
On the efficiency of pairing-based proofs under the d-PKE

Ariel Gabizon∗

Abstract

We investigate the minimal number of group elements and prover running time in a zk-
SNARK when using only a symmetric “linear” knowledge assumption, like the d-Power Knowl-
edge of Exponent assumption, rather than a “quadratic” one as implicitly happens in the most
efficient known construction by Groth [Gro16]. The proofs of [Gro16] contain only 3 group
elements. We present 4 element proofs for quadratic arithmetic programs/rank 1 constraint
systems under the d-PKE with very similar prover running time to [Gro16]. Central to our
construction is a simple lemma for “batching” knowledge checks, which allows us to save one
proof element.

1 Introduction

The most efficient known proving systems with succinct proofs rely on very strong cyrptographic
assumptions, sometimes called non-falsifiable [Nao03]. This was shown to be necessary in a sense
[GW11]. More specifically, the type of non-falsifiable assumptions used are refered to as knowledge
assumptions. Rather than being assumptions of what is hard for an adversary to do, they are
of the form: if the adversary succeeded in a certain task, he must have done it in a certain
way. More concretely, the assumptions are typically about answers to certain challenges being
linear combinations of CRS elements, which translates to an extractor being able to output the
coefficients of this combination.

The aim of this work is to try to minimize the type of knowledge assumption made, while
preserving efficiency as much as possible.

1.1 On linear and quadratic knowledge assumptions

We present a framework for instantiating different knowledge assumptions to motivate our result.
The definitions in this section are presented at a semi-formal level, as besides motivating the result,
they are not needed for formally deriving or stating it.

In the following, for a ∈ F, [a] denotes the group element a · g ∈ G where F is a finite field of
prime order and G an additive group of equal order. (See Section 1.3 for more details on notation
and terminology.)

Let us recall the d-Power Knowledge of Exponent assumption (d-PKE) originally introduced
by Groth [Gro10], and central to many SNARK constructions, e.g. [GGPR13, PHGR16]: The
adversary A receives a set of encoded elements

{[
τ i
]
,
[
ατ i
]}
i∈[0..d], together with other elements

independent of α. A is then given the challenge of producing another pair of ‘ratio’ α; i.e. a pair

∗Part of this work was done while being supported by the Zcash Company.

1



of the form ([c] , [c′]) = ([c] , α · [c]). Note that a natural way to answer the challenge is by taking
[c] to be some linear combination of the elements

{[
τ i
]}

and by taking [c′] to be the corresponding
combination of the elements

{[
ατ i
]}

. That is, taking

[c] :=

d∑
i=0

ai ·
[
τ i
]
,
[
c′
]

:=

d∑
i=0

ai ·
[
ατ i
]
,

for some a = (a0, . . . , ad) ∈ Fd+1. The d-PKE states that this is the only way for A to succeed with
non-negligible probability. “Only way” is then formalized by saying that wheneverA succeeds in the
challenge, another algorithm E, a.k.a. the extractor, will succeed in outputting the corresponding
a.

Let us abstract what is going on in the d-PKE, so that we may generalize it. We had a challenge
equation

Y2 = α · Y1.

A was challenged to find group elements [c],[c′] such that encoded elements c, c′ satisfy the equation.
A is given a challenge set of elements in order to aid him in completing the challenge. In the d-
PKE the challenge set is always of the form

{[
τ i
]
,
[
ατ i
]}
i∈[0..d] together with elements that are

independent of α.
With this terminology, it is not hard to see the d-PKE is equivalent to the following slightly

more abstract phrasing: The only way to satisfy the challenge equation is by taking [c] , [c′] to be
linear combinations of the challenge elements such that the equation holds as a polynomial identity
in τ, α (and possibly other variables appearing in the auxiliary information independent of α).

Now, given this terminology and phrasing of the assumption, it is immediate to see how it
generalizes. Instead of looking at the equation Y2 = α · Y1, we could look at any equation.

For example, a multi-variate linear equation Yt = α1 · Y1 + . . . + αt−1 · Yt−1. Lemma 2.3 will
roughly show that this equation does not lead to a stronger assumption than the two variable
original version.

