
Automatize parameter tuning in Ring-Learning-With-Errors-based
leveled homomorphic cryptosystem implementations

Vincent Herbert
vincent.herbert@protonmail.com

??

Abstract. Lattice-based cryptography offers quantum-resistant cryptosystems but there is not yet official
recommendations to choose parameters with standard security levels. Some of these cryptosystems per-
mit secure computations and aim at a wider audience than cryptographic community. We focus on one
of them, a leveled homomorphic cryptosystem (LHE): Brakersi/Fan-Vercauteren’s (BFV) one. The family
of LHE cryptosystems needs to be well-instantiated not only to protect input and output ciphertexts and
to perform efficiently computations, but also, for them, parametrization constrains the quantity of homo-
morphic computations that can be performed with guarantee of correctness. It demands to choose parame-
ters accordingly. In addition, each implementation brings external constraints to optimize performance. All
of this makes it tedious for the non-expert user to choose parameters. To solve this, we have developed
CinguParam to help user to instantiate implementations of BFV in different libraries: Cingulata, FV-NFLlib
and Microsoft SEAL (release 3. 3). CinguParam permits to generate an up-to-date database of parameter
sets in function of computation budget, security parameters and implementation choices. This tool includes a
notion of budget to ensure correct homomorphic computations and the one of BKZ reduction cost model to
grasp the gap from concrete security, nowadays. It makes use of the LWE-Estimator to obtain up-to-date secu-
rity estimations. CinguParam permits to select automatically a suitable parameter set with Cingulata and it
can be used to generate code snippets to set parameters with FV-NFLlib and Microsoft SEAL (release 3. 3).

1 Introduction

Homomorphic encryption offers services to manipulate encrypted data without having access to their associated
clear form. As data are encrypted from the beginning to the end of the process, it permits for instance, to share
private data with powerful servers in order to delegate costly computations and to get valuable results. But choosing
cryptographic parameters is a challenging task in homomorphic cryptography [1] based on the LWE (Learning
with Errors) problem [2]. If parameters are inapropriately chosen, not only the attackers could access the data or
the key, but also the result of homomorphic computations could be wrong.

In this document, we focus on parameters for the BFV (Brakerski/Fan-Vercauteren) [3,4], Leveled Homomorphic
Encryption (LHE) scheme, based on the Ring-LWE problem [5], which has multiple open-source implementations
[6,7,8,9] in C++.

We have developed CinguParam [10], a tool to ease the choice of parameters in such implementations. We
propose different parameter settings rather than fixing one parameter set, in order to propose to the user different
choices so that he could get the best set according to his precise needs. It aims to generate correct and secure
parameters sets to perform homomorphic computations. It contains a database of parameter sets (see 4.1) which
can be easily extended, if needed. In terms of security, LWE attacks are currently the best ones [11, p.8] against
Ring-LWE-based cryptosystem. CinguParam makes use of the LWE-Estimator [12] which estimates an up-to-date
security of LWE instances. We point that today, nobody has definitive concrete security parameter for lattice-based
cryptosystems. Our tool helps to follow research progress. Indeed, there is still some way to go for that:

– Security reduction between lattice problems and LWE problem is not tight for lattice with dimension n <
187149 (less than 18 bits) [13].

– The best practical attacks (primal and dual ones) against Ring-LWE make use of BKZ-type algorithms em-
ploying enumeration or sieving algorithms. Their cost is unknown, there exist many BKZ cost models [14].

– For most of the models, security estimation is a lower bound under some hypotheses [14]. These are pessimistic
views from the defender side.

– There are several recent progresses to better understand and estimate security against LWE attacks, for
instance [13,15,16].

?? This work was been done while the author was a member of CEA LIST, Paris-Saclay, France.

mailto:vincent.herbert@protonmail.com


Our tool CinguParam permits to compare the impact of parameter choices for homomorphic computations and
to measure the uncertainty on concrete security level, at this stage, in the cryptographic community.

