desired error lower bound. Set γ :“ min
!

α ¨ a
?

lnB{c, 1{3
)

. We

make the following observations about γ:
1. γ ă 1{2 is clear from definition of γ.
2. γ2 ¨ nB ě a2 lnB. This is clear if γ ě 1{3 by choosing c small enough (recall lnB ą 1{c3). Otherwise, note

that γ2 ¨ nB ě min

"

a2B lnB?
exppεLqp1`εLq

, a
2B lnB
n1{3

*

ě a2 lnB since max
 

eεLp1` εLq, n
2{3

(

ď B2.

3. γn ě a lnB. Again this is clear if γ ě 1{3. Otherwise, γn ě min

"

a
?
n lnB

4
?

exppεLqp1`εLq
, a
?

lnBn1{3

*

ě a lnB

since min

"

n2{3, n?
exppεLqp1`εLq

*

ě lnB.

Suppose that P “ pR,Aq is a single-message shuffled model protocol which is pα, 1{4q-accurate and pεL, δLq-
differentially private where εL, δL satisfy (24) and (25). Now suppose V „ rBs uniformly and X1, . . . , Xn „ DV,γ

are independent (conditioned on V ).
Fix an arbitrary v P rBs, and let us momentarily condition on the event that V “ v. Consider the conditional

distribution of X1, . . . , Xn „ Dv,γ . For any u ‰ v, we have, by the Chernoff bound, in the case that γ{3 ď 1{B,

P

«

1

n

n
ÿ

i“1

peXiqu ě 1{B ` γ{3

ff

ď exp

ˆ

´
pγBq2 ¨ n{B

27

˙

“ expp´γ2Bn{27q ď expp´a2 lnB{27q. (28)

In the case that γ{3 ą 1{B, again by the Chernoff bound, we have

P

«

1

n

n
ÿ

i“1

peXiqu ě 1{B ` γ{3

ff

ď exp

ˆ

´
pγBq ¨ n{B

9

˙

“ expp´γn{9q “ expp´a
?

lnBn1{4{9q ď expp´a lnB{9q.

(29)
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Next, note that by definition of the distribution DV,γ , we have that for each 1 ď i ď n, ErpeXiqvs “
1´γ
B ` γ. It

then follows by the Chernoff bound that

P

«

1

n

n
ÿ

i“1

peXiqv ď p1´ γq{B ` 2γ{3

ff

ď expp´a2p1´ γq lnB{72q ` expp´γn{72q

ď expp´a2 lnB{144q ` expp´a lnB{72q. (30)

Since 1{B ` γ{3 ă p1´ γq{B ` 2γ{3 and P “ pR,Aq is pγ{3, 1{3q-accurate (as γ{3 ě α), it follows by a union
bound over all u P rBs in (28), (29) and (30) that with probability at least

1´ 1{3´ expp´a{9q ´ 2 expp´a lnB{72q, (31)

we have that
arg max

uPrBs
P ppX1, . . . , Xnqq “ arg max

uPrBs
ApRpX1q, . . . , RpXnqqu “ v.

Moreover, by our choice of a “ 200, we ensure that the probability in (31) is strictly greater than 1{4. For such a,
using the fact that v P rBs is arbitrary, we have shown that

P
„

arg max
uPrBs

tApRpX1q, . . . , RpXnqquu “ V



ą 1{4. (32)

Now we will apply Lemma 3.14 to derive an upper bound on the probability in the above equation. First we
check that the conditions of Lemma 3.14 are met. By (24) and lnB ě 1{c3 we have that

pαnq2 ě min

#

c2n2{3,
c2n

a

exppεLqp1` εLq

+

ě c2 lnB ě 1{c, (33)

so by choosing c small enough, we can guarantee that α ě C{n, where C is the constant of Lemma 3.14. Similarly,
by (24), we have that

α2nB ě min

#

c2B{n1{3,
c2B

a

exppεLqp1` εLq

+

ě c2 expp1{cq, (34)

and again by choosing c small enough, we can guarantee that α ě C{
?
nB, where C is the constant of Lemma 3.14.

The choice of γ ensures that γ ě α, and Cα2n “ min

"

Cc2?
exppεLqp1`εLq

, Cc
2 ln2{7B
n1{3

*

ď Cc2, which can be

made less than 1 by choosing c sufficiently small. Finally, δL ď min
 

e´εL , γ
2 lnB

(

ď min
!

e´εL , γ
logB

)

by (25).

Therefore, by Fano’s inequality and Lemma 3.14, for any function f : r0, 1sB Ñ rBs,

PrfpApRpX1q, . . . , RpXnqqq “ V s ď
IpV ; pRpX1q, . . . , RpXnqqq ` 1

lnB

ď

řn
i“1 IpV ;RpXiqq ` 1

lnB

ď
1` n ¨

`

C ¨
`

γ2α2neεL ¨ p1` εLq ` γα
2n` γ2

˘˘

lnB

ď
1` nC ¨

`

γ2α2neεL ¨ p1` εLq `
2a
c2
¨ γα2n

˘

lnB
(35)

ď
1` Cc lnB

lnB
. (36)

Inequality (35) follows since
γ2

γα2n
ď
αa
?

lnB{c

α2n
ď
a

c
¨

?
lnB

αn
ď

a

c2
,
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where we have used inequality (33). Inequality (36) follows since, by choice of α,

max
!

γ2α2n exppεLqp1` εLq,
a

c2
¨ γα2n

)

ď max

#

c2a2plnBqn exppεLqp1` εLq

n2 exppεLqp1` εLq
,
a2pln13{14Bq ¨ n

cn2

+

ď
c lnB

n
, (37)

where (37) follows from lnB ą 1{c56 ą pa2{c2q14 and a choice of c ă 1{a2.
As long as c ă 1{p10Cq, the expression in (36) is bounded above by 1/4, which contradicts (32).

We now prove Lemma 3.14. The proof uses the assumption that the local randomizer R is pα, 1{4q-accurate
(Definition 3.1) to derive, for each v P rBs, a lower bound on the total variation distance between the distributions
of Rpvq and RpV q, where V „ UnifprBsq. Intuitively, it makes sense that if, for some v P rBs, the distribution of
Rpvq is close to RpV q, then no analyzer can reliably compute how many users hold the item v. However, showing
rigorously that this holds for any analyzer A is nontrivial, and we state this result as a separate lemma:

Lemma 3.15 (Lower bound on total variation distance between Rpvq & RpV q). Suppose R : rBs Ñ Z is an
pα{6, βq-accurate local randomizer such that

max

#

3B logp4{p1´ 2βqq

n
,

c

3B logp4{p1´ 2βqq

n

+

ď
αB

4
. (38)

Let the distribution of Rpvq be denoted Pv (Definition 3.2) and the distribution of RpV q, where V „ UnifprBsq be
denoted Q. Then there is some C “ Θ

´

1
p1´2βq2

¯

, such that for each v P rBs, ∆pPv, Qq ě 1´ Cα2n.

A result similar to Lemma 3.15 was established in [CSS12]; however, their result only establishes a lower bound
on ∆pPv, Puq for u ‰ v, which does not lead to tight bounds on ∆pPv, Qq, as we need. The proof of Lemma 3.15
is provided in Section 3.4.

Proof of Lemma 3.14. Fix a local randomizer R : rBs Ñ Z satisfying the requirements of the lemma statement.
Recall (per Definition 3.2) that for v P rBs, we use Pv to denote the distribution of Rpvq, and that pv,¨ denotes
the density of Pv, so that for each z P Z , pv,z “ PRrRpvq “ zs. For v P rBs, additionally let Pv,γ denote the
distribution of RpXq when X „ Dv,γ , and let Q denote the distribution of RpXq when pX,V q „ D̄γ . Note that Q
is the distribution of RpXq when X „ UnifprBsq, so indeed does not depend on γ. First note (see (17)) that

IpV ;RpXqq “
1

B

ÿ

vPrBs

KLpPv,γ ||Qq.

For each S Ă Z and z P Z , write qS :“ PrZ P Ss and qz :“ PrZ “ zs, where Z „ Q. Notice that for each z P Z ,
we have pv,z ď B ¨ qz since qv,z “ 1

B

ř

vPrBs pv,z .
Next, for each h ě 0 and v P rBs, set

Uv,h :“

"

z P Z :
pv,z
qz

“ h

*

.

Let ρv be the (Borel) probability measure on R given by, for S Ă R,

ρvpSq :“
ÿ

hě0

pv,Uv,hδhpSq,

where the sum is well-defined since only finitely many h are such that Uv,h is nonempty. (Here δh is the measure
such that δhpSq “ 1 if h P S, and otherwise δhpSq “ 0.) Since

ř

zPZ pv,z “
ř

hě0 pv,Uv,h “ 1, ρv is indeed a
probability measure.
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Next notice that

KLpPv,γ ||Qq “
ÿ

zPZ
pγpv,z ` p1´ γqqzq ¨ log

ˆ

1` γ

ˆ

pv,z
qz
´ 1

˙˙

ď
ÿ

z:pv,zěqz

pv,z

ˆ

1

pv,z{qz
` γ

ˆ

1´
1

pv,z{qz

˙˙

¨ log

ˆ

1` γ ¨
pv,z
qz

˙

`
ÿ

z:pv,zăqz

pγpv,z ` p1´ γqqzq ¨ log

ˆ

1` γ

ˆ

pv,z
qz
´ 1

˙˙

“

ż B

h“1

ˆ

1

h
` γ

ˆ

1´
1

h

˙˙

logp1` γhqdρvphq

`
ÿ

zPYhă1Uv,h

pγpv,z ` p1´ γqqzq ¨ log

ˆ

1` γ

ˆ

pv,z
qz
´ 1

˙˙

. (39)

We begin by working towards an upper bound on the first term in the above expression (39), corresponding to
values h ě 1. Our first goal is to show that for h " 1, pv,Uv,h is small for most v. To do so, define, for any λ ě 1,

Tv,λ :“

"

z P Z :
pv,z
qz

ě λ

*

“
ď

hěλ

Uv,h.

We next make the following claim:

Claim 3.16. For any v P rBs, for each z P Tv,λ, there are at most B{λ values of v1 P rBs such that z P Tv1,λ.

Claim 3.16 is a simple consequence of Markov’s inequality on the distribution of the random variable pv,z , where
v „ rBs uniformly.

Next, consider any z P Z such that there is some u P rBs with z P Tu,λ; let the set of such z be denoted byWλ,
i.e., Wλ “

Ť

u Tu,λ. By Claim 3.16, for each z P Wλ, there are at most B{λ values u P rBs such that z P Tu,λ.
Let the set of such values be denoted by Sz Ă rBs, and construct an ordering of those u P Sz so that pu,z are
in decreasing order with respect to this ordering. Now, for a fixed λ and for each u P rBs, and 1 ď k ď B{λ,
construct a subset T̃ pkqu,λ Ă Tu,λ such that each z P Wλ appears in at most one set T̃ pkqu,λ (over all u P rBs), and such
a u is the kth element of Sz with respect to the ordering above (if it exists). It is an immediate consequence of this
construction that for each fixed k, the sets T̃ pkqu,λ , u P rBs, are pairwise disjoint. Moreover, for each fixed u, the sets

T̃ pkqu,λ , 1 ď k ď B{λ are pairwise disjoint, and their union is Tu,λ. It follows that

B{λ
ÿ

k“1

ÿ

uPrBs

p
u,T̃ pkqu,λ

“
ÿ

zPZ

B{λ
ÿ

k“1

ÿ

u:zPT̃ pkqu,λ

pu,z “
ÿ

zPZ

ÿ

u:zPTu,λ

pu,z “
ÿ

uPrBs

pu,Tu,λ .

From pεL, δLq-differential privacy of R we have that

max
SĂZ

tpu,S ´ e
εL ¨ pv,Su ď δL. (40)

By Fact 3.7 and the fact that the sets T̃ p1qu,λ , . . . , T̃
pB{λq
u,λ are pairwise disjoint for any u P rBs, we have that for all

u, v P rBs,
B{λ
ÿ

k“1

ÿ

zPT̃ pkqu,λ

rpu,z ´ e
εL ¨ pv,zs` ď δL. (41)

Averaging (40) over v P rBs gives that maxSĂZtpu,S ´ e
εLqSu ď δL. Fact 3.7 then gives

B{λ
ÿ

k“1

ÿ

zPT̃ pkqu,λ

rpu,z ´ e
εLqzs` ď δL. (42)
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By (41) and (42), we have that, for all u, v P rBs,

eεL ¨

B{λ
ÿ

k“1

ÿ

zPT̃ pkqu,λ

mintpv,z, qzu ě pu,Tu,λ ´ 2δL. (43)

For each v P rBs and 1 ď k ď B{λ,

1´∆pPv, Qq ě
ÿ

zPZ
mintpv,z, qzu ě

ÿ

uPrBs

ÿ

zPT̃ pkqu,λ

mintpv,z, qzu.

Averaging over k and using (43), it follows that for any v P rBs,

1´∆pPv, Qq ě
λ

B

B{λ
ÿ

k“1

ÿ

uPrBs

ÿ

zPT̃ pkqu,λ

mintpv,z, qzu

ě
λ

B

ÿ

uPrBs

pu,Tu,λ ´ 2δL

eεL

ě

¨

˝

λ

eεLB

ÿ

uPrBs

pu,Tu,λ

˛

‚´
2δLλ

eεL
.

By Lemma 3.15 and the pα, 1{4q-accuracy of R, together with the fact that

α{4 ě max

#

3 logp4{p1´ 2 ¨ 1{4qq

n
,

c

3 logp4{p1´ 2 ¨ 1{4qq

nB

+

as long as the constant C is chosen large enough (recall the assumption α ě C maxt1{n, 1{
?
nBu), we have that,

perhaps by making C even larger, 1´∆pPv, Qq ď Cα2n. In particular, it follows that

1

B

ÿ

uPrBs

pu,Tu,λ ď
eεL

λ
¨

ˆ

Cα2n`
2δLλ

eεL

˙

“
Cα2neεL

λ
` 2δL. (44)

Using the inequality logp1`γhq ď γh, we can now upper bound the first term in (39), when averaged over v P rBs,
as follows:

1

B

ÿ

vPrBs

ż B

h“1

ˆ

1

h
` γ

ˆ

1´
1

h

˙˙

logp1` γhqdρvphq

ď γ `
1

B

ÿ

vPrBs

ż 2 exppεLq

h“1
γ logp1` γhqdρvphq `

1

B

ÿ

vPrBs

ż B

h“2 exppεLq
γ logp1` γhqdρvphq

ď γ ` γ2

ż 2 exppεLq

h“1
h ¨

¨

˝

1

B

ÿ

vPrBs

dρvphq

˛

‚` γ logB

ż B

h“2 exppεLq

¨

˝

1

B

ÿ

vPrBs

dρvphq

˛

‚. (45)

(In the integrals above, for an integral of the form
şy
h“x we integrate over the closed interval rx, ys, so that point

masses at x and y are included.) Let ρ be the Borel measure on R defined by ρ “ 1
B

ř

vPrBs ρv.
Recall that pεL, δLq-differential privacy of R gives that for any S Ă Z , pv,S ď eεLqS ` δL. Thus, setting

S “ tz P Z : pv,z ě 2eεLqzu gives pv,S ď eεLqS ` δL ď eεL ¨ pv,S{p2e
εLq ` δL, so that pv,S ď 2δL. It follows by

averaging this inequality over all v P rBs that

γ logB

ż B

h“2 exppεLq
dρphq ď γ logB ¨ 2δL. (46)
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Next, note that (44) gives us that for any λ ě 1,
ż 2 exppεLq

h“λ
dρphq ď

ż

hěλ
dρphq “

1

B

ÿ

uPrBs

pu,Tu,λ ď
Cα2n ¨ eεL

λ
` 2δL.

It follows that
ż 2 exppεLq

h“1
hdρphq

ď
ÿ

h1Pt1,2,...,2rlog 2 exppεLqsu

ż h1

h1{2
hdρphq

ď
ÿ

h1Pt1,2,...,2rlog 2 exppεLqsu

2h1 ¨

ˆ

2Cα2neεL

h1
` 2δL

˙

ď p4` εL ¨ logpeqq ¨
`

α2n ¨ 4CeεL
˘

` 32δLe
εL . (47)

Next we upper bound the terms h ă 1 in the sum of (39). Again using Lemma 3.15 and the pα, 1{4q-accuracy of
R, we see that there is a constant C such that for each v P rBs, it holds that 1´∆pPv, Qq ď Cα2n. Hence we have

ÿ

z:pv,zăqz

pv,z ď Cα2n

and
ÿ

z:pv,zăqz

qz ě 1´ Cα2n.

We next need the following claim:

Claim 3.17. Let τ P p0, 1q. Suppose Y is a finite set and for each z P Y , pz, qz P r0, 1s are defined such that
ř

zPY pz ď τ and 1´ τ ď
ř

zPY qz ď 1. Suppose also that pz ď qz for all z P Y . Then for any γ P p0, 1{2q,

ÿ

zPY
pγpz ` p1´ γqqzq ¨ log

ˆ

1` γ

ˆ

pz
qz
´ 1

˙˙

ď ´γ ` 2γτ ` γ2p1` τq.

Proof. Using the fact that logp1` xq ď x for all x ě ´1, we have

ÿ

zPY
pγpz ` p1´ γqqzq ¨ log

ˆ

1` γ

ˆ

pz
qz
´ 1

˙˙

ď
ÿ

zPY
pγpz ` p1´ γqqzqγ ¨

ˆ

pz
qz
´ 1

˙

ď ´p1´ τqp1´ γqγ `
ÿ

zPY
pγpz ` p1´ γqqzqγpz{qz

ď ´p1´ τ ´ γqγ ` γτ `
ÿ

zPY
γ2p2

z{qz

ď ´γ ` 2γτ ` γ2 ` γ2τ.

Using Claim 3.17 with Y “ tz P Z : pv,z ă qzu, τ “ Cα2n ď 1 gives us that we may upper bound the second
term in (39) as follows:

ÿ

zPYhă1Uv,h

pγpv,z ` p1´ γqqzq ¨ log

ˆ

1` γ

ˆ

pv,z
qz
´ 1

˙˙

ď ´γ ` 2Cγα2n` 2γ2. (48)

26



Combining (39), (45), (46), (47), and (48), we obtain

1

B

ÿ

vPrBs

KLpPv,γ ||Qq ď
`

γ ` γ2p4` εL ¨ logpeqq ¨ α2n ¨ 4CeεL ` γ2 ¨ 32eεLδL ` 2γδL logB
˘

`
`

´γ ` 2Cγα2n` 2γ2
˘

ď γ2α2neεL ¨ 4C ¨ p4` εL logpeqq ` 2Cγα2n` 36γ2.

The second inequality above uses the facts that δL ď γ{ logB and δ ď 1{eεL .

Finally we prove Theorems 3.3 and 3.1 in the large-sample regime. The proof is a simple application of Lemma
3.10.

Lemma 3.18 (Proof of Theorem 3.3 in large-sample regime; i.e., (12) & (13)). There is a sufficiently small positive
constant c so that the following holds. Suppose n,B P N with n ě 1{c and εL, δL ě 0 with 0 ă δL ă c{pn log nq,
and 0 ď εL ď 2 lnB´ ln lnB´1{c. Then there is no protocol for n-user frequency estimation on rBs that satisfies
pεL, δLq-local differential privacy and pα, 1{2q-accuracy where

α ě

#

c
?
B

n log1{4B
for n ě B2,

cB ln1{7B
n for n ě B3.

Proof. We first treat the case that n ě B2. Set n0 “ B2 and εL “ 2 lnB ´ ln lnB ´ 1{c. Lemma 3.12 establishes

that there is no pεL, δLq-locally differentially private protocol that satisfies
ˆ

c?
n0B

?
logB

, 1{4

˙

-accuracy, for a

sufficiently small constant c. But 1{
a

n0B
?

logB “
?
B

n0 log1{4B
as n0 “ B2.

But by Lemma 3.10, any pεL, δLq-locally differentially private protocol with n users, δ ă c{pn log nq and
εL “ 2 lnB ´ ln lnB ´ 1{c which is

´

c
?
B

4n log1{4B
, 1{4

¯

-accurate yields an pεL, δLq-locally differentially private

protocol with n0 users which is
´

c
?
B

n0 log1{4B
, 1{4

¯

-accurate.

The proof for the case n ě B3 is virtually identical, with n0 “ B2 replaced by n1 “ B3, for which the
lower bound of Lemma 3.12 states that there is no pεL, δLq-locally differentially private protocol that satisfies
´

ln1{7B
n2{3 , 1{4

¯

-accuracy.

Lemma 3.19 (Proof of Theorem 3.1 in large-sample regime; i.e., (8)). For a sufficiently small positive constant c so
that the following holds. If logB ą 1{c, 0 ď δ ă c{n, and 0 ď ε ď 1, then there is no protocol for n-user frequency
estimation in the single-message shuffled-model that is pε, δq-differentially private and

´

c
?
B

n logB , 1{4
¯

-accurate.