Naturally, we could also look at higher degree challenge equations. When our proofs are pairing-
based, as the equations are typically derived from verifier checks, there is no point in looking at
degree larger than two. Assuming A is a generic group adversary as in the security proof of
Groth [Gro16] implies1 making the assumption for any degree d equation and challenge set when
d = poly(λ). In particular, instead of using the generic group model, the security proof of [Gro16]
can be done by making such an assumption for some quadratic equation.

Arguably, assumptions involving quadratic equations are stronger than assumptions regarding
linear equations, which is why it is of value to maximize SNARK efficiency while restricting oneself
to linear assumptions like the d-PKE - this being the purpose of our work.

Symmetric vs asymmetric assumptions Groth and Maller [GM17] cleverly notice that when
using an asymmetric pairing even the trivial equation Y2 = Y1 can lead to a plausible assumption
when requiring c and c′ to be encoded in the distinct source groups; and that using square arithmetic
programs inspired by Danezis et. al [DFGK14], one can get a 3 element proof as in [Gro16] under
only the linear assumption corresponding to this equation (with a “bonus” of obtaining simulation

1This is strictly true when the auxiliary data is “low-degree” in the sense described in Definition 2.1 and Remark
2.2

2



extractability which was the focus of that work). However, the use of SAPs rather than QAPs
increases field and group operations significantly when starting with an arithmetic circuit; and
arguably a symmetric linear assumption is better than the non-symmetric one used by [GM17] -
which can roughly be seen as assuming there is no efficiently computable isomorphism between the
two pairing source groups, even when requiring correct computation on only a polynomially small
fraction of inputs.

1.2 Relation to previous work

As alluded to above, the most relevant works for comparison are [Gro16, GM17]. We also mention
that our security proof is very much inspired by that of [GM17]. We summarize the tradoffs between
the three works. Suppose we start with an arithmetic circuit with n multiplication gates and m
wires. We think of ` < m of the wires as public (usually these will all be input and output wires of
the circuit), and are interested in a zk-SNARK showing that given a value x of the public wires,
the prover knows an assignment to the other m− ` wires consistent with the circuit computation.
Below E1(E2) denotes exponentations in G1(G2), P means pairings.

Pairing based SNARKs are almost always instantiated using asymmetric pairings, where oper-
ations in the second source group G2 are considerably more expensive than in the first.

The main point here is that we preserve the amount of G2 prover operations from [Gro16],
rather than doubling it as in [GM17], while adding roughly only n G1 operations.

[Gro16]: Size: 2 G1, 1 G2. Prover operations: m + 3n − ` + 3 E1, n + 1 E2. Verifier
operations: ` E1, 3 P . Knowledge assumption: Quadratic symmetric.

[GM17]: Size: 2 G1, 1 G2. Prover operations: m+4n−` E1, 2n E2. Verifier computation:
` E1, 5 P , Knowledge assumption: Linear asymmetric.

This work: Size: 3 G1, 1 G2. Prover operations: m+ 2n+ min(2n,m+ 2)− `+ 2 E1, n E2.
Verifier computation: ` E1, 5 P . Knowledge assumption: Linear symmetric.

1.3 Terminology and conventions

We assume we are given a finite field F and group G both of the same prime order r, together with
a generator g ∈ G∗. For x ∈ F we denote [x] := x · g and refer to [x] as an encoding of x. For
a set or vector T of elements of F, we refer by [T ] to the corresponding set or vector of element
encodings; e.g. [(a1, . . . , at)] := ([a1] , . . . , [at]).

We assume our common reference strings are always of the following form. We have a fixed map
f : Ft → FM where for each i ∈ [t] fi(X) is a rational function of total degree at most d in both
numerator and denumerator, and the common reference string is of the form [f(x)] for uniform
x ∈ Ft

We assume all objects and algorithms are dependent on an implicit integer parameter λ. For
example, when we refer to a field F, we implicitly mean an infinite sequence of fields F(λ) indexed
by λ. When we refer to a party A as efficient we mean a circuit of size poly(λ). When we say a
function is efficiently computable we mean it is computable by a uniform algorithm of running time
poly(λ).