In Section 2, we establish notation for BFV scheme. In Section 3, we provide algorithms used to generate
suitable parameters for BFV, and introduce a vocabulary with the willingness to clarify process with a high-
level perspective. CinguParam could be extended to determine parameters for other schemes implementations. In
Section 4, we present and analyze our experimental results in two parts: we consider CinguParam in standalone
mode first, then we combine it with existing tools: Cingulata, FV-NFLlib, Microsoft SEAL (release 3. 3).

2 Scheme parameters

Let us begin to categorize the different parameters of BFV scheme. We employ them in algorithms to gener-
ate secure parameters (see Section 3) that can be employed to process correctly a predetermined quantity of
homomorphic computations.

BFV is a scheme based on a variant of LWE where data (plaintexts and ciphertexts) are in a polynomial ring.
Let the defining polynomial f be a 2-power cyclotomic polynomial.

– ciphertext coefficient count n

– ciphertext modulus q

– Gaussian (noise/error) width σ

– private key distribution χ over Z[X]/(f)

We retain two approaches to determine Gaussian noise width σ. Note that the first one depends on n and is
hardness-reduction compliant [17,18]:

σ =

{
2
√
n asymptotic approach

8√
2π

performance approach [19,20]

Default choice of σ depends on cryptosystem implementation choices, it is indicated in Table 1.

2.1 Correctness parameters

Informally, each circuit1 to be evaluated by the homomorphic encryption scheme is associated to a circuit cost
depending on the cost and on the order of evaluated operations. Circuit budget defines the family of circuits that
can be operated over fresh ciphertexts (the ones which are obtained directly from encryption, i.e., without any
previous homomorphic operations), the ones whose cost is less than the budget. There exist several approaches to
define and estimate operation costs (see Section 3). They depend on:

– the homomorphic scheme

– the circuit budget

– the multiplicative depth L

– the plaintext modulus t

Relinearization Method 1

– integer base ω for gadget decomposition [21], also called decomposition bit count

Relinearization Method 2

– relinearization integer k

– Bk bound on relinearization error distribution

– ciphertext relinearization modulus p

1 Cingulata take into account Boolean circuits whereas FV-NFLlib and Microsoft SEAL (release 3. 3) perform computa-
tions associated with arithmetic circuits.



2.2 Security parameters

There is not yet satisfying solution to choose tightly parameters with a given security level for LWE-based ho-
momorphic cryptosystems. This drives us to decline several notions around security levels, in order to highlight
current situation.

– desired security level λ0
– BKZ lattice reduction cost model
– estimated security level λ(cost model)
– approximated security level λ1(cost model) (see Table 3
– tolerance between desired and estimated security levels. Indeed, there can be important gaps between them.

Implementations constraints restrain flexibility on parameter choices (e.g., n is a power of two). Other con-
straints are indicated in Table 1.

– compatibility with Regev quantum security reduction proof [17] which impacts on Gaussian noise width σ
– number of LWE samples (n,q,relin param)
– success probability ε in distinguishing attack on LWE decision problem [22]

3 How to generate up-to-date, correct and secure parameters?

To derive parameters setting for LHE cryptosystems [23] is not a trivial question:

– Security based on variants of LWE is a burning issue. It asks more than ever to keep informed about crypt-
analyses results.

– Correct decryption is an additional constraint with LHE cryptosystems compared to traditional cryptosystems.
The quantity and the nature of operations that will be operated over the fresh ciphertexts must be known
before parametrization. This is a strong constraint.

– Performance is an open problem, as we want to ensure concrete secure computations (e.g., homomorphic
computations) in everyday life (see Table 2).

CinguParam makes use of the LWE-Estimator [12] to estimate security against LWE attacks. The LWE-Estimator
is also used to generate (n, q) parameters in a document provided by the consortium HomomorphicEncryption.org
[19]. This document offer recommendations which consist in tight LWE attack cost estimations based on BKZ
Sieve and Q-Core Sieve cost models (Table 4). These recommendations are independant with the scheme used and
with implementation choices (Table 2). In particular, it does not take into account noise growth which depends
on the chosen scheme and thus do not consider correctness as required for LHE cryptosystems. This explains why
for same n, their parameters offer better security levels with smaller q, what may seem counterintuitive [19, pp.
26-29].