Proof. Here we cannot use Lemma 3.5 in tandem with Lemma 3.18 since Lemma 3.18 requires a privacy parameter
εL ď 2 lnB and the one produced by Lemma 3.5 grows as lnn, which can be arbitrarily large. However, note
that it is evident that Lemma 3.10 still applies if the protocol P “ pR,Aq in the lemma statement is replaced
by a single-message shuffled-model protocol P “ pR,S,Aq (and the the protocol P 1 guaranteed by the lemma is
P 1 “ pR1, S,A1q).

In particular, letting c be the constant of Corollary 3.13, for n0 “
cB2

logB , Corollary 3.13 guarantees that for
δ ď 1{n0, ε ď 1, there is no pε, δq-differentially private protocol in the single-message shuffled model that is
ˆ

c

n
3{4
0 log1{4 n0

, 1{4

˙

-accurate. But c

n
3{4
0 log1{4 n0

“ c5{4
?
B

n0plog1{4 n0qplog1{4Bq
by our choice of n0.

By the modification of Lemma 3.10 mentioned in the previous paragraph, there is a sufficiently small constant
c1 ą 0 so that for any n ě cB2

logB , there is no pε, δq-differentially private protocol for frequency estimation in the

n-user single-message shuffled model that is
´

c1
?
B

n
?

logB
, 1{4

¯

-accurate.
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3.4 Proof of Lemma 3.15

In this section we prove Lemma 3.15. We first establish a more general statement in Lemma 3.20 below, which
shows that if two distributionsD,F have total variation distance bounded away from 1, then two distributions which
can be obtained as the histograms of mixtures of i.i.d. samples from D,F have small total variation distance (much
smaller than ∆pD,F q).

We first recall the notation that we use to denote histograms of distributions. Given a tuple of random variables
pY1, . . . , Ynq, histpY1, . . . , Ynq denotes the distribution of the histogram of pY1, . . . , Ynq, i.e., of the function that
maps each z P Z to |ti : Yi “ zu|. We will denote histograms as functions h : Z Ñ N. If pz1, . . . , znq P Zn is such
that all the zi are distinct, then its histogram h “ histpz1, . . . , znq is a function h : Z Ñ t0, 1u.

Lemma 3.20 (Total variation distance between histograms of mixture distributions). Suppose D,F are distribu-
tions on a finite set Z . Suppose that for γ ď 1{

?
n such that p1 ´ γqn{2 is an integer, if Z1, . . . , Zn „ D and

W1, . . . ,Wn „ F are iid, then

∆phistpZ1, . . . , Zp1´γqn{2,Wp1´γqn{2`1, . . . ,Wnqq, (49)

histpZ1, . . . , Zp1`γqn{2,Wp1`γqn{2`1, . . . ,Wnqq ě c.

Then ∆pD,F q ě 1´ c1γ2n for c1 “ Θp1{c2q.

Notice that in the statement of Lemma 3.20

Proof of Lemma 3.20. We first introduce some notation. Given a set Z , let HZ denote the set of all histograms on
Z; notice that elements h P HZ can be thought of as functions h : Z Ñ Zě0. Given distributions D,F on a set Z ,
as well as positive integers ν, n with ν ď n, let Rν,nD,F denote the distribution of the random variable

histpZ1, . . . , Zν ,Wν`1, . . . ,Wnq,

where Z1, . . . , Zν „ D i.i.d., and Wν`1, . . . ,Wn „ F i.i.d. Thus (49) may equivalently be written as

∆
´

R
p1´γqn{2,n
D,F , R

p1`γqn{2,n
D,F

¯

ě c. (50)

A key tool in the proof of Lemma 3.20 is the data processing inequality (for total variation distance), stated
below for convenience:

Lemma 3.21 (Data processing inequality). Suppose Z,Z 1 are sets, D0, D1 are distributions on Z and f : Z Ñ Z 1
is a randomized function. Suppose Z0 „ D0, Z1 „ D1. Then ∆pfpZ0q, fpZ1qq ď ∆pZ0, Z1q.

Using Lemma 3.21 twice, we will reduce to the case in which |Z| “ 3, in two stages. For the first stage, consider
the set Z \ Z :“ tpz, bq : z P Z, b P t0, 1uu, as well as the function f : Z \ Z Ñ Z , defined by fppz, bqq “ z.
Moreover define distributions D1, F 1 on Z \ Z , as follows: for all z P Z , we have

D1ppz, 0qq “ Dpzq ´mintDpzq, F pzqu.

F 1ppz, 0qq “ F pzq ´mintDpzq, F pzqu.

D1ppz, 1qq “ mintDpzq, F pzqu.

F 1ppz, 1qq “ mintDpzq, F pzqu.

It is immediate from the definition of D1, F 1 that ∆pD1, F 1q “ ∆pD,F q. Moreover, it is clear that if Z0, Z1 are
distributed according to D1, F 1, respectively, then fpZ0q, fpZ1q are distributed according to D,F , respectively. To
describe the effect of applying f to histograms on Z \ Z , we make the following definition:

Definition 3.4 (Push-forward histogram). Consider sets Y,Y 1 together with a (possibly randomized) function f :
Y Ñ Y 1. For a histogram h P HY , the push-forward histogram f˚h P HY 1 (i.e., f˚h : Y 1 Ñ Zě0) is defined as
follows. If h is expressed as h “ histpy1, . . . , ynq for y1, . . . , yn P Y , then f˚h is the (possibly random) histogram
given by histpfpy1q, . . . , fpynqq.
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It follows that if H P HZ\Z is a random variable distributed according to Rν,nD1,F 1 , then the push-forward
histogram f˚H : Z Ñ Zě0 (which in this case is given by f˚Hpzq “ Hppz, 0qq ` Hppz, 1qq), is distributed
according to Rν,nD,F . Since f˚H is a (deterministic) function of H , it follows from Lemma 3.21 that

∆
´

R
p1´γqn{2,n
D,F , R

p1`γqn{2,n
D,F

¯

ď ∆
´

R
p1´γqn{2,n
D1,F 1 , R

p1`γqn{2,n
D1,F 1

¯

. (51)

Next, we define a randomized function g : t´1, 0, 1u Ñ Z\Z , as follows. First make the following definitions:

ρ0 “
ÿ

zPZ
D1ppz, 1qq “

ÿ

zPZ
F 1ppz, 1qq, ρ1 “

ÿ

zPZ
F 1ppz, 0qq “

ÿ

zPZ
D1ppz, 0qq “ 1´ ρ0.

Let gp0q be the distribution over tpz, 1q : z P Zu that assigns to the point pz, 1q a mass of D1ppz,1qq
ρ0

“
F 1ppz,1qq

ρ0
. Let

gp´1q be the distribution over tpz, 0q : z P Zu that assigns to the point pz, 0q a mass of D
1ppz,0qq
ρ1

. Finally let gp1q be

the distribution over tpz, 0q : z P Zu that assigns to the point pz, 0q a mass of F
1ppz,0qq
ρ1

.
Finally define distributions D2, F 2 on t´1, 0, 1u as follows:

D2p´1q “ ρ1, D2p0q “ ρ0, D2p1q “ 0

F 2p´1q “ 0, F 2p0q “ ρ0, F 2p1q “ ρ1.

From the definitions of D2, F 2 we see that ∆pD2, F 2q “ ρ1 “ ∆pD,F q. Moreover, if Z 10, Z
1
1 are distributed

according to D2, F 2, respectively, then gpZ 10q, gpZ
1
1q are distributed according to D1, F 1. Next, let H 1 P Ht´1,0,1u

be the random histogram distributed according to Rν,nD2,F 2 . Then the push-forward histogram g˚H
1 P HZ\Z is

distributed according to Rν,nD1,F 1 . It follows from Lemma 3.21 that

∆
´

R
p1´γqn{2,n
D1,F 1 , R

p1`γqn{2,n
D1,F 1

¯

ď ∆
´

R
p1´γqn{2,n
D2,F 2 , R

p1`γqn{2,n
D2,F 2

¯

. (52)

Thus, since ∆pD2, F 2q “ ∆pD1, F 1q “ ∆pD,F q, and by (50), (51), and (52) it suffices to show that there is some
constant c1 such that, assuming ∆

´

R
p1´γqn{2,n
D2,F 2 , R

p1`γqn{2,n
D2,F 2

¯

ě c, it follows that 1´ρ0 “ ∆pD2, F 2q ě 1´c1γ2n.

Let random variables Hp1´γqn{2, Hp1`γqn{2 be distributed according to Rp1´γqn{2,nD2,F 2 and Rp1`γqn{2,nD2,F 2 , respec-
tively. Since Hp1˘γqn{2 are each histograms of n elements, they are completely determined by their values on ´1
and 1. Next note that the distribution of the tuple pHp1´γqn{2p´1q, Hp1´γqn{2p1qq is the distribution of pBinpp1 ´
γqn{2, 1´ ρ0q, Binpp1` γqn{2, 1´ ρ0qq, where the two binomial random variables are independent. Similarly, the
distribution of the tuple pHp1`γqn{2p´1q, Hp1`γqn{2p1qq is the distribution of pBinpp1` γqn{2, 1´ ρ0q, Binpp1´
γqn{2, 1´ ρ0qq. To upper bound

∆ppHp1´γqn{2p´1q, Hp1´γqn{2p1qq, pHp1`γqn{2p´1q, Hp1`γqn{2p1qqq

it therefore suffices to upper bound ∆ pBinpp1´ γqn{2, 1´ ρ0q, Binpp1` γqn{2, 1´ ρ0qq. To do this, we use
[Roo06, Theorem 2, Eq. (15)], which implies that as long as γ ě 1{n and 3γ2np1´ρ0q

ρ0
ă 1{4, we have that

∆ pBinpp1´ γqn{2, 1´ ρ0q, Binpp1` γqn{2, 1´ ρ0qq ď 2
?
e ¨

d

3γ2np1´ ρ0q

ρ0
(53)

If 3γ2np1´ρ0q
ρ0

ě 1{4 then we get ρ0 ď 12γ2n. Otherwise, (53) together with ∆
´

R
p1´γqn{2,n
D2,F 2 , R

p1`γqn{2,n
D2,F 2

¯

ě c

gives us that c2 ď 2
?
e ¨

a

3γ2n{ρ0, meaning that ρ0 ď Opγ2n{c2q. In particular, for some constant c1 “ Θp1{c2q,
we have shown that 1´ ρ0 ě 1´ c1γ2n.

Now we are ready to prove Lemma 3.15 using Lemma 3.20.
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Proof of Lemma 3.15. By increasing α by at most a constant factor we may ensure that p1˘αqn{2 are integers. We
define two distributions of inputs, D1 and D2. For D1, exactly p1 ´ αqn{2 of the xi are set to v and the remaining
p1 ` αqn{2 of the xi are drawn uniformly from rBs. For D2, exactly p1 ` αqn{2 of the xi are set to v and the
remaining p1 ´ αqn{2 of the xi are drawn uniformly from rBs. Under both D1 and D2, the subset of which users
are chosen to have their xi fixed to v is chosen uniformly at random.

By the Chernoff bound, for λ ě 0, as long as α ď 1, we have that

Ppx1,...,xnq„D1

«

n
ÿ

i“1

pexiqv ě p1´ αqn{2` p1` λqp1` αqn{p2Bq

ff

ď expp´nmintλ, λ2u{p3Bqq. (54)

Ppx1,...,xnq„D2

«

n
ÿ

i“1

pexiqv ď p1` αqn{2` p1´ λqp1´ αq ¨ n{p2Bq

ff

ď expp´nmintλ, λ2u{p3Bqq. (55)

Choose λ so that expp´nmintλ, λ2u{p3Bqq “ p1 ´ 2βq{4, i.e., mintλ, λ2u{B “ 3{n ¨ logp4{p1 ´ 2βqq.
Explicitly, we have:

λ “ max

#

3B logp4{p1´ 2βqq

n
,

c

3B logp4{p1´ 2βqq

n

+

.

We now consider two possible cases for λ:
Case 1. In the case that λ “ 3B logp4{p1 ´ 2βqq{n, we have λ ě 1. Moreover, since 2λ{B “ 6 logp4{p1 ´

2βqq{n ď α{2 (by (38)), the fact that R is pα{6, βq-accurate implies that R is p1
3 ¨ pα´ 2λ{Bq, βq-accurate. In turn

it follows that R is p1
3 ¨ pα´ pλ` αq{Bq, βq-accurate.

Case 2. In the case that λ “
a

3B logp4{p1´ 2βqq{n, we have λ ď 1. Since λ{B “
a

3 logp4{p1´ 2βqq{pnBq ď
α{4 ď α{2´α{B (by (38)), the fact that R is pα{6, βq-accurate implies that R is p1

3 ¨ pα´pλ`αq{Bq, βq-accurate.

In both cases, it follows that, by Definition 3.1, there exists some analyzer A : Zn Ñ r0, 1s so that, for any dataset
X “ px1, . . . , xnq, with probability 1 ´ β over the local randomizers,

ˇ

ˇApRpx1q, . . . , Rpxnqq ´
1
n

řn
i“1pexiqv

ˇ

ˇ ď
1
3 ¨ pα ´ pλ ` αq{Bq. (Here we are only using accuracy on the vth coordinate.) Define f : r0, 1s Ñ t0, 1u by
fpxq “ 1 if x ě 1

2 `
p1`λαqn

2B and fpxq “ 0 otherwise. Using (54) and (55) it follows that

Epx1,...,xnq„D2
rfpApRpx1q, . . . , Rpxnqqqs´Epx1,...,xnq„D1

rfpApRpx1q, . . . , Rpxnqqqs ě 1´2β´2 expp´nλ{p12Bqq.
(56)

For b P t1, 2u, let Hb : Z Ñ Zě0 denote the random variable that is the histogram of the Rpxiq when px1, . . . , xnq
are drawn according toDb, and let D̃b be the distribution ofHb. For a histogram h : Z Ñ Zě0 with

ř

zPZ hpzq “ n,
define Gphq P Zn to be the random variable obtained by permuting uniformly at random the multiset consisting of
hpzq copies of z for each z P Z . Note that for b P t1, 2u, the distribution of GpHbq is exactly the distribution of
pRpx1q, . . . , Rpxnqq when px1, . . . , xnq „ Db. It follows from (56) and our choice of λ that

EH2„D̃2
rfpApGpH2qqqs ´ EH1„D̃1

rfpApGpH1qqqs ě
1´ 2β

2
.

Hence ∆pD̃1, D̃2q ě 1´ 2β ´ 2 expp´nλ{p12Bqq.
By definition, D̃1 is the distribution of histpZ1, . . . , Znp1´αq{2,Wnp1´αq{2`1, . . . ,Wnq and D̃2 is the distribu-

tion of histpZ1, . . . , Znp1`αq{2,Wnp1`αq{2`1, . . . ,Wn when Z1, . . . , Zn „ Pv iid, and W1, . . . ,Wn „ Q iid. By

Lemma 3.20 with D “ Pv, F “ Q, we must have that ∆pPv, Qq ě 1´ cα2n for some c “ Θ
´

1
p1´2βq2

¯

.

3.5 Lower Bounds for Single-Message Selection

In this section we prove Theorem 1.2, stated formally below:

Theorem 3.22 (Nearly tight lower bound for single-message shuffled model selection). Suppose n,B P N and
ε ď Op1q and δ ď op1{pnBqq. Any single-message shuffled model protocol that is pε, δq-differentially private and
solves the selection problem with n users and with probability at least 4{5 must have n ě Ω pBq.
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As we did for frequency estimation in the single-message shuffled model, we will prove Theorem 3.22 by
appealing to Lemma 3.5 and proving an analogous statement for pεL, δLq-differentially private local-model protocols
where the privacy parameter εL is approximately lnn. The proof is similar in structure to that of [Ull18], established
a lower bound on n which is tight in the case that εL “ Op1q and δL “ 0.

We begin by defining a distribution under which we shall show selection to be hard.

Definition 3.5 (Distributions D`,j). Fix B P N. For ` P t0, 1u, j P rBs, let the distribution D`,j be the uniform
distribution on the subcube tx P t0, 1uB : xj “ `u.

Let D̄ denote the joint distribution of pL, J,Xq, where pL, Jq „ Unifpt0, 1u ˆ rBsq and conditioned on L, J ,
X „ DL,J .

Definition 3.6 (Distributions P`,j). Next suppose that for some finite set Z , R : t0, 1uB Ñ Z is a fixed local
randomizer. Let P`,j be the distribution of RpXq when X „ D`,j . Let Q be the distribution 1

2B

ř

jPrBs,`Pt0,1u P`,j .
Note that Q is the distribution of RpXq when X „ Unifpt0, 1uBq.

To prove Theorem 3.22, we first establish Lemma 3.23 below, which applies to any protocol that is differentially
private in the local model of differential privacy (with a large privacy parameter εL):

Lemma 3.23. For a sufficiently small positive constant c, the following holds. Suppose R : t0, 1uB Ñ Z is
an pεL, δLq-(locally) differentially private protocol with δL ď c

npB`exppεLqq
. Moreover suppose that A : Zn Ñ

t0, 1u ˆ rBs is a function so that, if L „ t0, 1u, J „ rBs are uniform and independent, then

PL,J,X1,...,Xn„pDL,J |L,Jq rApRpX1q, . . . , RpXnqq “ pL, Jqs ě
1

3
. (57)

Then
n ě

cB logB

1` εL
.

Theorem 3.22 is a straightforward consequence of Lemma 3.23 and Lemma 3.5 (see [Ull18]). We provide the
proof for completeness.

Proof of Theorem 3.22. Let c0 P p0, 1q be a sufficiently small positive constant to be specified later. Suppose for
the purpose of contradiction that PS “ pR,S,Aq is an pε, δq-differentially private single-message shuffled model
protocol that solves the selection problem with n ă c0B users and probability at least 4{5. By Lemma 3.5, PL :“
pR,Aq is an pε ` lnn, δq-locally differentially private protocol that solves the selection problem with n users and
probability at least 4{5.

It follows by a Chernoff bound and a union bound that if J „ UnifprBsq and X1, . . . , Xn „ D1,J |J , then

PJ,X1,...,Xn„D1,J |J rApRpX1q, . . . , RpXnqq “ Js ě 3{4 (58)

as long as n ě Ωp
?

logBq. (In particular, we can guarantee that with probability at least 1 ´ 1{20, for all j1 ‰ J ,
řn
i“1pXiqj1 ă

řn
i“1pXiqJ ´ n{10 “ 9n{10.)

It follows from (58) that if L „ Unifpt0, 1uq is independent of J ,

PJ,X1,...,Xn„DL,J |J rApRpX1q, . . . , RpXnqq “ pJ, Lqs ě 3{8.

The above equation is a contradiction to Lemma 3.23 in light of the fact that R is pε` lnn, δq-differentially private,
n ă c0B ă

cB logB
1`ε`lnn , and

δ ă
c

npB ` exppε` lnpnqqq
.

(The above bound on δ can be seen by noting that δ ă c0{pnBq by assumption and exppε`lnpnqq “ Opnq ď OpBq.)

The bulk of the proof of Theorem 3.22 is to establish an upper bound on IppL, Jq;RpXqq, when pL, J,Xq „ D̄.
Lemma 3.24 below provides this upper bound.
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Lemma 3.24. Suppose εL ě 0, δL P p0, 1q, and R is pεL, δLq-differentially private. Then we have that

E`„L,j„J rKLpP`,j ||Qqs ď O

ˆ

1` εL
B

` δ ¨ pB ` eεLq

˙

,

where P`,j , Q are as defined in Definition 3.6.

The proof of Lemma 3.23 from Lemma 3.24 is entirely standard [Ull18]. We provide a proof for completeness.

Proof of Lemma 3.23. Suppose L, J are drawn uniformly from t0, 1u ˆ rBs, and then X1, . . . , Xn „ DL,J are
drawn i.i.d. Let Z1 “ RpX1q, . . . , Zn “ Rpxnq denote the resulting random variables after passing X1, . . . , Xn

through the local randomizer R. (In particular, Z1, . . . , Zn are drawn i.i.d. according to PL,J .) By Fano’s inequality,
for any deterministic function f : Zn Ñ t0, 1u ˆ rBs, we have that

PL,J,Z1,...,Zn rfpZ1, . . . , Znq “ pL, Jqs

ď
1` IppZ1, . . . , Znq; pL, Jqq

log 2B

ď
1` n ¨ IpZ1; pL, Jqq

log 2B

“
1` n ¨KLppZ1, L, Jq||Z1 b pL, Jqq

log 2B

“
1` n ¨ Ep`,jq„Unifpt0,1uˆrBsqrKLpP`,j ||Qqs

log 2B

ď

1` C ¨
´

np1`εLq
B ` δn ¨ pB ` eεLq

¯

log 2B
, (59)

where (59) uses Lemma 3.24 and C is a sufficiently large constant. If n ă cB logB
1`εL

, then using the assumption on δ
we may bound (59) above by

1` C ¨ c logB ` c

logB
,

which is strictly less than 1{3 for a sufficiently small constant c, thus contradicting (57).

