
Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs∗

Dan Boneh† Elette Boyle‡ Henry Corrigan-Gibbs§ Niv Gilboa¶ Yuval Ishai‖

August 21, 2022

Abstract

We introduce and study the notion of fully linear probabilistically checkable proof systems.
In such a proof system, the verifier can make a small number of linear queries that apply jointly
to the input and a proof vector.

Our new type of proof system is motivated by applications in which the input statement is not
fully available to any single verifier, but can still be efficiently accessed via linear queries. This
situation arises in scenarios where the input is partitioned or secret-shared between two or more
parties, or alternatively is encoded using an additively homomorphic encryption or commitment
scheme. This setting appears in the context of secure messaging platforms, verifiable outsourced
computation, PIR writing, private computation of aggregate statistics, and secure multiparty
computation (MPC). In all these applications, there is a need for fully linear proof systems with
short proofs.

While several efficient constructions of fully linear proof systems are implicit in the interactive
proofs literature, many questions about their complexity are open. We present several new
constructions of fully linear zero-knowledge proof systems with sublinear proof size for “simple”
or “structured” languages. For example, in the non-interactive setting of fully linear PCPs, we
show how to prove that an input vector x ∈ Fn, for a finite field F, satisfies a single degree-2
equation with a proof of size O(

√
n) and O(

√
n) linear queries, which we show to be optimal.

More generally, for languages that can be recognized by systems of constant-degree equations,
we can reduce the proof size to O(log n) at the cost of O(log n) rounds of interaction.

We use our new proof systems to construct new short zero-knowledge proofs on distributed
and secret-shared data. These proofs can be used to improve the performance of the example
systems mentioned above.

Finally, we observe that zero-knowledge proofs on distributed data provide a general-purpose
tool for protecting MPC protocols against malicious parties. Applying our short fully linear
PCPs to “natural” MPC protocols in the honest-majority setting, we can achieve unconditional
protection against malicious parties with sublinear additive communication cost. We use this to
improve the communication complexity of recent honest-majority MPC protocols. For instance,
using any pseudorandom generator, we obtain a 3-party protocol for Boolean circuits in which
the amortized communication cost is only one bit per AND gate per party (compared to 7 bits
in the best previous protocol), matching the best known protocols for semi-honest parties.
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1 Introduction

In this work, we develop new techniques for proving in zero knowledge statements that are distributed
(i.e., partitioned or secret-shared) across two or more verifiers. Recall that in a standard interactive
proof system [8, 10, 15, 77] a verifier holds an input x ∈ {0, 1}∗ and a prover tries to convince the
verifier that x is a member of some language L ⊆ {0, 1}∗. We consider instead the setting in which
there are multiple verifiers, and each verifier holds only a piece of the input, such as a share of x
generated using a linear secret-sharing scheme. Critically, no single verifier holds the entire input x.
The prover, who holds the entire input x, must convince the verifiers, who only hold pieces of x,
that x ∈ L. At the same time, we require that the proof system be strongly zero knowledge: every
proper subset of the verifiers should learn nothing about x, apart from the fact that x ∈ L.

Special cases of this type of proof system appear in existing systems for anonymous messag-
ing [45], verifiable function secret sharing [35], and systems for the private computation of aggregate
statistics [44]. We observe that such proof systems also provide a powerful tool for protecting
protocols for secure multiparty computation over point-to-point channels against malicious parties,
analogous to the role that standard zero-knowledge proofs play in the GMW compiler [72]. Indeed,
in protocols that involve point-to-point communication, the task of proving compliance with the
protocol exactly requires executing a zero-knowledge proof on distributed data.

We introduce the central new abstraction of a fully linear proof system. Such proof systems apply
not only to efficiently proving (in zero-knowledge) statements on distributed or secret-shared data,
but also to data that is encrypted or committed using a linearly homomorphic system. While several
efficient constructions of fully linear proof systems are implicit in the literature on interactive and
probabilistically checkable proofs (in particular, the linear PCPs from [6, 67] and the interactive
proofs from [75,109] can be cast as such proof systems), many questions about their complexity are
open. We present several new constructions of fully linear zero-knowledge proof systems that achieve
sublinear proof size for “simple” or “structured” languages. Finally, we present several applications of
such proof systems in the context of the motivating applications discussed above.

We now give a more detailed overview of our contributions.

Contribution I: Fully linear proof systems. We begin by introducing the notion of a fully linear
proof system, which captures the information-theoretic object at the core of all of our constructions.
We consider the non-interactive variant of such proof systems, called fully linear PCPs, and then we
describe a natural extension to the interactive setting.

A fully linear PCP is a refinement of linear PCPs [6, 27, 83]. Recall that in a standard linear
PCP over a finite field F, a polynomial-time verifier holds an input x ∈ Fn and a prover produces a
proof π ∈ Fm to the assertion that x ∈ L, for some language L ⊆ Fn. The verifier checks the proof
by reading x and making linear queries (i.e., inner-product queries) to the proof π. In particular,
the verifier can make a bounded number of queries to the proof of the form qj ∈ Fm, and receives
answers aj = 〈qj , π〉 ∈ F.

In a fully linear PCP, we further restrict the verifier: the verifier cannot read the entire input x
directly, but only has access to it via linear queries. Concretely, the verifier in a fully linear PCP
makes linear queries qj to the concatenated input-proof vector (x‖π) ∈ Fn+m and must accept or
reject the assertion that x ∈ L based on the answers aj to these linear queries. Motivated by the
applications we consider, we would also like fully linear PCPs to satisfy the following strong zero-
knowledge requirement: the queries qj together with the answers aj reveal no additional information
about x other than the fact that x ∈ L. This is stronger than the standard notion of zero-knowledge
proofs in which x is essentially public and the interaction need not hide x. See Section 3 for formal
definitions of fully linear PCPs and their strong zero knowledge variant.
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The full linearity restriction is naturally motivated by applications in which the input statement
is not fully available to any single verifier, but can still be efficiently accessed via linear queries. This
situation arises in scenarios where the input x is distributed or secret-shared between two or more
parties, or alternatively is encoded using an additively homomorphic encryption or commitment
scheme. In these scenarios, verifiers can readily compute answers to public linear queries via local
computations on their view of x. While fully linear PCPs can be meaningfully applied in all of the
above scenarios, we will primarily focus on their applications to proofs on distributed or secret-shared
data.

We stress again that in a fully linear PCP, the verifier only has linear query access to x. An
interesting consequence is that even if L is an easy language that can be decided in polynomial time,
a verifier making a bounded (e.g., constant) number of such queries typically cannot decide whether
x ∈ L without the aid of a proof, even if the verifier can run in unbounded time. This makes the
existence of fully linear proof systems with good parameters meaningful even for finite languages
and even if, say, P = PSPACE.1 The same fact makes possible a connection between fully linear
PCPs and communication complexity [3,89,91]. Using this connection, we prove unconditional lower
bounds on the efficiency properties of fully linear PCPs (Appendix B).

Different kinds of linear PCPs were used, either explicitly or implicitly, in the vast literature on
succinct arguments for NP (see [26,27,30,34,67,80,83,93,105,111,112,122,125] and references therein).
These linear PCPs, including the “Hadamard PCP” [6, 83] and ones obtained from quadratic span
programs or quadratic arithmetic programs [27, 67, 104], can be cast into the fully linear framework.
This fact was implicitly used in previous proof systems on committed or secret-shared data [11,44,46].
Our notion of fully linear PCPs provides a convenient abstraction of the properties on which such
systems can be based.

Contribution II: Shorter proofs for structured and simple languages. When using fully
linear PCPs to build zero-knowledge proof systems on distributed or secret-shared data, as discussed
in Contribution IV below, the proof length determines the number of bits that the prover must send
to the verifiers. As such, we aim to design short proofs. This goal is especially important when
many different assertions are proved about the same input statement x. In such a scenario, the
initial setup cost of distributing x is amortized away, in the sense that it is dominated by the cost of
communicating the proofs. Having short fully linear PCPs yields similar efficiency benefits in the
settings of encryption and commitments.

These applications motivate the need for fully linear PCPs with short proofs. For general NP
relations, all known linear PCPs have size at least linear in the size of an arithmetic circuit recognizing
the relation. In Section 4, we achieve significant length savings by designing new sublinear sized
fully linear PCPs for languages recognized by deterministic circuits with repeated sub-structures
(Theorem 4.3) or by a degree-2 polynomial (Corollary 4.7). In the latter case, we can even prove
that the O(

√
n) complexity of our construction is optimal up to low-order terms (Appendix B).

These and other proof systems constructed in this work satisfy the notion of strong zero knowledge
discussed above.

Theorem 1.1 (Informal - short fully linear PCP for a degree-2 polynomial). If membership in
L ⊆ Fn can be recognized by a single degree-2 polynomial, then L admits a fully linear PCP with strong
zero knowledge that has proof length and query complexity Õ(

√
n) and soundness error O(

√
n/|F|).

Furthermore, there exists a language L as above such that the sum of the proof length and query
1This is akin to proofs of proximity [24], which place a more stringent restriction on the verifier’s access to the

input. However, unlike proofs of proximity, in fully linear PCPs the verifier is guaranteed that the input is actually in
the language rather than being “close” to some input the language. Another related notion is that of a holographic
proof [9, 82], where the verifier gets oracle access to an encoding of the input using an arbitrary error-correcting code.

3



complexity must be Ω(
√
n), even when we allow constant soundness error and do not require zero

knowledge.

See Corollary 4.7 and Theorem B.1 for more precise and general statements.

Contribution III: Reducing proof size by interaction. To further drive down the proof length,
we consider a generalization of fully linear PCPs that allows multiple rounds of interaction between
the prover and verifier. These fully linear interactive oracle proofs, or fully linear IOPs, are the linear
analogue of interactive oracle proofs (IOP) [23], also known as probabilistically checkable interactive
proofs [109]. We note that without the zero-knowledge requirement, several existing interactive proof
systems from the literature, including the GKR protocol [74], the CMT protocol [42], and the RRR
protocol [109] can be viewed as fully linear IOPs.

For the case of “well-structured” languages, we show in Section 5 that interaction can dramatically
shrink the proof size, while maintaining the required strong zero-knowledge property. In particular,
any language whose membership can be verified by a system of constant-degree equations over a
finite field admits a fully linear IOP with strong zero-knowledge in O(log n) rounds and only O(log n)
proof length, provided that the underlying field is sufficiently large. Even for degree-2 languages,
this provably gives an exponential reduction in proof size over the non-interactive case.

Theorem 1.2 (Informal - fully linear zero-knowledge IOPs for low-degree languages). Suppose
L ⊆ Fn can be recognized by a system of constant-degree equations. Then, L admits a fully linear
IOP with strong zero knowledge, O(log n) rounds, and proof length and query complexity O(log n).

See Theorem 5.8 for a more precise and general statement, including an extension to rings.

Contribution IV: Zero-knowledge proofs on distributed or secret-shared data. The
primary motivation for our new types of proof systems is the fact that in many cases, data can be
efficiently accessed via linear queries. This includes several different scenarios, but our main focus
in this work is on the case of distributed or secret-shared data. (See Appendix C for application to
proofs on encrypted or committed data.) More precisely, the prover knows x in its entirety and each
of k verifiers V1, . . . , Vk only has a piece (or a secret share) of x.

In Section 6, we show that any fully linear PCP and IOP can be compiled into a zero-knowledge
proof system on distributed or secret-shared data in the following natural way. Instead of sending
a proof vector π to a single verifier, the prover P secret-shares the proof vector π between the k
verifiers using a linear secret-sharing scheme. The verifiers can now locally apply each linear query
to the concatenation of their share of the input x and their share of π, and exchange the resulting
answer shares with the other verifiers. The verifiers then reconstruct the answers to the linear queries
and apply the decision predicate to decide to accept or reject x. We present different variants of this
compiler that further optimize this approach and that achieve zero-knowledge even when up to k− 1
verifiers are malicious.

Theorem 1.3 (Informal - distributed zero-knowledge proofs for low-degree languages on secret-shared
data: malicious prover or verifiers). Suppose L ⊆ Fn can be recognized by a system of constant-degree
equations. Then, assuming ideal coin-tossing, there is an O(log n)-round distributed zero-knowledge
protocol for proving that x ∈ L, where x is additively shared between k verifiers, with communication
complexity O(k log n). The protocol is sound against a malicious prover and is strongly zero-knowledge
against t = k − 1 malicious verifiers.

See Corollary 6.7 for a more precise and general statement. We also give a Fiat-Shamir-style
compiler that uses a random oracle to collapse multiple rounds of interaction into a single message
sent by P to each Vj over a private channel, followed by a single message by each Vj .
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Language Proof system Comm. complexity Rounds

Hamming weight 1: Prio [44] O(n) 1
x̄ ∈ Fn,weight(x̄) = 1 Corollary 5.4 O(

√
n) 2

Corollary 5.5 O(logn) O(logn)
Theorem A.2 via [54] O(1) 2
Riposte∗∗ [45] O(

√
n) 1

Verifiable FSS∗∗ [35] O(1) 1

x̄ ∈ {0, . . . , B}n ⊆ Fn Prio [44] O(B · n) 1
Corollary 5.4 O(B ·

√
n) 2

Corollary 5.5 O(B · logn) O(logn)

n Beaver triples: Prio [44] O(n) 1
x̄, ȳ, z̄ ∈ Fn where Corollary 5.4 O(

√
n) 2

xi · yi = zi for all i ∈ [n] Theorem A.1 via GKR [75] O(log2 n) O(log2 n)
Corollary 5.5 O(logn) O(logn)

Arbitrary circuit C, C(x̄) = 1 Prio [44] O(n) 1
(size n, depth d, fan-in 2) Theorem A.1 via GKR [75] O(d logn) O(d logn)

Table 1: Communication and round complexity for proof systems where the input data is secret shared among
a number of parties. We assume the proofs are over a finite field F with |F| � n. Prio [44] is a system for
private data aggregation that uses proofs on secret shared data for data integrity. Riposte [45] is a system
for anonymous communication that uses proofs on secret shared data to prevent data corruption. Verifiable
function secret sharing (FSS) [35] enables secret sharing of simple functions.
∗∗ All systems in the table, except Riposte, verifiable FSS, and GKR, maintain zero knowledge when all but
one of the verifiers are malicious. In contrast, 3-server Riposte tolerates only one corruption. Verifiable FSS
tolerates only semi-honest verifiers and GKR does not provide zero-knowledge.

Given a robust encoding (or robust secret sharing) of the input x, we present distributed zero-
knowledge protocols that maintain their soundness even when a malicious prover colludes with
t < k/2 malicious verifiers (see Section 6.3 for details). In contrast, we note that previous sublinear
proof systems on secret-shared data either do not attempt to protect against malicious verifiers [35],
or assume a majority of honest verifiers [45]. Neither considers soundness against a malicious prover
colluding with malicious verifiers.

Table 1 summarizes the communication and round complexity of the proof systems on secret-
shared data for languages that frequently come up in practice, for example in the Prio system [44] for
privately aggregating data, and in the Riposte [45] system for anonymous communication. The table
illustrates the strong benefits of interactive fully linear proof systems over non-interactive ones.

We note that interactive proofs with distributed verifiers were recently studied in [90, 99] for the
purpose of proving properties of a communication graph connecting a large number of verifiers. The
relevance of the interactive proofs of GKR [74] and RRR [109] to this setting has been observed
in [99]. Our focus here is quite different; we are motivated by the goal of proving in zero knowledge
simple properties of data distributed among a small set of verifiers. As a result, our abstractions,
constructions, and applications are very different from those in prior work [90,99].

Contribution V: Applications to honest-majority MPC. We next demonstrate applications
of our zero-knowledge fully linear proof systems for protecting protocols for secure multiparty com-
putation (MPC) in the honest-majority setting against malicious parties, with vanishing amortized
communication overhead, and without resorting to the heavy machinery of succinct (two-party)
zero-knowledge argument systems for NP.

Compiling “natural” honest-majority protocols. Dating back to the work of Goldreich,
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Micali, and Wigderson (GMW) [72], the standard approach to secure protocol design begins by
attaining semi-honest (passive) security, then compiling the protocol in some way to enforce semi-
honest behavior. The GMW compiler relies on standard zero-knowledge proofs, which apply to
public statements. As a result, it does not apply directly to the case of protocols that employ
communication over secure point-to-point channels. To get around this limitation, we employ our
distributed zero-knowledge proofs in the following way.

As observed in recent works, the vast majority of semi-honest MPC protocols from the literature
share the following natural form:

• Up to the final exchange of messages, the protocol reveals no information about parties’ inputs,
even if parties act maliciously.

• The messages sent by a party Pi in each round are degree-2 functions (or, more generally,
low-degree functions) of messages received in previous rounds.

The first property means that parties can safely execute all but the final round of the underlying
protocol unchanged, and then simultaneously verify that in all prior rounds the parties acted
semi-honestly. The second property means that this verification can be expressed as satisfaction
of a collection of several degree-2 constraints on parties’ incoming and outgoing messages. More
concretely, each party Pi must convince the remaining parties in zero knowledge that the statement
Mi consisting of all his round-by-round incoming and outgoing messages—and which is distributed
across the remaining parties—is indeed contained within some appropriate language Li verifiable by
a degree-2 circuit. This is precisely the setting of our zero knowledge proofs on distributed data.

We demonstrate an approach for compiling semi-honest protocols of the above “natural” form
(formally defined in Section 7) in the honest-majority setting, to malicious security with abort, with
sublinear additive communication overhead. This is achieved by adding a phase in the penultimate
round of the base protocol, in which each party Pi executes a single interactive proof on distributed
data that the entire interaction thus far has been performed honestly. The necessary zero-knowledge
protocols that we develop induce communication that is sublinear in the circuit size.

Note that while many efficient MPC protocols from the literature implement batch-verification
of shared secrets by revealing random linear combinations, this technique only applies to checking
linear relations between the secrets. Fully linear proof systems provide a powerful extension of this
approach to batch-verification of non-linear relations with sublinear communication cost.

The case of 3-party computation. A specific motivated setting is that of 3-party computation
with 1 malicious corruption (and security with abort). The task of minimizing communication in
such protocols has attracted a significant amount of research effort (e.g., [4,5,40,58,65,78,92,98,101]).
To date, the best protocols communicate: 2 field elements per multiplication gate per party over
large fields (size comparable to 2σ for statistical security parameter σ) [40,101], or alternatively 7
bits per multiplication gate per party for Boolean circuits [4] (improving on 10 bits in [65]).

Applying our compiler to a 3-party semi-honest protocol of Katz et al. [87] (see also e.g. [5,47,56]),
we obtain a 3-party protocol guaranteeing security with abort against 1 malicious party, with 1 ring
element communicated per party per multiplication (amortized over large circuit size). Our result
holds over any finite field or modular arithmetic ring Zw; in particular, also for Boolean circuits.

Theorem 1.4 (Informal - Malicious 3PC, 1 ring element/gate/party). There exists a 3-party protocol
for securely computing any R-arithmetic circuit C (for R field of arbitrary size or R = Zw) with the
following features:

• The protocol makes black-box use of any pseudorandom generator. If R is a field, it also makes
a black-box use of R.

• The protocol is computationally secure with abort against one malicious party.
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• The communication complexity is |C|+ o(|C|) elements of R per party, where |C| denotes the
number of multiplication and input gates in C.

Note that one may apply trade-offs between communication and computation requirements in
order to yield more appealing concrete parameters. In particular, directly applying our compiler to
verify consistency of the entire protocol transcript as one large statement will induce an O(|C| log |C|)
computational overhead (due to the necessity of an FFT computation); however, the structure of the
resulting protocol-compliance language directly supports verification in smaller blocks, enabling lower
computation overhead at the expense of communicating a small number of separate proofs. From an
asymptotic point of view, our theorem cannot be obtained via the general machinery of (single-verifier)
succinct zero-knowledge arguments for NP, since the latter require stronger assumptions.

We also describe an application of our compiler in the more general honest majority case where
t < n/2 for constant n, building from a semi-honest protocol à la Damgård and Nielsen [55]. Here
more care must be taken to ensure the protocol satisfies the required natural condition, and in
particular we augment the protocol with extra redundancy to ensure robustness (incurring

(
n
t

)
computation and storage overhead, thus limiting our construction to constant number of parties).
Overall, our resulting protocol achieves malicious security with 3t/(2t + 1) (always ≤ 1.5) ring
elements communicated per gate per party.

2 A Taxonomy of Information-Theoretic Proof Systems

One of the contributions of this work is to introduce and formalize the notions of fully linear PCPs
and IOPs. To situate these new types of proof systems in the context of prior work, we briefly survey
the landscape of existing systems. This discussion will be relatively informal; see Section 3 for formal
definitions of linear and fully linear proof systems.

A tremendously successful paradigm for the construction of cryptographic proof systems is
the following: First, construct a proof system that provides security guarantees (soundness and
possibly zero-knowledge) against computationally unbounded parties. We will refer to this as an
“information-theoretic proof system,” or sometimes as a probabilistically checkable proof (PCP).
This information-theoretic system is often useless as a standlone object, since it typically makes
idealized assumptions (such as independence between two messages or restricted access to the proof)
that are difficult to enforce. Next, use cryptographic assumptions and/or an augmented model
of computation (e.g., the random-oracle model [13]) to “compile” the information-theoretic proof
system into one that can be directly implemented. This compiler may also provide extra desirable
properties, such eliminating interaction, improved communication complexity, or sometimes even
an extra zero knowledge property, at the possible cost of security against computationally bounded
prover and/or verifier. We refer to this type of compiler as a “cryptographic compiler.”

Different kinds of information-theoretic proof systems call for different cryptographic compilers.
The main advantage of this separation is modularity: information-theoretic proof systems can be
designed, analyzed and optimized independently of the cryptographic compilers, and their security
properties (soundness and zero-knowledge) do not depend on any cryptographic assumptions. It
may be beneficial to apply different cryptographic compilers to the same information-theoretic proof
system, as different compilers may have incomparable efficiency and security features. For instance,
they may trade succinctness for better computational complexity or post-quantum security or, more
relevant to this work, apply to different representations of the input statement.

To give just a few examples of this methodology: Micali [96] uses a random oracle to compile
any classical PCP into a succinct non-interactive argument system for NP. As another example,
Ben-Or et al. [14] compile any interactive proof system into a zero-knowledge interactive proof system
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using cryptographic commitments. Finally, Bitansky et al. [27] compile a linear PCP into a succinct
non-interactive argument of knowledge (SNARK) using either a “linear-only encryption” for the
designated-verifier setting or a “linear-only one-way encoding,” instantiated via bilinear groups, for
the public verification setting.2 In this work we compile fully linear PCPs and IOPs into proofs on
distributed, secret-shared, encrypted, or committed data.

2.1 Comparison with Other Proof Systems

In the following we survey some information-theoretic proof systems used in prior work. For simplicity,
we ignore the zero-knowledge feature that is typically added to all proof systems.

Let L ⊆ {0, 1}∗ be a language. Speaking informally, a proof system for L is a pair of (possibly
interactive) algorithms (P, V ). Both the prover P and verifier V take a string x ∈ {0, 1}∗ as input
(e.g., a SAT formula), and the prover’s task is to convince the verifier that x ∈ L (e.g., that x is
satisfiable). We sometimes view x as a vector over a finite field F. We require the standard notions
of completeness and soundness.

In the simplest such proof system, the prover sends the verifier a single proof string π of size
poly(|x|), the verifier reads x and π, and accepts or rejects. When the verifier is randomized and
efficient, this setting corresponds to a Merlin-Arthur proof system [8]. There are a number of
modifications to this basic paradigm that yield interesting alternative proof systems. In particular,
we can:

• Allow interaction between the prover and verifier. In an interactive proof, the prover and verifier
exchange many messages, after which the verifier must accept or reject. Allowing interaction
may increase the power of the proof system [115] and makes it possible to provide zero-
knowledge [77] in the plain model. (Alternatively, a common reference string is sufficient [28].)

• Restrict the verifier’s access to the proof. Another way to modify the basic paradigm is to
restrict the means by which the verifier interacts with the proof. In particular, we can view
the proof as an oracle, and only allow the verifier to make a bounded (e.g., constant) number
of queries to the proof oracle.
In the classical PCP model [7, 60,62], the proof is a string π ∈ Σm, for some finite alphabet
Σ, and the verifier can only read a small number of symbols from the proof. On input i, the
oracle returns the ith bit of the proof string π. (We call these “point queries.”)
In the linear PCP model [27, 83], the proof is a vector π ∈ Fm, for some finite field F, and the
verifier can can only make a small number of “linear queries” to the proof. That is, the proof
oracle takes as input a vector q ∈ Fm and returns the inner-product 〈π, q〉 ∈ F.

• Restrict the verifier’s access to the input. Yet another way to modify the basic paradigm is
to restrict the verifier’s access to the input x. In particular, we can view the input as an
oracle, and only allow the verifier to make a bounded (e.g., constant) number of queries to the
input oracle. The strong motivation for this is explained later in this section. We consider two
variants.
The model in which we view the input as a string, and only allow the verifier to make a limited
number of point queries to the input, corresponds to a PCP of proximity [24]. With a few
point queries, it is not possible to distinguish between an input x ∈ L, and an input x “close
to L” (in Hamming distance). For this reason, PCPs of proximity necessarily provide only a
relaxed notion of soundness: if x is “far from L,” then the verifier will likely reject.

2For instantiating the publicly verifiable variant with bilinear groups, the linear PCP needs to have a verification
predicate of algebraic degree 2. Such linear PCPs can be obtained either directly or via quadratic span programs or
quadratic arithmetic programs [27,67,104].
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Queries Queries
Proof type to input to proof Representative compilers

N
on

-i
nt

er
ac

ti
ve Classical (MA) [8] Read all Read all

PCP [6,7] Read all Point Kilian [88], Micali [96]
Linear PCP [83] Read all Linear IKO [83], Pepper [114], GGPR [67],

PHGR [104,105], BCIOP [27]

PCP of proximity [25] Point Point Kalai & Rothblum [85]
Fully linear PCP Linear Linear This paper

In
te

ra
ct

iv
e

Interactive proof (IP) [77] Read all Read all Ben Or et al. [14]
IOP [23] Read all Point BCS [23]
Linear IOP Read all Linear

IOP of proximity [18,19] Point Point
Fully linear IOP Linear Linear This paper, Hyrax [122], vSQL [124,125]

Table 2: A comparison of information-theoretic proof systems. The bolded proof system models are ones
that we introduce explicitly in this work. “Read all” refers to reading the entire data field, “Point” refers to
reading a small number of cells of the data, and “Linear” refers to a small number of linear queries to the
data.

Alternatively, we can view the input as a vector x ∈ Fn, for some finite field F, and only
allow the verifier to make a small number of linear queries to the input x. That is, the input
oracle takes as input a vector q ∈ Fn and returns the inner-product 〈x, q〉 ∈ F. We show that
this notion, introduced and studied in this work, is sufficient to provide a standard notion of
soundness (unlike the relaxed notion of soundness provided by PCPs of proximity).

We now have three attributes by which we can classify information-theoretic proof systems: interac-
tivity (yes/no), proof query type (read all/point/linear), and input query type (read all/point/linear).
Taking the Cartesian product of these attributes yields 18 different possible proof systems, and we
list ten of particular interest in Table 2.

For example, interactive oracle proofs (IOPs) are interactive proofs in which the verifier has
unrestricted access to the input but may make only point queries to proof strings [23]. Ben-Sasson
et al. [23] show how to compile such proofs into SNARGs in the random-oracle model and recent
hash-based SNARGs, including Ligero [2], STARK [17], and Aurora [22] are built using this technique.

Why fully linear proof systems? It is often the case that the verifier only has access to an
additively homomorphic encoding of a statement x, and the prover convinces the verifier that the
encoded statement is true. For example the verifier may be given an additively homomorphic
commitment or encryption of the statement x. Or the verifier may be implemented as a set of two
or more servers who have a linear secret sharing of the statement x, or who hold different parts of x.

In all these settings, the verifiers can easily compute an encoding of the inner product of the
statement x with a known query vector q. In some cases (such as the case of encrypted or committed
data), the verifiers may need the prover’s help help to “open” the resulting inner products.

When we compile fully linear PCPs into proof systems on shared, encrypted, or committed data,
our compilers have the same structure: the prover sends an additively homomorphic encoding of
the proof to the verifier. The verifier makes linear queries to the proof and input, and (if necessary)
the prover provides “openings” of these linear queries to the verifier. The verifier checks that the
openings are consistent with the encodings it was given, and then runs the fully linear PCP verifier
to decide whether to accept or reject the proof.

The need for new constructions. In current applications of PCPs and linear PCPs, the length
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of the proof is not a complexity metric of much relevance. For example, in the BCIOP compiler [27]
for compiling a linear PCP into a succinct non-interactive argument of knowledge (SNARK), the
size of the proof corresponds to the prover’s running time.

If the language L in question is decided by circuits of size |C|, then having proofs of size |C|
is acceptable, since the prover must run in time Ω(|C|) no matter what. A similar property holds
for Micali’s CS proofs [96], Kilian’s PCP compiler [88], the BCS compiler [23] of interactive oracle
proofs, and so on.

In our compilers, the prover must materialize the entire fully linear PCP proof, encode it, and
send it to the verifier. For us, the size of the fully linear PCP proof not only dictates the running
time of the prover, but also dictates the number of bits that the prover must communicate to the
verifier. For this reason, in our setting, minimizing the proof size is an important goal.

Furthermore, when compiling linear PCPs into SNARKs using the existing compilers [27,81,105]
it is critical that the linear PCP verifier be expressible as an arithmetic circuit of degree two. This is
because the linear PCP verification checks are essentially run “in the exponent” of a bilinear group.
In contrast, the settings we consider allow for more flexibility: the arithmetic degree of the verifier
typically does not play a role in the final applications, except perhaps for a possible influence on
proof verification time.

Relating fully linear PCPs to streaming proof systems. The setting of stream annotations [39],
introduced by Chakrabarti, Cormode, McGregor, and Thaler, restricts not only the verifier’s access
to the input and proof, but also the space usage of the verifier. In this model, the verifier is a
space-bounded streaming algorithm: it may take a single pass over the input and proof, and must
decide whether to accept or reject. For example, the verifier might be allowed only O(

√
n) bits

of working space to decide inputs of length n. The streaming interactive proof model [43] is a
generalization in which the prover and verifier may interact.

Fully linear interactive proofs naturally give rise to stream annotation proof systems. The reason
is that if a fully linear PCP verifier makes qπ linear proof queries and qx linear input queries, then
the verifier can compute the responses to all of its queries by taking a single streaming pass over the
input and proof while using (qx + qπ) log2 |F| bits of space. Thus, fully linear PCPs with small proof
size and query complexity give rise to stream annotation proof systems with small proof and space
requirements. Similarly, fully linear IOPs give rise to streaming interactive proofs.

The implication in the other direction does not always hold, however, since stream annotation
systems do not always give rise to fully linear PCPs with good parameters. The reason is that a
streaming verifier may, in general, compute some non-linear function of the input that is difficult to
simulate with linear queries.

Other proof systems. We briefly mention a number of other important classes of proof systems
in the literature that are out of scope of this discussion. Linear interactive proofs are a model of
interactive proof in which each message that the prover sends is an affine function of all of the
verifier’s previous messages (but is not necessarily an affine function of the input) [27].

The fully linear PCP model is well matched to the problem of proving statements on data
encoded with an additively homomorphic encoding, such as Paillier encryption [102] or a linear
secret-sharing scheme. A different type of encoding is a succinct encoding, in which the prover can
commit to a vector in Fm with a string of size sublinear in m [38,86]. Bootle et al. [33] introduce the
“Ideal Linear Commitment” (ILC) model as an abstraction better suited to this setting. In the ILC
proof model, the prover sends the verifier multiple proofs vectors π1, . . . , πk ∈ Fm in each round. The
verifier is given a proof oracle that takes as input a vector q ∈ Fk and returns the linear combination
qT · (π1 . . . πk) ∈ Fm. It is possible to translate linear IOP proofs into ILC proofs (and vice versa)
up to some looseness in the parameters. A linear IOP in which the prover sends a length-m proof
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in each round implies an ILC proof with the same query complexity in which the prover sends m
proofs of length 1 in each round. An ILC proof in which the prover sends k proofs of length m and
makes ` queries in each round implies a linear IOP with proof length k ·m and query complexity
` ·m. ILC-type proofs underlie the recent succinct zero-knowledge arguments of Bootle et al. [32]
and Bünz et al. [36], whose security is premised on the hardness of the discrete-log problem.

Finally, another related notion from the literature is that of a holographic proof [9, 82], where
the verifier gets oracle access to an encoding of the input using an arbitrary error-correcting code,
typically a Reed-Muller code. Our notion of fully linear PCPs can be viewed as a variant of this
model where the input is (implicitly) encoded by the Hadamard code and the proof can be accessed
via linear queries (as opposed to point queries). In fact, our model allows a single linear query to
apply jointly to the input and the proof.

We have not discussed multi-prover interactive proofs [15], in which multiple non-colluding
provers interact with a single verifier, or more recently, multi-prover proofs in which a verifier gets
access to multiple (possibly linear) proof oracles [31,83].