Correct decryption depends on (noise/errors) added deliberately during encryption and amplified during each
homomorphic operations to the ciphertexts in order to preserve confidentiality. Too much noise leads to decryption
failures. Noise is a central notion in LWE-based cryptosystems. Ciphertext noise can be defined pessimistically
(from the defender point of view) as the infinite norm of a polynomial which takes part in decryption step. It
has different definitions[24, p.11]. Its computation requires the secret key [25]. For practical usage, with a private
circuit, we use conservative upper bounds on the circuit noise. The choice of noise definition does not tighten
significantly the bound to determine the quantity of secure computations we can operate correctly. In the current
version of CinguParam, we employ the inherent noise as in the original paper [4].

We define the following terminology:

– max encryption noise for an upper bound on the noise of a fresh ciphertext,
– max decryption noise for an upper bound on the noise allowing a correct decryption,
– max circuit noise for an an upper bound on the noise after evaluating a homomorphic circuit.
– max relin noise for an an upper bound on the noise after relinearizing a ciphertext.

The ratio
max decryption noise(scheme)

max encryption noise(scheme)

indicates how much noise, used to secure communications, can increase during homomorphic computations without
degrading decryption correctness. It depends on the used scheme.



Algorithm 1: GenerateParam(politic, L, cost model, λ0, t, gen method)

first pass = True
(n, q) = (n0, q0)
σ, χ, ε, relin method← politic
if gen method = MinCorrectModulus then

while first pass or estimated security is inadequate do
first pass = False
q = MinCorrectModulus(n, σ, χ, ε, L, t, relin param)
noise rate = σ

q

λ = LWE-Estimator(n, q, χ, noise rate, nr samples,
cost model)
n = n× 2

n = n/2

else if gen method = MinSecureDegree then
while first pass or max circuit noise ≥ max decryption noise do

first pass = False
(n, σ

q
, λ) = MinSecureDegree(q, λ, χ, cost model, relin param,

security reduction)
max encryption noise(scheme)
max circuit noise(scheme, circuit)
max decryption noise(scheme)
q = q × scale

q = q/scale

Algorithm 2: MinSecureDegree

n = n0

first pass = True
while first pass or estimated security is inadequate do

first pass = False
noise rate = σ

q

λ = LWE-Estimator(n, q, χ, noise rate, nr samples,
cost model)
n = n× 2

n = n/2
return (n, σ

q
, λ)

Algorithm 3: MinCorrectModulus

q = q0
first pass = True
while first pass or max circuit noise ≥ max decryption noise do

first pass = False
max encryption noise(scheme)
max circuit noise(scheme, circuit)
max decryption noise(scheme)
q = q × scale

// scale depends on implementation constraints and modify generation time, database size

q = q/scale
return q



The BFV case

Maximal noise in a fresh ciphertext and maximal noise of a (homomorphic) ciphertext have been computed in
[26] for some ring-LWE-based LHE schemes. In particular for the BFV scheme [3,4], noise growth has been well
described in [27]. We only recall its bound (Equation 1) to compute maximal circuit noise after evaluating a circuit
of given multiplicative depth L. In practice, two difficulties with BFV scheme occur:

– Multiplicative depth does not take into account noise growth caused by additions. How to take it into account
to avoid incorrect decryption? This could be done by evaluating the variance of the noise at the end of the
circuit rather than the infinite norm. This would be more optimistic, from the defender point of view.

– In most of the cases, multiplicative depth is sufficient to ensure correct decryption. But still, how to determine
multiplicative depth? This question is solved with Cingulata compiler toolchain and runtime environnement
[8]. It is employed with CinguParam, see Section 4.2 and serves to automatize parameter choice. This imple-
mentation focuses on binary ciphertexts manipulated with Boolean circuits and permits to interact easily with
CinguParam. It is not done in implementations using arithmetic circuits, in our knowledge.