Finally we prove Lemma 3.24.

Proof of Lemma 3.24. Recall the notation of Definition 3.2: For x P t0, 1ud and z P Z , we have px,z “ PRrRpxq “
zs, and for S Ă Z , px,S “ PRrRpxq P Ss. Also set qz “ 1

2B

ř

xPt0,1uB px,z “ PX„UB ,RrRpXq “ zs “ pZ„QrZ “
zs and qS “

ř

zPS qz for S Ă Z . Notice that

E`„Unifpt0,1uq,j„UnifprBsq rKLpP`,j ||Qqs

“ E`,j

«

ÿ

zPZ
PZ„P`,j rZ “ zs ¨ log

ˆPZ„P`,j rZ “ zs

PZ„QrZ “ zs

˙

ff

“
1

2B

ÿ

`Pt0,1u,jPrBs

ÿ

zPZ

¨

˝

1

2B´1

ÿ

xPt0,1uB :xj“`

px,z

˛

‚¨ log

˜

1
2B´1

ř

xPt0,1uB :xj“`
px,z

qz

¸

“
ÿ

zPZ

1

2B

ÿ

yPt0,1uB

py,z ¨
1

B

ÿ

jPrBs

log

˜

1
2B´1

ř

x:xj“yj
px,z

qz

¸

“
ÿ

zPZ
qz ¨

1

B

ÿ

jPrBs

¨

˝

1

2B

ÿ

yPt0,1uB

py,z
qz

¨ log

¨

˝

1

2B´1

ÿ

x:xj“yj

px,z
qz

˛

‚

˛

‚. (60)
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For each z P Z , define a function fz : t0, 1uB Ñ Rě0 by fzpxq :“
px,z
qz

. Thus, for any j P rBs, Ex„Unifpt0,1uBqrfzpxqs “
Ex„D0,j

rfzpxqs`Ex„D1,j
rfzpxqs

2 “ 1. We may now upper bound (60) by

E`„Unifpt0,1uq,j„UnifprBsq rKLpP`,j ||Qqs ď
ÿ

zPZ
qz ¨

1

2B

ÿ

j,`

Ey„D`,j rfzpyqs ¨ log
`

Ey„D`,j rfzpyqs
˘

. (61)

For each z P Z , x P t0, 1uB , set

gzpxq “

#

fzpxq : fzpxq ď 2eεL

0 : fzpxq ą 2eεL ,

and hzpxq :“ fzpxq ´ gzpxq.
We next note the following basic fact.

Fact 3.25. Suppose g0, g1, h0, h1 ě 0 are real numbers such that g0`g1`h0`h12 “ 1. Then

g0 logpg0 ` h0q ` g1 logpg1 ` h1q ď
1

2
pg1 ´ g0q

2 `
1

2
pg1 ´ g0qph1 ´ h0q.

Proof of Fact 3.25. Let c P r0, 1s be such that g0 ` h0 “ 1 ´ c and g1 ` h1 “ 1 ` c. Then using the fact that
logp1` xq ď x for all x ě ´1,

g0 logpg0 ` h0q ` g1 logpg1 ` h1q

“ g0 logp1´ cq ` g1 logp1` cq

ď ´g0c` g1c

“
pg1 ´ g0q ` ph1 ´ h0q

2
¨ pg1 ´ g0q,

which leads to the desired claim.

Recall that for a boolean function f : t0, 1uB Ñ R we have f̂ptjuq “ 1
2

`

Ex„Dj,0rfpxqs ´ Ex„Dj,1rfpxqs
˘

for
each j P rBs. Using Fact 3.25 in (61) with g0 “ Ex„D0,j rgzpxqs, g1 “ Ex„D1,j rgzpxqs, h0 “ Ex„D0,j rhzpxqs, and
h1 “ Ex„D1,j rhzpxqs for each z P Z , j P rBs, we obtain

E`„Unifpt0,1uq,j„UnifprBsq rKLpP`,j ||Qqs

ď
ÿ

zPZ
qz ¨

1

B

ÿ

jPrBs

ĝzptjuq
2 ` ĝzptjuqĥzptjuq `

ÿ

zPZ
qz ¨

1

2B

ÿ

jPrBs,`Pt0,1u

Ex„D`,j rhzpxqs ¨ log
`

Ex„D`,j rfzpxqs
˘

ď
ÿ

zPZ

qz
B
W1rgzs `

ÿ

zPZ

qz
B

ÿ

jPrBs

ĝzptjuqĥzptjuq `
ÿ

zPZ

qz
2

ÿ

j,`

Ex„D`,j rhzpxqs (62)

“
ÿ

zPZ

qz
B
W1rgzs `

ÿ

zPZ

qz
B

ÿ

jPrBs

ĝzptjuqĥzptjuq `
ÿ

zPZ

Bqz
2
¨ Ex„Unifpt0,1uBqrhzpxqs. (63)

where the (62) uses the fact that fzpxq “
px,z
qz
ď 2B for any x P t0, 1uB, z P Z .

Next, notice that for an arbitrary non-negative-valued boolean function f : t0, 1uB Ñ Rě0, for and j P rBs we
have f̂ptjuq ď Ex„Unifpt0,1uBqrfpxqs. Also using the fact that gzpxq ď 2eεL for each z P Z, x P t0, 1uB , we see
that

ÿ

zPZ

qz
B

ÿ

jPrBs

ĝzptjuqĥzptjuq ď
ÿ

zPZ
2eεLqz ¨ Ex„Unifpt0,1uBqrhzpxqs. (64)

Next we derive an upper bound on
ř

zPZ qz ¨ Ex„Unifpt0,1uBqrhzpxqs. Here we will use the pεL, δLq-differential
privacy ofR; intuitively, the differential privacy ofR constrains the ratio px,z{qz to be small for most x P t0, 1uB, z P
Z , except with probability δL.
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For each x P t0, 1uB , set Tx :“
!

z P Z :
px,z
qz
ą 2eεL

)

. Note that hzpxq ą 0 if and only if z P Tx. Then

ÿ

zPZ
qz ¨ Ex„Unifpt0,1uBqrhzpxqs

“
ÿ

zPZ
qz ¨ Ex„Unifpt0,1uBq r1rz P Txs ¨ hzpxqs

“ Ex„Unifpt0,1uBq

«

ÿ

zPTx

qz ¨ hzpxq

ff

“ Ex„Unifpt0,1uBq

«

ÿ

zPTx

px,z

ff

“ Ex„Unifpt0,1uBq rpx,Txs , (65)

where we have used that for z P Tx, hzpxq “ fzpxq “ px,z{qz . But since R is pεL, δLq-differentially private, we
have that px,Tx ď eεL ¨ py,Tx ` δL for any x, y P t0, 1uB . Averaging over all y, we obtain px,Tx ď eεL ¨ qTx ` δL ď
eεL ¨

px,Tx
2eεL ` δL, so px,Tx ď 2δL. Since this holds for all x, it follows by (63), (64) and (65) that

E`„Unifpt0,1uq,j„UnifprBsq rKLpP`,j ||Qqs ď

˜

ÿ

zPZ

qz
B
W1rgzs

¸

` p2eεL `B{2q ¨
ÿ

zPZ
qz ¨ Ex„Unifpt0,1uBqrhzpxqs

ď

˜

ÿ

zPZ

qz
B
W1rgzs

¸

` p2eεL `B{2q ¨ 2δL. (66)

By definition of gz we have that ĝzp∅q “ Ex„Unifpt0,1uBqrgzpxqs ď Ex„Unifpt0,1uBqrfzpxqs “ 1. For each z P Z ,
define a function g1z : t0, 1uB Ñ Rě0, by g1zpxq “ gzpxq ` p1´ ĝzp∅qq. Certainly W1rgzs “ W1rg1zs, 0 ď
g1zpxq ď 1 ` 2eεL for all x, and Ex„Unifpt0,1uBqrg

1
zpxqs “ 1. Now we apply the level-1 inequality, stated below for

convenience.

Theorem 3.26 (Level-1 Inequality, [O’D14], Section 5.4). Suppose f : t0, 1uB Ñ Rě0 is a non-negative-valued
boolean function with 0 ď fpxq ď L for all x P t0, 1uB . Suppose also that Ex„Unifpt0,1uBqrfpxqs “ 1. Then
W1rf s ď 6 lnpLq.

Using Theorem 3.26, for each z P Z , with f “ g1z, L “ 1 ` 2eεL , we get that W1rg1zs ď 6 lnp1 ` 2eεLq ď
6 lnp3eεLq. From (66) it follows that

E`„Unifpt0,1uq,j„UnifprBsq rKLpP`,j ||Qqs ď
6 lnp3eεLq

B
` p2eεL `B{2q ¨ 2δL,

as desired.

4 Multi-Message Protocols for Frequency Estimation

In this section, we present new algorithms for private frequency estimation in the shuffled model that significantly
improve on what can be achieved in the local model of differential privacy. By our previous lower bounds, such
protocols must necessarily use multiple messages. Our results are summarized in Table 2, which focuses on com-
munication requirements of users, the size of the additive error on query answers, and the time required to answer
a query (after creating a data structure based on the shuffled dataset). To our best knowledge, the only previously
known upper bounds for these problems in the shuffled model (going beyond local differential privacy) followed
via a reduction to private aggregation [CSU`19]. Using the currently best protocol for private aggregation in the
shuffled model [BBGN19a, GPV19] yields the result stated in the first row of Table 2. Since the time to answer a
frequency query differs by a factor of Θ̃pnq between our public and private coin protocols, we include query time
bounds in the table. We start by stating the formal guarantees on our private-coin multi-message protocol.
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Problem Messages
per user

Message size
in bits Error Query time

Frequency estimation
(private randomness)

[CSU`19, BBGN19a, GPV19]
B logB

b

logpBq log 1
δ
{ε

(expected error)
1

Frequency estimation
(private randomness)

Section 4.1

logp1{εδq

ε2
logn logB logB `

?
logpBq logp1{pεδqq

ε

n log

ˆ

1
εδ

˙

logn logB

ε2

Frequency estimation
(public randomness)

Section 4.2

log3pBq logplogpBq{δq

ε2
logn` log logB

log3{2pBq
?

logplogB{δq

ε
logB

Bη logB
b

logpBq log 1
δ
{ε 1

Table 2: Overview of bounds on frequency estimation in the shuffled model with multiple messages. Each user is assumed
to hold k “ 1 value from rBs, and η ą 0 is a constant. The query time stated is the additional time to answer a query,
assuming a preprocessing of the output of the shuffler that takes time linear in its length. Note that frequencies and counts are
not normalized, i.e., they are integers in t0, . . . , nu. For simplicity of presentation in this table, constant factors are suppressed,
the bounds are stated for error probability β “ B´Op1q, and the following are assumed: n is bounded above by B, and
δ ă 1{ logB.

Theorem 4.1 (Frequency estimation via private-coin multi-message shuffling). Let n andB be positive integers and
ε ą 0 and δ P p0, 1q be real numbers. Then there exists a private-coin pε, δq-differentially private algorithm in the

shuffled model for frequency estimation on n users and domain size B with error O
ˆ

logB `

?
logpBq logp1{pεδqq

ε

˙

and with O
´

logp1{εδq
ε2

¯

messages per user, where each message consists of Oplog n logBq bits. Moreover, any

frequency query can be answered in time O
ˆ

n logp 1
εδ q logn logB

ε2

˙

.

Theorem 4.1 is proved in Section 4.1. We next state the formal guarantees of our public-coin multi-message
protocols, whose main advantage compared to the private-coin protocol is that it has polylogarithmic query time.

Theorem 4.2 (Frequency estimation via public-coin multi-message shuffling). Let n and B be positive integers and
ε ą 0 and δ P p0, 1q be real numbers. Then there exists a public-coin pε, δq-differentially private algorithm in

the shuffled model for frequency estimation on n users and domain size B with error O
ˆ

log3{2pBq
?

logplogB{δq

ε

˙

and with O
´

log3pBq logplogpBq{δq
ε2

¯

messages per user, where each message consists of Oplog n ` log logBq bits.
Moreover, any frequency query can be answered in time OplogBq.

The public-coin protocol in Theorem 4.2 and its analysis are presented in Section 4.2.
Prior work [BS15, BNST17, BNS18] has focused on the case of computing heavy hitters when each user holds

only a single element. While we focus primarily on this case, we will also consider the application of frequency
estimation to the task of computing range counting queries (given in Section 5 below), where we apply our protocols
for a frequency oracle as a black box and need to deal with the case in which a user can hold k ą 1 inputs. Thus,
in the rest of this section, we state our results for more general values of k (although we do not attempt to optimize
our algorithms for large values of k, as k will be at most poly logpnq in our application to range counting queries).
Moreover, our results for k ě 1 can be interpreted as establishing bounds for privately computing sparse families of
counting queries (see Appendix B).

For clarity, we point out that the privacy of our protocols holds for every setting of the public random string. In
other words, public randomness is assumed to be known by the analyzer, and affects error but not privacy.

4.1 Private-Coin Protocol

In this section, we give a private-coin protocol (i.e., one where the only source of randomness is the private coin
source at each party) for frequency estimation with polylogarithmic error and polylogarithmic bits of communication
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per user. In the case of local DP, private-coin protocols were recently obtained by Acharya et al. in [ASZ19, AS19].
These works made use of the Hadamard response for the local randomizers instead of previous techniques developed
in the local model and which relied on public randomness. The Hadamard response was also used in [CKS19,
CKS18, NXY`16] for similar applications, namely, private frequency estimation.

Overview. For any power of two B P N, let HB P t´1, 1uBˆB denote the B ˆ B Hadamard matrix and for
j P rB ´ 1s, set HB,j :“ tj1 P rBs | Hj`1,j1 “ 1u13. By orthogonality of the rows of HB , we have that
|HB,j | “ B{2 for any j P rB ´ 1s and for all j ‰ j1, it is the case that |HB,j X HB,j1 | “ B{4. For any τ P N,
we denote the τ -wise Cartesian product of HB,j by HτB,j Ă rBsτ . In the Hadamard response [ASZ19], a user
whose data consists of an index j P rBs sends to the server a random index j1 P rBs that is, with probability eε

1`eε ,
chosen uniformly at random from the “Hadamard codeword” HB,j and, with probability 1

1`eε , chosen uniformly
from rBszHB,j .

In the shuffled model, much less randomization is needed to protect a user’s privacy than in the local model of
differential privacy, where the Hadamard response was previously applied. In particular, we can allow the users to
send more information about their data to the server, along with some “blanket noise”14 which helps to hide the true
value of any one individual’s input. Our adaptation of the Hadamard response to the multi-message shuffled model
for computing frequency estimates (in the case where each user holds up to k elements) proceeds as follows (see
Algorithm 1 for the detailed pseudo-code). Suppose the n users possess data S1, . . . ,Sn Ă rBs such that |Si| ď k —
equivalently, they possess x1, . . . , xn P t0, 1u

B , such that for each i P rns, }xi}1 ď k (the nonzero indices of xi are
the elements of Si). Given xi, the local randomizer RHad augments its input by adding k´ }xi}1 arbitrary elements
from the set tB ` 1, . . . , 2B ´ 1u (recall that k ă B). (Later, the analyzer will simply ignore the augmented input
in tB ` 1, . . . , 2B ´ 1u from the individual randomizers. The purpose of the augmentation is to guarantee that all
sets Si will have cardinality exactly k, which facilitates the privacy analysis.) Let the augmented input be denoted
x̃i, so that x̃i P t0, 1u2B´1 and }x̃i}1 “ k. For each index j at which px̃iqj ‰ 0, the local randomizer chooses τ
indices aj,1, . . . , aj,τ in H2B,j uniformly and independently, and sends each tuple paj,1, . . . , aj,τ q to the shuffler. It
also generates ρ tuples pãg,1, . . . , ãg,τ q where each of ãg,1, . . . , ãg,τ is uniform over r2Bs, and sends these to the
shuffler as well; these latter tuples constitute “blanket noise” added to guarantee differential privacy.

Given the output of the shuffler, the analyzer AHad determines estimates x̂j for the frequencies of each j P rBs
by counting the number of messages pa1, . . . , aτ q P r2Bs

τ which belong to Hτ2B,j . The rationale is that each user i
such that j P Si will have sent such a message in Hτ2B,j . As the analyzer could have picked up some of the blanket
noise in this count, as well as tuples sent by users holding some j1 ‰ j, sinceHτ2B,j XHτ2B,j1 ‰ H, it then corrects
this count (Algorithm 1, Line 19) to obtain an unbiased estimate x̂j of the frequency of j.

Analysis. The next theorem summarizes the privacy, accuracy and efficiency properties of Algorithm 1 for general
values of k.

Theorem 4.3. There is a sufficiently large positive absolute constant ζ such that the following holds. Suppose
n,B, k P N with k ă B, and 0 ď ε, δ, β ď 1. Consider the shuffled-model protocol PHad “ pRHad, S,AHadq

with τ “ log n and ρ “ 36k2

ε2

`

ln ek
εδ

˘

. Then PHad is a pε, δq-differentially private protocol (Definition 2.2) with

O
´

k2 logpk{εδq
ε2

¯

messages per user, each consisting of Oplog n logBq bits, such that for inputs x1, . . . , xn P t0, 1u
B

satisfying }xi}1 ď k, the estimates x̂j produced by the output of PHadpn,B, τ, ρ, kq satisfy

P

«

@j P rBs :

ˇ

ˇ

ˇ

ˇ

ˇ

x̂j ´
n
ÿ

i“1

xi,j

ˇ

ˇ

ˇ

ˇ

ˇ

ď O

˜

logpB{βq `
k
a

logpB{βq logpk{εδq

ε

¸ff

ě 1´ β. (67)

Moreover, any frequency query can be answered in time O
´

n log n logB
´

k2 logpk{εδq
ε2

¯¯

.

13Since the first row of the Hadamard matrix HB is all 1’s, we cannot use the first row in our frequency estimation protocols. This is the
reason for the subscript of j ` 1 in the definition of HB,j .

14This uses the expression of Balle et al. [BBGN19c]
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Algorithm 1: Local randomizer and analyzer for frequency estimation via Hadamard response

1 RHadpn,B, τ, ρ, kq:
Input: Set S Ă rBs specifying i’s input set;
Parameters n,B, τ, ρ, k P N
Output: A multiset T Ă t0, 1ulog 2B¨τ

2 for j “ B ` 1, B ` 2, . . . , 2B ´ 1 do
// Augmentation step

3 if |S| ă k then
4 S Ð S Y tju

5 for j P S do
6 Choose aj,1, . . . , aj,τ P H2B,j uniformly and independently at random

7 for g “ 1, 2, . . . , ρ do
8 Choose ãg,1, . . . , ãg,τ P r2Bs uniformly and independently at random

9 return T :“
Ť

jPStpaj,1, . . . , aj,τ qu Y
Ť

1ďgďρ̃tpãg,1, . . . , ãg,τ qu // Each element of T is

viewed as an element of pt0, 1ulog 2Bqτ, by associating each element of
r2Bs with its binary representation.

10 AHadpn,B, τ, ρ, kq:
Input: Multiset ty1, . . . , ymu consisting of outputs of local randomizers, yi P pt0, 1ulog 2Bqτ ;
Parameters n,B, τ, ρ, k P N
Output: A vector x̂ P RB containing estimates of the frequency of each j P rBs

11 for j P rBs do
12 Let x̂j Ð 0

13 for j P rBs do
14 for i P rms do
15 Write yi P pt0, 1ulog 2Bqτ as yi :“ pai,1, . . . , ai,τ q, with ai,1, . . . , ai,τ P t0, 1ulog 2B

16 if tai,1, . . . , ai,τu Ă H2B,j then
17 x̂j Ð x̂j ` 1

18 for j P rBs do
19 x̂j Ð

1
1´2´τ

¨ px̂j ´ pρ` kqn2´τ q // De-biasing step

20 return x̂

Before we prove Theorem 4.3, instantiating Theorem 4.3 with k “ 1 directly implies Theorem 4.1.
Theorem 4.3 is a direct consequence of Lemmas 4.4, 4.5, and 4.6, which establish the privacy, accuracy, and

efficiency guarantees, respectively, of protocol PHad. The remainder of this section presents and proves the afore-
mentioned lemmas. We begin with Lemma 4.4, which establishes DP guarantees of PHad.

Lemma 4.4 (Privacy of PHad). Fix n,B P N with B a power of 2. Let τ “ log n, ε ď 1, and ρ “ 36 ln 1{δ
ε2

. Then the
algorithm S ˝RHadpn,B, τ, ρ, kq is pkε, δ exppkεq{εq-differentially private.