“Best-of-both-worlds” proof systems. To conclude this section, we point to an interesting
direction for future work on proof systems. A very desirable type of proof system, which is not listed
in Table 2, would be one in which the verifier makes linear queries to the input and point queries to
the proof. This type of proof system, which we call a strongly linear proof, achieves in some sense
the “best of both worlds:” the verifier has restricted access to the input (as in a PCP of proximity or
fully linear PCP) and yet achieves the standard notion of soundness (as in a classical PCP). While
it is possible in principle to construct such strongly linear PCPs and IOPs by combining standard
PCPs or IOPs of proximity [20,24] with linear error-correcting codes, this generic combination may
not yield the best achievable parameters.

3 Definitions

Notation. For n ∈ N, let [n] = {1, . . . , n}. Let ‖ denote concatenation, 〈·, ·〉 denote inner product
and ⊥ denote the empty string. When C is an arithmetic circuit over a finite field F, we use |C| to
denote the number of multiplication gates in the circuit. When |F| > n, we let 1, 2, . . . , n denote
distinct nonzero field elements.

On concrete vs. asymptotic treatment. Since our new types of proof systems are meaningful
objects even when all of the algorithms involved are computationally unbounded, our definitions
refer to languages and NP-relations as finite objects and do not explicitly refer to the running time
of algorithms. All of our definitions can be naturally extended to the standard asymptotic setting
of infinite languages and relations with polynomial-time verifiers, honest provers, simulators, and
knowledge extractors. Our positive results satisfy these asymptotic efficiency requirements.

3.1 Fully linear PCPs

Our new notion of fully linear PCPs build upon the definitions of standard linear PCPs from Ishai
et al. [83] and Bitansky et al. [27]. We start by recalling the original notion.

Definition 3.1 (Linear PCP). Let F be a finite field and let R ⊆ Fn × Fh be a binary relation. A
linear probabilistically checkable proof system for R over F with proof length m, soundness error ε,
and query complexity ` is a pair of algorithms (PLPCP, VLPCP) with the following properties:

• For every (x,w) ∈ R, the prover PLPCP(x,w) outputs a proof π ∈ Fm.
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• The verifier VLPCP consists of a query algorithm QLPCP and a decision algorithm DLPCP. The
query algorithm QLPCP takes no input and outputs ` queries q1, . . . , q` ∈ Fm, which are
independent of x, and state information st. The decision algorithm DLPCP takes as input
the state st, the statement x, and the ` answers 〈π, q1〉, . . . , 〈π, q`〉 ∈ F to QLPCP’s queries. It
outputs “accept” or “reject.”

The algorithms additionally satisfy the following requirements:
• Completeness. For all (x,w) ∈ R, the verifier accepts a valid proof:

Pr
[
DLPCP(st, x, 〈π, q1〉, . . . , 〈π, q`〉) = “accept” :

π ← PLPCP(x,w)
(st, q1, . . . , q`) ← QLPCP()

]
= 1.

• Soundness. For all x∗ 6∈ L(R), and for all false proofs π∗ ∈ Fm, the probability that the
verifier accepts is at most ε:

Pr
[
DLPCP(st, x∗, 〈π∗, q1〉, . . . , 〈π∗, q`〉) = “accept” : (st, q1, . . . , q`)← QLPCP()

]
≤ ε.

In some applications of linear PCPs, one also needs a knowledge property [27]: if VLPCP(x)
accepts a proof π, then there exists an extractor ELPCP that, on input π, outputs a witness w such
that (x,w) ∈ R. The linear PCPs we introduce in this work all satisfy this property, though we
prove the simpler soundness property.

Remark 3.2 (Linear PCPs for languages). On occasion we refer to linear PCPs for a language L ⊆ Fn,
rather than for a binary relation R ⊆ Fn × Fh. This will typically be the case when L is efficiently
recognizable, in which case the prover does not require an additional witness w. Essentially the same
notions of completeness and soundness apply in this setting: if x ∈ L, the verifier always accepts
and for all x 6∈ L the verifier rejects except with at most ε probability.

We now define our main new notion of fully linear PCPs and their associated strong zero knowledge
property.

Definition 3.3 (Fully linear PCP - FLPCP). We say that a linear PCP is fully linear if the decision
predicate DLPCP makes only linear queries to both the statement x and to the proof π. More formally,
the query algorithm QLPCP outputs queries q1, . . . , q` ∈ Fm+n, and state information st. The decision
algorithm DLPCP takes as input the query answers a1 = 〈(x‖π), q1〉, . . . , a` = 〈(x‖π), q`〉, along with
the state st, and outputs an accept/reject bit.

Remark 3.4. If we do not restrict the running time of the linear PCP verifier and we do not restrict
the manner in which the verifier can access the statement x, then all relations have trivial a linear
PCPs: an inefficient linear PCP verifier can simply iterate over every possible witness w and test
whether (x,w) ∈ R. To make the definition non-trivial, the standard notion of PCPs [118] (and
also linear PCPs [27,83]) restricts the verifier to run in polynomial time. In contrast, a fully linear
PCP restricts the verifier’s access to the statement x by permitting the verifier to make a bounded
number of linear queries to x. This restriction makes the definition non-trivial: even if the verifier
can run in unbounded time, it cannot necessarily decide whether x ∈ L(R) without the help of a
proof π.

Definition 3.5 (Degree of FLPCPs). We say that a fully linear PCP has a degree-d verifier if:
• the state information st that the query algorithm outputs is in Fµ and
• the decision algorithm DLPCP is computed by an arithmetic circuit of degree d. That is, there

exists a test polynomial T : Fµ+` → Fη of degree d such that T (st, a1, . . . , a`) = 0η if and only
if DLPCP(st, a1, . . . , a`) accepts.
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Definition 3.6 (Strong zero-knowledge fully linear PCPs). A fully linear PCP is strong honest-
verifier zero knowledge (strong HVZK) if there exists a simulator SLPCP such that for all (x,w) ∈ R,
the following distributions are identical:

SLPCP() ≡
{

(q1, . . . , q`)(
〈(x‖π), q1〉, . . . , 〈(x‖π), q`〉

) :
π ← PLPCP(x,w)

(q1, . . . , q`) ← QLPCP()

}
.

Remark 3.7. The strong zero-knowledge property here departs from the traditional zero-knowledge
notion in that it essentially requires that an honest verifier learn nothing about the statement x by
interacting with the prover, except that x ∈ L(R). This notion is meaningful in our applications,
since the statement x could be encrypted or secret-shared (for example), and thus it makes sense for
a verifier to learn that x ∈ L(R) without learning anything else about x.

3.2 Fully Linear Interactive Oracle Proofs

In a linear PCP, the interaction between the prover and verifier is “one-shot:” the prover produces a
proof π, the verifier makes queries to the proof, and the verifier either accepts or rejects the proof.
We define fully linear interactive oracle proofs (“fully linear IOPs”), generalizing linear PCPs to
several communication rounds. This sort of linear proof system is inspired by the notion of IOPs
from [23,109] (generalizing an earlier notion of interactive PCPs [84]) that use point queries instead
of linear queries.

We start by formalizing a general model of fully linear IOPs in which the verifier can use secret
coins, and then specialize it to the case of public-coin IOPs that will be the most useful in this work.

Definition 3.8 ((Fully) linear interactive protocol). A t-round `-query (fully) linear interactive
linear protocol Π with message length (m1, . . . ,mt) ∈ Nt and message complexity c =

∑t
i=1mi over

a finite field F consists of algorithms P and V . Let the initial state stP0 of P to be the input to P
and let the initial state stV0 of V to be the input x to V . Let the initial verifier-to-prover message
r0 = ⊥ and let the output of such an interaction be: for each round i ∈ {1, . . . , t},

• P takes as input the round index i, the verifier’s challenge ri−1, and state stPi−1, and P outputs
a vector πi ∈ Fmi along with state stPi .

• V takes as input the round index i, state stVi−1, makes ` linear oracle queries to πi (or to x‖πi
if it is fully linear), and V outputs a challenge ri ∈ Fbi , for some parameter bi, along with state
stVi .

The protocol accepts if V outputs “accept” in round t and rejects otherwise.

Definition 3.9 (Fully linear interactive oracle proof - FLIOP). A t-round `-query interactive fully
linear protocol (PLIOP, VLIOP) over F is a fully linear interactive oracle proof system (fully linear IOP)
for a relation R with soundness error ε if it satisfies the following properties:

• Completeness. For all (x,w) ∈ R, the interaction [PLIOP(x,w), VLIOP(x)] always accepts.
• Soundness. For all x 6∈ L(R), and for all (computationally unbounded) P ∗, [P ∗, VLIOP(x)]

accepts with probability at most ε.
As for the case of linear PCPs (Definition 3.1), we can define a knowledge property for linear

IOPs [23]. The fully linear IOPs we construct also satisfy this property.
A fully linear IOP is honest-verifier zero knowledge if it additionally satisfies:
• Honest-verifier zero knowledge. There exists a simulator SLIOP such that

SLIOP(x) ≡ View[PLIOP(x,w),VLIOP(x)](VLIOP)
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Linear PCP Proof length Queries Verifier deg. Soundness error

Hadamard LPCP [6,27] O(|C|2) 3 2 O(1)/|F|
GGPR-style [67] O(|C|) 4 2 O(|C|)/|F|
G-gates (Thm. 4.3) M · degG L+ 2 degG M · degG/(|F| −M)

Degree-two (Cor. 4.7) O(
√
|C|) O(

√
|C|) 2 O(

√
|C|)/|F|

Table 3: A comparison of existing and new fully linear PCP constructions for satisfiability of an arithmetic
circuit C : Fn → F. Proof length measures the number of field elements in F. For the G-gates construction,
G : FL → F is an arithmetic circuit of degree degG and M is the number of G-gates in the circuit C.

for all (x,w) ∈ R. Here, we use the notation View[PLIOP(x,w),VLIOP(x)](VLIOP) for the distribution
of internal randomness and messages that VLIOP sees in its interaction with PLIOP(x,w).
Furthermore, we say that a linear IOP satisfies strong zero knowledge (sometimes referred
to as strong HVZK) if the simulator SLIOP takes no input.

Definition 3.10 (Degree of linear IOP verifier). We say that a fully linear PCP has a degree-d
verifier if:

• the state stVi that the verifier outputs in round i is a vector in Fµi , and
• There exists a test polynomial T : F

∑t
i=1(µi+`) → Fη of degree d that takes as input (1) the

verifier’s state at each round of the protocol and (2) the ` query responses to the verifier’s
queries at each round. The verifier accepts if and only if T evaluates to 0η.

Definition 3.11 (Public-coin fully linear IOP). We say that a t-round `-query fully linear IOP is
public coin if it satisfies the following additional properties:

1. In every round i ∈ {1, . . . , t} of interaction, first the prover provides a proof πi and then a
public random challenge ri is picked uniformly at random from a finite set Si. (The choice of ri
is made independently of the proof πi of the same round.) The verifier’s ` linear queries in the
ith round (qi,1, . . . , qi,`) (made to x‖πi) are determined by the random challenges (r1, . . . , ri)
sampled so far. The public randomness ri can influence the proofs generated by the prover in
the following rounds.

2. The verifier’s decision predicate is a function only of the public random challenges (r1, . . . , rt)
and the answers to the verifier’s queries {(qi,1, . . . , qi,`)}i∈[t].

All of the fully linear IOPs we construct are public coin. When the first round does not involve
a proof but only a random challenge πi, we deduct 1/2 from the number of rounds. In particular,
a 1.5-round public-coin fully linear IOP is one that involves (in this order): a random challenge
r, a proof π (that may depend on r), queries (q1, . . . , q`) to x‖π that may depend on fresh public
randomness r′, and decision based on r, r′ and the answers to the queries.

4 Constructions: Fully linear PCPs

In this section we first show how to construct fully linear PCPs from existing linear PCPs. Next,
we introduce a new fully linear PCP that yields shorter proofs for languages that are recognized
by arithmetic circuits with certain repeated structure; the only cost is an increase in the algebraic
degree of the verifier, which is irrelevant for the main applications we consider. This new fully linear
PCP is an important building-block for our new efficient fully linear IOP constructions in Section 5.
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4.1 Existing Linear PCPs are Fully Linear and Strong HVZK

We begin by observing that the Hadamard [6,27] and GGPR-style linear PCPs [21,27,67,113], as
described in the work of Bitansky et al. [27, Appendix A], satisfy our new notions of full linearity
and strong zero knowledge.

Claim 4.1 (Informal). The Hadamard linear PCP and the GGPR-based linear PCP are constant-
query fully linear PCPs, in the sense of Definition 3.3. Moreover, they yield fully linear PCPs with
strong HVZK.

4.2 A New Fully Linear PCP with Short Proofs for Structured Circuits

We now describe a fully linear PCP for arithmetic circuit satisfiability, for circuits C with a certain
type of repeated structure. When applied to arithmetic circuits of size |C|, it can yield proofs of
length o(|C|) field elements. In contrast, the existing general-purpose linear PCPs in Claim 4.1 have
proof size Ω(|C|).

This new linear PCP construction applies to circuits that contain many instances of the same
subcircuit, which we call a “G-gate.” If the arithmetic degree of the G-gate is small, then the
resulting linear PCP is short. More formally, we define:

Definition 4.2 (Arithmetic circuit with G-gates). We say that a gate in an arithmetic circuit is
an affine gate if (a) it is an addition gate, or (b) it is a multiplication gate in which one of the
two input is a constant. Let G : FL → F be an arithmetic circuit composed of affine gates and
multiplication gates. An arithmetic circuit with G-gates is an arithmetic circuit composed of affine
gates and G-gates.

The following theorem is the main result of this section. Recall that |G| refers to the number of
non-constant multiplication gates in the arithmetic circuit for G.

Theorem 4.3. Let C be an arithmetic circuit with G-gates over F such that:
(a) the gate G : FL → F has arithmetic degree degG,
(b) the circuit C consists of M instances of a G-gate and any number of affine gates, and
(c) the field F is such that |F| > M degG.

Then, there exists a fully linear PCP with strong HVZK for the relation RC = {(x,w) ∈ Fn × Fh |
C(x,w) = 0} that has:

• proof length h+ L+M degG+ 1 elements of F, where h is the witness length and L is the
arity of the G-gate,

• query complexity L+ 2,
• soundness error M degG/(|F| −M), and
• a verification circuit of degree degG containing |G| multiplication gates.

Furthermore, if we require a fully linear PCP that is not necessarily strong HVZK, then the proof
length decreases to h + (M − 1) degG + 1 elements of F and the soundness error decreases to
M degG/|F|.

The proof of Theorem 4.3 uses the following simple fact about the linearity of polynomial
interpolation and evaluation.

Fact 4.4. Let F be a finite field and let π ∈ Fm. For some integer n < |F|, let A1, . . . , An be affine
functions that map Fm to F. Define f to be the polynomial of lowest-degree such that f(i) = Ai(π)
for all i ∈ {1, . . . , n}. Then for all r ∈ F and all choices of the Ai, there exists a vector λr ∈ Fm and
scalar δr ∈ F, such that f(r) = 〈λr, π〉+ δr for all π ∈ Fm.
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Fact 4.4 says that given the values of a polynomial f at the points 1, . . . , n as affine functions of a
vector π ∈ Fm, we can express f(r) as an affine function of π, and this affine function is independent
of π. This follows from the fact that polynomial interpolation applied to the n points

{
(i, Ai(π))

}n
i=1

followed by polynomial evaluation at the point r is an affine function of π.

Proof of Theorem 4.3. The construction that proves Theorem 4.3 is a generalization of the linear
PCP implicit in the construction used in the Prio system [44] and is closely related to a Merlin-Arthur
proof system of Williams for batch verification of circuit evaluation [123]. Figure 4 gives an example
of the proof construction, applied to a particular simple circuit.

Label the G-gates of the circuit C in topological order from inputs to outputs; there are M such
gates in the circuit. Without loss of generality, we assume that the output of the circuit C is the
value on the output wire of the last G-gate in the circuit.

FLPCP prover. On input (x,w) ∈ Fn × Fh, the prover evaluates the circuit C(·, ·) on the pair
(x,w). The prover then defines L polynomials f1, . . . , fL ∈ F[X] such that, for every i ∈ {1, . . . , L},

(i) the constant term fi(0) is a value chosen independently and uniformly at random from F, and
(ii) for all j ∈ {1, . . . ,M}, fi(j) ∈ F is the value on the i-th input wire to the j-th G-gate when

evaluating the circuit C on the input-witness pair (x,w).
Furthermore, the prover lets f1, . . . , fL be the polynomials of lowest degree that satisfy these relations.
Observe that each of the polynomials f1, . . . , fL has degree at most M .

Next, the prover constructs a proof polynomial p = G(f1, . . . , fL) ∈ F[X]. By construction of
p, we know that, for j ∈ {1, . . . ,M}, p(j) is the value on the output wire from the j-th G-gate in
the evaluation of C(x,w). Moreover, p(M) = C(x,w). Let d be the degree of the polynomial p
and let cp ∈ Fd+1 be the vector of coeffcients of p ∈ F[X]. By construction, the degree of p satisfies
d ≤M degG.

The prover outputs π = (w, f1(0), . . . , fL(0), cp) ∈ Fh+L+d+1 as the linear PCP proof.
(Note: If we do not require strong HVZK to hold, then the prover need not randomize the

constant terms of the polynomials f1, . . . , fL. In this case, the prover does not include the values
f1(0), . . . , fL(0) in the proof, and the degree of the polynomial p decreases to (M − 1) degG. Thus,
if we do not require strong HVZK, the proof length falls to h+ (M − 1) degG+ 1.)

FLPCP queries. We can parse the (possibly maliciously crafted) proof π ∈ Fh+L+d+1 as: a
purported witness w′ ∈ Fh, the values (z′1, . . . , z

′
L) ∈ FL representing the constant terms of some

polynomials f ′1, . . . , f ′L, and the coefficients c′p ∈ Fd+1 of a polynomial p′ ∈ F[X] of degree at most d.
If the proof is well-formed, the polynomial p′ is such that p′(j) encodes the output wire of the jth
G-gate in the circuit C(·, ·) when evaluated on the pair (x,w′).

Given p′, we define L polynomials f ′1, . . . , f ′L ∈ F[X] such that:
(i) the constant term satisfies f ′i(0) = z′i, where z

′
i is the value included in the proof π′, and

(ii) f ′i(j) ∈ F is the value on the i-th input wire to the j-th G-gate in the circuit, under the
purported assignment of values to the output wires of the G-gates implied by the polynomial p′

and witness w′.
More precisely, we define f ′i(j) inductively: The value on the ith input wire to the jth G-gate in

the circuit C(x,w′) is some affine function Aij of
• the input x ∈ Fn,
• the purported witness w′ ∈ Fh, and
• the purported outputs of the first j − 1 G-gates in the circuit: p′(1), . . . , p′(j − 1) ∈ F.
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So, for all i ∈ {1, . . . , L}, we define f ′i to be the polynomial of least degree satisfying:

f ′i(0) = z′i

f ′i(j) = Aij(x,w
′, p′(1), ..., p′(j − 1)) for 1 ≤ j ≤M,

where Aij is a fixed affine function defined by the circuit C.

The verifier’s goal is to check that:
1. p′ = G(f ′1, . . . , f

′
L), and,

2. the circuit output p′(M) satisfies p′(M) = 0.
As we argue below, the first condition ensures that p′(M) is equal to the output of the circuit
C(x,w′). The second check ensures that the output is 0.

To implement the first check, the verifier samples a random point r ←R F \ {1, . . . ,M} and
outputs query vectors that allow evaluating p′ and f ′1, . . . , f ′L at the point r. (For the honest-verifier
zero knowledge property to hold, it is important that we exclude the set {1, . . . ,M} from the
set of choices for r.) The verifier has linear access to the input x, witness w′, constant terms
z′ = (z′1, . . . , z

′
L), and the coefficients c′p ∈ Fd+1 of the polynomial p′. Hence, using Fact 4.4,

it follows that the query algorithm can compute vectors λ1, . . . , λL ∈ Fn+h+L+d+1 and scalars
δ1, . . . , δL ∈ F such that f ′i(r) = 〈λi, (x‖w′‖z′‖c′)〉+ δi for i = 1, . . . , L, where r ∈ F is the random
point chosen above. Similarly, the query algorithm can compute a vector λ ∈ Fn+h+L+d+1 such that
p′(r) = 〈λ, (x‖w′‖z′‖c′)〉.

The verifier can execute the second check, to ensure that p′(M) = 0, with a single linear query.

FLPCP decision. The decision algorithm takes as input the state value r ∈ F \ {1, . . . ,M}, along
with the query answers a, a1, . . . , aL, b ∈ F, where a = p′(r), ai = f ′i(r) for i ∈ {1, . . . , `}, and
b = p′(M). The verifier accepts if a = G(a1, . . . , aL) and b = 0.

Security arguments. We show completeness, soundness, and strong HVZK.

Completeness. If the prover is honest, then p′ = G(f ′1, . . . , f
′
L) and p′(M) = 0 by construction. The

verifier will always accept in this case.

Soundness. Fix a circuit C, a statement x ∈ Fn, and a proof π′ ∈ Fh+L+d+1. We show that if
x 6∈ L(RC) then the verifier accepts with probability at most M degG/(|F| −M).

As in the description of the query algorithm, we can view:
• the first h elements of the proof as a witness w′ ∈ Fh,
• the next L elements of the proof as constant terms z′1, . . . , z′L ∈ F, and
• the latter elements as the coefficients of a polynomial p′ of degree at most d ≤M degG.

We may assume that p′(M) = 0, since otherwise the verifier always rejects. In the discussion that
follows, let the polynomials f ′1, . . . , f ′L be the ones defined in the description of the linear PCP query
algorithm.

We claim that if for all j ∈ {1, . . . ,M}, it holds that p′(j) = G(f ′1(j), . . . , f ′L(j)), then for all
j ∈ {1, . . . ,M}, p′(j) encodes the value of the output wire of the jth G-gate in the circuit C when
evaluated on input (x,w′).

We prove this claim by induction on j:
• Base case (j = 1). The values (f ′1(1), . . . , f ′L(1)) depend only on the pair (x,w′). By

construction, the values (f ′1(1), . . . , f ′L(1)) are exactly the values of the input wires to the first
G-gate in the evaluation of C(x,w′). Then if p′(1) = G(f ′1(1), . . . , f ′L(1)), p′(1) encodes the
value on the output wire of the first G-gate.
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• Induction step. Assume that, for all k ∈ {1, . . . , j − 1}, p′(k) = G(f ′1(k), . . . , f ′L(k)). Then, by
the induction hypothesis, (p′(1), . . . , p′(j − 1)) are the values on the output wires of the first
j − 1 G-gates of C, when evaluated on (x,w′).
The values (f ′1(j), . . . , f ′L(j)) are affine functions of x, w′ and the values p′(1), . . . , p′(j − 1).
Then, by construction of the polynomials (f ′1, . . . , f

′
L), the values (f ′1(j), . . . , f ′L(j)) encode the

values on the input wires to the j-th G-gate in the evaluation of the circuit C(x,w′). Finally,
if we assume that p′(j) = G(f ′1(j), . . . , f ′L(j)), then p′(j) must be the value on the output wire
of the jth G-gate.
We have thus proved the induction step.

This completes the proof of the claim.
If p′(M) = 0 (as we have assumed), but there exists no witness w′ such that C(x,w′) = 0, then

p′(M) does not encode the output value of the Mth G-gate in the evaluation of the circuit C(x,w′).
By the claim just proved, this implies that for some j∗ ∈ {1, . . . ,M}, p′(j∗) 6= G(f ′1(j∗), . . . , f ′L(j∗)).
Thus, when we view p′, f ′1, . . . , f

′
L ∈ F[X] as univariate polynomials, we have that p′ 6= G(f ′1, . . . , f

′
L).

Now, if p′ 6= G(f ′1, . . . , f
′
L) then p′ −G(f ′1, . . . , f

′
L) ∈ F[X] is a non-zero univariate polynomial of

degree at most M degG. Such a polynomial can have at most M degG roots over F. Therefore the
probability, over the verifier’s random choice of r ←R F\{1, . . . ,M}, that p′(r)−G(f ′1(r), . . . , f ′L(r)) =
0 is at most M degG/(|F| −M). We conclude that the verifier accepts a false proof with probability
at most M degG/(|F| −M).

Strong honest-verifier zero knowledge. To show that the construction satisfies strong HVZK, we must
produce a simulator SLPCP() that perfectly simulates the joint distribution of the honest verifier’s
queries and the honest prover’s responses. The honest verifier’s queries are determined by the random
choice of the point r ←R F \ {1, . . . ,M} at which the verifier evaluates the polynomials p, f1, . . . , fL.
The simulator must then simulate the distribution of values 〈r, p(r), f1(r), . . . , fL(r), p(M)〉 ∈ FL+3.

The simulator SLPCP takes no input and executes the following steps:
• Choose r ←R F \ {1, . . . ,M}.
• Choose a1, . . . , aL ←R F.
• Compute a← G(a1, . . . , aL) ∈ F.
• Output the tuple 〈r, a, a1, . . . , aL, 0〉 ∈ FL+3.
The simulated value r is distributed exactly as in the real interaction. Since p(M) = 0 in the

real interaction, the simulation of this value is also perfect. If the simulation (a1, . . . , aL) of the
values (f1(r), . . . , fL(r)) is perfect, then the simulation a of the value p(r) is also perfect, since a is
constructed exactly as in the real interaction.

We must then only argue that the simulation (a1, . . . , aL) of the values (f1(r), . . . , fL(r)) is
correct. For every i ∈ {1, . . . , L}, we can write the value fi(r) in terms of the Lagrange interpolating
polynomials λ0(·), λ1(·), . . . , λM (·), evaluated at the point r:

fi(r) = λ0(r) · fi(0) +

M∑
j=1

λj(r) · fi(j).

When r 6∈ {1, . . . ,M}, the value of the zero-th interpolating polynomial is non-zero: λ0(r) 6= 0. Since,
by construction, the value fi(0) is distributed uniformly at random over F and is independent of all
other values, when r 6∈ {1, . . . ,M}, fi(r) will be distributed uniformly over F and independently of
all other values.

Since the honest verifier chooses r ←R F \ {1, . . . ,M}, we conclude that the joint distribution of
(r, f1(r), . . . , fL(r)) will be uniform over (F \ {1, . . . ,M})× FL in the real interaction. The entire
simulation is then perfect.
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Circuit. An example circuit
C(x1, x2, x3, w) using an arbi-
trary three-input G-gate. The
circuit takes as input the vec-
tor (x1, x2, x3) ∈ F3, and a wit-
ness w ∈ F. The circuit C out-
puts v2, the value on the output
wire of the topologically last G-
gate.

Linear PCP proof. Using Theorem 4.3, we construct a fully linear
PCP proof π that the input (x1, x2, x3) ∈ F3 is in the language
recognized by C. That is, the prover asserts that there exists a
witness w ∈ F such that C(x1, x2, x3, w) = 0 ∈ F.

The prover first constructs three polynomials f1, f2, f3. The value
fi(j) encodes the value on the i-th input to the j-th G-gate, in
topological order from inputs to outputs. The constant terms are
random elements z1, z2, z3 ←R F. That is:

f1(0)=z1 f2(0)=z2 f3(0)=z3

f1(1)=x1 f2(1)=x2 f3(1)=x3

f1(2)=v1=G(x1,x2,x3) f2(2)=x3 f3(2)=x3+w+7

Next, the prover constructs the polynomial p, which satisfies p =
G(f1, f2, f3), and which has degree at most d = 2 degG. Notice that
for j ∈ {1, 2}, p(j) is the value on the output wire of the j-th G-gate.
Letting d = 3 degG, we can write the values of p as:

p(0)=G(f1(0),f2(0),f3(0))=G(z1,z2,z3)

p(1)=G(f1(1),f2(1),f3(1))=v1=G(x1,x2,x3)

p(2)=G(f1(2),f2(2),f3(2))=v2=G(v1,x3,x3+w+7)

p(3)=G(f1(3),f2(3),f3(3))

...
p(d)=G(f1(d),f2(d),f3(d)).

The linear PCP proof π consists of the elements: (w, z1, z2, z3, p̄) ∈
FL+d+2, where p̄ ∈ Fd+1 is the vector of coefficients of the polyno-
mial p.

Figure 4: An example of the fully linear PCP proof of Theorem 4.3.

If we define the G-gate to be a multiplication gate, so that degG = 2, then the construction of
Theorem 4.3 matches the complexity of the GGPR-based linear PCP [67,113] and provides what is
essentially an alternative formulation of that proof system. In contrast, if degG� |G|, then this
construction can yield significantly shorter proofs than the GGPR-based linear PCP, at the cost of
increasing the algebraic degree of the verifier from 2 to degG.

Remark 4.5. We can generalize Theorem 4.3 to handle circuits with many distinct repeated subcircuits
G1, . . . , Gq with Mi instances of each gate Gi : FLi → F, for i ∈ {1, . . . , q}. The resulting fully linear
PCP with strong HVZK has proof length at most h+ (

∑q
i=1 Li) + (

∑q
i=1Mi degGi) + q elements

of F, query complexity 1 +
∑q

i=1(Li + 1), a verifier of algebraic degree maxi degGi, and soundness
error

∑q
i=1

(
Mi degGi/(|F| −Mi)

)
.

Remark 4.6. To get good soundness when applying the proof system of Theorem 4.3, the field F
must be such that |F| � M degG. In many applications, the input x ∈ Fn is a vector in a small
field, such as the binary field F2. In this case, we apply Theorem 4.3 by lifting x into an extension
field F̃ of F, and carrying out the linear PCP operations in the extension.

The randomization technique we use to achieve honest-verifier zero-knowledge in Theorem 4.3
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is inspired by the one that appears in the work of Bitansky et al. [27] for achieving HVZK in the
Hadamard linear PCP construction.

4.3 Application: Short Proofs for Degree-Two Relations

As an application of Theorem 4.3 we demonstrate a special-purpose fully linear PCP for relations
recognized by arithmetic circuits of degree two. When applied to an arithmetic circuit C : Fn×Fh → F,
we obtain a proof that consists of only O(h+

√
n) field elements and whose query complexity is only

O(
√
n+ h). For general-purpose linear PCPs, such as the Hadamard or GGPR-based linear PCPs,

the proof length plus query complexity is much larger: Ω(n+ h).
A special case of this proof yields a linear PCP for the language of vectors whose inner product

is equal to a certain value. To give one application of such a proof system: Given encryptions of two
sets, represented by their characteristic vectors, this proof system would allow a prover to succinctly
show that the sets are disjoint.

This construction also reveals the close connection between fully linear PCPs and communication
complexity. Without zero knowledge, this proof protocol boils down to the Merlin-Arthur communi-
cation complexity protocol of Aaronson and Wigderson [1]. Furthermore, as we show in Appendix B,
we can use lower bounds on the communication complexity of inner-product to show that this fully
linear PCP construction has essentially optimal parameters.

Corollary 4.7 (FLPCP for degree-two circuits). Let F be a finite field, let C : Fn × Fh → F be an
arithmetic circuit of degree two, and let RC = {(x,w) ∈ Fn × Fh | C(x,w) = 0}. There is a fully
linear PCP with strong HVZK for RC that has proof length h + O(

√
n+ h) elements of F, query

complexity O(
√
n+ h), a verifier of algebraic degree 2, and soundness error O(

√
n+h)

|F|−d
√
n+he .

The idea of Corollary 4.7 is that any degree-two circuit C : Fn → F can be expressed as a circuit
that computes an inner-product of dimension-n vectors, along with some number of affine gates.
This property is special to degree-two circuits—the idea does not apparently generalize to circuits of
higher constant degree.

Proof of Corollary 4.7. Without loss of generality we can assume that C implements a quadratic
form C(x,w) = (x‖w)T · A · (x‖w) for some matrix A ∈ F(n+h)×(n+h). Indeed, a proof system for
quadratic forms yields a proof system for any circuit of degree 2. We can re-write C(x,w) as the
inner-product of the vectors y = (x‖w) and z = A · (x‖w) in Fn+h. Hence, it suffices to design a fully
linear PCP for the inner-product relation R′C =

{
(x,w) ∈ Fn × Fh |

〈
(x‖w) , A · (x‖w)

〉
= 0
}
.

Let L2 be the closest perfect square greater than or equal to n + h, and pad the vectors
y = (x‖w) and z = A(x‖w) with zeros so that both are in F(L2). Next, arrange the vector
y into a matrix Y ∈ FL×L, and arrange z into a matrix Z ∈ FL×L in the same way. Then
C(x,w) = 〈y, z〉 = trace(Y · ZT ).

Because the trace is a linear function, we can compute C(x,w) using a circuit C ′ consisting of
only addition gates and a total of L gates G : FL × FL → F defined as G(u, v) = 〈u, v〉 for u, v ∈ FL.
Clearly degG = 2 and L = O(

√
n+ h). Applying Theorem 4.3 to this G-gate circuit gives a fully

linear PCP for RC′ with strong HVZK with the parameters stated in the corollary, as required. The
proof needs at most 2L additional linear queries to verify that the padding in y and z is all zero, but
this does not change the parameters in the corollary.