In the BFV scheme, the simplest way to determine the noise budget is derived from the multiplicative depth
L. Let us recall, L is the maximal number of multiplications between any input and any output of the circuit
we operate to evaluate secure computations. In the case of homomorphic encryption, inputs and outputs are
ciphertexts.

In a more general setting, noise growth does not necessarily depend on the multiplicative depth. For instance,
with the TFHE scheme [28], the focus is directed on the number of gates.

max encryption noise(BFV) = Berror(ε, σ)(1 + 2δB key) (1)

where δ is the polynomial multiplication expansion factor, i.e., max{ ‖a×b‖∞‖a‖∞‖b‖∞
: a, b ∈ Z[X]/(Xn + 1)},Berror(ε, σ) =

√
2erfc−1(ε)σ and Bkey are respectively an upper bound on the error distribution (resp. the private key distri-

bution). The function erfc is the complementary error function and the quantity ε denotes the distinguishing
attack advantage on LWE-decision problem, i.e., the statictical distance within noise distribution and Gaussian
distribution. For short, noise distribution is bounded by Berror(ε, σ) with probability 1− ε.

max circuit noise(BFV, L) = XL ×max encryption noise+ L×XL−1(Y +max relin noise)

with
X = δt(4 + δBkey),

Y = δ2Bkey(Bkey + t2)

and

max relin noise(BFV) =


δ ×

⌈
log(q)

log(ω)

⌉
× ω ×Berror(ε, σ) if relin param = 1

q ×Bk × δ
p

+
δ ×Bkey + 1

2
if relin param = 2

A ciphertext is well decrypted if the circuit noise is smaller than the decryption noise. Circuit budget is used
to generate secure and correct parameters with CinguParam. To ensure correct decryption, it has to be greater
than decryption cost.

We can extend the vocabulary, similarly to [25], to express intuitively noise constraints:

– min decryption cost, the minimal cost to ensure correct decryption,
– min circuit budget, the minimal cost of the circuit evaluation,

max circuit noise(BFV, L) = w

min circuit budget(BFV, L) = − log2 2w

max decryption noise(BFV) =

⌊
q
t

⌋
− (q mod t)

2

min decryption cost(BFV) = − log2(
⌊q
t

⌋
− (q mod t))



Parameters must fulfill these equivalent conditions to ensure a correct result after decryption:

max circuit noise ≤ max decryption noise (2)

min circuit budget ≥ min decryption cost (3)

Implementation politic Cingulata BFV SEAL BFVa FV-NFLlib

ciphertext modulus q power of 2
upper boundedb product of distinct primes product of particular primesc of size of the type

each prime congruent to 1 modulo 2n (NTT multiplications)d used to store the polynomial (i.e., 16,32 or 64 bits) minus two

plaintext modulus t 2
≥ 2 (integer encoder) ≥ 2

a prime congruent to 1 modulo 2n (batch encoder)

default Gaussian noise width σ 2
√
n 3.2 3.2

standard deviation σ
√

2π 2
√

2πn 8 8

statistical distance ε within
2−64 2−28 2−128 (see [29])

noise distribution and Gaussian distribution

noise max width Berror(ε, σ) 10σ (as recommended in [4]) 6σ 14σ

private key distribution χ
uniform distribution in {0, 1}n

uniform distribution in {−1, 0, 1}n noise distribution
with Hamming weight 63

compatible with Regev’s security reduction yes no no

relinearization method [4] 2 1 1

Table 1. Implementation politics are parameter constraints in different implementations of BFV scheme. The parameter
n is the ciphertext polynomial degree, a power of two, for performance reason.

a Up to release 3.2 of this library, ciphertext modulus bitsize is restricted to multiple of 10. This impeaches tight
parametrization in a similar manner as FV-NFLlib, in Table 2.

b See the file native/src/seal/util/hestdparms.h in Microsoft SEAL (release 3. 3) for upper bounds on size depending on
modulus degree.

c See the file include/nfl/params.hpp for exact form in FV-NFLlib library
d The congruence is required for batching with CRT.