Proof. For convenience let P :“ S ˝ RHadpn,B, τ, ρ, kq be the protocol whose pε, δq-differential privacy we wish
to establish. With slight abuse of notation, we will assume that P operates on the augmented inputs px̃1, . . . , x̃nq
(see Algorithm 1, Line 4). In particular, for inputs px1, . . . , xnq that lead to augmented inputs px̃1, . . . , x̃nq, we will
let P px̃1, . . . , x̃nq be the output of P when given as inputs x1, . . . , xn. Let Y be the set of multisets consisting of
elements of t0, 1ulog 2Bˆτ ; notice that the output of P lies in Y .

By symmetry, it suffices to show that for any augmented inputs of the form X̃ “ px̃1, . . . , x̃n´1, x̃nq and X̃ 1 “
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px̃1, . . . , x̃n´1, x̃
1
nq, and for any subset U Ă Y , we have that

PrP px̃1, . . . , x̃nq P Us ď eε ¨ PrP px̃1, . . . , x̃n´1, x̃
1
nq P Us ` δ. (68)

We first establish (68) for the special case that x̃n, x̃1n differ by 1 on two indices, say j, j1, while having the same `1
norm: in particular, we have |px̃nqj´px̃1nqj | “ 1 and |px̃nqj1´px̃1nqj1 | “ 1. By symmetry, without loss of generality
we may assume that j “ 1, j1 “ 2 and that px̃nqj ´ px̃1nqj “ 1 while px̃1nqj1 ´ px̃nqj1 “ 1. To establish (68) in this
case, we will in fact prove a stronger statement: for inputs px̃1, . . . , x̃nq, define the view of an adversary, denoted by
ViewP px̃1, . . . , x̃nq, as the tuple consisting of the following components:
• For each i P rn´ 1s, the set Ŝi :“

Ť

j:px̃iqj“1tpaj,1, . . . , aj,τ qu of tuples output by user i corresponding to her
true input x̃i.
• The set Ŝn :“

Ť

j:jRt1,2u,px̃nqj“1tpaj,1, . . . , aj,τ qu of tuples output by user n corresponding to her true (aug-
mented) input x̃n, except (if applicable) the string that would be output if px̃nq1 “ 1 or px̃nq2 “ 1.
• The multiset ty1, . . . , ymu consisting of the outputs of the n users of the protocol P .

It then suffices to show the following:

PV„ViewP px̃1,...,x̃nq

„

PrViewP px̃1, . . . , x̃n´1, x̃nq “ V s

PrViewP px̃1, . . . , x̃n´1, x̃1nq “ V s
ě eε



ď δ. (69)

(See [BBGN19c, Theorem 3.1] for a similar argument.)
Notice that each of the elements y1, . . . , ym in the output of the protocol P consists of a tuple pa1, . . . , aτ q,

where each a1, . . . , aτ P r2Bs. Now we will define a joint distribution (denoted by D) of random variables
pWa1,...,aτ qa1,...,aτPr2Bs, Q,Q

1, where, for each pa1, . . . , aτ q P r2Bs
τ , Wa1,...,aτ P Zě0, and Q,Q1 P r2Bsτ , as

follows. For each tuple pa1, . . . , aτ q P r2Bs
τ , we let Wa1,...,aτ be jointly distributed from a multinomial distribution

over r2Bsτ with ρn trials. For each pa1, . . . , aτ q P r2Bs
τ , let Ŵa1,...,aτ be the random variable representing the num-

ber of tuples pãg,1, . . . , ãg,τ q generated on Line 8 of Algorithm 1 satisfying pãg,1, . . . , ãg,τ q “ pa1, . . . , aτ q. Notice
that the joint distribution of all Wa1,...,aτ is the same as the joint distribution of Ŵa1,...,aτ , for pa1, . . . , aτ q P r2Bs

τ .
Intuitively, Wa1,...,aτ represents the blanket noise added by the outputs pãg,1, . . . , ãg,τ q in Line 8 of Algorithm 1.
Also let Q,Q1 P r2Bsτ be random variables that are distributed uniformly over Hτ2B,1,Hτ2B,2, respectively. Then
since the tuples pãg,1, . . . , ãg,τ q are distributed independently of the tuples paj,1, . . . , aj,τ q (j P Si), (69) is equivalent
to

Pwa1,...,aτ ,q,q1„D

«

PWa1,...,aτ ,Q,Q1„D r@pa1, . . . , aτ q P r2Bs
τ : Wa1,...,aτ ` 1rQ “ pa1, . . . , aτ qs “ wa1,...,aτ ` 1rq “ pa1, . . . , aτ qss

PWa1,...,aτ ,Q,Q1„D r@pa1, . . . , aτ q P r2Bs
τ : Wa1,...,aτ ` 1rQ1 “ pa1, . . . , aτ qs “ wa1,...,aτ ` 1rq “ pa1, . . . , aτ qss

ě eε

ff

ď δ.

(70)

Set w̃a1,...,aτ :“ wa1,...,aτ ` 1rq “ pa1, . . . , aτ qs. By the definition of D we have

PWa1,...,aτ ,Q,Q
1„D r@pa1, . . . , aτ q P r2Bs

τ : Wa1,...,aτ ` 1rQ “ pa1, . . . , aτ qs “ w̃a1,...,aτ s

“ EQ„D
„

p2Bq´τρn ¨

ˆ

p2Bqτ

tw̃a1,...,aτ ´ 1rQ “ pa1, . . . , aτ qsupa1,...,aτ qPr2Bsτ

˙

“

ˆ

2

2B

˙τ

¨ p2Bq´τρn
ˆ

p2Bqτ

tw̃a1,...,aτ upa1,...,aτ qPr2Bsτ

˙

¨
ÿ

a11,...,a
1
τPH2B,1

w̃a11,...,a1τ .

In the above equation, the notation such as
`

p2Bqτ

tw̃a1,...,aτ upa1,...,aτ qPr2Bsτ

˘

refers to the multinomial coefficient, equal to
pp2Bqτ q!

ś

a1,...,aτ Pr2Bs
w̃a1,...,aτ ! . Similarly, for the denominator of the expression in (70),

PWa1,...,aτ ,Q,Q
1„D

“

@pa1, . . . , aτ q P r2Bs
τ : Wa1,...,aτ ` 1rQ1 “ pa1, . . . , aτ qs “ w̃a1,...,aτ

‰

“ EQ„D
„

p2Bq´τρn ¨

ˆ

p2Bqτ

tw̃a1,...,aτ ´ 1rQ1 “ pa1, . . . , aτ qsupa1,...,aτ qPr2Bsτ

˙

“

ˆ

2

2B

˙τ

¨ p2Bq´τρn
ˆ

p2Bqτ

tw̃a1,...,aτ upa1,...,aτ qPr2Bsτ

˙

¨
ÿ

a11,...,a
1
τPH2B,2

w̃a11,...,a1τ .
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Thus, (70) is equivalent to

Pwa1,...,aτ ,q,q1„D

«
ř

a11,...,a
1
τPH2B,1

w̃a11,...,a1τ
ř

a11,...,a
1
τPH2B,2

w̃a1,...,a1τ
ě eε

ff

ď δ. (71)

Notice that
ř

a11,...,a
1
τPH2B,1

w̃a11,...,a1τ is distributed as 1 ` Binpρn, 2´τ q, since q P Hτ2B,1 with probability 1 (by
definition of Q „ D), and each of the ρn trials in determining the counts wa1,...,aτ belongs toH2B,2 with probability
2´τ . Similarly,

ř

a11,...,a
1
τPH2B,1

w̃a11,...,a1τ is distributed as Binpρn ` 1, 2´τ q; notice in particular that q, which is
distributed uniformly over Hτ2B,1, is in Hτ2B,2 with probability 2´τ . By the multiplicative Chernoff bound, we have
that, for η ď 1, it is the case

PW„Binpρn,1{nq r|W ´ ρ| ą ρηs ď exp

ˆ

´η2ρ

3

˙

. (72)

As long as we take ρ “ 36 lnp1{δq
ε2

, inequality (72) will be satisfied with η “ ε{6, which in turn implies inequality
(71) since

p1` ε{6qρ` 1

ρp1´ ε{6q
ď
eε{6ρ` 1

e´ε{3ρ
ď
e4ε{6ρ

e´ε{3ρ
ď eε,

where the second inequality above uses pρ` 1q{ρ ď eε{2 for our choice of ρ.
We have thus established inequality (68) for the case that x̃n, x̃1n differ by 1 on two indices. For the general case,

consider any neighboring datasets X “ px̃1, . . . , x̃nq and X 1 “ px̃1, . . . , x̃n´1, x̃
1
nq; we can find a sequence of at

most k ´ 1 intermediate datasets px̃1, . . . , x̃n´1, x̃
pµq
n q, 1 ď µ ď k ´ 1 such that x̃pµqn and x̃pµ´1q

n differ by 1 on two
indices. Applying inequality (68) to each of the k neighboring pairs in this sequence, we see that for any U Ă Y ,

PrP pXq P Us ď ekε ¨ PrP pX 1q P Us ` δ ¨ p1` eε ` ¨ ¨ ¨ ` epk´1qεq ď ekε ¨ PrP pX 1q P Us ` δ ¨ 2ekε

ε
,

where we have used ε ď 1 in the final inequality above.

We next prove the accuracy of Algorithm 1.

Lemma 4.5 (Accuracy of PHad). Fix n,B P N with B a power of 2. Then with τ, ρ as in Lemma 4.4, the estimate
x̂ produced in AHad in the course of the shuffled-model protocol PHad “ pRHad, S,AHadq with input x1, . . . , xn P
t0, 1uB satisfies

P

«›

›

›

›

›

x̂´
n
ÿ

i“1

xi

›

›

›

›

›

8

ď
a

3 lnp2B{βq ¨maxt3 lnp2B{βq, ρ` ku

ff

ě 1´ β.

Proof. Fix any j P rBs. Let ζj “
řn
i“1pxiqj . We will upper bound the probability that ξj :“ x̂j´ζj is large. Notice

that the distribution of x̂j is given by

1

1´ 2´τ
¨
`

ζj ` Binpρn` kn´ ζj , 2
´τ q ´ pρn` knq2´τ

˘

.

This is because each of the ρn tuples pãg,1, . . . , ãg,ρq chosen uniformly from r2Bsτ on Line 8 of Algorithm 1 has
probability 2´τ of belonging to Hτ2B,j , and each of the kn´ ζj tuples paj1,1, . . . , aj1,τ q (for j1 P Si, j1 ‰ j, i P rns)
chosen uniformly fromHτ2B,j1 in Line 6 of Algorithm 1 also has probability 2´τ of belonging toHτ2B,j . (Moreover,
each of the ζj tuples paj,1, . . . , aj,τ q chosen in Line 6 of the local randomizer always belongs toHτ2B,j .)

Therefore, the distribution of ξj is given by

1

1´ 2´τ
¨
`

Binpρn` kn´ ζj , 2
´τ q ´ pρn` kn´ ζjq2

´τ
˘

.
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Using that τ “ log n, we may rewrite the above as

n

n´ 1
¨ pBinppρ` k ´ ζj{nq ¨ n, 1{nq ´ pρ` k ´ ζj{nqq .

For any reals c ą 0 and 0 ď η ď 1, by the Chernoff bound, we have

Pξ„Binpcn,1{nq r|z ´ c| ą ηcs ď 2 exp

ˆ

´η2c

3

˙

.

Moreover, for η ą 1, we have

Pξ„Binpcn,1{nq r|z ´ c| ą ηcs ď 2 exp

ˆ

´ηc

3

˙

.

We have 2 expp´η2c{3q ď β{B as long as η ě
a

3 lnp2B{βq{c. Set c “ ρ` k ´ ζj{n, so that ρ ď c ď ρ` k.
First suppose that

a

3 lnp2B{βq{pρ` k ´ ζj{nq ď 1. Then we see that

Pr|x̂j ´ ζj | ą
a

3 lnp2B{βq ¨ pρ` kqs ď β{B. (73)

In the other case, namely ρ` k ´ ζj{n “ c ă 3 lnp2B{βq, set η “ 3 lnp2B{βq{c, and we see that

Pr|x̂j ´ ζj | ą 3 lnp2B{βqs ď β{B. (74)

The combination of (73) and (74) with a union bound over all j P rBs completes the proof of Lemma 4.5.

Next we summarize the communication and computation settings of the shuffled model protocol PHad.

Lemma 4.6 (Efficiency of PHad). Let n,B, τ, ρ, k P N. Then the protocol PHad “ pRHadpn,B, τ, ρ, kq, S,
AHadpn,B, τ, ρ, kqq satisfies the following:

1. On input px1, . . . , xnq P t0, 1u
B , the output of the local randomizers RHadpn,B, τ, ρ, kq consists of npk` ρq

messages of length τ log 2B bits.
2. The runtime of the analyzer AHadpn,B, τ, ρ, kq on input ty1, . . . , ymu is at most OpBmτq and its output has

space OpB logpnpk` ρqqq bits. Moreover, if τ “ log n (i.e., as in Lemma 4.4), and if its input ty1, . . . , ymu is
the output of the local randomizers on input x1, . . . , xn (so that m “ npρ` kq), there is a modification of the
implementation ofAHad in Algorithm 1 that, for β P r0, 1s, completes in timeOppρ`kqn log3B`Bρ logB{βq
with probability 1´ β.

3. There is a separate modification of AHadpn,B, τ, ρ, kq that on input ty1, . . . , ymu produces an output data
structure pFO,Aq with space Opmτ logBq bits, such that a single query ApFO, jq of some j P rBs takes
time Opmτ logBq.

Proof. The first item is immediate from the definition of RHad in Algorithm 1. For the second item, note first that
AHad as written in Algorithm 1 takes time OpBmτ logBq: for each message yi “ pai,1, . . . , ai,τ q, it loops through
each j P rBs to check if each ai,g P H2B,j for 1 ď g ď τ (determination of whether ai,g P H2B,j takes time
OplogBq).

Now suppose that the messages y1, . . . , ym are the union of the multisets output by each of n shufflers on
input x1, . . . , xn. Notice that for each j1 P r2B ´ 1s, the number of messages paj,1, . . . , aj,τ q P H2B,j (Line 6 of
Algorithm 1) such that j ‰ j1 and also paj,1, . . . , aj,τ q Ă H2B,j1 is distributed as Binpn1, 1{nq for some n1 ď n
(recall τ “ log n). Moreover, for each j1 P r2B´ 1s, the number of messages of the form pãg,1, . . . , ãg,τ q (Line 8 of
Algorithm 1) satisfying pãg,1, . . . , ãg,τ q Ă H2B,j1 is distributed as Binpρn, 1{nq. Therefore, by the multiplicative
Chernoff bound and a union bound, for any 0 ď β ď 1, the sum, over all j1 P rBs, of the number of messages
pa1, . . . , aτ q that belong toH2B,j1 is bounded above by

kn`
4Bpn` ρnqp1` lnpB{βqq

n
“ kn` 4Bp1` ρqp1` lnpB{βqq, (75)
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with probability 1´ β. Next, consider any individual message yi “ pai,1, . . . , ai,τ q (as on Line 16). Notice that the
set of j such that tai,1, . . . , ai,τu Ă H2B,j can be described as follows: write j “ pj1, . . . , jlog 2Bq P t0, 1u

2B to
denote the binary representation of j, and arrange the log 2B-bit binary representations of each of ai,1, . . . , ai,τ to
be the rows of a τ ˆ log 2B matrix A P t0, 1uτˆlog 2B . Then tai,1, . . . , ai,τu Ă H2B,j if and only if Aj “ 0, where
arithmetic is performed over F2. This follows since for binary representations i “ pi1, . . . , ilog 2Bq P t0, 1u

log 2B

and j “ pj1, . . . , jlog 2Bq P t0, 1u
log 2B , the pi, jq-element of HB is p´1q

řlog 2B
t“1 itjt . Using Gaussian elimination one

can enumerate the set of j P t0, 1ulog 2B in the kernel of A in time proportional to the sum of Oplog3Bq and the
number of j in the kernel. Since the sum, over all messages yi, of the number of such j is bounded above by p75q
(with probability 1 ´ β), the total running time of this modification of AHad becomes Oppρ ` kqn log3B ` kn `
Bρ logpB{βqq.

For the last item of the theorem, the analyzer simply outputs the collection of all tuples yi “ pai,1, . . . , ai,τ q;
to query the frequency of some j P rBs, we simply run the for loop on Line 14 of Algorithm 1, together with the
debiasing step of Line 19.

4.2 Public-Coin Protocol with Small Query Time

In this subsection, we give a public-coin protocol for frequency estimation in the shuffled model with error poly logB
and communication per user polyplogB, log nq bits. As discussed in Section 1.3, our protocol is based on combin-
ing the Count Min data structure [CM05a] with a multi-message version of randomized response [War65]. We start
by giving a more detailed overview of the protocol.

Overview. On a high level, the presence of public randomness (which is assumed to be known to the analyzer)
allows the parties to jointly sample random seeds for hash functions which they can use to compute and communicate
(input-dependent) updates to a probabilistic data structure. The data structure that we will use is Count Min which
we recall next. Assume that each of n users holds an input from rBs where n ! B. We hash the universe rBs
into s buckets where s “ Opnq. 15 Then for each user, we increment the bucket to which its input hashes. This
ensures that for every element of rBs, its hash bucket contains an overestimate of the number of users having that
element as input. However, these bucket values are not enough to unambiguously recover the number of users
holding any specific element of rBs—this is because on average, B{s different elements hash to the same bucket.
To overcome this, the Count Min data structure repeats the above idea τ “ OplogBq times using independent hash
functions. Doing so ensures that for each element j P rBs, it is the case that (i) no other element j1 P rBs hashes
to the same buckets as j for all τ repetitions, and (ii) for at least one repetition, no element of rBs that is held by a
user (except possibly j itself) hashes to the same bucket as j. To make the Count Min data structure differentially
private, we use a multi-message version of randomized response [War65]. Specifically, we ensure that sufficient
independent noise is added to each bucket of each repetition of the Count Min data structure. This is done by letting
each user independently, using its private randomness, increment every bucket with a very small probability. The
noise stability of Count Min is used to ensure that the frequency estimates remain accurate after the multi-message
noise addition. We further use the property that updates to this data structure can be performed using a logarithmic
number of “increments” to entries in the sketch for two purposes: (i) to bound the privacy loss for a single user, and
(ii) to obtain a communication-efficient implementation of the protocol. The full description appears in Algorithm 2.

Analysis. We next show the accuracy, efficiency, and privacy guarantees of Algorithm 2 which are summarized in
the following theorem.

Theorem 4.7. There is a sufficiently large positive absolute constant ζ such that the following holds. Suppose
n,B, k P N, and 0 ď ε, δ, β ď 1. Consider the shuffled-model protocol PCM “ pRCM, S,ACMq with τ “

15It is possible to introduce a trade-off here: By increasing s we can improve privacy and accuracy at the cost of requiring more com-
munication. For simplicity we present our results for the case s “ Opnq, minimizing communication, and discuss larger s at the end of
section 4.2
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Algorithm 2: Local randomizer, analyzer and query for frequency estimation via Count Min.

1 RCMpn,B, τ, γ, sq:
Input: Subset S Ă rBs specifying the user’s input set
Parameters: n,B, τ, s P N and γ P r0, 1s
Public Randomness: A random hash family tht : rBs Ñ rss, @t P rτ su
Output: A multiset T Ă rτ s ˆ rss

2 for j P S do
3 for t P rτ s do
4 Add the pair pt, htpjqq to T .

5 for t P rτ s do
6 for ` P rss do
7 Sample bt,` from Berpγq.
8 if bt,` “ 1 then
9 Add the pair pt, `q to T .

10 return T .

11 ACMpn,B, τ, sq:
Input: Multiset ty1, . . . , ymu containing outputs of local randomizers
Parameters: n,B, τ, s P N
Public Randomness: A random hash family tht : rBs Ñ rss, @t P rτ su
Output: A noisy Count Min data structure C : rτ s ˆ rss Ñ N

12 for t P rτ s do
13 for ` P rss do
14 Crt, `s “ 0.

15 for j P rms do
16 Cryjs Ð Cryjs ` 1.

17 return C
18 QCMpn,B, τ, sq:

Input: Element j P rBs
Parameters: n,B, τ, s P N
Public Randomness: A random hash family tht : rBs Ñ rss, @t P rτ su
Output: A non-negative real number which is an estimate of the frequency of element j

19 return x̂j :“ max tmintCrt, htrjss ´ γn : t P rτ su, 0u

logp2B{βq, s “ 2kn, and

γ “
1

n
¨ ζ ¨max

"

log n,
log2pB{βqk2 logplogpB{βqk{δq

ε2

*

.