Remark 4.8. A simple extension of Corollary 4.7 yields a two-round (in fact, 1.5-round) fully linear
IOP for relations recognized by general degree-two circuits C : Fn × Fh → Fk, for k ≥ 1. To sketch
the idea behind this extension, write the circuit C as C(x) = (C1(x), C2(x), . . . , Ck(x)) ∈ Fk, where

20



each Ci is a degree-two circuit. In the first round of the protocol, the verifier sends a random value
r ∈ F. Then the prover and verifier define the degree-two circuit Cr(x) =

∑k
i=1 r

i · Ci(x) ∈ F. The
prover then uses the fully linear PCP of Corollary 4.7 to convince the verifier that Cr accepts the
input x ∈ Fn. The efficiency parameters match those of the corollary, except that the soundness
error increases by an additive term k/|F| to account for the failure event that some Ci(x) outputs a
non-zero value and yet the sum Cr(x) is zero. See Theorem 5.8 for a more general version of this
protocol.

4.4 Application: Short Proofs for Parallel-Sum Circuits

As a second application of Theorem 4.3, we give a special-purpose fully linear PCP for languages
recognized by circuits that take as input a vector x ∈ Fn and:

• apply an affine transformation to the input,
• apply the same sub-circuit C : FL → F in parallel to each block of L values, and
• sum the outputs of the C circuits.

More formally, let C : FL → F be an arithmetic circuit. Let A : Fn → F and A1, . . . , AM : Fn → FL
be affine functions. This linear PCP construction applies to the language of values x ∈ Fn such that∑M

i=1C(Ai(x)) = A(x).

Corollary 4.9 (FLPCP for parallel-sum circuits). Let C : FL → F be an arithmetic circuit over F
that has arithmetic degree degC. Let A : Fn → F and A1, . . . , AM ∈ Fn → FL be affine functions.
Then, there exists a strong HVZK fully linear PCP for the language LC,A,A1,...,AM = {x ∈ Fn |∑M

i=1C(Ai(x)) = A(x)} that has:
• proof length O(

√
M · (L+ degC)) elements of F,

• query complexity O(
√
M · L),

• soundness error
√
M ·degC

|F|−
√
M

, and

• an arithmetic verification circuit of degree degC containing O(
√
M · |C|) multiplication gates.

Proof of Corollary 4.9. We define an appropriate G-gate and then invoke Theorem 4.3. Assume
that M is a perfect square, since otherwise we can pad M up to the nearest square. The gadget
G : F

√
ML → F applies the circuit C to

√
M blocks of L inputs. So, on input (x̄1, . . . , x̄√M ) ∈ F

√
ML,

where x̄j ∈ FL for all j ∈ {1, . . . ,
√
M}, the G-gate outputs:

G(x̄1, . . . , x̄√M ) =def

√
M∑

j=1

C(x̄j) ∈ F. (1)

Then the language LC,A,A1,...,AM is recognized by a circuit containing M ′ =
√
M instances of the

G-gate, along with some number of affine gates. Applying Theorem 4.3 using this G-gate yields a
fully linear PCP with the desired efficiency properties.

Example 4.10. Corollary 4.9 gives a short fully linear PCP for proving that a vector x ∈ Fn
has Lp-norm y, for any integer p ≥ 2. For this application, C(xi) =def xpi ∈ F and degC = p. The
linear PCP implied by the corollary has length O(p ·

√
n), whereas the standard linear PCPs from

Section 4.1 would have proofs of length Ω(n log p). Thus, the construction of the corollary has shorter
proof size for all p = o(

√
n).
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A sum-check-style protocol, along the lines of Cormode, Thaler, and Yi’s protocol [43, Section 3.2]
for checking the k-th frequency moment in a data stream, achieves the same asymptotic complexity
as the protocol of Example 4.10. However, that sum-check protocol does not natively provide zero
knowledge. We thank Justin Thaler for pointing out this alternative construction.

5 Constructions: Fully Linear Interactive Oracle Proofs

In this section, we demonstrate how to use linear PCPs and other existing cryptographic protocols
to construct linear interactive oracle proofs (linear IOPs). While linear IOPs in general require
more rounds of prover-to-verifier interaction, these extra rounds of interaction can buy efficiency
improvements in total proof length and verifier time.

For example, a corollary of our general construction gives an O(log n) round strong HVZK fully
linear IOP for proving that a vector x ∈ Fn consists entirely of 0/1 entries, where the proof size is
only O(log n) field elements. See Example 5.6. In comparison, linear PCPs yield proofs of size Ω(n).

Several protocols from the literature, including notably the “Muggles” protocol of Goldwasser,
Kalai, and Rothblum [74,75] are implicitly linear IOPs. We describe the connection between our
notion and these protocols in Appendix A.

5.1 A Recursive Linear IOP for Parallel-Sum Circuits

Corollary 4.9 gives a linear PCP for “parallel-sum” circuits whose length grows as the square root
of the degree of parallelism. Here, we show that by increasing the number of rounds of interaction
between the prover and verifier, we can decrease the proof size to logarithmic in the degree of
parallelism. The key observation is that in Corollary 4.9, the linear PCP verifier is itself a parallel-
sum circuit. So rather than having the verifier evaluate this circuit on its own, the verifier can
outsource the work of evaluating the verification circuit to the prover. The prover then uses a
secondary linear PCP to convince the verifier that it executed this step correctly.

To get the optimal bounds we rebalance the parameters used in the proof of Corollary 4.9.
Instead of a G-gate containing

√
M copies of C, as in (1), we use a G-gate containing M/2 copies of

C, and then recursively verify one input/output pair for that G-gate.

Theorem 5.1. Let C : FL → F be an arithmetic circuit over F that has arithmetic degree degC. Let
A : Fn → F and A1, . . . , AM : Fn → FL be affine functions. Then, there exists an O(logM)-round
strong HVZK fully linear IOP for the language LC,A,A1,...,AM = {x ∈ Fn |

∑M
i=1C(Ai(x)) = A(x)}

that has:
• proof length L+O(degC · logM) elements of F,
• query complexity L+O(logM),

• soundness error O
(

degC·logM
|F|

)
, and

• an arithmetic verification circuit containing O(|C|) multiplication gates.

Figure 5 gives a graphical depiction of the protocol flow.

Proof of Theorem 5.1. We prove the theorem by induction on M . For simplicity, we assume that M
is a power of two.

Base case (M = 1). When M = 1, we can invoke Theorem 4.3 using the circuit C as the G-gate of
the theorem. Theorem 4.3 implies that there exists a one-round fully linear IOP with strong HVZK
that has proof length L+ degC + 1, query complexity L+ 2, soundness error degC/(|F| − 1), and a
verification circuit containing |C| multiplication gates. This proves the base case.
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Prover Verifier

1a. Generate a linear PCP proof π1 that
x ∈ L1.

π1−−−−−−→

r1←−−−−−− 1b. Sample a random value r1 ←R F and
send it to the prover. Make one linear
query to the proof.

2a. Generate a proof π2 that (x‖π1) ∈ L2,
where L2 is the language of vectors (x‖π)
such that VL(x‖π1; r1) = 1.

π2−−−−−−→

r2←−−−−−− 2b. Sample a random value r2 ←R F and
send it to the prover. Make one linear
query to the proof.

3a. Generate a proof π3 that
(x‖π1‖π2) ∈ L3, where L3 is the
language of vectors (x‖π1‖π2) such that
VL2

(x‖π1‖π2; r1, r2) = 1.

π3−−−−−−→

. . . continue for R = O(logM) rounds . . .

Ra. Generate linear PCP proof πR that
x ∈ LR.

πR−−−−−−→ Rb. Check πR by explicitly running the
verifier VLR

(x‖π1‖π2‖ · · · ‖πR; r1, . . . , rR).
Verifier VLR

makes L+ 2 queries.

Figure 5: A depiction of the protocol flow for the linear IOP of Theorem 5.1. The initial language L1 is
the language of vectors x ∈ Fn such that

∑M
i=1 C(Ai(x)) = A(x), where C and A,A1, . . . , AM are as in

Theorem 5.1. The expression VL(x‖π; r) denotes the output of the linear PCP verifier of Theorem 4.3 for
some language L run on input (x‖π) using randomness r.

For all i ∈ {1, . . . , R− 1}: (1) the proof πi has length 2 degC + 1, and (2) the verifier VLi
is a circuit

containing (M/2i)|C| multiplication gates. In the last step, the proof πR has length L+ degC + 1.
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Induction step. We define a gadget G, as in (1). The difference is that we now use a a gadget G,
whose width is M/2 rather than

√
M . Specifically, using the notation in (1), we define G as:

G(x̄1, . . . , x̄M/2) =def

M/2∑
i=1

C(x̄i) ∈ F.

The language LC,A,A1,...,AM is recognized by a circuit composed of two such G-gates, along with
some number of affine gates.

The O(logM)-round protocol then proceeds as follows:
• The prover sends a fully linear PCP proof π asserting that x ∈ Fn is in LC,A,A1,...,AM . That
is, the proof asserts that x satisfies the relation

∑M
i=1C(Ai(x)) = A(x). To generate the

proof, the prover uses the construction of Theorem 4.3 without strong HVZK. When invoking
Theorem 4.3, the prover uses a G-gate as in (1), except that it has width M/2.
The proof has length 2 degG+ 1 = 2 degC + 1, query complexity (M/2)L+ 2, soundness error
2 degC/(|F| − 2), and requires the verifier to evaluate a circuit of size |G| = (M/2) · |C| on the
query answers.

• The FLPCP verifier of Theorem 4.3 makes ML/2 + 2 linear queries and receives answers
a, a1, . . . , aML/2, b ∈ F. The verifier must then check that: (1) a = G(a1, . . . , aML/2) and (2)
b = 0.
The FLIOP verifier we construct does not operate exactly as the FLPCP verifier does. Instead,
the FLIOP verifier we construct uses a single linear query to check that the second relation
holds (i.e., that b = 0).
The FLIOP verifier now outsources the work of performing the first check to the prover. More
precisely:

1. The FLIOP verifier sends to the prover the randomness r it used to generate its linear
queries. In the construction of Theorem 4.3, this randomness consists of a single field
element.

2. This randomness defines an affine map Qr : Fn+m → FML/2+1 from the proof-input pair
(x‖π) ∈ Fn × Fm to the query answers (a, ā1, . . . , āM/2) ∈ F× (FL)M/2.

3. The verifier now needs to check that a = G(ā1, . . . , āM/2). By construction of the G-gate,
the verifier must check that the values (a, ā1, . . . , āM/2) satisfy a relation of the form∑M/2

i=1 C(āi) = a, But, since Qr is an affine function of the vector (x‖π), this is a relation
of the form

∑M/2
i=1 C(A′i(x‖π)) = A′(x‖π), for some affine functions A′ : Fn+m → F and

A′1, . . . , A
′
ML/2 : Fn+m → FL.

By the induction hypothesis, the prover and verifier then can recursively invoke the FLIOP
protocol to check this relation.

Security arguments. Completeness follows by construction. Soundness follows from an inductive
argument. All that remains is to show that the protocol satisfies strong HVZK. To show this, note
that at every level of the induction except the base case, the honest verifier makes a single query
whose response should be zero. These answers are trivial to simulate. In the base case, we can invoke
the strong HVZK simulator of the linear PCP of Theorem 4.3.

5.2 Short Linear IOPs for SIMD Circuits

Many interesting languages are recognized by arithmetic circuits that (1) apply the same small
subcircuit to each block of inputs and (2) accept iff all of the subcircuits accept. For example,
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the language L = {0, 1}n ⊆ Fn of zero/one vectors in Fn is recognized by a circuit that on input
(x1, . . . , xn) ∈ Fn computes ∀i bi ← xi(xi − 1) and accepts iff all bi are zero. We call this type of
circuit a “same-instruction multiple-data” (SIMD) circuit.

Implementing the logical-AND of the n values (b1, . . . , bn) in an arithmetic circuit is relatively
expensive. The standard technique for this requires applying the mapping bi 7→ b

|F|−1
i which, by

Fermat’s Little Theorem, takes 0 7→ 0 and any non-zero value x 7→ 1. Then we can take the sum∑
i bi (as long as n < |F|) to check whether all bi are zero. Directly applying the linear PCPs of

Section 4 to this circuit will give a proof of size Ω(n · log |F|). By adding interaction, we can shrink
the proof length to O(log n) for this language at the cost of increasing the number of communication
rounds to O(log n). More generally, for a SIMD circuit composed ofM copies of a circuit C : FL → F
of degree degC, we get a proof of size L+O(degC · logM) that has query complexity L+O(logM)
and a verifier containing O(|C|) multiplication gates.

Other trade-offs between proof size and verifier complexity are possible, though when compiling
fully linear PCPs into proofs on secret-shared data (as in Section 6), we minimize the communication
cost by minimizing the sum of the proof size and verifier complexity.

We give a general transformation that turns any linear IOP for a language recognized by parallel-
sum circuits (e.g., Corollary 4.9 and Theorem 5.1) into a linear IOP for SIMD circuits at the cost of
increasing the number of rounds by one. The idea of the construction is to replace the logical-AND
operation in the SIMD circuit by a linear combination chosen by the verifier. If any one of the
SIMD subcircuits outputs a non-zero value, then with high probability the linear combination will
be non-zero and the overall circuit will reject. To make the result more general, we consider circuits
that apply an arbitrary linear transformation to the input wires before applying the SIMD gates to
the inputs.

Definition 5.2 (SIMD Circuit). Let C : FL → F be an arithmetic circuit. Let A1, . . . , AM : Fn →
FL be affine functions. Then define the SIMD circuit Csimd

A1,...,AM
: Fn → F as: Csimd

A1,...,AM
(x) =def∧M

i=1

(
C(Ai(x)) = 0

)
for x ∈ Fn. Here, the logical-AND operator returns 0 ∈ F if the statement is

true, and it returns an arbitrary non-zero value otherwise.

Theorem 5.3 (FLIOPs for SIMD circuits). Let Π be a fully linear strong HVZK IOP for the
language

L
C̃,Ã1,...,ÃM

=
{
x ∈ Fn+M |

M∑
i=1

C̃(Ãi(x)) = 0
}
,

where C̃ : FL+1 → F is an arithmetic circuit and Ã1, . . . , ÃM : Fn+M → FL+1 are affine functions.
Furthermore, say that Π has soundness error εΠ and round complexity rΠ.

Then, there exists a strong HVZK fully linear IOP for the language

LCsimd
A1,...,AM

=
{
x ∈ Fn | Csimd

A1,...,AM
(x) = 0

}
,

where C : FL → F is an arithmetic circuit, A1, . . . , AM : Fn → FL are affine functions, and Csimd
A1,...,AM

is as in Definition 5.2. The resulting linear IOP has the same proof length, query complexity, and
verification circuit size as Π, soundness error ε = εΠ +M/|F|, and round complexity rΠ + 1.

Proof of Theorem 5.3. We construct the linear IOP implied by the theorem and then prove that it
satisfies the desired properties.

The idea of the proof is that in the first round of interaction, the verifier chooses a random
value r ←R F. Then, in the second round, the prover uses the fully linear IOP Π to convince the
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verifier that the linear combination
∑M

i=1 r
i · C(Ai(x)) of the outputs of the C subcircuits is zero.

If x 6∈ LCsimd
A1,...,AM

, then at least one of the C(·) subcircuits outputs a non-zero value. In this case,
the value of this linear combination is equal to the evaluation of a non-zero polynomial of degree
at most M at the point r. Such a polynomial has at most M/|F| zeros, so the verifier will catch a
cheating prover with good probability (over the random choice of r).

The protocol operates as follows:
• The prover’s first message is the empty string ⊥.
• The verifier’s first message is a random field element r ←R F. The prover and verifier both

compute the vector (r, r2, r3, . . . , rM ) ∈ FM .
• Define an arithmetic circuit Crand

A1,...,AM
: Fn+M → F as:

Crand
A1,...,AM

(x, r1, r2, . . . , rM ) =def

M∑
i=1

ri · C(Ai(x)) ∈ F where x ∈ Fn
r1, . . . , rM ∈ F .

Now, define a circuit C̃ : FL+1 → F as C̃(x, r) =def r · C(x). Define affine functions Ã1, . . . , ÃM :
Fn+M → FL+1 such that for all i ∈ {1, . . . ,M}, Ãi(x‖r1, . . . , rM ) =def (Ai(x)‖ri). Then we can
rewrite Crand

A1,...,AM
as:

Crand
A1,...,AM

(x, r1, r2, . . . , rM ) =
M∑
i=1

C̃(Ãi(x, r1, . . . , rM )) ∈ F.

• Now, the prover and verifier engage in the fully linear IOP protocol Π, implied by the hypothesis
of the theorem, to check that (x‖r1, . . . , rM ) ∈ Fn+M is in the language accepted by the circuit
Crand
A1,...,AM

.
The claimed efficiency properties, along with completeness and strong HVZK, follow immediately

from the construction.
To show soundness: If x ∈ Fn is not an accepting input, then the output of at least one

SIMD subcircuit C is non-zero. The output of the verification circuit Crand
A1,...,AM

is the value∑M
i=1 r

i · C(Ai(x)), which is then the evaluation of a non-zero polynomial of degree at most M
at a random point r ←R F. The probability then, over the verifier’s choice of r, that the circuit
Crand
A1,...,AM

outputs zero is at most M/|F|. Conditioned on the output of Crand
A1,...,AM

being non-zero,
the probability that the linear PCP verifier accepts is at most εΠ. Therefore, the overall soundness
error is ε = M/|F|+ εΠ.

Applying Theorem 5.3 to our earlier constructions of fully linear proof systems for parallel-sum
circuits immediately yields efficient proof systems for SIMD relations:

Corollary 5.4. Let Csimd
A1,...,AM

be the SIMD circuit of Definition 5.2. There is a 1.5-round fully
linear IOP with strong HVZK for the language LCsimd

A1,...,AM

whose efficiency parameters match those
of Corollary 4.9.

Corollary 5.5. Let Csimd
A1,...,AM

be the SIMD circuit of Definition 5.2. There is an O(logM)-round
fully linear IOP with strong HVZK for the language LCsimd

A1,...,AM

whose efficiency parameters match
those of Theorem 5.1.

We give an example for how to use Corollary 5.5 to construct a strong HVZK fully linear IOP
for an interesting circuit.
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Example 5.6. Corollary 5.5 gives an O(log n)-round protocol for proving that a vector x ∈ Fn
consists entirely of zero/one values (i.e., that x ∈ {0, 1}n ⊂ Fn), with proof complexity O(log n)
and a verification circuit of degree-two. In contrast, applying Theorem 4.3 or standard linear PCPs
directly yields proofs of size Ω(n). Hence, using O(log n)-rounds instead of a single round, we obtain
an exponential reduction in the proof size.

Remark 5.7. Application of a sum-check-style protocol [94] can achieve the same complexity as the
protocol of Example 5.6. (We thank Justin Thaler for this observation.) To sketch the protocol:
the verifier first sends the prover a random vector r = (r1, . . . , rn) ∈ Fn. The prover then uses
a sum-check protocol to convince the verifier that

∑n
i=1 rixi(xi − 1) = 0 ∈ F. The asymptotic

complexity of this protocol matches our own, though this protocol does not provide strong HVZK,
whereas ours does.

A useful generalization of the above example is the case of “low-degree languages,” namely
languages in which membership can be checked by a system of low-degree equations. The following
theorem, whose proof appears in Appendix E, describes fully linear IOPs for such low-degree
languages, over both finite fields and rings of the form Z2k (see Appendix D and Appendix E for
variants over more general rings).

Theorem 5.8 (ZK-FLIOP for low-degree languages). Let R be a ring, let C : Rn → Rm be
an arithmetic multi-output circuit of degree d defined by C(x) = (C1(x), . . . , Cm(x)) and let M
be the number of distinct monomials in the representation of C1, . . . , Cm as polynomials. Let
LC = {x ∈ Rn | C(x) = 0m} and let ε be a required soundness error bound. Then, there is a fully
linear IOP Π over R with strong HVZK for the language LC that has the following efficiency features.

• Degree d = 2, constant rounds: If d = 2 then Π has 1.5 rounds, proof length O(η
√
n),

challenge length O(η), and query complexity O(
√
n), where η = log|R|((m +

√
n)/ε) if R is

a finite field or η = log2((m + (1 + ε)
√
n)/ε) if R = Z2k . The computational complexity is

Õ(M) and the proof generation is a degree-2 function of the input x and secret randomness,
determined by the circuit C and public randomness.

• Degree d, logarithmic rounds: If d ≥ 2 then Π has O(logM) rounds, proof length
O(ηd logM), challenge length O(η logM), and query complexity O(d + logM), where η =
log|R|((m+ d logM)/ε) if R is a finite field or η = log2((m+ d logM + 2ε)/ε) if R = Z2k . The
computational complexity is Õ(dM).

Trading communication for computation. Most of our motivating applications involve low-
degree verification circuits that have constant output locality. For instance, this is the case for checking
that x ∈ {0, 1}n or for languages corresponding to standard MPC protocols (e.g., checking Beaver
triples). In this case, we can reduce computational cost while maintaining sublinear communication
via the following simple tradeoff technique. Chop the m outputs into blocks of size `, viewing each
block as a low-degree circuit with O(`) inputs and ` outputs, and apply a separate FLIOP to each
block. This gives a smooth tradeoff between communication and computation, which may be useful
for tuning concrete efficiency depending on the available bandwidth and computational power.

6 Application: ZK Proofs on Distributed or Secret-Shared Data

In this section, we apply fully linear zero-knowledge PCPs and IOPs and the results of Sections 4
and 5 to the problem of proving in zero-knowledge statements on data held in a distributed fashion
across parties. Such proofs are motivated by their applications to proving properties of sensitive data
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that is partitioned among different parties, proofs on secret-shared data, and protecting protocols
for secure multiparty computation against malicious parties.

6.1 Preliminaries

In the classical setting for interactive zero-knowledge proofs [77], there is a single prover P interacting
with a single verifier V . Both the prover and the verifier hold a common input x, and the prover’s
goal is to convince the verifier that x ∈ L for some language L. In the typical case of an NP-language
L, the proof system applies to some NP-relation R(x,w) where the witness w is only known to
P . In this setting, the zero-knowledge requirement only refers to hiding the witness w. A primary
motivation for our notion of fully-linear proof systems is to capture the case where the statement x
is not known to any single verifier. In this case, the notion of zero-knowledge if meaningful even for
polynomial-time languages L.
Our distributed model. We consider a distributed model in which a single prover P interacts
with multiple verifiers V1, V2, . . . , Vk over a network that includes secure point-to-point channels.
Each verifier Vj holds a piece x(j) ∈ Fnj of an input x = x(1)‖x(2)‖ · · · ‖x(k) ∈ Fn, and the prover’s
task is to convince the verifiers that the concatenated input x is in some language L ⊆ Fn. We
assume by default that x is known in its entirety to the prover; however, it will later be useful to also
consider a more general setting in which x encodes an input x′ known to the prover, but x itself is
not entirely known. Informally, a zero-knowledge proof on distributed data is an interactive protocol
between P and the k verifiers Vj that satisfies the following properties. The proof system must be
complete, in the sense that if x ∈ L and all parties are honest, all verifiers accept. The proof system
must be sound, in the sense that if x 6∈ L, then all verifiers reject with high probability. Finally, the
proof system must have strong zero knowledge: any proper subset of the verifiers should learn no
additional information about x, apart from what follows from their own pieces and the fact that
x ∈ L. Note that this notion of zero knowledge is stronger than the traditional one. In a standard
zero-knowledge interactive proof, the verifier learns the statement x and learns that x ∈ L, but the
verifier learns nothing else. In our setting, any proper subset of the verifiers does not even learn the
statement x: such a collection of verifiers just learn that they are jointly holding pieces x(j) of some
input x ∈ L.

Up to now, we have implicitly considered an honest-verifier setting, where soundness must hold
against a potentially malicious prover, but (strong) zero knowledge is required only with respect
to honest verifiers. For later applications, we will need to consider two more stringent adversarial
settings:

• Setting I: Either the prover or a subset of up to t verifiers may be malicious (not both). Here
we will typically let t = k − 1.

• Setting II: The prover and a subset of up to t verifiers may be malicious, and collude. Here
we will typically let t < k/2.

Note that Setting I introduces challenges in guaranteeing zero knowledge against malicious verifiers,
and Setting II further challenges in soundness, when malicious prover and verifiers collude.

We now formalize the above discussion. We start by defining distributed analogues of the basic
objects of zero-knowledge proofs: inputs, languages, and relations. As before, we focus for simplicity
on the finite case, where languages are subsets of vectors in Fn, and ignore computational efficiency
issues. Except when explicitly noted otherwise, all definitions and results extend in a natural way to
the usual asymptotic framework with polynomial-time parties and relations.

Definition 6.1 (Distributed inputs, languages, and relations). Let k be a number of parties, F
be a finite field, and n, n1, . . . , nk ∈ N be length parameters, where n = n1 + n2 + . . . + nk. A
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k-distributed input over F (or just distributed input) is a vector x = x(1)‖x(2)‖ · · · ‖x(k) ∈ Fn, where
x(i) ∈ Fni . We refer to each x(i) as a piece of x. (In the context of secret sharing, we will sometimes
refer to x(i) as a share.) A k-distributed language L is a set of k-distributed inputs. A distributed
NP relation with witness length h is a binary relation R(x,w) where x is a k-distributed input and
w ∈ Fh. We assume that all x in L and (x,w) ∈ R share the same length parameters. Finally, we
let L(R) = {x : ∃w (x,w) ∈ R}.

We now define our protocol model for zero-knowledge proofs on distributed data. Our default
network model allows synchronous communication over secure point-to-point channels. We will later
also allow protocols to use an ideal broadcast primitive and an ideal coin-tossing primitive.

Definition 6.2 (k-verifier interactive proof protocol). A k-verifier interactive proof protocol over
F is an interactive protocol Π = (P, V1, . . . , Vk) involving a prover P and k verifiers V1, V2, . . . , Vk.
The protocol proceeds as follows.

• In the beginning of the protocol the prover holds a k-distributed input x = x(1)‖x(2)‖ · · · ‖x(k) ∈
Fn and (possibly) a witness w ∈ Fh, and each verifier Vj holds an input piece x(j).

• The protocol allows the parties to communicate in synchronous rounds over secure point-to-
point channels. The role of each party in this interaction is defined by a next message function,
which specifies the messages it sends in each round as a function of its local input, random
input, and messages received in previous rounds. (The random inputs are picked independently
from a distribution that will be implicit in the protocol description.) While honest parties send
messages according to Π, malicious parties, which are all controlled by a central adversary,
can send arbitrary messages. Moreover, the messages sent by malicious parties in each round
can depend on all messages they receive from honest parties in the same round (namely, the
adversary has a rushing capability).

• After some fixed number of rounds the protocol terminates. Upon termination, each verifier
outputs either acc (accept) or rej (reject) based on its view, where the view of a verifier Vj
consists of its input piece x(j), random input r(j), and messages it received during the protocol
execution. To ensure that all honest verifiers either simultaneously accept or reject, we will
assume by default that the decision is determined by public information that was communicated
over a broadcast channel (see below).

We denote by Π(x,w) the probabilistic experiment of running Π on distributed input x and witness
w, and say that Π(x,w) accepts (respectively, rejects) if in the end of this experiment all verifiers
output acc (resp., rej). We denote by ViewΠ,T (x,w) the (joint distribution of) views of verifiers Vj
with j ∈ T in the execution of Π on the distributed input x and witness w.

Helper functionalities. For modularity, we factor out two standard primitives that are useful
for obtaining security against malicious verifiers: a broadcast primitive, allowing a party to send
an identical message to all parties (where even a malicious sender cannot make different honest
parties receive different messages), and a coin-toss primitive, which generates unpredictable, public
randomness. We model these two primitives by using ideal multi-party functionalities formally
defined below. We assume by default that a k-verifier interactive proof protocol can make oracle
calls to these functionalities.

Definition 6.3 (Ideal broadcast and coin-toss functionalities). We define the two helper functionali-
ties Fbcast and Fcoin as follows:

• The broadcast functionality Fbcast receives an input message m from a verifier Vj and delivers
the output (j,m) to all parties. When considering protocols that should be secure in the
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presence of malicious verifiers, we assume that each verifier’s decision whether to accept or
reject is determined in the same way based on (public) messages sent via Fbcast.

• The coin-toss functionality FScoin, for a finite set S, is a randomized, input-less functionality
that outputs to all parties (prover and verifiers) a uniformly random element r ∈R S.

The requirement that accepting or rejecting depends only on public information ensures agreement
between honest verifiers on whether to accept, and effectively forces a simulator of the view of
malicious verifiers to know whether honest verifiers accept.

On realizing Fcoin and Fbcast. In the honest-verifier case, both functionalities can be trivially
realized: for instance, FScoin can be realized by having V1 pick r uniformly from S and send it
to all other parties. When the verifiers can be malicious, one can use standard (composable)
implementations of these primitives over secure point-to-point channels, providing different tradeoffs
between security type and efficiency (see, e.g., [41, 76] and references therein). We note that our
protocols will make a minimal use of these two ideal primitives. In particular, the total size of all
instances will be sublinear in the size of the distributed input x. Thus, for distributed zero-knowledge
proofs on large inputs, the implementation of these helper functionalities will not form an efficiency
bottleneck.

For the purpose of measuring round complexity of protocols, we will separately count “standard”
rounds of point-to-point communication and rounds in which the above oracles are invoked. For
communication complexity, we will count the length of the input of Fbcast or output of FScoin.

We now separately address the two distinct adversarial settings discussed above.

6.2 Setting I: Malicious Prover or Verifiers

We begin with the first setting, where we must protect against either a malicious prover in the
presence of honest verifiers, or honest prover in the presence of (a subset of) malicious verifiers.

Definition 6.4 (Zero-knowledge proofs on distributed data: malicious prover or verifiers). Let
R(x,w) be a k-distributed relation over finite field F. We say that a k-verifier interactive proof
protocol Π = (P, V1, . . . , Vk) is a distributed strong zero-knowledge proof protocol for R with security
against malicious prover or t verifiers and soundness error ε, if Π satisfies the following:

• Completeness. For every k-distributed input x = x(1)‖x(2)‖ · · · ‖x(k) ∈ Fn and witness
w ∈ Fh such that (x,w) ∈ R, the execution of Π(x,w) accepts with probability 1.

• Soundness. For every malicious prover P ∗, k-distributed input x and witness w such that
x 6∈ L(R), the execution of Π∗(x,w) rejects except with at most ε probability (where Π∗

denotes the interaction of P ∗ with the honest verifiers (V1, . . . , Vk)).
We define a zero-knowledge property similar to the one used in our linear IOP definition:
• Strong zero knowledge. For every T ⊆ [k] of size |T | ≤ t and a malicious adversary A
controlling the verifiers {Vj}j∈T , there exists a simulator S such that for every k-distributed
input x = x(1)‖x(2)‖ · · · ‖x(k) and witness w such that (x,w) ∈ R we have:

S((x(j))j∈T ) ≡ ViewΠ∗,T (x,w),

where here Π∗ denotes the interaction of the malicious adversary A with the honest prover P
and the honest verifiers {Vj}j 6∈T . When the threshold t is omitted, we assume that t = k − 1.

Remark 6.5 (Honest-verifier variant). One may consider a relaxed notion of strong honest-verifier zero
knowledge, defined identically to the above, but where the subset of verifiers {V ∗j }j∈T is stipulated
to honestly follow the protocol.
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If we do not consider a zero-knowledge requirement, then any interactive proof system for R
immediately yields a k-verifier interactive proof system for R: Indeed, verifiers V2, . . . , Vk can simply
send their pieces of x to V1, who then engages with P in a standard interactive proof protocol for R.
This approach does not respect strong zero knowledge. Moreover, it cannot not meet our goal of
making communication complexity sublinear in the input length. We now show a similar compiler
that allows us to get around both limitations by starting with a (public-coin, strong HVZK) fully
linear IOP.

A compiler for Setting I. At a high level, we convert a public-coin, fully linear IOP with strong
HVZK Π into a zero-knowledge proof on distributed data Πdist by exploiting the fact that the task
of answering public linear queries can be easily distributed. Recall that the prover holds (x,w) ∈ R,
where x is partitioned into pieces x(j) held by different verifiers. The prover in Πdist will execute the
fully linear IOP on its input (x,w), where in each round i she splits the proof πi for this round into
additive secret shares, and sends one share to each verifier over a secure channel. The fresh public
random challenge ri, which determines the query vectors qi,1, . . . , qi,`i , is generated using the ideal
coin-tossing oracle Fcoin. Since each query defines a linear combination of the input x and the proof
πi, the verifiers can use their input pieces and additive shares of πi to compute additive shares of
the answers to the queries, which they send to V1. At the conclusion, V1 reconstructs the answers ai,
feeds them into the IOP decision predicate, and broadcasts the decision (acc or rej) to the other
verifiers.