4 Analysis and presentation of experimental results

4.1 CinguParam in standalone mode

CinguParam permits to:

– generate and store a database of parameter sets for different
• desired levels of security
• multiplicative depths
• implementation politic

– estimate with hindsight the security of parameter sets against LWE attacks

Input parameters Database contains files whose names indicate main input parameters in the following order:

– The circuit multiplicative depth, an integer 0 ≤ L ≤ 20
– The BKZ lattice reduction cost model (see Table 4)
– The approximated security level λ1 (80,128,192,256)
– The plaintext modulus t (see Table 1)

The database can be easily extended to customized parameters. It is important to note that there is no
parameter set for all (L, cost model, λ0, t). This is due to the gap between desired security level λ0 and estimated
security level λ which can be greater than 64 bits. For this reason, at the end of database generation, each file
is renamed by approximating estimated security level λ (see 3 with standard security levels. We only consider
parameter sets in the range J80, 256K. For this reason, the database can contain less parameter sets than expected
and we employ two methods: Algorithm 2 and 3 to select parameters inside Algorithm 1. Our experimental
results indicate Algorithm 3 generate more performant parameters in terms of ciphertext size, i.e., n log2(q).
Note, it is not possible to employ Algorithm 3 for FV-NFLlib and old versions of SEAL (up to release 3.2)
since we can not ensure output modulus would have a bitsize with particular properties, as imposed by these
implementations (see Table 1 and 2). Parameter set contain a decomposition of ciphertext modulus bitsize suited
for Microsoft SEAL (release 3. 3) to ease its use in the library.



Implementation politic Cingulata BFV SEAL BFV FV-NFLlib
Plaintext modulus 2 65537 65537
Generation method MinCorrectModulus MinCorrectModulus MinSecureDegree

L cost model λ1 log2(q) n log2(q) n log2(q) n

0 q core sieve 80

54 2048 54 2048
0 core sieve 80
0 bkz sieve 128
0 bkz enum 192
0 bkz sieve 80 62 2048

0 bkz enum 128

62

2048
0 paranoid sieve 128

54 4096
54 4096

4096
0 q core sieve 192

0 core sieve 192
0 bkz sieve 192
5 bkz sieve 80

158 4096
254 8192

310 8192
5 bkz enum 80

5 bkz enum 128 254 8192
5 paranoid sieve 80

166 8192
310 16384

5 core sieve 128
5 bkz sieve 128

5 q core sieve 128

262 16384
310 16384

5 bkz sieve 192
5 paranoid sieve 128

5 core sieve 192
5 paranoid sieve 192 174 16384

10 bkz sieve 80
302 8192 478 16384 558 16384

10 bkz enum 128
10 paranoid sieve 80

326 16384
10 bkz sieve 128
10 core sieve 128

558 32768
10 q core sieve 128

10 paranoid sieve 128
10 bkz sieve 192

502 32768
10 core sieve 192

10 q core sieve 192
10 paranoid sieve 192 342 32768

15 core sieve 80 470 16384 478
16384

868 32768
15 bkz enum 80 702

15 bkz enum 192
470 16384

868 32768
15 bkz sieve 80

15 bkz sieve 128

734 32768
868 32768

15 q core sieve 80
15 paranoid sieve 80

15 core sieve 128
15 paranoid sieve 128

502 32768
868 65536

15 q core sieve 192
15 bkz sieve 192
15 core sieve 192

15 paranoid sieve 192 766 65536
20 bkz enum 80

614 16384
20 bkz sieve 80

966 32768
1116 32768

20 bkz enum 128
20 core sieve 80

20 paranoid sieve 80

654 32768
20 bkz sieve 128
20 core sieve 128

1116 65536
20 q core sieve 128

20 paranoid sieve 128

1006 65536
20 bkz sieve 192
20 core sieve 192

20 q core sieve 192
20 paranoid sieve 192 694 65536

Table 2. Some parameters from CinguParam database for different politics and plaintext moduli. Let us recall, ciphertexts
are represented by polynomials of degree n with coefficients of bitsize log2(q), in BFV cryptosystem. Computation budget
(multiplicative depth, in this case) has an important impact on memory/time cost. Different files have same parameters,
the approximated security level λ1 reflects the degree of pessimism/optimism of each BKZ cost model and the difficulty to
determine security level compared to traditional cryptosystems.