Then PCM is pε, δq-differentially private (Definition 2.2), each user sends Opγkn logpB{βqq messages consisting
of Oplog n ` log logB{βq bits each with probability 1 ´ β, and for inputs x1, . . . , xn P t0, 1u

B (}xi}1 ď k), the
estimates x̂j produced by QCM satisfy:

P

»

–@j P rBs :

ˇ

ˇ

ˇ

ˇ

ˇ

x̂j ´
n
ÿ

i“1

xi,j

ˇ

ˇ

ˇ

ˇ

ˇ

ď O

¨

˝

d

log

ˆ

Bn

β

˙

¨

ˆ

log

ˆ

Bn

β

˙

`
k2 log2pB{βq logpplogB{βqk{δq

ε2

˙

˛

‚

fi

fl ě 1´β.

(76)
Moreover, any frequency query can be answered in time OplogB{βq.
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Notice that by decreasing β by at most a constant factor (and thus increasing the error bounds by at most a
constant factor), we may ensure that τ “ logp2B{βq in the theorem statement is an integer. Note also that the
additive error in (76) is Õpk{εq, where the Õp¨q hides factors logarithmic in B,n, k, 1{δ, 1{β.

Theorem 4.7 with k “ 1 directly implies Theorem 4.2. The next lemma is used to prove the accuracy of
Algorithm 2.

Lemma 4.8 (Accuracy of PCM). Let n, B, and τ be positive integers, and γ P r0, 1s, ξ P r0,
?
γns be real

parameters. Then the estimate x̂j produced by QCM on input j P rBs and as an outcome of the shuffled-model
protocol PCM “ pRCM, S,ACMq with input x1, . . . , xn P t0, 1u

B (}xi}1 ď k) satisfies x̂j ě
řn
i“1 xi,j and

P

«ˇ

ˇ

ˇ

ˇ

ˇ

x̂j ´
n
ÿ

i“1

xi,j

ˇ

ˇ

ˇ

ˇ

ˇ

ď ξ
?
γn

ff

ě 1´ pkn{sqτ ´ 2logp2sτq´ξ2{3.

Proof. We consider the entries tCrt, htrjss | t P rτ su of the noisy Count Min data structure. We first consider the
error due to the other inputs that are held by the users. Then we consider the error due to the noise blanket. We
bound each of these two errors with high probability and then apply a union bound.

First, note that for any element j P rBs, the probability that for every repetition index t P rτ s, some element
j1 P rBs held by one of the users (except possibly j itself) satisfies htpj1q “ htpjq, is at most pkn{sqτ . As in
the original analysis of Count Min [CM05a], this holds even if the hash functions ht are sampled from a family of
pairwise independent hash functions.

It remains to show that with probability at least 1 ´ 21`logpsτq´ξ2{3, the absolute value of the deviation of the
blanket noise in each of these entries from its expectation γ ¨ n is at most O

`?
γn

˘

. By a union bound over all
sτ pairs of bucket indices and repetition indices, it is enough to show that for each t P rτ s and each ` P rss, with
probability at least 1´ 21´ξ2{3, the absolute value of the blanket noise in Crt, htrjss is at most ξ

?
γn. This follows

from the fact that the blanket noise in the entry Crt, htrjss is the sum of n independent Berpγq random variables
(one contributed by each user). The bound now follows from the multiplicative Chernoff bound.

Finally, by a union bound the overall error is at mostO pγnqwith probability at least 1´pkn{sqτ´2Θplogpsτq´γnq.

By removing the subtraction of γn on the final line of Algorithm 2, we can guarantee that the estimate returned
by the Count Min sketch is never less than the true count of an element. This would lead to, however, an expected
error of Opγnq as opposed to Op

?
γnq in Lemma 4.8. The next lemma shows the efficiency of Algorithm 2.

Lemma 4.9 (Efficiency of PCM). Let n,B, τ, s be positive integers and γ P r0, 1s. Then,
1. With probability at least 1 ´ n ¨ 2´Θpγsτq, the output of RCMpn,B, τ, γ, sq on input S consists of at most
|S| `Opγsτq messages each consisting of rlog2pτqs` rlog2psqs bits.

2. The runtime of the analyzer ACMpn,B, τ, sq on input ty1, . . . , ymu is Opτs `mq and the space of the data
structure that it outputs is Opτs logmq bits.

3. The runtime of any query QCMpn,B, τ, sq is Opτq.

Proof. The second and third parts follow immediately from the operation of Algorithm 2. To prove the first part, note
that each user sends |S| messages corresponding to its inputs along with a number of “blanket noise” terms. This
number is a random variable drawn from the binomial distribution Binpτs, γq. Moreover, each of these messages
is a pair consisting of a repetition index (belonging to rτ s) and a bucket index (belonging to rss). The proof now
follows from the multiplicative Chernoff bound along with a union bound over all n users.

The next lemma establishes the privacy of Algorithm 2.

Lemma 4.10 (Privacy of PCM). Let n and B be positive integers. Then, for γn ě 90k2τ2 lnp2τk{δq
ε2

, the algorithm
S ˝RCMpn,B, τ, γ, sq is pε, δq-differentially private.

To prove Lemma 4.10, we need some general tools linking sensitivity of vector-valued functions, smoothness of
distributions and approximate differential privacy—these are given next in Section 4.3. The proof of Lemma 4.10 is
deferred to Section 4.4. We are now ready to prove Theorem 4.7.
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Proof of Theorem 4.7. Privacy is an immediate consequence of Lemma 4.10. To establish accuracy (i.e., (76)),
note first that Lemma 4.8 guarantees that for any j P rBs and any ξ P r0,

?
γns, |x̂j ´

řn
i“1 xi,j | ď ξ

?
γn

with probability at least 1 ´ pkn{sqτ ´ 2logp2sτq´ξ2{3. We now choose ξ “
c

3 ¨ log
´

4Bsτ
β

¯

; this ensures that

2logp2sτq´ξ2{3 ď β{p2Bq. Moreover, we have that ξ ď
?
γn by our choice of γ in the theorem statement.

It now follows from a union bound over all j P rBs that

P

»

–@j P rBs :

ˇ

ˇ

ˇ

ˇ

ˇ

x̂j ´
n
ÿ

i“1

xi,j

ˇ

ˇ

ˇ

ˇ

ˇ

ď O

¨

˝

d

log

ˆ

Bn

β

˙

¨

ˆ

log

ˆ

Bn

β

˙

`
k2 log2pB{βq logplogpB{βqk{δq

ε2

˙

˛

‚

fi

fl ě 1´β.

(77)
Here we have used that k ď B.

Improving error and privacy by increasing communication. Theorem 4.7 bounds the error of Algorithm 2 with
parameters s “ Opnq and τ “ OplogB{βq. For constant η ą 0 it is interesting to consider the parameteriza-
tion s “ Opnpn{βqηq and τ “ Op1{ηq. By Lemma 4.10 differential privacy can be ensured in this setting with
γn “ Opk2 logpk{δq{ε2q. The randomizer of Algorithm 2 sends a number of blanket messages that is Opγsq in ex-
pectation, i.e., Oppn{βqηk2 logpk{δq{ε2q. An argument mirroring the proof of Lemma 4.8 shows that the pointwise
error of an estimate x̂j is bounded by

a

γn logp1{βq “ Opk
a

logpk{δq logp1{βq{εq with probability 1 ´ β. Thus,
error as well as communication is independent of the domain size B. To get a bound that is directly comparable to
Theorem 4.7, holding for all queries in rBs, we may reduce the pointwise error probability β by a factor B and ap-
ply a union bound, resulting in communication OppBn{βqηk2 logpk{δq{ε2q and error Opk

a

logpk{δq logpB{βq{εq.
Query time is τ “ Op1q. This strictly improves the results that follow from [CSU`19, BBGN19a, GPV19] (see
Table 1). Very recently, Balcer and Cheu [BC19] showed a different trade-off in the case where the number of
messages is very large: B` 1 messages of size OplogBq each with error Oplogp1{δq{ε2`

a

logp1{δq logpn{βq{εq,
which is independent of B.

4.3 Useful Tools

If the blanket noise added to each bucket of the Count Min sketch were distributed as i.i.d. Gaussian or Laplacian
random variables, the proof of Lemma 4.10 would follow immediately from known results. Due to the discrete
and distributed nature of the problem, we are forced to instead use Binomial blanket noise. To prove Lemma 4.10,
we will need some general tools linking approximate differential privacy to smoothness of distributions (and in
particular the Binomial distribution); these tools are essentially known, but due to the lack of a suitable reference we
prove all the prerequisite results.

Definition 4.1 (Sensitivity). The `1-sensitivity (or sensitivity, for short) of f : X n Ñ Zm is given by:

∆pfq “ max
X„X 1

}fpXq ´ fpX 1q}1.

It is well-known [DMNS06] that the mechanism given by adding independent Laplacian noise with variance
2∆pfq2{ε2 to each coordinate of fpXq is pε, 0q-differentially private. Laplace noise, however, is unbounded in both
the positive and negative directions, and this causes issues in the shuffled model (roughly speaking, it would require
each party to send infinitely many messages). In our setting we will need to ensure that the noise added to each
coordinate is bounded, so to achieve differential privacy we will not be able to add Laplacian noise. As a result we
will only be able to obtain pε, δq-differential privacy for δ ą 0. We specify next the types of noise that we will use
instead of Laplacian noise.

Definition 4.2 (Smooth distributions). Suppose D is a distribution supported on Z. For k P N, ε ě 0 and δ P r0, 1s,
we say that D is pε, δ, kq-smooth if for all ´k ď k1 ď k,

PY„D
„

PY 1„DrY 1 “ Y s

PY 1„DrY 1 “ Y ` k1s
ě e|k

1|ε



ď δ.
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Definition 4.3 (Incremental functions). Suppose k P N. We define f : X n Ñ Zm to be k-incremental if for all
neighboring datasets X „ X 1, }fpXq ´ fpX 1q}8 ď k.

The following lemma formalizes the types of noise we can add to fpXq to obtain such a privacy guarantee. Its
proof appears in Appendix C.

Lemma 4.11. Suppose f : X n Ñ Zm is k-incremental (Definition 4.3) and ∆pfq “ ∆. Suppose D is a distribution
supported on Z that is pε, δ, kq-smooth. Then the mechanism

X ÞÑ fpXq ` pY1, . . . , Ymq,

where Y1, . . . , Ym „ D, i.i.d., is pε1, δ1q-differentially private, where ε1 “ ε ¨∆, δ1 “ δ ¨∆.

In order to prove Lemma 4.10, we will also use the following statement about the smoothness of the binomial
distribution (that we will invoke with a small value of the head probability γ). Its proof appears in Appendix C.

Lemma 4.12 (Smoothness of Binpn, γq). Let n P N, γ P r0, 1{2s, 0 ď α ď 1, and k ď αγn{2. Then the distribution

Binpn, γq is pε, δ, kq-smooth with ε “ lnpp1` αq{p1´ αqq and δ “ e´
α2γn

8 ` e´
α2γn
8`2α .

4.4 Privacy Proof

We are now ready to prove Lemma 4.10 using the results on k-incremental functions from the previous section,
thereby establishing the privacy of Algorithm 2. An alternative approach to establishing privacy of Algorithm 2 is
to first do so for the case k “ 1 and then apply the advanced composition lemma [DR14a]. However, doing so leads
to an error bound that incurs at least an additional

?
k factor since one has to make ε smaller by a factor of

?
k. In

order to prove Lemma 4.10, we could use Theorem 1 of [ASY`18] instead of our Lemma 4.12 but their result would
give worse bounds for k ą 1.

Proof of Lemma 4.10. Fix ε, δ. Notice that S ˝RCMpn,B, τ, γ, sq can be obtained as a post-processing of the noisy
Count Min data structure C : rτ s ˆ rss Ñ N in Algorithm 2, so it suffices to show that the algorithm bringing the
players’ inputs to this Count Min data structure is pε, δq-differentially private. Consider first the Count Min data
structure C̃ : rτ s ˆ rss Ñ N with no noise, so that C̃rt, `s measures the number of inputs x inside some user’s set
Si such that htpxq “ `. We next note that the function mapping the users’ inputs pS1, . . . ,Snq to C̃ has sensitivity
(in terms of Definition 4.1) at most kτ and is k-incremental (in terms of Definition 4.3). Moreover, Lemma 4.12
(with α “ ε{p3τkq) implies that the binomial distribution Binpn, γq is pε{pτkq, δ{pτkq, kq-smooth (in terms of

Definition 4.2) as long as δ ě 2τke´
ε2γn

90τ2k2 and k ď εγn{p6τkq. In particular, we need

γn ě
90τ2k2 lnp2τk{δq

ε2
.

By construction in Algorithm 2, Crt, ss “ C̃rt, ss`Binpn, γq, where the binomial random variables are independent
for each t, s. Applying Lemma 4.11, we get that the Count Min data structure is pε, δq-differentially private (with
respect to Definition 2.2).

5 Multi-Message Protocols for Range Counting Queries

We recall the definition of range queries. Let X “ rBs and consider a dataset X “ px1, . . . , xnq P rBs
n. Notice

that a statistical query may be specified by a vector w P RB , and the answer to this statistical query on the dataset
X is given by xw,histpXqy. For all queries w we consider, we will in fact have w P t0, 1uB , and thus w specifies
a counting query. Here x¨, ¨y denotes the Euclidean inner product; throughout the paper, we slightly abuse notation
and allow an inner product to be taken of a row vector and a column vector. A 1-dimensional range query rj, j1s,
where 1 ď j ď j1 ď B, is a counting query such that wj “ wj`1 “ ¨ ¨ ¨ “ wj1 “ 1, and all other entries of w are
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Problem Messages
per user

Message size
in bits Error Query time

d-dimensional
range counting (public)

Theorem 5.10

log3d`3pBq log 1
δ

ε2
logn` log logB

log2d`3{2pBq log 1
δ

ε
logd`1B

d-dimensional
range counting (private)

Theorem 5.9

log2dpBq log 1
εδ

ε2
logpnq logB

log2d`1{2pBq log
1
εδ

ε

n log3d`2pBq log
1
εδ

ε2

Table 3: Overview of results on differentially private range counting in the shuffled model. The query time stated is the
additional time to answer a query, assuming a preprocessing of the output of the shuffler that takes time linear in its length.
Note that frequencies and counts are not normalized, i.e., they are integers in t0, . . . , nu. For simplicity, constant factors are
suppressed, the bounds are stated for error probability β “ B´Op1q, and the following are assumed: dimension d is a constant,
n is bounded above by B, and δ ă 1{ logB.

0. For d-dimensional range queries, the elements of rBs will map to points on a d-dimensional grid, and a certain
subset of vectors w P t0, 1uB represent the d-dimensional range queries. In this section, we use the frequency oracle
protocols in Section 4 to derive protocols for computing counting queries with per-user communication poly logpBq
and additive error poly logpmaxtn,Buq.

In Section 5.2, we adapt the matrix mechanism of [LHR`10, LM12] to use the frequency oracle protocols of
Section 4 as a black-box for computation of counting queries, which include range queries as a special case. In
Section 5.3, we instantiate this technique for the special case of 1-dimensional range queries, and in Section 5.4
we consider the case of multi-dimensional range queries. In Section 5.5 we collect the results from Sections 5.2
through 5.4 to formally state our guarantees on range query computation in the shuffled model, as well as the
application to M -estimation of the median, as mentioned in the Introduction.

5.1 Frequency Oracle

We now describe a basic data primitive that encapsulates the results in Section 4 and that we will use extensively
in this section. Fix positive integers B and k ď B as well as positive real numbers κ and β. For each v P rBs,
let ev P t0, 1uB be the unit vector with pevqj “ 1 if j “ v, else pevqj “ 0. In the pκ, β, kq-frequency oracle
problem [HKR12, BS15], each user i P rns holds a subset Si Ă rBs of size at most k. Equivalently, user i holds the
sum of the unit vectors ev corresponding to the elements v of Si, i.e., the vector xi P t0, 1uB such that pxiqj “ 1
if and only if j P Si. Note that }xi}1 ď k for all i. At times we will restrict ourselves to the case that k “ 1; in
such cases we will often use xi to denote the single element xi P rBs held by user i, and write exi P t0, 1u

B for the
corresponding unit vector.

The goal is to design a (possibly randomized) data structure FO and a deterministic algorithm A (frequency
oracle) that takes as input the data structure FO and an index j P rBs, and outputs in time T an estimate that, with
high probability, is within an additive κ from

řn
i“1pxiqj . Formally:

Definition 5.1 (pκ, β, kq-frequency oracle). A protocol with inputs x1, . . . , xn P t0, 1u
B computes an pκ, β, kq-

frequency oracle if it outputs a pair pFO,Aq such that for all datasets px1, . . . , xnq with }xi}1 ď k for i P rns,

P

«

@j P rBs :

ˇ

ˇ

ˇ

ˇ

ˇ

ApFO, jq ´
n
ÿ

i“1

pxiqj

ˇ

ˇ

ˇ

ˇ

ˇ

ď κ

ff

ě 1´ β.

The probability in the above expression is over the randomness in creating the data structure FO.

Note that given such a frequency oracle, one can recover the p2κq-heavy hitters, namely those j such that
řn
i“1pxiqj ě 2κ, in time OpT ¨ Bq, by querying ApFO, 1q, . . . ,ApFO, Bq (for a more efficient reduction see

Appendix D).
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5.2 Reduction to Private Frequency Oracle via the Matrix Mechanism

Our protocol for computing range queries is a special case of a more general protocol, which is in turn inspired by
the matrix mechanism of [LHR`10, LM12]. We begin by introducing this more general protocol and explaining
how it allows us to reduce the problem of computing range queries in the shuffled model to that of computing a
frequency oracle in the shuffled model.

Finally, for a matrix M P RB ˆ RB , define the sensitivity of M as follows:

Definition 5.2 (Matrix sensitivity, [LHR`10]). For a matrix M , let the sensitivity of M , denoted ∆M , be the maxi-
mum `1 norm of a column of M .

For any column vector y P RB , ∆M measures the maximum `1 change in My if a single element of y changes
by 1. The matrix mechanism, introduced by Li et al. [LHR`10, LM12] in the central model of DP, allows one to
release answers to a given set of counting queries in a private manner. It is parametrized by an invertible matrix M ,
and given input X , releases the following noisy perturbation of histpXq:

histpXq `∆M ¨M
´1z, (78)

where z P RB is a random vector whose components are distributed i.i.d. according to some distribution calibrated to
the privacy parameters ε, δ. The response to a counting query w P RB is then given by xw,histpXq`∆M ¨M

´1zy.
The intuition behind the privacy of (78) is as follows: (78) can be obtained as a post-processing of the mechanism
X ÞÑ MphistpXqq ` ∆M ¨ z, namely via multiplication by M´1. If we choose, for instance, each zi to be an
independent Laplacian of variance 2{ε, then the algorithm X ÞÑ MphistpXqq ` ∆M ¨ z is simply the Laplace
mechanism, which is pε, 0q-differentially private [DMNS06].

In our modification of the matrix mechanism, the parties will send data that allows the analyzer to directly
compute the “pre-processed input” MphistpXqq`∆M ¨z. Moreover, due to limitations of the shuffled model and to
reduce communication, the distribution of the noise z will be different from what has been previously used [LHR`10,
LM12]. For our application, we will require M to satisfy the following properties:

(1) For any counting query w corresponding to a d-dimensional range query, wM´1 has at most poly logpBq
nonzero entries, and all of those nonzero entries are bounded in absolute value by some c ą 0. (Here w P

t0, 1uB is viewed as a row vector.)
(2) ∆M ď poly logpBq.

By property (2) above and the fact that all entries of M are in t0, 1u, (approximate) computation of the vec-
tor MphistpXqq can be viewed as an instance of the frequency oracle problem where user i P rns holds the
ď poly logpBq nonzero entries of the vector Mphistpxiqq. This follows since Mphistpxiqq is the xith column of M ,
∆M ď poly logpBq, and histpXq “

řn
i“1 histpxiq. Moreover, suppose there is some choice of local randomizer

and analyzer (such as those in Section 4) that approximately solve the frequency oracle problem, i.e., compute an
approximation ŷ of MphistpXqq up to an additive error of poly logB, in a differentially private manner. Since
wM´1 has at most poly logpBq nonzero entries, each of magnitude at most c, it follows that

xwM´1, ŷy (79)

approximates the counting query xw,histpXqy up to an additive error of c ¨ poly logpBq.