The above construction directly preserves completeness as well as soundness against a malicious
prover (since, in essence, the secret shares of each πi commit the prover to a fixed proof). Proving zero
knowledge against t = k − 1 malicious verifiers is more subtle. The random challenges generated by
Fcoin and the proof shares received from the prover are easy to simulate. To complete the simulation,
we distinguish between two cases. If V1 is not corrupted, then we only need to simulate the final
decision received by V1. Since other verifiers can be malicious, they have control over the answers
ai reconstructed by V1. However, since the honest answers ai can be simulated without knowing
the input (by the strong zero knowledge of Π), and since the effect of the malicious verifiers on the
answers reconstructed by V1 can be predicted based on their inputs, the final decision computed by
V1 can be simulated. For the case where V1 is corrupted, we can assume without loss of generality
that in each round i of Π, each set of queries (viewed as linear functions of the input x together
with a proof vector πi) are linearly independent. Then we use the strong zero-knowledge property to
deduce that linear independence must hold even when restricted to the πi coefficients. The latter
implies that the answer shares of any strict subset of the verifiers are uniformly and independently
distributed, which allows us to obtain a distributed simulator for Πdist from the IOP simulator.

We now give the formal description of Πdist and its analysis. We assume that Π = (PLIOP, VLIOP)
is a ρ-round public-coin fully linear IOP for R (viewed as a non-distributed relation) with total proof
length µ =

∑ρ
i=1 µi, random challenges ri ∈ Fbi , total query complexity ` =

∑ρ
i=1 `i, soundness error

ε, and strong HVZK.

Protocol Πdist:

• Inputs: The prover P has input (x,w). Each verifier Vj , 1 ≤ j ≤ k, has input piece x(j).
• Interaction: For i = 1, 2, . . . , ρ:

– If i = 1, P lets (π1, st
P
1 )← PLIOP((x,w),⊥), else it lets (πi, st

P
i )← PLIOP(stPi−1, ri−1).

– P splits πi into additive shares by sampling random πi1, . . . , πik ∈ Fµi such that πi =∑k
j=1 πij ∈ Fµi and sends proof share πij to Vj .

– The k + 1 parties invoke ri ← FScoin for S = Fbi .
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– All k verifiers let (qi,1, . . . , qi,`i) be the query vectors determined by r1, . . . , ri, where
qi,α ∈ Fn+µi for 1 ≤ α ≤ `i. Let Qi ∈ F(n+µi)×`i be the matrix whose columns are
qi,α, and let Q(j)

i ∈ F(nj+µi)×`i be the matrix Qi with the first n rows restricted to the
x(j)-entries.

– Each verifier Vj sends to V1 the answer share aij = (x(j)‖πij) · Q(j)
i and V1 computes

ai =
∑k

j=1 aij , where ai ∈ F`i .
• Outputs: Verifier V1 applies the decision predicate of VLIOP to the random challenges r1, . . . , rρ
and the answers a1, . . . , aρ, and broadcasts its decision (acc or rej). All verifiers output the
decision broadcasted by V1.

Efficiency. Note that the communication between verifiers in the end of round i can be merged
with the prover’s communication to the verifiers in the beginning of round i + 1. This gives an
implementation of Πdist with the following efficiency features:

• The round complexity involves ρ + 1 rounds of point-to-point communication, as well as ρ
sequential invocations of Fcoin;

• The communication includes a total of µk+ `(k−1) field elements and a single bit of broadcast;
• There are ρ invocations of Fcoin that generate a total of b =

∑ρ
i=1 bi random field elements;

• The arithmetic circuit complexity of P (resp., of each Vi) is sP +O(µk) (resp., sV +O(`k)),
where sP and sV are the arithmetic circuit complexity of PLIOP and VLIOP, respectively.

We now state and prove the security properties of Πdist.

Theorem 6.6 (Zero-knowledge proof on distributed data: malicious prover or verifiers). Let R be a
k-distributed relation over F. Suppose Π = (PLIOP, VLIOP) is a ρ-round public-coin fully linear IOP
for R (viewed as a non-distributed relation) with soundness error ε and strong HVZK. Then, the
protocol Πdist = (P, V1, . . . , Vk) described above is a distributed strong zero-knowledge proof protocol
for R in the (Fcoin,Fbcast)-hybrid model, with security against malicious prover or t = k− 1 verifiers
and soundness error ε.

Proof of Theorem 6.6. We separately argue completeness, soundness, and zero knowledge.

Completeness. Follows easily from the completeness of Π.

Soundness. Here we assume that the k verifiers Vj are honest but the prover P ∗ is malicious. For
any malicious strategy of P ∗ in Πdist wef define a corresponding malicious strategy of P ∗LIOP in Π so
that the probability of all verifiers rejecting in Πdist is equal to the probability of VLIOP rejecting in
Π. Concretely, each (badly formed) proof generated by P ∗LIOP is the sum of the corresponding proof
shares generated by P ∗ on the same random challenges. It follows that Πdist has the same soundness
error as Π.

Zero knowledge. We show that the protocol satisfies the strong zero knowledge requirement
for t = k − 1. Here we consider the case where P is honest, and up to t verifiers can be malicious.
Let T ⊆ [k] of size |T | ≤ t and let A be a malicious adversary controlling the verifiers {Vj}j∈T .
Let x = x(1)‖x(2)‖ · · · ‖x(k) and w such that (x,w) ∈ R. We describe a simulator S such that
S((x(j))j∈T ) perfectly generates the view of the verifiers in T in the interaction of A with P and the
honest verifiers on inputs (x,w). Note that because Πdist uses the ideal coin toss functionality Fcoin,
the malicious verifiers have no effect on the choice of the random challenges. The simulation now
depends on whether V1 is corrupted.

• Case 1: 1 6∈ T . In this case, S starts by invoking the simulator SLIOP implied by the strong
HVZK property of Π to generate the random challenges ri together with the answers ai for
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each round 1 ≤ i ≤ ρ. Then, for each round i and corrupted verifier Vj , j ∈ T , it simulates the
message Vj receives from P by picking a proof share πij uniformly at random from Fµj . The
message from V1 received in the final round is simulated as follows. First, for each round i
and malicious verifier j ∈ T , the simulator S uses the simulated values x(j), ri, πij to compute
two values: the answer share aij that Vj should have sent to V1 and the answer a∗ij it actually
sent. (The latter is obtained by running A on the view containing the input pieces x(j) and
the simulated values up to round i.) Then, S simulates the answers computed by V1 as
a∗i = ai +

∑
j∈T (a∗ij − aij), applies the decision predicate of VLIOP to the random challenges

r1, . . . , rρ and the answers a∗1, . . . , a∗ρ, and uses the result (acc or rej) to simulate the final
broadcast message received from V1.
To see that this perfectly simulates the view of malicious verifiers, first note that the joint
simulation of ri, ai and (πij)j∈T perfectly emulates the real execution, since the proof shares
(πij)j∈T in the real execution are uniformly random independently of ri, πi. It follows that the
simulated value of

∑
j∈T (a∗ij − aij), which captures the difference between the correct answer

and the one obtained by V1, is also distributed identically to the real protocol even when
conditioned on all ri, πi, (πij)j∈T . This implies the correctness of the simulation of the final
decision bit of V1.

• Case 2: 1 ∈ T . The proof shares πji are simulated as before. We simulate the challenges
ri and answer shares aij jointly by using the simulator SLIOP implied by the strong HVZK
property of Π. First, we use SLIOP to simulate the joint distribution of the random challenges
ri and answers ai. The challenges ri determine query matrices Qi as in Π. Assume without
loss of generality that each Qi has full rank. (Otherwise queries are redundant in the sense
that there is a query whose answer can be inferred from the other answers.) Given the answers
ai, the answer shares aij received by V1 from honest provers Vj , j 6∈ T , are computed as
follows: first, the answer shares aij for j ∈ T are computed from πij and Qi as in Πdist, namely
aij = (x(j)‖πij) · Q(j)

i . Then the messages aij , j 6∈ T , are picked at random subject to the
restriction

∑k
j=1 aij = ai.

To prove that the simulation is perfect, we prove that in an honest execution of Πdist, the
answer shares aij are uniformly distributed subject to the restriction that they add up to ai.
This reduces to showing that in every round i, each strict subset of the aij are uniform and
independent. Somewhat unexpectedly, this relies not only on the above full rank assumption
but also on the strong zero knowledge property of Π. Indeed, the description of Πdist directly
implies that any strict subset of the πij is uniformly distributed. Since aij = (x(j)‖πij) ·Q(j)

i ,
it suffices to show that if we restrict the rows of Qi to their πi-entries (namely, remove the
first n rows), the columns are still linearly independent. Suppose towards contradiction that
the columns are linearly dependent with positive probability. Conditioned on this event, we
can compute (with certainty) a corresponding linear combination of the entries of x from the
answers ai = (x‖πi) ·Qi, since the πi parts can be cancelled out. This contradicts the strong
zero knowledge property of Π.

This concludes the proof of Theorem 6.6.

To give a concrete application, consider the class of degree-d distributed languages, namely ones
whose membership can be tested by a set of degree-d equations. Combining Theorem 6.6 with
Corollary E.3, we get the following corollary.

Corollary 6.7 (Sublinear zero-knowledge proofs for distributed low-degree languages: malicious
prover or verifiers). Let d ≥ 2 be a positive integer, ε > 0 an error bound, and L ⊆ Fn a k-distributed
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language whose membership is tested by m degree-d polynomials. Then, there exists an O(d log n)-
round strong zero-knowledge proof protocol for L in the (Fcoin,Fbcast)-hybrid model, with security
against malicious prover or t = k − 1 verifiers, soundness error ε, and communication complexity of
O(kd2 log n · log(m/ε)) field elements.

6.2.1 Application: Proofs on secret-shared data

Several recent works, including [35, 44], consider a setting in which a client secret-shares a big input
x among two or more servers, and the servers want to be assured that the input shared by the client
is in some sense “well-formed.” The notion of zero-knowledge proofs on distributed data can capture
this setting as a special case. Here we let the client play the role of the prover P and each of the k
servers play the role of a verifier Vi. The input pieces x(1), . . . , x(k) are the shares of x that were
generated by some secret-sharing scheme and distributed among the servers.

We say that a secret sharing scheme is t-private if any set of t shares reveal nothing about the
secret. Our notion of zero-knowledge proofs on distributed data can be used to prove statements
on the secret-shared input x, while completely hiding x from any set of t verifiers, in the following
generic way. To prove that x ∈ L(R), for a (non-distributed) relation R(x,w), the prover P and
the k verifiers Vi engage in a zero-knowledge proof for the k-distributed relation R′ defined by
R′(x(1)‖x(2)‖ · · · ‖x(k), w) = R(Rec(x(1), . . . , x(k)), w), where Rec is the reconstruction algorithm of
the secret-sharing scheme. If the scheme is t-private and we use a zero-knowledge proof on distributed
data with security against t verifiers (such as the ones obtained via Theorem 6.6), a set of t malicious
verifiers cannot learn any information about the secret x other than the fact that x ∈ L(R). Indeed,
the view of the t verifiers can be simulated from scratch by first simulating their shares (which can
be done by sharing a dummy secret) and then invoking the distributed zero-knowledge simulator on
these shares. Note that for the typical case of linear secret sharing scheme, the algebraic degree of
R′ is the same as that of R. Thus, our sublinear IOPs for low-degree languages can be applied to
get sublinear protocols for proving in zero-knowledge that a secret-shared input x satisfies a set of
low-degree constraints.

For the case where each entry of x is secret-shared independently using some linear secret-
sharing scheme (for instance, x is randomly split into k additive shares x(1), . . . , x(k) such that
x = x(1) + . . . + x(k)), one can simplify the above approach as follows. Instead of defining a new
relation R′ that includes the reconstruction of x from its shares, one can directly apply a fully
linear IOP for R to the shares of x by letting each verifier locally apply each IOP query to the
concatenation of its share of x and the share of the proof. This leaner variant can be proved secure
similarly to the security proof of the protocol Πdist from Theorem 6.6, and can be seen as a special
case of the protocol for zero-knowledge proofs on encoded data we present in Section 6.3.3.

6.2.2 Generically achieving honest-verifier zero knowledge

Theorem 6.6 compiles a fully linear IOP with strong HVZK into a (strong) zero-knowledge proof on
distributed data. It turns out that if we settle for (strong) honest-verifier zero knowledge, we can
get a similar conclusion (with a small additional overhead) even if we start with a fully linear IOP
that does not provide any form of zero knowledge.

The high level idea, which was previously used in related contexts [35,44], is to avoid a direct
reconstruction of the answers ai, and instead apply a general-purpose MPC protocol for computing
the verification predicate from the answer shares aij . The communication complexity of this protocol
scales linearly with the circuit complexity of the verification predicate, which in the cases we are
interested in will be sublinear. If t < k/2, this MPC protocol can be realized directly, without any
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help from the prover [16]. To handle an arbitrary subset of semi-honest verifiers, the prover can
provide correlated randomness to the verifiers (e.g., in the form of multiplication triples [12]) to
enable MPC with dishonest majority. The verifiers then use this correlated randomness to compute
the output of the linear IOP verification circuit without revealing any additional information about
their inputs.

Note that if the prover is malicious, it can provide malformed correlated randomness. However,
for natural MPC protocols and linear IOPs, such a malicious strategy will not give the prover any
advantage in violating soundness. The high level reason is that the effect of malformed randomness
is equivalent to an “additive attack” on the IOP verification circuit, and such an attack cannot reduce
the entropy of the output of the verification circuit in case the proof is incorrect (see [35,44] for more
details).

The amount of correlated randomness that the prover must provide is linear in the number of
multiplication gates of the linear IOP verification circuit. For example, for the GKR-based linear
IOP of Theorem A.1, the verifier provides O(1) field elements worth of correlated randomness to
each verifier in each protocol round.

Finally, we note that the above transformation fails to provide zero knowledge against malicious
verifiers even if the MPC protocol is secure against malicious parties, since by changing their input
to the IOP verification circuit and observing the output, the verifiers can potentially learn additional
information about x, beyond the fact that x ∈ L(R).

6.2.3 Fiat-Shamir transform for proofs on distributed data

A commonly used heuristic for eliminating interaction in interactive proofs is the Fiat-Shamir
transform [61]. Analyzed in the random oracle model (ROM), this transform applies to public-coin
protocols and proceeds as follows: whenever the protocol generates a random challenge, the prover
generates this challenge on its own by applying a random oracle H to the concatenation of the input
x and the communication transcript up to this point. The Fiat-Shamir transform can be applied for
converting PCPs and IOPs into succinct non-interactive argument system for NP [23,97].

Applying the Fiat-Shamir transform in our distributed setting poses the following difficulty. While
the random challenges ri are indeed public, both the input and the communication transcript are
distributed and cannot be revealed to any single verifier. To get around this difficulty, we generate
each random challenge ri based on the joint view of the verifiers in previous rounds. Another
advantage of the resulting protocol, other than minimizing round complexity, is that it no longer
needs to rely on a coin-tossing oracle Fcoin (or an interactive protocol that emulates it).

Our distributed variant of the Fiat-Shamir transform, when applied to the distributed zero-
knowledge protocol of Theorem 6.6, proceeds as follows. The prover derives each random challenge
ri as the hash of k random challenges rij , where rij is obtained by hashing the view of Vj up to
this point. Concretely, let H : {0, 1}∗ → {0, 1}λ be a random hash function, where λ is a security
parameter. For each round i = 1, 2, . . . , ρ and verifier index 1 ≤ j ≤ k, the prover P computes
rij ← H(i, j, x(j), νij , πij), where νij ∈R {0, 1}λ is a random blinding value chosen by the prover,
and then lets ri ← H(i,⊥, ri1, . . . , rik). The blinding values νij are used to ensure that the hashes
rij leak no information about πij .

The verifiers can deterministically replay this process as long as the prover sends to each Vj the
blinding values (ν1j , . . . , νρj) it used to generate the responses. Concretely, the verifiers exchange all
information distributed by the prover except the proof shares πi. Instead of these proof shares, the
verifiers exchange the corresponding answer shares. They check that all information provided by the
prover is consistent with their local views (where the proof shares are used to check the correctness
of the random challenges rij) and then accept or reject based on the random challenges ri and the
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reconstructed answers.

6.3 Setting II: Malicious Prover and Verifiers

In the second and most stringent adversarial setting we consider, a possibly malicious prover may
collude with a subset of malicious verifiers. In addition to the requirements from the previous setting,
we must now further address the possibility of a false statement being wrongfully accepted due to
the actions of malicious verifiers. Note that we do not consider here robustness of the completeness
property when the prover is honest but some verifiers may be malicious. This stronger requirement
can be realized in some settings, but is not useful for our main motivating applications.

Definition 6.8 (Zero-knowledge proofs on distributed data: malicious prover and verifiers). Let
R(x,w) be a k-distributed relation over finite field F. We say that a k-verifier interactive proof
protocol Π = (P, V1, . . . , Vk) is a distributed strong zero-knowledge proof protocol for R with t-
security against malicious prover and malicious verifiers, and with soundness error ε, if Π satisfies
the Completeness and Strong Zero Knowledge properties as in Definition 6.4, as well as the following
soundness property:

• Soundness against prover and t − 1 verifiers. For every T ⊆ [k] of size |T | ≤ t − 1,
a malicious adversary A controlling the prover P and verifiers {Vj}j∈T , k-distributed input
x = (x(1)‖x(2)‖ · · · ‖x(k)) and witness w, the following holds. If there is no k-distributed input
x′ ∈ L(R) such that x′H = xH , where H = [k] \ T , the execution of Π∗(x,w) rejects except
with at most ε probability, where here Π∗ denotes the interaction of A with the honest verifiers.

6.3.1 General feasibility

We start by addressing the general feasibility question for arbitrary distributed relations. A first
observation is that if we make no succinctness requirements, namely we allow the communication
complexity to grow polynomially with the size of x and w, then Definition 6.8 can be efficiently
realized with t < k/2 for arbitrary NP-relations by using general-purpose MPC protocols in the
information-theoretic setting [107].

The main downside of the above approach is that its communication complexity grows linearly
with the size of the verification circuit. From here on, we focus on the goal of sublinear-communication
proofs. For simplicity, we will consider the case of distributed languages L (i.e., deterministic relations
in which the witness w is empty), and will be mainly interested in “simple” distributed languages
whose non-distributed versions admit fully linear proof system with sublinear proof length.

Our next observation is that membership testing in L with security against malicious prover and
verifiers can be reduced to the easier case of a malicious prover or verifiers (Theorem 6.6) by running
an independent instance of the protocol with every potential set H of k− t+ 1 honest verifiers, where
each instance applies to the natural restriction of L to H defined below.

Definition 6.9 (Restriction of a distributed language). For a k-distributed language L and set
H ⊆ [k], define the restricted language L|H to be the |H|-distributed language defined by

L|H = {xH : x ∈ L}.

Now, let L be an arbitrary k-distributed language, 1 ≤ t < k be a security threshold, and
h = k− t+ 1. For each H ⊆ [k] of size h, let ΠH be a protocol for LH with security against malicious
prover or t malicious verifiers, as per Definition 6.4. We describe a distributed zero-knowledge
protocol Π for L that has t-security against malicious prover and verifiers whenever k ≥ 2t.
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Protocol Π:

• Inputs: The prover P has a distributed input x ∈ Fn. Each verifier Vj , 1 ≤ j ≤ k, has an
input piece x(j) ∈ Fnj .

• Interaction:

1. For each H ⊆ [k] of size |H| ≥ h, the prover P interacts with verifiers Vj , j ∈ H, using
the protocol ΠH to prove membership of xH in L|H .

2. If any of these interactions rejects, the verifiers in H broadcast a complaint.

• Outputs: Each verifier Vj accepts if no verifier broadcasted a complaint.
The security of the protocol Π depends on the assumption that instances of ΠH compose, in the

sense they can be simulated jointly and the soundness guarantee of each protocol holds regardless
of other executions. While our definitions guarantee composition in this weak sense when allowing
computationally unbounded simulation (also known as witness indistinguishability), this may not be
the case in the computational setting when simulation should be done in probabilistic polynomial
time (cf. [70], Section 4.3.3). However, a mild strengthening of Definition 6.4 that incorporates
auxiliary inputs generically supports sequential composition (i.e., when different instances of ΠH

are executed one after another). Moreover, natural protocols in the information-theoretic setting,
including all protocols obtained in this work (in particular, those obtained via Theorem 6.6 and
Corollary 6.7) also compose when executed in parallel. From here on we assume that the protocols
ΠH compose in the above sense.

Theorem 6.10 (Zero-knowledge proof on distributed data: malicious prover and verifiers). Let
L be a k-distributed language, t ≥ 1 be a security threshold such that k ≥ 2t, and h = k − t + 1.
For each H ⊆ [k] of size |H| ≤ h, let ΠH be a protocol for LH with (composable) security against
malicious prover or t malicious verifiers, as per Definition 6.4. Then the protocol Π described above
is a distributed strong zero-knowledge protocol for L with t-security against malicious prover and
verifiers, and with soundness error ε.

Proof. The completeness of Π follows from the completeness of the protocols ΠH and the fact that
if x ∈ L then xH ∈ L|H for all H.

The strong zero knowledge of Π follows from the fact that h > t. Indeed, it follows from this fact
that for any set T ⊆ [k] of t malicious verifiers and every set H such that |H| ≥ h there are at most
t ≤ |H| − 1 malicious verifiers in the execution of ΠH and hence, by the strong HVZK of ΠH , their
view can be perfectly simulated given their inputs. (Here we rely on the composition assumption
that different instances of ΠH involving overlapping sets of verifiers can be simulated jointly.)

Finally, the soundness of Π is argued as follows. Let T ⊆ [k] be a set of corrupted verifiers
of size |T | ≤ t − 1, and let A be a malicious adversary controlling the prover P and verifiers
{Vj}j∈T . Suppose x = (x(1)‖x(2)‖ · · · ‖x(k)) is a k-distributed input for which there is no x′ ∈ L such
that x′H = xH , where H = [k] \ T . Then, since xH 6∈ L|H , the soundness of ΠH implies that in
the execution of ΠH on xH the honest provers will broadcast a complaint except with at most ε
probability. It follows that the execution of Π on x in the presence of A will reject except with at
most ε probability, as required by Definition 6.8.

The above protocol Π has two limitations. First, its complexity may grow exponentially with
the number of verifiers k. This overhead is arguably tolerable when k is small and when the
communication complexity of each ΠH is sublinear in the input length n. Second, and perhaps
more importantly, even if L is “simple” (e.g., can be verified by low-degree equations), its restricted
languages L|H may be complex. In the following we show that the latter limitation is in a sense
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inherent, and show how to get around both limitations by restricting the attention to distributed
languages L that are in some sense robust.

6.3.2 A negative result

Recall that we are interested in protocols for simple distributed languages L (i.e., deterministic
relations in which the witness w is empty) whose communication complexity is sublinear in the input
size. We show that even for simple distributed languages for which we have sublinear-communication
zero-knowledge protocols in the case of malicious prover or t malicious verifiers (cf. Corollary 6.7),
similar protocols are unlikely to exist when a malicious prover can collude with (even a single)
malicious verifier. The high level idea is that such a strong distributed proof system for L can
be turned into standard (single-verifier) interactive proof systems for a related non-deterministic
relation R, where the witness in R is one of the input pieces in L. It will then follow from negative
results on laconic proof systems for NP [73] that there are some simple languages L which separate
between the two settings. In other words, there exist distributed languages L that admit succinct
proof protocols on distributed data in Setting I (malicious prover or verifiers), but do not admit
similar protocols in in Setting II (malicious prover and verifiers) under standard complexity theoretic
assumptions.

Claim 6.11. Let L be a k-distributed language over F, consisting of distributed inputs x =
(x(1)‖x(2)‖ · · · ‖ x(k)) ∈ Fn. Let Π = (P, V1, . . . , Vk) be a distributed proof protocol for L (with-
out zero-knowledge) with soundness error ε against a malicious adversary A controlling P and Vk.
Let R be a (non-distributed) NP-relation defined by R((x(1)‖x(2)‖ · · · ‖x(k−1)), x(k)) = L(x). Then
there exists a two-party interactive proof protocol Πdist = (P ′, V ′) for R, where the communication
and computation costs of Πdist are bounded by those of Π.

Proof. The protocol Πdist is obtained by letting V ′ emulate the roles of verifiers V1, . . . , Vk−1 in Π
and P ′ emulate the roles P and Vk in Π. The output of V ′ in Πdist is the same as that of V1 in Π.
The soundness of Πdist follows from the distributed soundness requirement (see Definition 6.8) by
observing that for any malicious prover P ′ in Πdist there is a corresponding malicious adversary A
attacking P and Vk in Π such that V ′ accepts in Πdist whenever V1 accepts in Π.

Now, consider a deterministic degree-3 k-distributed language L in which the first input piece
x(1) defines a set Q of m degree-2 equations in variables X1, . . . , X`, the last input piece x(k) ∈ F`
defines an assignment to these variables, and L(x) holds if Q(X) = 0m. While Corollary 6.7 implies
a computationally efficient, sublinear-communication protocol for L in the presence of malicious
prover or t = k − 1 verifiers, it follows from Claim 6.11 and [73] that obtaining a similar protocol for
the case of malicious prover and (even a single) malicious verifier is unlikely.

6.3.3 Efficient protocols over linearly encoded inputs

To get around the previous impossibility, we restrict the attention to relations for which the distributed
input x is encoded in a way that the pieces held by the honest verifiers determine the entire input.
(This encoding will typically be produced by an underlying linear secret-sharing scheme; however, our
protocols do not make any assumption about the distribution from which this encoding is picked.)
We will be mainly interested in robust linear encodings in which for each piece x(j) of x and each
set H of honest parties, x(j) can be obtained by applying a linear function to the pieces of H. We
capture this by the notion of a distributed linear code (DLC) [52], defined below.
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Definition 6.12 (Distributed linear code (DLC)). Let C ⊆ FK be a k-distributed language over
F. We say that C is a k-distributed linear code (or k-DLC) over F if it is closed under (piecewise)
addition and scalar multiplication over F. We say that C has minimal distance (at least) d if for
every u, v ∈ C, there are at most d pieces j ∈ [k] such that u(j) 6= v(j). We associate with C the
assignment of the input coordinates in [K] to verifiers in [k] and make it implicit in the notation.
By default, we will let K = k and assign the i-th entry of each codeword to Vi.

As noted above, we will typically use a distributed codeword of a DLC to capture a vector of
shares in a linear secret-sharing scheme, such as Shamir’s scheme. In this case, we associate with
each c ∈ C a corresponding message s ∈ F (a “secret”), defined by a linear decoder D : FK → F. Note
that the same message s will typically have many different codewords. Given C, D, we let [s]C,D,
or just [s] when there is no ambiguity, denote the set of codewords that decode to s. We say that
C, D is t-private if any t pieces in a randomly chosen ŝ ∈R [s] hide s. One can naturally extend
the above to a linear decoder D : FK → F`, which outputs multiple field elements. This is useful
to capture the case of packed secret sharing [64], which which can be used for batch-verification of
` statements. The results of this section extend naturally to this more general case. The above
discussion is formalized below.

Definition 6.13 (Decoding, encoding, and t-privacy). Let C ⊆ FK be a k-DLC over F and let
D : FK → F be a linear decoder. For s ∈ F, we define the set of valid encodings of s to be
[s]C,D = {ŝ ∈ C : D(ŝ) = s}. We will omit the C, D subscripts when they are clear from the context.
We say that the randomized encoding scheme defined by (C, D) is t-private if for any s, s′ ∈ F,
and any fixed T ⊂ [k] of size t, the distributions ST and S′T are identical, where S (resp., S′) is
distributed as a random encoding ŝ ∈R [s] (resp., ŝ′ ∈R [s′]) and the subscript T denotes restriction
to pieces with indices in T . Equivalently, t-privacy can be defined by considering any generating
matrix G ∈ FM×K of C. The randomized encoding scheme (C, D) is t-private if the T -columns of G
span the vector in FM obtained by applying D to each row of G.

Locally encoded languages. Our first distributed zero-knowledge protocol applies to locally
encoded languages, namely ones that separately encode each entry of an input x in some (non-
distributed) language L. This special class of encoded languages is motivated by applications in
which each entry of an input x is individually encoded via some robust linear secret sharing scheme
such as Shamir’s scheme. We denote the set of such possible encodings by [x]. We denote by L̂ the
encoded version of L, namely the union of all [x] with x ∈ L.

Definition 6.14 (Locally encoded language). Let k,F, C, D be as in Definition 6.13. Let L ⊆ Fn be
a (non-distributed) language. Let x̂ ∈ FK×n be a k-distributed matrix whose n columns are all in C.
We extend D to such matrices by letting D(x̂) be the vector x ∈ Fn defined by xj = D(x̂j), where
x̂j is the j-th column of x̂. Let [x]C,D = {x̂ ∈ FK×n : D(x̂) = x and x̂j ∈ C for all j }. Finally,
define the (locally) encoded language L̂C,D = {x̂ ∈ FK×n : x̂ ∈ [x]C,D for some x ∈ L}. We will
omit the C, D subscripts when they are clear from the context.

We now describe a distributed zero-knowledge protocol in Setting II for L̂C,D, namely one whose
soundness holds even if the prover can collude with up to t − 1 verifiers. The high level idea is
similar to the protocol for Setting I (Theorem 6.6), except that the prover distributes each entry in
a proof π using the secret sharing scheme defined by (C, D). Here we rely on the minimal distance
of C being at least t to ensure that the answer pieces of k − t+ 1 honest verifiers are sufficient to
determine the correct answers, and on the t-privacy of (C, D) to ensure that any t verifiers do not
learn from their shares of π any information except the PCP answers.
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Formally, let L ⊆ Fn be a (non-distributed) language. Suppose Π = (PLIOP, VLIOP) is a ρ-round
public-coin fully linear IOP for L with strong zero knowledge, soundness error ε, proof length
c =

∑ρ
i=1 ci, random challenges ri ∈ Fbi , and query complexity ` =

∑ρ
i=1 `i. Let C ⊂ FK be a

k-DLC over F of minimal distance t and let D : C → F be a linear decoder such that the encoding
scheme defined by (C, D) is t-private. We describe a distributed strong zero-knowledge proof protocol
Πdist = (P, V1, . . . , Vk) for L̂C,D in the (Fcoin,Fbcast)-hybrid model with t-security against malicious
prover and verifiers and the same soundness error. Unlike most of our proof systems, here we do not
require the (honest) prover to know the full input X ∈ L̂C,D, but rather only the instance x = D(X)
it encodes.

Protocol Πdist:

• Parameters: A DLC C and decoder D such that C has minimal distance t and (C, D) is
t-private.

• Inputs: The distributed input is a matrix X ∈ FK×n. Each verifier Vj , 1 ≤ j ≤ k, has input
piece X(j) consisting of one or more rows of X (where the row assignment corresponds to
the coordinate partition of C). The prover P knows x = D(X). (Presumably x ∈ L and
X ∈ [x]C,D.)

• Interaction:

1. (Testing membership in C) Repeat γ = dlog|F|(1/ε)e times:

– P picks a random c ∈ C and send to each Vj its piece c(j).
– The k verifiers let r ← FScoin for S = Fn. (Alternatively, as in [52], r can be

deterministically generated from a shorter random vector via a small-bias generator
over F; this requires slightly increasing γ.)

– Each Vj computes its share yj of X · r + c and sends yj to the other verifiers.
– Each Vj checks that the k shares (y1, . . . , yk) are in C, and otherwise broadcasts a

complaint. If any verifier broadcasts a complaint, all verifiers reject.

2. (Emulating Π) For i = 1, 2, . . . , ρ:

– If i = 1, P lets (π1, st
P
1 ) ← PLIOP(x,⊥), else it lets (πi, st

P
i ) ← PLIOP(stPi−1, ri−1),

where πi ∈ Fµi .
– P secret-shares πi using (C, D) by picking a random matrix π̂i ∈ FK×µi uniformly

at random from [πi], and sends proof shares π̂ij to Vj consisting of the rows of π̂i
assigned to Vj ;

– The k + 1 parties invoke ri ← FScoin for S = Fbi .
– All k verifiers let (qi,1, . . . , qi,`i) be the query vectors determined by r1, . . . , ri, where
qi,α ∈ Fn+µi for 1 ≤ α ≤ `i. The verifiers locally compute their entries of ai,1 =
(X‖π̂) · qi,1, . . . , ai,`i = (X‖π̂) · qi,`i . Let ai,α,j denote the answer shares of Vj for
1 ≤ α ≤ `i.

– Each verifier Vj sends to all other verifiers the `i answer shares ai,α,j , for 1 ≤ α ≤ `i.
It then checks that the k answer shares (ai,α,1, . . . , ai,α,k) are in C, and otherwise
broadcasts a complaint. It reconstructs an answer ai,α = D(ai,α,1, . . . , ai,α,k) for
1 ≤ α ≤ `i.