Security and correctness In general, security strength is defined in terms of bit of security (e.g., 80 for legacy
standard protection level, 128 for security at least ten-years, 192 for long-term protection). For post-quantum
systems, 5 different categories [30, pp.15-19] have been defined by NIST because of uncertainties on security
estimations. The first approach is known from a wider audience. For this reason, we make use of it, in CinguParam.

In LWE-based cryptography, one important difficulty is to estimate the attack cost. Lattice reduction algorithm
are employed in LWE attacks, it makes use of an SVP oracle (two families: enumeration and sieving one). There



exist many models in the literature2. Each model correspond to a bound on the cost of BKZ-family lattice reduction
algorithm. There exist important gaps between estimations as shown in [14]. In other words, it is not possible to
obtain desired security level with certitude, we only have estimations according to a BKZ cost model.

The database in CinguParam contains parameter sets considering this selection of BKZ lattice reduction cost
models and can be extended for any model of your choice. It is stored in xml files. We select five cost models which
are commonly used in the literature. They are given in Table 4 from the most optimistic to the most pessimitic,
from the defender point of view.

Security is estimated a priori against primal attack [11] via uSVP. A posteriori, we estimate security against
dual-lattice attack and small/sparse secret variant [31] as well as lattice decoding attacks [32]. All estimations are
operated with LWE-Estimator [12].

In addition, homomorphic cryptosystem is costly in terms in performance. This forces to reduce the parameter
range to lessen costs. For instance, the ciphertext polynomial degree is a power of two. This kind of restriction
prevents to have a parameter set with a chosen security level λ(cost model).

To face the situation, we associate a desired security level with an interval of estimated security in Table 3.

Estimated security range Approximated security level

J80, 128− tolerance gapK 80
J128− tolerance gap, 192− tolerance gapK 128
J192− tolerance gap, 256− tolerance gapK 192

J256− tolerance gap, 312K 256
Table 3. There is a gap between concrete security and desired security in lattice based cryptography. For the time being,
we only associate an approximated security level with an estimated security range. Estimations are bounds on attack cost
given a BKZ lattice reduction cost model. Arbitrarily, we choose tolerance gap = 8 during database generation. This can
be easily modified if desired.

BKZ cost models Short description Reference

BKZ Enum Enumeration algorithm prevail for dimension < 70, sieving one for greater dimensions. [33, Table 4]
BKZ Sieve The number of calls to an SVP oracle is polynomial and estimated heuristically. [34, Figure 3]

Core Sieve (mode classical) Core models evaluate one call to an SVP oracle
[11]Q-Core Sieve (mode quantum) The attacker benefit from Grover’s search algorithm

Paranoid Sieve (mode paranoid) Best plausible attack cost

Table 4. Default BKZ lattice reduction cost models in CinguParam database. We can easily extend it for better models
to come. The costs are exponential in the blocksize β for each model, they are defined in https://bitbucket.org/malb/

lwe-estimator/raw/HEAD/estimator.py.