Algorithm 3: Local randomizer for matrix mechanism

1 Rmatrixpn,B,M,RFOq:
Input: x P rBs, parameters n,B P N,M P t0, 1uBˆB, RFO : t0, 1uB Ñ T ˚
Output: Multiset S Ă T , where T is the output set of RFO

2 Let Ax Ð tj P rBs : Mjx ‰ 0u
// Ax is the set of nonzero entries of the xth column of M

3 return RFOpAxq
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Perhaps surprisingly, for any constant d ě 1, we will be able to find a matrix M that satisfies properties (1) and
(2) above for d-dimensional range queries with c “ 1. This leads to the claimed poly logpBq error for computation
of d-dimensional range queries, as follows: the local randomizer Rmatrix (Algorithm 3) is parametrized by integers
n,B P N, a matrix M P t0, 1uBˆB , and a local randomizer RFO : rBs Ñ T ˚ that can be used in a shuffled model
protocol that computes a frequency oracle. (Here T is an arbitrary set, and RFO computes a sequence of messages
in T .) Given input x P rBs, Rmatrix returns the output of RFO when given as input the set of nonzero entries of
the xth column of M . The corresponding analyzer Amatrix (Algorithm 4) is parametrized by integers n,B P N, a
matrix M P t0, 1uBˆB , and an analyzer AFO for computation of a frequency oracle in the shuffled model. Given a
multiset S consisting of the shuffled messages output by individual randomizers Rmatrix, it returns (79), namely the
inner product of wM´1 and the output of AFO when given S as input. To complete the construction of a protocol

Algorithm 4: Analyzer for matrix mechanism

1 Amatrixpn,B,M,AFOq:
Input: Multiset S Ă rBs consisting of the shuffled reports;
ParametersW Ă t0, 1uB specifying a set of counting queries, n,B P N,M P t0, 1uBˆB , analyzer AFO

for frequency oracle computation
Output: Map associating each w PW to fw P r0, 1s, specifying an estimate for each counting query w

2 Let pFO,Aq Ð AFOpSq
// Frequency oracle output by AFO (see Definition 5.1)

3 return Map associating each w PW to fw :“
ř

jPrBs:pwM´1qj‰0pwM
´1qj ¨ApFO, jq

// Let ŷ P RB be such that ŷj “ ApFO, jq; then this returns the map
associating w PW to xwM´1, ŷy.

for range query computation in the shuffled model, it remains to find a matrix M satisfying properties (1) and (2)
above. We will do so in Sections 5.3 and 5.4. First we state here the privacy and accuracy guarantees of the shuffled
protocol Pmatrix “ pRmatrix, S,Amatrixq.

Theorem 5.1 (Privacy of Pmatrix). Suppose RFO is a local randomizer for computation of an pκ, β, kq-frequency
oracle with n users and universe size B, which satisfies pε, δq-differential privacy in the shuffled model. Suppose
M P t0, 1uB satisfies ∆M ď k. Then the shuffled protocol S˝Rmatrixpn,B,M,RFOq is pε, δq-differentially private.

Proof. Let Y be the message space of the randomizer RFO, and Y 1 be the set of multisets consisting of elements
of Y . Let P “ S ˝ Rmatrixpn,B,M,RFOq. Consider neighboring datasets X “ px1, . . . , xnq P rBs

n and X 1 “
px1, . . . , xn´1, x

1
nq P rBs

n. We wish to show that for any T Ă Y ,

PrP pXq P T s ď eε ¨ PrP pX 1q P T s ` δ. (80)

For i P rns, let Si “ tj P rBs : Mj,xi ‰ 0u and S 1n “ tj P rBs : Mj,x1n ‰ 0u. Since ∆M ď k, we have |Si| ď k for
i P rns and |S 1n| ď k. Since the output of Rmatrix on input xi is simply RFOpSiq,

P pXq “ SpRFOpS1q, . . . , R
FOpSnqq, P pX 1q “ SpRFOpS1q, . . . , R

FOpSn´1q, R
FOpS 1nqq.

Then (80) follows by the fact that pS1, . . . ,Snq and pS1, . . . ,Sn´1,S 1nq are neighboring datasets for the pκ, β, kq-
frequency problem and S ˝RFO is pε, δq-differentially private.

Theorem 5.2 (Accuracy & efficiency of Pmatrix). Suppose RFO, AFO are the local randomizer and analyzer for
computation of an pκ, β, kq-frequency oracle with n users and universe size B. Suppose also that W Ă t0, 1uB

is a set of counting queries and M P t0, 1uB is such that, for any w P W , }wM´1}1 ď a and ∆M ď k.
Consider the shuffled model protocol Pmatrix “ pRmatrixpn,B,M,RFOq, S,Amatrixpn,B,M,AFO,Wqq. For any
dataset X “ px1, . . . , xnq, let the (random) estimates produced by the protocol Pmatrix on input X be denoted by
fw P r0, 1s (w PW). Then:

P r@w PW : |fw ´ xw,histpXqy| ď κ ¨ as ě 1´ β. (81)
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Moreover, if the set of nonzero entries of wM´1 and their values can be computed in time T , and AFO releases a
frequency oracle pFO,Aq which takes time T 1 to query an index j, then for any w P W , the estimate fw can be
computed in time OpT ` a ¨ T 1q by Amatrix.

Proof. For i P rns, let Si “ tj P rBs : Mj,xi ‰ 0u be the set of nonzero entries of the xith column of M .
Denote by pFO,Aq the frequency oracle comprising the output AFOpSpRFOpS1q, . . . , R

FOpSnqqq. Define ŷ P RB
by ŷj “ ApFO, jq, for j P rBs. Then the output of Pmatrix, namely

PmatrixpXq “ AmatrixpSpRmatrixpx1q, . . . , R
matrixpxnqqq,

is given by the map associating each w PW to xwM´1, ŷy (Algorithms 3 and 4).
Since pFO,Aq is an pκ, β, kq-frequency oracle, we have that

P r}ŷ ´ histpS1, . . . ,Snq}8 ď κs ě 1´ β.

Notice that the histogram of Si is given by the xith column ofM , which is equal toMhistpxiq. Thus histpS1, . . . ,Snq “
Mhistpx1, . . . , xnq. By Hölder’s inequality, it follows that with probability 1´ β, for all w PW ,

ˇ

ˇxwM´1, ŷy ´ xwM´1,Mhistpx1, . . . , xnqy
ˇ

ˇ ď κ ¨ }wM´1}1 ď κ ¨ a.

But xwM´1,Mhistpx1, . . . , xnqy “ wM´1Mhistpx1, . . . , xnq “ xw,histpx1, . . . , xnqy is the answer to the count-
ing query w. This establishes (81).

The final claim involving efficiency follows directly from Line 3 of Algorithm 4.

5.3 Single-Dimensional Range Queries

We first present the matrix M discussed in previous section for the case of d “ 1, i.e., single-dimensional range
queries. In this case, the set X “ rBs is simply identified with B consecutive points on a line, and a range query
rj, j1s is specified by integers j, j1 P rBs with j ď j1. We will assume throughout that B is a power of 2. (This
assumption is without loss of generality since we can always pad the input domain to be of size a power of 2, with the
loss of a constant factor in our accuracy bounds.) We begin by presenting the basic building block in the construction
of M , namely that of a range query tree TB with B leaves and a chosen set CB of B nodes of TB:

Definition 5.3 (Range query tree). Suppose B P N is a power of 2, ` P N, γ P p0, 1q. Define a complete binary tree
TB of depth logB, where each node stores a single integer-valued random variable:

1. For a depth 0 ď t ď logB and an index 1 ď s ď B{2logB´t, let vt,s be the sth vertex of the tree at depth t
(starting from the left). We will denote the value stored at vertex vt,s by yt,s. The values yt,s will always have
the property that yt,s “ yt`1,2s´1 ` yt`1,2s; i.e., the value stored at vt,s is the sum of the values stored at the
two children of vt,s.

2. Let CB “ tvt,s : 0 ď t ď logB, s ” 1 pmod 2qu. Let the B nodes in CB be ordered in the top-to-bottom,
left-to-right order. In particular, v0,1 comes first, v1,1 is second, v1,3 is third, v2,1 is fourth, and in general: the
jth node in this ordering (1 ă j ď B) is vtj ,sj , where tj “ rlog2 js, sj “ 2pj ´ 2tj´1q ´ 1.

3. For 1 ď j ď B, we will denote zj :“ ylogB,j and yj “ ytj ,sj .

See Figure 2 for an illustration of T4. The next lemma establishes some basic properties of the set CB:

Lemma 5.3. Fix d a power of 2. We have the following regarding the set CB defined in Definition 5.3:
1. CB is the union of the the root and set of nodes of TB that are the left child of their parent.
2. For any node u R CB , there is some v P TB (which is an ancestor of u) so that there is a path from v to u that

consists entirely of following the right child of intermediate nodes, starting from v.

Proof of Lemma 5.3. The first part is immediate from the definition of CB . For the second part, given u, we walk
towards the root, continually going to the parent of the current node. The first time we arrive at a node that is the left
child of its parent, we will be at a node in CB; we let this node be v.
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v0,1

v1,1 v1,2

v2,3v2,1 v2,2 v2,4

y0,1=z1+z2+z3+z4

y1,1= z1+z2
y1,2= z3+z4

y2,1= z1 y2,2= z2 y2,3= z3 y2,4= z4

(a) Range query tree, B “ 4

v0,1

v1,1 v1,2

v2,3v2,1 v2,2 v2,4

y0,1

y1,2= y0,1-y1,1

y2,3 y2,4= y1,2-y2,3
= y0,1-y1,1-y2,3

y1,1

(b) Path P constructed to derive (82)

Figure 2: (a) The range query tree T4. The nodes in C4 are highlighted in red. The labels yt,s, zs next to nodes show the
values stored at the nodes and the relations between them. Notice that in the case B “ 4, we have pt1, s1q “ p0, 1q, pt2, s2q “
p1, 1q, pt3, s3q “ p2, 1q, pt4, s4q “ p2, 3q. (b) The path P described in (82) for j “ 4 is highlighted in blue. For this case
(B “ j “ 4) we have z4 “ y0,1 ´ y1,2 ´ y2,3.

Next we make two more definitions that will aid in the analysis:

Definition 5.4. For an integer j P rBs, let vpjq denote the number of steps from a node to its parent one must take
starting at the leaf vlogB,j of the tree TB to get to a node in CB . Equivalently, vpjq is the 2-adic valuation of j (i.e.,
the base-2 logarithm of the largest power of 2 dividing j).

Definition 5.5. For a positive integer j, let cpjq be the number of ones in the binary representation of j.

By property (1) of Definition 5.3, the set of all values yt,s, for 0 ď t ď logB, 1 ď s ď B{2t, is entirely
determined by the values zs: in particular, for any vt,s, yt,s is the sum of all zs for which the leaf vlogB,s is a
descendant of vt,s. Conversely, given the values of yt,s for which vt,s P CB (equivalently, the values ytj ,sj for
j P rBs), the values zj “ ylogB,j are determined as follows:

zj “ ylogB,j “ ylogB´vpjq,j{2vpjq ´

vpjq´1
ÿ

t“1

ylogB´vpjq`t,j{2vpjq´t´1. (82)

Graphically, we follow the path P from vlogB,j to the root until we hit a node vt,s in CB; then zj is the difference of
yt,s and the sum of the variables stored at the left child of each node in the path P . (See Figure 2 for an example.)

It follows from the argument in the previous paragraph that the linear transformation that sends the vector
pz1, . . . , zBq to the vector pyt1,s1 , . . . , ytB ,sB q is invertible; let MB P t0, 1uBˆB be the matrix representing this
linear transformation. By (82), which describes the linear transformation induced by M´1

B , we have that M´1
B P

t´1, 0, 1uBˆB .
Since each leaf has 1` logB ancestors (including itself), we immediately obtain:

Lemma 5.4. The sensitivity of MB is given by ∆MB
“ 1` logB.

Next consider any range query rj, j1s, so that 1 ď j ď j1 ď B, and let w P RB be the row vector representing
this range query (see Section 5.2). In particular all entries of w are 0 apart from wj , wj`1, . . . , wj1 , which are all 1.

Lemma 5.5. For a vector w representing a range query rj, j1s, the vector wM´1
B belongs to t´1, 0, 1uB , and it has

at most cpj´ 1q` cpj1q ď 2 logB nonzero entries. Moreover, the set of these nonzero entries (and their values) can
be computed in time OplogBq.

Proof of Lemma 5.5. Since MB is invertible, wM´1
B is the unique vector ν P RB such that for any values of

tyt,su0ďtďB,sPrB{2ts satisfying property (1) of Definition 5.3, we have

zj ` zj`1 ` ¨ ¨ ¨ ` zj1 “ ylogB,j ` ¨ ¨ ¨ ` ylogB,j1 “ xν, pyt1,s1 , . . . , ytB ,sB qy.
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Next let vt̃,s̃ be the first node in CB that is reached on the leaf-to-root path starting at vlogB,j1 . Recall from
Definition 5.4 that t̃ “ logB ´ vpj1q. Consider the path on the tree TB from the root v1,1 to the node vt̃,s̃. Suppose
the right child is taken at h ´ 1 vertices of this path; it is not hard to see that h “ cpj1q (see Definition 5.5). For
1 ď k ď h, at the kth vertex on this path where the right child is taken, set vt1k,s1k to be the left child of the parent
vertex (so that vt1k,s1k is not on the path). By Lemma 5.3, vt1k,s1k P CB . Also set vt1h,s1h “ vt̃,s̃. Then from Definition 5.3
(property (1)) we have

z1 ` ¨ ¨ ¨ ` zj1 “ ylogB,1 ` ¨ ¨ ¨ ` ylogB,j1 “

h
ÿ

k“1

yt1k,s
1
k
. (83)

The same computation for j ´ 1 replacing j1 yields, with ĥ “ cpj ´ 1q,

z1 ` ¨ ¨ ¨ ` zj´1 “ ylogB,1 ` ¨ ¨ ¨ ` ylogB,j´1 “

ĥ
ÿ

k“1

yt̂k,ŝk , (84)

where the pairs pt̂k, ŝkq replace the pairs pt1k, s
1
kq. Taking the difference of (83) and (84) yields

zj ` ¨ ¨ ¨ ` zj1 “
h
ÿ

k“1

yt1k,s
1
k
´

ĥ
ÿ

k“1

yt̂k,ŝk ,

i.e., zj ` ¨ ¨ ¨ ` zj1 is a linear combination of at most cpj´ 1q` cpj1q elements of tyt,s : vt,s P CBu, with coefficients
in t´1, 1u. The sets tpt1k, s

1
kqu1ďkďh and tpt̂k, ŝkqu1ďkďĥ can be computed in OplogBq time by walking on the

leaf-to-root path starting at vlogB,j1 and vlogB,j´1, respectively. This establishes Lemma 5.5.

Lemmas 5.4 and 5.5 establish properties (1) and (2) required of the matrix M “ MB to guarantee poly logpBq
accuracy and poly logpBq communication for private computation of 1-dimensional range queries. In the following
section we use MB to construct a matrix which satisfies the same properties for d-dimensional range queries for any
d ě 1.

5.4 Multi-Dimensional Range Queries

Fix any d ě 1, and suppose the universe X consists ofB0 buckets in each dimension, i.e., X “ rB0s
d. In this case, a

range query rj1, j11sˆ rj2, j
1
2sˆ ¨ ¨ ¨ˆ rjd, j

1
ds is specified by integers j1, j2, . . . , jd, j11, j

1
2, . . . , j

1
d P rB0s with ji ď j1i

for all i “ 1, 2, . . . , d.
Throughout this section, we will consider the case that d is a constant (and B0 is large). Moreover suppose that

B0 is a power of 2 (again, this is without loss of generality since we can pad each dimension to be a power of 2 at the
cost of a blowup in |X | by at most a factor of 2d). Write B “ |X | “ Bd

0 . Our goal is to define a matrix MB,d which
satisfies analogues of Lemmas 5.4 and 5.5 for w P t0, 1uB representing multi-dimensional range queries (when rBs
is identified with rB0s

d).
The idea behind the construction ofMB,d is to apply the linear transformationMB0 in each dimension, operating

on a single-dimensional slice of the input vector pzj1,...,jdqj1,...,jdPrB0s (when viewed as a d-dimensional tensor) at a
time. Alternatively, MB,d can be viewed combinatorially through the lens of range trees [Ben79]: MB,d is a linear
transformation that takes the vector pzj1,...,jdq to a B-dimensional vector whose components are the values stored at
the nodes of a range tree defined in a similar manner to the range query tree TB for the case d “ 1. However, we
opt to proceed linear algebraically: the matrix MB,d is defined as follows. Fix a vector z P RB . We will index the
elements of z with d-tuples of integers in rB0s, i.e., we will write z “ pzj1,...,jdqj1,...,jdPrB0s. For 1 ď p ď d, let
Mpre
B,p be the linear transformation that appliesMB0 to each vector pzj1,...,jp´1,1,jp`1,...,jd , . . . , zj1,...,jp´1,B0,jp`1,...,jdq,

where j1, . . . , jp´1, jp`1, . . . , jd P rB0s. That is, MB0 is applied to each slice of the vector z, where the slice is
being taken along the pth dimension. Then let

MB,d :“Mpre
B,d ˝ ¨ ¨ ¨ ˝M

pre
B,1pzq. (85)
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We will also use an alternate characterization of MB,d, which we develop next. First identify RB with the d-wise
tensor product of RB0 , in the following (standard) manner: Let e1, . . . , eB0 P RB0 be the standard basis vectors in
RB0 . Then the collection of all ej1 b ¨ ¨ ¨ b ejd , where j1, . . . , jd P rB0s, form a basis for RB0 b ¨ ¨ ¨ b RB0 . Under
the identification RB » pRB0qbd, a vector z “ pzj1,...,jdqj1,...,jdPrB0s P RB is identified with the following linear
combination of these basis vectors:

ÿ

j1,...,jdPrB0s

zj1,...,jd ¨ ej1 b ¨ ¨ ¨ b ejd .

Under this identification, the matrix MB,d corresponds to the following linear transformation of pRB0qbd:

MB0 b ¨ ¨ ¨ bMB0 : pRB0qbd Ñ pRB0qbd.

In the following lemmas, we will often abuse notation to allow MB,d to represent both the above linear transforma-
tion as well as the matrix in RBˆB representing this transformation.

Lemma 5.6. We have that MB,d P t0, 1u
BˆB and the sensitivity of MB,d : RB Ñ RB is bounded by ∆MB,d

ď

p1` logB0q
d.

Proof of Lemma 5.6. Notice that the ppj1, . . . , jdq, pj11, . . . , j
1
dqq entry of MB,d is given by the following product:

d
ź

p“1

pMB0qjp,j1p .

Since MB0 P t0, 1u
B0ˆB0 , it follows immediately that MB,d P t0, 1u

BˆB . Moreover, to upper bound the sensitivity
of MB,d note that for any pj11, . . . , j

1
dq P rB0s

d,

ÿ

pj1,...,jdqPrB0sd

d
ź

p“1

pMB0qjp,j1p “

d
ź

p“1

¨

˝

B0
ÿ

jp“1

pMB0qjp,j1p

˛

‚ď p∆MB0
qd ď p1` logB0q

d,

where the last inequality above uses Lemma 5.4.

Lemma 5.7. For the vector w representing any range query rj1, j11s ˆ ¨ ¨ ¨ ˆ rjd, j
1
ds, the vector wM´1

B,d belongs to
t´1, 0, 1uB and moreover it has at most

d
ź

p“1

pcpjp ´ 1q ` cpj1pqq ď p2 logB0q
d “ p2 logpB1{dqqd

nonzero entries.

Proof of Lemma 5.7. The inverse M´1
B,d of MB,d is given by the d-wise tensor product M´1

B0
b ¨ ¨ ¨ bM´1

B0
. This can

be verified by noting that this tensor product and MB,d multiply (i.e., compose) to the identity:

pM´1
B0
b ¨ ¨ ¨ bM´1

B0
q ¨MB,d “ pM

´1
B0
b ¨ ¨ ¨ bM´1

B0
q ¨ pMB0 b ¨ ¨ ¨ bMB0q

“ pM´1
B0
¨MB0q b ¨ ¨ ¨ b pM

´1
B0
¨MB0q

“ IB0 b ¨ ¨ ¨ b IB0

“ IB.

Recall that the (row) vector w representing the range query rj1, j11s ˆ ¨ ¨ ¨ ˆ rjd, j
1
ds satisfies, for each pj21 , . . . , j

2
dq P

rB0s
d, wj21 ,...,j2d “ 1 if and only if j2p P rjp, j

1
ps for all 1 ď p ď d, and otherwise wj21 ,...,j2d “ 0. Therefore, we may

write w as the product of row vectors w “ w1 b ¨ ¨ ¨ bwd, where for 1 ď p ď d, wp is the (row) vector representing
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the range query rjp, j1ps. In particular, for 1 ď j2 ď B0, the j2th entry of wp is 1 if and only if j2 P rjp, j1ps. It
follows that

wM´1
B,d “ pw1 b ¨ ¨ ¨ b wdqpM

´1
B0
b ¨ ¨ ¨ bM´1

B0
q “ w1M

´1
B0
b ¨ ¨ ¨ b wdM

´1
B0
. (86)

By Lemma 5.5, for 1 ď p ď d, the vector wpM´1
B0

has entries in t´1, 0, 1u, at most cpjp ´ 1q ` cpj1pq of which are
nonzero. Since wM´1

B,d is the tensor product of these vectors and the set t´1, 0, 1u is closed under multiplication, it

also has entries in t´1, 0, 1u, at most
śd
p“1pcpjp ´ 1q ` cpj1pqq of which are nonzero.