3



Moreover, we assume existence of an efficient group generator G , that given λ outputs repre-
sentations of groups G,Gt and a finite field F all of prime order r ≥ 2λ, and a uniformly chosen
generator g ∈ G. We also assume the existence of an efficiently computable non-degenerate bi-linear
pairing e : G×G→ Gt. Whenever stating a theorem or assumption, we assume the involved par-
ties have access to the output of G . So, when stating a cryptographic assumption, the assumption
implicitly depends on the group generator used.

2 Cryptographic assumptions

We formally define the d-PKE that was described in the previous section.

Definition 2.1 (d-Power Knowledge of Exponent Assumption (d-PKE)). For any efficient A there
exists an efficient E such that the following holds. Fix a constant t and M = poly(λ), and an
efficiently computable degree d rational map S : Ft+1 → FM . Consider the following experiment.

τ, α ∈ F,x ∈ Ft are chosen uniformly. We denote V := (1, τ, . . . , τd, α, ατ, . . . , ατd) Then A is
given as input ([V ] , S(τ,x)) and outputs a pair ([c] , [c′]) of G elements, which he “hopes” is of the
form ([c] , [αc]). E, given the same input, outputs a polynomial A ∈ F[X] of degree at most d. The
probability that both

1. A “succeeded”, i.e., c′ = α · c. But,

2. E “failed”, i.e., c 6= A(τ).

is negl(λ).

Remark 2.2. Typically the PKE assumption is defined with arbitrary auxiliary information rather
than a rational map. Our definition is weaker and corresponds to imposing the auxiliary information
to be the encoded output of a low degree rational map on a uniform input, and suffices for the security
proofs of [GGPR13, PHGR16]. This increases the chance our auxiliary information is “benign” and
our assumption does not contradict indistinguishability obfuscation [BCPR13].

We show that the d-PKE can be used to “batch” knowledge checks.

Lemma 2.3. Assuming the d-PKE the following holds. Fix k = poly(λ), a constant t and an
efficiently computable degree d rational map S : Ft+1 → FM . Fix any i ∈ [k]. For any effi-
cient A there exists an efficient E such that the following holds. Consider the following exper-
iment. α1, . . . αk, τ ∈ F and x ∈ Ft are chosen uniformly. A is given as input [S(τ,x)] and{[
αj · τ `

]}
j∈[k],`∈[0..d] and outputs a sequence of elements ([a1] , . . . , [ak] , [b]) in G. E, given the

same input as A together with the randomness of A and {αj}j∈[k]\{i}, outputs A(X) ∈ F[X] of
degree at most d such that the probability that both

1. A “succeeded”, i.e., b =
∑k

j=1 αj · aj. But,

2. E “failed”, i.e., ai 6= [A(τ)].

is negl(λ).

4



Proof. Fix k, t, S,A and i ∈ [k] as in the lemma. Assuming the d-PKE we aim to construct E
satisfying the lemma statement. Consider the following efficient A∗, that on input [S(τ,x)] ∪{[
αiτ

`
]}
`∈[0..d] samples random {α` ∈ F∗}`∈[k]\{i}, computes

{[
αjτ

`
]}
j∈[k]\{i},`∈[0..d] and invokes A

with uniformly chosen randomness randA on [S(τ,x)] ∪
{[
αj · τ `

]}
j∈[k],`∈[0..d]. When A returns

([a1] , . . . , [ak] , [b]), A∗ returns ([ai] , [b
′]) where[

b′
]

= [b]−
∑

j∈[k]\{i}

αj · [aj ] .

Note that A succeeds exactly when A∗ succeeds in the sense that∑
j∈[k]

αj · aj = b⇔ αi · ai = b′.

Let E′ be the extractor guaranteed to exist for A∗, S from the d-PKE. Note that the input for E′

is [S(τ,x)]∪
{[
αiτ

`
]}
`∈[0..d] together with the inner randomness of A∗ which is randA, {α`}`∈[k]\{i}.

Given this input the probability that A∗ succeeds in outputting a pair ([ai] , [b
′]) with b′ = αi · ai,

and E doesn’t output A of degree at most d with A(τ) = ai is negl(λ). Now define E to be the
(identical) extractor that given randA, [S(τ,x)] ∪

{[
αiτ

`
]}
`∈[0..d] , {α`}`∈[k]\{i}, simply returns the

output A of E′ on the same input.