4.2 CinguParam combined with cryptosystems implementations

We focus here on implementations with recent activities. Let us present them briefly. On one hand, Microsoft SEAL
is a library permitting to use two homomorphic encryption schemes: full-RNS BFV [35] and CKKS [36]. The release
3.3 (june 2019) increases flexibility on parameter choices by removing implementation constraints on bitsize of
ciphertext moduli q. On the other hand, Cingulata is a compiler toolchain and runtime environment for running
programs over encrypted data with two homomorphic encryption schemes since june 2019: BFV and TFHE [28].
With Microsoft SEAL (release 3. 3) and potentially any implementation of BFV, we can generate automatically
snippets to initialize cryptographic parameters by selecting any parameter set in CinguParam. We demonstrate
with Cingulata, a more practical usage of CinguParam. Parameters are selected automatically using CinguParam
as a submodule for any program written for BFV implementation in Cingulata. During compilation of the program
describing the homomorphic computations, Cingulata evaluates the circuit multiplicative depth associated to each
test written in a C++ program. Afterwards, CinguParam makes use of it to select automatically parameter set in

2 https://estimate-all-the-lwe-ntru-schemes.github.io/docs/

https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py


the database. Default security parameters are λ1 = 128, cost mode=BKZ Sieve. Plaintext modulus is t = 2 in
Cingulata. If no parameter set is found given input parameters (L, cost model, λ1, t), a static choice is made by
default to find some approaching parameter set. For instance, a parameter set with multiplicative depth L+ 1 or
L + 2 is chosen if no parameter set is found for the quadruplet of input parameters. An interactive mode is also
proposed to select manually a parameter set in a filtered database if nothing corresponds to input parameters.

4.3 Future works

There exist several trails to extend our work :

– Tighten noise estimation to improve performance (see Table 2) using noise variance, in the average case (see
Section 3). In counterpart, this approach requires additional hypotheses.

– Take into account hybrid relinearization technique introduced in [37].
– Extend CinguParam with other LWE-based homomorphic cryptosystems.

References

1. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: Stoc. Volume 9. (2009) 169–178
2. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM)

56(6) (2009) 34
3. Brakerski, Z.: Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP
4. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption. IACR Cryptology ePrint Archive 2012

(2012) 144
5. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. In Gilbert, H., ed.:

Advances in Cryptology – EUROCRYPT 2010, Berlin, Heidelberg, Springer Berlin Heidelberg (2010) 1–23
6. : FV-NFLlib. https://github.com/CryptoExperts/FV-NFLlib (2016) CryptoExperts.
7. Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: A Compilation Chain for Privacy Preserving Applications. In: Pro-

ceedings of the 3rd International Workshop on Security in Cloud Computing. SCC ’15, New York, NY, USA, ACM
(2015) 13–19

8. : Cingulata. https://github.com/CEA-LIST/Cingulata (2019) CEA List, Paris-Saclay, France.
9. : Microsoft SEAL (release 3.3). https://github.com/Microsoft/SEAL (2019) Microsoft Research, Redmond, WA.

10. : CinguParam. https://github.com/CEA-LIST/CinguParam (2019) CEA List, Paris-Saclay, France.
11. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange — A New Hope. In: 25th {USENIX}

Security Symposium ({USENIX} Security 16). (2016) 327–343
12. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Journal of Mathematical

Cryptology 9(3) (2015) 169–203
13. Sarkar, P., Singha, S.: Verifying Solutions to LWE with Implications for Concrete Security. Cryptology ePrint Archive,

Report 2019/728 (2019) https://eprint.iacr.org/2019/728.
14. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite, E., Virdia, F., Wunderer., T.: Estimate

all the LWE, NTRU schemes! https://estimate-all-the-lwe-ntru-schemes.github.io/docs/.
15. Bai, S., Miller, S., Wen, W.: A refined analysis of the cost for solving LWE via uSVP . Cryptology ePrint Archive,

Report 2019/502 (2019) https://eprint.iacr.org/2019/502.
16. Guo, Q., Johansson, T., Mårtensson, E., Wagner, P.S.: On the Asymptotics of Solving the LWE Problem Using

Coded-BKW with Sieving. Cryptology ePrint Archive, Report 2019/009 (2019) https://eprint.iacr.org/2019/009.
17. Peikert, C.: How (not) to instantiate ring-LWE. In: International Conference on Security and Cryptography for

Networks, Springer (2016) 411–430
18. Regev, O.: The Learning With Errors problem. Invited survey in CCC 7 (2010)
19. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi, S., Hoffstein, J., Laine, K., Lauter,