• Outputs: Each verifier Vj computes its output as follows. If any verifier broadcasted a
complaint, it rejects. Otherwise, it applies the decision predicate of VLIOP to the random
challenges r1, . . . , rρ and the answers ai,α, and accepts or rejects accordingly.
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As before, we can minimize round complexity by checking membership in C in parallel to simulating
Π, and can combine the verifier messages of round i with the prover messages of round i+ 1. This
gives an implementation with ρ + 1 point-to-point rounds (involving messages from P to each
verifier) and a single broadcast round (for possible complaints). Note that unlike the protocol from
Theorem 6.6 (for the case of malicious prover or verifiers), here we cannot use V1 alone for recovering
the PCP answers, since this would violate soundness in case V1 is corrupted.

Before formally proving the soundness and zero-knowledge properties of Πdist, we provide some
intuition. The protocol Πdist is sound against the prover together with t− 1 malicious verifiers for
the following reason. The code membership testing via random linear combination ensures that the
rows of X held by the honest verifiers are a valid (C, D)-encoding of an input x ∈ Fn, except with
at most ε probability.3 The fact that C has minimal distance at least t ensures that there is an
alternative linear decoding function D′ that depends only on the input pieces of honest verifiers and
agrees with D on all valid codewords. Thus, D′ defines an input x and proofs πi such that if the
shares of the answers are consistent with C, they must be consistent with the answers of Π on input
x, proofs πi and the queries qi,α.

The zero knowledge property of Πdist follows from the following observations. Recall that we
consider here the case where the prover P is honest but there is a set T of t malicious verifiers. First,
the masking of the initial membership test in C by a random codeword guarantees that the test is
zero knowledge. For the simulation of Π, the minimal distance property of C guarantees that (since
P is honest) the answer shares of the honest verifiers are consistent with a unique codeword. Thus,
if a malicious verifier Vj sends an incorrect answer share to an honest verifier Vh, this will necessarily
lead to Vh broadcasting a (predictable) complaint. This effectively restricts verifiers in T to be
honest. In this case, zero knowledge follows from the fact that when the PCP queries (restricted to
the proof component) are linearly independent, the answer shares are fresh independent encodings
of the PCP answers. Moreover, the same holds even when conditioned on the proof shares of a set T
of t verifiers. This is formalized by the following lemma.

Lemma 6.15. Let (C, D) be a t-private encoding as in Definition 6.13 and let T ⊂ [k] be a set of
size t. Let x ∈ Fn and π ∈ Fµ. Let x̂ ∈ [x](= [x]C,D) be some fixed encoding of x, where x̂ ∈ FK×n.
Let Q ∈ F(n+µ)×` be a matrix, and let Q′ be the sub-matrix consisting of the last µ rows of Q. If
rank(Q′) = ` then the following two distributions are identical:

1. Real: (π̂T , â), where π̂ ∈ FK×µ is picked at random from [π] and â = (x̂‖π̂) ·Q.
2. Ideal: (π̂′T , â

′) obtained by: (1) let π′ = 0µ; (2) pick π̂′ at random from [π′]; (3) let a = (x‖π) ·Q;
(4) pick â′ uniformly at random from [a] subject to the restriction that â′T = (x̂‖π̂′)T ·Q.

Proof. The t-privacy of (C, D) implies that π̂T and π̂′T are identically distributed. It remains to show
that the distribution Rα of Real conditioned on π̂T = α is identical to the distribution Iα of Ideal
conditioned on π̂′T = α. By linearity of (C, D), the output of â = (x̂‖π̂) ·Q must be in [a]. Moreover,
conditioned on α we have âT = â′T = β for β = (x̂T ‖α) ·Q. Note that Iα is uniformly distributed
over {â ∈ [a] : âT = β}, and the support of Rα is contained in the same set. It remains to show
that Rα is also uniformly distributed over this set. Let â, â′ ∈ [a] such that âT = â′T = β. We show
a bijection mapping any encodings π̂ of π such that π̂T = α and (x̂‖π̂) ·Q = â to another encoding
π̂′ of π such that π̂′T = α and (x̂‖π̂′) ·Q = â′. Let ẑ = â′− â ∈ FK×` and let A be an invertible `× `
sub-matrix consisting of distinct rows of Q′ (such A exists since rank(Q′) = `). We show a mapping
χ that maps any π̂ leading to â into π̂′ leading to â′ by changing the columns of π̂ corresponding to

3This type of test is standard in the MPC literature; see, e.g., [52]. Note that here we only consider soundness
against a non-adaptive adversary who picks the set of corrupted verifiers before the random challenge is known; see [2]
for a concrete soundness analysis of a similar test in the presence of adaptive corruptions.
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the rows of A in Q. (By symmetry, χ is invertible and hence injective.) Letting ẑ′ = ẑ · A−1, we
have ẑ′ ·A = ẑ, and so the bijection χ that adds ẑ′ to the A-columns of π̂ yields π̂′ as required.

Theorem 6.16 (Zero-knowledge proof for locally encoded languages: malicious prover and verifiers).
Let L ⊆ Fn be a (non-distributed) language. Suppose Π = (PLIOP, VLIOP) is a ρ-round public-coin
fully linear IOP for L with soundness error ε and strong HVZK. Let C ⊂ FK be a k-DLC over
F of minimal distance t and let D : C → F be a linear decoding function such that the encoding
scheme defined by (C, D) is t-private. Then, the protocol Πdist = (P, V1, . . . , Vk) described above is
a distributed strong zero-knowledge proof protocol for L̂C,D in the (Fcoin,Fbcast)-hybrid model with
t-security against malicious prover and verifiers, and with soundness error ε.

Proof of Theorem 6.16. We separately argue completeness, soundness, and zero knowledge.

Completeness. Follows easily from the completeness of Π.

Soundness. Here we assume that a malicious adversary A corrupts P together with t− 1 verifiers
Vj , j ∈ T . Let H = [k] \ T , and consider a distributed input X for which there is no X ′ ∈ L̂C,D
such that X ′H = XH . We argue that when A interacts with the honest verifiers in Πdist on input
X, all honest verifiers reject except with at most ε probability. Consider two cases. (1) There is
no X ′ ∈ C such that X ′H = XH . In this case, the membership testing phase will lead the honest
verifiers to reject except with at most ε probability. This follows from the fact that each atomic
random linear combination test will detect non-membership except with 1/|F| probability (see, e.g.,
proof of Lemma 2 from [52]) and from the choice of γ. (2) There is X ′ ∈ C, where X ′ ∈ [x]C,D, such
that X ′H = XH but x 6∈ L. Since C is linear and has minimal distance t, we can define an alternative
linear decoding function D′ that depends only on pieces of verifiers in H and agrees with D on all
distributed codewords in C. In particular, D′(X ′) = x. Thus, for any (malformed) proofs shares
π̂∗i distributed by A, the decoder D′ defines effective proof vectors π∗i ∈ Fn, such that if the answer
shares (ai,α,1, . . . , ai,α,k) are in C then we have D′(ai,α,1, . . . , ai,α,k) = (x‖π∗i ) · qi,α. Letting P ∗ be
a malicious prover in Π whose proofs are distributed as π∗i , the probability of A making honest
verifiers accept in Πdist is bounded by the probability of P ∗ making the verifier in Π accept. By the
ε soundness of Π and the assumption that x 6∈ L, this probability is bounded by ε as required.

Strong zero knowledge. Let X ∈ L̂C,D. We show how to simulate the view of any set T of t
malicious verifiers given their input pieces XT alone. The view during DLC membership testing is
simulated by computing some X ′ ∈ FK×n such that each column of X ′ is in C and X ′T = XT , and
running the honest prover’s algorithm on X ′. (Such X ′ can be found efficiently due to linearity.) The
correctness of this DLC membership simulation is standard, and can be proved via a similar matching
argument to the proof of Lemma 6.15: let z = X · r and z′ = X ′ · r. Let (cT , yT̄ ) denote the messages
received by T in the real world and (c′T , y

′
T̄

) be the messages received by T in the ideal world. Clearly,
cT and c′T are identically distributed. It thus suffices to prove that the conditional distribution
[yT̄ | cT ] is identical to [y′

T̄
| c′T ]. The mapping c 7→ c′ = c+ z′ − z defines a bijection mapping c ∈ C

leading to yT̄ in the former distribution to c′ ∈ C leading to y′
T̄
in the latter distribution. Note that

since X ′T = XT we have z′T = zT , and hence c′T = cT .
The simulation of the view of T in the second phase of Πdist (emulation of Π) proceeds as follows.

As in the proof of Theorem 6.6, we assume (without loss of generality) that the queries made by Π
to each proof πi are linearly independent. Letting X ′ a valid encoding of x = 0 (namely, X ′ ∈ [0])
with X ′T = XT . The existence of such an encoding is implied by the t-privacy of (C, D), and it can
be found efficiently by solving a system of linear equations. The simulator can now jointly simulate
the proof shares from P and answer shares from the other verifiers as follows. It starts by invoking
the simulator SLIOP implied by the strong HVZK property of Π to generate the random challenges
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ri (defining queries qi,α) together with the answers ai for each round 1 ≤ i ≤ ρ. Then, for each
round i, it finds πi ∈ Fn which is consistent with the input x = 0 and the queries qi,α. Such πi exist
because of the linear independence assumption and can be found efficiently by solving a system
of linear equations. Finally, it runs the entire protocol with the simulated values of X ′, πi, ri, qi to
obtain a simulation of the incoming messages from P and the other verifiers. The correctness of this
part of the simulation follows from Lemma 6.15. Finally, we need to simulate possible complaints
that originate from other verifiers. Note that we have already simulated all answer shares received
from honest verifiers. The simulator runs the adversary to extract the answer shares y∗j it sends to
honest verifiers. It can now simulate complaint messages by honest verifiers by checking, for each
such verifier, whether the k answer shares it received are in C. This concludes the description of the
simulator.

This concludes the proof of Theorem 6.16.

Remark 6.17. It is sometimes useful to consider a more general version of locally encoded languages
in which different entries of an input x ∈ Fn can be encoded using different DLCs. Protocol Πdist

and Theorem 6.16 can be naturally generalized to such languages, where the complexity of the
generalized version of Πdist scales linearly with the number of distinct DLCs. In particular, when the
number of DLCs is constant, the asymptotic complexity remains the same.

Globally encoded languages. We now turn from the previous case of locally encoded languages,
where each entry in an input vector x ∈ L is encoded separately, to the more general case of a
globally encoded language. In this case there is a robust DLC C̃, which encodes a language L via
some arbitrary linear decoder D that may apply an arbitrary linear function to the codewords. In
this case we have the guarantee that if L can be verified by low-degree polynomials then so can its
restrictions L|H , for sufficiently big sets of honest verifiers. This allows us to apply Theorem 6.10
for low-degree languages with sublinear communication. Note that for this general case we still
have an overhead that may grow exponentially with k. However, in the context of our motivating
applications, this overhead will tolerable when k is small, since it only applies to a sublinear additive
term of the communication complexity, and to cheap (“symmetric crypto”) local computations.

We formalize the notion of a globally encoded language below.

Definition 6.18 (Globally encoded language). Fix an arbitrary k-DLC C̃ ⊆ FM , a non-distributed
L ⊆ Fn, and a linear decoder D : FM → Fn. The global encoding L̃C̃,D of L is the k-distributed
language L̃C̃,D defined by

L̃C̃,D = {x̂ ∈ C̃ : D(x̂) ∈ L}.

We now show that for a sufficiently robust C̃, if L is “simple” then so are the restrictions of L̃C̃,D
to sets H of honest parties.

Lemma 6.19. Let L ⊆ Fn be a language whose membership can be verified (deterministically) by
degree-d equations. Let C̃ ⊆ FM be a k-DLC with minimal distance t, and D : FM → Fn be a linear
function. Then for any H ⊆ [k] of size |H| > k − t, membership in L̃C̃,D|H can also be verified by
degree-d equations.

Proof. Fix a set H of size |H| > k− t. First, note that by the linearity of C̃, testing whether x̂H ∈ C̃H
(namely whether x̂ restricted to H is consistent with a codeword of C̃) can be implemented by linear
equations. Since the minimal distance of C̃ is t and |H| > k − t, if this condition is met then there
must be a unique codeword x̂ ∈ C̃ which is consistent with x̂H , and this codeword can be expressed
as a linear function of x̂H . It follows that D(x̂) can be written as DH(x̂H) for a linear function DH

determined by H, and whether DH(x̂H) ∈ L can be tested by degree-d equations as required.
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Using Lemma 6.19, we can apply Theorem 6.10 to test membership in low-degree languages with
sublinear communication complexity, given any robust encoding of inputs in this language. The price
we pay is that we need to apply a separate protocol for each potential subset H of honest parties.4

We can thus use Lemma 6.19 together with Theorem 6.10 to match the efficiency of Corollary 6.7,
up to a

(
k
h

)
multiplicative communication overhead, obtaining the stronger guarantee of t-security

against malicious prover and verifiers when C̃ is of minimal distance t.

Corollary 6.20 (Sublinear zero-knowledge proofs for distributed low-degree languages: malicious
prover and verifiers). Let d ≥ 2 be a positive integer, ε > 0 an error bound, and L ⊂ Fn a non-
distributed language whose membership is tested by m degree-d polynomials. Let k, t be positive
integers such that k ≥ 2t, let C̃ ⊆ FM be a k-DLC of minimal distance t, and let D : FM → Fn be a
linear decoder. Then, there exists an O(d log n)-round strong zero-knowledge proof protocol for L̃C̃,D
in the (Fcoin,Fbcast)-hybrid model, with t-security against malicious prover and verifiers, soundness
error ε, and communication complexity of O(

(
k
t

)
· kd2 log n · log(m/ε)) field elements.

7 Application: Honest-Majority MPC

In this section, we demonstrate applications of zero-knowledge proofs on distributed data to guar-
anteeing security against malicious parties in secure multi-party computation (MPC) protocols.
Combined with our constructions of such proof systems from linear zero-knowledge PCPs (Section 6)
we improve the communication complexity of existing information-theoretic MPC protocols in the
honest-majority setting.

Since the original feasibility results of Goldreich, Micali, and Wigderson [72], a nearly universal
approach to obtaining secure computation protocols follows a basic blueprint: (1) First, design a
protocol attaining the simpler goal of “semi-honest” security: that is, security against parties who
may collude and try to learn additional information about inputs of other parties, but who are
otherwise assumed to honestly follow the protocol as prescribed. (2) Then, compile to full malicious
security by providing a means to enforce honest behavior within the protocol execution. Several such
Step 2 transformations exist in the literature, such as having the parties accompany each message
with a zero-knowledge proof of its correctness, or various forms of “cut and choose” where the base
protocol interaction is duplicated may times over and a subset is “opened” to verify correctness. In
each case, the communication overhead in converting from semi-honest to malicious is at least a
multiplicative factor of 2.

In what follows, we demonstrate an alternative Step 2 approach that enables any semi-honest
protocol of a particular “natural” form (formalized in Definition 7.2) to be upgraded to malicious
security with sublinear additive communication overhead. At a high level, this is achieved by adding
a phase in the penultimate round of the base protocol, in which each party Pi executes a single
interactive proof on distributed data (corresponding to the messages communicated to/from Pi held
by the other parties) that the entire interaction thus far has been performed honestly.

In the following subsections, we introduce some preliminaries and notation, discuss and present a
formal definition of “natural” protocols to which our techniques apply, and then present the compiler
in the 3-party and general n-party honest majority settings.

4Unlike Theorem 6.10, here it suffices to enumerate over all sets H of size exactly k − t + 1, since the robustness
property ensures that inconsistency with L̃C̃,D over a bigger set H implies inconsistency over H of size k − t + 1.
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7.1 Preliminaries

We use here the definition of standalone MPC from [37,71]. By default we consider security with
abort. We consider protocols for arithmetic circuits over a finite ring R. We denote the number of
parties by m and the parties by P1, . . . , Pm. Without loss of generality, we restrict our attention to
deterministic m-party functionalities that only deliver an output to P1 (each other party outputs
⊥). This is without loss of generality, since the case of randomized, multi-output functionalities (or
even reactive functionalities) can be reduced to this case via standard reductions [71]. We assume
that the functionality f is represented by an arithmetic circuit Cf over R, where Cf may contain
addition, subtraction and multiplication gates, as well as constants from R.

We assume that each party Pi starts the protocol with an input xi for f and a random input ri,
where both xi and ri are vectors over R.

A protocol Π is defined by its next-message function Π(i, j, xi, ri, ~m1..j−1). This function de-
termines the messages sent by Pi in round j based on its input, its random inputs, and messages
received from all parties in rounds 1, 2, . . . , j − 1. We assume that each message is a vector over R
and allow each party to send a virtual message to itself. If the output of Π is of the form (out, y)
where y is either a vector over R or y = ⊥, then Pi terminates the protocol with output y. We
assume that all parties terminate after the same number of rounds, where this number depends
only on the representation Cf of the functionality being computed but not on the inputs. For the
single-output functionalities we consider, all parties other than P1 output ⊥.

Definition 7.1 (Protocol Notation). We adopt the following notations for a protocol Π:
• Π(i, j, xi, ri, ~m1..j−1) denotes the next-message function of Π (as described above).
• Π′ denotes the protocol obtained by removing the last round of communication from Π.
• Notations regarding transcript message vectors within Π′:

– Mout
ij denotes the vector of messages sent by Pi to party Pj in Π′.

– Mout
i = (Mout

ij )j∈[N ] messages sent by Pi to all parties.
– M in

ij and M in
i are defined similarly, for incoming messages, received by Pi from parties.

– Mi = (M in
i ,M

out
i ) the vector of all incoming and outgoing messages of party Pi in Π′.

– For T ⊆ [N ], denote MT = (Mi)i∈T .
– For T ⊆ [N ], denote MTH = (M in

ij ,M
out
ij )i∈T,j /∈T the “threshold-crossing” messages,

constituting those messages sent/received by a party within T to/from a party outside.

7.2 Compiling natural protocols

As with recent works, the core observation in our transformation is that constructions of semi-honest
protocols tend to all share a common useful form:

• Up to the final exchange of messages, the protocol reveals no information about parties’ inputs,
even if parties act maliciously. Indeed, in all “standard” MPC protocols, we can simulate the
view of a malicious adversary by running the protocol honestly with default inputs for honest
parties. This property means that we are safe to proceed to the end of this phase before
needing to prove correctness of actions, which can then be proved all at once.

• The messages sent by a party Pi in each round are degree-2 functions of messages received in
previous rounds. This means that verification of all rounds of interaction can be expressed as
satisfaction of a collection of several degree-2 constraints. This is precisely a setting in which
our interactive proof techniques perform well.
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More formally, we consider the following formal notion of natural protocols in the honest-majority
setting. We present the definition and transformation for the case of information theoretic security:
in particular, where the truncated protocol excluding the final round is perfectly secure. However, as
we later discuss, these results can be easily extended to the relaxed setting of statistical security
(with negligible simulation error), and can further yield comparable implications in useful cases
where computational tools are used to compress communication bandwidth (e.g., sending a seed to a
pseudorandom generator in the place of a long random string).

Definition 7.2 (Natural Protocol). We refer to an N -party interactive protocol Π for computing f
as a natural protocol against t corruptions if it satisfies the following properties:

1. The execution of Π′ (i.e., Π without the final round) is a perfectly secure realization of the
empty functionality F∅ which takes no inputs and gives no output, even against malicious
corruptions (as per [37, 71]). Denote the corresponding PPT simulator by SimΠ′ .

2. There exists a degree-2 encoded language (as per Definition 6.14) Li for each i ∈ [N ], such that:

• Inputs to Li are of the form Mi = (M in
i ,M

out
i ) ∈ Rn (see Notation 7.1).

Note that Mi is known in full to party Pi, and is held distributively across {Pj}j 6=i.
• For any MT = (Mi)i∈T where ∀i,Mi ∈ Li, then MT occurs with nonzero probability in

some honest execution of Π′ with A and honest inputs (corresponding to some choice of
randomness of honest parties). (Note that perfect security of Π′ implies that MT must
then lie in the support for any choice of honest inputs.)

• There exists a simulator Simfinal = (Simin,Simout) composed of a deterministic input
extractor Simin, and procedure Simout for simulating the final output messages received
by party P1 in Π given any “Li-compatible” protocol execution prefix.
Formally: for any A corrupting T ⊂ [N ] of size |T | ≤ t, there exists (Simin, Simout)
such that for any honest inputs xH := (xi)i/∈T , and given any “corrupt-honest thresh-
old” messages MTH = (M in

ij ,M
out
ij )i∈T,j /∈T consistent with some MT = (Mi)i∈T =

(M in
ij ,M

out
ij )i∈T,j∈[N ] (containing also corrupt-corrupt messages) for which ∀i ∈ T ,Mi ∈ Li,

then it holds that:

– Case 1 ∈ T :Simout(y,MTH) :
(x′i)i∈T = Simin(MTH);
∀i /∈ T, x′i = xi;
y = f(x′1, . . . , x

′
N )

 ≈ {FinalMsgP1
(xH ,A) | prefix MTH

}
.

– Case 1 /∈ T :
y if b = “deliver”
⊥ if b = ⊥ :

(x′i)i∈T = Simin(MTH);
∀i /∈ T, x′i = xi;
y = f(x′1, . . . , x

′
N );

b← Simout(y,MTH)

 ≈
{
OutputP1

(xH ,A) | prefix MTH

}
.

Here,
{
FinalMsgP1

(xH ,A) | prefix MTH

}
(respectively, OutputP1

) denotes the distribution of
the N final messages received by P1 from all parties in the final round of Π (respectively,
final output of P1 in Π) when executed with honest inputs xH and (w.l.o.g. deterministic and
input-less) adversary A over the choice of honest random coins, conditioned on transcript prefix
consistent with MTH.

We next prove a general transformation, which combines any such natural protocol (with
semi-honest security) together with a distributed strong zero-knowledge proof system to obtain a
maliciously secure protocol with minimal overhead.
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Theorem 7.3 (Malicious Security for Natural Protocols). Let Πnat be any natural N -party protocol
computing f against t < N/2 corruptions, in the sense of Definition 7.2. Let ΠZK = (P, V1, . . . , VN−1)
be a distributed strong zero-knowledge proof protocol supporting degree-2 encoded languages with
(“Type II”) security against malicious prover and t verifiers (and negligible soundness error), as in
Definition 6.8.

Then there exists an N -party protocol Πmal which securely realizes f against t malicious corrup-
tions, with the following complexities:

• Round complexity: rounds(Πmal) = rounds(Πnat) + rounds(ΠZK).
• Communication complexity: CC(Πmal) = CC(Πnat) +N · CC(ΠZK).

Proof. Consider the following protocol Πmal:
1. Execute Π′nat: i.e., Πnat excluding the final round. Denote the corresponding incoming/outgoing

per-party message vectors as Mi = (M in
i ,M

out
i ) as in Definition 7.1, and MT = (Mi)i∈T .

2. For each i ∈ [N ] in parallel, conduct an execution of ΠZK as follows:

• Party Pi emulates prover P on input Mi = (M in
i ,M

out
i ).

• Parties (Pj)j 6=i each emulate corresponding verifier Vj on input piece x(j) = (M in
ji ,M

out
ji ).

3. For each i ∈ [N ]: If any of the N parallel executions of ΠZK above resulted in “reject,” then Pi
sends no further messages in the protocol. Otherwise, compute and send the final message as
dictated by Πnat, and P1 outputs accordingly.

We prove that Πmal is maliciously secure by demonstrating a simulator, Simmal. Fix adversary A
(without loss of generality, input-less and deterministic), and corrupted set T ⊂ [N ] with |T | ≤ t.

Simulator SimAmal((xi)i∈T ):
We begin by defining some notation and sub-algorithms.

• A notation: Interpret adversary A = (AΠ′ ,AZK,Afinal), corresponding to the actions of A
within the three phases of the protocol Πmal as above. Each sub-adversary can be viewed as a
separate program which takes as input the view from the previous phases of execution.

• SimZK: Define sub-simulator SimZK for simulating the interactive proofs (interleaved round
by round) as follows. The input of SimZK is a partial transcript MT = (M in

ij ,M
out
ij )i∈T,j∈[N ]

parsed as vectors of messages received/sent by corrupted parties i ∈ T in the prefix protocol Π′.

– For each prover i ∈ T : Honestly simulate execution of ΠZK generating messages on behalf
of honest parties Pj using respective input pieces x(j) = (M in

ji ,M
out
ji ) (from above), and

generating messages of corrupt parties by executing A on behalf of corrupt parties.
Denote the simulated transcript by M (i)

ZK and accept/reject values as (output
(i)
Vj

)j /∈T .

– For each prover i /∈ T : For each corrupt party j ∈ T , denote x(j) = (M in
ji ,M

out
ji ) the

incoming and outgoing messages between j and honest prover party Pi.
Use the simulator of ΠZK: run (M

(i)
ZK, (output

(i)
Vj

)j /∈T )← SimΠZK
((x(j))j∈T ).

SimZK outputs
(
MZK, c), where MZK = (M

(i)
ZK)i∈[N ] and c is defined as follows. If any simulated

verifier output is “reject” within any of the N executions, c = “reject”; otherwise, c = “accept.”
• SimΠ′ ,Simfinal: Given adversary A = (AΠ′ ,AZK,Afinal) in Πmal, we consider the projection of
this adversary to an adversary Anat = (AΠ′ , SimZK,Afinal) in the underlying protocol Πnat,
which itself executes SimZK on the transcript generated from executing Π′, and passes the
simulated output transcript MZK to Afinal (who executes as usual).
By condition 2 of the natural protocol Πnat, this adversary Anat induces a collection of
simulators (SimΠ′ and Simfinal = (Simin,Simout)).
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We now present the specification of SimAmal((xi)i∈T ).

1. Run MT ← SimΠ′((xi)i∈T ). Let MTH denote the corresponding subset of “corrupt-honest
threshold” messages (removing corrupt-corrupt communications).

2. Run
(
MZK, c)← SimZK(MT ). If c = “reject” then Simmal terminates with output ⊥.

3. Otherwise, simulate the final step of the protocol Πmal as follows (using MTH).

(a) Run (x′i)i∈T ← Simin(MTH) to extract corrupt party inputs from the simulated transcript
prefix from Step 2.

(b) Call the ideal f functionality on the extracted corrupt inputs: y = Ff ((x′i)i∈T ).
(c) Simulate the final step depending on whether party P1 is corrupt or honest:

Case 1 ∈ T :
i. Simulate final-round messages from honest parties to P1 as (msgi)i/∈T ← Simout(y,MTH).
ii. Emulate Afinal to simulate the final output of P1 on these inputs.

Case 1 /∈ T :
i. Run b← Simout(y,MTH).
ii. If b = “deliver,” simulate the adversary allowing output delivery to honest parties.

If b = ⊥, simulate adversarial abort.

4. The final simulated output distribution of SimAmal is the concatenation of (MT ,MZK,Mfinal),
where Mfinal is either (msgi)i/∈T if 1 ∈ T or b ∈ {⊥, “deliver”} if 1 /∈ T .

We now demonstrate that the output distribution (MT ,MZK,Mfinal) of Simmal is indistinguishable
from that of a real execution (ExecΠ′ ,ExecZK,Execfinal). This is done via a sequence of claims. In the
analysis below, we use the terminology of a tuple of distributions (e.g., (ExecΠ′ ,MZK)) to denote the
distribution resulting in executing each procedure on input the output generated by the previous.

Claim 7.4. (ExecΠ′ ,MZK) ≡ (MT ,MZK).

Proof. By property 1 of natural protocols, ExecΠ′ ≡ MT . Thus applying MZK on the respective
outputs preserves this equivalence.

Claim 7.5. (ExecΠ′ ,MZK,Execfinal) ≈
(
MT ,MZK,Mfinal

)
.

Proof. For any execution in which the output of MZK is “reject,” then both Execfinal = Mfinal = ⊥,
and the claim holds. Consider then the case that all proofs in the simulation MZK result in “accept.”

By soundness of the proof system ΠZK (against prover and t verifiers), then with overwhelming
probability, for each corrupt prover Pi there exist input pieces x(j) = (M∗inji ,M

∗out
ji ) for corrupt

parties j ∈ T which together with the x(j) for honest parties j /∈ T form Mi that is Li-compliant.
That is, combining all i ∈ T , the given “corrupt-honest threshold” messages MTH satisfies the
requirements for simulation of natural protocols (namely, existence of a consistent extension to a
full MT = (Mi)i∈T that is Li-compliant ∀i ∈ T ). Thus, by property 2 of natural protocols for the
adversary Anat = (AΠ′ ,SimZK,Afinal), we have with overwhelming probability over the choice of MT ,

Mfinal ≈ {Execfinal | prefix MTH}.

Thus, combining with Claim 7.4 (as well as the fact that the output of Execfinal orMfinal is independent
of corrupt-corrupt messages -MTH vsMT ), we have (ExecΠ′ ,MZK,Execfinal) ≈

(
MT ,MZK,Mfinal

)
.

Claim 7.6. (ExecΠ′ ,ExecZK,Execfinal) ≈ (ExecΠ′ ,MZK,Execfinal).
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Proof. Follows by the strong zero knowledge property of ΠZK, via (N − t) hybrids, wherein each Pi-
prover execution (i /∈ T ) is replaced by its simulated version. In each step, all remaining components
of the distribution can be simulated consistently without knowledge of honest verifiers’ pieces of Pi’s
input to ΠZK, namely x(j) = (M in

ji ,M
out
ji ) corresponding to honest-honest communications between

honest parties Pi and Pj .

Remark 7.7 (Computational Compression). The theorem above is proved within the information
theoretic setting: in particular, assuming the protocol prefix Π′ is perfectly secure. Relaxing this
requirement to statistical security with negligible simulation error follows from a simple adjustment.
But more interestingly, our transformation further has direct implications to protocols which utilize
computational tools in order to achieve communication compression.

More explicitly, a common technique for decreasing communication complexity in MPC protocols
is to replace long strings of communicated randomness by short seeds which can locally be expanded by
a pseudorandom generator, in which case the resulting protocol provides only computational security.
In such case, we can first analyze and compile the information theoretic uncompressed version of
the protocol, and then appeal to computational arguments within the compiled malicious-secure
protocol. We refer the reader to the following section for more details.

7.3 The 3-party case

We begin by considering the specific setting of 3-party secure computation with a single malicious
corruption. This setting will already showcase our basic transformation framework, and, since only
a single party can be malicious, will require only the (slightly cleaner) proof system with security
against either a malicious prover or malicious verifier. The resulting maliciously secure protocol
over a ring R will require communication of only one R-element per party per gate in the computed
R-circuit.

We begin in Section 7.3.1 by presenting the 3-party semi-honest secure protocol, and proving
it is “natural” against a single corruption. Then in Section 7.3.2 we compile the protocol to the
malicious setting, and use a common pseudorandomness trick in the compiled protocol to decrease
the required communication.

7.3.1 A natural 3PC protocol

We adapt the semi-honest protocol of Katz et al. [87] (see also e.g. [5, 47, 56]) to the case of 3PC
over general rings in the information-theoretic setting. In [87] a dealer interacts with n parties in a
preprocessing stage, supplying them with correlated random field elements that act as masks for
wire values in the online stage. In the online stage the dealer publishes masked inputs for every gate
output. The n parties then securely evaluate the circuit, maintaining the invariant that for each
wire the parties hold the public masked value of the wire and shares of the mask.

In our adaptation, there are three parties: P0, P1, and P2, who have inputs x0, x1, and x2 over a
ring R. P0 acts as the dealer in the protocol of [87], distributing correlated randomness and secret
shares of its inputs. Note that the correlated randomness distribution depends on the arithmetic
circuit C to be securely evaluated. For λ ∈ R, we denote by [λ] additive secret shares of λ over R.

1. P0 generates and distributes correlated randomness as per the protocol preprocessing phase:
Define λα values:
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(a) For each input or multiplication gate α in the circuit, party P0 samples a random mask
λα ∈ R, and provides additive secret shares [λα] of the value λα to P1 and P2.

(b) For each addition gate γ in the circuit with inputs coming from gates α, β, P0 defines
λγ = λα + λβ . Note that additive shares of λγ are derivable as [λγ ] = [λα] + [λβ].

Generate correlated randomness:

(c) For each input gate α:
If the gate is owned by Pi for i ∈ {1, 2}, party P0 sends λα to Pi.
If the gate is owned by P0, party P0 sends his masked input x0 + λα to both P1 and P2.
In addition, he sends additive secret shares [λα] of the mask.

(d) For every multiplication gate with λα and λβ on the input wires α, β, P0 sets λα,β = λα ·λβ
and provides additive secret shares [λα,β] to P1 and P2.

Ultimately, the distribution is as follows. Denote the set of input gates owned by party Pi (for
i ∈ {0, 1, 2}) by Inpi; denote the set of multiplication gates indexed by inputs (α, β) and output
γ as ((α, β), γ) ∈ Mult; and, denote the ith party’s share from [a] as a(i). (Later we will also
denote the set of output gates as γ ∈ Out and the set of addition gates as ((α, β), γ) ∈ Add.)
The final distribution given to party Pi (for i ∈ {1, 2}) is thus:

Di =
(
{λ(i)

α , (xα + λα)}α∈Inp0
, {λα}α∈Inpi , {λ

(i)
γ , λ

(i)
α,β}((α,β),γ)∈Mult

)
2. In the online phase, parties P1 and P2 proceed in topological order over the gates of the circuit.