The following assumption generalizes the d-SDH and d-PDH used in [GGPR13, PHGR16], and
is very similiar to computational polynomial assumption from [GM17], except that it also allows
rational functions.

The d-PDH for example, says you should not be able to output
[
τd+1

]
after seeing encodings of

smaller powers of τ . The generalization here is that we assume an adversary, after seeing encoded
evaluations of multi-variate rational functions, can only knowingly output an encoding of a rational
function that is in the span of those it has seen.

Definition 2.4 ((t,d)-SPAN). Fix integers t, d. Fix an efficiently computable degree d rational map
S : Ft → FM . Let V be the F-subspace of F(X1, . . . , Xt) spanned by the output coordinates of S;
i.e. V := span({Si}i∈[M ]). Fix any efficient A, and consider the following game: Uniform x ∈ Ft
is sampled and A is given [S(x)]. Then the probability that A outputs p, q ∈ F(X) and h ∈ G such
that

1. deg(p), deg(q) ≤ d.

2. p/q /∈ V .

3. h = [p(τ)/q(τ)]

is negl(λ)

3 SNARK definitions

We formally define zk-SNARKs. We make a slightly non-conventional definition of knowledge
soundness, where we allow the knowledge extractor access to part of the CRS trapdoor.

5



Definition 3.1. An zk-SNARK S (zero-knowledge Succinct Non-interactive Argument of Knowl-
edge) for a relation R consists of the following four possibly randomized algorithms.

1. Gen outputting a pair of trapdoors (rext, rsim) and common reference string σ.

2. P that takes as input σ and (x, ω) ∈ R and outputs π.

3. V that takes as input a common reference string σ, an input x, and a proof π, and outputs a
value in {acc, rej}.

4. Psim taking as input x, and trapdoor rsim and outputting π. (It will be convenient to think of
Psim as returning (x, π).)

The quadruple of algorithms S = (Gen,P,V,Psim) is a zk-SNARK for R if it satisfies

1. Completeness: For any common reference string σ output by Gen, and any (x, ω) ∈ R, if
π = P(σ, x, ω); then V(σ, x, π) = acc with probability one.

2. Statistical Zero-Knowledge: For any output (r, σ) of Gen and (x, ω) ∈ R, the distribution2

of Psim(r, x) is negl(λ)-close to that of P(σ, x, ω).

3. Knowledge Soundness:

For any efficient adversary A, there exists an efficient E such that the following holds: Sup-
pose that A, given σ, outputs a pair (x, π) and E given randA and rext, outputs ω. The
probability, over the randomness of A and that of Gen while outputting ((rext, rsim), σ), that

• A “wins”: V(x, π, σ) = acc, and

• E “loses”: (x, ω) /∈ R

is negl(λ).

3.1 QAPs

We assume familiarity with quadratic arithmetic programs [GGPR13], but briefly describe the
necessary definitions. A QAP Q of size m, degree n, with ` public inputs over F is defined by a

set of univariate polynomials
{
{Ai(X), Bi(X), Ci(X)}i∈[0..m] , Z(X)

}
where Ai, Bi, Ci ∈ F[X] have

degree smaller than n, and Z ∈ F[X] has degree exactly n. We say x = (x1, . . . , x`) ∈ F`, ω =
(x`+1, . . . , xm) ∈ Fm−` satisfy Q, if when defining x0 = 1, A :=

∑m
i=0 xi ·Ai, B :=

∑m
i=0 xi ·Bi, and

C :=
∑m

i=0 xi · Ci; then the polynomial P := A ·B − C will be divisble by Z.

3.2 Randomizing QAP witnesses

When describing our SNARK in the next section we will assume the sequences of QAP polynomials
were extended in the following way:

Am+1 = Bm+2 = Z,Am+2 = Bm+1 = Cm+1 = Cm+2 = 0.

2For simplicity, we present our SNARK with only statistical zero-knowledge, but a slight complication of the
construction can give perfect zero-knowledge.

6



(note in particular that we allow these new polynomials to be of degree n while the former are of
degree smaller than n.) For any values xm+1, xm+2 ∈ F, x, (ω, xm+1, xm+2) satisfy the extended
QAP if and only if x, ω satisfiy the original one. When describing the prover algorithm in the
next section we will assume the values of xm+1, xm+2 in the prover’s witness ω have been chosen
uniformly, and also reindex and denote by m the total number of QAP polynomials after this
extension.