The following lemma allows us to bound the running time of the local randomizer (Algorithm 3) and analyzer
(Algorithm 4):

Lemma 5.8. Given B, d with B “ Bd
0 , the following can be computed in OplogdB0q time:

(1) Given indices pj1, . . . , jdq P rB0s
d, the nonzero indices of MB,d for the column indexed by pj1, . . . , jdq.

(2) Given a vector w P RB specifying a range query, the set of nonzero elements of wM´1
B,d and their values

(which are in t´1, 1u).

Proof of Lemma 5.8. We first deal with the case d “ 1, i.e., the matrix MB,1 “ MB . Given j, j1 P rBs, the
pj1, jq-entry of MB is 1 if and only if the node vtj1 ,sj1 of the tree TB is an ancestor of the leaf vlogB,j . Since
tj “ rlog2 js, sj “ 2pj ´ 2tj´1q ´ 1, whether or not vtj1 ,sj1 is an ancestor of vlogB,j can be determined in OplogBq
time, thus establishing (1) for the case d “ 1. Notice that the statement of Lemma 5.5 immediately gives (2) for the
case d “ 1.

To deal with the case of general d, notice that MB,d “ pMB0q
bd. Therefore, for a given pj1, . . . , jdq the set

tpj11, . . . , j
1
dq : pMB,dqpj11,...,j

1
dq,pj1,...,jdq

“ 1u (87)

of nonzero indices in the pj1, . . . , jdq-th column of MB,d is equal to the Cartesian product
ą

1ďpďd

tj1p : pMB0qj1p,jp “ 1u.

Since each of the sets tj1p : pMB0qj1p,jp “ 1u can be computed in timeOplogB0q (using the case d “ 1 solved above),
and is of size OplogB0q, the product of these sets (87) can be computed in time OplogdB0q, thus completing the
proof of item (1) in the lemma.

The proof of item (2) for general d is similar. For 1 ď p ď d, let wp be the vector in RB0 corresponding to the
1-dimensional range query rjp, j1ps. Then recall from (86) we have that wM´1

B,d “ w1M
´1
B0
b¨ ¨ ¨bwdM

´1
B0

. By item
(2) for d “ 1, the nonzero entries of each of wpM´1

B0
(and their values) can be computed in time OplogB0q; since

each of these sets has size OplogB0q, the set of nonzero entries of wM´1
B,d, which is the Cartesian product of these

sets, as well as the values of these entries, can be computed in time OplogdB0q.

5.5 Guarantees for Differentially Private Range Queries

In this section we state the guarantees of Theorems 5.1 and 5.2 on the privacy and accuracy of the protocol Pmatrix “

pRmatrixpn,B,M,RFOq, S,Amatrixpn,B,M,AFOqq for range query computation when M “ MB,d and the pair
pRFO, AFOq is chosen to be either pRCM, ACMq (Count Min sketch-based approach; Algorithm 2) or pRHad, AHadq

(Hadamard response-based approach; Algorithm 1).
For the Hadamard response-based frequency oracle, we obtain the following:

Theorem 5.9. Suppose B0, n, d P N, B “ Bd
0 , and 0 ď ε ď 1, and β, δ ě 0 with 1{β ď BOp1q16. Consider the

shuffled-model protocol Pmatrix “ pRmatrix, S,Amatrixq, where:
• Rmatrix “ Rmatrixpn,B,MB,d, R

Hadq is defined in Algorithm 3;
• Amatrix “ Amatrixpn,B,MB,d, A

Hadq is defined in Algorithm 4;

16The assumption that 1{β is polynomial inB is purely for simplicity and can be removed at the cost of slightly more complicated bounds.
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• and RHad “ RHadpn,B, log n, ρ, plog 2Bqdq and AHad “ AHadpn,B, log n, ρ, plog 2Bqdq are defined in
Algorithm 1, and

ρ “
36plog 2Bq2d lnpeplog 2Bqd{pεδqq

ε2
. (88)

Then:
• The protocol Pmatrix is pε, δq-differentially private in the shuffled model (Definition 2.2).
• For any dataset X “ px1, . . . , xnq P prB0s

dqn, with probability 1 ´ β, the frequency estimate of Pmatrix for
each d-dimensional range query has additive error at most Opε´1d1{2p2 logBq2d`1{2 ¨

a

logpplogBq{pεδqqq.
• The local randomizers send a total of O pn ¨ ρq messages, each of length Oplog n logBq. The analyzer can

either (a) produce a data structure of size OpB logpnρqq bits such that a single range query can be answered
in timeOpp2 logBqdq, or (b) produce a data structure of sizeOpnρ log n logBq such that a single range query
can be answered in time Opnρp2 logBqd log n logBq.

Proof of Theorem 5.9. Lemma 5.6 guarantees that ∆MB,d
ď p1 ` logBqd “ plog 2Bqd. Then by Theorem 5.1,

to show pε, δq-differential privacy of Pmatrix it suffices to show pε, δq-differential privacy of the shuffled-model
protocol PHad :“ pRHad, S,AHadq. By Theorem 4.3 with k “ plog 2Bqd, this holds with ρ as in (88).

Next we show accuracy of Pmatrix. Lemma 5.7 guarantees that for any w P t0, 1uB representing a range query,
wM´1

B,d has at most p2 logBqd nonzero entries, all of which are either ´1 or 1. Moreover, by Theorem 4.3 with
k “ plog 2Bqd and ρ as in (88), for any 1 ě β ě 0, the shuffled model protocol PHad provides a

˜

O

˜

logpB{βq `
plog 2Bqd

a

logpB{βq logpplog 2Bqd{pεδqq

ε

¸

, β, plog 2Bqd

¸

frequency oracle. By Theorem 5.2 and the assumption that 1{β ď BOp1q, it follows that with probability 1´ β, the
frequency estimates of Pmatrix on each d-dimensional range query have additive error at most

ď O

˜

p2 logBq2d`1{2 ¨
a

d plogpplogBq{pδεqqq

ε

¸

.

This establishes the claim regarding accuracy of Pmatrix.
To establish the last item (regarding efficiency), notice that the claims regarding communication (the number

of messages and message length) follow from Lemma 4.6 with k “ plog 2Bqd. Part (a) of the claim regarding
efficiency of the analyzer follows from item 2 of Lemma 4.6 and the last sentence in the statement of Theorem 5.2.
Part (b) of the claim regarding efficiency of the analyzer follows from item 3 of Lemma 4.6 and the last sentence in
the statement of Theorem 5.2.

Similarly, for the Count Min sketch-based frequency oracle, we obtain

Theorem 5.10. There is a sufficiently large constant ζ such that the following holds. Suppose B0, n, d P N, B “

Bd
0 ě n17, and 0 ď ε ď 1, and β, δ ě 0. Consider the shuffled-model protocol Pmatrix “ pRmatrix, S,Amatrixq,

where:
• Rmatrix “ Rmatrixpn,B,MB,d, R

CMq is defined in Algorithm 3;
• Amatrix “ Amatrixpn,B,MB,d, A

CMq is defined in Algorithm 4;
• and RCM “ RCMpn,B, log 2B{β, γ, 2knq and ACM “ ACMpn,B, log 2B{β, 2knq are defined in Algo-

rithm 2, where

γ “
1

n
¨ ζ ¨

log2pB{βqk2 logplogpB{βqk{δq

ε2

and k “ plog 2B1{dqd “ plog 2B0q
d.

Then:
17The assumption n ď B is made to simplify the bounds and can be removed.
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• The protocol Pmatrix is pε, δq-differentially private in the shuffled model (Definition 2.2).
• For any dataset X “ px1, . . . , xnq P prB0s

dqn, with probability 1 ´ β, the frequency estimate of Pmatrix for
each d-dimensional range query has additive error at most

O

ˆ

p2 logB0q
2d

ε
¨

b

log3pB{βq log pplogpB{βqqplog 2B0q
d{δq

˙

.

• With probability at least 1´ β, each local randomizer sends a total of at most

m̃ :“ O

ˆ

log3pB{βqplog 2B0q
3d logpplogpB{βqqplog 2B0q

d{δq

ε2

˙

messages, each of length OplogplogB{βq ` logpplog 2B0q
dnqq. Moreover, in time Opnm̃q, the analyzer

produces a data structure of size Opn logpB{βqplog 2B0q
d logpnm̃qq bits, such that a single range query can

be answered in time Opp2 logB0q
d ¨ logB{βq.

Proof of Theorem 5.10. Lemma 5.6 guarantees that ∆MB,d
ď p1 ` logB0q

d “ plog 2B1{dqd. (Recall our notation
that B “ pB0q

d.) Then by Theorem 5.1, to show pε, δq-differential privacy of Pmatrix it suffices to show pε, δq-
differential privacy of the shuffled-model protocol PCM :“ pRCM, S,ACMq. For the parameters above this follows
from Theorem 4.7.

Next we show accuracy of Pmatrix. Lemma 5.7 guarantees that for any w P t0, 1uB representing a range query,
wM´1

B,d has at most p2 logB0q
d nonzero entries, all of which are either ´1 or 1. Moreover, by Theorem 4.7, the

shuffled model protocol PCM provides an pκ, β, plog 2B0q
dq-frequency oracle with

κ ď O

ˆ

plog 2B0q
d

ε
¨

b

log3pB{βq log pplogpB{βqqplog 2B0q
d{δq

˙

.

By Theorem 5.2 with a “ p2 logB0q
d, it follows that with probability 1´ β, the frequency estimates of Pmatrix on

each d-dimensional range query have additive error at most

O

ˆ

p2 logB0q
2d

ε
¨

b

log3pB{βq log pplogpB{βqqplog 2B0q
d{δq

˙

.

This establishes the second item. The final item follows from Lemma 4.9, part (2) of Lemma 5.8, and the final
sentence in the statement of Theorem 5.2.

6 Conclusion and Open Problems

The shuffled model is a promising new privacy framework motivated by the significant interest on anonymous
communication. In this paper, we studied the fundamental task of frequency estimation in this setup. In the single-
message shuffled model, we established nearly tight bounds on the error for frequency estimation and on the number
of users required to solve the selection problem. We also obtained communication-efficient multi-message private-
coin protocols with exponentially smaller error for frequency estimation, heavy hitters, range counting, and M-
estimation of the median and quantiles (and more generally sparse non-adaptive SQ algorithms). We also gave
public-coin protocols with, in addition, small query times. Our work raises several interesting open questions and
points to fertile future research directions.

Our Ω̃pBq lower bound for selection (Theorem 1.2) holds for single-message protocols even with unbounded
communication. We conjecture that a lower bound on the error of BΩp1q should hold even for multi-message proto-
cols (with unbounded communication) in the shuffled model, and we leave this as a very interesting open question.
Such a lower bound would imply a first separation between the central and (unbounded communication) multi-
message shuffled model.

Another interesting question is to obtain a private-coin protocol for frequency estimation with polylogarithmic
error, communication per user, and query time; reducing the query time of our current protocol below Õpnq seems
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challenging. In general, it would also be interesting to reduce the polylogarithmic factors in our guarantees for range
counting as that would make them practically useful.

Another interesting direction for future work is to determine whether our efficient protocols for frequency es-
timation with much less error than what is possible in the local model could lead to more accurate and efficient
shuffled-model protocols for fundamental primitives such as clustering [Ste20] and distribution testing [ACFT19],
for which current locally differentially private protocols use frequency estimation as a black box.

Finally, a promising future direction is to extend our protocols for sparse non-adaptive SQ algorithms to the case
of sparse aggregation. Note that the queries made by sparse non-adaptive SQ algorithms correspond to the special
case of sparse aggregation where all non-zero queries are equal to 1. Extending our protocols to the case where
the non-zero coordinates can be arbitrary numbers would, e.g., capture sparse stochastic gradient descent (SGD)
updates, an important primitive in machine learning. More generally, it would be interesting to study the complexity
of various other statistical and learning tasks [Smi11, WZ10, BST14, CMS11, CM08, CSS13] in the shuffled privacy
model.
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A Proof of Theorem 3.4

In this section we prove Theorem 3.4. The proof is a simple consequence of the privacy amplification result of
[BBGN19c] and known accuracy bounds for locally-differentially private protocols. We first recall the privacy
amplification result:

Theorem A.1 (Privacy amplification of single-message shuffling, [BBGN19c], Corollary 5.3.1). Suppose R : X Ñ
Z is an pεL, 0q-locally differentially private randomizer with εL ď

lnpn{ lnp1{δqq
2 for some δ ą 0. Then the shuffled al-

gorithm px1, . . . , xnq ÞÑ SpRpx1q, . . . , Rpxnqq is pε, δq-differentially private with ε “ O
´

εL ¨ e
εL ¨

a

lnp1{δq{n
¯

.

Proof of Theorem 3.4. We first treat the case of n ď ÕpB2q (i.e., the cases (14), (15)), where the locally differen-
tially private protocol we use is B-RAPPOR [EPK14, DJW18]. In particular, we consider the protocol PRAPPOR “

pRRAPPOR, ARAPPORq. For a given privacy parameter εL ě 1, the local randomizer RRAPPOR : rBs Ñ t0, 1uB

is defined as follows: for v P rBs, RRAPPORpvq “ pZ1, . . . , ZBq, where each Zk is an independent bit that equals
pevqk with probability exppεL{2q

1`exppεL{2q
and equals 1 ´ pevqk with probability 1

1`exppεL{2q
. For later use in the proof, we

will also define RRAPPORp∅q “ pZ1, . . . , ZBq, where each Zk „ Ber
´

1
1`exppεL{2q

¯

.

The analyzer ARAPPOR : pt0, 1uBqn Ñ t0, 1uB is defined as follows: given as input n bit-vectors pz1, . . . , znq,
the analyzer outputs the vector px̂1, . . . , x̂Bq P r0, 1s

n of frequency estimates defined by

x̂j “
1

n
¨

˜˜

n
ÿ

i“1

zij

¸

´
n

1` exppεL{2q

¸

¨

ˆ

exppεL{2q ` 1

exppεL{2q ´ 1

˙

. (89)

First we prove the accuracy of the local-model protocol PRAPPOR “ pRRAPPOR, ARAPPORq; it is clear, by sym-
metry of ARAPPOR that the same accuracy bounds hold when we insert the shuffler S. The expression (89)
satisfies the following property: for any dataset X “ px1, . . . , xnq, if Zi :“ RRAPPORpxiq, and it happens
that

řn
i“1 Z

i
j equals its expected value (over the randomness in the local randomizers RRAPPOR), then x̂j is
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equal to the true frequency 1
n

řn
i“1pexiqj . It follows that if

ˇ

ˇ

ˇ

1
n

řn
i“1 Z

i
j ´ ERRAPPOR

”

1
n

řn
i“1 Z

i
j

ıˇ

ˇ

ˇ
ď κ, then

ˇ

ˇx̂j ´
1
n

řn
i“1pexiqj

ˇ

ˇ ď κ ¨
´

exppεL{2q`1
exppεL{2q´1

¯

ď Opκq, where the final inequality follows from εL ě 1.

Let p “ 1
exppεL{2q`1 . The random variable

ˇ

ˇ

ˇ

řn
i“1 Z

i
j ´ ERRAPPOR

”

řn
i“1 Z

i
j

ıˇ

ˇ

ˇ
is stochastically dominated by the

random variable |Y ´ np|, where Y „ Bin pn, pq. It follows that if Y1, . . . , YB „ Bin pn, pq i.i.d., then

E

«

max
jPrBs

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Zij ´ ERRAPPOR

«

n
ÿ

i“1

Zij

ffˇ

ˇ

ˇ

ˇ

ˇ

ff

ď E
„

max
jPrBs

|Yj ´ np|



ď E
„ˆ

max
jPrBs

tYju ´ np

˙

` Er|Y1 ´ np|s. (90)

By Jensen’s inequality Er|Y1 ´ np|s ď
?
np. By Exercise 2.19 of [BLM12], we have that

E
„

max
jPrBs

tYju



ď np exp

ˆ

1`W

ˆ

lnpBq ´ np

enp

˙˙

,

where W p¨q is the Lambert W function.18 We consider two cases regarding the value of pn:
Case 1. epn ă lnB. In this case we use the fact thatW pxq ď lnpe¨xq for all x ě 1. Then sinceW is increasing,

np exp

ˆ

1`W

ˆ

lnpBq ´ np

enp

˙˙

ď np exp p1`W plnpBq{penpqqq

ď np expp1` lnplnpBq{pnpqqq

ď np expplnpe lnpBq{pnpqqq

“ np ¨
e lnpBq

np
“ e lnB.

Thus in this case (90) is bounded above by OplnBq.
Case 2. epn ě lnB. In this case we use the fact that W

`

´1
e ` x

˘

ď ´1 ` 3
?
x for all x ě 0. In particular, it

follows from this fact that

np exp

ˆ

1`W

ˆ

lnpBq

enp
´

1

e

˙˙

ď np exp

˜

1´ 1` 3

d

lnpBq

enp

¸

ď np ¨O

˜

d

lnB

enp

¸

“ O
´

a

np lnpBq
¯

,

where the second inequality uses the fact that lnpBq{np “ Op1q. Thus in this case (90) is bounded above by
Op
?
np lnBq.

Next we analyze privacy of RRAPPOR in the n-user shuffled model. It is clear that RRAPPOR is pεL, 0q-
differentially private. In fact, RRAPPOR satisfies the following stronger property: for any v P rBs, and any vector
z P t0, 1uB , we have that e´εL{2PrRRAPPORp∅q “ zs ď PrRRAPPORpvq “ zs ď eεL{2PrRRAPPORp∅q “ zs.
Now write Mpx1, . . . , xnq “ SpRRAPPORpx1q, . . . , RRAPPORpxnqq. It is not difficult to see by inspecting the
proof of Theorem A.1 that the following holds, as long as ε, δ are chosen so that εL

2 ď
lnpn{ lnp1{δqq

2 and ε “

18The lambert W function W : r´1{e,8q Ñ R is defined implicitly by W pxq exppW pxqq “ x and W pxq ě ´1 for all x ě ´1{e. It is
an increasing function.
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O
´

εLe
εL{2

a

lnp1{δq{n
¯

: For any subset S Ă pt0, 1uBqn, and any dataset px1, . . . , xnq P rBs
n,

P rMpx1, . . . , xn´1, xnq P Ss ď eεP rMpx1, . . . , xn´1,∅q P Ss ` δ
P rMpx1, . . . , xn´1,∅q P Ss ď eεP rMpx1, . . . , xn´1, xnq P Ss ` δ.

It follows that px1, . . . , xnq ÞÑ Mpx1, . . . , xnq is p2ε, δp1 ` eεqq-differentially private (i.e., in the n-user shuffled
model). Thus, by choosing εL “ lnpn{ lnp1{δqq´ 2 ln lnn` 2 lnpεq`Op1q, we obtain the accuracy bounds in (14)
and (15); in particular, the accuracy bound in Case 1 corresponds to n ď ε2 log2B

log3 logB
and the accuracy bound in Case

2 corresponds to n ě ε2 log2B
log3 logB

.

Finally we treat the case n ą ΩpB2q (i.e., the case (16)). In this case we will use the local randomizer of
B-randomized response [War65]. In particular, the local randomizer RRR : rBs Ñ rBs is defined as follows: for
u, v P rBs,

PrRRRpvq “ us “

#

exppεLq
exppεLq`B´1 : u “ v

1
exppεLq`B´1 : u ‰ v.

The analyzer ARR : rBsn Ñ rBsn, when given outputs of local randomizers pz1, . . . , znq P rBs
n, produces fre-

quency estimates Apz1, . . . , znq “ px̂1, . . . , x̂Bq, given by

x̂j “
1

n

˜˜

n
ÿ

i“1

peziqj

¸

´
n

exppεLq `B ´ 1

¸

¨

ˆ

exppεLq `B ´ 1

exppεLq ´ 1

˙

. (91)

First we analyze the accuracy of ARR. The analysis is quite similar to that of ARAPPOR. In particular, first note
that (91) satisfies the following property: for any dataset X “ px1, . . . , xnq, if Zi :“ RRRpxiq, and it hap-
pens that

řn
i“1peZiqj equals its expected value (over the randomness in the local randomizers RRR), then x̂j is

equal to the true frequency 1
n

řn
i“1pexiqj . It follows that if

ˇ

ˇ

1
n

řn
i“1peZiqj ´ ERRR

“

1
n

řn
i“1peZiqj

‰ˇ

ˇ ď κ, then
ˇ

ˇx̂j ´
1
n

řn
i“1pexiqj

ˇ

ˇ ď κ ¨
´

exppεLq`B´1
exppεLq´1

¯

ď O
´

κ ¨
´

exppεLq`B
exppεLq

¯¯

, where the last inequality follows from εL ě 1

(as we will see below).
Let q “ B´1

exppεLq`B´1 . The random variable |
řn
i“1peZiqj ´ ERRR

r
řn
i“1peZiqjs| is stochastically dominated

by the random variable |Y ´ np1´ qq|, where Y „ Bin pn, 1´ qq. It follows by binomial concentration that if
Y1, . . . , YB „ Bin pn, 1´ qq i.i.d. and qn ě ΩplnBq, then

ERRR

«

max
jPrBs

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

peZiqj ´ ERRR

«

n
ÿ

i“1

peZiqj

ffˇ

ˇ

ˇ

ˇ

ˇ

ff

ď Op
a

qn lnpBqq.