For each input gate:

(a) For each input gate α owned by Pi, i ∈ {1, 2}, party Pi sends his masked input (xα + λα)
to P2−i. (Note that the value of (xβ + λβ) for each input gate β owned by P0 is already
known by both P1 and P2.)

Throughout execution of the circuit, the maintained invariant is that after the evaluation of
each gate γ, the parties P1, P2 hold in the clear the masked computation value (xγ +λγ). Note
that after Step 2a above, this invariant holds for all input gates.
Note as well that for every non-input gate γ with inputs α, β, the parties hold additive shares
[λα], [λβ ], [λγ ]. (This holds as all wires are outputs from some gate. For the case where α or β
is the output of an input gate owned by Pi for either i = 1, 2, then they can canonically set
shares λ(i)

α = λα and λ(2−i)
α = 0.) In addition, for multiplication gates, they also hold [λα,β].

For each non-input gate (in topological order), the parties jointly evaluate as follows.

(a) For each addition gate with input wires α, β and output wire γ, parties P1 and P2 each
locally compute xγ + λγ = (xα + λα) + (xβ + λβ) and [λγ ] = [λα] + [λβ].
(Recall λγ := λα + λβ .)

(b) For each multiplication gate with inputs α, β and output γ, parties P1 and P2 compute

[xγ + λγ ] = (xα + λα)(xβ + λβ)− [λβ](xα + λα)− [λα](xβ + λβ) + [λα,β] + [λγ ]. (2)

Then, P1 and P2 exchange their shares of [xγ + λγ ] enabling both to learn the value.
(c) For each output gate, the two parties P1 and P2 exchange their shares of the masked

output value xγ + λγ to reconstruct this value.
In the final round of communication, P1 and P2 each send the reconstructed (masked)
output values to P0.

For each output gate γ, P0 reconstructs output xγ by removing the mask: xγ = (xγ +λγ)−λγ .
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Communication complexity. In the preprocessing stage of this protocol, P0 sends no more than
two R-elements to each party for each gate (total: ≤ 4|C|). In the online phase:

• One R-element is sent in total for each input gate (namely, xα + λα).
• No communication for an addition gate.
• One R-element is sent by each of P1 and P2 (to one another) for each multiplication gate (to

reconstruct [xγ + λγ ]). (= 2 R-elements per mult gate)
• One R-element is sent by each of P1, P2 for each output (the masked output xγ + λγ , to P0).
(= 2 R-elements per output gate)

In total, the protocol requires no more than 4|C| R-elements in the preprocessing phase, and 2|C|
R-elements in the online phase. In total, 6|C| R-elements.

Note that the protocol as described is information theoretic and does not leverage any pseudo-
random communication compression. In what follows, we first compile Π3PC to a maliciously secure
version via Theorem 7.3, and then will apply PRG techniques to the resulting protocol to drop the
communication complexity to 1 R-element per party per gate. We begin by proving that Π3PC is
natural, so that Theorem 7.3 will apply.

Lemma 7.8. The 3-party protocol Π3PC is a natural protocol against 1 corruption (Definition 7.2).

Proof. We address the required properties.
Simulation of Π′3PC. Consider Π′3PC: i.e., the protocol Π3PC above with the final communication

message removed (of masked outputs (xγ + λγ) from parties P1, P2 back to P0). We demonstrate a
simulator SimΠ′3PC

for execution of Π′3PC with a single malicious corruption.
• P0 corrupt. Simulation is trivial: honest P1, P2 do not communicate anything to P0 in Π′3PC.
• P1 or P2 corrupt. Without loss of generality (by symmetry), say P2 is corrupt. Simulate

actions on behalf of P0 and P1 each with default input 0; equivalently, in each case P2 sends a
message of correct syntax (e.g., an R-element when such element is expected), respond with
random values for each R-element that is to be sent. More explicitly, SimΠ′3PC

is as below.
SimΠ′3PC

():

1. Simulate P0’s message to P2 honestly on default input x = 0: equivalently,(
{λ(i)

α , (0 + λα)}α∈Inp0
, {λα}α∈Inpi , {λ

(i)
γ , λ

(i)
α,β}((α,β),γ)∈Mult

)
,

where each element is an independent and uniformly random element from R.
2. Simulate the messages of honest P1 as follows.

(a) For each input gate belonging to P1 (α ∈ Inp1): Sample and send random x̂α ← R.
Each such message is properly simulated, as the real x̂α is equal to xα + λα, where
λα ∈ R is uniformly distributed conditioned on all values of the simulation thus far.

(b) For each input gate belonging to P2 (α ∈ Inp2): If party P2 does not send a valid
R-element (allegedly xα + λα), then abort.

(c) For each addition gate ((α, β), γ) ∈ Add: No values communicated. If any message is
sent by P2, then abort.

(d) For each multiplication gate ((α, β), γ) ∈ Mult: Sample and send random x̂
(1)
γ ← R.

Each such message is properly simulated, as the real x̂(1)
γ is equal to (xγ + λγ)− x̂(2)

γ ,
where λγ ∈ R is uniformly distributed conditioned on xγ , on x̂

(2)
γ , and all values of

the simulation thus far.
If party P2 does not send a valid R-element (allegedly x̂(2)

γ ), then abort.

51



(e) For each output gate γ ∈ Out: Same procedure and analysis as for a multiplication
gate. Sample and send random x̂

(1)
γ ← R; if party P2 does not send a valid R-element,

then abort. Simulation is proper, as the honest value is masked by random λγ , which
is uniform given all values of the simulation thus far.

Degree-2 encoded Li and (Simin,Simout). We now address the second requirement of natural
protocols: existence of per-party degree-2 encoded languages Li with required simulation properties.
We treat the cases of P0 corrupt and P1/P2 corrupt separately. For brevity, we use the terminology
x̂α ∈ R to denote a value allegedly equal to xα + λα.

• P0 corrupt. Consider the following language:

L0 :=
{
Mout

01 =
(
{λ(1)

α , (x̂α)1}α∈Inp0
, {λα}α∈Inp1

, {λ(1)
γ , λ

(1)
α,β}((α,β),γ)∈Mult

)
,

Mout
02 =

(
{λ(2)

α , (x̂α)2}α∈Inp0
, {λα}α∈Inp2

, {λ(2)
γ , λ

(2)
α,β}((α,β),γ)∈Mult

))
: ∀α ∈ Inp0

(
(x̂α)1 = (x̂α)2

)
,

∀((α, β), γ) ∈ Mult
(

(λ
(1)
α,β + λ

(2)
α,β) = (λ(1)

α + λ(2)
α ) · (λ(1)

β + λ
(2)
β )
)}
.

In this case, the prefix transcript M0 = (Mout
01 ,Mout

02 ) of P0 in Π′3PC consists solely of the
initial message from P0 to parties P1 and P2 (and no received messages). The consistency
language L0 requires: (1) consistency between the alleged masked input values x̂α given to the
two parties (for inputs α ∈ Inp0 owned by party P0), as well as (2) the required structure of
multiplication-gate mask shares λα, λβ, λα,β for multiplication gates ((α, β), γ) ∈ Mult.
Consider any such set of messages M0 = (Mout

01 ,Mout
02 ) ∈ L0 as above. Observe that an

honest execution of Π′ for random P0 inputs {xα}α∈Inp0
induces a prefix transcript precisely

equivalent to a uniform choice of element M0 from this language L0. Thus, any such M0, there
exists a choice of inputs {xα}α∈Inp0

for which M0 occurs in an honest execution with nonzero
probability. Consider the following simulators Simin,Simout on input M0:

– Simin: Extract each input xα with α ∈ Inp0 (of party P0) as xα := (x̂α)− (λ
(1)
α + λ

(2)
α ).

– Simout: Execute the ideal functionality on this extracted input ({xα}α∈Inp0
= Simin(M0));

denote the resulting output by y := {yγ}γ∈Out. Given this information, the task of Simout

is to simulate the final message of (uncorrupted) parties P1 and P2 back to P0.
For each output gate γ, Simout simulates on behalf of each party P1, P2 sending the correct
masked output value, where the appropriate mask λγ is determined by combining the
two parties’ shares.

Namely, Simout(y,M0) =
{
yγ + (λ

(1)
γ + λ

(2)
γ )
}
γ∈Out

.

We prove correctness of this simulation by induction on the topology of circuit C. Consider a
fixed input x = ({xα}α∈Inpi)i∈{0,1,2}. For each gate in the circuit C with output γ, denote by
xγ the correct partial computation value, obtained by executing the circuit up to gate γ on
input x. The invariant maintained is that (in an honest execution of the online portion of Π3PC

between P1 and P2 given correlated randomnessM0 = (Mout
01 ,Mout

02 ) ∈ L0), for each gate γ, the
exchanged shares x̂(1)

γ and x̂(2)
γ dictated by Π3PC satisfy x̂γ := (x̂

(1)
γ + x̂

(2)
γ ) = xγ + (λ

(1)
γ + λ

(2)
γ ).

– Base Case: Consider the input gates.

∗ For α ∈ Inp0, the values λ(1)
α , λ

(2)
α together with x̂α := (x̂α)1 = (x̂α)2 (where this

equality holds by L0), satisfy the required condition, for the implicitly defined input
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value xα = x̂α − (λ
(1)
α + λ

(2)
α ). Note this is precisely the input as extracted by Simin.

∗ For α ∈ Inp1 (Inp2 follows symmetrically), the sent x̂α is precisely computed as the
value x̂α = xα + (λ

(1)
α + λ

(2)
α ), where λ(1)

α := λα as given in Mout
02 and λ(2)

α := 0.

– Induction step:

∗ Each addition gate ((α, β), γ) ∈ Add: Here, the parties locally evaluate x̂γ = x̂α + x̂β .
Recall the masks are defined by λγ := λα + λβ. Thus, by the inductive hypothesis,
x̂γ = (xα + λα) + (xβ + λβ) = xγ + λγ , since xγ = xα + xβ for addition gates.

∗ Each multiplication gate ((α, β), γ) ∈ Mult: The language L0 guarantees the required
consistency λα,β = λα·λβ (where these values are defined by combining their respective
secret shares).
Thus, combining this guarantee with the inductive hypothesis on x̂α, x̂β , the compu-
tation of (exchanged shares of) x̂γ of the multiplied value dictated by Equation (2)
of Π3PC preserves the requirement x̂γ = (xα · xβ) + λγ = xγ + λγ .

Thus, by induction, it holds that the final messages, corresponding to the case of each output
gate γ ∈ Out indeed satisfy the requirement that x̂γ = xγ + (λ

(1)
γ + λ

(2)
γ ). That is, simulation

in the case of corrupt P0 is correct.
• P0 honest. (Wlog assume P2 is corrupt.) Consider the following language:

L2 :=
{
M in

20 =
(
{λ(2)

α , (x̂α)}α∈Inp0
, {λα}α∈Inp2

, {λ(2)
γ , λ

(2)
α,β}((α,β),γ)∈Mult

)
,

M in
21 =

(
{x̂α}α∈Inp1

, {x̂(1)
γ }((α,β),γ)∈Mult, {x̂(1)

γ }γ∈Out

)
,

Mout
21 =

(
{x̂α}α∈Inp2

, {x̂(2)
γ }((α,β),γ)∈Mult, {x̂(2)

γ }γ∈Out

)
: ∀((α, β), γ) ∈ Mult

(
x̂(2)
γ = (x̂α)(x̂β)− λ(2)

β (x̂α)− λ(2)
α (x̂β) + λ

(2)
α,β + λ(2)

γ

)
,

∀((α, β), γ) ∈ Mult
(
x̂γ = x̂(1)

γ + x̂(2)
γ

) }
,

(where for each addition gate ((α, β), γ) ∈ Add, we implicitly define x̂γ = x̂α + x̂β). The first
constraints enforce that the shares x̂(2)

γ sent by P2 for each multiplication gate are computed
as directed by the protocol Equation (2); the second constraints simply correspond to local
computations combining these exchanged shares (note the x̂γ exist in the description of L2

primarily for ease of notation). Note that all constraints are degree ≤ 2.
Let M2 = (M in

20 ,M
in
21 ,M

out
21 ) ∈ L2. Consider the simulators Simin, Simout below, on input M2:

– Simin: Extract each input of party P2 (xα with α ∈ Inp2), as xα := (x̂α − λα), for the
values x̂α ∈Mout

21 and λα ∈M in
20 .

– Simout: Recall that only the uncorrupted party P0 receives any messages in the final round,
and thus the task of Simout is to simulate whether P0 outputs or aborts. In addition, we
must argue in the case that P0 outputs that the resulting output value is indeed correct.
Simout(M2):

1. Simulate the execution of the truncated protocol Π′3PC with A to attain transcript
state M2. Namely, for each communication round, send the corresponding messages
to P2 on behalf of P0 and P1, as described in M in

20 and M in
21 . (Note that since M2

occurs with nonzero probability in an honest execution of Π′3PC, and that A is wlog
deterministic, then the entirety of M2 will indeed be reconstructed.)
Recall that Π′3PC concludes with the parties P1 and P2 exchanging their secret shares
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x̂
(1)
γ , x̂

(2)
γ of the alleged masked output value x̂γ , for each output gate γ ∈ Out.

2. Execute the final step of A to obtain the final message msgfinal from the corrupt party
P2 to the honest P0.

3. Let msggoodfinal := (x̂γ = x̂
(1)
γ + x̂

(2)
γ )γ∈Out (i.e., the correct message that P2 should be

sending). If msgfinal = msggoodfinal , then output b = “deliver.” Otherwise, output b = ⊥.
Consider the above simulation in comparison to a real execution of Π3PC. In a real
execution, if msgfinal 6= msggoodfinal , then P0 will receive disagreeing final messages from P1 and
P2, in which case P0 will output ⊥ (as simulated). In the case that msgfinal = msggoodfinal =
(x̂γ)γ∈Out in the real execution, then P0 will output the value (xγ := x̂γ −λγ)γ∈Out, where
λγ is the mask value assigned to the corresponding output gate.
Note that the requirements on communication transcripts M2 ∈ L2 directly enforces that
P2 must send values directly as required by Π′ for each multiplication gate, and that
the messages sent by honest P0 will necessarily comply with L0 as considered from the
previous case. Thus, the same inductive proof applies here as well, concluding that the
values x̂γ for each output gate γ ∈ Out satisfy the requirement that x̂γ = xγ + λγ , where
λγ is the mask held by P0, and xγ is the correct evaluation output. That is, the value
x̂γ − λγ output by P0 in the real execution will be the correct evaluation.
Thus, simulation is complete.

7.3.2 Compressing communication via pseudorandomness

We now compile the protocol Π3PC from the previous section to one with malicious security where
the amortized communication complexity (over a large circuit) involves just one ring element per
party per gate. This is done via two steps: first leveraging Theorem 7.3 on the information theoretic
Π3PC to yield a new protocol with (statistical) security against malicious adversaries (but with higher
communication), and then compressing the communication of random values via computational
pseudorandomness.

The latter step can be applied in a semi-generic manner to protocols in which subsets of parties
exchange long random strings. We formalize this via the random-string exchange model.

Definition 7.9 (Random-String Exchange Model). An n-party protocol in the random-string
exchange model over ring R is defined by two phases of communication:

1. Random-String Exchange. The first round of communication, denoted by Πrand, consists purely
of messages of the following form, for a collection S of subsets S ⊆ [n]:

• For S ∈ S, a designated representative party Pi with i ∈ S (denoted i = rep(S)) samples
a random rS ← R`S and sends rS to all parties in S.

In particular, in an honest execution of Πrand, all rS strings are jointly uniform.
2. Standard Communication. After this initial round, communication proceeds as usual (over

secure point-to-point channels). The remainder of the protocol is denoted by Πrest.

Definition 7.10 (Malicious String Choice). We say a protocol Π in the random-string exchange model
secure against t (static) corruptions is further secure against malicious string choice if simulation
holds (as per [37, 71]) even for a modified real-world experiment Real-MalRand, where the adversary
is able to select the value of all strings rS for which S contains a corrupted party.
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More formally: for every adversary A′ = (Arand,A), where Arand selects strings rS for S ∈ S with
S ∩ T 6= ∅, and A is an adversarial strategy for protocol Πrest, there exists a simulator Sim for which{

Real-MalRandΠ(1λ, T,A′, ~x, z)
}

c
≈
{
Ideal(1λ, T,Sim, {xi}i∈T , z)

}
.

Intuitively, we can reduce communication complexity of such a protocol by replacing the long
random strings in the initial random-string exchange phase with short random seeds, which parties
can then locally expand via a pseudorandom generator.

Theorem 7.11 (Computational Compression). Let Π = (Πrand,Πrest) be an n-party protocol in the
Random-String Exchange model which evaluates circuit C over ring R with (computational) security
against t malicious (static) corruptions, against malicious string choice. Let S denote the collection
of subsets performing random-string exchange in Πrand.

Then there exists an n-party protocol ΠPRG evaluating C with computational security against t
malicious (static) corruptions, with communication CC(Πrest) log |R|+

∑
S∈S |S| · λ bits.

Proof. The required protocol ΠPRG is obtained by replacing each (possibly long) random string rS
communicated in the random-string exchange round with a λ-bit seed to a pseudorandom generator.
Explicitly, ΠPRG executes in three phases:

1. Modified Random-String Exchange. For each set S ∈ S, and i ∈ S for which party Pi is
instructed in Πrand to sample and send a random rS ← R`S , this party Pi instead samples and
sends a seed sS ← {0, 1}λ to each party in S.

2. Locally Expand Seeds. For each S ∈ S, each party j ∈ S locally expands the corresponding
received seed using a pseudorandom generator: rS = PRG(sS), where rS ∈ R`S as per Πrest.

3. Execute Πrest, using strings rS .
Note that the communication complexity of the modified protocol ΠPRG is comprised of the com-
munication induced by Πrest, in addition to |S| · λ bits for each set S ∈ S, corresponding to the
communication of the seed sS to each party in S. It thus remains to prove ΠPRG securely computes C.

Let APRG = (APRG
rand ,APRG

rest ) be an adversary for the protocol ΠPRG. Note that the input/output
communication syntax of ΠPRG is identical to that in Π; thus, we may interpret APRG also as an
adversarial strategy in the Real experiment for protocol Π.

We define a related adversary A′ = (Arand,A), to be executed in the Real-MalRand experiment
for protocol Π. A exactly executes APRG

rest . In comparison to APRG
rand , the sub-adversary Arand must

also select strings rS for subsets S ∈ S with S ∩ T 6= ∅ (i.e., containing corrupt parties) for which
the representative rep(S) is not corrupt. APRG

r and will choose all such rS pseudorandomly. That is:
• For S with S∩T 6= ∅ but rep(S) /∈ T : Choose rS pseudorandomly. That is, sample sS ← {0, 1}λ,

and evaluate rS = PRG(sS). Simulate sending rS to all (corrupt) parties in S.
• For S′ with rep(S′) ∈ T : Run APRG

rand given the strings rS from the previous bullet, to jointly
select all such rS′ .

Claim 7.12. There exists a simulator Sim such that for any inputs ~x and auxiliary input z,{
Real-MalRandΠ(1λ, T,A′, ~x, z)

}
c
≈
{
IdealΠ(1λ, T,Sim, {xi}i∈T , z)

}
.

Proof of Claim 7.12. Follows directly by the assumption that the original protocol Π is secure against
malicious string choice (Definition 7.10). In particular, the value rS = PRG(sS) for randomly chosen
sS ← {0, 1}λ is one particular such adversarial choice of rS .
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Claim 7.13. By construction of A′ = (Arand,A) from APRG = (PRG
rand ,APRG

rest ) as above, and by the
security of the pseudorandom generator, it holds that for any inputs ~x and auxiliary input z,{

RealΠPRG(1λ, T,APRG, ~x, z)
}

c
≈
{
Real-MalRandΠ(1λ, T,A′, ~x, z)

}
.

Proof of Claim 7.13. Suppose, to the contrary, there exist ~x, z, polynomial-time distinguisher D,
and non-negligible α(λ) for which D successfully distinguishes the two distributions above. Such
distinguisher D can be used to violate the security of the underlying pseudorandom generator.

Recall the distinction between RealΠPRG executing with APRG, as compared to Real-MalRandΠ

with A′. Both experiments are identical aside from the generation of random strings rS , S ∈ S. In
the former experiment, all strings rS for which rep(S) /∈ T (i.e., the representative is honest) are
generated pseudorandomly; in particular, such S containing a mix of honest and corrupt parties,
and those containing only honest parties. In the latter experiment, the adversary A′ is able to
(“maliciously”) choose strings rS with rep(S) /∈ T where S contains corrupt parties, and makes such
choice pseudoranomly; however, for S ∈ S containing only honest parties, the corresponding strings
rS are still chosen truly randomly.

Thus, given a random versus pseudorandom challenge, we can embed it into a simulated execution
of the experiment(s) above, on inputs ~x and auxiliary input z, and the distinguisher D (together
with a standard hybrid argument) will directly enable us to identify the random vs pseudorandom
cases with advantage comparable to α. It follows that such a distinguisher D cannot exist.

Finally, we observe that the protocol ΠPRG and original Π both attempt to securely realize the
same functionality, and thus their corresponding ideal-world experiments are identical. That is:

Claim 7.14. For any corrupt subset T , simulator Sim, corrupt inputs {xi}i∈T , and auxiliary z,{
IdealΠ(1λ, T,Sim, {xi}i∈T , z)

}
≡
{
IdealΠPRG(1λ, T,Sim, {xi}i∈T , z)

}
.

Theorem 7.11 follows from the combination of Claims 7.12-7.14.

Three-party computation. We now return to the task of achieving low-communication secure
3-party computation. In what follows, we combine the pieces from the previous subsections, beginning
with protocol Π3PC, to prove the following final theorem.

Theorem 7.15 (Malicious 3PC with 1 ring element per multiplication per party). Let R be either a
finite field or a ring of the form Zw. Then, for any R-arithmetic circuit C, there exists a 3-party
protocol for computing C, with the following features:

• The protocol makes a black-box use of any pseudorandom generator. If R is a field, it also
makes a black-box use of R.

• The protocol is computationally secure with abort against one malicious party.
• The communication complexity is |C|+ o(|C|) elements of R per party, where |C| denotes the
number of multiplication gates in C.

Proof. At a high level, the proof takes the following approach.
We begin with the protocol Π3PC from Section 7.3.1, which was proved (Lemma 7.8) to be natural

against 1 corruption. Since Π3PC is natural, then by our general compiler (Theorem 7.3), together
with the existence of sublinear-communication zero-knowledge proofs for distributed low-degree
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languages (Corollary 6.7), we can convert Π3PC to a related protocol Πmal
3PC secure against 1 malicious

corruption, with small communication overhead. (Note that Corollary 6.7 suffices, since in the 3-party
case only prover or verifier can be corrupt.) The remaining goal is to leverage the computational
randomness compression techniques developed in this section to decrease the communication in
Πmal

3PC, while maintaining (malicious) security.
In doing so, we must show two items: (1) Πmal

3PC can be expressed in the random-string ex-
change model (Definition 7.9), with a large portion of communication pushed to the random-string
exchange phase; (2) Πmal

3PC is further secure against malicious string choice (Definition 7.10). Given
these, the theorem will follow, by Theorem 7.11.

To show these properties of Πmal
3PC, we turn back to Π3PC.

• We demonstrate in Claim 7.16 that Π3PC can be expressed in the random-string exchange model
with a large portion of communication in the random-string exchange phase. Opening the box
of our Theorem 7.3 natural protocol compiler, we then observe (Claim 7.17) that Πmal

3PC can be
expressed in the same structure, with a small (sublinear in |C|) additional interaction at the
end (running the interactive zero-knowledge proofs). This establishes (1).

• To assert (2), we analyze modified versions of the original protocol Πmal
3PC, where the role of

selecting the random strings in the initial exchange phase is shifted from the “dealer” party
P0 to a corresponding recipient party P1 or P2. In each case, the modified malicious-security
protocol is shown secure by showing that the corresponding modified version of the underlying
protocol Π3PC remains natural; thus, the compiler of Theorem 7.3 gives us precisely the needed
security claims.

Formally, we prove the theorem via a sequence of intermediate claims.

Claim 7.16. The 3-party protocol Π3PC (from Section 7.3.1) for computing circuit C over R is a
natural protocol against 1 corruption, which can be expressed in the Random-String Exchange model
with communication pattern:

1. Random-String Exchange. Party P0 samples and sends random strings rS to sets S ∈ S =
{{0, 1}, {0, 2}, {0, 1, 2}}.

2. Standard Communication. P0 sends additional strings computed as a function of these strings
(rS)S∈S and his inputs. Then P1 and P2 execute the online portion of the protocol Π3PC.

and where the communication complexity of the Standard Communication phase is 3|C| R-elements.

Proof of Claim 7.16. The natural property of Π3PC was proved in Lemma 7.8. Recall the first message
of Π3PC consists of “dealer” party P0 sending the following messages to P1 and P2, respectively:

Mout
01 =

(
{λ(1)

α , (x̂α)}α∈Inp0
, {λα}α∈Inp1

, {λ(1)
γ , λ

(1)
α,β}((α,β),γ)∈Mult

)
,

Mout
02 =

(
{λ(2)

α , (x̂α)}α∈Inp0
, {λα}α∈Inp2

, {λ(2)
γ , λ

(2)
α,β}((α,β),γ)∈Mult

)
,

where each λ(1)
α , λ

(2)
α are additive secret shares of a fixed value λα (same for λ(1)

α,β, λ
(2)
α,β), and each (x̂α)

is the masked input xα + λα. Note that this distribution is identically distributed to the following:

Mout
01 =

(
{r(1)
α , (r̂α)}α∈Inp0

, {rα}α∈Inp1
, {r(1)

γ , r
(1)
α,β}((α,β),γ)∈Mult

)
,

Mout
02 =

(
{(r̂α − xα − r(1)

α ), (r̂α)}α∈Inp0
, {r′α}α∈Inp2

, {r(2)
γ ,
(

(r(1)
α + r(2)

α )(r
(1)
β + r

(2)
β )− r(1)

α,β

)
}((α,β),γ)∈Mult

)
,

where all distinct r values are sampled uniformly.
Thus, the random-string exchange claim holds precisely where:
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• For S = {0, 1}: r{0,1} =
(
{r(1)
α }α∈Inp0

, {rα}α∈Inp1
, {r(1)

γ , r
(1)
α,β}((α,β),γ)∈Mult

)
.

• For S = {0, 2}: r{0,2} =
(
{r′α}α∈Inp2

{r(2)
γ }((α,β),γ)∈Mult

)
.

• For S = {0, 1, 2}: r{0,1,2} = {(r̂α)}α∈Inp0
.

The remaining communication of the protocol consists of: (1) the non-random remainder of the corre-
lated randomness sent to P2:

(
{(r̂α − xα − r(1)

α )}α∈Inp0
, {
(
(r

(1)
α + r

(2)
α )(r

(1)
β + r

(2)
β )− r(1)

α,β

)
}((α,β),γ)∈Mult

)
,

and (2) the online portion of the protocol Π3PC. Item (1) constitutes no more than |C| R-elements.
Item (2) consists of no more than 2|C| R-elements, as analyzed in Section 7.3.1.

Claim 7.17. There exists a three-party protocol Πmal
3PC in the Random-String Exchange model

computing circuit C over R, (statistically) secure against 1 malicious corruption, with communication
pattern as in Claim 7.16, and where the communication complexity of the Standard Communication
phase is 3|C|+ o(|C|) R-elements.

Proof of Claim 7.17. Applying the compiler from Theorem 7.3 to Π3PC, together with the succinct
zero knowledge distributed proof protocol implied by the combination of Theorems 6.6 and 5.8 (for
the case of degree d = 2), there exists a 3-party protocol Πmal

3PC, which preserves the random-string
exchange phase of Π3PC, and increases the communication complexity of the Standard Communication
phase by 3 ·C(ΠZK) ∈ o(|C|). The claim follows.

Claim 7.18. The protocol Πmal
3PC from Claim 7.17 above is further secure against malicious string

choice.

Proof of Claim 7.18. Recall the structure of the random-string exchange phase of Π3PC (and thus
Πmal

3PC) from Claim 7.16 above: random strings rS are sent for S1 := {0, 1}, S2 := {0, 2}, S3 := {0, 1, 2},
where each string is chosen by representative rep(Si) = 0 “dealer” party P0. Proving that Πmal

3PC

is secure against malicious string choice will follow by showing that two modified versions of the
protocol remain (malicious) secure, where P1 (or P2) selects rS for sets Si in which he is contained:

1. Πmal
1 , where rep(S2) = 0 but rep(S1) = rep(S3) = 1,

2. Πmal
2 , where rep(S1) = 0 but rep(S2) = rep(S3) = 2.

We focus on Πmal
1 , as this in particular implies security for Πmal

2 .
Observe that the protocol Πmal

1 is equivalent to the (Theorem 7.3)-compiled version of a cor-
responding underlying protocol Π1, defined as Π3PC with the modification rep(S1) = rep(S3) = 1.
(Formally, the only difference between Πmal

1 and Compile(Π1) is that the strings rS1 , rS3 appear
in Mout

01 ,M in
01 in the former and Mout

10 ,M in
10 in the latter; however, the language structure remains

identical.) Thus, by Theorem 7.3, to prove malicious security of Πmal
1 , it suffices to prove that Π1

remains natural.
To prove Π1 is natural, as per Definition 7.2, we prove the two required properties:
• Simulation of Π′1 without final round.

Note that simulation directly still holds for corrupt P0 or P2. At a very high level, privacy of
honest inputs (more formally, simulation) against corrupt P1 still holds as for Π3PC because
all sensitive values are masked by randomness generated and held only by parties P0 and P2,
which remains untouched in this modified protocol Π1.
In more detail, consider simulation of honest party messages in Π′1 in the case of corrupt
P1 (mirroring the simulation within the proof of Lemma 7.8, except that here P1 is corrupt
whereas there P2 was corrupt):
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1. P0 no longer communicates information to P1 in the first round. Instead, receive the
corresponding values chosen by P1.

2. Simulate messages of honest P2 sent to P1 in the protocol in an identical manner as in
Lemma 7.8:

(a) For each input gate α owned by P2: Sample and send random x̂α ← R. This is the
correct distribution because of the random mask λα generated by honest P0 and
known only to P0 and P2.

(b) For each input gate α owned by P1: If P1 does not send valid R-element, abort.
(c) For each addition gate: No values communicated.

(d) For each multiplication gate ((α, β), γ) ∈ Mult: sample and send random x̂
(2)
γ . This

is the correct distribution of P2’s share of the masked output (xγ + λγ) because P2’s
share λ(2)

γ of the mask itself is generated by P0 and known only to P0 and P2.

If P1 does not send a valid R-element (allegedly his share x̂(2)
γ ), then abort.

(e) For each output gate γ ∈ Out: Same procedure and analysis as for multiplication
gate, where a random ring element is sampled and sent. Here, this is the correct
distribution, as the correct output value is masked by random λγ , generated and held
only by P0.

• Degree-2 encoded languages Li which enable simulation of final round.
In Lemma 7.8, degree-2 encoded languages L0,L1,L2 of per-party incoming and outgoing
messages were demonstrated for the original protocol Π3PC so that given any “Li-compatible”
transcript, the final message of the protocol can be consistently simulated as required (see
Definition 7.2 for the formal requirement description).
For the case of Π1, the only difference from Pi3PC is that a subset of strings which were
previously contained as outgoing messages from P0 and incoming to P1, are now instead
contained as outgoing messages from P1 and incoming to P0. This means we can restrict to
an identical set of Li compatible transcripts as for Π3PC by means of the tweaked languages
L′0,L′1,L′2 with L′2 ≡ L2 and L′0,L′1 identical to their counterparts aside from the above
syntactic switch between incoming versus outgoing messages. Hence, for any such transcript,
simulation of the final round will equivalently be guaranteed.

Combined, this implies that Π1 is natural; the claim follows.

Altogether, this concludes the proof of Theorem 7.15.

7.4 Honest-majority MPC: Beyond 3 parties

In this section we generalize the 3-party protocol from Section 7.3 by constructing an MPC protocol
for n = 2t+ 1 parties with security against t malicious parties for evaluating an arithmetic circuit
over a ring R. Using a pseudorandom generator for compressing common randomness, the protocol
has amortized communication complexity of 3t/(2t+ 1) R-elements per multiplication gate (e.g., 6/5
in the 5-party case, 9/7 in the 7-party case, and less than 1.5 in general). Here R can be any finite
field (in particular, R = F2 for Boolean circuits) as well as a ring of the form Zw. As in the 3-party
case, our protocol is obtained by applying a rate-1 GMW-style compiler to a similar protocol with
security against t semi-honest parties.

Recall that in the 3-party case, we could get away with using distributed zero-knowledge protocols
for the simpler “Setting I”, where security is against either a malicious prover or malicious verifier.
Here we will need to use protocols for the more challenging “Setting II”, where soundness needs to
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hold against a malicious prover who colludes with t− 1 malicious verifiers. In turn, we must modify
the transformation to support this additional malicious behavior.