4 Description of our SNARK

Let R be the relation of pairs (x, ω) such that x, ω satisfy Q. We proceed to describe our zk-SNARK
for the relation R.

Key Generation:

1. Define, for i ∈ [0..m], the tri-variate polynomial Ki(τ, βA, βB) := βBAi(τ) +βABi(τ) +Ci(τ).
And the rational map

σ1(τ, βA, βB, δ) :=
{
τ i, τ i/δ, βAτ

i, βBτ
i
}
i∈[0..n] ∪ {Ki(τ, βA, βB)/δ}i∈[`+1..m]

2. For τ, αA, αB,∈ F, define σ2(τ, αA, αB) :=
{
αAτ

i, αBτ
i
}
i∈[0..n]

3. Choose uniform τ, βA, βB, δ, αA, αB ∈ F and output

σ := [σ1(τ, βA, βB, δ), σ2(τ, αA, αB)]

rext = (αA, αB), rsim = (τ, αA, αB, βA, βB, δ)

Prover:
The prover P has in his hand a QAP solution (x0 = 1, x1, . . . , xm) that coincides with the public

input x = (x1, . . . , x`) and satisfies the following: If we define A :=
∑m

i=0 xi ·Ai, B :=
∑m

i=0 xi ·Bi,
and C :=

∑m
i=0 xi ·Ci; then the polynomial P := A ·B−C will be divisble by the target polynomial

Z, and P can compute the polynomial H of degree at most n with P = H · Z.
Given the proving key, P computes as linear combinations of the proving key elements [πA] , [πB] , [πD] , [πK ]

where

1. πA := A(τ) .

2. πB := B(τ).

3. πD := αAA(τ) + αBB(τ).

4. πK :=
(∑m

i=`+1Ki(τ, βA, βB) +H(τ)Z(τ)
)
/δ.

and outputs π = ([πA] , [πB] , [πD] , [πK ]).

7



Verifier:
For x = (x1, . . . , x`), denote the “public input component”

PI(x) := K0(τ, βA, βB) +
∑̀
i=1

xiKi(τ, βA, βB).

The verifier, using pairings and the verification key, checks the following.

1. πD = αA · πA + αB · πB.

2. (βA + πA) · (βB + πB) = PI(x) + πK · δ + βA · βB.

Simulator (φ, x, rsim = (τ, αA, αB, βA, βB, δ)):

1. Choose πA, πB ∈ F uniformly.

2. Let πD := αAπA + αBπB.

3. Let πK := 1
δ ((βA + πA)(βB + πB)− PI(x)). Output ([πA] , [πB] , [πD] , [πK ]).

In the next section we prove the following:

Theorem 4.1. Under the n-PKE and (4, 2n)-SPAN assumptions the above scheme is a zk-SNARK
for the relation R.

5 Security proof

The completeness and zero-knowledge properties are easily verifiable from the construction. We
thus focus on knowledge soundness.

Description of extractor Fix an efficient A. We need to describe the corresponding extractor
E. Suppose that A has outputted (x, π) such that V(σ, x, π) = acc. Let π = ([πA] , [πB] , [πD] , [πK ]).

In particular, we have
αA · πA + αB · πB = πD.

This implies by Lemma 2.3 that given rext = αB and randA, E can extract e.w.p. negl(λ) a
polynomial A ∈ F[X] of degree at most n such that

πA = A(τ).

E uses linear algebra to determine if the polynomial Amid(X) := A(X) −
∑`

i=0 xiAi(X) is in
the span of the QAP polynomials {Ai}i∈[`+1..m]. If not, E aborts. Otherwise, let x`+1, . . . , xm ∈ F
be such that Amid(X) =

∑m
i=`+1 xiAi(X), and let ω := (x`+1, . . . , xm). E checks if (x, ω) ∈ R and

if so outputs ω as a witness for x.

8



Analyzing E’s failure probability Let η be the probability that A outputs a verifying (x, π)
but E doesn’t output a valid witness ω for x. To prove knowledge soundness we must show that
η = negl(λ). We will construct an efficient A∗ that solves (4, 2n)-SPAN with probability η−negl(λ)
thus implying η = negl(λ) under the (4, 2n)-SPAN assumption.