Thus the expected error of PRR “ pRRR, ARRq is bounded above by

Epx̂1,...,x̂Bq„PRR

«

max
jPrBs

ˇ

ˇ

ˇ

ˇ

ˇ

x̂j ´
1

n

n
ÿ

i“1

pexiqjk

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď O

ˆ

a

q lnpBq{n ¨

ˆ

exppεLq `B

exppεLq

˙˙

. (92)

Next we analyze the privacy of RRR in the n-user shuffled model. To do so, note that RRR is clearly pεL, 0q-
(locally) differentially private. Thus, by [BBGN19c, Theorem 3.1]19, if we take εL “ lnpn{ lnp1{δqq ` 2 lnpεq `
Op1q, then by the assumption ε ě ωpln2pnq{mint

?
B,
?
nuq, the shuffled-model protocol pRRR, S,ARRq is pε, δq-

differentially private in the n-user shuffled model. As long as
?
n ą B (i.e., n ą B2, so that nε2

ln 1{δ ě ΩpBq), the

error in (92) is bounded above by Op
a

q lnpBq{nq “ O
´

1
nε ¨

a

B lnpnq lnpBq
¯

.
19In particular, the parameter γ in Theorem 3.1 of [BBGN19c] is set to B

exppεLq`B´1
.
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B Low-Communication Simulation of Sparse Non-Adaptive SQ Algorithms

We now discuss an equivalent formulation of our results in terms of non-adaptive statistical query algorithms. A
statistical query on a set X is specified by a binary-valued predicate function q : X Ñ t0, 1u, and, for a distribution
D on X , takes the value qpDq :“ Ex„Drqpxqs. Special cases of statistical queries include frequency queries,
specified by qpxq “ 1rx “ ys for some y P X , and range queries, given by qpxq “ 1rx P Rs, where R is a
rectangle in X . For τ P r0, 1s, a statistical query oracle SQD,τ of tolerance τ , takes as input a statistical query q and
outputs a value SQD,τ pqq P rqpDq ´ τ, qpDq ` τ s. A statistical query (SQ) algorithm of tolerance τ ,Q, may access
the distribution D through a number of queries q to an oracle SQD,τ . Q is called non-adaptive if the distribution
of its queries is fixed a priori, i.e., does not depend on the results of any of these queries. It was observed in the
work of Blum et al. [BDNM05] that any statistical query (SQ) algorithm can be simulated by a differentially private
protocol (in the central model). The same was shown for locally differentially private protocols by Kasiviswanathan
et al. [KLN`08], albeit with worse parameters. In fact, it is known [KLN`08] that (non-adaptive) SQ algorithms
are equivalent to (noninteractive) locally-differentially private algorithms, up to a polynomial factor in the tolerance
τ . We refer the reader to [KLN`08] for further background on SQ algorithms.

A straightforward corollary of the techniques used to show Theorem 1.3 is that one can efficiently and privately
simulate sparse non-adaptive statistical query algorithms in the shuffled model. In particular, for k P N, we say that a
non-adaptive SQ algorithmQ is k-sparse if, for each x P X , with probability 1, there are at most k distinct statistical
queries q that Q makes satisfying qpxq “ 1. Sparsity is a more stringent condition than having low sensitivity: in
particular, if a k-sparse algorithm makes B queries q1, . . . , qB , then, letting D̂ be the empirical distribution over
a dataset px1, . . . , xnq, the mapping px1, . . . , xnq ÞÑ pq1pD̂q, . . . , qBpD̂qq has `1 sensitivity 2k{n. We show in
Corollary B.1 below that for any universe X , if Q is a k-sparse SQ algorithm making at most B queries, then one
can privately simulate Q in the shuffled model, as long as the tolerance τ is roughly a multiplicative factor of k{n
times the corresponding error in Theorem 1.3 (and communication blown up by a factor of k2).

Next we state and prove the formal version of Corollary 1.4:

Corollary B.1. Fix any set X , and let Q be a k-sparse non-adaptive SQ algorithm on X making at most B queries
of tolerance τ for a distribution D. Suppose that ε, δ P p0, 1q,

n ě Ω

¨

˝

logpB{βq

τ2
`
k logpB{βq

b

log
`

k
δε

˘

ετ

˛

‚. (93)

Then there is a private-coin pε, δq-differentially private algorithm P in the shuffled that receives as input n iid
samples x1, . . . , xn „ D, and produces output that agrees with that of Q with probability at least 1´ β. Moreover,
each user sends in expectation O

´

k2 logpk{pδεqq
ε2

¯

messages consisting of Oplog n logBq bits each.

The sample complexity bound (93) improves upon an analogous result for locally differentially private simulation
ofQ, for which n ě Ω̃

`

k
τ2ε2

˘

samples suffice [ENU20, KLN`08, Theorem 5.7]. Moreover, for small k, it is close to

what one gets in the central model, namely that n ě Ω̃
´

1
τ2
`
?
k
τε

¯

[BDNM05] samples suffice. These observations

follow from the fact that the `2 sensitivity of the collection of queries made by Q is bounded above by
?
k.

Proof of Corollary B.1. Let us fix a set of B queries q1, . . . , qB made by Q. We will show that with probability
1 ´ β over the sample X :“ px1, . . . , xnq, the algorithm P can output real numbers P1pXq, . . . , PBpXq so that
for 1 ď j ď B, |qjpDq ´ PjpXq| ď τ . Thus, conditioned on Q making the queries q1, . . . , qB , P simulates an
SQ oracle of tolerance τ with probability 1 ´ β. The claimed result regarding the accuracy of P follows by taking
expectation over q1, . . . , qB .

As long as n ě C ¨ logB
τ2

for a sufficiently large constant C, the Chernoff-Hoeffding bound guarantees that
with probability 1 ´ β{2, for 1 ď j ď B, we have

ˇ

ˇqjpDq ´ 1
n

řn
i“1 qjpxiq

ˇ

ˇ ď τ{2. Define a new universe
X 1 :“ tpq1pxq, q2pxq, . . . , qBpxqq : x P X u. Since Q is k-sparse, we have that X 1 Ď tv P t0, 1uB : }v}1 ď ku.
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Now let P be the protocol PHad with the parameters from Theorem 4.3, and P pXqj , 1 ď j ď B, be the values x̂j{n
from Theorem 4.3. Then Theorem 4.3 gives that

P

«

@j P rBs :

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

qjpxiq ´ P pXqj

ˇ

ˇ

ˇ

ˇ

ˇ

ď O

˜

logpBqk
a

logpk{pεδqq

n

¸ff

ě 1´ β{2.

By the choice of n in (93), with probability at least 1 ´ β{2 over PHad, we have
ˇ

ˇP pXqj ´
1
n

řn
i“1 qjpxiq

ˇ

ˇ ď τ{2.
Thus, with probability at least 1 ´ β over PHad and the sample X , we have |P pXqj ´ qjpDq| ď τ for all j P rBs,
as desired.

Instead of the Hadamard response-based protocol, we could use the (public coin) count-min sketch based proto-
col PCM of Theorem 4.7 in the above corollary. This would give the inferior sample complexity bound of

n ě Ω

˜

k log3{2pBq
a

logpkplogBq{δq

ετ

¸

,

an would involve each user sending in expectation O
´

plog3Bqk3 logpkplogBq{δq
ε2

¯

messages consisting of Oplog k `

log n ` log logBq bits each. (Recall that the advantage of the count-min sketch based protocol was efficient com-
putation of a given statistical query in the data-structural setting when B is prohibitively large to compute all of
them.)

Notice that the error and communication bounds in Corollary B.1 degrade polynomially in k; thus, for familiesQ
which do not have any particular sparsity structure and for which |Q| ě n, the bounds of Corollary B.1 are vacuous.
In the central model of differential privacy, much effort has gone into determining the optimal sample complexity
of simulating in a differentially private manner an arbitrary (not necessarily sparse) non-adaptive statistical query
algorithm. For instance, Nikolov et al. [NTZ13] demonstrated a mechanism that achieves sample complexity nearly
equal to an efficiently computable lower bound for any differentially private mechanism releasing a fixed set of
statistical queries.20 The earlier work of Hardt and Rothblum [HR10] showed that there is an pε, δq-differentially
private mechanism that with high probability simulates a non-adaptive SQ algorithmQmaking B queries as long as

n ě Ω

ˆ

logpBq
?

log |X | logp1{δq

ετ2

˙

.

We leave the question of generalizing Corollary B.1 to the case of non-sparse Q in a way analogous to [NTZ13,
HR10] as an interesting question for future work. In particular, we would hope to maintain polylogarithmic-in-B
growth of the tolerance and communication, while settling for a number of samples n that grows as 1

ετα for some
α ą 1.

C Proofs of Auxiliary Lemmas from Section 4

In this section, we prove Lemmas 4.11 and 4.12.

Lemma 4.11. Suppose f : X n Ñ Zm is k-incremental (Definition 4.3) and ∆pfq “ ∆. Suppose D is a distribution
supported on Z that is pε, δ, kq-smooth. Then the mechanism

X ÞÑ fpXq ` pY1, . . . , Ymq,

where Y1, . . . , Ym „ D, i.i.d., is pε1, δ1q-differentially private, where ε1 “ ε ¨∆, δ1 “ δ ¨∆.

Proof of Lemma 4.11. Consider neighboring datasets X “ px1, . . . , xn´1, xnq and X 1 “ px1, . . . , xn´1, x
1
nq. We

will show

Py1,...,ym„D
„

PY1,...,Ym„DrfpXq ` pY1, . . . , Ymq “ fpXq ` py1, . . . , ymqs

PY1,...,Ym„DrfpX 1q ` pY1, . . . , Ymq “ fpXq ` py1, . . . , ymqs
ě eε

1



ď δ1. (94)

20This optimality is with respect to mean squared error over the set of queries.
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To see that (94) suffices to prove the Lemma 4.11, fix any subset S Ă Zm, and write P pXq “ fpXq` pY1, . . . , Ymq
to denote the randomized protocol. Let T denote the set of fpXq ` py1, . . . , ymq P Zm such that the event in (94)
does not hold; then we have PrP pXq R T s ď δ1. It follows that

P rP pXq P Ss ď δ1 `
ÿ

wPT XS
PrP pXq “ ws

“ δ1 `
ÿ

wPT XS
PY1,...,Ym„DrfpXq ` pY1, . . . , Ymq “ ws

ď δ1 `
ÿ

wPT XS
eε
1

PY1,...,Ym„DrfpX 1q ` pY1, . . . , Ymq “ ws

“ δ1 `
ÿ

wPT XS
eε
1

¨ PrP pX 1q “ ws

ď δ1 ` eε
1

PrP pX 1q P Ss.

It then suffices to show (94). For j P rms, let kj “ fpXqj ´ fpX 1qj . Since the sensitivity of f is ∆, we have
řm
j“1 |kj | ď ∆. It follows that (94) is equivalent to

Py1,...,ym„D

«

m
ź

j“1

PYj„DrYj “ yjs

PYj„DrYj “ yj ` kjs
ě eε

1

ff

ď δ1. (95)

For (95) to hold it in turn suffices, by a union bound and the fact that at most ∆ of the kj are nonzero, that for each
j with kj ‰ 0,

Py„D
„

PY„DrY “ ys

PY„DrY “ y ` kjs
ě e|kj |ε

1{∆



ď δ1{∆. (96)

But (96) follows for ε1{∆ “ ε, δ1{∆ “ δ since D is pε, δ, kq-smooth. This completes the proof.

Lemma 4.12. Let n P N, γ P r0, 1{2s, 0 ď α ď 1, and k ď αγn{2. Then the distribution Binpn, γq is pε, δ, kq-

smooth with ε “ lnpp1` αq{p1´ αqq and δ “ e´
α2γn

8 ` e´
α2γn
8`2α .

Proof of Lemma 4.12. Recall that for Y „ Binpn, γq and 0 ď y ď n, we have PrY “ ys “ γyp1´γqn´y
`

n
y

˘

. Thus,
we have that, for any k ě k1 ě ´k,

PY„Binpn,γqrY “ ys

PY„Binpn,γqrY “ y ` k1s
“
p1´ γqk

1

γk1
¨
py ` k1q!pn´ y ´ k1q!

y!pn´ yq!
. (97)

We define the interval E :“ rp1 ´ αqγn ` k1, p1 ` αqγn ´ k1s where α is any positive constant smaller than 1. As
long as k1 ď αγn{2, E contains the interval E 1 :“ rp1 ´ α{2qγn, p1 ` α{2qγns. By the multiplicative Chernoff
Bound, we have that

Py„Binpn,γqry R Es ď e´
α2γn

8 ` e´
α2γn
8`2α . (98)

Note that for any y P E , if k1 ě 0, it is the case that

p1´ γqk
1

γk1
py ` k1q!pn´ y ´ k1q!

y!pn´ yq!
“
p1´ γqk

1

γk1
¨

py ` 1q ¨ ¨ ¨ py ` k1q

pn´ yq ¨ ¨ ¨ pn´ y ´ k1 ` 1q
ď p1` αqk

1

. (99)

For y P E and if k1 ď 0, it is the case that

p1´ γqk
1

γk1
py ` k1q!pn´ y ´ k1q!

y!pn´ yq!
“

γ|k
1|

p1´ γq|k1|
¨
pn´ y ` 1q ¨ ¨ ¨ pn´ y ` |k1|q

ypy ´ 1q ¨ ¨ ¨ py ´ |k1|q
ď

ˆ

p1´ γ ` γαq

p1´ γqp1´ αq

˙|k1|

ď

ˆ

1` α

1´ α

˙|k1|

,

(100)
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where the last inequality above uses γ ď 1{2. We now proceed to show smoothness by conditioning on the event
y P E as follows:

Py„Binpn,γq

„ PY„Binpn,γqrY “ ys

PY„Binpn,γqrY “ y ` k1s
ě e|k

1|ε



ď Py„Binpn,γq

„ PY„Binpn,γqrY “ ys

PY„Binpn,γqrY “ y ` k1s
ě e|k

1|ε | y P E


` Pry R Es

ď Py„Binpn,γq

„ PY„Binpn,γqrY “ ys

PY„Binpn,γqrY “ y ` k1s
ě e|k

1|ε | y P E


` e´
α2γn

8 ` e´
α2γn
8`2α (101)

“ e´
α2γn

8 ` e´
α2γn
8`2α , (102)

where (101) follows from (98) and (102) follows from (97), (99), and (100) as well as our choice of ε.

D Heavy Hitters

Let τ denote the heavy hitter threshold, and assume that τ is large enough so that with high probability the maximum
frequency estimation error of Theorem 4.7 is at most τ{2. We wish to return a set of Opn{τq elements that include
all heavy hitters (it may also return other elements, so in that sense this is an approximate answer). One option is
to use Theorem 4.7 directly: Iterate over all elements in rBs, compute an estimate of each count, and output the
elements whose estimate is larger than τ{2. This gives a runtime of ÕpBq.

Algorithm 2 can be combined with the prefix tree idea of Bassily et al. [BNST17] to reduce the server decoding
time (for recovering all heavy hitters and their counts up to additive polylogarithmic factors) from ÕpBq to Õpn{τq.
For completeness we sketch the reduction here. The combined algorithm would use rlog2pBqs differentially private
frequency estimation data structures obtained from Algorithm 2. To make the whole data structure differentially
private we decrease the privacy parameters, such that each data structure is pε{rlog2pBqs, δ{rlog2pBqsq-differentially
private. (In turn, this increases the error and the bound on how small τ can be by a polylogarithmic factor in B.)

For each element x P rBs we would consider the prefixes of the binary representation of x, inserting the length-i
prefix in the ith frequency estimation data structure. The decoding procedure iteratively identifies the prefixes of
length 1, 2, 3, . . . with a true count of at least τ . With high probability this is a subset of the prefixes that have an
estimated count of at least τ{2, and there are Opn{τq such prefixes at each level. When a superset of these “heavy”
prefixes have been determined at level i, we only need to estimate the frequencies of the two length-pi`1q extensions
of each considered prefix. This reduces the server decoding time to Õpn{τqwith high probability (while maintaining
a polylogarithmic bound on the number of bits of communication per user).

E M-Estimation of Median and Quantiles

We now discuss how to obtain results for M-estimation of the median and quantiles using our result for range
counting (from Section 5). For simplicity, let x1, x2, . . . , xn P r0, 1s be data points held by n users.

We recall that there is no differentially private algorithm for estimating the value of the true median with error
op1q, i.e., computing x̃ which is within additive error op1q of the true median. This is because the true median can
be highly sensitive to a single data point, which precludes the possibility of outputting a close approximation of the
median without revealing much information about a single user. For instance, consider the case in which n “ 2k`1
and x1 “ x2 “ ¨ ¨ ¨ “ xk “ 0 while xk`1 “ xk`2 “ ¨ ¨ ¨ “ xn “ 1. It is clear that the median of this set is 0, but
changing a single value xk to 1 would change the median of the set to 1.

To get around the above limitations, we consider a different notion known as M-estimation of the median, defined
as follows: Consider the function

Mpyq “
1

2

n
ÿ

i“1

|xi ´ y|.
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Note that the median is a value x̃ that minimizes the quantity Mpx̃q. The problem of M-estimation seeks to compute
a value of y which approximates this quantity, and the error is considered to be the additive error between Mpyq and
Mpx̃q. Our results imply a differentially private multi-message protocol for M-estimation that obtains both error
poly log n and communication per user poly log n bits.

Theorem E.1 (Multi-message protocol for M-estimating the median). Suppose x1, x2, . . . , xn P r0, 1s. Then there
is a differentially private multi-message protocol in the shuffled model that M-estimates the median of x1, x2, . . . , xn
with communication poly log n bits per user and additive error poly log n, i.e., outputs y P r0, 1s such that

Mpyq ď min
x̃
Mpx̃q ` poly log n.

Proof. We reduce the problem of M-estimation to range counting. First, we divide the interval r0, 1s into B “ n
subintervals I1, I2, . . . , IB , where Ij “ rpj ´ 1q{B, j{Bs. Each user will associate his element xi with an index
zi P rBs corresponding to an interval Izi which contains xj . Note that if j is the smallest element of rBs such that
|r1, js X tz1, z2, . . . , znu| ě n{2, then Ij contains a minimizer of Mpyq. Thus, we wish to determine this value of
j.

Thus, we obtain a protocol as follows: We use our protocol for range counting queries in the shuffled model (see
Section 5) to compute the queries r1, js for j “ 1, 2, . . . , B for the dataset z1, z2, . . . , zB and compute the first j for
which the query r1, js yields a count ofě n{2 (or j “ B if no query yields such a count). Then the analyzer outputs
j{B as the estimate for the median.

We now determine the error of thee aforementioned protocol. Note that by the guarantees of the range counting
protocol, the error for the range counts is poly logB. This results in a corresponding poly logB additive error due
to range counting queries for the estimation of Mpx̃q. Moreover, note that there is an additional error resulting from
the discretization. Since each interval is of length 1{B, the error resulting from discretization is n{B. Hence, the
total error is n{B ` poly logB “ poly log n for our choice of B.

Remark E.1. It should be noted that virtually the same argument as above yields a differentially private protocol
for M-estimation of quantiles. Given a set of points x1, x2, . . . , xn P r0, 1s, we say that y is a kth q-quantile of the
dataset if

|r0, yq X tx1, x2, . . . , xnu| ď
k

q

and
|r0, ys X tx1, x2, . . . , xnu| ě

k

q
.

In particular, the median is a special case, namely, the (only) q-quantile for q “ 2. The above argument applies,
except that the function M to be minimized (which is minimized by kth q-quantiles) is given by

Mpyq “
n
ÿ

i“1

ˆˆ

1´
k

q

˙

py ´ xiq` `
k

q
py ´ xiq´

˙

,

and again, the task is to find a y such that

Mpyq ď min
x̃
Mpx̃q ` poly log n.

Moreover, in the reduction to range counting queries, one instead determines the smallest value j such that
|r1, js X tz1, z2, . . . , znu| ě kn{q and the rest of the analysis follows verbatim.
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[BBGN19b] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. Improved summation from shuffling. arXiv:
1909.11225, 2019.
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