In particular, this setting requires the statements proved to be robustly encoded, in the sense that
they each form a DLC of minimal distance t (see Definition 6.12). However, we then find ourselves
in a situation where parties Pi no longer know the complete (encoded) statements that justify their
proper behavior—a property that was necessary for our generic compiler. For example, consider the
following protocol: parties P and P ′ first t-robustly secret share inputs x and x′ across all n parties,
then each party Pi is instructed to compute and send some function f(xi, x

′
i) of his respective shares.

The corresponding robust statement to be proved (for the “Setting II” ZK protocol) consists of all
parties’ shares of these values, Xi := ((x1, . . . , xn), (x′1, . . . , x

′
n), f(xi, x

′
i)). But Pi himself only knows

xi, x
′
i, f(xi, x

′
i). Because of this, here we will make a different type of use of the proof system, where

the parties jointly emulate the role of the prover to generate (shares of) the proof, and then play the
roles of verifiers to jointly verify. Here we crucially rely on the fact that even though corrupt parties
can “additively” tamper with the proof (namely, by adding a known value to each proof entry), this
cannot make honest parties accept a false statement nor can it make corrupt parties learn anything
they couldn’t have learned via an honestly generated proof. We give the details below.

Protocol overview. At a high level, our protocol roughly follows the template of the protocol
of Damgård and Nielsen [55] (see also [66], Section 5.8 of full version). For circuit C, denote by
Inp,Add,Mult,Out the set of input, addition, multiplication, and output gates in C. We are interested
in proving that for each output gate γ, the shares [xγ ]t are indeed robust shares of the correctly
evaluated output xγ . Let LC denote the C-consistency language, where values of xγ correspond to
evaluations on wires of the circuit C:

LC =

{
(xγ)γ∈Wire :

∀((α, β), γ) ∈ Add, xγ = xα + xβ,
∀((α, β), γ) ∈ Mult, xγ = xα · xβ.

}
. (3)

Note that:
1. LC is a degree-2 language.
2. Given (xγ)γ∈Wire ∈ LC , it follows that (xγ)γ∈Out = C

(
(xα)α∈Inp

)
; that is, the outputs are

correctly C-evaluated on the given input values.
3. At the conclusion of execution of Π′, the N parties hold a robust encoding of the relevant

statement ~x := (xα)α∈Wire. Note, however, that no single party knows ~x in the clear.

Analogous to before, the idea will be to run the DN protocol to its penultimate round (denoted
by Π′), and then to first prove correctness of computation before exchanging final messages. However,
unlike the previous setting, to do so, we will have the parties jointly emulate the prover in generating
the proof. In order to emulate this in low communication, we leverage the specific simple structure
of the language and corresponding prover algorithm. In particular, the language LC is degree 2. By
Theorem 5.8, the generation of a succinct ZK-FLPCP for membership in LC can itself be computed
as a degree-2 function in the statement ~x and the secret prover randomness, determined by a public
random challenge. Thus, the parties can locally convert their robust secret shares of the statement ~x
into additive shares 〈π〉 of the proof, just as in a standard multiplication procedure on shares. These
shares are not robust; however, since the size of the ZK-FLPCP is small (in particular, sublinear in
|C|), the parties can afford to each re-share their shares of 〈π〉, to generate a robust linear encoding
of the proof π.

At this point, the parties now hold robust shares of the alleged C-compliant statement ~x, as well
as robust shares of an alleged proof string π asserting membership ~x ∈ LC . (Note that the robust
encoding of π can be made to use the same linear decoding function as the encoding of ~x.) At this
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point, the parties can directly emulate the roles of n verifiers in the distributed-verifier protocol of
Theorem 6.16 (Section 6.3, plugging in the ZK-FLPCP from Theorem 5.8 for degree 2) to verify in
zero knowledge that π indeed asserts the desired membership ~x ∈ LC .

CNF sharing. In the protocol description, we use [s]t to denote a t-private secret sharing of a
ring element s ∈ R, where no t parties know anything about s but every t + 1 parties can fully
reconstruct s. Concretely, we will split a secret s into CNF shares (also known as replicated shares)
in the following way: s is first split into

(
n
t

)
additive shares sH , where H ranges over all potential

sets of n− t parties, and each share sH is given to all parties in H. When s is random, all additive
shares sH are random and independent ring elements. Note that since an additive share in a CNF
sharing is given to n− t = t+ 1 honest parties, then even if we exclude the party acting as a prover
the minimal distance of the resulting code is t as required. Hence, from here on the notation [s]t
refers to a distributed input in which additive shares sH are replicated among n parties as specified
above.

Similarly to Shamir’s secret-sharing scheme, the CNF scheme has the following multiplication
property: given arbitrary n-tuples of shares in the support [a]t and [b]t, one can locally compute
additive shares 〈ab〉 of ab. Namely, each party Pi, based on its share of [a]t and its share of [b]t alone,
can compute a ring element ci such that

∑n−1
j=0 cj = ab.

A useful feature of CNF sharing is that shares of a random secret can be compressed by replicating(
n
t

)
PRF seeds (or keys for a block cipher such as AES in practice). Moreover, such shares can then

be locally converted into Shamir shares without any interaction [50, 69]. As in the 3-party case, this
type of compression can be used to generate a correlated randomness setup with low communication
cost. However, because of the

(
n
t

)
overhead this method is applicable only when the number of

parties n is relatively small.

Distributively generating the ZK proof. Recall more explicitly the structure of the distributed
proof system from Section 6.3 against malicious prover and verifiers, for the case of degree-2 locally
encoded languages. That is, the language in question LC can be expressed via a collection of several
degree-2 constraints, as induced by the circuit C.
Fcoin and Fbcast denote ideal (public) coin-tossing and broadcast functionalities, as in previous

sections.
Inputs: The prover holds the statement ~x. The verifiers hold robust CNF shares [~x] of ~x.

1. The verifiers run Fcoin to jointly learn randomness r, used to define a random linear combination
of the output values of the constraint circuit C for the prover (in Step 2).

2. The prover samples private randomness rP and random CNF shares [rtest
P ].

He computes a degree-2 function π = ProveC,r(~x; rP ) of the input ~x and rP .
He then robustly CNF shares π, as [π]. He distributes the shares [rtest

P ] and [π].
3. The verifiers run Fcoin to jointly learn randomness r′ to define verifier queries (linear functions

of statement [~x] and proof [π]), exchange shares of the corresponding answers via Fbcast. This
incorporates both the “Test membership of ~x in C” linear code step, as well as the verifier
queries for the underlying ZK-FLPCP. Based on the answers, each verifier accepts or rejects.

Section 6.3 addressed a setting with a single prover and multiple verifiers. In the present setting,
the role of the prover itself will be jointly emulated by the parties. Concretely, the actions of verifiers
in Steps 1 and 3 remain unchanged, and the single-prover Step 2 is replaced by the multi-party
emulation Step 2′ below.

Here, Fpriv
coin denotes a private coin-tossing functionality, where the parties receive secret shares

of the random string. Fpriv
coin can be securely realized via a standard coin-tossing protocol based on
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verifiable secret sharing, with the final “reveal” communication round removed.
Inputs: The parties hold robust CNF shares [~x] of the statement ~x.

1. The parties run Fcoin to jointly learn public verifier randomness r.
2′. The parties run Fpriv

coin to receive robust linear shares [rP ] and [rtest
P ] of private prover randomness.

Each party evaluates the degree-2 function ProveC,r on his robust shares [~x] and [rP ] to yield
an additive share 〈π〉 = ProveC,r([~x], [rP ]).
In order to proceed, the parties need robust shares of π. To do so:

(a) Each party verifiably secret shares (VSS) robust CNF shares [πi] of his additive share πi.
(b) Locally, each party computes his robust linear share of π by adding the shares of each πi.

That is, [π] :=
∑

i∈[n][πi].

3. The parties run Fcoin to jointly learn public verifier query randomness r′, compute and exchange
shares of the corresponding answers (as a function of [~x], [rtest

P ], and [π]) via Fbcast. Based on
the answers, each verifier accepts or rejects.

Note that the verifiable secret sharing (VSS) protocol is run only for secrets the size of the proof
length, which will be sublinear in the circuit size (and thus its communication amortized away).5

As mentioned earlier, this yields a slightly larger attack space here than in the single-prover
setting, in that corrupt parties can also “additively” tamper with the proof (namely, adding a known
value to each proof entry) while it is in the non-robust shared form 〈π〉. However, this will still
preserve the necessary soundness and zero knowledge: with soundness following from the “Type II”
guarantees (since the corrupt parties will ultimately be committed to a single malicious proof string
π via the VSS of robust [π]t), and zero knowledge holding in the same manner as in the “Type I”
protocol analysis (where corrupt verifiers anyway held additive shares of the honest proof 〈π〉).

The n-party protocol. We now combine all the pieces. Let C be an arithmetic circuit over a ring
R. We describe a protocol Πt with n = 2t+ 1 parties, denoted P0, P1, . . . , Pn−1, that computes C
with security against t semi-honest parties.

We denote by ProveC,r the degree-2 mapping over R that converts the statement ~x = (xα)α∈Wire ∈
R|C| and (private) randomness rP into a FLPCP proof π ∈ Rm asserting membership ~x ∈ LC for
the C-compliance language LC as in Equation (3).

Protocol ΠnPC:

• Inputs: Ring elements x1, . . . , xm ∈ R are partitioned between the n parties P0, P1, . . . , Pn−1,
where each input xi is owned by a single party Pj .

• Correlated randomness setup: For each multiplication gate γ, we have the following types
of shares:

1. [λγ ]t, for random λγ ∈ R;
2. Additive shares 〈λγ〉 of λγ .
3. [sγ ]t, for random sγ ∈ R, where sγ is shared between P1, . . . , Pn−1 and is known to P0.

// CNF shares of (many) random values can be generated by using
(
n
t

)
independent vectors of

random ring elements, where each vector is known to t+ 1 parties (selected and communicated
by a canonically chosen party within the corresponding (t+ 1)-size set). In the final protocol,
each of the vectors will be generated pseudo-randomly from a short PRF seed given to the
corresponding subset of parties.

5VSS of a value x can be achieved, e.g., by sending robust shares [x]t and of a random value [r]t and then revealing
a public random linear combination of these shares, as in the DLC membership test.
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// Note that additive shares of 〈λγ〉 can be generated freshly from the CNF shares [λγ ]t
together with fresh additive secret shares of 0. The latter can be compressed, e.g., by giving
each pair of parties a short PRF seed, and defining each party’s additive share as the sum of
all his PRF evaluations.

• Online phase:

1. Input sharing: For each xi owned by Pj , Pj shares xi by generating shares [xi]t and
distributing the shares between the n parties.
//Optional optimization: if [si]t for a random si ∈ R known to Pj is distributed during
the setup, then it suffices to send the correction value ∆i = xi − si to the set of t parties
T = {i+ 1, i+ 2, . . . , i+ t}, where party indices are taken modulo n. Given this correction
information, the parties can locally compute valid shares of [∆i]t (where the shares of
i− 1, . . . , i− t are set to 0) and obtain the shares [xi]t by locally adding [si]t and [∆i]t.
This optimization reduces the online communication per input to a total of t ring elements
and makes the input sharing part of the online phase deterministic.

2. Gate-by-gate evaluation: Suppose gate γ takes inputs α and β, where the shares
[xα]t and [xβ]t of the gate inputs have already been computed. The shares [xγ ]t are
computed as follows.

– Addition: If γ = α+ β, the parties locally compute [xγ ]t ← [xα]t + [xβ]t (similarly
for subtraction).
// Deterministic local computation

– Multiplication: If γ = α · β, the parties perform the following:

(a) Using the multiplication property of CNF shares, the n parties compute an
additive sharing 〈xγ〉 of xγ from [xα]t and [xβ]t.
// Deterministic local computation

(b) Parties P1, . . . , Pn−1 send to P0 their shares of 〈xγ〉+ 〈λγ〉.
// Communicating n− 1 ring elements

(c) P0 reconstructs xγ + λγ by adding its n shares and re-shares it as [xγ + λγ ]t.
// Communicating t ring elements given the random [sγ ]t generated in setup

(d) Parties locally compute [xγ ]t = [xγ + λγ ]t − [λγ ]t.
// Deterministic local computation

3. Prove correctness: Denote by [~x]t = ([xα]t)α∈Wire the (robust) shares of the alleged
wire values for each wire in the circuit C, as produced by the Gate-by-Gate Evaluation.
The parties jointly emulate the prover and verifiers of the n-verifier zero-knowledge
distributed proof system Protocol Πdist from Theorem 6.16 (Section 6.3.3), for proving
[~x] ∈ LC . This takes place as follows.

– Emulate Verifier Phase I: Run Fcoin to jointly learn public verifier randomness r.
– Emulate Prover: Run Fpriv

coin to receive random robust linear shares [rtest
P ]t.

Jointly generate (robust shares of) proof π for asserting [~x]t ∈ LC :
(a) Run Fpriv

coin to receive robust linear shares [rP ]t of private prover randomness rP .
(b) Each party evaluates the degree-2 function ProveC,r on his robust shares [~x]t and

[rP ]t to yield an additive share 〈π〉 = ProveC,r([~x]t, [rP ]t).
(c) Each party Verifiably Secret Shares robust CNF shares [πi]t of his additive

share πi.
(d) Locally, each party computes his robust linear share of π by adding the shares of
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each πi. That is, [π]t :=
∑n

i=0[πi]t.

– Emulate Verifier Phase II: Jointly verify [π]t as asserting [~x]t ∈ LC :
(a) Run Fcoin to learn public verifier randomness r′ = (r′1, r

′
2), received by all parties.

(b) (Test membership of [~x]t in DLC) Each party broadcasts (via Fbcast) linear
combinations of [~x]t and [rtest

P ]t as dictated by randomness r′1. If the resulting
shares do not form a valid robust CNF codeword, then abort. Otherwise, continue.

(c) (Test membership of [~x]t in LC) The parties emulate verifiers V0, . . . , Vn−1 in the
“Emulating Π” step of the n-verifier zero-knowledge protocol for locally encoded
languages on common randomness r (Protocol Πdist from Section 6.16). Namely,
broadcast (via Fbcast) linear combinations of [~x]t and [π]t as dictated by public
randomness r′2.

(d) If the verifier output given these values is “reject,” then abort. (Recall that
all honest verifiers will agree on accept/reject.) Otherwise, continue to Output
Reconstruction below.

4. Output reconstruction:

(a) For each output gate γ whose shares [xγ ]t have been computed, all parties send their
shares to P0.

(b) If the received set of shares is inconsistent, P0 aborts. Otherwise he reconstructs xγ
from the shares and outputs xγ .

Communication complexity. We consider the amortized communication complexity per multipli-
cation gate (which is not sensitive to the above optional optimizations for input and output gates),
and ignore the cost of the setup. The latter will be amortized away in the final protocol by using
pseudorandomness. This leaves the following:

• Processing a multiplication gate involves communication of (n − 1) + t = 3t ring elements:
namely, (n− 1) additive shares 〈xγ + λγ〉 communicated to party P0, as well as (n− 1)− t = t
elements returned from P0 to determine the t-robust shares [xγ + λγ ]t (since t shares may be
pseudorandom).

• Proving & verifying correctness of computation requires the following communication:

1. Execution of Fcoin and Fpriv
coin to generate verifier and prover randomness.

(This communication can be amortized away using pseudorandomness.)
2. As part of the membership test of the linear code, each party executes Fbcast of his

CNF share of the linear combinations of [~x] and [rtest
P ]. The resulting communication is

independent of the circuit size.
3. Each party VSS distributes robust shares of his (additive) share of the proof, [πi]t.

The communication scales with n2|π|. By Theorem 5.8, the proof size |π| is sublinear in
the circuit size |C|.

4. The parties emulate verifiers within the n-verifier zero-knowledge interactive argument
(capturing both Phase I and Phase II in the description above).
From Theorem 6.16, the required verifier-verifier communication is sublinear in |C|.

Overall, we have (amortized) 3t/(2t+ 1) < 1.5 ring elements per multiplication gate per party.

Theorem 7.19 (Malicious honest-majority MPC for a constant number of parties). Let R be either
a finite field or a ring of the form Zw and let t ≥ 1 be a positive integer. Then, for any R-arithmetic
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circuit C, there exists an n-party protocol for computing C, where n = 2t + 1, with the following
features:

• The protocol makes a black-box use of any pseudorandom generator. If R is a field, it also
makes a black-box use of R.

• The protocol is computationally secure with abort against t malicious parties.
• The communication complexity is 3t

2t+1 · |C|+ o(|C|) elements of R per party, where |C| denotes
the number of multiplication gates in C.

Proof Sketch. We describe a simulator for the above-specified protocol, loosely analogous to our
semi-honest to malicious compiler (Theorem 7.3) together with our construction of sublinear zero-
knowledge proofs for distributed low-degree languages in the “Type II” setting of malicious prover
and verifiers (Theorem 6.16), and standard pseudorandom compression.

At a high level, note that (1) Π′ is fully simulatable on its own, (2) by strong zero knowledge,
the view of the parties acting as verifiers is simulatable, and (3) the final exchange of messages
consists only of robust secret shares of the output values. Thus in order to simulate, it suffices to
guarantee that the output shares held by honest parties are either consistent shares of the correct
output value (with respect to the inputs extracted by the simulator), or that the protocol will catch
the inconsistency and abort before these messages are exchanged.

We prove that Πmal is maliciously secure by demonstrating a simulator, Simmal. Fix adversary
A (without loss of generality, input-less and deterministic), and corrupted set T ⊂ [N ] with |T | ≤ t.
Let H = [n] \ T .

Simulator SimAmal((xi)i∈T ):
We will sometimes denote by [x]T , [x]H (respectively, 〈x〉T , 〈x〉H) the corresponding corrupt-party
and honest-party shares of the CNF-shared value x (resp., additively shared).

1. Simulate Correlated Randomness Setup. Sample bogus CNF shares of 0 for each of
[λγ ]T , [sγ ]T and bogus additive shares of 0 for each 〈λγ〉T .

2. Simulate Input Sharing and Gate-by-Gate Evaluation steps—i.e., the truncated protocol
Π′—using the simulator SΠ′ . More concretely, the simulation takes place as follows.
A maintained invariant is that for each evaluated gate output, corresponding to a wire value
xi, the simulator simulator knows the “correct” corrupt-party set of shares [xi]T .

(a) Input Sharing

• Input gate owned by honest party: Generate and send bogus CNF shares [xi]T of 0.
• Input gate owned by corrupt party: Receive CNF shares [xi]H from corresponding
corrupt party. Extract the input value as x′i = Recon([xi]H). Extrapolate the
corrupt-party shares [xi]T given these honest party shares.

(b) Gate-by-Gate Evaluation.
For each addition gate: locally update corrupt-party shares as [xγ ]T = [xα]T + [xβ]T .
Each multiplication gate: Note that at each gate, the simulator knows the corrupt-party
CNF shares [xα]T , [xβ]T of the two input values xα and xβ .

• If P0 is corrupt: Sample and send to P0 random additive shares 〈xγ + λγ〉H on
behalf of the honest parties. Receive back CNF shares [xγ + λγ ]H ; extrapolate the
corrupt-party shares [xγ + λγ ]T .

• If P0 is honest: Receive shares 〈xγ〉T from corrupt parties. Ignore these values, and
sample and distribute fresh CNF shares [xγ + λγ ]T of 0 to the corrupt parties.

Note that the simulated view includes the “correct” corrupt-party shares of all wire values:
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either reconstructed from the shares sent to honest parties by corrupt party P0, or as sent
out directly by honest P0 to the corrupt parties.

3. Simulate Prove Correctness step:

• Simulate Verifier Phase I: Sample random r; simulate this as the public output of Fcoin.
• Simulate Prover Emulation:

(a) Sample bogus CNF shares of 0 for [rtest
P ]T and [rP ]T . Simulate these values as the

output of the calls to the ideal functionality Fpriv
coin.

(b) For each honest party: VSS the bogus value 0, resulting in corrupt-party shares [πi]T .
(c) For each corrupt party i:

i. Compute the expected correct share πi = ProveC,r([~x], [π]) that party i should
have computed, given his shares (as known by the simulator from [~x]T , [π]T ).

ii. Extract the shared value π′i from party i’s VSS.
iii. Let π∗i := π′i − πi.
Compute the overall adversarial additive offset to π: i.e., let π∗ =

∑
i∈T π

∗
i .

• Simulate Verifier Phase II:

(a) Denote by AZK the adversarial verifier strategy for corrupt verifiers T ⊂ [n] in the
security game of the distributed-verifier strong ZK proof induced by executing A on
the simulated view up to this point.
Execute the strong zero-knowledge simulator for this adversary AZK to simulate the
view of corrupted verifiers with respect to the correct proof π, given the corrupt-party
shares of the statement [~x]T = ([xi]T )i∈Wire. Note that this consists of:

– Verifier randomness r′ = (r′1, r
′
2),

– Broadcasted DLC test shares {vi}i∈H (as a function of r′1, [~x], and [rtest
P ]),

– Broadcasted verifier answers {ai}i∈H (as a function of r′2, [~x], and [π]).

(b) Simulate messages as follows:

– Simulate r′ as the output of Fcoin.
– Simulate the honest parties broadcasting {vi}i∈H as their DLC test shares.
– Simulate the honest parties broadcasting {ai + 〈r′2, π∗〉}i∈H as their verifier

answers. This incorporates the (simulatable) effect of the additive-offset attack
π′ = π + π∗ on the proof π. (Denote a′i = ai + 〈r′2, π∗〉.)

(c) Receive values {v′i}i∈T and {a′i}i∈T from corrupt parties. For each corrupt party i:

i. Compute the expected correct DLC-test share vi that party i should have com-
puted, given r′1 and his shares of [~x] and [rtest

P ] (as known by the simulator from
[~x]T , [r

test
P ]T ).

If v′i 6= vi, then simulate verifier rejection (and simulation terminates).
ii. Simulate the honest verifier accept/reject output given the full set of answer

shares {a′i}i∈[n]. If any party rejects as verifier, terminate simulation.

4. Otherwise, simulate the final step of the protocol as follows.

(a) Denote the set of all extracted corrupt-party inputs (from the Input Sharing simulation
step above) by x′T .

(b) Call the ideal functionality FC on the extracted corrupt-party inputs, obtaining output
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y = FC((x′i)i∈T , (xi)i 6∈T ).
(c) Simulate the final step depending on whether party P0 is corrupt or honest:

For each output gate γ: Denote by [xγ ]T the shares of xγ held by corrupt parties from
the Π′ simulation above.

• If P0 is corrupt: Reverse sample a set of robust CNF shares for honest parties [xγ ]H ,
consistent with corrupt shares [xγ ]T and the corresponding reconstructed value yγ .
Simulate sending [xγ ]H to P0, on behalf of the corresponding honest parties.

• If P0 is honest: If the corrupt parties send exactly the values [xγ ]T , then simulate the
adversary allowing output delivery to honest parties. Otherwise, simulate adversarial
abort.

This concludes the description of the simulator.

To demonstrate indistinguishability of the simulated execution, consider the parts of the protocol:
• Setup, Input Sharing, Gate-by-gate Evaluation. The preprocessing and “truncated
DN” protocol are perfectly simulated. The setup and honest-party input sharing consist of
secret shares where corrupt parties form an unauthorized set. For each multiplication, the
value xγ + λγ communicated from honest parties and reconstructed is perfectly masked by a
fresh random string λγ from the preprocessing.

• Prove Correctness. Correct simulation holds by the hiding of the CNF shares together
with the strong zero knowledge of the underlying distributed-verifier protocol. Note that the
effect of additive-offset attack is properly simulated, as in the “Setting I” proof protocol from
Theorem 6.6 (see Section 6.2).

• Output Reconstruction. Completeness: If [~x] is indeed contained within LC and all
parties compute ProveC,r honestly, then correctness of degree-2 computations on CNF robust
secret shares implies that the additive shares 〈π〉 indeed add to a valid proof π that will be
accepted within verification.
Suppose, then, the parties accept the proof of [~x] ∈ LC .

– By soundness of the distributed-verifier interactive proof system, then (with overwhelming
probability) it holds that indeed [~x] is contained within the language LC . By definition of
LC (together with robustness of the CNF shares), this implies that the final set of CNF
output shares encodes the correct output y of the circuit on the input values that were
secret shared in the Input Sharing phase. These input values are precisely the honest
party inputs xα, together with the inputs of corrupt parties x′α extracted by the simulator
within this phase.

– Suppose, then, that the parties hold a valid (consistent) set of CNF shares of y.

∗ If P0 is corrupt: Then in an honest execution, the corrupt party P0 receives (fresh
random) CNF shares from honest parties of the output value y, subject to being
consistent with the shares [y]T that are held by corrupt parties. This is precisely as
simulated.

∗ If P0 is honest: Recall that CNF shares consist of a collection of random values, given
to each of the different subsets of (t+ 1) parties. Since the corruption threshold is t,
this implies that each secret value held by a corrupt party is also held by at least
one honest party. In particular, in order to send a fully consistent set of shares of y,
there is no cheating space for the corrupt parties: they must send precisely the share
values given in the previous part of execution, otherwise they will be identified and
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rejected. Thus, simulation again matches.

8 Conclusions

We have demonstrated that fully linear proof systems capture many existing techniques for zero-
knowledge proof on secret-shared, encrypted, or committed data. We presented new constructions of
zero-knowledge fully linear PCPs and IOPs for “simple” languages with sublinear proof size, and
demonstrated the usefulness of such proof systems to protecting secret-sharing based MPC protocols
against malicious parties with low communication overhead.

Despite some progress obtained in this work and in prior related works, there is a lot more to
understand about the power of (fully) linear PCPs and their interactive variants. We mention a
couple of concrete open questions:

• To what extent are the tradeoffs we obtain for low-degree languages optimal? In particular,
is there a linear PCP of size o(n) for the language L{0,1}n =def {x ∈ Fn | x ∈ {0, 1}n}? Our
sublinear constructions require interaction.

• Are there linear PCPs for general arithmetic circuit satisfiability with constant query complexity
and proof size sublinear in the circuit size? The lower bound result from Appendix B
unconditionally rules out such succinct fully linear PCPs. Standard PCPs with succinctness
properties cannot exist unless the polynomial hierarchy collapses [63]. Does the same restriction
apply to general linear PCPs?
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A Linear IOP Constructions from the Literature

We now demonstrate that a number of existing proof systems in the literature implicitly construct
linear IOPs.

Short linear IOPs for low-depth circuits from Muggles. The “Muggles” protocol of Goldwasser,
Kalai, and Rothblum [74, 75] is an interactive proof system for languages L recognized by low-
depth boolean circuits with a certain regular structure (specifically: log-space uniform circuits of
polylogarithmic depth). Unlike many classical interactive proofs [8,10,77,94,115], the GKR protocol
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is doubly efficient: both prover and verifier run in polynomial time. In addition the verifier runs in
near-linear time: n · polylog(n), on inputs of length n.

We observe that the GKR protocol gives rise to a linear IOP for arithmetic circuit satisfiability.
The benefit of the GKR-based linear IOP is that it has very low proof length, as long as the relation
in question is recognized by a shallow arithmetic circuit. Unlike in GKR’s original setting, we need
not impose any uniformity restrictions on the circuit.

The construction applies to layered arithmetic circuits of fan-in two. Consult the GKR paper [75]
for a formal definition of such circuits.

We have:

Theorem A.1 (Goldwasser, Kalai, and Rothblum [74, 75]). Let C : Fn × Fh → F be a layered
arithmetic circuit of fan-in two over a finite field F of size |C| and depth d (where the size and depth
also include the addition gates). Let RC = {(x,w) | C(x,w) = 0}. There exists a O(d · log |C|)-round
fully linear IOP for RC over F with

• proof length h+O(d · log |C|) elements of F,
• query complexity O(1),
• soundness error O(d · log |C|)/|F|, and
• a verifier of algebraic degree 2.

This IOP does not provide honest-verifier zero knowledge.

Proof idea. We sketch how we can interpret the “bare-bones” GKR protocol, as described in Roth-
blum’s thesis [110, Section 3.3.2], as a fully linear IOP.

The GKR protocol runs in d phases—one for each layer of the circuit. In the each phase:
• the prover and verifier engage in a sum-check protocol over a sum with O(|C|) terms,
• the verifier evaluates a degree-two polynomial on prover-provided values,
• the verifier evaluates a prover-provided polynomial of degree O(log |C|) at two points, and
• the verifier sends the prover a random challenge.

Each sum-check protocol requires O(log |C|) rounds of interaction, so the total number of rounds of
interaction is O(d · log |C|). In the fully linear IOP setting, the verifier can execute each step of the
sumcheck interaction using only O(1) linear queries to prover-provided values. Furthermore, each of
these steps only requires the verifier to compute degree-two relations on the prover-provided values.

In the final phase of the the GKR protocol, the verifier must evaluate the multilinear extension
of the input-witness pair (x‖w) ∈ Fn+h. To achieve this in the fully linear IOP setting, the prover
sends the verifier the witness w ∈ Fh and the verifier can evaluate the multilinear extension of the
input-witness pair with one linear query to the prover-provided witness w and one linear query to
the input x.

The GKR fully linear IOP will be useful for checking satisfiability of wide and shallow circuits
with non-regular structure.

More recent refinements to the GKR protocol, such as those of Cormode, Mitzenmacher, and
Thaler [42], Thaler [119], and Wahby et al. [121] also yield fully linear IOPs with corresponding
efficiency benefits. Finally, the RRR protocol [109] (giving a constant-round interactive proofs for
space-bounded computations) can also be cast into the fully linear IOP framework.

A constant-size linear IOP for vectors of small Hamming weight. In recent work [54],
Damgård et al. give a Σ-protocol for proving that a vector of commitments commits to a vector
with low Hamming weight. Their protocol has applications to symmetrically private information
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retrieval [68] and maliciously secure d-out-of-n oblivious transfer [100]. We can view their construction
as a two-round linear IOP for the language of vectors in Fn of low Hamming weight:

Theorem A.2 (Damgård, Luo, Oechsner, Scholl, and Simkin [54]). Fix a finite field F and define:
LHW(d) =def

{
x ∈ Fn | x has at most d non-zero entries

}
. Then there exists a fully linear two-round

IOP for LHW(d) over F with
• proof length O(d) elements of F,
• query complexity O(d),
• soundness error O(n)/|F|, and
• a verifier of algebraic degree 2.

B Proving Optimality Using Communication Complexity

We now show a connection between fully linear PCPs and Merlin-Arthur communuication complex-
ity [1,89] that allows us to prove lower bounds on the size and query complexity of fully linear PCPs.
One advantage of restricting our focus to fully linear PCPs (rather than arbitrary linear PCPs), is
that we can prove unconditional lower bounds on their efficiency. In contrast, proving lower bounds
on the size of linear PCPs necessarily implies some complexity assumption, since if P = NP, all
languages in NP have trivial linear PCPs.

In this section, we prove the following result, which puts a lower bound on the efficiency of fully
linear PCPs:

Theorem B.1. Let LIP ⊆ Fn × Fn be the language of pairs of vectors (x, y) ∈ Fn × Fn such
that

∑n
i=1 xiyi = 0 ∈ F. Any fully linear PCP for LIP over a finite field F of size greater than

n and soundness error at most 1/3 must have proof size |π| and query complexity ` such that
|π|+ ` = Ω(

√
n)/ log |F|.

Remark B.2. The technique we use to prove Theorem B.1 is very similar to the technique that
Chakrabarti et al. [39] use to get lower bounds on the efficiency of stream annotation systems (see
discussion in Section 2). In fact, we could also prove Theorem 2 by showing that any fully linear
PCP for LIP implies a stream annotation system for LIP. To make this discussion self contained, we
prove the theorem directly.

To prove Theorem B.1, we show a relationship between fully linear PCPs and Merlin-Arthur
communication games [1, 89]. In the Merlin-Arthur communication complexity game, Alice holds an
input x ∈ {0, 1}n, Bob holds an input y ∈ {0, 1}n, and Merlin holds both x and y. Merlin sends a
proof π to Alice and Bob asserting that f(x, y) = 1, for some f : {0, 1}n × {0, 1}n → {0, 1}. Alice
and Bob then communicate to check the proof (using shared randomness, perhaps). If f(x, y) = 1,
there should exist a proof that causes Alice and Bob to accept with probability at least 2/3, over
the coins of the players. If f(x, y) = 0, then Alice and Bob must reject all proofs with probability at
least 2/3.

The MA communication complexity of f is the minimum number of bits that the parties must
communicate to implement such a protocol (See Klauck [89] for a formal definition.) The randomized
communication complexity of f is the minimum number of bits that the parties must communicate
to implement such a protocol with no proof from Merlin.

We then have:

Lemma B.3. If there is a fully linear PCP for the language Lf = {(x, y) ⊆ Fn × Fn | f(x, y) = 1}
over a finite field F with proof length |π|, query complexity `, and soundness error at most 1/3, then
the function f has Merlin-Arthur communication complexity at most (|π|+ `) log |F| bits.
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Proof. We construct an MA protocol for Lf . On input (x, y) ∈ Fn × Fn, Merlin runs the linear PCP
prover for Lf to get the proof π. Merlin sends the proof to Alice and Bob using |π| log |F| bits.