K., Lokam, S., Micciancio, D., Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic Encryption
Security Standard. Technical report, HomomorphicEncryption.org, Toronto, Canada (November 2018)

20. Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Hoffstein, J., Lauter, K., Lokam, S., Moody, D., Morrison,
T., Sahai, A., Vaikuntanathan, V.: Security of Homomorphic Encryption. Technical report, HomomorphicEncryp-
tion.org, Redmond WA, USA (July 2017)

21. Bonnoron, G., Fontaine, C., Gogniat, G., Herbert, V., Lapotre, V., Migliore, V., Roux-Langlois, A.: Somewhat/Fully
Homomorphic Encryption: Implementation Progresses and Challenges. In: C2SI 2017 : 2nd International Conference
on Codes, Cryptology and Information Security. Volume 10194 - LNCS (Lectures Notes in Computer Science)., Rabat,
Morocco, Springer (April 2017) 68 – 82

22. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryption. In Kiayias, A., ed.: Topics in
Cryptology – CT-RSA 2011, Berlin, Heidelberg, Springer Berlin Heidelberg (2011) 319–339

https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CEA-LIST/Cingulata
https://github.com/Microsoft/SEAL
https://github.com/CEA-LIST/CinguParam
https://eprint.iacr.org/2019/728
https://estimate-all-the-lwe-ntru-schemes.github.io/docs/
https://eprint.iacr.org/2019/502
https://eprint.iacr.org/2019/009


23. Migliore, V., Bonnoron, G., Fontaine, C.: Practical Parameters for Somewhat Homomorphic Encryption Schemes on
Binary Circuits. IEEE Transactions on Computers 67(11) (2018) 1550–1560

24. Costache, A., Laine, K., Player, R.: Homomorphic noise growth in practice: comparing BGV and FV. Cryptology
ePrint Archive, Report 2019/493 (2019) https://eprint.iacr.org/2019/493.

25. Laine, K.: Simple encrypted arithmetic library 2.3. 1
26. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme.

In: IMA International Conference on Cryptography and Coding, Springer (2013) 45–64
27. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: International

Conference on Cryptology in Africa, Springer (2014) 318–335
28. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast Fully Homomorphic Encryption Library (August

2016) https://tfhe.github.io/tfhe/.
29. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-based cryptography on a constrained

device. Applicable Algebra in Engineering, Communication and Computing 25(3) (Jun 2014) 159–180
30. : Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography (2016) NIST.
31. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL. Cryptology

ePrint Archive, Report 2017/047 (2017) https://eprint.iacr.org/2017/047.
32. Bai, S., Galbraith, S.D.: Lattice Decoding Attacks on Binary LWE. In Susilo, W., Mu, Y., eds.: Information Security

and Privacy, Cham, Springer International Publishing (2014) 322–337
33. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In Lee, D.H., Wang, X., eds.: Advances in

Cryptology – ASIACRYPT 2011, Berlin, Heidelberg, Springer Berlin Heidelberg (2011) 1–20
34. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The General Sieve Kernel

and New Records in Lattice Reduction. In: Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part II. (2019) 717–746

35. Bajard, J.C., Eynard, J., Hasan, A., Zucca, V.: A Full RNS Variant of FV like Somewhat Homomorphic Encryption
Schemes. In: Selected Areas in Cryptography - SAC, St. John’s, Newfoundland and Labrador, Canada (August 2016)

36. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In:
International Conference on the Theory and Application of Cryptology and Information Security, Springer (2017)
409–437

37. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with
application to oblivious neural network inference. Cryptology ePrint Archive, Report 2019/524 (2019) https://eprint.
iacr.org/2019/524.

https://eprint.iacr.org/2019/493
https://tfhe.github.io/tfhe/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://eprint.iacr.org/2017/047
https://eprint.iacr.org/2019/524
https://eprint.iacr.org/2019/524

	Automatize parameter tuning in Ring-Learning-With-Errors-based leveled homomorphic cryptosystem implementations