The challenge A∗ will receive will be T1 := [σ1(τ, βA, βB, δ)] for uniform τ, βA, βB, δ ∈ F.
Recall that

σ1(τ, βA, βB, δ) =
{
τ i, τ i/δ, βAτ

i, βBτ
i
}
i∈[0..n] ∪ {Ki(τ, βA, βB)/δ}i∈[0..m]

A∗ samples uniform αA, αB ∈ F and computes T2 := [σ2(τ, αA, αB)]. Define σ := (T1, T2). A∗
runs A(randA, σ) to get output (x, π) and checks whether V(σ, x, π) = acc. If the check fails A∗
aborts. Otherwise, denote π = ([πA] , [πB] , [πD] , [πK ]). We again have

αA · πA + αB · πB = πD

This implies by Lemma 2.3 that given αA, αB and randA, A∗ can extract e.w.p. negl(λ) poly-
nomials A,B ∈ F[X] of degree at most n such that

πA = A(τ), πB = B(τ).

If one of the extractions failed, A∗ aborts.
A∗ now computes the 4-variate rational function

C(X,XA, XB, Xδ) := (A(X)B(X) +XAB(X) +XBA(X)− PI(X,XA, XB))/Xδ,

where PI(X,XA, XB) :=
∑`

i=0 xi ·Ki(X,XA, XB). Rearranging the second verification equation we
see that we have

πK = (πAπB + βAπB + βBπA − PI(X))/δ = C(τ, βA, βB, δ).

Denote U := span(σ1(X,XA, XB, Xδ)) ⊆ F(X,XA, XB, Xδ). If C /∈ U , A∗ outputs (C, [πK ]) as
a response to the (4, 2n)-SPAN challenge.

We show that when π is a valid proof but C ∈ U , then E outputs a valid witness:
C ∈ U implies there are polynomials f, fA, fB, H ∈ F[X] of degree at most n, together with

coefficients x`+1, . . . , xm ∈ F, such that

(A(X)B(X) +XAB(X) +XBA(X)− PI(X,XA, XB))/Xδ

= f(X) + fA(X) + fB(X) +H(X)Z(X)/Xδ +

(
m∑

i=`+1

xi ·Ki(X,XA, XB)

)
/Xδ.

We multiply by Xδ and add PI(X,XA, XB) to get

A(X)B(X) +XAB(X) +XBA(X)

= (f(X) + fA(X) + fB(X))Xδ +H(X)Z(X) +
m∑
i=0

xi ·Ki(X,XA, XB).

Let us think of the above as a polynomial identity in the variables XA, XB, Xδ with coefficients
in F[X]. Since the constant coefficient, that of XA and that of XB must be identical on both sides,
we have

9



1. A(X)B(X) =
∑m

i=0 xi · Ci(X) +H(X)Z(X).

2. B(X) =
∑m

i=0 xi ·Bi(X).

3. A(X) =
∑m

i=0 xi ·Ai(X).

This exactly means that ω := (x`+1, . . . , xm) is a valid witness for x. And ω exactly corresponds
to the output of E.

Acknowledgements

We thank Jens Groth and Mary Maller for helpful discussions on the subject of this paper.

References

[BCPR13] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. Indistinguishability obfuscation vs.
auxiliary-input extractable functions: One must fall. IACR Cryptology ePrint Archive,
2013:641, 2013.

[DFGK14] G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss. Square span programs with
applications to succinct NIZK arguments. In Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I, pages 532–550, 2014.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and suc-
cinct nizks without pcps. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

[GM17] J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable snarks. In Advances in Cryptology - CRYPTO 2017 - 37th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part II, pages 581–612, 2017.

[Gro10] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In Advances
in Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December 5-9, 2010.
Proceedings, pages 321–340, 2010.

[Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II, pages 305–326, 2016.

[GW11] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifi-
able assumptions. In Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 99–108, 2011.

10



[Nao03] M. Naor. On cryptographic assumptions and challenges. In Advances in Cryptology
- CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, pages 96–109, 2003.

[PHGR16] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: nearly practical verifiable
computation. Commun. ACM, 59(2):103–112, 2016.

11