Alice and Bob use their common source of randomness to generate the linear PCP queries
q1, . . . , q` ∈ F2n+|π|. We can write the ith query qi as a triple (qi,x, qi,y, qi,π) ∈ Fn × Fn × F|π|. Then
the answer to the ith query is

ai = 〈qi, (x‖y‖π)〉 = 〈qi,x, x〉+ 〈qi,y, y〉+ 〈qi,π, π〉 = ai,x + ai,y + ai,π ∈ F,

for ai,x, ai,y, ai,π ∈ F.
For each i ∈ [`], Alice can compute ai,π and ai,x on her own. For each i ∈ [`], Bob can compute

ai,y on his own and can send these values to Alice using ` · log |F| bits. Given these values, Alice
can use the linear PCP decision routine to decide whether (x, y) ∈ Lf . The total communication
complexity is (|π|+ `) · log |F|.

To prove Theorem B.1, we need the following definition:

Definition B.4 (Disjointness). Define the function fDisj : {0, 1}n × {0, 1}n → {0, 1} to be the one
that, on inputs x1x2 . . . xn ∈ {0, 1}n and y1y2 . . . yn ∈ {0, 1}n, outputs 0 if and only if there exists
an index i ∈ [n] such that xi = yi = 1.

Now we can use Lemma B.3 to prove that the linear PCP of Corollary 4.7 has optimal proof
length and query complexity, up to a logarithmic factor in the field size:

Proof of Theorem B.1. Towards a contradiction, assume that there exists a fully linear PCP for LIP
over a finite field of size greater than n with soundness error 1/3 and proof size and query complexity
o(
√
n)/ log |F|. By Lemma B.3, such a linear PCP implies the existence of an MA protocol for

function fIP : Fn × Fn → {0, 1} that returns “1” if and only the two input vectors have a inner
product equal to zero. Furthermore, by Lemma B.3, this MA protocol has communication complexity
log |F| · o(

√
n)/ log |F| = o(

√
n).

An MA protocol for fIP over a field F of size greater than n suffices for deciding disjointness on
n-bit strings [1]. Thus, we have constructed an MA protocol for disjointness on n-bit strings that
has communication complexity o(

√
n). Klauck [89] has proved that any MA protocol for disjointness

on n-bit strings requires communication Ω(
√
n), which yields a contradiction.

Aaronson and Wigderson [1] show that the MA communication complexity of LIP (and thus of the
disjointness problem) is O(

√
n log n). Combining the linear PCP of Corollary 4.7 with the statement

of Lemma B.3 and the observation that deciding inner product is enough to decide disjointness,
yields this result as a special case:

Corollary B.5 (Corollary of Corollary 4.7 and Lemma B.3). The MA communication complexity of
fDisj is O(

√
n log n).

C Application: ZK Proofs on Encrypted or Committed Data

While we are primarily interested in fully linear proof systems for their application to proofs on
secret-shared data, we note that they also have applications to proofs on encrypted and committed
data. In particular, we envision a scenario in which a verifier holds an encoding of each element
of a vector x ∈ Fn under an additively homomorphic encryption scheme [53, 102] or additively
homomorphic commitment scheme [106]. A prover, who knows x and the randomness used to encode
it, would like to convince the verifier that x ∈ L, for some language L ⊆ Fn.
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Let us define an additively homomorphic encoding scheme as a function E(x; r) that takes
as input a message x ∈ F with randomness r ∈ F. The encoding scheme E has the additional
property that, for all messages x1 and x2, and for all choices of the randomness r1 and r2, we have
E(x1; r1) · E(x2; r2) = E(x1 + x2; r1 + r2), where multiplication and addition are computed in a
field, for example. Examples of such encoding schemes are the Paillier [102] and Damgård-Jurik [53]
cryptosystems, and the Pedersen commitment scheme [106].

This variant of the problem of proving statements on encoded data comes up in a number of
practical applications of zero-knowledge proofs to privacy-preserving system design. We recall a few
of these applications here:

• Private advertising and private statistics [59,79,95,120]. The Adnostic system [120]
and the system of Green et al. [79] are mechanisms for adding privacy to today’s online ad
ecosystem. In these systems, every user’s web browser holds a local library of ads and the
browser uses local information about the user’s preferences and demographic information to
decide which ads to show to the user. Every time a user views the ith advertisement in the
library, the browser encrypts the basis vector ei ∈ Fn (the vector of all zeros with a one at
index i) using an additively homomorphic cryptosystem and submits the ciphertext to an
aggregator. To protect against malicious users, each user also proves that its submission really
encrypts a basis vector.

• Private aggregation of integers [116]. In systems for private aggregation of numerical
data, users submit encryptions of integers x ∈ F that should lie in some range {0, . . . , B} ⊆ F.
To prevent a user from submitting a malformed value, these systems use zero-knowledge proofs
over the encrypted values.

The following informal claim shows that fully linear PCPs imply efficient non-interactive zero-
knowledge arguments of knowledge (NIZKs) in the random-oracle model [13] for proving statements
on data encrypted with additive homomorphic encryption schemes.

Informal Claim C.1. Let R be a binary relation over a finite field F. Let (PLPCP, VLPCP) be a strong
HVZK fully linear PCP for R over F with proof length m and query complexity `. Let Enc(x; rx) be
an additively homomorphic encryption scheme that encrypts a message x ∈ F with randomness rx
such that:

• the message space of Enc is the set of elements of F, and
• there is a non-interactive argument-of-knowledge of correct decryption [103,108] consisting of
a constant number of ciphertext elements.

Then there is a NIZK in the random-oracle model for the relation Rctx =
{

((x, rx), w) | ctx =
E(x; rx) ∧ (x,w) ∈ R

}
, such that the NIZK has length m+O(`) ciphertext elements.

Proof idea for Claim C.1. Given a vector x = (x1, . . . , xn) ∈ Fn we denote the component-wise
encryption of x under Enc as Encn(x) =def (Enc(x1), . . . ,Enc(xn)).

We (informally) construct the NIZK scheme implied by the claim. The verifier takes as input
a ciphertext ctx = Encn(x), for some x ∈ Fn. The prover takes as input the encryption of a
statement-witness pair (x,w) ∈ Fn × Fh and wants to convince the verifier that (x,w) ∈ R. We
assume that the public key for the encryption scheme, which we leave implicit, is part of a common
reference string provided to the prover and verifier.

We sketch the protocol here:
Prover.

• The prover runs π ← PLPCP(x,w), encrypts the proof element by element, and sends the
encrypted proof ctπ ← Encm(π) to the verifier.
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• The prover hashes the encrypted proof ctπ and instance ctx using the random oracle and uses the
resulting value to derive the randomness it uses to run the linear PCP query algorithm QLPCP.

• Given the encrypted proof ctπ and the query vectors (q1, . . . , q`), the prover can use the
additive homomorphism of the cryptosystem to produce encryptions of the query answers
(cta1 , . . . , cta`).

• The prover sends the openings (decryptions) of these query answers to the verifier. The prover
also proves, using one NIZK per ciphertext, that it opened each ciphertext correctly. The
prover can construct these NIZKs because the prover knows the randomness used in each
of the encryptions, and we are assuming that the encryption scheme is homomorphic in the
randomness.

Verifier.
• The verifier hashes the encrypted proof ctπ to derive the randomness it uses to run the linear

PCP query algorithm QLPCP.
• The verifier computes the encrypted query answers (cta1 , . . . , cta`) by applying these queries

to the encryptions of π and x.
• The verifier checks that the encrypted answers match the values the prover sent and that the

proofs of decryption are correct.
• The verifier evaluates the linear PCP decision predicate DLPCP on the decrypted answers

(a1, . . . , a`) and accepts iff the linear PCP decision predicate accepts.

Remark C.2. A variant of Claim C.1 applies even if the underlying linear PCP is not HVZK. In this
case, the prover does not provide decryptions of the query answers, but uses a standard NIZK [48]
to prove in zero knowledge that the answers satisfy the linear PCP decision predicate. If the linear
PCP has proof length m and has a verifier that can be represented as an arithmetic circuit over F
with size |DLPCP|, then the resulting NIZK has size m+O(|DLPCP|).

A simple variation of the protcol described in the proof of Claim C.1 applies to proving statements
on data to with an additively homomorphic commitment scheme. The only difference is that prover
need not produce NIZKs of correct decryption of the query answers—the prover can just send the
verifier openings of the commitments to the query answers.

We can extend the construction of Claim C.1 to compile multi-round linear IOPs into NIZKs
as well. In this case, the resulting NIZK has proof size that scales with the proof length of the
linear IOP. Recent work of Wahby et al. [122] compiles a variant of the CMT protocol [42] into a
NIZK using a technique along these lines. Zhang et al. [125] also compile the CMT protocol into an
argument system using different cryptographic techniques.

Comparison with prior proof systems. Table 1, in the introduction, gives quantitative compar-
isons of the proof systems resulting from Claim C.1 to others in the literature.

Roughly speaking, when it is possible to use a succinct discrete-log based commitment (i.e.,
commiting to the input x ∈ Fn using a string of size sublinear in n), there zero-knowledge interactive
proof systems that achieve O(log |C|) proof length for languages recognized by arithmetic circuits of
size |C| [32, 36]. For general circuits, these proof systems will be preferable to our own. In contrast,
for proving simple zero-knowledge statements, such as proving that a committed vector has Hamming
weight one—using our abstraction of the proof system of Damgård et al. [54]—the proofs obtained
via our framework are shorter. (See Table 1.)

In contrast, for the problem of proving statements on data encrypted with an additively homo-
morphic encryption scheme, the proofs produced using this framework will be significantly shorter
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than those using the standard techniques. For example, standard techniques for proving that an
encrypted vector x ∈ Fn is in the subset x ∈ {0, 1}n ⊆ Fn requires Ω(n)-length proofs [48]. By
applying our techniques (Theorems 4.3 and 5.1) to this problem, we achieve O(log n)-length proofs
for this, and other simple, languages. (See Table 1.)

D Proofs over Rings

In this section, we show a fully linear PCP and a fully linear IOP over rings Zw, focusing on w a power
of two. The fully linear PCP of Theorem 4.3 and the proof systems derived from it are all defined
for circuits over finite fields. An interesting application of these proof systems is in transforming
MPC in the semi-honest setting to MPC in the malicious setting. MPC is typically defined for
circuits over finite fields. However, circuits defined over rings are interesting both theoretically,
as a generalization of circuits over fields, and due to practical considerations. Arithmetic modulo
2k is implemented in the hardware of most computing devices, unlike finite field operations, and
MPC protocols that reflect actual hardware architecture are more efficient. Furthermore, specific
operations, such as bit decomposition and comparisons are more efficient in Z2k . We refer the reader
to additional discussion in [49]. The feasibility of MPC over general rings was shown in [51] while
recent work [49,57] presents efficient MPC constructions in the malicious setting over Z2k .

Notation D.1. For an integer w ≥ 1 let w = pe11 · . . . · p
ek
k be the unique factorization of w into

distinct prime powers, let Zw be the ring of integers modulo w, let Zw[x] denote the polynomial
ring over Zw and for f(x) ∈ Zw[x] let Zw[x]/f(x) denote the quotient ring of polynomials over
Zw modulo f(x). For any prime power q let Fq denote the finite field with q elements. Given a
polynomial f(x) ∈ Zw[x] define fq(x) by reducing each coefficient of f modulo q. A zero divisor in
a ring R is an element a ∈ R such that ab = 0 for some b ∈ R, where 0 is the neutral element for
addition. A unit is any a ∈ R which has a multiplicative inverse.

Claim D.2. Let w = pe11 · . . . · p
ek
k be an integer and let f(x) ∈ Zw[x] be a degree-δ polynomial such

that fpi(x) is irreducible over Fpi for every i = 1, . . . , k. Then
• Any element g(x) ∈ Zw[x]/f(x) such that gpi(x) 6≡ 0 ∈ Fpi for all i = 1, . . . , k is a unit in
Zw[x]/f(x).

• The number of units in Zw[x]/f(x) is at least wδ −
∑k

i=1(w/pi)
δ.

Proof. By definition, Zw[x]/f(x) is a ring and each element is a polynomial over Zw with degree
less than δ. Let g(x) ∈ Zw[x]/f(x) and consider the reduction of the coefficients of g(x) modulo a
prime power. Let p = pi, e = ei and q = peii for some i ∈ {1, . . . , k}.

We prove that gq(x) is invertible in Zq[x]/fq(x) if and only if gp(x) is not the zero polynomial in
Fp[x]. If gp(x) = 0 ∈ Fp[x] then gq(x) = pg′(x) for some polynomial g′(x). The degree of fq(x) is at
least 1 since fp(x) is irreducible and therefore not a constant. It follows that gq(x) is not invertible
in Zq[x]/fq(x) and therefore g(x) is not invertible in Zw[x]/f(x).

Assume that gp(x) 6= 0 ∈ Fp[x]. Since fp(x) is irreducible modulo p there exist a(x), b(x) ∈ Fp[x]
such that a(x)fp(x) + b(x)gp(x) = 1 over Fp. Therefore, there exists a polynomial h(x) such that
a(x)fq(x) + b(x)gq(x) = 1 + ph(x) over Zq. Define

A(x) = a(x)
e−1∑
j=0

(−ph(x))j and B(x) = b(x)
e−1∑
j=0

(−ph(x))j .

Computing over Zq:

81



A(x)fq(x) +B(x)gq(x) =
e−1∑
j=0

(−ph(x))j
(
a(x)fq(x) + b(x)gq(x)

)
=

e−1∑
j=0

((−ph(x))j − (−ph(x))j+1)

= 1− (−p)ehe(x) ≡ 1 mod q

Therefore, gq(x) is invertible in Zq[x]/fq(x). It follows that if g(x) 6≡ 0 mod pi for every i then g(x)
has an inverse modulo f(x) over Zpeii for every i. In this case, by the Chinese Remainder Theorem,
g(x) is invertible and hence a unit in Zw/f(x).

The number of elements in Zw[x]/f(x) is wδ. Since Zw[x]/f(x)is finite, any element r which is
not a zero divisor must be a unit6. If g(x) is a zero divisor then gpi(x) = 0 for some i which implies
that each of the δ coefficients of g(x) is a multiple of pi. There are (w/pi)

δ polynomials for which
gpi(x) = 0 and therefore there are at most

∑k
i=1(w/pi)

δ zero divisors and at least wδ −
∑k

i=1(w/pi)
δ

units in Zw[x]/f(x).

Claim D.3. Let R be a commutative ring with unity, such that there are z zero divisors in R and
let f(x) be a polynomial of degree δ ≥ 0 over R, which is not equal to the zero polynomial. Then,
f(x) has at most zδ roots in R.

Proof. We prove the claim by induction on δ. For δ = 0 the statement of the claim is obvious. For
δ > 0, assume that the statement holds for δ − 1. If all the roots of f(x) are zero divisors then the
claim is true. Otherwise, there is a ring element r, which is not a zero divisor, such that f(r) = 0.
Hence, f(x) = (x− r)g(x) for g(x) of degree δ − 1.

By the induction hypothesis, g(x) has at most z(δ − 1) roots. Let u be a root of f(x), which is
not a root of g(x). Then 0 = (r − u)g(u) and therefore u− r is a zero divisor. There are at most z
such roots and as a consequence f has at most z(δ − 1) + z = zδ roots.

Remark D.4. Theorem D.5 is an analog of Theorem 4.3 for Fully Linear PCP over certain rings.
The proof of Theorem D.5 takes into account the fact that a ring element may not have an inverse,
preventing polynomial interpolation, and that polynomials of degree d over the ring may have more
than d roots. The approach of the proof is to work with rings with a small number of zero divisors
and argue that in this case the techniques of Theorem 4.3 succeed with good probability. While the
Theorem could be stated more generally for any finite, commutative ring with a small fraction of
zero divisors we restrict ourselves to the concrete case of an extension of Zw using the tools that
Claims D.3 and D.2 provide to estimate the number of units and the number of roots of a polynomial
in such rings. Where necessary, the theorem states results for both general integers w and for the
most useful case, that of w = 2e for some positive integer e.

The interesting case for Theorem D.5 (and for Theorem 4.3) is degG > 1, i.e. G is a non-linear
gate and C is a non-linear circuit. In this case, we denote the number of G gates in the circuit by
M , with L inputs to each gate. If C is a linear circuit then we view it as a single G-gate of degree 1,
i.e. M = 1, and the results of Theorem D.5 hold in this case as well.

Theorem D.5. Let w be a positive integer with prime factorization w = pe11 · . . . · p
ek
k , let f(x) be

a polynomial of degree δ which is irreducible over Fpi for all i and let R = Zw/f(x). Let C be an
arithmetic circuit with n inputs over R such that:

6If ry 6= 1 for any y in the ring then there exist two different elements a, b such that ra = rb and therefore
r(a− b) = 0 and r is a zero divisor.
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(a) the gate G : RL → R has arithmetic degree degG

(b) the circuit C consists of M instances of a G-gate and any number of affine gates, and
(c) δ is such that |R| = wδ >

∑k
i=1(w/pi)

δM degG (if w = 2e then 2δ > M degG).
Then, there exists a fully linear PCP with strong HVZK for the language LC = {x ∈ Rn | C(x) = 0}
that has proof length L+M degG+1 elements of R, query complexity L+2, an arithmetic verification
circuit of degree degG containing |G| multiplication gates, and soundness error for general w

O((
∑k

i=1(w/pi)
δ)M degG)

|R| −M
∑k

i=1(w/pi)δ
,

and for w = 2e the soundness error is
O(M degG)

2δ −M
.

Proof. Every element in R can be represented as a polynomial of degree less than δ with coefficients
in Zw. Let D ⊆ R be the subset of R that includes all polynomials of degree less than δ with all
coefficients in the range 0, . . . , p− 1 for p = min{p1, . . . , pk}. It follows from the choice of δ in the
theorem that wδ > (w/p)δM degG and therefore |D| = pδ ≥M + 1. Let {α0, α1, . . . , αM} ⊆ D be
M + 1 arbitrary elements in D. Claim D.2 proves that αi − αj is a unit in R for every two different
αi, αj .

It follows that interpolation is possible over D. That is, for any sequence of values β0, . . . , βM ∈ R
there exists a polynomial g(x) ∈ R[x] of degree at most M such that g(αi) = βi for i = 0, 1, . . . ,M .
g(x) is simply the Lagrange interpolation polynomial g(x) =

∑M
i=0

∏
j 6=i

x−αj
αi−αj βi which is well-defined

given the choice of α0, . . . , αM .
Define the set E by E = {αi + ζ | i ∈ {1, . . . ,M}, ζ a zero divisor in R}. By this definition, for

any r ∈ R \E, the difference r−αi, i ∈ {1, . . . ,M}, is not a zero divisor in R and is therefore a unit.

Linear PCP prover. On input x ∈ Rn, the prover evaluates C(x) and defines L polynomials
f1, . . . , fL ∈ R[X] such that, for every i ∈ {1, . . . , L},
(i) fi(α0) is chosen independently and uniformly at random from R, and
(ii) for all j ∈ {1, . . . ,M}, fi(αj) ∈ R is the value on the i-th input wire to the j-th G-gate when

evaluating C(x).
The prover proceeds identically to the proof of Theorem 4.3 by constructing a proof polynomial
p = G(f1, . . . , fL) ∈ R[X] of degree d ≤ M degG with coefficients cp ∈ Rd+1 and outputs π =
(f1(α0), . . . , fL(α0), cp) ∈ FL+d+1 as the linear PCP proof.

Linear PCP queries and LPCP decision. The verifier mimics the verifier in the proof of
Theorem 4.3 except for two differences. The first is that the polynomials f ′1, . . . , f ′L are interpolated
based on their values in α0, α1, . . . , αM instead of their values in 0, 1, . . . ,M . The second difference is
that r is chosen randomly in the set R\E. The linear queries can be constructed because Fact 4.4 on
the linearity of polynomial interpolation and evaluation holds in a ring R in which the interpolation
points are α0, α1, . . . , αM such that αi − αj is a unit for all i 6= j.

Security arguments. Completeness is argued identically to the proof of Theorem 4.3. For the
soundness argument, assume that π defines a polynomial p′ and L polynomials f ′1, . . . , f ′L. The
same induction as in the proof of Theorem 4.3 shows that if for all j ∈ {1, . . . ,M}, it holds that
p′(αj) = G(f ′1(αj), . . . , f

′
L(αj)), then for all j ∈ {1, . . . ,M}, p′(αj) encodes the value of the output

wire of the jth G-gate in the evaluation of C on x.
If p′(αM ) = 0 (otherwise p′ is not accepted), but C(x) 6= 0, then p′(αM ) does not encode the out-

put value of theMth G-gate in the evaluation of C(x) and therefore p′(αj∗) 6= G(f ′1(αj∗), . . . , f
′
L(αj∗))
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for some j∗ ∈ {1, . . . ,M}. We have that p′ − G(f ′1, . . . , f
′
L) ∈ R[X] is a non-zero univariate poly-

nomial of degree at most M degG. By Claim D.2 the number of zero divisors in R = Zw/f(x)
is z ≤

∑k
i=1(w/pi)

δ and by Claim D.3 the number of roots of a polynomial of degree M degG in
R is at most zM degG. Since r is drawn at random from R \ E and |E| = zM , the probability
that the verifier accepts a false proof is at most zM degG/(|R| −Mz). In the interesting case of
w = 2e the number of zero divisors in the ring is 2(e−1)δ and the probability of soundness error is
2(e−1)δM degG/(2eδ − 2(e−1)δM) = M degG/(2δ −M).

To prove strong honest-verifier zero knowledge it suffices to produce a simulator that perfectly
generates the distribution of 〈r, p(r), f1(r), . . . , fL(r), p(M)〉. To do so, the simulator chooses
r ←R R \ E, chooses a1, . . . , aL ←R R, computes a ← G(a1, . . . , aL) ∈ R and outputs the tuple
〈r, a, a1, . . . , aL, 0〉 ∈ RL+3. To prove that the simulation is perfect for an honest verifier and an
honest prover note that the simulator chooses r identically to the honest verifier, that if a1, . . . , aL
are chosen correctly then the simulation computes a correctly and that an honest prover returns
p(M) = 0 as the output of the circuit.

Therefore, it is only necessary to show that a1, . . . , aL are chosen identically to f1(r), . . . , fL(r).
By interpolation, the value fi(r) is fi(r) =

∑M
k=0

∏
j 6=k

r−αj
αk−αj fi(αj). Recall that the values

fi(α1), . . . , fi(αM ) are determined by the circuit C and the value fi(α0) is chosen uniformly at
random from R. The ring element

∏
j 6=0

r−αj
α0−αj is a unit since r ∈ R \ E and α0, . . . , αM ∈ D.

Therefore,
∏
j 6=0

r−αj
α0−αj fi(α0) is randomly distributed in R and as a consequence fi(r) is randomly

distributed in R, which completes the proof.

E Proofs for Low-Degree Languages

In this section we spell out the parameters of fully linear IOPs for “low-degree languages,” namely
languages in which membership can be checked by a system of low-degree equations.

Corollary E.1 (IOP for multi-output degree-two circuits). Let R be a ring, let C : Rn → Rm

be an arithmetic multi-output circuit of degree two defined by C(x) = (C1(x), . . . , Cm(x)). Let
LC = {x ∈ Rn | C(x) = 0m} and let ε be a required soundness error. Then, there is a fully
linear IOP over R with strong HVZK for the language LC that has 1.5 communication rounds,
computational complexity Õ(n+m), and the following additional efficiency features.

• If R is a finite field F then the IOP has proof length O(η
√
n) elements of F, for η = log|F|((m+√

n)/ε), challenge length η +O(1) elements of F, total query complexity O(
√
n), and a verifier

of algebraic degree 2.
• If R = Zw for an integer with prime factorization w = pe11 · . . . · p

ek
k , such that p =

min{p1, . . . , pk}, then we get a similar IOP with η = logp
k(m+(1+ε)

√
n)

ε . If w = 2e then
η = log2

m+(1+ε)
√
n

ε .
Furthermore, the proof is a degree-2 function of the input x and the secret randomness determined
by the public randomness and the circuit C.

Proof. If R = F then let E be an extension field of degree η+O(1) over F, i.e |E| = |F|η+O(1). Write
the circuit C as C(x) = (C1(x), C2(x), . . . , Cm(x)) ∈ Em, where each Ci is a degree-two circuit. In
the first (half) round of the protocol, the verifier sends a random r ∈ E. Then the prover and the
verifier let Cr be the degree-two circuit over E defined by Cr(x) =

∑m
i=1 r

i · Ci(x).
The prover uses the fully linear PCP of Corollary 4.7 to convince the verifier that Cr(x) = 0.

The efficiency parameters, including the proof length, the challenge length, the query complexity
and the algebraic degree of the verifier all match those of the corollary. The soundness error has
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two possible causes: the proof that Cr(x) = 0 could be incorrect or the proof that Cr(x) = 0 could
be correct , but Ci(x) 6= 0 for some i ∈ {1, . . . ,m}. Corollary 4.7 bounds the first type of error by
O(
√
n)/(|E| −

√
n). If the second type of error occurs then Cr(x) can be viewed as a polynomial of

degree m in r, which is not identically zero and therefore has at most m roots. Since r is chosen
at random, the probability that the verifier chooses one of the roots is at most m/|E|. The union
bound on the two types of error implies that the soundness error is at most

O(
√
n) +m

|E| −
√
n
≤ ε.

If R = Zw then for every prime pi | w it is easy to compute an irreducible polynomial fpi(x)
of a given degree η +O(1) over Fpi [117]. Let f(x) ∈ Zw[x] be the mapping of (fp1(x), . . . , fpk(x))
defined by the Chinese Remainder Theorem, i.e. f(x) ≡ fpi(x) mod pi for all i. Let ER = Zw/f(x)
be the ring of polynomials modulo f(x) over Zw.

The verifier sends a random r ∈ ER and the parties define the circuit Cr(x) =
∑m

i=1 r
i · Ci(x)

over ER. Using the same argument as in the proof to Corollary 4.7 the circuit Cr can be represented
as affine gates and O(

√
n) gates G : ERO(

√
n)×ERO(

√
n)→ ER defined by G(u, v) = 〈u, v〉 for L =

d
√
ne, for u, v that are part of the input x. By Theorem D.5 a proof that Cr(x) = 0 can be constructed

with the efficiency measures in the corollary and with soundness error
∑k
i=1(w/pi)

η+O(1)√n
wη+O(1)−

√
n
∑k
i=1(w/pi)η+O(1)

.
As in the previous case of fields an additional error term must be added to account for the case
Cr(x) = 0 but Ci(x) 6= 0 for some i ∈ {1, . . . ,m}. In this case, Cr(x) is a polynomial of degree m
over ER that by Claim D.3 has at most zm roots in ER for z zero divisors in the ring. By Claim
D.2 ER has at most

∑k
i=1(w/pi)

η+O(1) zero divisors and hence the number of roots of Cr(x) is at
most m

∑k
i=1(w/pi)

η+O(1). Therefore, the soundness error is at most

(m+
√
n)
∑k

i=1(w/pi)
η+O(1)

wη+O(1) −
√
n
∑k

i=1(w/pi)η+O(1)
≤ (m+

√
n)k(w/p)η+O(1)

wη+O(1) − k
√
n(w/p)η+O(1)

≤ (m+
√
n)k

pη+O(1) − k
√
n
≤ ε

Recall that the prover must compute the circuit Cr(x) from C and then compute the polynomials
f1(x), . . . , fL(x) (in this case L = O(

√
n)) and p = G(f1, . . . , fL). Each polynomial fi is defined

by the values fi(αj) for O(
√
n) points α1, . . . , αO(

√
n). The value fi(αj) is exactly the i-th input

to the j-th G-gate of Cr, which is a linear function in the input to the proof and the secret
randomness r. Since interpolation is a linear operation, fi is a linear operation over the input and
the secret randomness. Since G computes the inner product, it is a degree-two mapping over its
input. Therefore, p is a degree-two polynomial and the whole proof can be obtained by computing a
degree-two mapping of the input and the secret randomness determined by the circuit C and by the
public randomness.

The computational complexity of the prover is dominated by computing Cr(x) in O(m) time and
by the interpolation step required to compute the polynomial p (originally from Theorem 4.3), in
Õ(n) time, using FFT, which proves the statement of the theorem on computational complexity.

Remark E.2. The protocol offers a possible tradeoff between the number of the verifier’s random bits
and the soundness error. Instead of sending a random r the verifier can send a sequence of random
elements r1, . . . , rm and then Cr is defined by Cr(x) =

∑m
i=1 ri · Ci(x). In this case the number of

random bits increases by a factor of m while the additive error term for the case Cr(x) = 0 but
Ci(x) 6= 0 is reduced to 1/|E| for fields and

∑k
i=1(w/pi)

η+O(1)/|R| for a ring Zw.
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Corollary E.3 (Multi-round IOP for multi-output degree-d circuits). Let R be a ring, let C : Rn →
Rm be an arithmetic multi-output circuit of degree d defined by C(x) = (C1(x), . . . , Cm(x)) and let
M be the sum of the number of monomials in the representations of C1, . . . , Cm as polynomials.
Let LC = {x ∈ Rn | C(x) = 0m} and let ε be a required soundness error. Then, there is a fully
linear IOP over R with strong HVZK for the language LC that has O(logM) communication rounds,
computational complexity Õ(dM) and

• If R is a finite field then the IOP has proof length O(ηd logM) elements of F, for η =
log|F|((m + d logM)/ε), challenge length O(η logM) elements of F, total query complexity
d+O(logM), and a verifier of algebraic degree O(d).

• If R = Zw for an integer with prime factorization w = pe11 · . . . · p
ek
k , such that p =

min{p1, . . . , pk}, then we get a similar IOP with η = logp
k(2ε+m+d logM)

ε . If w = 2e then
η = log2

2ε+m+d logM
ε .

Proof. If R = F then let E be an extension field of degree η +O(1) over F, write C = (C1, . . . , Cm)
over E, and let Cr(x) =

∑m
i=1 r

i ·Ci(x) over E for a random r ∈ E that the verifier sends in the first
round of the protocol.

Cr is of degree d and can be represented as a sum of at most M multivariate monomials over E.
Let Q be the set of M monomials that determine Cr. Define a circuit C ′(x1, . . . , xd) =

∏d
i=1 xi and

note that
Cr =

∑
I=xi1 ·...·xid∈Q

C ′(AI(x1, . . . , xn)),

for some affine functions AI .
Since Cr has this representation as a parallel sum, there is a fully linear IOP over E for LC

based on Theorem 5.1. The number of executions of C ′ in Cr is O(M), the degree of C ′ is d and
each element in E can be viewed as η elements of F. Therefore, by the statement of Theorem
5.1, the number of rounds in the IOP is O(logM), the proof length is O(dη logM) elements of
F, the query complexity is d + O(logM) and the algebraic degree of the verification circuit is d.
Based on the proof of Theorem 5.1, at each round the verifier sends as challenge one element of E,
leading to challenge length O(η logM) elements of F. The computational complexity of the prover
is dominated by logM interpolations and evaluations of at most M constant-degree polynomials,
and by computing the output of each monomial which together require Õ(dM) time. Similarly to
Corollary E.1 the soundness error is the sum of the probability that the proof that Cr(x) = 0 is
incorrect and the probability that Cr(x) = 0 but Ci(x) 6= 0 for some i. By Theorem 5.1 the first
term is bounded by O(m+d logM

|E| ) and using a similar argument to Corollary E.1 the second term is

bounded by O(m/|E|). Taken together, the soundness error is m+d logM
|F|η+O(1) ≤ ε.

If R = Zw then let f(x) be a polynomial of degree η +O(1) over Zw, such that fpi(x) is of the
same degree and is irreducible over Fpi for every i. Let ER = Zw/f(x) and represent C and Cr over
ER. We repeat the proof of Theorem 5.1 for the case of a circuit over the ring ER, by plugging in
the Fully Linear PCP of Theorem D.5 as the basic building block instead of the Fully Linear PCP
for fields described by Theorem 4.3. The result is an IOP with similar complexity to the IOP over
fields in all the measures stated in the corollary: number of communication rounds, proof length,
challenge length, query complexity, algebraic degree and computational complexity of the prover.

To analyze the probability that the proof that Cr(x) = 0 is incorrect, note that the proof proceeds
in logM rounds, and in each the number of g gates is two. Bounding the error for each round based
on Theorem D.5 and taking a union bound results in d logM

∑k
i=1(w/pi)

η+O(1)

wη+O(1)−2
∑k
i=1(w/pi)η+O(1)

. Adding the term

for the case that Cr(x) = 0, but Ci(x) 6= 0 for some i, which is m
∑k
i=1(w/pi)

η+O(1)

wη+O(1) , we get that the
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soundness error is at most

(m+ d logM)
∑k

i=1(w/pi)
η+O(1)

wη+O(1) − 2
∑k

i=1(w/pi)η+O(1)
≤ (m+ d logM)k(w/p)η+O(1)

wη+O(1) − 2k(w/p)η+O(1)

≤ (m+ d logM)k

pη+O(1) − 2k
≤ ε
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